

Přírodovědecká fakulta Faculty of Science

Jihočeská univerzita v Českých Budějovicích Přírodovědecká fakulta

Fylogeneze a biogeografie modrásků podtribu Everina DIPLOMOVÁ PRÁCE

Autor práce: Mgr. Jan Walter

Vedoucí práce: RNDr. Zdeněk Faltýnek Fric, PhD.

Konzultanti: RNDr. Alena Sucháčková, PhD. Doc. Mgr. Martin Konvička, PhD.

České Budějovice 2021

Walter, J. 2021. Fylogeneze a biogeografie modrásků podtribu Everina [Phylogeny and biogeography of blue butterflies from the subtribe Everina. Mgr. Thesis. in Czech] – 73 p., Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.

Annotation:

Sequencing of a mitochondrial gene (COI) and subsequent phylogenetic and phylogeographic analyses were used for understanding the evolutionary and biogeographic relationships within subtribe Everina (Lepidoptera: Lycaenidae).

Prohlašuji, že jsem autorem této kvalifikační práce a že jsem ji vypracoval pouze s použitím pramenů a literatury uvedených v seznamu použitých zdrojů.

V Českých Budějovicích, 13. dubna 2021.

.....

Jan Walter

PODĚKOVÁNÍ

Rád bych poděkoval školiteli RNDr. Zdeňkovi Faltýnkovi Fricovi, PhD. a konzultantce RNDr. Aleně Sucháčkové, PhD. za jejich rady, připomínky k textu, nenahraditelnou pomoc při zpracování analýz a za poskytnutý materiál ke studiu. Oběma zvláště za přátelský přístup a velkou trpělivost. Dále své rodině a přítelkyni za velkou podporu a pochopení.

Obsah

1	ÚV	OD.		1
1.1 Kla			sifikace a fylogeneze čeledi Lycaenidae	2
	1.1	.1	Klasifikace podtribus Everina	3
	1.2	Bio	geografie a vývoj klimatu v kenozoiku	5
	1.2	.1 Bi	ogeografie druhů podtribu Everina	8
	1.4	Stru	učná charakteristika zkoumaných druhů1	1
	1.5	Pro	blematické druhy1	5
	1.5	.1	Cupido alcetas a C. decoloratus1	5
	1.5	.2	Cupido carswelli1	б
	1.5	.3	Cupido tuzovi 1	б
	1.5	.4	Rod <i>Tongeia</i> 1	б
2	CÍI	LE		б
3	ME	TOL	DICKÁ ČÁST1	7
	3.1	Izol	lace DNA1	7
	3.2	Pol	ymerázová řetězová reakce1	8
	3.3	Ele	ktroforéza a přečištění PCR produktu1	9
	3.4	Sek	venace1	9
	3.5	Zpr	acování výsledků	0
3.5.1		.1	Tvorba alignmentu a úprava sekvencí2	0
3.5.2		.2	Fylogenetické stromy	0
	3.5	.3	Molekulární datování	1
	3.5	.4	Biogeografická analýza2	1
	3.5	.5	Haplotypová síť	2
	3.5	.6	HierBAPS	2
	3.5	.7	SPADS	3

4	VÝ	SLE	DKY			
	4.1	.1 Fylogenetické stromy				
	4.2	Molekulární datování a biogeografická analýza				
	4.2	Hap	olotypové sítě, HierBAPS a SPADS			
	4.2	.1	Cupido argiades			
	4.2	.2	Cupido amyntula			
	4.2	.3	Cupido alcetas a C. decoloratus			
	4.1	.5	Cupido osiris a C. staudingeri			
	4.1	.4	Cupido minimus, C. tuzovi, C. lorquinii a C. carswelii			
5	DI	SKUZ	ZE			
	5.1	Fyl	ogeneze podtribu Everina			
	5.2	Мо	lekulární datování a biogeografická analýza			
	5.3	Vzt	ahy uvnitř druhů a skupin druhů			
	5.3	.1	Rod Tongeia			
	5.3	.2	Cupido argiades			
	5.3	.3	Cupido amyntula			
	5.3	.4	Cupido alcetas a C. decoloratus			
	5.3.5		Cupido osiris a C. staudingeri	41		
	5.3	.6	Cupido minimus, C. tuzovi, C. lorquinii a C. carswelii			
	5.3	Nár	něty pro další výzkum			
6	ZÁ	VĚR				
7	LI	ΓERA	ATURA	45		
8	PŘ	58 PŘÍLOHY				

1 ÚVOD

Čeleď Lycaenidae Leach, 1815 je jednou z nejvíce diverzifikovaných skupin motýlů zahrnující více než 6000 tisíc druhů, což představuje okolo 33 % všech známých taxonů z nadčeledi Papilionoidea (Pierce et al. 2002). Převážně se jedná o malé až středně velké druhy (např. Micropsyche ariana Mattoni, 1981 představuje nejmenšího zástupce čeledi s rozpětím kolem 7 mm), výjimečně o zástupce s rozpětím přes 8 cm (např. Liphyra brassolis Westwood 1864). Housenky velké části druhů motýlů z této čeledi jsou myrmekofilní, mající pozitivní vztah k mravencům. Celkově se jedná zhruba o 665 zástupců (75 %) z čeledi Lycaenidae. Tento vztah je mutualistický (housenky mravencům poskytují sladký sekret) nebo parazitický (housenky požírají larvy mravenců) a lze ho v zásadě klasifikovat dvěma kategoriemi – fakultativní a obligátní myrmekofilie. V prvním případě se jedná o vztah motýla a mravence, který však není zásadní pro vývoj housenky v dospělce (Pierce et al. 2002). Naopak obligátní druhy modrásků jsou úzce vázány na konkrétní druh mravence a bez tohoto soužití neproběhne vývoj úspěšně. S tímto vztahem souvisí i vznik speciálních pokožkových žláz, které se u modrásků vyvinuly. Prostřednictvím těchto žláz jsou vylučovány různé sekrety výživné, cukernaté, nebo látky sloužící ke komunikaci s hostitelskými mravenci, obecně nazývané feromony (Macek et al. 2015). Housenky se nejčastěji živí různými částmi živných rostlin jako jsou květy či listy převážně pak zástupců čeledi bobovitých (Fabaceae), avšak existují i příklady masožravých druhů, požírající právě larvy mravenců, příp. zástupce stejnokřídlého hmyzu (Cottrell 1984), nebo druhů lichenivorních (= druhy živící se lišejníky, Henning 1983).

Čeleď je kosmopolitně rozšířená od mírného až po tropický pás (New 1993), s převažující diverzitou právě v tropických oblastech (neotropická oblast, jihovýchodní Asie, Afrika), s několika endemickými druhy z Havaje, Nového Zélandu či pacifické oblasti. Z neotropické oblasti je známo zhruba 2400 druhů, přičemž převážnou část tvoří podčeledi Theclinae a Riodininae (dnes chápána jako samostatná čeleď viz kap. 1.1), s několika málo druhy z Polyommatinae a ostatních podčeledí. Oproti tomu nearktická fauna modrásků je poměrně chudá a nalezneme zde zhruba polovinu druhů oproti palearktické oblasti (New 1993). Obecně lze konstatovat, že převážná část druhů z Lycaeninae dominuje v oblastech severního mírného pásmu, druhy z Polyommatinae nalezneme převážně ve Starém světě a severním mírném pásmu a Theclinae pak převažují v Novém světě, zejména v Jižní Americe (zde je to ale jen jediný tribus – Eumaeini). Fylogenetické a fylogeografické poznatky o čeledi Lycaenidae jsou zaměřeny převážně na rody nebo konkrétní druhy (např. Talavera et al. 2015, Fric et al. 2019), zřídka i na celé sekce (Vila et al. 2011). Pro doplnění dalších údajů o fylogenezi a fylogeografii této čeledi a tím přispět ke komplexnímu porozumění vztahů v ní jsem se rozhodl provést analýzy zaměřené na celý podtribus Everina. V tomto podtribu se nachází druhy s holarktickým, neotropickým a australským rozšířením a celkem zahrnuje více jak 40 druhů motýlů.

1.1 Klasifikace a fylogeneze čeledi Lycaenidae

Modráskovití (Lycaenidae) jsou jednou ze 7 čeledí (Espeland et al. 2018) patřících do nadčeledi Papilionoidae společně s čeleděmi otakárkovitých (Papilionidae), běláskovitých (Pieridae), pestrobarvcovitých (Riodinidae), babočkovitých (Nymphalidae), soumračníkovitých (Hesperiidae) a americkou čeledí převážně nočních motýlů Hedylidae.

Dosud nepřekonanou vyšší klasifikaci čeledi Lycaenidae publikoval Eliot (1973). Autor na základě morfologické charakteristiky rozděluje tuto čeleď na osm podčeledí – Polyommatinae, Lycaeninae, Theclinae, Curetinae, Miletinae, Liphyrinae, Portitiinae, Lipteninae – dále se dělících do jednotlivých sekcí. V návaznosti na pozdější poznatky (Kristensen 1976) se přiřadila k těmto skupinám další podčeleď Riodininae (Ackery 1984). Harvey (1987) však opět povýšil poslední zmiňovanou podčeleď na samostatnou čeleď Riodinidae a definoval několik podskupin patřící do této čeledi. I přes tento fakt publikoval Eliot (1990) nové dělení čeledi Lycaenidae, do které zahrnul 5 podčeledí – Riodininae, Curetinae, Poritiinae, Miletinae a Lycaeninae – akceptováno např. ve studii Ackery et al. (1999).

V nedávné době byla podčeleď Riodininae na základě molekulárních analýz potvrzena jako samostatná čeleď (např. Kristensen 2007). Také byla vyčleněna v rámci Lycaenidae samostatná podčeleď Aphnaeinae, rozšířená zejména v Africe a orientální Asii (ale zasahuje i do Turecka a na Kypr). Postavení této skupiny bylo v minulosti různé, např. Aphnaeini jako součást Theclinae, později jako sesterská skupina k

Theclinae nebo jako součást podčeledi Lycaeninae (Scott 1985, Boyl et al. 2015). Recentně jsou Liphyrinae zahrnuty v podobě tribu do podčeledi Miletinae, resp. Lipteninae jako tribus podčeledi Poritiinae (Savela 2020).

V souhrnu, čeleď Lycaenidae zahrnuje 7 podčeledí (Obr. 1): Aphnaeinae (afrotropické a orientální rozšíření), Curetinae (paleartické a orientální rozšíření), Lycaeninae (holarktické druhy), Miletinae (převážně Africké druhy, též orient), Polyommatinae (globální rozšíření), Poritiinae (Afrotropické a orientální rozšíření), Theclinae (globální rozšíření).

Obr. 1. Současná fylogeneze podčeledí Lycaenidae (Tree of Life web project, tolweb.org, upraveno). * – příslušnost podtribu Everina.

1.1.1 Klasifikace podtribus Everina

Čeleď: Lycaenidae Leach, 1815

Podčeleď: Polyommatinae Swainson, 1827

Tribus: Polyommatini Swainson, 1827

Podtribus: Everina Talavera, 2015

Motýly sledované v této práci zařazuje Eliot (1973) do tribu Polyommatini Swainson, do sekce *Everes*. Jedná se o druhy rozšířené v palearktické, resp. orientální, australské a nearktické oblasti. Do této sekce zahrnuje rody: *Everes* Hübner, 1819; *Cupido*, Schrank, 1801; *Tiora* Evans, 1912; *Bothrinia* Chapman, 1909; *Tongeia* Tutt, 1908; *Shijimia* Matsumura, 1919; *Talicada* Moore, 1881 a *Binghamia* Tutt, 1908.

Některé tyto rody byly dle pozdějších poznatků synonymizovány– rody *Tiora* a *Everes* jsou synonyma pro rod *Cupido*, *Binghamia* zase pro rod *Chilades* Moore, 1881, který se ovšem zahrnuje recentně do podtribu Polyommatina (Stradomsky 2016). V současnosti zahrnuje podtribus Everina mimo výše komentované rody, také rod *Elkalyce* Bálint & Johnson, 1995 (Robbins & Duarte 2006). Pro úplnost je potřeba uvést, že někteří autoři pokládají rod *Everes* za samostatný (např. D'Abrera 1993, Vila et al. 2010).

Další dílčí členění toho podtribu je založeno na přítomnosti, resp. nepřítomnosti ostruhy na zadním páru křídel (Obr. 2) u rodu *Cupido*. V takovém případě se člení druhy do *Everes* group (s ostruhou) a *Cupido* group (bez ostruhy; Savela 2020, tolweb.org). Oproti Eliotovému pojetí jsou jednotlivé sekce dnes převážně klasifikovány jako podtriby. Proto i v této práci budou výsledky studie prezentovány dle taxonomie s nynějším názvem podtribu – Everina (Talavera et al. 2015, Stradomsky 2016).

Druhy rekapitulované v této práci jsou zahrnuty v tabulce č. 1 společně s ostatními taxony tohoto podtribu (Savela 2020). Poznatky k rozšíření jsou převzaty z dílčích publikací (Dunn & Dunn 1991, D'Abrera 1993, Layberry et al. 1998, 2000, Beneš et al. 2002, Singh 2005, Brock & Kaufman Tuzov 2006, Hsu al. 2019, Tolman & Lewington 2009, Savela 2020,) et

Everes	group:
--------	--------

C. alcetas C. amyntula C. argiades C. comyntas C. decolor C. decoloratus C. lacturnus C. huegelii C. nagarensis

Cupido group:

C. alaina C. staudingeri C. buddhista C. minimus C. tuzovi C. peri C. osiris C. lorquinii C. carswelli C. prosecusa C. gisela

Obr. 2. Typický zástupce *Everes* group (*Cupido argiades*, nalevo) a *Cupido* group (*Cupido minimus*, napravo). Foto: Jan Walter.

1.2 Biogeografie a vývoj klimatu v kenozoiku

Kenozoikum je geologická éra, která započala před 66 miliony let v návaznosti na velké druhohorní vymírání na konci křídy. Také je charakteristická teplotními oscilacemi, utvářením ledovců, střídáním dob ledových a meziledových, horninotvornými procesy, a tvorbou pevninských mostů umožňujících kolonizaci nových území (Beazley 1980). To v konečném důsledku představuje zásadní vliv na současnou faunu, druhové složení a biotopovou vazbu holarktických motýlů.

Kenozoikum se člení na tři periody paleogén (66–23 mil. let), neogén (23–2,5 mil. let) a kvartér (čtvrtohory, 2,5 mil. let–současnost), které dále členíme do osmi epoch: paleocén, eocén, oligocén, miocén, pliocén, pleistocén a holocén (Hinnov & Hilgen 2012). Na přelomu paleocénu a eocénu zhruba před 56 mil. lety došlo k výrazném oteplení tzv. paleocennímu-eocennímu teplotnímu maximu (PETM, Gradstein et al. 2004). Nárůst teploty o 5–8 °C byl nejspíše způsoben vulkanickou činností, která zapříčinila uvolňování atmosférického oxidu uhličitého z mořských sedimentů (Schmitz et al. 2004, Slujis et al. 2007). Již v této době se kontinenty formují do dnešní podoby. Jižní a Severní Amerika se vzdalují od Euroasie, zatímco Africká a Indická deska se k Euroasii přibližují. To v konečném důsledku znamená pokračující alpínské vrásnění započaté již v druhohorách (Ramstein et al. 1997). Tento proces dává vzniknout Alpským a Karpatským pohořím a po srážce Indické a Euroasijské desky v eocénu i pásemnému pohoří Himaláje. Jako důsledek střetu Africké a Euroasijské desky v tomto období je zánik oceánu Tethys (dnešní Středozemní moře) (Beazley 1980, Bialik et al. 2019).

Na přelomu eocénu a oligocénu dochází k prudkému ochlazení způsobenému poklesem oxidu uhličitého v atmosféře. To mělo za následek mimo jiné i postupné ochlazování Antarktidy, což způsobilo zhruba před 34 mil. lety její postupné zalednění (Conto & Pollard 2003). K ochlazování docházelo i v dalších epochách v zásadě s jediným výrazným narušením v miocénu označované jako miocenní klimatické optimum zhruba před 14–16 mil. lety (Methner et al. 2020). Následně dochází k postupném zalednění Arktidy, které započalo na přelomu miocénu a pliocénu zhruba před 10 mil. lety a vrcholí před 3 mil. let (Solgaard et al. 2013).

Kontinuální snižování teploty vrcholí v kvartéru (čtvrtohory) střídáním dob ledových (glaciálů) a meziledových (interglaciálů). Zalednění v pleistocénních teplotních minimech bylo značně rozsáhlé a ledovce v té době pokrývaly velkou část Evropy a Severní Ameriky zhruba od pólu až k 40° severní rovnoběžky, přičemž oblasti severozápadní Ameriky a části Asie byly pokryty trvale zmrzlou půdou (permafrostem) (Pielou 1979, Hewitt 2004a). Nezaledněná území v Asii umožnila živočichům a rostlinám se volně se šířit mezi teplejšími stanovišti. Ty skupiny živočichů a rostlin, které následkem zalednění v jiných částech světa vymřely, zde mohly dále přežívat, a i z tohoto důvodu jsou dnes tyto oblasti druhově diverzifikovanější (Tiffney 1985).

Jako důsledek tvorby ledovců, které zadržely velké množství vody, byl výrazný pokles hladiny světového oceánu. Tento pokles způsobil propojení Euroasie a Severní Ameriky v oblastech dnešní Beringovy úžiny. Tento pozemní most představoval jediné spojení mezi Asií a Severní Amerikou v průběhu pleistocénu a umožňoval migraci druhů mezi Starým a Novým světem. Oblast Beringie představuje, mimo migrační koridor, důležitou roli jako refugium pro Arktickou flóru a faunu, i vzhledem k tomu, že v dobách ledových nebyla zaledněna (Elias et al. 2000).

Je jisté, že glaciální, resp. interglaciální doby upřednostňují různé druhy s ohledem na jejich ekologickou valenci, zejména pak na snášenlivosti na chlad (Vrba et al. 2012). To platí i pro i pro skupinu motýlů. Druhy adaptované na chlad jsou v dobách ledových zvýhodněny oproti druhům teplomilným. Ty se v glaciálech soustřeďují do refugií (útočišť). V Evropě se teplomilné druhy stahovaly do jižních oblastí zejména na Apeninský, Balkánský a Pyrenejský poloostrov (Stewart et al. 2010), ale také do ostatních částí Evropy mimo tyto poloostrovy označující se jako kryptická refugia (Wójcik et al. 2002, Schmitt & Varga 2012). V Severní Americe jsou to pak oblasti

kolem 40. rovnoběžky. Například modrásek Polyommatus coridon (Poda, 1761) přečkával doby ledové v refugiích zejména v jižních oblastech Evropy – Balkán, Itálie, předhůří Pyrenejí a Italských Alp – a to v zásadě v těsné blízkosti refugií chladnomilných druhů (Kühne et al. 2017). Opačný vzor chování, kdy se chladnomilné druhy stahují do horských útočišť, je platný pro interglaciální období (Hewitt 2004a, Stewart et al. 2010). Chladnomilné druhy se stahují do severských refugií – střední části Evropy, Asie a Severní Ameriky, případně do jižních refugiích situovaných ve vyšších nadmořských výškách. Například ohniváček Lycaena helle (Den. & Schiff.), se v meziledové době stahuje do horských oblastí, což vedlo k vytvoření až devíti morfologicky odlišitelným evropským poddruhům, což bylo zapříčiněno izolovaností dílčích populací tohoto druhu (Habel et al. 2011). Ukazuje se, že i přes nepříznivé období dob ledových byly areály některých druhů s různými habitatovými nároky rozsáhlé, ať už se jedná o druhy preferující suché nebo mokřadní lokality (Bartoňová et al. 2018, Marešová et al. 2019). Po roztátí ledovců pak mohly druhy znovu osídlit i dříve nedostupná místa, jako vrcholky hor nebo severní části kontinentů. Můžeme na těchto místech také pozorovat setkání několika genetických linií, tzv. sekundární kontaktní zóny (Marešová et al. 2021, Schmitt et al. 2016). V neposlední řadě, teplotní nárůst během posledních let ovlivňuje také motýlí populace. Trend týkající se změny v distribuci motýlů, resp. posunu areálů, úzce souvisí mino jiné právě s klimatickou změnou. Zvyšující se průměrná teplota zvýhodňuje teplomilné druhy motýlů, u kterých je patrný posun areálu rozšíření na sever. Na druhé straně to znevýhodňuje druhy chladnomilné (Warren et al. 2021). Parmesan et al. (1999) tento fenomén dokládají na příkladu 52 denních motýlů žijících v severozápadní Africe, Estonsku, Finsku, Francii, Španělsku a Velké Británii, u kterých byl zaznamenán posun areálu směrem k severu. Celkem 34 druhů motýlů se rozšířilo směrem k severu – posun od 35 do 240 km v průběhu století; asi u 16 druhů se hranice rozšíření neposunula a areál druhu Apatura ilia (Den. & Schiff. 1775) se posunul více na jih. Studie motýlů z Velké Británie (Warrena et al. 2001), v zásadě potvrzuje šíření některých druhů v rámci země. Na druhou stranu je potřeba uvést, že výsledky dokládají zmenšení areálů u 34 druhů denních motýlů i přes zlepšení životních podmínek v rámci klimatické změny. Tyto druhy vykazují nízkou mobilitu, a tudíž nejsou schopni překonat větší vzdálenosti, a to i kvůli antropogennímu vlivu člověka (tvorba bariér apod.). Takovým příkladem udávaným autory je např. modrásek *Plebejus argus* (Linnaeus, 1758). Změnu

v rozšíření druhů dokládá i Hill et al. (2002) na základě studie 51 druhů denních motýlů opět z Velké Británie. V průběhu 20. století druhy se severním a horským rozšířením mizí v nižších polohách, a naopak osidlují polohy s vyšší nadmořskou výškou. Obdobně dochází k posunu některých druhů denních motýlů směrem do vyšších nadmořských výšek v průběhu druhé poloviny 20. století (Wilson et al. 2005), jak bylo ukázáno i na příkladu motýlů České republiky (Konvička et al. 2003).

1.2.1 Biogeografie druhů podtribu Everina

Druhem z podtribu Everina, který byl zkoumán na území Japonska z hlediska biogeografie, je *Tongeia fischeri* (Eversmann, 1843) (Jeratthitikul et al. 2012). Druh v oblasti reprezentují tři geograficky izolované populace. V rámci studie bylo analyzováno 207 jedinců z 55 lokalit napříč celým Japonskem a pět lokalit z Asie. Analýza pracovala se třemi mitochondriálními geny (COI, Cyt b a ND5) a dvěma geny jadernými (Rpl5 a Ldh). Autoři identifikovali šest evolučních haplotypů tohoto druhu na území Japonska. Druh *Tongeia fischeri* pravděpodobně kolonizoval Japonsko v průběhu středního pleistocénu, pravděpodobně prostřednictvím pozemního mostu či úzkého kanálu mezi západním Japonskem a Korejským poloostrovem (Jeratthitikul et al. 2012).

Dalším druhem ze sledovaného podtribu je *Elkalyce cogina* (Schaus, 1902) rozšířená v neotropické oblasti, zejména v jihovýchodní Brazílii (Talavera et al. 2015). Na základě studia třech mitochondriálních a čtyř nukleárních genů autoři potvrzují genetickou příslušnost tohoto druhu do podtribu Everina, a to jako sesterský ke všem ostatním druhům z tohoto podtribu. Uskutečněné biogeografické analýzy předpokládají, že společný předek podtribu Everina a Polyommatina pochází z orientální, resp. východo-palearktické oblasti, což potvrzuje i fakt, že druhová diverzita těchto skupin je nejvyšší právě v těchto oblastech, pro některé druhy z podtribu Everina navíc tvoří tyto oblasti místa s jejich jediným rozšířením (částečně rod *Tongeia* Tutt, 1908, dále *Shijimia* Matsumura, 1919, *Talicada* Moore, 1881 a *Bothrinia* Chapman, 1909). Osídlení neotropické oblasti předchůdcem druhu *E. cogina* došlo zhruba před 10 miliony lety, a to cestou popsanou historicky již v práci Nabokova (1944, 1945) Asie – Beringova úžina – Severní Amerika – Jižní Amerika, což recentně potvrzuje i Vila et al. (2011).

Kolonizování směrem ze Starého do Nového svět přes Beringovu úžinu bylo podmíněno přítomností pozemního mostu usnadňujícího přechod teplotně přizpůsobivějších druhů (Vila et al. 2011), což bylo podpořeno nižší hladinou oceánu (Hundsdoerfer et al. 2005). Po doplnění dalších druhů modrásků byla vypracována teorie kolonizování Nového světa celkem v sedmi etapách (Talavera et al. 2015). První kolonizace proběhla zhruba před 11 miliony let předkem Polyommatina do neotropických oblastí, druhá opět do neotropické oblasti předkem právě rodu Elkalyce Bálint & Johnson, 1995 před výše zmíněnými 10 mil lety, třetí do Severní Ameriky před 8 mil. let (Icaricia-Plebulina clade), čtvrtá je datována zhruba do období před 2,4 mil. let předkem rodu Plebejus Kluk, 1780, pátá do období před 1,65 předkem rodu Cupido Schrank, 1801, šestá před 1,1 mil. let (skupina Agriades glandon (de Pruner, 1798)) a poslední proběhla před 1,0 mil. let předkem druhu Agriades optilete (Knoch, 1781) (Vila et al. 2011, Talavera et al. 2015).

