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Summary 

The thesis deals with the development, modeling, and analysis of demand-based problems 
containing marketing, operations, and logistics decisions. The problems may be further 
extended to the concepts of dynamic pricing and marketing that drive the development. 
Two demand-based problems are presented in the thesis: a) the newsvendor problem, due 
to its simple structure as a suitable tool for illustrating how facets of marketing may af
fect decision-making concerning operational problems, and b) the transportation network 
design problem, where some results and knowledge gained from the newsvendor problem 
are applied. In the setting presented, the newsvendor is subsequently faced with pricing, 
advertising, and joint pricing and advertising-sensitive stochastic demand. A demand-
related random element comprises the particular marketing decision(s) of a specific form 
(e.g., multiplicative or additive). It is assumed that a real pricing strategy is captured 
with a nonlinear decreasing demand function while a suitable advertising strategy results 
in increased sales. The properties of the obtained optimal decisions for particular models 
are discussed. The pricing-related results are applied to the stochastic transportation 
problem, where the stochastic demand is modeled using wait-and-see and here-and-now 
deterministic (scenario-based) reformulations. A hybrid algorithm composed of a heuris
tic (genetic) algorithm and an optimization software tool is proposed for solving of a 
mixed-integer linear as well as a mixed-integer nonlinear problem. Potential applications, 
especially in waste management, are also discussed at the end of the thesis. 

Abstrakt 

Tato disertační práce se zabývá vývojem, modelováním a analýzou poptávkově oriento

vaných úloh, které zahrnují marketingová, operační a logistická rozhodnutí . Úlohy jsou 
zvoleny tak, aby mohly být dále rozšířeny o koncept tzv. dynamického oceňování a jiných 
dynamických marketingových rozhodnutí . V práci jsou využity dvě základní poptávkově 
orientované úlohy: a) úloha kolportéra novin, která je zvolena pro její jednoduchou formu 
a která tak slouží jako nástroj pro i lustrativní ukázky rozhodovacích procesů v podob

ných typech úloh, a b) úloha návrhu dopravní sítě, kde jsou využity některé výsledky a 
znalosti získané při řešení úlohy kolportéra novin. Kolportér (či obecně maloobchodník) 
čelí náhodné poptávce, která může být pos tupně ovlivněna oceňováním, marketingovými 
(tj. reklamními) rozhodnut ími a nakonec jejich kombinací. Poptávka obsahuje tedy 
náhodnou složku, která je pomocí př ís tupů stochastické optimalizace modelována ve speci

fickém tvaru (tj. aditivní či multiplikativní tvar). Závislost cenapoptávka je zachycena 
pomocí nelineární klesající poptávkové funkce, zatímco (vhodná) reklama vede ke zvýšení 
poptávky (běžně rostoucí skřivka či konkávní funkce). Výsledky získané při řešení úlohy 
kolportéra novin s oceňováním jsou následně využity v úloze návrhu dopravní sítě. Tato 
stochastická úloha je modelována (reformulována) pomocí dvou přís tupů stochastické op

timalizace: waitandsee př ís tup a hereandnow přís tup. Jelikož tato implementace vede 
na lineární či nelineární celočíselnou (navíc scénářovou) úlohu, jsou v práci zmíněny taky 
výpočetní nástroje. Autor pro řešení používá (původní) tzv. hybridní algoritmus, což 
je kombinace heuristického (genetického) algoritmu a nástroje optimalizačního softwaru. 
Potenciální aplikace sestavených modelů, obzvláště v oblasti odpadového hospodářství , 
jsou diskutovány v závěrečné části disertační práce. 
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Preface 

This thesis is a result of my P h D studies at the Institute of Mathematics, Faculty of Me
chanical Engineering at the Brno University of Technology ( B U T ) , Brno, Czech Republic. 

The main objective of the research presented in the dissertation has been to develop 
new models, in addition to modifying some existing models, within the area of demand-
based problems where ordering (or alternatively transporting), amount, and selected mar
keting decisions (i.e., pricing and advertising) are included as decision variables. 

The motivation for developing such demand-based models lies between both practical 
and theoretical importance. Typically, marketing and operations/logistics decisions are 
seen independently, although their coordination may lead to better centralized solutions. 
Therefore, the practical implementation of logistics models involving marketing decisions 
calls initially for theoretical development. The models developed are formulated in coop
eration with colleagues from B U T dealing with waste collection and with colleagues from 
M U C dealing with dynamic marketing decisions within logistics problems. 

Although the thesis is considered to be a monograph, it is mostly a composition of 
results from selected papers that are unified to form a coherent final text. Note, that 
for reader's (or reviewer's, respectively) better orientation, the author's publications are 
cited as, e.g., [Al] , [A2], etc. 

This work was conducted from September 2011 until December 2016. Throughout 
the entire period, I have had the honor of working beside Prof. Kjet i l K . Haugen from 
the Molde University College - Specialized University in Logistics ( M U C ) , who served as 
my main supervisor, and with Pavel Popela (BUT) as co-supervisor. 
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Chapter 1 

Introduction 

Modern goods and service production markets are characterized by increased competition. 
Globalization and the focus on increased global trade drive this development. One obvi
ous consequence is increased demand uncertainty. A t the same time, marketing strategies 
(locally and globally) are a necessity in order to sell almost any product. This combi
nation - increased demand uncertainty and marketing necessity - indicates that formal 
modeling that spans both dimensions holds managerial importance. The thesis presents 
a theoretical approach to models that may be used in marketing practices. Therefore, 
the need for a mathematical modeling of demand-based problems that involve marketing 
decisions is clear (see, e.g., [A2, 20, 52, 61, 123]). 