Tab. 1. Tabulka s druhy patřících do podtribu Everina (cf. Savela 2020). Vysvětlivky: C – centrální; S – severní; ST – střední; V – východní; Z – západní; * sekvence pocházejí pouze z databáze BOLD; tučné písmo – zkoumané druhy v této práci; ? – sporné taxony.

Druh	Autor a rok popisu	Rozšíření	Druh	Autor a rok popisu	Rozšíření	
Cupido alaina	(Staudinger, 1887)	Alaj, Darvaz, Z Pamír	Tongeia fischeri	(Eversmann, 1843)	V E až Z Asie	
Cupido staudingeri	(Christoph, 1873)	Írán, Turecko	Tongeia filicaudis*	(Pryer, 1877)	V Asie	
Cupido buddhista	(Alphéraky, 1881)	C až V Asie	Tongeia hainani*	(Bethune-Baker, 1914)	Taiwan, Hainan, Fujian	
Cupido minimus	(Fuessly, 1775)	Palearkt	Tongeia ion	(Leech, 1891)	Z Asie	
Cupido tuzovi	Lukhtanov, 1994	Oblast Altaje	Tongeia amplifascia	Huang, 2001	JV Tibet	
Cupido peri	Zhdanko, 2000	Alaj, Darvaz	Tongeia pseudozuthus	Huang, 2001	JV Tibet	
Cupido osiris	(Meigen, 1829)	Palearkt	Tongeia confusa	Huang, 2003	SZ Yunnan	
Cupido lorquinii	(Herrich-Schäffer, [1851])	S Afrika, Španělsko	Tongeia zuthus	(Leech, [1893])	Sichuan až Tibet	
Cupido carswelii*?	Stempffer, 1927	Španělko	Tongeia kala*	(de Nicéville, 1890)	Asám až Šanský stát	
Cupido prosecusa	(Erschoff, 1874)	C Asie	Tongeia menpae	Huang, 1998	Tibet	
Cupido gisela	(Püngeler, 1901)	Z Tibet	Tongeia davidi	(Poujade, 1884)	Sichuan	
Cupido argiades	(Pallas, 1771)	Palearkt, Orient	Tongeia potanini	(Alphéraky, 1889)	Tibet, Z Asie	
Cupido huegelii	(Gistel, 1857)	S Thajsko, Barma, S Indie	Tongeia bella	Huang, 2001	Tibet	
Cupido decolor	(Staudinger, 1886)	údolí řeky Syr-Darja	Tongeia arcana?	(Leech, 1890)	Chang Yang, Ship-y-Shan	
Cupido amyntula	(Boisduval, 1852)	S Amerika	Tongeia dongchuanensis?	Huang & Chen, 2006	Yunnan	
Cupido comyntas	(Godart, [1824])	S až ST Amerika	Tongeia bisudu?*	Zhdanko & Jakovlev, 2001	SV Asie	
Cupido alcetas	(Hoffmannsegg, 1804)	Palearkt	Tongeia arata?	Yakovlev, 2009	pohoří Arshantyn-Nuruu	
Cupido decoloratus	(Staudinger, 1886)	Evropa po V Evropa	Elkalyce cogina*	(Schaus, 1902)	Brazílie	
Cupido lacturnus	(Godart, [1824])	Orient, Austrálie	Shijimia moorei	(Leech, 1889)	Asám, Čína, Japonsko	
Cupido nagarensis	Charmeux & Desse, 2006	Pákistán	Talicada nyseus	(Guérin-Méneville, 1843)	část orientu	
Bothrinia chennellii	(de Nicéville, [1884])	Z Orient	Talicada metana	Riley & Godfrey, 1921	Thajsko	
Bothrinia nebulosa	(Leech, 1890)	Z Asie	Talicada buruana	Holland, 1900	Thajsko	

1.4 Stručná charakteristika zkoumaných druhů

V této kapitole je pro každý druh napsána stručná charakteristika týkající se rozšíření, biotopové vazby, letové periody, popř. bionomie a ekologie. Komentovány jsou pouze ty druhy, které byly materiálově k dispozici pro tuto práci, nikoliv ty, které byly převzaty z databáze BOLD (viz tab. 1).

Bothrinia nebulosa (Leech, 1890)

Druh je rozšířen v centrální a západní Číně, v Thajsku (Savela 2020). Bionomie tohoto druhu není příliš prostudována. Druh obývá vlhká stanoviště kolem vodních toků (Li et al. 2010, Poel 2020).

Cupido argiades (Pallas, 1771) – modrásek štírovníkový

Druh rozšířený v palearktické oblasti od Pyrenejí přes jih a střed Evropy, Pobaltí, jižní Finsko, část Asie až po Japonsko (Beneš et al. 2002), zasahuje i do oblasti orientální (sever Indie). Druh je vázán na stepní lokality, suché svahy, úvozy, železniční náspy, teplé ruderály, ale i mezofilní květnaté louky, vojenská cvičiště, lomy, pískovny nebo extenzivně obhospodařované pastviny (Beneš et al. 2002). Housenky jsou fakultativně myrmekofilní. Mezi živné rostliny tohoto druhu patří tolice vojtěška (*Medicago sativa* L.), jetel luční (*Trifolium pratense* L.), štírovník růžkatý (*Lotus corniculatus* L.) a š. bažinný (*L. uliginosus* Schkuhr), popř. i další bobovité rostliny. Do roka tvoří dvě až tři generace s letovou periodou od dubna do října.

Cupido amyntula (Boisduval, 1852)

Druh je rozšířen od západu USA (včetně Aljašky), přes Kanadu až po Yukon. Izolované populace byly nalezeny na poloostrově Gaspé a na severu New Brunswick. Preferuje místa podél lesních porostů, křovin či pasek. Létá ve dvou generacích od května do srpna (Layberry et al. 1998). Živnými rostlinami jsou druhy z čeledi bobovitých, např. hrachor (*Lathyrus* sp. L.).

Cupido alcetas (Hoffmannsegg, 1804) - modrásek čičorkový

Pontomediteránní druh rozšířený od Pyrenejí, jižní Evropu, Balkán, Turecko, Ukrajinu až po Altaj v Rusku. Severní hranice prochází jižní Moravou a jižním Slovenskem (Beneš et al. 2002). Druh preferuje slunné křovinaté lemy lužních lesů poblíž vodotečí, lesní cesty, průseky, paseky, vysokostébelné palouky v okolí řek, vlhké až mezofilní

louky. Housenky se živí květy, plody a listy živných rostlin, které představují zejména bobovité rostliny (*Fabaceae*), např. čičorka pestrá (*Coronilla varia* L.) nebo vikve (*Viccia* spp. L.), popř. jeřabina lékařská (*Galega officinalis* L.). Housenky jsou fakultativně myrmekofilní. Motýl má dvougenerační vývoj od dubna do srpna. Druh bývá nezřídka zaměňován s *C. decoloratus* (viz další kapitola).

Cupido decoloratus (Staudinger, 1886) - modrásek tolicový

Pontomediteránní druh rozšířený od jižního Rakouska přes Maďarsko, severní Řecko a jižní část východní Evropy. Severní část areálu tvoří také České republika, Slovensko a jih Polska. Z Maďarska byl popsán druh *C. antealcetas* (Bueret, 1957), jehož taxonomie nebyla vyjasněna a nejspíše se jedná pouze o ekotyp *C. decoloratus* (Beneš et al. 2002). *Cupido decoloratus* preferuje vyprahlé vysokostébelné stepní biotopy ruderálního charakteru. Jeho výskyt je doložen i z antropogenních lokalit jako jsou lomy, pískovny, náspy, popř. vojenská cvičiště. Živnou rostlinou tohoto druhu jsou bobovité rostliny (Fabaceae), např. tolice dětelová (*Medicago lupulina* L.), tolice vojtěška (*Medicago sativa* L.), vikev setá (*Vicia sativa* L.), štírovník růžkatý (*Lotus corniculatus* L.), jetel luční (*Trifolium pratense* L.). Do roka tvoří dvě až tři generace s letovou periodou od května do září. Housenky se živí květy živných rostlin a jsou fakultativně myrmekofilní (Beneš et al. 2002).

Cupido osiris (Meigen, 1829) - modrásek hrachorový

Rozšířený je převážně ve středních částech palearktické oblasti. V České republice chybí, vyhynul v Německu. Rozšířen převážně na stepních lokalitách a suchých loukách v pahorkatinách a horách (Macek et al. 2015). Druh létá v jedné až dvou generací od května do srpna v nadmořských výškách do 2800 m n. m. (Tuzov 2000). Hostitelskými rostlinami jsou druhy z rodu *Onobrychis* Mill (Obregón et al. 2016).

Cupido staudingeri (Christoph, 1873)

Rozšířen v Turecku a Íránu (Tuzov 2000). Preferuje kamenitá stanoviště se stepním charakterem vegetace v nadmořské výšce v rozmezí 1700–3500 m n. m. Letová perioda je od dubna do června. Hostitelskou rostlinou tohoto druhu je kozinec (*Astragalus cornutus* Pall.).

Cupido lorquinii (Herrich-Schäffer, [1851])

Druh je rozšířen v nejsevernějších částech Afriky (Maroko a Alžír) a na Pyrenejském poloostrově. Preferuje otevřená, křovinná, suchá stanoviště, příp. vápencové skály. Jako živná rostlina se uvádí úročník bolhoj (*Anthyllis vulneraria* L.). Druh je myrmekofilní. Létá od května do června v jedné generaci (Tolman & Lewington 2009).

Cupido minimus (Fuessly, 1775) - modrásek nejmenší

Eurosibiřský druh rozšířený téměř po celé Evropě, v části Asie, Mongolska až po Dálný východ (Beneš et al. 2002). Preferuje suché stepní lokality, vyprahlé svahy, úvaly, železniční náspy, staré lomy, okraje cest, především s výskytem jeho živné rostliny – úročníkem bolhojem (*Anthyllis vulneraria* L.). Housenky vyžírají květní poupata, jsou kanibalistické a fakultativně myrmekofilní. Druh zakládá převážně dvě generace do roka s letovou periodou od dubna do dubna (Beneš et al. 2002).

Cupido tuzovi Lukhtanov, 1994

Rozšíření je omezeno na oblasti pohoří Saur, Tarbagatai (území na pomezí Číny a Kazakstánu), na jihu Altaje je rozšíření nejisté. Preferuje suché louky, stepní lokality. Letová perioda druhu je od června do července (Tuzov 2000).

Cupido buddhista (Alphéraky, 1881)

Druh je rozšířen ve střední Asii a severozápadní Číně. Druh nalezneme především ve vysokohorských nivách v nadmořské výšce 2300–3400 m n. m. Letová perioda je od června do září. Jako živné rostliny se udávají vlnice (*Oxytropis* spp.) (Tuzov 2000).

Cupido comyntas (Godart, [1824])

Druh je rozšířen zejména ve východních částech USA, na jihu New Brunswicku, v Quebecu a v západních částech Ontaria, jihu Manitoby až k Grainsboroughu. Druh se vyskytuje podél lesních křovin, luk, lesních mýtin apod. Do roka tvoří dvě až tři generace s letovou periodou od května do října. Živnými rostlinami jsou druhy z čeledi bobovitých, např. jetel *Trifolium repens* L., *Trifolium pratense* L. a vikev *Vicia* sp.

Cupido huegelii (Gistel, 1857)

Druh je rozšířen v oblasti Himalájského pohoří, Indie a severní část Thajska. Preferuje lesní světliny a paseky mezi 1700 a 1800 m n. m. Pozorován byl v dubnu a květnu

(Irungbam et al. 2020). Živnou rostlinou jsou *Desmodium parviflorum* (Dalzell) a *Flemingia fruticosa* (L.) (Blyth 1957).

Cupido lacturnus (Godart, [1824])

Druh je rozšířen v orientální a australské oblasti, taktéž na jihu Japonska. Preferuje travnaté pláně (Nakamura 2011), příp. křovinaté biotopy (Fric, úst. sděl.). Druh je polyvoltinní. Živnými rostlinami jsou bobovité rostliny *Desmodium heterocarpon* (L.), *D. gangeticum* (L.) a *Codariocalyx motorius* (Houtt.) (Dunn & Dunn 1991, Hsu et al. 2019).

Cupido prosecusa (Erschoff, 1874)

Druh je rozšířen ve střední Asii v nadmořských výškách do 1700 m n. m. Druh preferuje aridní místa s podzemní vodou vyvěrající na povrch, přílivové bažiny, kotliny v poušti. Letová perioda je dvougenerační od dubna do srpna. Živnými rostlinami jsou *Sphaerophysa salsula* (Pall.) a slaník *Halimodendron halodendron* (Pallas).

Talicada nyseus (Guérin-Méneville, 1843)

Druh je rozšířen zejména v orientální oblasti. Jeho výskyt je vázán na suchá až polosuchá stanoviště i v okolí lidských obydlí. Hostitelským rostlinami jsou např. *Bryophyllum calycinum* Salisb, *Kalanchoe* spp., příp. rostliny z čeledi Crassulaceae. Léta v několika generacích po celý rok (Singh 2005).

Tongeia davidi (Poujade, 1884)

Druh je rozšířen v oblasti Sichuan. Informace o bionomii tohoto druhu jsou sporadické a prakticky omezené jen na morfologii (Wang & Fan 2002).

Tongeia fischeri (Eversmann, 1843)

Druh je rozšířen od jižního Uralu, Kazachstánu, jihozápadní části Sibiře, Mongolsku, Číně, Koreje až po Japonsko (Savela 2020). Preferuje suchá, kamenitá stanoviště, svahy hor od 800–2000 m n. m., zřídka vlhké lesní nivy. Druh létá ve dvou generacích do roka od května do srpna. Živné rostliny jsou netřesk *Orostachys spinosa* L., *O. malacophylla* (Pall.), rozchodník *Sedum* sp. nebo *Pseudosedum* sp. (Tuzov 2000).

1.5 Problematické druhy

1.5.1 Cupido alcetas a C. decoloratus

Tyto dva druhy modrásků (*Cupido alcetas* (Hoffmannsegg, 1804) a *C. decoloratus* (Staudinger, 1886)) jsou často mezi sebou zaměňovány. Oba řadíme k menším druhům, nicméně *C. alcetas* je průměrně větší. Pro rozlišení druhů je klíčovým znakem líc křídla (Obr 3). Z lícové strany je patrná malá žlutooranžová skvrna u *C. alcetas*, ta bývá u druhého druhu jen nepatrně naznačena. Nicméně Beneš et al. (2002) dále uvádějí, že spolehlivé rozlišení obou druhů je možné pouze na základě preparace genitálií, i vzhledem k faktu, že odchycení jedinci bývají věkem opotřebováni. Rozlišení na základě mikrostruktury křídel publikovali Lobiuc & Lobiuc (2015), a to za požití SEM (skenovací elektronový mikroskop). Z jedinců sbíraných v Rumunsku se jako rozdíly pro rozlišení druhů ukázaly vzdálenosti mezi žebry ohraničující mikrocely a vlastní šířka mikrocel (Lobiuc & Lobiuc 2015). V budoucnu bude nutná revize těchto dvou druhů na základě morfometrických analýz včetně kopulačních orgánů, vhodně doplněny o analýzu DNA. Zejména pak rozlišení kopulačních orgánů jednotlivých druhů je nejsnadněji aplikovatelné v praxi.

Obr. 3. Rozdíl mezi modrásky *C. decoloratus* a *C. alcetas*. Tučným písmem je vyznačen udávaný klíčový znak. Kurzívou jsou značeny pomocné znaky pro determinaci. Foto: Josef Dvořák, http://www.lepidoptera.cz/, upraveno.

1.5.2 Cupido carswelli

Cupido carswelli Stempffer, 1927 je často diskutovaným druhem modráska z podtribu Everina. Rozšíření taxonu je omezeno na pohoří Pyrenejského poloostrova. Spornost tohoto druhu spočívá v problematickém rozlišení od ostatních druhů rodu *Cupido* jako je *C. minimus*. Právě tyto dva druhy byly na základě morfometrické studie (Prieto et al. 2009) shrnující znaky na křídlech a samčím genitálu neodlišitelné. Autoři na tomto základě sloučili oba taxony pod *C. minimus*, zároveň odlišili druhy *C. minimus*, *C. lorquinii* a *C. osiris*. Recentně byla publikována práce, jejímž výsledkem je zařazení *C. craswelli* do poddruhu *C. lorquinii – Cupido lorquinii* subsp. *carswelli* (Hinojosa et al. 2020), a to na základě genomové DNA. Nicméně autoři nevylučují podobnou morfologickou strukturu *C. craswelli* a *C. minimus*.

1.5.3 Cupido tuzovi

V případě *C. tuzovi* se jedná se o sporný taxon morfologicky podobný s *C. minimus*, avšak bez detailnějších analýz. Některými autory (Yakovlev 2012) je pokládán spíše za poddruh *C. minimus – C. minimus* subsp. *tuzovi* Lukhtanov, 1994.

1.5.4 Rod Tongeia

Rod *Tongeia* je převážně rozšířen ve východní a jihovýchodní Asii. Zahrnuje zhruba 17 druhů (Savela 2020). Některé taxony jsou v zásadě dobře definované (Jeratthitikul et al. 2011, Jeratthitikul et al. 2012, Jeratthitikul et al. 2013), naopak jsou zde druhy (Tab. 1) jejichž popisy jsou neucelené a lze konstatovat, že se jedná o sporné taxony (např. Jeratthitikul et al. 2011).

2 CÍLE

- Izolovat DNA z dostupných vzorků motýlů z podtribu Everina a získat sekvence z mitochondriálního genu COI
- Vypracovat fylogenetické a fylogeografické analýzy
- Rozhodnout, zda jsou Cupido a Everes dva různé rody
- Modelovat historii rozšíření rodu a umístění ancestrálního areálu
- Pomocí molekulárních hodin datovat fylogenetický strom
- Diskutovat problematické druhy z podtribu Everina a vnitrodruhovou strukturu vybraných druhů nebo skupin druhů

3 METODICKÁ ČÁST

Druhy studované v této práci shromáždil Zdeněk Faltýnek Fric svými sběry nebo sběry kolegů, jmenovitě v abecedním pořadí dle příjmení: M. Andres, A. Assev, J. Beneš, L. Čížek, K. Dovgailo, M. Dvořák, A. Florian, R. Gerasimov, V. Holec, V. Hula, V. John, T. Kadlec, M. Konvička, A. Kudrna, Z. Laštůvka, T. Le, J. Lipárová, J. Marešová, M. Palka, O. Pak, J., I. Pljushtch, J. Rieger, N. Rubin, J. Skala, D. Sobanin, D. Sharafutdinov, D.F. Shovkoon, L. Spitzer, A. Sucháčková, V. Vdovichenko, P. Vrba, Z. Weidenhoffer. Tři vzorky jsem použil z vlastních sběrů (*C. minimus*: Česká republika, Neretský lom, 15.VI.2020, 1 ex., J. Walter lgt. et det.; *C. argiades*, Slovensko, Záhoří, 29.VII.2020, 2. ex., J. Walter lgt. et det.). Pro analýzu výsledků byly výše zmíněné druhy (kap. 1.4) doplněny i o sekvence z databáze Barcode of Life Data System (BOLD; Ratnasingham & Herbert 2007, příloha 1). Celkem je do práce zahrnuto 24 druhů pocházejících z holarktické, neotropické a australské oblasti.

3.1 Izolace DNA

Pro izolaci DNA byla použitá tkáň z končetin. DNA byla extrahována za použití kitu Genomic DNA Mini Kit (Tissue) firmy Geneaid dle pokynů výrobce s dílčími úpravami.

Do zkumavky s tkání bylo přidáno 200 µl GT pufru. Pomocí mikropestle byl vzorek homogenizován. Následně bylo přidáno 20 µl proteinázy K. Takto vzniklá směs byla zvortexována, stočena na malé odstředivce a následně inkubována při teplotě 60 °C nejméně 6 hodin. Následně bylo ke směsi napipetováno 200 µl GBT pufru, a poté opět probíhala inkubace vzorku při teplotě 60 °C nejméně 20 minut. Po uplynutí této doby bylo do směsi přidáno 200 µl ethanolu (96 % p.a), a dále byla směs zvortexována a stočena. V mezičase inkubace byly připraveny GD kolonky a Collection Tube (dále jen C. Tube), do kterých byl napipetován veškerý obsah dosavadní směsi s DNA a posléze centrifugován po dobu 2 minut rychlostí 14 tisíc otáček za minutu. C. Tube s kapalinou byla nahrazena novou. V dalším kroku bylo do kolonky přidáno 400 µl W1 pufru a vzorek byl 30 sekund centrifugován. Po vylití kapaliny z C. Tube byla vrácena zpět.

Do kolonky bylo v dalším kroku napipetováno 600 µl Wash pufru a centrifugováno nejprve 30 sekund, po vylití kapaliny z C. Tube následně ještě 3 minuty. Po centrifugaci byla kolonka umístěna do mikrozkumavky o velikosti 1,5 ml. Do středu kolonky bylo napipetováno 80 µl Elučního pufru vytemperovaného na 60 °C. Po 5 minutách byly mikrozkumavky s kolonkou 30 sekund centrifugovány a takto získaná DNA byla v mikrozkumavce umístěna do mrazícího zařízení (-20 °C) pro nadcházející analýzy.

3.2 Polymerázová řetězová reakce

Sledované DNA fragmenty byly amplifikovány pomocí polymerázové řetězové reakce (dále jen PCR). Reakce byla cílena na gen cytochrom c oxidáza podjednotka I (COI) za použití příslušných primerů (Tab. 2) standardně používaných v rámci molekulární fylogeneze motýlů, resp. DNA Barcodingu (Hebert et al. 2003). Jedná se o 648 bp (bp = báze) dlouhý úsek mitochondriální DNA. To představuje dostatečný úsek genomu pro rozlišení jednotlivých druhů, včetně kryptických (Jung et al. 2011). Primery byly použity v kombinacích hybLCO/hybHCO, Ron/hybHCO, příp. hybLCO/Nancy (příp. Ron/Nancy) + hybLCO/K699 (Monteiro & Pierce, 2001; Wahlberg & Wheat, 2008) a obsahovaly promotory T7 a T3.

Reakční směs byla rozvrhnuta pro objem 12,5 μ l na jeden vzorek. Na dílčí reakci bylo použito 6,25 μ l PPP Mastermix; 4 μ l dH₂O; 0,625 μ l reverse primeru; 0,625 forward primeru a 1 μ l DNA extraktu. Program PCR cycleru byl nastaven podle laboratoře Niklase Wahlberga (Lund University, Švédsko, www.nymphalidae.net/ Molecular.htm), a to následovně:

95 °C 3 minut

72 °C 10 minut – finální prodlužování

Název	Primer
hybLCO	5' TAATACGACTCACTATAGGGGGGTCAACAAATCATAAAGATATTGG 3'
hybHCO	5' ATTAACCCTCACTAAAGGGTAAACTTCAGGGTGACCAAAAAATCA 3'
Ron	5' GGAGCYCCWGATATAGCTTTCCC 3'
Nancy	5' CCTGGTAAAATTAAAATATAAACTTC 3'
K699	5' WGGGGGGTAAACTGTTCATCC 3'

Tab. 2. Přehled použitých primerů. Převzato z www.nymphalidae.net/Molecular.htm.

3.3 Elektroforéza a přečištění PCR produktu

Produkt PCR reakce byl ověřen elektroforeticky na 1,5% agarózovém gelu. Gel byl vytvořen rozpuštěním 1,5 g agarózy v 100 ml TAE pufru a následným dvou minutovým povařením v mikrovlnné troubě. Do tekutého čirého roztoku agarózy byl napipetován 1 µl fluorescenčního barviva GelRed. Takto namíchaný gel byl nalit do elektroforetické vany s hřebínky. Po utuhnutí byly hřebínky odstraněny a do vzniklých děr byl napipetován PCR produkt (2 µl), v každé jamce unikátní. Nakonec byl napipetován do postranní jamky DNA Ladder (100–2000 bp). Po připojení elektrod probíhala vlastní separace PCR produktu 35 minut při 120 V. Po uplynutí doby byl gel s produkty vyfocen pod UV světlem. Tím jsem detekoval úspěšnost, resp. neúspěšnost PCR reakce.

Žádané produkty jasně vizualizované pomocí elektroforézy byly přečištěny směsí enzymů FastAP a Exo I (Thermofisher) smíchané v poměru 135/85 µl. Do každé zkumavky v 96-jamkové destičce byly přidány 2 µl směsi enzymů a veškerý obsah PCR produktu, opět v každé zkumavce unikátní. Přečištění za pomocí enzymů se provádí v PCR cycleru nastaveného na 37 °C po dobu 40 minut a následně 85 °C po dobu 15 minut.

3.4 Sekvenace

Produkty vizualizované na gelu byly po přečištění odeslány na sekvenování firmě Macrogen (Amsterdam, Nizozemsko; https://dna.macrogen-europe.com). Žádané úseky byly osekvenovány sekvenátorem typ ABI3730XL v jednom směru.

3.5 Zpracování výsledků

3.5.1 Tvorba alignmentu a úprava sekvencí

Pro úpravu sekvencí byl použit program Geneious Prime verze 2019.2.3 (Kearse et al. 2012). Jednotlivé sekvence byly zkontrolovány vizuálně a případné sekvenační chyby opraveny. Taktéž byly zkráceny na stejnou délku tak, aby bylo v úseku sledovaného genu obsaženo co nejvíce mutací.

3.5.2 Fylogenetické stromy

Pro tvorbu fylogenetických stromů byl vytvořen jeden alignment obsahující všechny vlastní sekvence a sekvence převzaté z databáze BOLD (Příloha 1). Celkem bylo do analýzy zahrnuto 920 vzorků s údaji o 23 druhů motýlů z podtribu Everina. Vzhledem k faktu, že mnoho sekvencí bylo totožných, jsem tyto sekvence převedl na jednotlivé haplotypy (Příloha 1) v programu DNASP. K těmto vybraným haplotypům byly následně přidány všechny ostatní vzorky, jejichž sekvence byly kratší než 598 bazí.

Jako outgrupové skupiny byly zvoleny další druhy modrásků: *Tarucus balcanicus* (Freyer, 1844), *Phengaris alcon* (Denis & Schiffermüller, 1775), *Azanus jesous* (Guérin-Méneville, 1849), *Leptotes pirithous* (Linnaeus, 1767), *Chilades lajus* (Stoll, 1780), *Polyommatus icarus* (Rottemburg, 1775), *Pseudolucia collina* (Philippi, 1859) a *Plebejus argus* (Linnaeus, 1758).

Pomocí programu Partitionfinder v.2.1.1. (Lanfear et al., 2017) jsem otestoval nejvhodnější schéma rozdělení datasetu do partic. Program umožňuje otestovat nejen nejvhodnější počet partic, ale i jejich substituční modely. Pomocí programu jsem vybral nejsložitější variantu rozdělení podle pozic jednotlivých nukleotidů v tripletu a substitučními modely TIM+G, HKY+I+G a F81 pro každou z těchto pozic.

Fylogenetické stromy byly konstruovány metodami Maximum Likelihood a Bayesovskou inferencí. Maximum Likelihood strom byl konstruován pomocí programu IQTree (Nguyen et al. 2015) dostupného na webu (Trifinopoulos et al. 2016, http://iqtree.cibiv.univie.ac.at/) metodou Ultrafast bootstrap (Minh et al. 2013). Druhý fylogenetických strom konstruovaný Bayesovskou inferencí byl vytvořen v program MRBayes v.3.2 (Ronquist et al. 2012). Dataset byl rozdělen do partic dle výsledků programu Partitionfinder. MrBayes neumožňuje použití TIM modelu, proto byl místo něho použit model GTR. Při výpočtu jsem použil čtyři běhy o čtyřech řetězcích běžící pro 5 milionů generací při samplingu každých 1000 generací při teplotě 0,2. Pro výpočet stromu bylo prvních 20 % výpočtů odstraněno jako tzv. burn-in.

3.5.3 Molekulární datování

Jako základ pro analýzu jsem použil strom z programu IQTree, který jsem datoval pomocí molekulárních hodin v programu BEAST 1.10.4 (Heled & Drummond 2010). Použil jsem rozdělení do partic podle pozice nukleotidů dle programu Partitionfinder substituční modely GTR+G, HKY+I+G a HKY. Použil jsem zde nekorelované lognormální hodiny. Problematické bylo nastavení speciačního modelu, jelikož pro výpočet mezidruhových fylogenezí se používají spíše modely umožňující speciaci či extinkci (Birth-Death process (Stadler 2013) a Yule process (Yule 1925)), naopak pro vztahy v rámci druhu jsou vhodnější koalescenční modely (Minin et al. 2008). V tomto případě se jedná o obojí problém, jak o fylogenetické vztahy mezi jednotlivými druhy, tak i o situace vnitrodruhové. Proto jsem vyzkoušel oba modely, speciační (model Birth-death) i koalescentní (model Coalescent-Constant size), u kterých bylo testováno pomocí AIC (Akaikeho informační kritérium), jaký model lépe vysvětlí data (v programu Tracer 1.10.4). Jako vhodnější se ukázal model koalescenční. Byly použity dva sekundární kalibrační body dle Chazot et al. (2019). Pro první kalibrační bod bylo použito stáří celé linie včetně outgroupů (33,6 milionů let ±3,5 směrodatná odchylka, stdev), jako druhý pak oddělení ougroupu Azanus jesous od zbytku vzorků (27,13 milionů let ± 2.0 stdev) a jako třetí stáří linie *Tongeia* + *Cupido* (12,86 milionů let ± 1.5 stdev). Prior ucld.mean pro molekulární hodiny byl nastaven jako lognormal, protože sekundární kalibrační body byly vypočítány za pomocí fosilií, u kterých předpokládáme existenci druhu nějakou dobu před fosilizací. Priors pro jednotlivé kalibrační body byly nastaveny jako normal. Pro výpočet jsem použil řetězec o délce 60 milionů permutací, prvních deset milionů permutací jsem odstranil jako tzv. burn-in. Konvergenci modelu jsem kontroloval pomocí programu Tracer (Rambaut et al. 2018).

3.5.4 Biogeografická analýza

Pro biogeografickou analýzu jsem použil datovaný strom z analýzy molekulárního datování (BEAST), ze kterého jsem odstranil všechny outgroupy. Definoval jsem 10 areálů – Amerika, Evropa, Španělsko, východní Evropa, asijská část Ruska (od Uralu na

východ), východní Asie, centrální Asie, orientální oblast, střední východ, Austrálie a Oceánie – a pro každý haplotyp uvedl, ve kterém z areálů se vzorky nacházejí. Pomocí programu RASP (Yu et al. 2015) jsem si připravil vstupní data pro metodu BiogGeoBEARS (Matzke 2013a), která jsem následně analyzoval v balíku R BioGeoBEARS v.0.21 (Matzke 2013b). Program porovnává šest různých biogeografických modelů: dispersal–extinction–cladogenesis model (DEC; Ree et al., 2005), dispersal–vicariance model (DIVA; Ronquist, 1997) a BayArea model (Landis et al., 2013). Každý z těchto modelů může být doplněn o parametr j tzv. founder-event speciation.

3.5.5 Haplotypová síť

Pro tvorbu haplotypových sítí byl zvolen software Popart verze 1.7 (Leigh & Bryant 2015). Sítě jsem konstruoval metodou TCS (Clement et al. 2000). Tato metoda je používána pro popis populační struktury organismů a pro zkoumání fylogeografické historie týkající se jejich diverzity (Johnson & Jordon 2000). Pro tyto analýzy byly začátky a konce sekvencí zkráceny na stejnou délku. Zároveň byly z této analýzy vyloučeny příliš krátké sekvence. Sítě byly vypracovány pouze pro vybrané druhy s dostatečným množstvím vzorků, a s širokým areálem rozšíření či pro problematické druhy či skupiny druhů (taxonů) blízce příbuzných dle výsledků fylogenetických analýz v této práci. Byla tak vypracována síť pro C. argiades (129 vzorků, obr. 8), C. amyntula (125 vzorků, obr. 9), společně pro C. alcetas a C. decoloratus (88 vzorků, obr. 10), C. osiris dohromady s C. staudingeri (celkem 77 vzorků, obr. 11) a skupinu druhů C. minimus, C. carswelli, C. lorquinii a C. tuzovi (celkem 233 vzorků, obr. 12). Dále byla v programu DNA Sequence Polymorphism (DNASP) verze 6.12.03 (Librado & Rozas 2009) vypočítána haplotypová diverzita h (pravděpodobnost, že se dvě náhodné sekvence od sebe liší) a nukleotidová diverzita π (pravděpodobnost. že se dvě náhodné sekvence v daném lokusu (pozici na DNA řetězci) liší).

3.5.6 HierBAPS

HierBAPS (hierarchical Bayesian Analysis of Population Structure) (Cheng et al. 2013) je metoda, která rozřazuje sekvence do klastrů bez předchozí znalosti geografického původu vzorků. Pro její výpočet byla použita package rhierBAPS (Tonkin-Hill et al.

2018) v programu R verze 3.6.0 (R Core Team 2019). Výpočet byl proveden pro úrovně 1–7. Výpočet byl proveden pro stejné skupiny druhů a stejný počet vzorků jako u haplotypových sítí (viz výše).

3.5.7 SPADS

Metoda SPADS (Spatial and Population Analysis of DNA Sequences) se používá pro vizualizaci genetických distancí mezi populacemi. Výpočet byl proveden R funkcí GDisPAL, která je součástí programu SPADS (Dellicour & Mardulyn 2014). Programem SPADS byly nejprve vygenerovány matice geografických distancí a reziduály genetických vzdáleností 2 (IID2) odvozených z lineární regrese genetické a geografické vzdálenosti. Metoda IID2 je založená na párových nukleotidových rozdílech. Funkce GDisPAL převádí matrice na interpolační povrchy, vizualizované jako tzv. genetická krajina. Do jedné populace byly zahrnuty vzorky jejichž lokality jsou od sebe vzdáleny maximálně 25 km. Výpočet byl proveden pro stejné skupiny druhů a stejný počet vzorků jako u haplotypových sítí (viz výše). Všechny dílčí mapy jsou prezentovány na společné tabuli (Obr. 13).

4 VÝSLEDKY

Celkem bylo do práce zahrnuto 24 druhů z podtribu Everina a osm druhů bylo použito jako tzv. outgroupy. V souhrnu jsem analyzoval 920 vzorků (Příloha 1) s údaji o 23 druzích motýlů z čeledi Lycaenidae. Z tohoto celkového počtu je 126 vzorků vlastních (v příloze 1 s iniciály JW) a zbylé jsou převzaty z databáze BOLD. Do práce nejsou zahrnuty druhy *Cupido prosecusa* a *C. huegelii*, ze kterých se nepodařila získat DNA a ani nejsou zastoupeny ve výše zmíněné databázi.

4.1 Fylogenetické stromy

Celkem bylo analyzováno 920 vzorků motýlů podtribu Everina. Fylogenetické stromy vytvořené metodami Maximum Likelihood (Obr. 4) a MrBayes (Obr. 5) byly rootovány podle druhu Azanus jesous. Fylogenetický strom konstruovaný prvně zmíněnou metodou se v první fázi dělí na dvě větve. První zahrnuje druhy Tongeia kala a Talicada nyseus. Druhá větev se dělí na další dvě. Na bázi se nachází neotropický druh Elkalyce cogina a ve druhé větvi zbylé druhy rodu Tongeia a druh Bothrinia nebulosa, který je na její bázi. Druhá větev zahrnuje rod Cupido. Na bázi větve tohoto rodu je druh Cupido lacturnus z orientální a australské oblasti. Druhá větev s rodem Cupido se dělí na větev s druhy *Everes* group a na monofyletickou větev s druhy *Cupido* group. Jednotlivé druhy jsou barevně rozčleněny. V Obr. 4 a 5 nejsou uvnitř tohoto podtribu podbarveny vzorky různých druhů, které mají totožnou sekvenci (jsou zahrnuty ve stejném haplotypu, patrné v příloze 1). Takovými taxony jsou C. minimus, C. tuzovi, C. osiris, C. lorquinii, C. carswelli, C. decoloratus, C. alcetas, Tongeia bisudu a T. fischeri. Nejsou podbarveny ani outgroupové druhy. Prakticky totožný výsledek poskytuje i fylogenetický strom konstruovaný metodou MrBayes (Obr. 5), kde však druh Elkalyce cogina figuruje na bázi větve s druhy rodu Tongeia.

4.2 Molekulární datování a biogeografická analýza

Z analýzy provedené v programu BEAST je patrné, že k osamostatnění podtribu Everina od ostatních zástupců čeledi Lycaenidae došlo zhruba před 18,4 mil. let. Následně došlo k dělení druhů orientální oblasti a ostatní skupin druhů. Některé známe taxony s recentním rozšířením se od společného předka oddělily již v miocénu, jedná se o: *E. cogina* (před 12,5 mil. let), *T. kala* (před 9,2 mil. let) a *B. nebulosa* (před 6,9 mil. let). Ostatní recentní druhy vznikly v pleistocénu. K rozdělení společného předka rodu *Cupido* a většiny zástupců rodu *Everes* došlo v miocénu zhruba před 6,6 mil. let. Přičemž diverzifikace uvnitř rodu *Cupido* proběhla asi před 4,79 mil. lety a uvnitř rodu *Everes* před 3,08 mil lety.

Jako nejvhodnější model pro ancestrální analýzu se ukázal DEC+J, jehož AIC je nejnižší z celkem šesti testovaných modelů (Tab. 3). Ancestrální areál předka tohoto podtribu (původní areálu rozšíření předka) zahrnoval na základě biogeografické analýzy širokou oblast na severní polokouli (Obr. 7), vyjma centrální Asie, mimoevropské části Rusko (od Uralu na východ) a Austrálie a Oceánie. Předek rodu *Cupido* pocházel z Pyrenejského poloostrova, zatímco předek rodu *Everes* mohl mít široký areál rozšíření na severní polokouli, vyjma mimoevropské části Ruska, Austrálie a Oceánie a orientální oblasti.

Tab. 3. Porovnání biogeografických modelů pro podtribus Everina: Na základě nejnižší hodnoty Akaikeho informačního kritéria (AICc) byl zvolen model DEC+J (zvýrazněno).

Model	LnL	df	d	е	j	AICc
DEC	-392.2	2	0.025	1.0e-12	0	788.5
DEC+J	-360	3	0.014	1.0e-12	0.0056	726.1
DIVALIKE	-425.6	2	0.037	1.0e-12	0	855.3
DIVALIKE+J	-389	3	0.019	1.0e-12	0.0078	784.2
BAYAREALIKE	-540.6	2	0.030	0.27	0	1085
BAYAREALIKE+J	-414,3	3	0.014	0.11	0.0095	834.7

Obr. 4. Fylogenetický strom podtribu Everina (Lycaenidae) konstruovaný metodou Maximum Likelihood. Popisky větví zobrazují bootstrapové hodnoty.

Obr. 5. Fylogenetický strom podtribu Everina (Lycaenidae) konstruovaný metodou MrBayes. Popisky větví zobrazují posteriorní pravděpodobnosti.

Obr. 6. Datování fylogenetických událostí podtribu Everina (BEAST). Osa x udává stáří v milionech let. Modré úsečky označují 95 % HPD interval, čísla udávají stáří v milionech let. Podpory větví jsou totožné jako u stromu konstruovaného metodou Maximum Likelihood, který bych použit jako podkladový strom pro analýzu. Chyby v determinaci u *Cupido minimus, C. lorquinii, C. tuzovi* a *C. carswelli*, příp. *Tongeia bisudu* a *T. davidi* byly odstraněny, a tudíž jsou na obrázku prezentovány jako jeden taxon. *Cupido decoloratus* zahrnuje i vzorky s *C. alcetas*. Datování epoch je převzato z https://stratigraphy.org/timescale/.

Obr. 7. Výsledek analýzy BioGeoBears pro podtrib Everina (Lycaenidae), pro kterou byl zvolen model DEC +J. Osa x udává stáří v milionech let. Podpory větví jsou totožné jako u stromu konstruovaného metodou Maximum Likelihood, který bych použit jako podkladový strom pro tuto analýzu.

4.2 Haplotypové sítě, HierBAPS a SPADS

4.2.1 Cupido argiades

Haplotypová síť pro druh *C. argiades* (Obr. 8) byla konstruována ze 129 sekvencí genu COI o délce 584 bazí. Haplotypová diverzita datasetu byla 0,149 a nukleotidová diverzita byla 0,00029. Síť je málo strukturována a je tvořena celkem 10 haplotypy. Většina vzorků je reprezentována centrálním haplotypem (AR1) zahrnující vzorky z celého areálu rozšíření od Španělska až po východní Asii. Z tohoto haplotypu se odštěpují tři vzorky z Číny, Japonska a západního Ruska (AR7–AR8), vzorek ze Španělska (AR2), dva vzorky ze západních Alp (AR3, AR4), tři vzorky z východních částí Alp (AR5, AR6) a jeden vzorek z Balkánu (AR10). Všechny haplotypy jsou tvořeny pouze jedním klastrem BAPsAR1. Genetická homogenita v mitochondriálním genu COI je patrná i v obrázku 13 (A), kde se odlišují pouze vzorky z východní Asie.

Obr. 8. Haplotypová TCS síť znázorňující populační strukturu *Cupido argiades* a jediný klastr BAPsAR1 a mapa znázorňující původ vzorků.

4.2.2 Cupido amyntula

Haplotypová síť pro druh C. amyntula (Obr. 9) byla konstruována ze 125 sekvencí genu COI od délce 580 bazí. Haplotypová diverzita datasetu byla 0,869 a nukleotidová diverzita byla 0,00548. Síť na Obr. 4 ukazuje genetickou strukturu populací taxonu *C*.

amyntula tvořenou 26 haplotypy. Z haplotypu A13 tvořeného převážně populacemi z Aljašky, Yukonu a Britské Kolumbie se odštěpuje haplotyp (A15) tvořený populacemi z Aljašky, Yukonu a Severozápadního teritoria, dále štěpícího se na jeden vzorek z Yukonu (A17). Dále se od haplotypu A13 odštěpuje jeden vzorek ze Saskatchewanu (A14) a jeden z Britské Kolumbie (A18), a také haplotyp (A20) obsahující vzorky z Alberty a Britské Kolumbie. Haplotyp A24 tvoří vzorky ze všech areálů mimo severních a severovýchodních oblasti. Právě většinová absence vzorků z Aljašky, Yukonu a částečně i Severozápadního teritoria je patrná u haplotypů A1 a A6, které jsou majoritně tvořeny vzorky ze zbylých částí Kanady a východního pobřeží USA. Zvláštní postavení mají pak vzorky z Kalifornie (A7, A8, A9), které se odštěpují od haplotypu A6 a liší se od něj čtyřmi mutacemi. Haplotypy byly analýzou BAPS rozděleny do šesti klastrů. BAPsA1 obsahuje převážně vzorky z Aljašky, Yukonu Severozápadního teritoria a také z Britské Kolumbie, resp. Alberty. Klastry BAPsA3-A5-A6 jsou tvořeny vzorky z Kalifornie, příp. Washingtonu. Zbylé dva klastry (BAPsA2-A4) zahrnují vzorky převážně ze střední Kanady. Genetické distance jsou nejvyšší mezi vzorky ze západního pobřeží USA a všemi zbylými vzorky (Obr. 13, B). Nicméně nepatrné rozdíly v genetických vzdálenostech jsou i mezi vzorky z Aljašky, resp. části Yukonu oproti vzorkům ze střední Kanady.

Obr. 9. Haplotypová TCS síť znázorňující populační strukturu *Cupido amyntula* doplněná o příslušné klastry získaných analýzou HierBAPS. Mapa ukazuje původ vzorků, jejichž barvy odpovídají jednotlivým klastrům.
4.2.3 Cupido alcetas a C. decoloratus

Haplotypová síť (Obr. 10) pro druhy *C. alcetas* a *C. decoloratus* je vytvořena na základě 88 sekvencí pro gen COI o celkové délce 529 bazí. Haplotypová diverzita datasetu byla 0,499 a nukleotidová diverzita byla 0,00346. Haplotypy AD1–AD5 zahrnují oba taxony a společně jsou zahrnuty v jednom klastru BAPsAD1. Klastr je tvořen haplotypy rozšířenými ve Španělsku, západní Evropě, Itálii (*C. alcetas*, zelené kolečko), části Balkánu a Ukrajiny (*C. decoloratus*, zelený trojúhelník). Druhý klastr BAPsAD2 je tvořen haplotypy druhu *C. alcetas*, které jsou od předchozího klastru odděleny minimálně 7 mutacemi. Tyto haplotypy jsou rozšířeny na jihu Balkánu a ve východní Evropě (od Ukrajiny na východ). Oba klastry se potkávají ve střední Evropě.

Obr. 10. Haplotypová TCS síť znázorňující populační strukturu *Cupido decoloratus* (na mapě zobrazen jako trojúhelníky) a *C. alcetas* (na mapě kolečka) a dva klastry získaných analýzou HierBAPS. Mapa ukazuje původ vzorků, jejichž barvy odpovídají jednotlivým klastrům. Klastry neodpovídají morfologickému rozlišení na druhy.

4.1.5 Cupido osiris a C. staudingeri

Společná haplotypová síť (Obr. 11) pro druh *C. osiris a C. staudingeri* obsahuje celkem 34 haplotypů a byla vytvořena na základě 77 sekvencí genu COI o celkové délce 583 bazí. Haplotypová diverzita datasetu byla 0,938 a nukleotidová diverzita byla 0,01355. Haplotyp OS1 tvoří vzorky z Itálie a Španělska. Od tohoto haplotypu se oddělují vzorky

ze Španělska, Balkánu, resp. východní Evropy. Klastry BAPsOS4–OS5–OS25 jsou tvořeny převážně haplotypy a areálem rozšíření z Balkánu, v menší míře i východní Evropy (OS16), Rakouska (OS12), Turecka a Španělska (OS25). Klastr BAPsOS6 je tvořen haplotypy z Itálie a západních Alp. Klastr BAPsOS1 je pak tvořen výhradně haplotypy zahrnující druh *C. staudingeri* z Íránu. Vzorky jsou od sebe geneticky značně vzdálené (Obr. 13, D), což zrcadlí strukturovanost haplotypové sítě.

Obr. 11. Haplotypová TCS síť znázorňující populační strukturu *Cupido osiris* a *C. staudingeri* a je doplněná o osm klastrů získaných metodou HierBAPS. Mapa ukazuje původ vzorků, jejichž barvy odpovídají jednotlivým klastrům.

4.1.4 Cupido minimus, C. tuzovi, C. lorquinii a C. carswelii

Tato síť (Obr. 12) je prezentována společně pro tyto druhy, vzhledem k jejich problematické determinaci (zejména pak u samic druhů *C. minimus* a *C. lorquinii*), nejasné systematice (*C. minimus* a *C. tuzovi*). Síť byla vytvořena na základě 233 sekvencí genu COI o délce 592 bazí a obsahuje celkem 55 haplotypů. Haplotypová diverzita vyšla 0,854 a nukleotidová diverzita byla 0,00798. Převážná část haplotypů (M1–M36) je tvořena druhem *C. minimus*. K centrálnímu haplotypu (M1) náleží i dva vzorky *C. tuzovi* a *C. carswelli*. Z tohoto haplotypu, který tvoří vzorky ze Španělska,

střední Evropy, Balkánu, dále pak minoritně vzorky z Německa, severní Evropy, západní Evropy, východní Evropy, západních Alp, se odštěpuje několik samostatných haplotypů z Itálie, střední Asie, východních Alp, Německa a Španělska. Také se odštěpuje větší skupina tvořená vzorky z jižních oblastí – z východních Alp, Itálie, Španělska a západních Alp (M34). Z celkového pohledu je zřetelné oddělení druhu *C. lorquinii* a většiny vzorků *C. minimus*, avšak je nutné podotknout, že převážná část haplotypů (M37, M40, M49) je tvořená i vzorky určených jako *C. minimus* (údaje z databáze BOLD). Z haplotypu M40 (vzorky výhradně z Pyrenejského poloostrova) se odštěpují vzorky *C. carswelii* ze Španělska (M45 a M44), a vzorky druhu *C. lorquinii* z Maroka (M42), Portugalska (M46) a Španělska s občasným výskytem druhu *C. minimus* (M48, M49). Analýza HierBAPS v první úrovni dělí skupiny druhů na dva klastry, v druhé úrovni na celkem čtyři klastry a v dalších úrovních se již tento počet nenavyšuje. Genetická krajina (Obr. 13. E) ukazuje homogennost v genetických distancích v rámci celého palearktu, kromě vzorků rozdělující Pyrenejský poloostrov na druhy *C. minimus* a *C. lorquinii*.

Obr. 12. Haplotypová TCS síť znázorňující populační strukturu *Cupido minimus*, *C. tuzovi*, *C. lorquinii* a *C. carswelli* doplněná o čtyři klastry získaných z analýzy HierBAPS. Mapa ukazuje původ vzorků. Jejich barvy odpovídají jednotlivým klastrům.

Obr. 13. Genetická krajina založená na genetických distancích v genu COI mezi populacemi *C. argiades* (A), *C. amyntula* (B), *Cupido decoloratus/alcetas* (C), *Cupido osiris/staudingeri* (D), a *C. minimus/tuzovi/carswelli/lorquinii* (E), vytvořená pomocí funkce GDisPAL v programu SPADS.

5 DISKUZE

Cílem této práce bylo poskytnout nové informace, resp. potvrdit některé stávající domněnky o motýlech podtribu Everina, a to na základě fylogenetické a biogeografické studie mitochondriálního genu COI, doplněné o metody populačně-genetické. Problematikou tohoto podtribu jako celku se nikdo v minulosti nezabýval, ale existují studie, které se týkají jednotlivých druhů (Jeratthitikul et al. 2012, Talavera et al. 2015., Hinojosa et al. 2020), případně jsou zahrnuty jako doplňující druhy k jiným skupinám modrásků (Vila et al. 2011, Fric et al. 2019).

5.1 Fylogeneze podtribu Everina

Fylogenetické analýzy na základě mitochondriálního genu (COI) potvrdily příslušnost zkoumaných rodů – rod *Tongeia*, *Cupido*, *Everes*, *Bothrinina*, *Talicada*, *Elkalyce* – do podtribu Everina. Fakticky jediným rodem, který nebyl v rámci práce zkoumán a patří do tohoto podtribu, je rod *Shijimia* s jediným druhem *Shijimia moorei* Leech, 1889. Druh preferuje vlhká křovinatá stanoviště (Choudhury 2010). Z pohledu fylogeneze nebyl tento taxon v minulosti zkoumán, ale vzhledem k faktu, že se jedná o druh, který je rozšířen v orientální oblasti (Evans 1932, Haribal 2003), můžeme předpokládat jeho blízkou příbuznost k rodům *Tongeia*, *Talicada*, resp. *Bothrinia*.