A simple newsvendor model platform may prove to be a relevant and principal "labo
ratory" for an increased understanding of how management science may be applied in 
order to solve these problems. The objective of such a stochastic single-period problem 
is to determine the ordering quantity for a fixed period of time, maximizing expected 
total profit. Stochastic programming (SP) is employed as a tool to capture the uncer
tain demand, and the stochastic models can then be reformulated into its deterministic 
equivalent. Examples of the newsvendor problem (NP) illustrating the general principles 
of mathematical and stochastic programming are provided by [24, 99, 104]. The simple 
structure of N P makes it an ideal tool for examining the interaction of operational and 
marketing issues and the resultant impact on a decision-making process [86]. 

Recently, the increased development of pricing as well as dynamic pricing strategies 
and their further applications in industry may be observed. There are three supporting 
factors: (a) the increase in the availability of demand data, (b) the ease of changing prices 
due to new technologies, and (c) the availability of models for both analyzing demand 
data and for dynamic pricing [29]. 

Herein, pricing is understood as a problem of a single selling price decision (among 
others), while the dynamic pricing problem concerns the determination of prices as a 
decision variable over time for a product under demand and supply constraints. 

Another suitable demand-based tool for examining pricing principles is the transporta
tion network design problem ( T N D P ) . The T N D P concerns the optimization of the design 
of transportation networks. Under our consideration, it contains an embedded network 
flow problem and consists of transportation and, alternatively, pricing decisions. Such 
network design problems are also challenging from a computational point of view; there-
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fore, a hybrid algorithm that is composed of a heuristic algorithm and an optimization 
software tool is developed in the thesis as well. 

A number of producers have used innovative marketing strategies to gain an effective 
control over their inventory. However, coordination between marketing (i.e., pricing and 
advertising) and production decisions still belongs among the most challenging practical as 
well as theoretical problems for operations management. The simultaneous determination 
of ordered quantity, advertising expenditure, and pricing for a product whose demand is 
random are investigated within the N P in this thesis as well. However, an interesting 
question arises: wil l these marketing efforts increase the retailer's order quantities? If the 
retailer is a price setter, then the answer to the above question is unclear: the retailer 
may order less, equal, or more. The intuition behind this result can be easily explained. 
As the market becomes larger, the retailer may set a higher price to earn a higher margin 
per unit sold while ordering less to reduce the left-over inventory risk [124]. 

As the title Mathematical programs for dynamic pricing - Demand based management 
indicates, the thesis presents the above-mentioned selected demand-based problems that 
may be further extended to the concepts of dynamic pricing and marketing that drive their 
development [83, 101]. The developed two-stage stochastic models contain pricing and/or 
advertising decisions. Such models are necessary building blocks for more advanced real 
stochastic dynamic pricing models. 

Outline of the thesis 

The Introduction Chapter commences with outlining the impetus for the study. 

Chapter 2 provides an introduction of the underlying demand-based problems that 
consist of: (1) the N P in Section 2.1, which is based on paper [A5], and (2) the (stochastic) 
transportation network design problem in Section 2.2, which is based on papers [A8, A13, 
A6]. The N P is considered as a single period problem in our case; the applicability as 
well as the review of various selected NP ' s is also discussed (Section 2.1.4 and 2.1.5, 
respectively). In the T N D P , the demand is assumed to be deterministic at first (Section 
2.2.1); then, the stochastic demand is modeled using wait-and-see (WS) and here-and-now 
(HN) deterministic reformulations (Section 2.2.2). 

In Chapter 3, general pricing ideas are summarized. Some of them are applied in the 
newsvendor pricing problem (NPP) in Section 3.1; the section follows results published in 
paper [A5]. Firstly, a short overview of the N P P is given together with the modeling issues 
of the N P P (Section 3.1.1). Then, subsequently, the demand function and randomness 
(Section 3.1.2) and riskless problem (Section 3.1.3) are discussed. The demand is then 
modeled in the additive (Section 3.1.4) as well as in the multiplicative demand form 
(Section 3.1.5). Afterward, references to selected up-to-date literature and remarks on 
their applicability are given (Section 3.1.6). Then, pricing principles are discussed together 
with references to a decision dependent randomness case in SP (Section 3.1.7). Specific 
features of the demand function assuming a decision dependent uniform distribution are 
investigated here. It is assumed that its support size decreases linearly with an increase in 
price. Under such assumptions, the model has suitable computational features related to 
the expectation of the objective function. Afterward, the T N D P with pricing is provided 
in Section 3.2; the section is divided into subsections that follow the results published 
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in papers [A3, A 7 , A8]. The stochastic price-dependent demand is modeled using a WS 
deterministic reformulation while the linear pricing function (Section 3.2.1) as well as the 
nonlinear (isoelastic) pricing function are applied (Section 3.2.2). The second case leads to 
a mixed-integer nonlinear problem; therefore, a hybrid algorithm is developed and tested 
for its solution. 