Ostatní druhy podtribu Everina jsou v různé míře zahrnuty v dalších fylogenetických studiích (např. Vila et al. 2010, Stradomsky 2016, Fric et al. 2019, Hinojosa et al. 2020,). V zásadě tyto práce potvrzují, že zkoumaný podtrib je monofyletický, což plyne i z analýzy v této diplomové práce. Oproti analýze prezentované v této práci, Talavera et al. (2015) na základě třech mitochondriálních a čtyř jaderných genů (celkem 4850 bazí) uvádějí druh *Elkalyce cogina* jako bazální ke všem ostatním druhům podtribu Everina. V jejich analýze byly zahrnuty rody *Cupido*, *Tongeia*, *Talicada* a právě *Elkalyce*. V mojí analýze vychází tento druh spíše jako sesterská skupina ke všem ostatním taxonům, vyjma *T. kala* a *T. nyseus*, které jsou sesterské ke všem ostatním.

Z analýzy dále vyplývá, že rod *Cupido* je monofyletický. V případě, že do *Everes* group nezahrneme druh *Cupido lacturnus* je rod *Everes* také monofyletický, což je tradičně akceptováno celou řadou autorů (D'Abrera 1993, Vila et al. 2010, Ilinsky &

Kosterin 2017). *Cupido lacturnus* zahrnují někteří autoři (bez fylogenetické studie) sice do rodu *Everes* (Vane-Wright & de Jong 2003, Lo & Chau 2010), nicméně na základě mojí analýzy vychází tento taxon jako sesterský k ostatním druhům *Everes* a *Cupido* group. Proto by bylo vhodné taxon *lacturnus* zahrnout do nově definovaného rodu, který by byl sesterský k monofyletickým rodům *Everes* a *Cupido*. Je potřeba uvést, že analýza byla založena na mitochondriálním genu COI. To představuje dostatečný úsek pro odlišení druhů (Jung et al. 2011), ale nemusí zcela přesně rekonstruovat vztahy mezi druhy (Martinsson et al. 2015).

Kromě problematických taxonů (viz komentáře k jednotlivým druhům nebo skupinám druhů, Kap. 5.3) odhalila fylogenetická analýza také nesprávně určené vzorky v datasetu (Tab. 5).

Tab. 5. Problematické vzorky, které z fylogenetické analýzy odpovídají jiným druhům. V tabulce jsou prezentovány jak vzorky z Databáze BOLD, tak nesprávně určené vzorky autorem této práce.

Kód	Determinace	Revize	Stát	Pohlaví
GBGL35511-19	bisudu	fischeri	Čína	?
BDE064-18	carswelli	lorquinii	Španělsko	?
BDE065-18	carswelli	lorquinii	Španělsko	?
BDE628-20	carswelli	lorquinii	Španělsko	?
BDE629-20	carswelli	lorquinii	Španělsko	samec
BDE066-18	carswelli	lorquinii	Španělsko	samec
BDE630-20	carswelli	lorquinii	Španělsko	?
BDE631-20	carswelli	lorquinii	Španělsko	?
EULEP100-14	minimus	lorquinii	Španělsko	?
EULEP101-14	minimus	lorquinii	Španělsko	?
EZSPC831-10	minimus	lorquinii	Španělsko	?
EZSPC832-10	minimus	lorquinii	Španělsko	?
EZSPC833-10	minimus	lorquinii	Španělsko	samec
EZSPC1407-10	minimus	lorquinii	Španělsko	?
EULEP098-14	minimus	lorquinii	Španělsko	?
EULEP099-14	minimus	lorquinii	Španělsko	?
EZSPC1466-10	minimus	lorquinii	Španělsko	samec
BDE080-18	osiris	minimus	Španělsko	?
JW78	davidi	filicaudis	Čína	?
JW106	davidi	filicaudis	Čína	?
JW110	davidi	filicaudis	Čína	?
JW174	tuzovi	minimus	Kazachstán	samec
JW179	tuzovi	minimus	Kazachstán	samec

5.2 Molekulární datování a biogeografická analýza

Z analýzy BEAST vyplývá, že podtrib Everina se osamostatnil od ostatních skupin modrásků zhruba před 18,4 mil. lety (Obr. 6). Talavera et al. (2015) udávají rozdělení od ostatních zástupců čeledi Lycaenidae zhruba před 17,5 mil. lety. Z mé analýzy dále vyplývá, že k rozdělení společného předka rodu *Cupido* a většiny zástupců rodu *Everes* došlo v miocénu zhruba před 6,6 mil. let. Přičemž samostatný rod *Cupido* vznikl asi před 4,79 mil. lety a rod *Everes* před 3,08 mil. lety.

Z ancestrální analýzy DEC+J v této práci (Obr. 7) vychází, že společný předek celého podtribu mohl být v miocénu rozšířen napříč severní polokoulí, vyjma centrální Asie, mimoevropské části Rusko (od Uralu na východ) a Austrálie a Oceánie. Talavera et al. (2015) udávají jako pravděpodobný ancestrální areál předka orientální oblast za použití biogeografické modelu Bayarealike. Je faktem, že orientální a východoasijské oblasti jsou více diverzifikované z hlediska výskytu a počtu druhů (Dikow 2010) a zároveň pro některé rody, resp. druhy (*Tongeia, Talicada, Botrhinia*) podtribu Everina představují jediné oblasti rozšíření (Tuzov 2000, Wang & Fan 2002, Singh 2005). Z mé analýzy dále plyne, že předek rodu *Everes* byl rozšířen po celé severní polokouli, vyjma asijské části Ruska, orientální oblasti a Austrálie a Oceánie, zatímco předek rodu *Cupido* mohl mít společný areál na Pyrenejském poloostrově.

Je potřeba poznamenat, že molekulární datování podléhá velké chybovosti kvůli chybějícímu fosilnímu záznamu nebo použití univerzální substituční rychlosti, která se ale může mezi druhy lišit, a tudíž nelze přesně rekonstruovat jednotlivé časové periody (Dinca et al. 2013). Stejně tak jsou pochybnosti o použití správných modelů pro ancestrální analýzu (Ree & Sanmartín 2018). Takto široké areály rozšíření jako v případě podtribu Everina nejsou výjimkou, nicméně v konečném důsledku jsou hůře reprodukovatelné z hlediska celkového kontextu areálu společného předka, resp. další šíření druhových skupin z těchto areálů (Fric et al. 2019, Huang et al. 2019). Výsledky pak ukazují, že předek byl rozšířen někde v těchto oblastech, ale nelze s jistotou určit přesný areál rozšíření (Todisco et al. 2018).

5.3 Vztahy uvnitř druhů a skupin druhů

5.3.1 Rod Tongeia

Druh *Tongeia bisudu* Zhdanko & Yakovlev, 2001 (Yakovlev 2012) je endemický taxon z Altaje. Dle fylogenetických analýz se nejspíše jedná o druh *T. fischeri* (Obr. 4 a 5). Nicméně je nutno podotknout, že v analýze byl vzorek určený jako *T. bisudu* zastoupený pouze jedním vzorkem převzatým z databáze BOLD. Jako dalším sporným taxonem z rodu *Tongeia* se ukázal *T. davidi* (Poujade, 1884), který na základě fylogenetické analýzy přísluší nejspíše k druhu *T. filicaudis*, resp. oba druhy by měly být synonymizovány (Tab. 5).

5.3.2 Cupido argiades

U druhu Cupido argiades byla zjištěna nízká haplotypová diverzita (h= 0,149, celkem 10 haplotypů, obr. 8). Genetická struktura může být v tomto případě ovlivněna bakteriemi rodu Wolbachia. Jedná se o obligátní nitrobuněčné parazity širokého spektra členovců (Lom 1995). Wolbachia se dostává do dalších generací po samičí linii. Tyto bakterie způsobují smrt samčích embryí, feminizaci potomstva nakažených samic či partenogenezi (Fujii et al. 2001). Wolbachia manipuluje proces rozmnožování i pomocí mechanismu tzv. cytoplazmatické inkompatibility. Ta může být jednosměrná, kdy při křížení infikovaného samce s neinfikovanou samicí dochází ke snížení počtu potomků. Bakterie se tak může rychle rozšířit skrz populaci. Protože se Wolbachia přenáší do dalších genetací společně s mitochondriemi, vzniká tzv. genetických drift. Ten nastává, pokud se v populaci mění frekvence výskytu alel, nikoliv však selekčním tlakem, ale v závislosti na přítomnosti jiného genu nebo mechanismu, v tomto případě bakterií Wolbachia. V konečném důsledku to může způsobit nízkou mitochondriální diverzitu (Oliveira et al. 2008, Sucháčková Bartoňová et al. 2021). Výskyt bakterie Wolbachia je doložen pro vzorky C. argiades z Novosibirské oblasti v Rusko, kde byla zjištěna přítomnost Wolbachie u 17 ze 17 exemplářů (Ilinsky & Kosterin 2017).

Zároveň ale na rozdíl od ostatních příbuzných druhů modrásků (*C. minimus*, *C. alcetas*, *C. decoloratus* aj.) je *C. argiades* dobrým migrantem, což je doloženo častými nálezy jedinců i daleko od vhodných stanovišť. Současné šíření druhu více k severu se vysvětluje klimatickou změnou (Permesan et al. 1999, Beneš et al. 2002). Nízká

haplotypová diverzita, ale šíření bakterií *Wolbachia* v populaci může být podpořeno právě značnou mobilitou tohoto druhu.

5.3.3 Cupido amyntula

Větev s *C. amyntula* se oddělila asi před 1,62 mil. let, což se shoduje s prací Talavera et al. (2015), která datují kolonizaci Ameriky podtribem Everina zhruba do období před 1,65 mil lety, nicméně výsledek prezentují na druhém severoamerickém druhu *C. comyntas.* Z mé analýzy plyne, že se druh *C. comyntas* oddělil od *C. argiades* asi před 2,03 mil. lety a Severní Ameriku mohl kolonizovat zhruba před 0,73 mil. lety. Toto může poukazovat na skutečnost, že předek těchto druhů žil v orientální, resp. východoasijské oblasti. Nejprve se oddělil *C. amyntula*, následně *C. comyntas*, oba kolonizovaly Severní Ameriku, a následně *C. argiades*, který expandoval naopak po celém palearktu. Na rozdíl od práce Talevera et al. (2015), který dokladuje kolonizování Ameriky rodem *Cupido* pouze v jedné etapě, mohlo dojít ke kolonizaci Ameriky tímto rodem, resp. rodem *Everes* ve dvou etapách – 1. před 1,62 mil. lety a 2. před 0,73 mil. lety.

Mapa genetických distancí (Obr. 13, B) ukazuje znatelný rozdíl mezi populacemi *C. amyntula* na východě USA (Kalifornie) a zbytku vzorků rozšířených ve zbylém areálu. Drobné odchylky jsou také patrné mezi populacemi východní Beringie (Aljaška, Yukon) a zbytku Kanady. Potvrzuje se, že v dobách ledových, kdy byla zaledněna většina Severní Ameriky, vyjma severozápadních oblastí, které byly pokryty permafrostem, se zvířata v Severní Americe stahovala do oblastí Beringie a 40. rovnoběžky, které zaledněny nebyly (Hewitt 2004a, Dyke 2004). Oblast Beringie hrála důležitou roli jako glaciální refugium (Hewit 2004b), což potvrzují i fosilní záznamy (Elias et al. 2000). Oblast východní Beringie (Aljaška a Yukon) připomínala stepní lokality, případně tundry a umožnila tak mnohým živočichům (Mikkola et al. 1991, Marešová et al. 2021) i rostlinám (Brubaker et al. 2005) přečkat nepříznivé glaciální období.

5.3.4 Cupido alcetas a C. decoloratus

Spornými taxony jsou *C. decoloratus* a *C. alcetas*, oba popsané z Rakouska (Hoffmannsegg 1804, Staudinger 1886). Problém v odlišení taxonů je známý (cf. Beneš et al. 2002, Kudrna 2019). V haplotypové síti (Obr. 10), doplněnou o dva klastry

z analýzy HierBAPS, je patrno 7 mutací odlišující tyto dvě mitochondriální skupiny (BAPSAD1 – C. decoloratus společně s C. alcetas a BAPSAD2 – C. alcetas). Taxon alcetas se vyskytuje ve Španělsku, Itálii a střední Evropě a je mitochondriálně totožný s taxonem decoloratus, který je rozšířen na části Balkánu a na Ukrajině. Druhý taxon alcetas, mitochondriálně odlišný od předchozích dvou, se vyskytuje na jihu Balkánu a ve východní Evropě. Oba druhy, a zároveň obě mitochondriální linie se potkávají ve střední Evropě. Areály obou druhů se tedy mohou překrývat a také se mohou překrývat generace obou druhů (Carter & Hargreaves 1998, Higgins & Riley 1988, Kudrna 2019). V tomto případě se může jednat i o nesoulad mezi zjištěným geografickým rozšířením těchto klastrů a použitím pouze mitochondriálního genu. Toews & Brelsford (2012) dokladují nesoulad mezi biogeografií posuzovanou na základě mitochondriální DNA a jaderných markerů. Tento rozpor byl identifikován u mnoha zvířecích taxonů (brouci, ptáci, obojživelníci aj.). Většina případů je pravděpodobně způsobena introgresí (zde mezidruhový přenos) mitochondriální DNA, kdy došlo k sekundárnímu kontaktu populací po předchozí geografické izolaci (Toews & Brelsford 2012, Toews et al. 2013). V tomto případě můžou mít vliv na zjištěnou strukturu i bakterie rodu Wolbachia. Ta se prokázala u vzorků C. alcetas z Novosibirské oblasti, kde byla zjištěna u 7 ze 7 exemplářů (Ilinsky & Kosterin 2017).

5.3.5 Cupido osiris a C. staudingeri

Ve fylogenetických analýzách (Obr. 4 a 5) se na bázi větve *C. osiris* nachází některé vzorky z Řecka, Arménie, Turecka, Španělska (klastr BAPsOS5), dále se druh dělí na *C. staudingeri* (Írán, klastr BAPsOS1) a větev s většinou vzorků *C. osiris* (klastry BAPsOS2 –OS3–OS4–OS6–OS7–OS8). *Cupido osiris* tak není monofyletický, pokud nezahrneme druh *C. staudingeri*. Rozlišení těchto dvou druhů je založena mimo jiné na znaku, že samice *C. osiris* je vždy svrchu hnědá, zatímco samice u *C. staudingeri* můžou být v závislosti na popsaném poddruhu i částečně modré. Křídla samců *C. osiris* jsou pak svrchu více fialová. Barva křídel ale nemusí být klíčová pro rozlišení druhů (popsáno i na případech *C. lorquinii* a *C. carswelli*; Gil-T 2006, Gil-T 2017). Popsány jsou i drobné odlišující znaky na kopulačních orgánech zejména u samce (tvar uncusu a délka, resp. šířka valvy), nicméně se připouští například problematické rozlišení *C. osiris* s poddruhem *C. staudingeri* subsp. *osirissmile* (Hagen 2008), jehož samice jsou svrchu hnědě zbarvené (Hagen 2008), a ani rozlišení genitálu není průkazné. Jak je

patrno i v haplotypové síti (Obr. 7), spíše než o samostatný druh by se mohlo jednat pouze o poddruh druhu *C. osiris*. Případy, kdy dva různé druhy byly považovány za samostatné na základě barevné odlišnosti a zároveň nebyly odlišitelné na základě studia genitálií, jsou známé například u evropských druhů rodu *Aricia* Reichenbach, 1817, u kterého bylo mnoho taxonů synonymizováno (Sañudo-Restrepo et al. 2013). Spornost v determinaci tohoto rodu byla potvrzena i u českých populací *A. agestis* (Den. & Schiff., 1775) a *A. artaxerxes* (Fabricius, 1793) (Bartoňová et al. 2019), kdy naprostá většina zkoumaných vzorků zbarvených jako *A. artaxerxes* náležela do druhu *A. agestis*. *Aricia artaxerxes* je známý recentně právě na základě revize DNA pouze z jediné izolované a málo početné populace v jižních Čechách.

Cupido osiris (včetně C. staudingeri) má výraznou populační strukturu. V Evropě v pleistocénu, kdy se střídají doby ledové a meziledové, se druhy teplomilné v glaciálech stahují do jižních nebo tzv. kryptických refugiích, opačným vzor v chování pak platí pro druhy chladnomilné v dobách meziledových (Stewart et al. 2010). Protože *C. osiris* představuje teplomilný druh vyšších nadmořských výšek, je pravděpodobné, že v dobách ledových sestoupil na úbočí hor, kde přežíval v několika různých refugiích. Protože některé jeho klastry (Obr. 11) jsou široce rozšířeny a osidlují vzájemně vzdálená místa (např. klastr – BAPsOS5: Španělsko, Turecko a Gruzie a Balkán), je pravděpodobné, že pozorujeme výsledek opakovaných změn ve velikosti a umístění areálů během několika glaciálních cyklů. Z mapy (Obr. 11) je pak patrné, že v postglaciálních dobách muselo docházet u části populací, zejména ve vyšších nadmořských výškách (Alpy, Apeniny, Karpaty, Pyreneje) k sekundárnímu kontaktu (hybridizaci). Sekundární kontakt v post-glaciálních dobách je u živočichů známý, a to jak u méně mobilních např. plžů (Pfenninger & Posada 2002) tak více mobilních živočichů, motýly nevyjímaje. Právě sekundární kontakt v post-glaciálních dobách je dokumentován na příkladu modráska Polyommatus coridon, u kterého se kontaktní zóny vyskytují ve střední Evropě a pomyslnou genetickou bariéru mezi severozápadní a jihovýchodní Evropskou populací tohoto modráska představuje česko-německá hranice (Schmitt & Seitz 2001, Schmitt & Zimmermann 2011).

5.3.6 Cupido minimus, C. tuzovi, C. lorquinii a C. carswelii

Na základě fylogenetické analýzy mitochondriálního genu COI je druh *C. tuzovi* synonymem k *C. minimus*, a to ani ne na poddruhové úrovni, jak někteří autoři uvádějí

(Yakovlev 2012). Udávaným rozdílem mezi druhy je více zelenomodré zbarvení u *C. tuzovi*, a zároveň drobné odlišnosti na samičím genitálu (Tuzov 2000). Samci jsou na základě disekce genitálu neodlišitelní (Zhdanko 2004). Oba druhy lze charakterizovat jako xerotermofilní preferující stepní lokality.

Několik vzorků *C. minimus* jsou geneticky totožných s *C. lorguinii* (např M40, obr. 12, Tab. 5), nicméně se bude opět jednat o chybnou determinaci podpořenou faktem, že samice obou taxonů jsou hnědě zbarvené a bez disekce genitálií jsou hůře rozlišitelné. Dle fylogenetické analýzy se vzorky *C. carswelli* nacházejí ve stejné větvi jako druh *C. lorquinii* a vyjma dvou vzorků i ve stejném haplotypu (M40, obr. 12). Samci a samice *C. carswelli* jsou svrchu hnědé (podobně jako *C. minimus*) na rozdíl od samců *C. lorquinii*, kteří jsou modře zbarvení (Gil-T 2006, Gil-T 2017). Tato skutečnost vedla v minulosti k záměně *C. minimus* a *C. carswelli* (Prieto et al. 2009), ovšem i dnes je některými autory tento fakt přejímán (Kudrna 2019). Vzhledem k výsledku této práce i k jeho barevné odlišnosti mezi samci se přikláním k názoru Hinojosa et al. (2020) zachovat taxon *carswelli* jako poddruh *C. lorquinii – Cupido lorquinii* subsp. *carswelli*.

Jak dokládá analýza HierBAPS, *C. minimus* se vyskytuje od středu po severovýchod Španělska, na zbylé části Španělska dominuje *C. lorquinii* (cf. Hinojosa et al. 2020), což je patrné i na genetických vzdálenostech prezentovaných na genetické krajině (Obr. 13. E). U některých haplotypů je patrná expanze (např. haplotyp M1, obr. 12) a zároveň i větší struktura (haplotypy M18, M20, M24, M30, M34, obr. 12).

5.3 Náměty pro další výzkum

Tato pilotní studie poskytuje cenné informace o fylogenetické a biogeografické historii podtribu Everina. Nicméně, jsem si vědom, že analýzy založené na jednom genu, zejména mitochondriálním, který se přenáší jen po mateřské linii, ne zcela přesně odrážejí vztahy uvnitř skupiny. Jsou poměrně věrohodné, co se týče druhové specifikace, ale nemusejí být zcela přesné pro populačně-genetické, resp. fylogeografické analýzy. Z tohoto důvodu bude nutné u některých sporných taxonů provést analýzu i na další geny, což ale může být komplikováno faktem, že údaje jsou převzaty i z databáze BOLD a tyto vzorky momentálně k dispozici pro další analýzy nejsou. Pro získání lepšího datasetu byly již uskutečněny konkrétní kroky. 20 vzorků

bylo sekvenováno pomocí Next generations sequencing u firmy Novogene za účelem získání informace o celém genomu. To se povedlo u osmi vzorků, které budou dále zpracovány. Zároveň se u některých druhů ukazuje, že jsou pravděpodobně infikovány bakterií rodu *Wolbachia*, a proto bude nutné u těchto vzorků tuto domněnku potvrdit (např. *C. argiades*). V neposlední řadě by bylo vhodné u sporných taxonů *C. alcetas*, *C. decoloratus*, *C. osiris* a *C. staudingeri* provést morfometrickou analýzu, založenou na studiu kopulačních orgánů a křídelní charakteristiky, což bude obnášet i sampling areálů, odkud nemáme v současné době vzorky.

6 ZÁVĚR

Podtrib Everina je monofyletický a zahrnuje rody (zde zkoumané) *Bothrinia, Cupido, Everes, Talicada, Tongeia.* Rody *Cupido* a *Everes* vycházejí v těchto analýzách jako taxony monofyletické. Z analýzy dále vyplývá, že podtrib Everina se osamostatnil od ostatních skupin modrásků v miocénu zhruba před 18,4 mil. lety a společný předek podtribu Everina mohl být rozšířen téměř po celé severní polokouli, přičemž značná část recentních druhů se nachází v orientální či východoasijské oblasti.

Zároveň se potvrdila skutečnost, že některé taxony jsou problematické, a to jak z hlediska platnosti druhu, tak i z hlediska správné determinace. Na základě studie mitochondriálního genu COI se potvrdilo, že *C. tuzovi* je synonymum pro druh *C. minimus* a pravděpodobně i *T. davidi* je synonymem pro druh *T. filicaudis*. Jako hůře odlišitelné taxony se ukázaly například druhy *C. minimus* a *C. lorquinii*, příp. taxony *C. osiris* a *C. staudingeri*.

Tato práce poslouží jako pilotní studie pro další budoucí analýzy, které jistě problematiku tohoto taxonu umožní lépe pochopit.

7 LITERATURA

- Ackery, P.R. 1984. Systematic and faunistic studies on butterflies. In Vane-Wright, R.I.
 & Ackery, P.R. (eds), *The biology of butterflies*, pp. 9–21. Academic Press.
- Ackery, P.R., Jong, R. & Wright, R.I.V. 1999. The Butterflies: Hedyloidea, Hesperioidea and Papilionoidae. In Kristensen N.P. (ed.), *Lepidoptera, Moths and Butteflies*, pp. 263–300. Walter de Gruter.
- Avise, J.C. 2000. *Phylogeography: The History and Formation of Species*. University Press, Cambridge, 447 pp.
- Choudhurry, K. 2010. Rediscovery of two rare butterflies *Papilio elephenor* Doubleday, 1845 and *Shijimia moorei* Leech, 1889 from proposed Ripu-Chirang Wildlife Sanctuary, Assam, India. *Journal of Threatened Taxa* 2: 831–834.
- Bartoňová, A., Konvička, M., Korb, S. Kramp, K., Schmitt, T., & Fric, Z.F. 2018. Range dynamics of Palaearctic steppe species under glacial cycles: The phylogeography of *Proterebia afra* (Lepidoptera: Nymphalidae: Satyrinae). *Biological Journal of the Linnean Society* **125**: 867–884.
- Bartoňová, A.S., Beneš, J., Fric, Z.F. & Konvička, M. 2019. Genetic confirmation of *Aricia artaxerxes* (Fabricius, 1793) (Lepidoptera, Lycaenidae) in the Czech Republic, its conservation significance and biogeographic context. *Nota Lepidopterologica* 42: 163–176.
- Bartoňová, A.S., Konvička, M., Marešová, J., Wiemers, M., Ignatev, N., Wahlberg, N., Schmitt, T. & Fric, Z.F. 2021. *Wolbachia* affects mitochondrial population structure in two systems of closely related Palaearctic blue butterflies. *Scientific Reports* 11: 3019.
- Beazley, M. 1980. Anatomy of the Earth. Mitchell Beazley, 120 pp.
- Beneš, J., Konvička, M., Dvořák, J. & Fric, Z.F. 2002. Motýli České republiky: Rozšíření a ochrana I, II: Butterflies of the Czech Republic: Distribution and conservation I, II. Vyd. 1. Společnost pro ochranu motýlů, 857 pp.
- Bialik, O.M., Frank, M., Betzler, C., Zammit, R. & Waldmann, N.D. 2019. Two-step closure of the Miocene Indian ocean Gateway to the Mediterranean. *Scientific reports* 9: 8842.
- Blyth, W.M.A. 1957. *Butterflies of the Indian Region*. The Bombay Natural History Society, 523 pp.

- Boyl, J.H., Kaliszewska, Z.F., Espeland, N., Suderman, T.R., Fleming, J., Heath, A. & Pierce, N.E. 2015. Phylogeny of the Aphnaeinae: myrmecophilous African butterflies with carnivorous and herbivorous life histories. *Systematic Entomology* 40: 169–182.
- Brock, J.P. & Kaufman, K. 2006. *Field Guide to Butterflies of North America*. HMH Books, 392 pp.
- Brubaker, L.B., Anderson, P., Edward, M.E. & Anatoly, L. 2005. Beringia as a glacial refugium for boreal trees and shrubs: New perspectives from mapped pollen data. *Journal of Biogeography* 32: 833–848.
- Carter, D.J. & Hargreaves, B. 1988. *Guide des chenilles d'Europe*. Delachaux & Niestlé, Neuchâtel-Paris, 500 pp.
- Chazot, N., Wahlberg, N., Freitas, A.V.L., Mitter, C., Labandeira, C., Sohn, J.C., Sahoo, R.K., Serephim, N., Jong, R. & Heikkilä, M. 2019. Priors and Posteriors in Bayesian Timing of Divergence Analyses: The Age of Butterflies Revisited. *Systematic Biology* 68: 797–813.
- Cheng, L., Connor, T.R., Sirén, J., Aanensen, D.M. & Corander, J. 2013. Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. *Molecular Biology and Evolution* **30**: 1224–1228.
- Clement, M., Posada, D. & Crandall, K. 2000. TCS: a computer program to estimate gene genealogies. *Molecular Ecology* **9**: 1657–1660.
- Conto, R.M. & Pollard, D. 2003. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO₂. *Nature* **421**: 245–249.
- Cottrell, C.B. 1984. Aphytophagy in butterflies: its relationship to myrmecophily. *Zoological Journal of the Linnean Society* **80**: 1–57.
- D'Abrera, B. 1993. Butterflies of the Holarctic Region, Part 3 Nymphalidae (concl.) Libytheidae, Rioinidae, Lycaenidae. Hill House, 189 pp.
- Dellicour, S. & Mardulyn, P. 2014. SPADS 1.0: A toolbox to perform spatial analyses on DNA sequence data sets. *Molecular Ecology Resources* 14: 647–651.
- Dikow, T. 2010. New species and new records of Mydidae from the Afrotropical and Oriental regions (Insecta, Diptera, Asiloidea). *Zookeys* **64**: 33–75.
- Dinca, V., Runquist, M., Nilsson, M. & Vila, R. 2013. Dispersal, fragmentation, and isolation shape the phylogeography of the European lineages of *Polyommatus*

(Agrodiaetus) ripartii (Lepidoptera: Lycaenidae). Biological Journal of the Linnean Society **109**: 817–829.

- Dunn, K.L. & Dunn, L.E. Review of Australian butterflies: distribution, life history and taxonomy, part 3: family Lycaenidae. Power Press, 180 pp.
- Dyke, S. 2004. An outline of North American deglaciation with emphasis on central and northern Canada. *In*: Ehlers, J., Gibbard, P.I. (eds), *Quaternary glaciations: extent and chronology*. Elsevier, 373–424.
- Elias, S.A., Berman, D. & Alfimov, A. 2000. Late Pleistocene beetle faunas of Beringia: where east met west. *Journal of Biogeography* **27**: 1349–1363.
- Eliot, J.N. 1973. The higher classification of the Lycaenidae: a tentative arrangement. *Bulletin of the British Museum of Natural History (Entomology)* **28**: 373–506.
- Eliot, J.N. 1990. Notes on the genus *Curetis* Hübner (Lepidoptera, Lycaenidae). *Transactions of the Lepidopterological Society of Japan* **41**: 201–225.
- Espeland, M., Breinholt, J., Willmott, K.R., Warren, A.D., Vila, R., Toussaint, E.F.A., Maunsell, S.C., Poku, K.A., Talavera, G., Eastwood, R., Jarzyna, M.A., Gurelnick, R., Lohman, D.J., Pierce, N.E. & Kawahara, A.Y. 2018. A Comprehensive and Dated Phylogenomic Analysis of Butterflies. *Current Biology* 28: 770–778.
- Evans, W.H. 1932. *The identification of Indian butterflies*. Bombay Natural History Society, 454 pp.
- Fric, Z.F., Marešová, J., Kadlec, T., Tropek, R., Pyrcz, T.W. & Wiemers, M. 2019.
 World travellers: phylogeny and biogeography of the butterfly genus *Leptotes* (Lepidoptera: Lycaenidae). *Systematic Entomology* 44: 652–665.
- Fujii, Y., Kageyama, D., Hoshizaki, S., Ishikawa, H. & Sasaki, T. 2001. Transfection of Wolbachia in Lepidoptera: the feminizer of the adzuki bean borer Ostrinia scapulalis causes male killing in the Mediterranean flour moth Ephestia kuehniella. Proceedings of the Royal Society of London B: Biological Sciences 268: 855–859.
- Gil-T, F. 2006. *Cupido carswelli* (Stempffer, 1927): Morphology of its chrysalis and genitalia compared with those of *Cupido minimus* (Fuessly, 1775) and *Cupido lorquinii* (Herrich-Schäffer, 1847) (Lepidoptera, Lycaenidae). *Atalanta* 37: 150–160.
- Gil-T, F. 2017. *Cupido carswelli* (Stempffer, 1927), endemism from SE. Spain, a different species of *Cupido minimus* (Fuessly, 1775): updated distribution, identification of its larval host-plant and notes on taxonomy, ecology and morphology. *Atalanta* 48: 197–203.

- Gradstein, F.M., Ogg, J.G. & Smith, A.G. 2004. *A Geologic Time Scale*. Cambridge University Press, 589 pp.
- Guthrie, R.D. 2001. Origin and causes of the mammoth steppe: a story of cloud cover, woolly mammal tooth pits, buckles, and inside-out Beringia. *Quaternary Science Reviews* **20**: 549–574.
- Habel, J.C., Rödder, D., Schmitt, T. & Néves. G. 2011. Global warming will affect the genetic diversity and uniqueness of Lycaena helle populations. *Global Change Biology* 17: 194–205.
- Hagen, W.T. 2008. Taxonomie von Cupido staudingeri (Christoph, 1873) in Iran (Lepidoptera: Lycaenidae). Nachrichten des Entomologischen Vereins Apollo 28: 165–171.
- Haribal, M. 2003. *Butterflies of Sikkim Himalaya and Their Natural History*. Natraj Publishers, 217 pp.
- Harvey, D.J. 1987. *The higher classification of the Riodinidae (Lepidoptera)*. PhD Thesis, University of Texas, 215 pp.
- Heled, J. & Drummond, A.J. 2010. Bayesian inference of species trees from multilocus data. *Molecular Biology and Evolution* 27: 570–580.
- Henning, S.F. 1983. Biological groups within the Lycaenidae (Lepidoptera). *Journal of the Entomological Society of Southern Africa* **46**: 65–85.
- Hebert, P.D.N., Ratnasingham, S. & deWaard, J.R. 2003. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. *Proceedings of the Royal Society B: Biological Sciences* 270: 96–99.
- Hewitt, G.M. 2004a. The structure of biodiversity insights from molecular phylogeography. *Frontiers in Zoology* **1**: 4.
- Hewitt, G.M. 2004b. Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences 359: 183–195.
- Higgins, L.G. & Riley, N.D. 1988. *Guide des papillons d'Europe*. Ed. Delachaux & Niestlé, Neuchâtel-Paris, 434 pp.
- Hill, J.K., Thomas, C.D., Fox, R., Telfer, M.G., Willis, S.G., Asher, J. & Huntley, B. 2002. Responses of butterflies to twentieth century climate warming: implications for future ranges. *Proceedings of the Royal Society of London B: Biological Sciences* 269: 2163–2171.

- Hinojosa, J.C, Koubínová, D., Dincă, V., Hernández-Roldán, J., Munguira, M.L., Garcia-Barros, E., Vila, M., Alvarez, N., Mutanen, M. & Vila, R. 2020. Rapid colour shift by reproductive character displacement in *Cupido* butterflies. *Molecular Ecology* 29: 4942–4955.
- Hinnov, L.A. & Hilgen, F.J. 2012. Cyclostratigraphy and Astrochronology. *In:* Gradstein, F.M., Ogg, J.G, Schmitz, M.D. & Ogg, G.M. (eds), *The Geologic time scale*, pp. 63–88. Elsevier.
- Hoffmansegg, J.C. 1804. Alphabetisches Verzeichniss zu J. Hübner's Abbildungen der Papilionen mit den beigefügten vorzüglichsten Synonymen. *Magazin für Insektenk* 3: 181–206.
- Hsu, Y.F., Liang, J.Y. & Huang, C.W. 2019. *Butterfly Fauna of Taiwan, Volume 4: Lycaenidae*. Forestry Bureau Council of Agriculture, 667 pp.
- Huang, Z., Chiva, H., Guo, D., Yago, M., Braby, M.F., Wang, M. & Fan, X. 2019.
 Molecular phylogeny and historical biogeography of *Parnara* butterflies (Lepidoptera: Hesperiidae). *Molecular Phylogenetics and Evolution* 139: 106545.
- Hundsdoerfer, A.K, Kitching, I.J. & Wink, M. 2005. A molecular phylogeny of the hawkmoth genus Hyles (Lepidoptera: Sphingidae, Macroglossinae). *Molecular Phylogenetics and Evolution* 35: 442–458.
- Ilisnky, Y. & Kosterin, O.E. 2017. Molecular diversity of *Wolbachia* in Lepidoptera: Prevalent allelic content and high recombination of MLST genes. *Molecular Phylogenetics and Evolution* **109**: 164–179.
- Irungbam, J.S., Meitei, L.R., Huidrom, H., Soibam, B.S., Ngangom, A., Ngangom, B., Meitei, R. & Fric, Z.F. 2020. An iventory, of the butterflies of Manipur, India (Insect: Lepidoptera). Zootaxa 4882: 1–91.
- Jeratthitikul, E., Yago, M., Shizuya, H., Yokoyama, J. & Hikida, T. Life history and morphology of the black cupid butterfly, *Tongeia kala*, (de Niceville), from Myanmar. *Journal of the Lepidopterists Society* 65: 167–174.
- Jeratthitikul, E., Hara, T., Yago, M., Itoh, T., Wang, M., Usami, S. & Hikida, T. 2012. Phylogeography of Fischer's blue, *Tongeia fischeri*, in Japan: Evidence for introgressive hybridization. *Molecular Phylogenetics and Evolution* 66: 316–326.
- Jeratthitikul, E., Yago, M. & Hikida, T. 2013. Sexual dimorphism and intraspecific variation in wing size and shape of *Tongeia fischeri* (Lepidoptera: Lycaenidae). *Entomological Science* 17: 342–353.

- Johnson, J.B. & Jordon, S. 2000. Phylogenetic divergence in leather-side chub (*Gila copei*) inferred from mitochondrial cytochrome b sequences. *Molecular Ecology* 9: 1029–1035.
- Jung, S., Duwal, R.K. & Lee, S. 2011. COI barcoding of true bugs (Insecta, Heteroptera). *Molecular Ecology Resources* **11**: 266–270.
- Kearse, M., Moir, R., Wilson, A., Havas, S.S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P. & Drummond, A. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. *Bioinformatics* 28: 1647–1649.
- Konvička, M., Maradová, M., Beneš, J., Fric, Z.F. & Kepka, P. 2003. Uphill shifts in distribution of butterflies in the Czech Blackwell Publishing Ltd. Republic: effects of changing climate detected on a regional scale. *Global Ecology & Biogeography* 12: 403–410.
- Kristensen, P. 1976. Remarks on the family-level phylogeny of butterflies (Insecta, Lepidoptera, Rhopalocera). *Journal of Zoological Systematics and Evolutionary Research* 14: 25–33.
- Kristensen, N.P., Scoble, M.J. & Karsholt, O. 2007. Lepidoptera phylogeny and systematics: the state of inventorying moth and butterfly diversity. *Zootaxa* 1668: 699–747.
- Kudrna, O. 2019. *Distribution of Butterflies and Skippers in Europe*. Společnost pro ochranu motýlů, 364 pp.
- Kühne, G., Kosuch, J., Hochkirch, A. & Schmitt, T. 2017. Extra-Mediterranean glacial refugia in a Mediterranean faunal element: the phylogeography of the chalkhill blue *Polyommatus coridon* (Lepidoptera, Lycaenidae). *Scientific Reports* 7: 43533.
- Landis, M.J., Matzke, N.J., Moore, B.R., Huelsenbeck, J.P. 2013. Bayesian analysis of biogeography when the number of areas is large. *Systematic Biology* **62**: 789–804.
- Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. & Calcott, B. 2016. PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. *Molecular Biology and Evolution* 34: 772–773.
- Layberry, R.A., Hall, P.W. & Lafontaine, J.D. 1998. *The butterflies of Canada*. University of Toronto Press, 280 pp.

- Leigh, JW. & Bryant, D. 2015. PopART: Full-feature software for haplotype network construction. *Methods in Ecology and Evolution* **6**: 1110–1116.
- Li, X., Zhang, Y., Fang, J., Schweiger, O. & Settele, J. 2010. A butterfly hotspot in western China, its environmental threats and conservation. *Journal of Insect Conservation* 15: 617–632.
- Li, J., Jin, Q., Zhu, G.P., Jiang, C. & Zhang, A.B. 2019. Phylogeography of *Dendrolimus punctatus* (Lepidoptera: Lasiocampidae): Population differentiation and last glacial maximum survival. *Ecology and Evolution* 19: 7480–7496.
- Librado, P. & Rozas, J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. *Bioinformatics* **25**: 1451–1452.
- Lo, Y.F.P. & Chau, A. 2010. Everes argiades (Pallas 1771) a vagrant butterfly newly recorded in Hong Kong (Lepidoptera: Lycaenidae). Journal of the Hong Kong Entomological Society 2: 22–23.
- Lobiuc, O. & Lobiuc, A. 2015. Microstructural investigations of wing scales of three *Cupido* Schrank (Lepidoptera: Lycaenidae: Polyommatinae) species. *North-Western Journal of Zoology* 11: 8–15.
- Lom, J. 1995. Wolbachia O složitosti parazitohostitelských vztahů. Vesmír 74: 667.
- Macek, J., Laštůvka, Z., Beneš, J. & Traxler, L. 2015. *Motýli a housenky střední Evropy IV. Denní motýli*. Academia, 539 pp.
- Marešová, J., Habel, J.C., Neve, G., Sielezniew, M., Bartoňová, A., Ambroziak, A.K. & Fric, Z.F. 2019. Cross-continental phylogeography of two Holarctic Nymphalid butterflies, *Boloria eunomia* and *Boloria selene*. *Plos One* 14: e0214483.
- Marešová, J., Sucháčková, A.B., Konvička, M., Høye, T.T., Gilg, O., Kresse, J.C., Shapoval, N.A., Yakovlev, R.V. & Fric, Z.F. 2021. The story of endurance: Biogeography and the evolutionary history of four Holarctic butterflies with different habitat requirements. *Journal of Biogeography* **00**: 1–13.
- Martinsson, S., Rhodén, C. & Erséus, C. 2015. Barcoding gap, but no support for cryptic speciation in the earthworm *Aporrectodea longa* (Clitellata: Lumbricidae). *Mitochondrial DNA Part A* 28: 147–155.
- Matzke, N.J. 2013a. Probabilistic historical biogeography: new models for founderevent speciation, imperfect detection, and fossils allow improved accuracy and modeltesting. *Frontiers of Biogeography* 5: 242–248.

- Matzke, N.J. 2013b. Probabilistic historical biogeography: New models for founderevent speciation, imperfect detection, and fossils allow improved accuracy andmodel-testing. PhD Thesis,nUniversity of Californie (Dissertation), 240 pp.
- Methner, K., Campani, M., Fiebig, J., Löffer, N., Kempf. O. & Mulch, A. 2020. Middle Miocene long-term continental temperature change in and out of pace with marine climate records. *Scientific Reports* 10: 7989.
- Mikkola, K., Lafontaine, J.D. & Kononenko, V.S. 1991. Zoogeography of the holarctic species of the Noctuidae (Lepidoptera): importance of the Beringian refuge. *Entomologica Fennica* 2: 157–173.
- Ming, B.Q., Nguyen, M.A.T. & Haeseler, A. 2013. Ultrafast approximation for phylogenetic bootstrap. *Molecular Biology and Evolution* **30**: 1188–1195.
- Minin, V.N., Bloomquist, E.W., & Suchard, M.A. 2008. Smooth skyride through a rough skyline: Bayesian coalescent-based inference of population dynamics. *Molecular Biology and Evolution* 25: 1459–1471.
- Monteiro, A. & Pierce, N.E. 2001. Phylogeny of *Bicyclus* (Lepidoptera: Nymphalidae) inferred from COI, COII, and EF-1alpha gene sequences. *Molecular Phylogenetics* and Evolution 18: 264–281.
- Nabokov, V. 1944. Notes on the morphology of the genus *Lycæides* (Lycænidæ, Lepidoptera). *Psyche* **50**: 104–138.
- Nabokov, V. 1945. Notes on Neotropical Plebejinæ (Lycaenidæ). Psyche 51: 1-61.
- Nakamura, Y. 2011. Conservation of butterflies in Japan: status, actions and stratégy. *Journal of Insect Conservation* **15**: 5–22.
- New, T.R. 1993. Introduction to the biology and conservation of the Lycaenidae. *In*: New, T.R. (ed.), *Conservation Biology of Lycaenidae (Butterflies)*. pp. 1–21. IUCN.
- Nguyen, L.T., Schmidt, H., Haeseler, A. & Minh, Q. 2015. IQ-Tree: A Fast and effective stochastic algorithm for estimating Maximum Likelihood phylogenies. *Molecular Biology and Evolution* **32**: 268–274.
- Obregón, R., Haeger, J. F. & Jordano, D. 2016. Effects of climate change on three species of *Cupido* (Lepidoptera, Lycaenidae) with different biogeographic distribution in Andalusia, southern Spain. *Animal Biodiversity and Conservation* 39: 115–128.
- Oliveira, D.C.S.G., Raychoudhury, R., Lavrov, D.V. & Werren, J.H. 2008. Rapidly evolving mitochondrial genome and directional selection in mitochondrial genes in

the parasitic wasp Nasonia (Hymenoptera: Pteromalidae). *Molecular Biology and Evolution* **25**: 2167–2180.

- Parmesan, C., Ryrgolm, N., Stefanescu, C., Hill, J.K., Thomas, C.D., Descimon, H., Huntley, B., Kaila, L., Kullberg, J., Tammaru, Tennent, W.J., Thomas, J.A. & Warren, M. 1999. Poleward shifts in geographical ranges of butterfly species associated with regional warming. *Nature* **399**: 579–583.
- Pfenninger, M. & Posada, D. 2002. Phylogeographic history of the land snail Candidula unifasciata (Helicellinae, Stylommatophora): Fragmentation, corridor migration, and secondary contact. *Evolution* 56: 1776–1788.
- Pielou, E.C. 1979. Biogeography. John Wiley & Sons, 351 pp.
- Pierce, N.E., Braby, M.F., Heath, A., Lohman, D.J., Mathew, J., Rand, D.B. & Travassos, M.A. 2002. The ecology and evolution of ant association in the Lycaenidae (Lepidoptera). *Annual Review of Entomology* **47**: 733–771.
- Poel, P. 2020. Two Lycaenidae species from Butan: *Bothrinia chennelli* (de Nicéville [1884]) and *Una usta* Distant, 1886. *Bionotes* 22: 77–78.
- Prieto, C.G., Munguira, M.L. & Romo H. 2009. Morphometric analysis of genitalia and wing pattern elements in the genus *Cupido* (Lepidoptera, Lycaenidae): are *Cupido minimus* and *C. carswelli* different species? *Deutsche Entomologische Zeitschrift* 56: 137–147.
- R Core Team. R. 2019. *A language and environment for statistical computing*. R Foundation for Statistical Computing, https://www.R-project.org/.
- Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. 2018. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67: 901–904.
- Ratnasingham S. & Herbert, P.D.N. 2007. BOLD: The Barcode of Life Data System (www.barcodinglife.org). *Molecular Ecology Notes* **7**: 355–364.
- Ree, R.H., Moore, B.R., Webb, C.O. & Donoghue, M.J. 2005. A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. *Evolution* 59: 2299–2311.
- Ree, R.H. & Sanmartín, I. 2018. Conceptual and statistical problems with the DEC+J model of founder-event speciation and its comparison with DEC via model selection. *Journal of Biogeography* 45: 741–749.

- Robbins, R.K. & Duarte, M. 2006. Systematic placement of *Lycaena cogina* Schaus (Lepidoptera: Lycaenidae: Polyommatinae), a biogeographically disjunct New World species. *Proceedings of the Entomological Society of Washington* **108**: 226–236.
- Ronquist, F. 1997. Dispersal-vicariance analysis: A new approach to the quantification of historical biogepgraphy. *Systematic Biology* **46** 195–203.
- Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. *Systematic Biology* **61**: 539–542.
- Sañudo-Restrepo, C.P., Dinca, V., Talavera, G. & Vila, R. 2013. Biogeography and systematics of *Aricia* butterflies (Lepidoptera, Lycaenidae). *Molecular Phylogenetics* and Evolution 66: 369–379.
- Savela, M. 2020. Lepidoptera and some other life forms. Online DatabaSe. http://www.nic.funet.fi/pub/sci/bio/life/insecta/lepidoptera/ [poslední návštěva 30. 3. 2021].
- Schmitt, T. & Seitz, A. 2001. Allozyme variation in *Polyommatus coridon* (Lepidoptera: Lycaenidae): identification of ice-age refugia and reconstruction of post-glacial expansion. *Journal of Biogeography* 28: 1129–1136.
- Schmitz, B., Ehrenbrink, B.P., Clausen, C.H., Aberg, G., Asaro, F. & Lee, C.T.A. 2004. Basaltic volcanism, but no comet impact, at the Paleocene/Eocene boundary: highresolution chemical and isotopic records from Egypt, Spain and Denmark. *Earth and Planetary Science Letters* 225: 1–17.
- Schmitt, T. & Zimmermann, M. 2011. To hybridize or not to hybridize: what separates two genetic lineages of the Chalk-hill Blue *Polyommatus coridon* (Lycaenidae, Lepidoptera) along their secondary contact zone throughout eastern Central Europe?. *Journal of Zoological Systematics and Evolutionary Research* **50**: 106–115.
- Schmitt, T. & Varga, Z. 2012. Extra-Mediterranean refugia: The rule and not the exception?. *Frontiers in Zoology* **9**: 22.
- Schmitt, T., Louy, D., Zimmermann, E., Habel, J.C. 2016. Species radiation in the Alps: multiple range shifts caused diversification in Ringlet butterflies in the European high mountains. *Organisms Diversity & Evolution* 16: 791–808.
- Scott, J.A. 1985. The phylogeny of butterflies (Papilionoidea and Hesperioidea). *Journal of Research on the Lepidoptera* **23**: 241–28.

- Singh, A.P. 2005. Initial colonization of Red Pierrot butterfly, *Talicada nyseus nyseus* Guerin (Lycaenidae) in the lower western Himalayas: An indicator of the changing environment. *Current Science* **89**: 41–42.
- Sluijs, A., Bowen, G.J., Brinkhuis, H., Lourens, L.J. & Thomas, E. 2007. The Palaeocene–Eocene Thermal Maximum super greenhouse: biotic and geochemical signatures, age models and mechanisms of global change. *Geological Society of London*: 323–350.
- Solgaard, A.M., Bonow, J.M., Langen, P.L., Japsen, P. & Hvidberg, C.S. 2013. Mountain building and the initiation of the Greenland Ice Sheet. *Palaeogeography*, *Palaeoclimatology*, *Palaeoecology* **392**: 161–176.
- Stadler, T. 2013. How can we improve accuracy of macroevolutionary rate estimates? *Systematic Biology* **62**: 321–9.
- Staudinger, O. 1886. Centralasiatische Lepidopteren. *Stettiner Entomologische Zeitung*47: 193–215.
- Stewart, J.R., Lister, A.M., Barnes, I. & Dalén, L. 2010. Refugia revisited: individualistic responses of species in space and time. *Proceedings of the Royal Society of London B: Biological Sciences* 277: 661–671.
- Stradomsky, B.V. 2016. A molecular phylogeny of the subfamily Polyommatinae (Lepidoptera: Lycaenidae). *Caucasian Entomological Bulletin* **12**: 145–156.
- Talavera, G., Kaminski, L.A., Freitas, A.V.L. & Vila, R. 2015. One-note samba: the biogeographical history of the relict Brazilian butterfly *Elkalyce cogina*. *Journal of Biogeography* 43: 727–737.
- Tiffney, B.H. 1985. Prespectives on the origin of the floristic similarity between eastern Asia and eastern North America. *Journal of the Arnold Arboretum* **66**: 73–94.
- Todisco. V., Grill, A., Fiedler, K., Gottsberger, B., Dinca, V., Voda, R., Lukhtanov, V.
 & Letsch, H. 2018. Molecular phylogeny of the Palaearctic butterfly genus *Pseudophilotes* (Lepidoptera: Lycaenidae) with focus on the Sardinian endemic *P. barbagiae*. *BMC Zoology* 3: 1–12.
- Toews, D.P.L. & Brelsford, A. 2012. The biogeography of mitochondrial and nuclear discordance in animals. *Molecular Ecology* **21**: 3907–3930.
- Toews, D.P.L., Mandic, M., Richards, J.G. & Irwin, D.E. 2013. Migration, mitochondria, and yellow rumped warbler. *Evolution* **68**: 241–255.