Chapter 4 includes advertising-related ideas; the content of its most crucial part was 
published in paper [A2]. After the literature review is given (Section 4.1), the newsvendor 
problem with advertising (NPA) is stated, the demand function is formulated, and the 
advertising response function is defined (Section 4.2). Section 4.3 describes the objective 
function being rewritten to suit the multiplicative demand model. Then, optimal stocking 
quantity, which corresponds to a standard N P result, is analyzed and crucial assumptions 
and theorems are provided herein. A comparison is made between the optimal advertising 
amount obtained and the result of the riskless problem. Section 4.4 introduces the N P A 
model in the additive form, and summarizes the general modeling differences and adver
tising results as related to the multiplicative demand case. Suitable advertising response 
functions are presented in Section 4.5. Additionally, numerical results are provided for 
the uniform distribution of the random variable in the multiplicative case for the N P A 
model as well as numerical figures for the equivalent N P (Section 4.6). Finally, the chapter 
concludes with Section 4.7, which also features a managerial interpretation. Remarks on 
the applicability of the results and further research possibilities follow. 

Chapter 5 utilizes the experience and knowledge of previous sections dealing with 
various NPs and combines the pricing and advertising decisions within the N P (Section 
5). Problem formulation and the demand function are given in Section 5.1. Then, the 
marketing-dependent price-multiplicative demand ( M D P M ) form is applied in the N P 
and particular decisions are investigated (Section 5.2). The chapter concludes with a 
literature overview presenting suggestions for further research (Section 5.3). 

Finally, Chapter 6 presents a potential pricing application. It deals with the so-called 
waste processing facility location problem ( F L P ) , which calls for establishing a set of ope
rational waste processing units. The waste management (WM) expenditure of the waste 
producers is minimized. It is derived from the related waste processing, transportation, 
and investment costs. A n SP approach is used in recognition of the inherent uncertainties 
in this area. Two relevant models are presented and discussed. Initially, the common 
transportation network flow model is extended with on-and-off waste-processing capacities 
in selected nodes, representing the facility location. Subsequently, the randomly-varying 
production of waste is modeled by a scenario-based two-stage stochastic integer linear 
program. Finally, selected pricing ideas are employed from demand-based management 
to model the behavior of the waste producers, who are assumed to be environmentally 
friendly. The modeling ideas are illustrated by an example of limited size, solved in G A M S . 
Computations for larger instances were realized with traditional heuristic algorithms, 
implemented within M A T L A B . 

The thesis concludes with Chapter 7, where a summary discussion of the obtained 
results as well as discussions on particular subproblems are provided. 
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Chapter 2 

Underlying Demand Based Problems 

2.1. Classical news vendor problem 
This section provides a discussion on the modeling details for the problem of controlling 
the inventory of a single item with stochastic demand over a single period. This problem 
is also known as the "newsvendor problem" (NP), the problem faced by a newsvendor 
trying to decide how many newspapers to stock on a newsstand before observing demand. 
The objective of this stochastic single-period inventory problem is to determine the order 
quantity for a fixed time period that wi l l maximize the profit. It is assumed that there is 
no initial inventory available. Demand is a random variable, represented by a probability 
distribution. The demand may be either discrete or continuous by the type of stock items. 
The N P is one of the classical problems in the literature on, e.g., inventory management 
[2], the stochastic inventory problem [93], and the single-period problem [62]. 

This problem may be simply explained through the following example by H i l l [50]: 
"Early each morning, the owner of a corner newspaper stand needs to order newspapers 
for that day. If the owner orders too many newspapers, some papers will have to be thrown 
away or sold as scrap paper at the end of the day. If the owner does not order enough 
newspapers, some customers will be disappointed and sales and profit will be lost. The NP 
is to find the best (optimal) amount of newspapers to buy that will maximize the expected 
(average) profit given that the demand distribution and cost parameters are known". 

2 . 1 . 1 . History 

Through references in the literature, the newsvendor (alternatively newsboy) problem 
has a long and interesting history. The original newsvendor model appears back in 1888, 
when Edgeworth in [26] developed an idea which deals with a bank cash-flow problem. He 
applied a series of returns from the Bank of England and used the central limit theorem 
to determine the optimal cash reserves to satisfy random withdrawals from savers. The 
optimal solution to this problem is defined as a balance between the expected cost of 
understocking and the expected cost of overstocking, which was later coined the critical 
fractile. 

The first full-blown model for production planning was investigated by Harris [45] 
in 1913. The goal was to find the optimal size of production quantity while costs are 
minimized. In 1934, Wilson [122] extended the work by Harris to establish the optimal 
size of an order. These models are known as economic order quantity (EOQ) models. 
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2. U N D E R L Y I N G D E M A N D B A S E D P R O B L E M S 

In 1951, Arrow, Harris, and Marschak [2] expressed the famous critical fractile solution 
for a problem of optimal inventory policy, which is first derived for a simple inventory 
model in which the future demand flow is constant and the demand and other quantities 
are known in advance. They also studied uncertain models (both static and dynamic) in 
[2], where the demand flow is a random variable with a known probability distribution. 
The optimal stock and the best reordering point are determined as functions of the demand 
distribution, the cost of making an order, and the penalty of stock depletion. 

During the following years, the N P became an important mathematical model in 
operations management and applied economics used to determine optimal inventory levels. 
It often serves well for the introduction of the general theoretical as well as practical 
principles of mathematical-stochastic programming problems (for more details see [104]). 
The model appears in many forms in the recent literature; it is typically characterized by 
fixed prices and uncertain demand for a perishable product. For an extensive review see 
[62, 93, 94]. See also [50, A5] that focused on the simplest classical single-period problem 
(i.e., without salvage value and shortage penalty cost). [62] furthered the classical single-
period problem with the salvage value per unit, i.e., if the order quantity is larger than the 
realized demand, a single discount is used to sell excess inventory, and with the shortage 
penalty cost per unit, i.e., if the order quantity is less than the demand, then profit is 
lost and a penalty occurs. This extension wil l further be referred to as the underlying N P 
(subsection 2.1.2). 

2.1.2 . Underlying newsvendor problem 

The following situation is assumed: First, the newsvendor decides on the amount to buy 
and so he stocks x units of the product for a unit cost c. Then, the selling period begins. 
If demand £ is greater than x, all stocked units are sold for revenue px, where p is a unit 
price, p > c. In this case, it is considered a loss given by the unit shortage penalty cost 
s for all shortages, £ — x, where s < c. Otherwise, if demand £ is less or equal to x, the 
revenue is only p£ and the leftovers, x — £, are salvaged through the unit salvage value v, 
v < c. Then, the objective (profit) function is denoted by TT(X,£) defined as follows: 

This constitutes the underlying NP . The decision variable is the order quantity denoted 
by x [x > 0), while the demand £ is the random variable, which is not completely known 
when the decision is made. 

Note, that in the "most simple" version of the classical NP , no cost is assumed if 
the ordered quantity is less than the demand (see, e.g., [A5]). However, in reality failure 
to meet demand is always associated with a penalty. Here, the newsvendor faces both 
overage and underage costs - if he orders too much or if he orders too little. 

As the objective function involves a random parameter, the optimization model is 
built as an underlying program; see [104]. Then, the objective is to maximize 7r(a;,£) and 
the optimization problem becomes: max x {7r(x, £) | x > 0}, alternatively: 

max {pmin{x, £} — cx — s m a x { £ — x, 0} + v max{x — £, 0} | x > 0} . (2.2) 

Hence, the N P is to find an optimal amount x* that maximizes the profit. In order to 

px — cx — s(£ — x), for x < £, 

p£ — cx + v(x — £), for x > £. 
(2.1) 
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2.1. C L A S S I C A L NEWS V E N D O R P R O B L E M 

solve this stochastic optimization problem, deterministic reformulations wil l be further 
used (see, e.g., [A l l ] ) . 

Remark 2.1.1. Note that the per-unit holding cost parameter could also be defined: it 
is usually denoted by h and it is interpreted as h = —v or a value v in (2.1), where 
—c < v < 0 (see, e.g., [86]). 

Deterministic reformulation for the continuous demand case 

Here, a general probability distribution of £ with a probability density function (pdf) 
denoted by f(t) is considered, where f(t) = 0 for t < 0 that is caused by the non-
negativity of the demand. Then, the expected objective (EO) deterministic reformulation 
(see, e.g., [90]) is used and the expected profit is expressed by using the Lebesgue-Stieltjes 
integration, where n denotes the expected profit: 

U(x) = E^[TV(X, £)] = f [px-cx- s(t - x)]f(t)dt + f [pt - cx + v(x - t)]f(t)dt 
Jx<t Jx>t 

= {p-c)x-pf (x-t)f(t)dt - s f (t-x)f(t)dt + v f (x-t)f(t)dt. 
Jx>t Jx<t Jx>t 

Firstly, the bounded support of £, i.e., P(£ G [A-B]) = 1 is assumed. Therefore, the 
expected profit is: 

U(x) 

(p — c)x — s(E[£] — x), x < A, 

(p-c)x-(p-v-s)J(x-t)f(t)dt, xe[A,B], (2.3) 
A 

pE[£] - cx + v(x - E[£]), x > B. 

Further, a concrete distribution example - the uniform demand case - is briefly pre
sented. For an extensive literature review of the distributions used see [62]. In particular, 
calculations with the normal distribution are presented in [90] and [93], the exponential 
distribution in [56], and the Poisson distribution in [37] and [50]. 

2.1.3. Optimal order-up-to quantity for specific demand cases 

Continuous demand case 

Remark 2.1.2. Some authors introduce model (2.2) as the maximization of 

TT(X,£) = pmin{x , £} — cx + v(x — £ ) + — s(£ — x)+, 

where (a — b)+ = max{a — b, 0}. Then the expected profit can be written as 

n(x) = p E 5 [ m i n { x , £ } ] - cx + vE^[(x - £)+] - sE 5 [ (£ - x)+}. (2.4) 

The following calculations of the optimal solution of this problem are mostly from [3]. 
Further, expression (2.4) is considered. Then, the following particular expected quantities 
can be expressed. 