- Tolman, T. & Lewington, R. 2009. Collins Butterfly Guide. Harper Collins Paperbacks, 384 pp.
- Tonkin-Hill, G., Lees, J.A., Bentley, S.D., Frost, S.D.W. & Corander, J. 2018. RhierBAPS: An R implementation of the population clustering algorithm hierBAPS. *Wellcome Open Research* 3: 93.
- Tuzov, V.K. (ed.). 2000. Guide to the Butterflies of Russia and Adjacent Territories, Volume 2, Libytheidae, Danaidae, Nymphalidae, Riodinidae, Lycaenidae. Pensoft Publishers, 580 pp.
- Trifinopoulos, J., Nguyen, L.T., Haeseler, A. & Minh, B.Q. 2016. W-IQ-TREE: a fastonline phylogenetic tool for maximum likelihood analysis. *Nucleic Acid Research* **44**: 232–235.
- Vane-Wright, R.I. & de Jong, R. 2003. The butterflies of Sulawesi: annotated checklist for a critical island fauna. *Zoologische Verhandelingen* 343: 3–267.
- Vila, R., Bell, C.D., Macniven, R., Goldman-Huertas, B., Ree, R.H, Marshall, C.R, Bálint, Z., Johnson, K., Benyamini, D. & Pierce, N.E. 2011. Phylogeny and palaeoecology of *Polyommatus* blue butterflies show Beringia was a climateregulated gateway to the New World. *Proceedings of the Royal Society of London B: Biological Sciences* 278: 2737–2744.
- Vrba, P., Konvička, M. & Nedvěd, O. 2012. Reverse altitudinal cline in cold hardiness among *Erebia* butterflies. *CryoLetters* 33: 251–258.
- Wahlberg, N. & Saccheri, I. 2007. The effects of Pleistocene glaciations on the phylogeography of *Melitaea cinxia* (Lepidoptera: Nymphalidae). *European Journal* of Entomology 104: 675–684.
- Wahlberg, N. & Wheat, C.W. 2008. Genomic outposts serve the phylogenomic pioneers: designing novel nuclear markers for genomic DNA extractions of Lepidoptera. *Systematic Biology* 57: 231–242.
- Wang, M. & Fan, X. 2002. Butterflies Fauna Sinica: Lycaenidae. Henan Science & Technology Publishing House, 439 pp.
- Warren, M.S., Hill, J.K., Thomas, J.A., Asher, J. Fox, R., Huntley, B., Roy, D.B., Telfer, M.G., Jeffcoate, S., Harding, P., Jeffcoate, G., Willis, S.G., Greatorex-Davies, J.N., Moss, D. & Thomas, C.D. 2001. Rapid responses of British butterflies to opposing forces of climate and habitat change. *Nature* 141: 65–69.

- Warren, M.S., Maea, D., van Swaay, C.A.M., Goffart, P., Dyck, H.V., Bourn, N.A.D.,
 Wynhoff, I., Hoare, D. & Ellis, S. 2021. The decline of butterflies in Europe:
 Problems, significance, and possible solutions. *Proceedings of the National Academy* of Sciences of the United States of America 118: e2002551117.
- Wiemers, M., Chazot, N., Wheat, C.W., Schweiger, O. & Wahlberg, N. 2020. A complete time-calibrated multi-gene phylogeny of the European butterflies. *ZooKeys* 938: 97–124.
- Wilson, R.J., Gutierrez, D., Gutierrez, J. Martinez, D., Agudo, R. & Monserrat, V.J. 2005. Changes to the elevational limits and extent of species ranges associated with climate change. *Ecology Letters* 8: 1338–1346.
- Wójcik, J.M. Ratkiewicz, M. & Searle, J.B. 2002. Evolution of the common shrew *Sorex araneus*: chromosomal and molecular aspects. *Acta Theriologica* **47**: 139–167.
- Yakolev, R.V. 2012. Checklist of butterflies (Papilionoidea) of the Mongolian Altain mountains, including descriptions of new taxa. *Nota Lepidopterologica* 35: 51–96.
- Yu, Y., Harris, A.J., Blair, C. & He, X.J. 2015. RASP (Reconstruct Ancestral State in Phylogenies): A tool for historical biogeography. *Molecular Phylogenetics and Evolution* 87: 46–49.
- Yule, G.U. 1925. A Mathematical Theory of Evolution, Based on the Conclusions of Dr. J. C. Willis, F.R.S. Philos. *Philosophical Transactions of the Royal Society B: Biological Science* 213: 21–87.
- Zahiri, R., Schmidt, B., Schintlmeister, A., Yakolev, R.V. & Rindoš, M. 2019. Global phylogeography reveals the origin and the evolutionary history of the gypsy moth (Lepidoptera, Erebidae). *Molecular Phylogenetics and Evolution* **137**: 1–13.
- Zhdanko, A.B. 2004. Review of the genus Cupido Schrank, 1801 (Lepidoptera, Lycaenidae). *Tethys Entomological Research* **10**: 177–192.

8 PŘÍLOHY

Příloha 1. Tabulka obsahující vzorky použité pro analytickou část. Stejně číslo haplotypu (DNASP) odpovídá vzorkům s totožnou sekvencí. Vzorky spadající do jednotlivých haplotypů v síti jsou uvedeny v sedmém sloupci. * – outgroupy.

h	1771	G4 (4	Zeměpisná	Zeměpisná	Haplotyp	Haplotyp
Drun	Kod	Stat	šířka	délka	DNASP	síť
alcetas	JW139	Gruzie	42,011	45,452	179	AD6
alcetas	JW105	Česká republika	48,934	16,625	180	AD9
alcetas	JW184	Řecko	40,034	20,968	181	AD8
alcetas	JW75	Rusko	51,349	37,978	182	AD10
alcetas	JW74	Rusko	51,349	37,978		
alcetas	JW114	Česká republika	48,934	16,625		
alcetas	JW104	Česká republika	48,934	16,625		AD9
alcetas	JW124	Itálie	44,973	11,805	128	AD2
alcetas	JW44	Rusko	54.011	56,142	183	AD7
alcetas	BIBSA751-15	Itálie	39.239	16.222	128	AD2
alcetas	BIBSA752-15	Itálie	39.239	16.222	128	AD2
alcetas	BIBSA1053-15	Itálie	41 955	14 966	128	AD2
alcetas	BIBSA1226-15	Itálie	45 868	13 572	128	AD2
alcetas	BIBSA1413 15	Itália	41,505	15,066	128	AD2
alcetas	BIBSA2014 19	Itália	41,505	17,536	120	AD1
alcotas	EULED614-15	Čuviceonalice	40,001	7,550	104	ADI
alcetas	EULEP014-15	Svycarsko	40,108	12 225	128	AD2
alcetas	EULEP010-15	Trane	42,984	15,255	128	AD2
alcetas	EULEP1985-15	Francie	44,626	2,053	184	ADI
alcetas	EULEP2143-15	Svycarsko	46,140	7,096	128	AD2
alcetas	EULEP2529-15	Ukrajina	45,027	34,935	183	AD/
alcetas	EULEP3/27-16	Svycarsko	46,339	7,828	128	AD2
alcetas	EULEP3728-16	Francie	45,188	5,736	128	AD2
alcetas	EULEP5049-16	Ceská republika	49,118	18,014	128	AD2
alcetas	EULEP5136-17	Srbsko	42,664	22,296	183	AD7
alcetas	EZRMN406-09	Rumunsko	43,920	24,618	183	AD7
alcetas	EZRMN407-09	Rumunsko	45,094	26,533		AD7
alcetas	EZRMN409-09	Rumunsko	45,250	28,017		AD7
alcetas	EZROM1063-09	Rumunsko	45,180	28,353	183	AD7
alcetas	EZSPC407-09	Španělsko	41,846	2,376	184	AD1
alcetas	EZSPC408-09	Španělsko	42,167	2,364	184	AD1
alcetas	EZSPC409-09	Španělsko	42,380	2,698	184	AD1
alcetas	EZSPC410-09	Španělsko	42,271	2,038	184	AD1
alcetas	EZSPC411-09	Španělsko	42,394	1,885	184	AD1
alcetas	EZSPC1210-10	Španělsko	41,842	2,358		AD1
alcetas	EZSPC1249-10	Španělsko	42,352	2,293	184	AD1
alcetas	EZSPM292-09	Španělsko	42,701	-6,506	128	AD2
alcetas	EZSPM363-09	Španělsko	42,320	-5,898	128	AD2
alcetas	EZSPM407-09	Španělsko	42,328	2,311	184	AD1
alcetas	EZSPN178-09	Španělsko	42,283	1,847	184	AD1
alcetas	GBGLL557-14	Rusko	48,708	44,515		
alcetas	GWORR419-10	Itálie	40,083	15,728		AD2
alcetas	GWORZ046-10	Itálie	40,084	15,730	128	AD2
alcetas	GWORZ047-10	Itálie	39,237	16,297	128	
alcetas	LEATG471-14	Itálie	46.495	11.448		
alcetas	LEATJ208-15	Itálie	46.265	11.391	128	AD2
alcetas	LEPAA129-16	Švýcarsko	47.086	7,109	128	AD2
alcetas	LEPAA691-16	Švýcarsko	46.276	6,985	128	AD2
alcetas	OXB771-15	Itálie	43 048	13 735	128	AD2
alcetas	OXB871-15	Itálie	43 508	12 318	128	AD2
alcetas	OXB884-15	Itálie	44.172	9.776	128	AD2
are o tato	0.1000.10	1	,	2,		

Dauch	VA	S434	Zeměpisná	Zeměpisná	Haplotyp	Haplotyp
Drun	NOU	Stat	šířka	délka	DNASP	síť'
alcetas	OXB963-15	Itálie	44,563	9,939	128	AD2
alcetas	OXB980-15	Itálie	43,501	10,451	185	AD2
alcetas	OXB1106-15	Itálie	44,943	9,334	186	AD3
alcetas	OXB1136-15	Itálie	44,692	10,067	128	AD2
alcetas	OXB1257-15	Francie	46,092	6,403	128	AD2
alcetas	OXB1279-15	Francie	46,116	5,628	128	AD2
alcetas	OXB1593-16	Francie	44,445	5,211	128	AD2
alcetas	WMB815-13	Itálie	44,451	9,780	128	AD2
alcetas	WMB940-13	Francie	44,121	6,225	128	AD2
alcetas	WMB2011-13	Itálie	44,176	11,487	128	AD2
alcetas	WMB2186-13	Itálie	41,896	13,991	128	AD2
alcetas	WMB2703-13	Francie	44,869	5,557	128	AD2
alcetas	WMB3374-14	Francie	43,980	5,413	128	AD2
alcetas	WMB4224-14	Itálie	43,770	10,800	128	AD2
alcetas	WMB4692-14	Itálie	43,081	11,161	128	AD2
alcetas	WMB4985-14	Italie	44,226	9,550	120	AD2
alcetas	WMB5102-14	Italie	44,836	12,250	128	AD2
alcetas	WMB5193-14	Italie	43,081	11,100	128	AD2
alcetas	WMD5246-14	Francia	42,995	13,350	128	AD2
alcetas	WMB5493 14	Itália	44,373	1,451	104	AD1
alcetas	WMB6555 18	Itálie	42,000	10,830	128	AD2
ancetas	IW204	LISA	43,810	-145 699	128	A13
amyntula	IW4	Kanada	52 392	-116 357	155	7115
amyntula	IW211	USA	62,106	-145 699	153	A13
amyntula	JW207	USA	64.257	-146.156	153	A13
amvntula	JW212	USA	64,340	-146.864	153	A13
amyntula	JW213	USA	62,106	-145,699	153	A13
amyntula	JW203	USA	62,106	-145,699	153	A13
amyntula	JW206	USA	64,257	-146,156	153	A13
amyntula	JW6	Kanada	52,392	-116,357		
amyntula	JW208	USA	62,106	-145,699		A13
amyntula	JW209	USA	64,180	-145,883	154	A15
amyntula	JW205	USA	62,106	-145,699	153	A13
amyntula	JW7	Kanada	53,529	-113,517		
amyntula	JW202	USA	64,180	-145,883	153	A13
amyntula	JW20	Kanada	55,047	-118,202	155	A24
amyntula	JW5	Kanada	52,392	-116,357		
amyntula	BBLPA005-10	Kanada	52,921	-118,000	156	A1
amyntula	BBLPA007-10	Kanada	52,665	-117,883	156	A1
amyntula	BBLPA022-10	Kanada	53,730	-106,722	157	A6
amyntula	BBLPA091-10	Kanada	53,730	-106,722	156	Al
amyntula	BBLPA092-10	Kanada	53,730	-106,722	155	A24
amyntula	BBLPA093-10	Kanada	53,730	-106,722	158	A14
amyntula	DDLPA136-10 DDL DA 150-10	Kanada	50,675	-115,951	155	A24
amyntula	BBLPA160 10	Kanada	50,675	-115,931	155	A24
amyntula	BBI PA 161-10	Kanada	50,675	-115,931	159	A20
amyntula	BBI PA 162-10	Kanada	52 921	-117 999	157	A6
amyntula	BBLPA163-10	Kanada	52,665	-117 883	157	A6
amyntula	BBLPA164-10	Kanada	52,931	-117,999	157	A6
amyntula	BBLPA165-10	Kanada	52,916	-118,104	160	A4
amyntula	BBLPA166-10	Kanada	53,730	-106,722	156	A1
amyntula	BBLPA167-10	Kanada	53,730	-106,722	156	A1
amyntula	BBLPA168-10	Kanada	53,585	-106,048	156	A1
amyntula	BBLPA169-10	Kanada	53,730	-106,722	155	A24
amyntula	BBLPA174-10	Kanada	50,675	-115,931	155	A24
amyntula	BBLPA177-10	Kanada	50,672	-115,895	159	A20
amyntula	CNJAD1991-12	Kanada	52,867	-118,077		
amyntula	CNKLB004-14	Kanada	60,714	-137,432		
amyntula	CNKLB010-14	Kanada	60,714	-137,432		
amyntula	CNNHA219-14	Kanada	61,606	-125,758		

Druh	Kód	Stát	Zeměpisná šířka	Zeměpisná délka	Haplotyp DNASP	Haplotyp síť
amyntula	CNNHC048-14	Kanada	61,606	-125,758		
amyntula	CNRMD2093-12	Kanada	50,676	-99,898		A6
amyntula	CNRMD2094-12	Kanada	50,676	-99,898		A6
amyntula	CNRMD2100-12	Kanada	50,676	-99,898		
amyntula	CNRMD2103-12	Kanada	50,676	-99,898		A6
amyntula	CNRMD2105-12	Kanada	50,676	-99,898		A24
amyntula	CNRMD2109-12	Kanada	50,676	-99,898		A1
amyntula	CNRME4999-12	Kanada	50,676	-99,898		A25
amyntula	CNRME5000-12	Kanada	50,676	-99,898		A24
amyntula	CNRME5006-12	Kanada	50,676	-99,898		A24
amyntula	CNWBA500-13	Kanada	59,811	-111,989		
amyntula	CNWLD1016-12	Kanada	49,106	-113,819		A6
amyntula	DMML038-10	USA	40,026	-120,104	161	A7
amyntula	EZBNA018-07	Kanada	61,859	-121,343	157	A6
amyntula	EZBNA019-07	Kanada	61,071	-123,380	157	A6
amyntula	EZBNA020-07	Kanada	61,219	-123,772	156	Al
amyntula	EZBNA021-07	Kanada	61,664	-125,853	157	A6
amyntula	EZBNB054-08	Kanada	49,502	-108,916	155	A24
amyntula	EZBNB055-08	Kanada	49,502	-108,916	162	A22
amyntula	EZBNB060-08	Kanada	59,001	-117,151	157	A6
amyntula	EZBNB061-08	Kanada	59,001	-117,151	163	A2
amyntula	GBIOC1029-19	Kanada	60,576	-137,218	164	A19
amyntula	GBIOC1032-19	Kanada	60,576	-137,218	153	A13
amyntula	GMOTE4318-15	Kanada	60,841	-135,208		
amyntula	HBNK203-07	Kanada	65,482	-138,222	154	A15
amyntula	HBNK204-07	Kanada	65,311	-138,218	165	A16
amyntula	HBNK205-07	Kanada	65,311	-138,218	166	A17
amyntula	HBNK206-07	Kanada	64,378	-138,364	157	A6
amyntula	HBNK207-07	Kanada	64,378	-138,364	154	A15
amyntula	HBNK266-07	Kanada	68,359	-122,620	167	A10
amyntula	HBNK267-07	Kanada	68,359	-122,620	168	A1
amyntula	HBNK268-07	Kanada	68,359	-122,620	165	A16
amyntula	HBNK269-07	Kanada	68,359	-122,620	157	A15
amyntula	HBNK270-07	Kanada	68,359	-122,620	165	A16
amyntula	HBNK271-07	Kanada	68,359	-122,620	169	A12
amyntula	HBNK300-07	Kanada	49,048	-117,431	159	A20
amyntula	HBNK334-07	Kanada	49,892	-114,329	170	A5
amyntula	HBNK335-07	Kanada	49,892	-114,329	157	A6
amyntula	HBNK375-07	Kanada	49,565	-114,229	153	A13
amyntula	HBNK376-07	Kanada	49,565	-114,229	155	A24
amyntula	HBNK462-07	USA	47,660	-120,290	171	A23
amyntula	HBNK463-07	USA	47,660	-120,290	172	A26
amyntula	HBNK464-07	USA	47,660	-120,290	171	A23
amyntula	HBNK465-07	USA	47,660	-120,290	172	A26
amyntula	HBNK466-07	USA	47,660	-120,290	172	A26
amyntula	HBNK467-07	Kanada	49,321	-117,643	159	A20
amyntula	HBNK468-07	Kanada	49,321	-117,643	159	A20
amyntula	HBNK469-07	Kanada	49,035	-119,544	159	A20
amyntula	HBNK470-07	Kanada	49,163	-120,004	159	A20
amyntula	HBNK695-07	Kanada	50,244	-118,621	159	A20
amyntula	HBNK696-07	Kanada	50,244	-118,621	173	A21
amyntula	HBNKB046-07	Kanada	60,561	-134,675	153	A13
amyntula	HBNKB047-07	Kanada	60,159	-134,703	153	A13
amyntula	HBNKB048-07	Kanada	60,159	-134,703	153	A13
amyntula	HBNKB049-07	Kanada	60,159	-134,703	153	A13
amyntula	HBNKB207-07	Kanada	49,328	-114,045	157	A6
amyntula	HBNKB208-07	Kanada	49,353	-114,329	157	A6
amyntula	HBNKB209-07	Kanada	49,353	-114,329	157	A6
amyntula	HBNKB210-07	Kanada	49,353	-114,329	159	A20
amyntula	LCH086-04	Kanada	58,730	-93,820		A1
amyntula	LNAUT099-14	USA	33,921	-120,123		
amyntula	LNAUT100-14	USA	33,358	-118,340	174	A9

Druh	Kód	Stát	Zeměpisná šířka	Zeměpisná délka	Haplotyp DNASP	Haplotyp síť	
amyntula	LNAUT101-14	USA	33,921	-120,123	175	A8	
amyntula	LNAUT102-14	USA	34,040	-120,372			
amyntula	LPABB556-08	Kanada	49,023	-114,045	159	A20	
amyntula	LPABB558-08	Kanada	49,023	-114,045	156	A1	
amyntula	LPABB559-08	Kanada	49,023	-114,045	159	A20	
amyntula	LPABB561-08	Kanada	49,023	-114,045	157	A6	
amyntula	LPABB657-08	Kanada	51,126	-115,726	157	A6	
amyntula	LPABB660-08	Kanada	51,126	-115,726	157	A6	
amyntula	LPABB670-08	Kanada	51,171	-115,586	156	A1	
amyntula	LPABB682-08	Kanada	51,126	-115,726	176	A3	
amyntula	LPABB683-08	Kanada	51,126	-115,726	177	A11	
amyntula	LPABB687-08	Kanada	51,126	-115,726	156	A1	
amyntula	LPABB688-08	Kanada	51,126	-115,726	157	A6	
amyntula	LPABB690-08	Kanada	51,126	-115,726		A6	
amyntula	LPABC518-09	Kanada	51,148	-115,420	155	A24	
amyntula	LPABC550-09	Kanada	49,066	-113,998	159	A20	
amyntula	LPABC552-09	Kanada	49,066	-113,998	159	A20	
amyntula	LPABC564-09	Kanada	49,066	-113,998	157	A6	
amyntula	LPMN160-08	Kanada	50,660	-99,970	155	A24	
amyntula	LPMN462-08	Kanada	50,660	-99,853	155	A24	
amyntula	LPMN486-08	Kanada	50,681	-99,889	156	A1	
amyntula	LPMN505-08	Kanada	50,668	-99,817	157	A6	
amyntula	LPMN506-08	Kanada	50,668	-99,817	157	A6	
amyntula	LPMN507-08	Kanada	50,668	-99,817	156	A1	
amyntula	LPMN509-08	Kanada	50,668	-99,817	157	A6	
amyntula	LWUSA157-07	USA	36,414	-120,676	153	A13	
amyntula	RDBBC025-05	Kanada	52,962	-122,397	153	A13	
amyntula	RDBBC026-05	Kanada	52,962	-122,397	178	A18	
amyntula	RDBBC037-05	Kanada	52,962	-122,397	153	A13	
amyntula	RDBBC241-05	Kanada	55,648	-120,375	157	A6	
amyntula	RDBBC242-05	Kanada	55,648	-120,375	157	A6	
amyntula	RDBBC243-05	Kanada	55,648	-120,375	157	A6	
amyntula	RDBBC698-05	Kanada	56,176	-121,264	155	A24	
amyntula	RDBBC699-05	Kanada	56,176	-121,264	157	A6	
amyntula	RDBBC700-05	Kanada	56,176	-121,264	157	A6	
amyntula	RDBBC701-05	Kanada	56,176	-121,264	157	A6	
amyntula	SSEIB12899-13	Kanada	53,567	-112,851			
amyntula	SSEIB12915-13	Kanada	53,567	-112,851			
amyntula	SSKUC1456-15	Kanada	61,007	-138,535			
amyntula	SSPAC10188-13	Kanada	49,059	-114,014			
amyntula	SSWLB3766-13	Kanada	49,081	-113,879			
amyntula	UAMIC3210-15	USA	64,734	-147,250			
argiades	ABOLD036-16	Rakousko	47,750	16,167	143	AR1	
argiades	ABOLD429-16	Rakousko	47,313	9,607	143	AR1	
argiades	ABOLD430-16	Rakousko	47,067	15,650	143	AR1	
argiades	ABOLD635-17	Rakousko	48,317	15,282	143	AR1	
argiades	JW41	Ukrajina	48,505	28,744	143	AR1	
argiades	JW113	Rusko	49,870	137,058	143	AR1	
argiades	JW118	Rusko	65,267	158,008	143	AR1	
argiades	JW199	Francie	44,196	7,154	143	AR1	
argiades	JW138	Japonsko	43,342	142,383	144	AR8	
argiades	JW42	Ukrajina	48,505	28,744	143		
argiades	JW169	Slovensko	48,511	17,123	143	AR1	
argiades	JW89	Japonsko	36,304	137,905			
argiades	JW81	Gruzie	42,216	41,802		AR1	
argiades	JW82	Rusko	51,702	36,257		AR1	
argiades	JW97	Gruzie	42,216	41,802		AR1	
argiades	JW100	Gruzie	41,654	41,642		AR1	
argiades	JW98	Gruzie	42,216	41,802		AR1	
argiades	JW43	Ukrajina	48,505	28,744	143	AR1	
argiades	JW61	Čína	29,682	98,594	143	AR1	
argiades	JW117	Gruzie	42,216	41,802	143	AR1	
-			· · ·	,			