Expected sales: 
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2. U N D E R L Y I N G D E M A N D B A S E D P R O B L E M S 

poo px poo 

E J m i n { x , £}] = / min{x, t}f(t)dt = / tf(t)dt + x f(t)dt, 
JO JO Jx 

expected leftovers: 

e 5 [ ( X - o + ] = / o - t)f(t)dt = jQ (x-t)f(t)dt, 

and expected shortages: 
poo poo 

E 5 [ ( ? - x ) + ] = / (t-x)f(t)dt= (t-x)f(t)dt. 
JO Jx 

Then, the expected profit is 
/ POO \ PX POO 

U(x)=p(^j tf(t)dt + xj f(t)dtj - cx + v J (x -t)f(t)dt- s J (t-x)f(t)dt. 

Note that F(t) represents the cumulative distribution function (cdf), F(t) = P ( £ < t) 
= Jq f(y)dy. It is relatively easy to show that the function II(x) is concave in x: 

ÎM = p rf(t)dt-c+v [Xf(t)dt+s rf(t)dt = p[l-F(x)]-c+vF(x)+s[l-F(x)], 

dx Jx Jo Jx 

d2U(x) 
dx2 = ~Pf(x)+vf(x) - Sf(x) = f(x)(v - p - S), 

where (v — p — s) < 0. Since, f^ffydt = 1, then d < 0 and so II is concave on 
[0, oo) and has a maximum. Then the first order conditions are necessary and sufficient 
to determine the value of x representing optimum. Let x* denotes the optimal ordered 
quantity that satisfies = 0. Then, the optimal order quantity x* is set such that: 

F(x*) = p + s ~ c = p . (2.5) 
v ' p+s-v r v ' 

Some authors use the following notation: cu = p + s — c and ca = c — v, where cu is 
the underage cost and ca the overage cost. Then F(x*) = - . 

Moreover, if F is invertible, then the optimal and unique x* can be expressed as 

x* = F~x ( l ± l ^ ] . (2.6) 
\p + s - v) 

The newsvendor solution can be interpreted as providing the smallest quantity that 
guarantees that all demand wil l be satisfied with a probability at least 100/)%. Thus, the 
profit maximizing solution results in a service level of 100/)%. In practice, managers often 
specify p and then find x accordingly. 

Uniform demand: It is assumed that demand £ has the uniform probability distribu
tion: £ ~ U(A, B) and so x £ [A, B]. Then: 

fx 1 (x — A)2 

U(x) = (p- c)x - (p-v - s) J a (x - t)— -dt = (p- c)x - 2 ( B _ A ^ ( P - s - v ) 

and maxx{n(x)|x > 0} = max x {(p — c)x — ^ B - A ) (P ~ S ~ V ) \ X — *-*}• Therefore 

x , = A + ( B - A ) ( P - c ) 
p — s — V 
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Example: Let us show the numerical and 
graphical results for the uniform case for 
the example presented in [A5] (for the case 
where s = 0 and v = 0). 

The following values for the parameters 
of the model are taken into account: p = 15, 
c = 10, s = 0, v = 0, A = 30 and B = 50. 

Then x m a x = ^ and E 5 7 r ( x m a x , £) = 
166.6. The objective function is shown in 
Figure 2.1. Note that in Figure 2.1, the fol
lowing notation is used: fi = H(x,£) for 
x < A, f2 = n(x,£) for x G [A,B] and 
f3 = IL(x,£) for x > B, see (2.3). 

See also [A5], where a more detailed dis
cussion of the uniform demand distribution, 
an example, and a graphical solution are 
provided (for s = v = 0). 

Discrete demand case 

Figure 2.1: The objective function of the ex
ample. 

The optimal order-up-to quantity for the discrete demand case is completely described in 
[3] as: assume that £ is a non-negative discrete random variable (represented by a number 
of a perishable discrete items, e.g., magazines or Christmas trees) with a probability mass 
function (pmf) given as 

f { £ = & } = P i , i = o, l , 2 , . . . , 

where 0 < £o < £i < £2 < • • • and 0 < pi < 1, that is probability of observing Let 
£i G S for i = 0 ,1 ,2 , . . . . Let Fo(t) be the cdf of £, i.e., ^ ( 0 = Y.i:^<tPi- It is shown in 
[3] that the optimal order-up-to quantity x* is the smallest x such that 

F D ( x ) > P + g ~ C = P D , (2.7) 
p + s — v 

where ^'s need not be integers. The value po is called the critical ratio or the critical 
fractile and is always between zero and one. When cu = cQ, the critical ratio is po = 0.5, 
which is consistent with the intuition that suggests that x* should be equal to the median 
demand when the costs are equal. For more details see [50]. Also note that (2.7) includes 
(2.5) as a special case. Thus, in both the discrete and continuous demand case, the 
optimal order-up-to quantity is the smallest x that satisfies (2.7): 

x* = min{£ G S : FD(x) > pn}-

Note that [3] focused on a fixed cost objective and a problem of initial inventory. In 
[50], an example of Poisson distributed demand is provided. 
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2.1.4. Applicability of the newsvendor problem 

The N P is one of the fundamental models of stochastic inventory theory. It is often used 
to aid decision-making in fashion, the sports industry, and the apparel industry, both at 
the manufacturing and retailer levels (see [79]), or restaurants with food orders (or the 
specific order of perishable goods). 

According to [120], newsvendor models are also used in capacity management and 
booking decision in service industries such as hotels and airlines (underbooking wastes a 
seat, overbooking results in having to make an offer to a passenger to give up a seat). 
Porteus, in [92], engaged in, among others, its application in flexible medical savings 
accounts. 

Colleagues, in [91], have identified two more original applications: the first one is 
related to university budget planning and the next one is used to build a model for the 
design of plant capacity. 

2.1.5. Overview of some other newsvendor problem modifications 

In this subsection, other modifications of the N P are reviewed. Note that two of them, i.e., 
the N P with pricing and N P with advertising, as well as their combination, wi l l further 
be described in upcoming chapters. 

Newsvendor problem with pricing: See Section 3.1. 

Newsvendor problem with advertising: See Chapter 4. 

The multi-period newsvendor problem: The N P presented above is defined for a 
perishable item. This item is depreciated at the end of each period. In a multi-period 
problem for this kind of item, it is the same single period problem solved in each period. 
If there is an item which has a limited lifetime (but longer than one period), it could be 
modified to resemble the flower-girl problem; see [25]. 

According to [25], the flower girl problem is defined as: "The flower-girl sells roses at 
price p and has to buy them at cost p before she starts selling. Flowers left over at the end 
of the day can be stored and sold the next day, when she starts selling the old roses. The 
roses cannot be carried over more than one additional day at the end of which they are 
thrown away. The demand is random, £t denotes the demand on the t-th day. Whereas 
X \ has to be bought without any knowledge of the realization of the random demand, the 
flower-girl can adapt the subsequent orders xt, t > 1, to the demand observed during the 
previous days. Her goal is to maximize the total expected profit". 

If the lifetime is not limited, the N P is converted to the multi-period inventory problem 
with non-perishable goods; see [115]. Then, this problem can be separated into a problem 
of determining the initial stocking quantity or to a dynamic programming problem, where 
the stocking quantity can be replenished at any period. 

Distribution-free newsvendor problem: In 1958, Scarf [102] formulated the so called 
distribution-free newsboy problem, where only the mean \i and variance a2 are specified, 
but the demand probability distribution is not known, in general, and pioneered the 

10 



2.1. C L A S S I C A L NEWS V E N D O R P R O B L E M 

minimax approach which expresses this problem as involving finding the order quantity 
that maximizes the expected profit resulting from the worst possible distribution of the 
demand with the known parameters. Gallego and Moon [36] presented a proof of the 
optimality of Scarf's ordering rule for the distribution-free newsboy problem. A n extension 
of this problem to a case where a customer may balk if the inventory is low is presented in 
[79]. Alfares and Elmorra [1] focused on extending the distribution-free newsboy problem 
to the shortage penalty case. In 1960 and 1961, respectively, Kasugai and Kasegai [59] 
and [60] applied dynamic programming and the minimax regret ordering policy to the 
distribution-free multi-period NP, while Vairaktarakis [113] developed several minimax 
regret models for the distribution-free multi-item N P under a budget constraint and two 
types of demand uncertainty; for more details see [1]. 

Loss-averse, risk-averse, and risk-neutrality newsvendor problems: Newsven-
dor models are usually based upon the assumption of risk neutrality. However, in real 
situations, there are many reasons to prefer another approach. Loss aversion is based on 
the premise that losses are considered to be more important than gains. This approach 
is often preferred in marketing, economics, and finance. This means that a positive pa
rameter can be used (e.g., loss averse coefficient, see [22, 114]), that is a measure of the 
agent's loss aversion. [22] provides an extensive review of loss and risk aversion in games 
and decision-making. Wang and Webster [114] have found that if the shortage cost is 
not insignificant, then a loss-aversion newsvendor may order more than a risk-neutral 
newsvendor. They have also found a difference between wholesale and retail price: a 
loss-averse newsvendor's optimal order quantity may increase in wholesale price and de
crease in retail price, which can never occur in the risk-neutral newsvendor model. A 
useful review of the risk-averse N P is provided in [21, 17, 114]. In paper [114], the risk-
averse newsvendor is defined as: a newsvendor who turns down a gamble of losing $100 
or gaining $110, each with a 50% probability, is a risk-averse, i.e., he is risk-averse in the 
sense that he is unwilling to take a bet that is actuarially fair when facing uncertainty. 
Loss aversion is distinguished from risk aversion by the presence of a reference point that 
determines if the payoff is perceived as a loss or a gain, and by a sharp change in the 
slope of the utility function at the reference point [119]. In recent literature, there are 
also some papers about the multi-product risk-averse problem [18, 19]. 