Dauch	VA	6444	Zeměpisná	Zeměpisná	Haplotyp	Haplotyp
Drull	Nou	Stat	šířka	délka	DNASP	síť'
argiades	JW79	Gruzie	42,216	41,802		AR1
argiades	JW80	Gruzie	41,654	41,642	143	AR1
argiades	JW63	Čína	29,682	98,594	145	AR9
argiades	JW24	Čína	-	-	143	AR1
argiades	JW55	Česká republika	49,751	17,020	143	AR1
argiades	BIBSA069-14	Itálie	39,369	16,229	143	AR1
argiades	BIBSA070-14	Itálie	39,369	16,229	143	AR1
argiades	BIBSA447-15	Itálie	45,492	8,313	143	AR1
argiades	BIBSA460-15	Itálie	45,034	8,900	143	AR1
argiades	BIBSA461-15	Itálie	45,034	8,900	143	AR1
argiades	BIBSA766-15	Itálie	38,732	16,229		AR1
argiades	BIBSA767-15	Itálie	38,732	16,229	143	AR1
argiades	BIBSA914-15	Francie	44,520	-0,600	143	AR1
argiades	BIBSA1130-15	Itálie	46,023	13,440	143	AR1
argiades	BIBSA1182-15	Itálie	45,598	10,820	143	AR1
argiades	BIBSA1378-15	Itálie	41,457	14,556	143	AR1
argiades	BIBSA1814-17	Itálie	45,493	8,181	146	AR3
argiades	BIBSA1880-17	Itálie	45,158	7,639	143	AR1
argiades	BIBSA1882-17	Itálie	45,158	7.639	143	AR1
argiades	BIBSA1883-17	Itálie	45,158	7.639	143	AR1
argiades	BIBSA1885-17	Itálie	45 158	7 639	143	AR1
argiades	BIBSA1886-17	Itálie	45.158	7.639	143	AR1
argiades	BIBSA1887-17	Itálie	45 158	7 639		
argiades	BIBSA1907-19	Itálie	43 925	11 793	143	AR1
argiades	BIBSA1945-19	Francie	47 313	-3 205	143	AR1
argiades	BIBSA1946-19	Francie	47 325	-3 175	143	AR1
argiades	BIBSA2134-20	Itálie	44 692	7 465	143	AR1
argiades	BIBSA2366-20	Itálie	44 911	10 553	143	AR1
argiades	BIUP004-17	Čína	39.935	116 476	143	AR1
argiades	BIUP019-17	Čína	39,935	116,476	143	AR1
argiades	BIUP073-17	Čína	39,961	116,402	110	
argiades	BIUP170-17	Čína	40 019	116 386	143	AR1
argiades	BIUP178-17	Čína	40.019	116,386	143	AR1
argiades	BIUP186-17	Čína	40.019	116,386	110	AR1
argiades	BIUP199-17	Čína	40.019	116,386	143	AR1
argiades	BJUP200-17	Čína	40.019	116.386	143	AR1
argiades	BJUP201-17	Čína	40.019	116.386	143	AR1
argiades	BJUP211-17	Čína	40.019	116.386	143	AR1
argiades	BJUP213-17	Čína	40.019	116.386	143	AR1
argiades	BJUP217-17	Čína	40.019	116.386	143	AR1
argiades	BJUP518-17	Čína	39.773	116.475	143	AR1
argiades	BJUP526-17	Čína	39.773	116.475	143	AR1
argiades	BJUP551-17	Čína	39.773	116.475	143	AR1
argiades	EULEP366-14	Litva	55.378	23,117	143	AR1
argiades	EULEP367-14	Litva	55,694	24,222	143	AR1
argiades	EULEP2193-15	Ukrajina	51,010	31,900	143	AR1
argiades	EULEP2336-15	Ukrajina	49,917	35,967	143	AR1
argiades	EULEP2414-15	Belgie	49,555	5,815	143	AR1
argiades	EULEP3730-16	Švýcarsko	46,196	8,140	143	AR1
argiades	EULEP3731-16	Francie	49,051	7,425	143	AR1
argiades	EULEP3732-16	Francie	46,369	5,912	143	AR1
argiades	EULEP3733-16	Rusko	55,554	38,875	143	AR1
argiades	EULEP4039-16	Bělorusko	53,250	28,360	143	AR1
argiades	EULEP4852-16	Bulharsko	43,602	22,672	143	AR1
argiades	EULEP4899-16	Rusko	54,387	22,375	143	AR1
argiades	EULEP4964-16	Polsko	51,406	23,124	143	AR1
argiades	EULEP5026-16	Slovensko	48,563	20,403	143	AR1
argiades	EULEP5033-16	Česká republika	49,118	18,014	143	AR1
argiades	EZROM188-08	Rumunsko	46,483	23,717	143	AR1
argiades	EZROM189-08	Rumunsko	46,483	23,717	143	AR1
argiades	EZROM190-08	Rumunsko	45,083	26,517	143	AR1
argiades	EZROM191-08	Rumunsko	44,767	25,200	147	AR10

Druh	Kód	Stát	Zeměpisná šířka	Zeměpisná délka	Haplotyp DNASP	Haplotyp síť
argiades	EZROM192-08	Rumunsko	44,867	22,400	143	AR1
argiades	EZROM364-08	Španělsko	42,267	2,000		
argiades	EZROM582-08	Rumunsko	47,783	25,900	143	AR1
argiades	EZROM997-08	Rumunsko	45,831	23,108	143	AR1
argiades	EZROM998-08	Rumunsko	45,141	23,752	143	AR1
argiades	EZROM999-08	Rumunsko	44,062	27,649	143	AR1
argiades	EZSPC412-09	Španělsko	42,167	2,364	143	AR1
argiades	EZSPC413-09	Španělsko	42,167	2,364	143	AR1
argiades	EZSPC414-09	Španělsko	42,167	2,364	143	AR1
argiades	EZSPC415-09	Spanělsko	42,167	2,364		AR1
argiades	EZSPC416-09	Spanělsko	42,167	2,364	143	AR1
argiades	EZSPM104-09	Spanělsko	43,414	-3,334	143	AR1
argiades	EZSPM132-09	Spanělsko	43,084	-5,881	143	AR1
argiades	EZSPM134-09	Spanělsko	43,095	-5,858	143	ARI
argiades	EZSPM250-09	Spanelsko	42,855	-8,204	143	ARI
argiades	EZSPM402-09	Spanelsko	42,403	2,913	143	ARI
argiades	EZSPM409-09	Spanelsko	42,328	2,311	143	ARI
argiades	EZSPN526-09	Spanelsko	43,132	-6,049	148	AR2
argiades	EZSPN1088-11	Spanelsko	42,865	-1,605	143	ARI
argiades	GBGLL145-15	RUSKO	47,114	39,420	142	A D 1
argiades	GBLAA164-14	Nemecko	47,550	11,079	143	ARI
argiades	GBLAC300-13	Německo	48,545	11,708	145	ARI ARI
argiades	GBLAC378-13	Německo	48,409	11,873	143	ARI ARI
argiades	GBLAC379-13	Německo	48,208	11,003	143	ARI
argiades	GBL 4F779-14	Německo	48,281 51,640	14 289	143	ARU ARI
argiades	GBMNC54113-20		51,040	-	143	ARI
argiades	GWORR415-10	Itálie	40.083	15 728	143	AR1
argiades	GWORR420-10	Itálie	40,083	15,728	145	ma
argiades	GWOSE852-10	Německo	48,198	11 628	143	AR1
argiades	GWOSF853-10	Německo	48 344	11,709	149	AR6
argiades	GWOSF855-10	Rakousko	48.230	16.410	143	AR1
argiades	GWOSI555-10	Německo	48.286	13,120	143	
argiades	GWOTD805-12	Chorvatsko	46,162	16.027	143	AR1
argiades	LEASS521-17	Rakousko	47.810	16,138	150	AR5
argiades	LEASS1058-17	Rakousko	47,122	15,488	143	AR1
argiades	LEFIF125-10	Finsko	60,589	27,547	143	AR1
argiades	LEFIF126-10	Finsko	60,589	27,547	143	AR1
argiades	LEPAA059-16	Švýcarsko	47,086	7,109	143	AR1
argiades	LEPAA688-16	Švýcarsko	46,357	8,933		
argiades	LOWA155-06	Rusko	51,450	85,617	143	AR1
argiades	LOWA156-06	Rusko	51,450	85,617	143	AR1
argiades	LTOLB519-09	Jižní Korea	36,714	127,837	151	AR7
argiades	OXB589-15	Itálie	44,105	12,160	143	AR1
argiades	OXB981-15	Itálie	43,501	10,451	143	AR1
argiades	OXB1370-15	Francie	47,653	3,758	143	AR1
argiades	OXB1402-15	Francie	47,320	4,040	143	AR1
argiades	OXB1556-16	Francie	42,728	1,830	143	AR1
argiades	OXB1594-16	Francie	44,800	5,260	152	AR4
argiades	WMB1657-13	Francie	44,606	5,424	143	AR1
argiades	WMB1837-13	Francie	44,550	5,322	143	AR1
argiades	WMB2708-13	Francie	44,377	5,433	143	AR1
argiades	WMB3705-14	Španělsko	41,837	2,191	143	AR1
argiades	WMB4002-14	Španělsko	41,705	1,051	143	AR1
argiades	WMB5094-14	Itálie	44,836	12,250	143	AR1
bisudu	GBGL35511-19	Čína	-	-	8	
buddhista	JW172	Kazakstán	43,218	77,178	172	
carswelli	BDE064-18	Španělsko	38,000	-2,500	1	M37
carswelli	BDE065-18	Španělsko	37,982	-2,537	2	M40
carswelli	BDE066-18	Španělsko	38,119	-2,682	3	M44
carswelli	BDE628-20	Španělsko	37,869	-1,558	2	M40
carswelli	BDE629-20	Španělsko	37,869	-1,558	2	M40

Druh	Kód	Stát	Zeměpisná šířka	Zeměpisná délka	Haplotyp DNASP	Haplotyp síť
carswelli	BDE630-20	Španělsko	38,067	-2,382	4	M45
carswelli	BDE631-20	Španělsko	38,067	-2,382		
cogina	GBMIN81737-17	Argentina	-27,020	-54,684	5	
comyntas	JW147	USA	38,677	-95,572		
comyntas	JW155	USA	40,821	-96,943	132	
comyntas	JW154	USA	40,821	-96,943	132	
comyntas	JW148	USA	38,677	-95,572	132	
comyntas	JW159	USA	38,677	-95,572		
comyntas	JW153	USA	40,821	-96,943	132	
comyntas	JW146	USA	40,821	-96,943		
comyntas	JW64	Bolívie	-15,8685797	-62,508	133	
comyntas	JW62	Bolívie	-15,8685797	-62,508	133	
comyntas	BBLCU392-09	USA	38,832	-92,138		
comyntas	BBLCU393-09	USA	38,832	-92,138	132	
comyntas	BBLCU396-09	USA	38,832	-92,138		
comyntas	BBLCU397-09	USA	38,832	-92,138	132	
comyntas	BBLOB752-11	USA	35,495	-95,670	132	
comyntas	BBLOB753-11	USA	35,495	-95,670	132	
comyntas	BBLOC1638-11	USA	35,076	-92,462	132	
comyntas	BBLOD1169-11	USA	34,754	-112,018	132	
comyntas	BBLOD1203-11	USA	35,494	-95,671	132	
comyntas	BBLOD1205-11	USA	35,494	-95,671	134	
comyntas	BBLOE1968-12	USA	35,495	-95,670	132	
comyntas	BBLSU098-09	USA	33,511	-88,738	135	
comyntas	BBLSU100-09	USA	33,511	-88,738	132	
comyntas	BBLSU101-09	USA	33,511	-88,738	132	
comyntas	BBLSU102-09	USA	33,511	-88,738	132	
comyntas	BBLSU103-09	USA	33,511	-88,738	132	
comyntas	BBLSX513-09	USA	33,883	-96,800	132	
comyntas	BBLSX511-09	USA	33,883	-96,800	132	
comyntas	BBLSY092-09	USA	33,882	-96,806	136	
comyntas	CNCBF532-14	Kanada	42,779	81,193	132	
comyntas	CNCBF589-14	Kanada	45,330	-76,030	132	
comyntas	CNCBF590-14	Kanada	45,330	-76,030	132	
comyntas	CNCBF591-14	Kanada	45,296	-75,622	132	
comyntas	CNCBF796-14	Kanada	45,438	-73,290	132	
comyntas	CNCBF797-14	Kanada	45,773	-73,357	132	
comyntas	CNCBF798-14	Kanada	45,039	-73,075	132	
comyntas	CNCBF913-14	Kanada	42,779	81,193		
comyntas	CNCBF967-14	Kanada	45,773	-73,357	132	
comyntas	CNCBF968-14	Kanada	45,438	-73,290	132	
comyntas	DMML019-10	USA	40,002	-121,269	137	
comyntas	ERPIR283-12	Kanada	-	-	132	
comyntas	GBGLL131-10	USA	37,240	-86,000	132	
comyntas	EUM193-14	USA	38,177	-75,393	132	
comyntas	GMGBB028-13	USA	35,686	-83,499		
comyntas	LGSM795-04	USA	35,586	-83,841	132	
comyntas	HBNK299-07	Kanada	49,006	-117,605	137	
comyntas	LGSM800-04	USA	35,586	-83,841	100	
comyntas	LGSM801-04	USA	35,586	-83,841	132	
comyntas	LGSMD645-05	USA	35,573	-83,080	132	
comyntas	LGSMD646-05	USA	35,573	-83,080	132	
comyntas	LGSMD669-05	USA	35,695	-83,518	132	
comyntas	LGSMG298-07	USA	35,611	-83,425	132	
comyntas	LGSMG316-07	USA	35,809	-83,238	132	
comyntas	LILLA023-11	USA	38,226	-88,185	138	
comyntas	NCCH057-11	Kanada	44,349	-76,895	132	
comyntas	NCCH058-11	Kanada	44,349	-70,895	132	
comyntas	OPPFQ4218-17	Kanada	42,263	-83,0/3	132	
comyntas	DMI V007 05	Kanada	42,705	-80,329	132	
comyntas	PIVIL V 00 /-05	USA	31,215	-80,467	132	
comyntas	KDHP244-05	USA	36,739	-119,785	138	

Daush	V/J	S+44	Zeměpisná	Zeměpisná	Haplotyp	Haplotyp
Drun	Koa	Stat	šířka	délka	DNASP	síť'
comvntas	RDHP245-05	Kanada	49.066	-117.399	134	
comvntas	RDHP417-06	USA	36,739	-119.785	137	
comyntas	RDHP418-06	USA	36,739	-119.785	137	
comyntas	RDHP419-06	USA	36,739	-119,785	137	
comyntas	RDHP420-06	USA	36 739	-119 785	137	
comyntas	RDHP421-06	USA	36,739	-119,785	140	
comyntas	RRINV1691-15	Kanada	43 379	-80 343	110	
comyntas	RRINV2248-15	Kanada	43 384	-80 354		
comyntas	SDP129074-13	USA	44 464	-93 151	132	
comyntas	SDP183009-14	USA	42 868	-77 239	132	
comyntas	USI FP1317-10	USA	35.076	-92 546	132	
comyntas	USI EP1318-10	USA	35,076	-92 546	132	
comyntas	USI FP1442-10	USA	35,076	-92 546	132	
comyntas	USI EP1443-10	USA	35,076	-92 546	132	
comyntas	USI FP1444-10	USA	35,076	-92 546	132	
comyntas	USLEP1445-10	USA	35,076	-92,546	132	
comyntas	USI EP1573-10	USA	35,076	-92 546	132	
davidi	IW106	Čína		-	132	
davidi	IW110	Čína	_	_	130	
davidi	IW78	Čína	_	_	150	
decoloratus	IW200	Chorvatsko	45 141	14 671	128	AD2
decoloratus	JW 200	Česká republika	49 506	16,517	128	AD2
decoloratus	IW136	Česká republika	49,500	17,020	120	AD4
decoloratus	ABOL D634-17	Rakowsko	48 621	15 587	128	4D2
decoloratus	ABOLD633-17	Rakousko	48 308	16,185	128	AD2
decoloratus	FUI FP2194-15	Likrajina	51 010	31,900	128	AD2
decoloratus	EULEP2341-15	Ukrajina	50,167	36,100	128	AD2
decoloratus	EULEP2401-15	Ukrajina	49.850	37,683	128	AD2
decoloratus	EULEP2475-15	Ukrajina	50 201	36 684	128	AD2
decoloratus	EULEP2569-15	Ukrajina	49 133	38,167	128	AD2
decoloratus	EULEP2570-15	Ukrajina	48 912	38,485	128	AD2
decoloratus	EULEI 2570-15	Srbsko	43,235	22 403	128	AD2
decoloratus	ECEE 3754-10	Rumunsko	45,094	22,403	128	AD2
decoloratus	EZROM1045-09	Rumunsko	45 130	26,555	128	AD2
decoloratus	EZROM1072-09	Rumunsko	45 094	26,520	128	AD2
decoloratus	EZROM193-08	Rumunsko	46 483	23,717	128	AD2
decoloratus	EZROM195-08	Rumunsko	46.017	25,350	128	AD2
decoloratus	EZROM195-08	Rumunsko	46 867	23,550	129	AD5
decoloratus	EZROM343-08	Rumunsko	46 484	23,721	128	AD2
decoloratus	EZROM996-08	Rumunsko	45.355	26.683	128	AD2
filicaudis	BIUP095-17	Čína	39 925	116 397	120	1102
filicaudis	BJUP096-17	Čína	39,926	116.397	187	
filicaudis	BJUP097-17	Čína	39.927	116.397	187	
filicaudis	BJUP098-17	Čína	39.928	116.397	187	
filicaudis	BJUP111-17	Čína	39.929	116.397	187	
filicaudis	BJUP112-17	Čína	39.930	116.397	187	
filicaudis	BJUP113-17	Čína	39.931	116.397	187	
filicaudis	BJUP114-17	Čína	39.932	116.397	187	
filicaudis	BJUP115-17	Čína	39.933	116.397	187	
filicaudis	BJUP116-17	Čína	39.934	116.397	187	
filicaudis	BJUP140-17	Čína	39,935	116,397	188	
filicaudis	BJUP141-17	Čína	39,936	116,397	187	
filicaudis	BJUP142-17	Čína	39,937	116,397	187	
filicaudis	BJUP143-17	Čína	39,938	116,397	187	
filicaudis	BJUP144-17	Čína	39,939	116,397	187	
filicaudis	BJUP150-17	Čína	40,019	116,386	188	
filicaudis	BJUP155-17	Čína	40,019	116,386	187	
filicaudis	BJUP268-17	Čína	39,883	116,409	187	
filicaudis	BJUP314-17	Čína	39,884	116,409	187	
filicaudis	BJUP315-17	Čína	39,885	116,409	187	
filicaudis	BJUP390-17	Čína	39,886	116,209	188	
filicaudis	BJUP391-17	Čína	39,887	116,209	187	

Druh	Kód	Stát	Zeměpisná šířka	Zeměpisná délka	Haplotyp DNASP	Haplotyp síť
filicaudis	BJUP408-17	Čína	39,888	116,209	187	
filicaudis	BJUP439-17	Čína	40,008	116,297	187	
filicaudis	BJUP440-17	Čína	40,009	116,297	189	
filicaudis	BJUP494-17	Čína	40,000	116,273	188	
filicaudis	BJUP496-17	Čína	40,000	116,273	187	
filicaudis	BJUP497-17	Čína	40,000	116,273	187	
filicaudis	BJUP498-17	Čína	40,000	116,273	187	
filicaudis	BJUP512-17	Čína	39,773	116,475	187	
filicaudis	BJUP521-17	Čína	39,773	116,475	187	
filicaudis	BJUP528-17	Čína	39,773	116,475	187	
filicaudis	BJUP529-17	Čína	39,773	116,475	187	
filicaudis	BJUP530-17	Čína	39,773	116,475	187	
filicaudis	BJUP541-17	Čína	39,773	116,475	190	
filicaudis	BJUP553-17	Čína	39,773	116,475	187	
filicaudis	BJUP558-17	Čína	39,773	116,475	187	
filicaudis	BJUP562-17	Čína	39,773	116,475	187	
filicaudis	BJUP563-17	Čína	39,773	116,475	187	
filicaudis	BJUP564-17	Čína	39,773	116,475	187	
filicaudis	BJUP565-17	Čína	39,773	116,475	187	
filicaudis	BJUP566-17	Čína	39,773	116,475	187	
filicaudis	BJUP567-17	Čína	39,773	116,475	187	
filicaudis	BJUP569-17	Čína	39,773	116,475	187	
filicaudis	BJUP580-17	Čína	39,773	116,475	187	
filicaudis	BJUP583-17	Čína	39,773	116,475	187	
filicaudis	BJUP587-17	Čína	39,773	116,475	187	
filicaudis	GBMIN17779-13	Tajwan	-	-	7	
fischeri	JW58	Kazakstán	47,574	84,047		
fischeri	JW22	Rusko	54,825	89,430		
fischeri	LOWA539-06	Rusko	50,900	106,000		
fischeri	EULEP428-14	Rusko	51,383	56,817	8	
fischeri	GBGLL555-14	Rusko	55,636	109,336		
fischeri	GBMIN17726-13	Jižní Korea	-	-	107	
fischeri	GBMIN17725-13	Rusko	48,481	135,077	108	
fischeri	GBMIN17727-13	Japonsko	34,205	129,295	109	
fischeri	GBMIN17728-13	Japonsko	34,205	129,295	109	
fischeri	GBMIN17729-13	Japonsko	32,695	128,841	110	
fischeri	GBMIN17730-13	Japonsko	33,264	130,301	111	
fischeri	GBMIN17731-13	Japonsko	33,239	131,610	112	
fischeri	GBMIN17732-13	Japonsko	33,590	130,402	111	
fischeri	GBMIN17733-13	Japonsko	31,584	130,543	113	
fischeri	GBMIN17734-13	Japonsko	33,590	130,402	114	
fischeri	GBMIN17735-13	Japonsko	33,840	132,765	115	
fischeri	GBMIN17736-13	Japonsko	34,070	134,555	116	
fischeri	GBMIN17737-13	Japonsko	34,392	132,452	117	
fischeri	GBMIN17738-13	Japonsko	34,655	133,919	116	
fischeri	GBMIN17739-13	Japonsko	34,070	134,555	116	
fischeri	GBMIN17740-13	Japonsko	35,185	136,900	118	
fischeri	GBMIN17741-13	Japonsko	35,693	138,687	119	
fischeri	GBMIN17742-13	Japonsko	36,649	138,195	120	
fischeri	GBMIN17743-13	Japonsko	36,649	138,195	121	
fischeri	GBMIN17744-13	Japonsko	36,649	138,195	122	
fischeri	GBMIN17745-13	Japonsko	23,130	113,259	122	
fischeri	GBMIN17758-13	Rusko	53,347	83,778	8	
fischeri	GBMIN17759-13	Japonsko	34,205	129,295	109	
fischeri	GBMIN17760-13	Japonsko	34,205	129,295	109	
fischeri	GBMIN17761-13	Japonsko	34,205	129,295	109	
fischeri	GBMIN17762-13	Japonsko	33,397	129,425	123	
fischeri	GBMIN17763-13	Japonsko	33,264	130,301	110	
fischeri	GBMIN17764-13	Japonsko	33,239	131,610	112	
fischeri	GBMIN17765-13	Japonsko	33,239	131,610	112	
fischeri	GBMIN17766-13	Japonsko	33,590	130,402	114	
fischeri	GBMIN17767-13	Japonsko	33,840	132,765	115	