Newsvendor games: Newsvendor games (or the competitive NP) also assume several 
forms of the model. The simplest way to understand them is to consider the following 
example by [103]: two newsvendors (player 1 (Pi) and player 2 (-P2)) trying to satisfy 
the random total market demand with substitutable products. A customer chooses one 
of them initially. If he can find the item with the newsvendor, he buys it, otherwise he 
may decide not to buy any product or to go to the second newsvendor and buy it if it is 
available there. Then, Pi can have both an initial demand (an initial allocation) and an 
extra demand occurring from the shortage of Pj (a reallocated demand), where i = 1,2, 
j = 1, 2, i ^ j. It is quite clear that the decision of one player affects the other. If Pi orders 
too little, it can cause an increase in the reallocated demand coming to P2 and the total 
cost of shortages for P2 may be higher. If Pi orders too much, the reallocated demand 
coming to P2 increases and the total cost of salvages (or inventory holding cost) for P2 may 
be higher. [103] provides a helpful review of this problem. [12] focused on newsvendor 
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games with centralized inventory operations, i.e., they consider a set U = { 1 , . . . ,n} of 
outlets each with normal distribution and mean \ii and a standard deviation <7j, % G U, 
and they also assume coalition(s) as a subset S Q U of outlets that bands together to 
centralize inventory, where the game with coalitions is also called the cooperative game (if 
S = U, then S is the so-called grand coalition). Newsvendor games with the possibility of 
an infinite number of newsvendors are the so-called large newsvendor games [77]. A useful 
review of the newsvendor games problem is provided in [78], where the authors combine 
the cooperative and noncooperative games and the simple newsvendor game, the large 
newsvendor game, and other extensions of the problem. [118] combines the loss-averse 
N P and the newsvendor game. 

2.2. Transportation network design problem 

The transportation network design problem ( T N D P ) deals with the optimization of the 
design of transportation networks. T N D P remains a challenging research topic in trans
portation planning, where the objective is to achieve specified objectives (e.g., mini
mize transportation costs or maximize profits achieved). From constructing new roads, 
pipelines, power lines, etc., to determining the optimal road toll , T N D P has provided 
valuable information for capital investment in transportation [67, 4, 112]. In general, a 
network design problem (NDP) focuses on the building up or modification of a (trans
portation) network. Discrete N D P deals with the addition of new links to a transporta
tion network. A n N D P which deals only with the capacity expansion of existing links in 
a transportation network is referred to as a continuous N D P . A mixed N D P is a mixture 
of both; see [39]. 

The T N D P under our consideration contains an embedded network flow problem. 
There is a set of source nodes (production facilities) and a set of sink nodes (e.g., customers 
with demand), and the demand is routed through the network from the sources to the 
sinks. The aim of the network design is to optimize the network with respect to the overall 
profit which is clarified in detail later in the chapter. In short, the network operator is 
paid a certain price for delivering a unit of demand to each customer, but it has to bear 
the transportation costs and the costs of extending (designing) the network. See Figure 
2.2 for an experimental example of the network which wil l be further used in the thesis 
for T N D P computations. 
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Figure 2.2: Input network structure: bold lines are existing edges and dashed lines are 
possible edges that can be switched on by 0-1 variables; nodes 1-14 present customers, 
15-16 production nodes, 17-30 transition nodes (with no demand allowed) [Al, A8, A13, 
A6, A9, A7, A3]; see Appendix B.l for a data set of the network (generated in GAMS 
software). 

Various (algorithmic) approaches have been taken to solve N D P as well as T N D P . 
Steenbrink [108] and Magnanti and Wong [71] reviewed a range of the N D P ' s and some 
earlier algorithms. LeBlanc [67] proposed a branch-and-bound procedure to solve it, but 
the algorithm did not perform well in large-scale problems. For a detailed review of recent 
solution techniques, see, e.g., [4, 89]. 

This thesis deals with a single-commodity stochastic variant of T N D P , where the 
design of the network is to be conducted under an imperfect knowledge of the future 
uncertain demand at the sink nodes. The demanded commodity is assumed to be con
tinuously divisible. Herein, the problem is approached using the so-called here-and-now 
(HN) and the wait-and-see (WS) SP reformulation (see Section 2.2.2); the uncertain de
mand is captured via available demand information (scenario-based approach; see, e.g., 
[A l l ] ) . See [57, 104] for fundamental ideas on SP. 

The next section begins by introducing a deterministic T N D P where the network 
connects suppliers and customers (see [39] and Figure 2.2); its stochastic forms (i.e., the 
above-mentioned deterministic reformulations) follow in Section 2.2.2. 
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2.2 .1 . Deterministic T N D P 

The deterministic transportation network design model, see [39, 10, A13], is the first step 
towards the development of our model. 

The following symbols are used in the model: 

• the decision variables: 
xe : the amount of a given product to be transported on edge e, 
5En G {0,1} : 1 if new edge En is built, 0 otherwise, 

• index sets: 
E : set of edges, e G E, 
En : set of newly built edges, En G E n , En C E, 
I : set of customers (or locations with a non-zero demand), i G / , 
J : set of production locations (or warehouses), j G J , 
K : set of traffic nodes, k G K, 
V : set of all nodes (vertices) in the network, VEV,V = IL)JL)K, 

• and parameters: 
1 if edge e leads to node v, 

Av>e : incidence matrix, Av>e = 1—1 if edge e leads from node v, 

0 otherwise, 

Pi 

the demand in node v, 
unit transporting cost on edge e, 
cost of building of a new edge E n , 
is a unit selling price for customer i. 