Druh	Kód	Stát	Zeměpisná šířka	Zeměpisná délka	Haplotyp DNASP	Haplotyp síť
fischeri	GBMIN17768-13	Japonsko	34,070	134,555	116	
fischeri	GBMIN17769-13	Japonsko	34,178	131,474	115	
fischeri	GBMIN17770-13	Japonsko	34,392	132,452	117	
fischeri	GBMIN17771-13	Japonsko	34,343	134,047	116	
fischeri	GBMIN17772-13	Japonsko	34,235	135,178	116	
fischeri	GBMIN17773-13	Japonsko	34,979	138,383	124	
fischeri	GBMIN17774-13	Japonsko	35,693	138,687	125	
fischeri	GBMIN17775-13	Japonsko	36,649	138,195	122	
fischeri	GBMIN17776-13	Japonsko	35,693	138,687	122	
fischeri	GBMIN17777-13	Japonsko	23,130	113,259	122	
fischeri	GBMIN17778-13	Japonsko	23,130	113,259	126	
fischeri	GBMIN32686-13	Rusko	53,347	83,778	127	
fischeri	LOWA215-06	Kazakstán	49,117	86,033	8	
hainani	GBMIN17747-13	Tajwan	-	-	9	
kala	GBMIN17746-13	Myanmar	-	-	10	
lacturnus	JW83	Filipíny	9,647	123,346	102	
lacturnus	JW101	Nová Kaledonie	-	-		
lacturnus	JW93	Japonsko	32,952	131,121	103	
lacturnus	ANICT709-11	Austrálie	-13,150	131,060	104	
lacturnus	LEGI581-10	Papua Nová Guinea	-5,250	145,267		
lacturnus	LEGI588-10	Papua Nová Guinea	-5,250	145,267	105	
lacturnus	LEGI599-10	Papua Nová Guinea	-5,250	145,267	106	
lorquinii	JW109	Maroko	29,836	-9,027	89	M42
lorquinii	BDE067-18	Maroko	33,150	-5,200	89	M42
lorquinii	BDE069-18	Portugalsko	37,321	-8,522	2	
lorquinii	BDE070-18	Portugalsko	37,298	-8,544	90	M46
lorquinii	BDE071-18	Španělsko	37,535	-4,317	91	M54
lorquinii	BDE072-18	Španělsko	36,789	-5,380	92	M50
lorquinii	BDE632-20	Španělsko	37,317	-3,458	2	
lorquinii	BDE633-20	Španělsko	37,317	-3,458	93	M47
lorquinii	BDE634-20	Španělsko	37,317	-3,458	1	M37
lorquinii	BDE635-20	Španělsko	36,915	-4,091	94	M51
lorquinii	BDE636-20	Španělsko	37,317	-3,458	2	
lorquinii	BDE637-20	Španělsko	37,200	-2,605	66	M49
lorquinii	EZSPC727-10	Španělsko	36,623	-5,264	2	M40
lorquinii	EZSPC728-10	Španělsko	36,623	-5,264	95	M52
lorquinii	EZSPC737-10	Španělsko	37,302	-3,443	96	M38
lorquinii	EZSPC743-10	Španělsko	37,126	-3,441	91	M54
lorquinii	EZSPC744-10	Španělsko	37,126	-3,441	91	M54
lorquinii	EZSPC745-10	Španělsko	37,126	-3,441	97	M41
lorquinii	EZSPC766-10	Španělsko	37,320	-3,547	1	M37
lorquinii	EZSPC821-10	Španělsko	37,151	-3,483	2	M40
lorquinii	EZSPM606-12	Španělsko	37,084	-3,515	2	M40
lorquinii	EZSPM610-12	Španělsko	37,101	-3,572	98	M55
lorquinii	EZSPN440-09	Španělsko	36,623	-5,264		
lorquinii	EZSPN684-09	Španělsko	37,138	-3,463	91	M54
lorquinii	EZSPN692-09	Španělsko	37,126	-3,441		
lorquinii	EZSPN697-09	Španělsko	37,126	-3,441	1	M37
lorquinii	EZSPN793-09	Španělsko	36,765	-4,883	2	M40
lorquinii	EZSPN794-09	Španělsko	37,420	-2,830	1	M37
lorquinii	EZSPN795-09	Španělsko	37,420	-2,830	66	M49
lorquinii	EZSPN842-09	Španělsko	37,320	-3,547	1	M37
lorquinii	WMB006-11	Španělsko	37,084	-3,515	99	M39
lorquinii	WMB776-13	Maroko	32,986	-5,070		
lorquinii	WMB3544-14	Španělsko	37,087	-3,474	100	M53
lorquinii	WMB4068-14	Maroko	31,250	-7,840	89	M42
lorquinii	WMB4069-14	Maroko	30,110	-8,330	101	M43
minimus	JW195	Rusko	49,717	87,294	11	M1
minimus	JW161	Rusko	49,717	87,294	11	M1
minimus	JW189	Rusko	49,717	87,294	11	M1
minimus	JW190	Rusko	49,596	87,286	11	M1
minimus	JW197	Rusko	52.556	56,165	11	M1
Druh	Kód	Stát	Zeměpisná šířka	Zeměpisná délka	Haplotyp DNASP	Haplotyp síť
---------	-----------------------------	---------------------	-------------------------------	--------------------	-------------------	-----------------
minimus	JW156	Rusko	49,596	87,286	11	M1
minimus	JW150	Rusko	49,717	87,294	11	M1
minimus	JW160	Rusko	49,717	87,294	11	M1
minimus	JW158	Rumunsko	46,568	23,671	52	M30
minimus	JW194	Rusko	49,717	87,294	11	M1
minimus	JW196	Rusko	49,708	87,424	11	M1
minimus	JW137	Česká republika	50,170	13,170	53	M24
minimus	JW141	Česká republika	49,508	14,069	54	M9
minimus	JW107	Česká republika	49,506	16,517	55	M20
minimus	JW30	Řecko	39,571	20,524	11	
minimus	JW92	Slovensko	48,923	19,038		
minimus	JW116	Česká republika	48,823	14,298	11	
minimus	JW27	Španělsko	42,138	-0,408	56	M34
minimus	JW33	Řecko	39,558	20,564	11	M1
minimus	JW123	Itálie	41,553	14,555	57	M10
minimus	JW128	Itálie	41,553	14,555	27	M18
minimus	JW37	Řecko	39,341	20,554	11	M1
minimus	JW38	Chorvatsko	43,762	16,377	55	M20
minimus	JW35	Chorvatsko	43,762	16,377	55	M20
minimus	JW29	Chorvatsko	=	_	27	M18
minimus	JW28	Chorvatsko	43,762	16,377	58	M19
minimus	JW36	Chorvatsko	_	_	55	M20
minimus	JW130	Itálie	40,999	15.534	11	M1
minimus	JW126	Itálie	41.553	14.555	11	M1
minimus	JW96	Česká republika	48.823	14.298	11	
minimus	ABOLD088-16	Rakousko	47 633	15 867	59	M8
minimus	ABOLD431-16	Rakousko	47 200	14 283	60	M21
minimus	BDE073-18	Chorvatsko	44,020	16 224	55	M20
minimus	BDE075-18	Řecko	38.019	22 259	11	M1
minimus	BDE075-18	Itálie	37,980	14,870	61	M13
minimus	BDE075-18	Kazakstán	48 648	85 083	11	M15
minimus	BDE070-18 BDE077-18	Španělsko	40,048	0.326	11	M1
minimus	BDE077-18	Švádsko	59,005	-0,520	11	M1
minimus	BDE070-18	Švývorsko	<i>16</i> 5 2 <i>6</i>	0.227	62	M21
minimus	DDE079-18 DIDS A056 14	Itália	40,550	9,527	62	M16
minimus	DIDSA030-14	Italie	39,323	7 451	03 56	M10
minimus	DIDSA3/9-13 DIDSA3290-15	Italie	45,672	7,431	56	M34
minimus	DIDSA560-15		43,088	1,470	50	M1
minimus	DIDSA022-15		39,228	16,139	11	MI
minimus	BIBSA004-15		39,389	16,602	11	MI
minimus	BIBSA688-15	Italie	39,930	10,150	53	M24
minimus	BIBSA964-15	Italie	46,617	12,731	56	M34
minimus	BIBSA1356-15	Itálie	41,457	14,382	55	M20
minimus	BIBSA1573-16	Itálie	37,980	14,870	64	M11
minimus	BIBSA1590-16	Itálie	37,901	14,952	64	M11
minimus	BIBSA1651-16	Itálie	39,908	16,145	55	M20
minimus	BIBSA1748-16	Itálie	39,930	16,150	11	M1
minimus	BIBSA1847-17	Itálie	43,784	11,614	56	M34
minimus	BIBSA1929-19	Itálie	43,922	11,744	65	M22
minimus	BIBSA2053-19	Itálie	43,828	11,807	55	M20
minimus	BIBSA2163-20	Itálie	42,414	13,559	56	M34
minimus	EULEP098-14	Španělsko	37,670	-2,180	66	M49
minimus	EULEP099-14	Španělsko	37,670	-2,180	67	M48
minimus	EULEP100-14	Španělsko	37,630	-2,340	1	M37
minimus	EULEP101-14	Španělsko	37,630	-2,340	2	M40
minimus	EULEP900-15	Bulharsko	41,764	23,418	55	M20
minimus	EULEP1239-15	Řecko	41,371	23,633	11	M1
minimus	EULEP1559-15	Makedonie	41,372	21,640		
minimus	EULEP1650-15	Řecko	40,227	20,955	55	M20
minimus	EULEP1671-15	Řecko	40,320	21,649	68	M5
minimus	EULEP1795-15	Řecko	38,021	22,233	11	M1
minimus	EULEP1861-15	Itálie	46,482	12,315	55	M20
minimus	EULEP1934-15	Bosna a Hercegovina	43.614	17.553	11	M1
/				,000	**	

Druh	Kód	Stát	Zeměpisná šířka	Zeměpisná délka	Haplotyp DNASP	Haplotyp síť
minimus	EULEP2012-15	Slovinsko	49,229	20,317	55	M20
minimus	EULEP2170-15	Švýcarsko	46,181	7,417	56	M34
minimus	EULEP2179-15	Řecko	41,211	23,735	11	M1
minimus	EULEP2213-15	Ukrajina	49,790	24,720		
minimus	EULEP2400-15	Ukrajina	50,183	36,400	11	M1
minimus	EULEP3736-16	Estonsko	57,841	27,464	11	M1
minimus	EULEP3738-16	Itálie	46,415	13,440		M18
minimus	EULEP3737-16	Švýcarsko	46,530	9,897	62	M31
minimus	EULEP3739-16	Rakousko	47,043	12,693	56	M34
minimus	EULEP3740-16	Rakousko	47,151	13,887	56	M34
minimus	EULEP3741-16	Francie	46,369	5,912	56	M34
minimus	EULEP3742-16	Švýcarsko	46,059	7,810	56	M34
minimus	EULEP4727-16	Dánsko	57,427	10,488		
minimus	EULEP4781-16	Norsko	69,322	16,122	52	M30
minimus	EULEP5079-16	Německo	51,531	11,880	69	M32
minimus	EZHBA678-07	Rusko	51,700	101,080		
minimus	EZROM133-08	Rumunsko	46,450	23,567	52	M30
minimus	EZROM134-08	Rumunsko	45,133	23,750	53	M24
minimus	EZROM135-08	Rumunsko	44,867	22,400	70	M17
minimus	EZROM136-08	Rumunsko	43,917	24,617	71	M15
minimus	EZROM320-08	Rumunsko	46,452	23,582	11	M1
minimus	EZROM321-08	Rumunsko	46,567	23,433	11	M1
minimus	EZROM345-08	Rumunsko	45,094	26,533		
minimus	EZROM347-08	Rumunsko	45,094	26,533		24
minimus	EZROM622-08	Rumunsko	47,431	23,863	11	MI
minimus	EZROM/18-08	Spanelsko	41,807	2,296	56	M34
minimus	EZROM898-08	Rumunsko	46,743	25,664	12	M56
minimus	EZSPC2/8-09	Spanelsko Čese žislos	41,809	2,296	56	M34
minimus	EZSPC300-09	Spanelsko Šman člaka	42,448	1,781	50 72	M34
minimus	EZSPC307-09	Spanelsko Šman člaka	42,765	0,711	73	M26
minimus	EZSPC308-09	Španelsko	42,770	0,852	13	M120
minimus	EZSPC309-09	Španělsko	41,207	1,050	11	M1
minimus	EZSPC819-10	Španělsko	41,051	-4,100	11	M1
minimus	EZSPC820-10	Španělsko	41,051	-4,100	11	M40
minimus	EZSPC830-10	Španělsko	37,892	-1,580	2	M40
minimus	EZSPC832_10	Španělsko	37,892	-1,580	2	M40
minimus	EZSPC832-10	Španělsko	37,892	-1,580	2	M40
minimus	EZSPC858-10	Španělsko	42 752	-7,106	11	M1
minimus	EZSPC859-10	Španělsko	42,752	-7,100	11	MI
minimus	EZSI C039-10	Španělsko	37 520	-7,109	2	M40
minimus	EZSI C1407-10	Španělsko	37,520	-2,384	2	14140
minimus	EZSPM272-9	Španělsko	42,662	-7 109	11	M1
minimus	EZSPM599-12	Španělsko	38.658	-0.310	11	M1
minimus	EZSPM600-12	Španělsko	38.658	-0.310	11	M1
minimus	EZSPM608-12	Španělsko	38.658	-0.310	11	M1
minimus	EZSPM765-12	Španělsko	38,801	0.133	11	M1
minimus	EZSPM782-12	Španělsko	38.802	0.138	11	M1
minimus	EZSPM785-12	Španělsko	40,109	-1,003	11	M1
minimus	EZSPM809-12	Španělsko	38,659	-0,542	11	M1
minimus	EZSPM810-12	Španělsko	40,223	-0,350	28	M6
minimus	EZSPN257-09	Španělsko	42,616	0,547	74	M27
minimus	EZSPN425-09	Španělsko	40,671	-2,673	75	M33
minimus	EZSPN536-09	Španělsko	39,703	-1,247	11	M1
minimus	EZSPN626-09	Španělsko	40,126	-1,441		M1
minimus	EZSPN636-09	Španělsko	40,297	-1,550	11	M1
minimus	EZSPN648-09	Španělsko	40,228	-0,353	11	
minimus	FBLMT889-09	Německo	49,031	11,963	53	M24
minimus	FBLMU452-09	Německo	48,153	11,211	69	M32
minimus	GBGLL539-14	Rusko	44,229	42,048		
minimus	GBLAA1364-15	Německo	50,030	9,796	76	M7
minimus	GBLAA1684-15	Německo	50,386	6,657	11	M1

Druh	Kód	Stát	Zeměpisná šířka	Zeměpisná délka	Haplotyp DNASP	Haplotyp síť
minimus	GBLAA1685-15	Německo	50,386	6,657	11	M1
minimus	GBLAA1686-15	Německo	50,386	6,657	53	M24
minimus	GBLAB120-13	Německo	49,128	7,219	11	M1
minimus	GBLAC745-13	Německo	48,257	11,545	11	M1
minimus	GBLAD265-14	Německo	50,717	11,233	59	M8
minimus	GBLAD950-14	Německo	47,442	11,062	77	M35
minimus	GBMIN24006-13	Polsko	-	-	78	
minimus	GWORA2462-09	Rakousko	47,600	12,240	56	M34
minimus	GWORO792-09	Německo	48,244	11,610	56	M34
minimus	GWORL438-09	Německo	48,244	11,610	56	M34
minimus	GWORZ048-10	Itálie	46,308	9,456	11	M1
minimus	GWOSF851-10	Německo	47,605	11,433	56	M34
minimus	GWOSZ100-11	Itálie	46,301	11,446	56	M34
minimus	LEALT516-16	Rusko	50,317	87,717	11	M1
minimus	LEALT517-16	Rusko	50,317	87,717	11	M1
minimus	LEATD095-13	Rakousko	47,374	11,012	56	M34
minimus	LEATF113-14	Itálie	46,288	11,201	79	M4
minimus	LEATF114-14	Itálie	46,288	11,201	56	
minimus	LEATG416-14	Itálie	47,066	12,091		
minimus	LEATG417-14	Itálie	46,922	11,661	80	M36
minimus	LEATG470-14	Itálie	46,676	11,633	56	M34
minimus	LEATH471-14	Itálie	46,708	10,922	56	M34
minimus	LEFIF123-10	Finsko	61,215	26,070	11	M1
minimus	LEFIF124-10	Finsko	61,215	26,070	11	M1
minimus	LEFIL356-10	Finsko	61,215	26,070	81	M29
minimus	LENOA1375-11	Francie	49,533	1,515	52	M30
minimus	LENOA1376-11	Francie	49,466	1,440		
minimus	LEPAA060-16	Švýcarsko	47,086	7,109	56	M34
minimus	LEPAA219-16	Švýcarsko	46,186	7,374	56	M34
minimus	LEPAA521-16	Švýcarsko	46,621	9,332	77	M35
minimus	LEPAA576-16	Švýcarsko	46,177	5,949	56	M34
minimus	LEPAA621-16	Švýcarsko	46,986	8,950	82	M23
minimus	LON084-08	Norsko	60,800	11,024	11	M1
minimus	LON962-12	Norsko	59,379	10,526	11	M1
minimus	LON4624-16	Norsko	68,097	16,369	11	M1
minimus	LOWA184-06	Kazakstán	48,600	85,967	11	M1
minimus	LOWA185-06	Kazakstán	48,600	85,967	11	M1
minimus	LOWA186-06	Kazakstán	48,600	85,967	11	M1
minimus	LOWA746-06	Rusko	50,900	106,000		
minimus	LOWA745-06	Rusko	50,900	106.000	83	M2
minimus	LOWA747-06	Rusko	50,900	106.000		
minimus	ODOPE753-11	Německo	47.424	10,363		
minimus	OXB270-15	Velká Británie	50.810	-1.101	84	M28
minimus	OXB285-15	Velká Británie	50.810	-1.101	11	M1
minimus	OXB338-15	Itálie	46.336	8.282	56	M34
minimus	OXB580-15	Itálie	45.881	10.885	56	M34
minimus	OXB625-15	Itálie	46 223	10.876	79	M4
minimus	OXB705-15	Itálie	43 031	12,697	55	M20
minimus	OXB919-15	Itálie	43 545	12,007	56	M34
minimus	OXB920-15	Itálie	43 545	12,505	56	M34
minimus	OXB1004-15	Itálie	44 503	9 955	56	11151
minimus	OXB1004-15	Francie	46 116	5,628	50	
minimus	OXB1273-15	Francie	40,110	3,758	11	M1
minimus	PHI AR200 10	Šwiearsko	46,650	9,750	77	M35
minimus	PHI ΔH453 12	Rakoucko	40,050	10 166	56	M34
minimus	WMP005 11	Špančlako	41,132	0.210	11	M1
minimus		Špančisko	20,020	-0,510	11	1VI I M 1
minimus	WMD150 11	spaneisko	20,038 27 020	-0,510	11 64	IVI I M 1
minimus	WIND130-11	Trane	31,838 12 551	5 720	04	IVI I N 1 1
minimus	WIND 496 11	Francie	45,554	5,/50	11	M11
minimus	WIND480-11	Italie	38,093	15,200	85	M112
minimus	WINE559-11	Italie	37,850	14,/10	04	NIII
minimus	WMB610-11	Italie	37,900	14,020	64	MII

Druh	Kód	Stát	Zeměpisná šířka	Zeměpisná délka	Haplotyp DNASP	Haplotyp síť
minimus	WMB1652-13	Francie	44,725	5,548	11	M1
minimus	WMB1709-13	Francie	43,884	3,500	11	M1
minimus	WMB1974-13	Itálie	39,940	16,150	56	M34
minimus	WMB2220-13	Itálie	44,399	8,512	56	M34
minimus	WMB2344-13	Itálie	38,383	16,167	75	M33
minimus	WMB2345-13	Itálie	38,383	16,167	86	M3
minimus	WMB2689-13	Francie	44,819	6,736	56	M34
minimus	WMB2939-14	Itálie	37,201	14,167	87	M14
minimus	WMB3141-14	Francie	42,388	2,102	88	M25
minimus	WMB3369-14	Španělsko	41,866	0,598	56	M34
minimus	WMB3454-14	Francie	43,328	5,679	11	M1
minimus	WMB3462-14	Francie	44,121	6,225	11	
minimus	WMB4029-14	Irsko	52,997	-9,037	11	M1
minimus	WMB4127-14	Itálie	44,150	10,200	56	M34
minimus	WMB4177-14	Itálie	42,917	11,883	55	M20
minimus	WMB4550-14	Španělsko	38,660	-0,300	11	
minimus	WMB4861-14	Itálie	43,157	10,946	75	M33
minimus	WMB4941-14	Itálie	41,908	13,343	56	M34
minimus	WMB5224-14	Itálie	42,213	14,061	56	M34
minimus	WMB5375-14	Francie	43,452	2,684	11	M1
minimus	AMTPC052-15	Německo	47,387	10,362		
minimus	AMTPC127-15	Německo	47,388	10,344		
minimus	AMTPC128-15	Německo	47,387	10,344		
minimus	AMTPC222-15	Německo	47,393	10,362		
minimus	AMTPC261-15	Německo	47,393	10,362		
nebulosa	JW145	Cína	26,773	108,432	51	
nebulosa	JW144	Cína	26,773	108,432	51	
nebulosa	JW143	Cína	26,773	108,432	51	
nebulosa	JW142	Cína	31,477	103,587	51	
nyseus	JW88	Vietnam	11,940	108,438	48	
nyseus	JW87	Vietnam	11,940	108,438	48	
nyseus	AGIRI050-17	Indie	12,522	76,901	49	
nyseus	GBGL35496-19	Indie	-	-	49	
nyseus	GBMIN32734-13	Indie	-	-	50	0012
OSITIS	ABOLD647-17	Kakousko Ď	48,070	16,300	17	0812
osiris	JW 185	Recko	40,256	21,550	18	0825
osiris	J W 157	Ďeeko	41,470	22,103	19	036
osiris	J W 00	Ďeeko	59,989 40,256	20,750	20	0526
osiris	J W 180	Rucko	40,230	21,550	10	0325
osiris	J W 9	Kusko	30,304	87,620	11	0817
osiris	J W 54	SIDSKO	45,212	22,502	21	0517
osiris	J W 125	Subalia	44,973	22,206	22	0521
osiris	J W 00	Itália	43,193	15 534	23	051
osiris	JW127	Řecko	40,999	21 540	24	0813
osiris	IW32	Řecko	40,285	21,540	25	0828
osiris	JW 92	Makedonie	40,285	21,540	20	0328
osiris	IW129	Itálie	41,101	14 555	27	
osiris	IW94	Makedonie	41,353	21 746	27	
osiris	BDF080-18	Šnanělsko	37 974	-2 549	28	
osiris	BIBSA633-15	Itálie	39.857	16 302	20	081
osiris	BIBSA634-15	Itálie	39,908	16,145	24	051
osiris	BIBSA637-15	Itálie	39,908	16,145		051
osiris	BIBSA2042-19	Itálie	43 814	11 767	24	081
osiris	EULEP089-14	Rumunsko	46 724	23 648	29	0816
osiris	EULEP1172-15	Bulharsko	42 490	22,040	30	0815
osiris	EUI FP1228-15	Řecko	42,490	22,735	30	0815
osiris	EULEP1346-15	Řecko	38 031	22,035	31	0827
osiris	EULEP1500-15	Řecko	40 564	21 230	18	0825
osiris	EULEP1664-15	Řecko	40 320	21,230	32	0829
osiris	EULEP1803-15	Řecko	38.021	22.233	31	OS27
osiris	EULEP1851-15	Itálie	42,995	12.859	22	0821
001110	LULLI 1001-10	imile	T4,773	12,00/	<u></u>	0021

Danak	Kód	Stát	Zeměpisná	Zeměpisná	Haplotyp	Haplotyp
Druh			šířka	délka	DNASP	síť
ociric	EUI EP2155-15	Šužcarsko	46 181	7 417	33	0\$22
osiris	EULEI 2135-15	Ukrajina	51 010	31,900	29	0522
osiris	EULER 2240-15	Bulbarsko	/1 888	24 603	30	0515
osiris	EULEF 3745-16	Itália	41,000	24,093	30 24	0515
osiris	EULED2746-16	Itálio	15 622	7 222	24	0510
osiris	EULEP3740-10	Illanciino	45,055	7,522	20	0519
osiris	EULEF 5747-10	Dumunalia	50,100 45,004	26,522	29	0516
osiris	EZRIMIN383-09	Rumunsko	45,094	20,333	29	0510
osiris	EZRIMIN425-09	Rumunsko	45,094	20,555	33	0510
osiris	EZROM137-08	Rumunsko	40,783	23,950	17	0512
OSITIS	EZROM312-08	Rumunsko	46,834	23,629	29	0516
osiris	EZROM/19-08	Spanelsko	41,810	2,294	36	0518
osiris	EZROM899-08	Rumunsko	46,796	23,960	17	0812
osiris	EZROM900-08	Rumunsko	45,094	26,533	17	OS12
osiris	EZROM901-08	Rumunsko	45,355	26,683	29	OS16
osiris	EZSPC370-09	Spanělsko	41,767	2,317	37	OS5
osiris	EZSPC371-09	Spanělsko	42,133	1,983	37	OS5
osiris	EZSPC1111-10	Spanělsko	42,282	0,736	18	OS25
osiris	EZSPC1112-10	Spanělsko	42,282	0,736	37	OS5
osiris	EZSPC1410-10	Spanělsko	37,520	-2,568	24	OS1
osiris	EZSPC1411-10	Spanělsko	37,520	-2,568	24	OS1
osiris	EZSPC1412-10	Spanělsko	37,520	-2,568	24	OS1
osiris	EZSPC1413-10	Španělsko	37,520	-2,568	24	OS1
osiris	EZSPM778-12	Španělsko	39,480	-0,920	38	OS2
osiris	EZSPM801-12	Španělsko	38,658	-0,308	39	OS20
osiris	EZSPN057-09	Španělsko	41,290	0,985	37	OS5
osiris	EZSPM802-12	Španělsko	38,658	-0,308	39	OS20
osiris	EZSPN065-09	Španělsko	42,629	0,231	36	OS18
osiris	EZSPN148-09	Španělsko	38,717	-0,536	24	OS1
osiris	EZSPN525-09	Španělsko	42,824	-5,753	40	OS4
osiris	EZSPN534-09	Španělsko	39,703	-1,247	38	OS2
osiris	EZSPN540-09	Španělsko	39,703	-1,247	24	OS1
osiris	EZSPN639-09	Španělsko	40,297	-1,550	24	OS1
osiris	EZSPN713-09	Španělsko	40,447	-0,341	41	OS3
osiris	EZSPN1015-09	Španělsko	42,282	0,736	18	OS25
osiris	EZSPN1055-11	Španělsko	41,582	1,351	42	OS9
osiris	EZSPN1064-11	Španělsko	42,795	-2,493	18	OS25
osiris	GBGL0856-06	Turecko	36,955	30,068	18	OS25
osiris	GBGLL144-13	Rusko	48,174	40,772		
osiris	LEPPA1255-17	Švýcarsko	46,276	7,114	43	OS8
osiris	LOWA535-06	Ukrajina	44,917	35,217	19	OS6
osiris	LOWAB076-07	Arménie	40,083	44,917	18	OS25
osiris	LOWAB096-07	Arménie	40,083	44,917	18	OS25
osiris	LOWAB098-07	Arménie	40,083	44,917	44	OS11
osiris	OXB766-15	Itálie	42,966	13,287	24	OS1
osiris	WMB280-11	Francie	43,359	5,894	45	OS24
osiris	WMB670-12	Itálie	44,481	10,065	46	OS23
osiris	WMB673-12	Francie	43,554	5,730	22	OS21
osiris	WMB2041-13	Itálie	42,350	13,717	24	OS1
osiris	WMB3433-14	Španělsko	41,950	1,450	47	OS14
staudingeri	JW25	Írán	36,739	55,050	12	OS31
staudingeri	JW17	Írán	30,293	51,927	13	OS34
staudingeri	JW31	Írán	36,739	55,050	14	OS30
staudingeri	JW21	Írán	36,714	55,064	15	OS33
staudingeri	JW23	Írán	36,218	51,824	16	OS32
staudingeri	JW26	Írán	36,714	55,064	14	OS30
tuzovi	JW174	Kazakstán	43,033	78,620	11	M1
tuzovi	JW179	Kazakstán	43,033	78,620	11	M1
balcanicus*	EULEP1300-15	Řecko	39,132	22,837		
alcon*	ABOLD621-17	Rakousko	48,424	16,272		
jesous*	EULEP030-14	Španělsko	36,140	-5,47		
argus*	ABOLD654-17	Rakousko	47,744	15,067		
collina*	LTOLB194-09	Chile	-40,566	-73,160		

Druh	Kód	Stát	Zeměpisná šířka	Zeměpisná délka	Haplotyp DNASP	Haplotyp síť
lajus*	BKKP380-18	Thajsko	13,787	100,674		
pirithous*	BIBSA1374-15	Itálie	41,420	14,527		
icarus*	ABOLD070-16	Rakousko	48,033	16,250		