The profit maximization objective function is 

m a X Ai,eXePi ~ Y CeXe ~ Y RFE„^EN! (2.8) 
i<=I e£E e E „ 6 E „ 

the term J2i(J2e Ai,exe)Pi defines the income from all customers. The following terms 
J2eceXe + J2eu ^ E „ ^ E „ define the costs of transportation for the produced items and the 
setting up of new edges in the network. The considered model is balanced, i.e., the sum 
of demands is equal to the sum of the produced and transported units of goods. This is 
also represented by transportation balance constraints J2e^v,exe = bv,Vv G V. 

So, the mixed-integer linear programming (MILP) model is obtained here and is 
specified as follows: 

max ^ Yl Ai,eXePi ~ °eXe ~ Yl RFE„#E„ 
i<=I e£E e£E E N G E N 

E AjfiXe = bv, \/v G V, 

xvn < fe„(E ~bj), V E n G En, 
jtj (2.9J 

xe > 0, Ve G E, 
8En G {0,1}, V E n G En. 

See also author's master thesis [Al] for a more detailed model developing, its descrip
tion and discussion of the related results. The solution, which was obtained by the G A M S 

14 



2.2. T R A N S P O R T A T I O N N E T W O R K D E S I G N P R O B L E M 

software, is visualized in Figure 2.3a; the first scenario from the demand data set, which 
is provided in Appendix B.2, was used. 

+ node 
0 customer 
0 plant 

- zero flow 

- f l o w 

added edge 

(a) Solution of deterministic model (2.9). (b) Solution of HN stochastic model (2.13). 
Figure 2.3: Two graphical solutions of the problem from Figure 2.2 (by a GAMS solver); 
see [Al] for their GAMS implementation as well as solution, and see also [A13J. 

2.2 .2 . Stochastic T N D P 

As the next step, uncertainty is involved in model (2.9); parameter, which is considered to 
be uncertain, is demand b. This captures such real-world problems, where suppliers have 
imperfect information about the demands of their (potential) customers. A common ap
proach to deal with the uncertain demand is a scenario-based approach. Therefore, it wil l 
be further considered that the supplier (or distributor, or simply decision-maker) knows 
possible demand values for each potential scenario as well probability of its occurrence. 

Therefore, two scenario-based deterministic reformulations wil l be further used: the 
H N approach, see [A8, 90] and model (2.13); and the W S approach, see [ A l , 90] and 
model (2.14). 

H N reformulation 

Firstly, the H N approach (deterministic reformulation) is used; see [A13]. The H N ap
proach means that, based on a knowledge of the potential scenarios (e.g., their potential 
demand values and probability of each of the scenarios), the decision-maker must make 
his decisions (i.e., xe Ve G E and S^n V E n G E n ) before he knows the real demand. 

The following notation is different comparing to that from Section 2.2.1: 

• the second-stage variables (that relate to the particular scenarios): 

yfs : shortages for customer i in scenario s, where yfs = max{6i j S — J2e M,e^ei 0}, 
y~s : leftovers for customer i in scenario s, where y~s = m a x { ^ e Ai}£xe — bi)S, 0}, 

• index set: 

S : set of all possible scenarios, s G S, s = 1 ,2, . . . , m, 
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and parameters: 
the demand in node % for scenario s; b{:S > 0 \/i G / , Vs G S, 
the production in node j; bj < 0 Vj G J , 
the (zero) demand/production in node fc; ^ = 0 Vfc G K , 
probability that scenario s occurs, where 0 < q s < 1, Vs G 51, 
and E s <?s = 1, 

rf : unit penalty cost for shortages (unsatisfied demand) at customer node i, 
: unit penalty cost for leftovers (redundant units) at customer node i. 

So, the objective function is "modified" by a penalty term representing the recourse 
action for the unsatisfied demand that is specified by the new decision variables yfY s > 0 
and y~s > 0. Thus, formula Y.s1sijli{r~y~s + rfyfs)), which represents an additional 
cost, is subtracted from the objective function (2.8). 

The first constraint from the model (2.9) is modified as follows 

A,exe + y+ - y - = k,s, Vz G / , Vs G S, (2.10) 

J2Aj,eXe = bj, V j G J , (2.11) 

J2Ak,eXe = h, V / C G K , (2.12) 

where equation (2.10) means that the transported units plus missing units minus surplus 
units must be equal to the customer demand. Equations (2.11) and (2.12) are defined in 
the same way as (the first constraint) in the model (2.9), but they are defined separately 
for plants (2.11) and for transition nodes (2.12). 

Altogether the updated scenario-based stochastic M I L P model is specified as follows: 

m a X Y Y Ai,eXePi ~ Y °eXe ~ Y rf

E„£E„ ~ Y ^ Y^iVi,* + rtvt,s) 
i€l e£E e£E E „ G E n sgS i€l 

s.t. E A,eXe = bi:S - yfa + y~s, V i G / , Vs G S, 

E Aj:£xe = bj, V j G J, 

E Akjexe = bk, Vfc G K, 

xvn < SEn E {-bj), V E n G En, (2.13) 

via < h,s, Miel,\/seS, 
xe > 0, Ve G E, 

SEn G {0,1}, V E n G En, 
Vt,„ VT,. > 0, V z G / , V s G 5 ' . 

See Figure 2.3b for a graphical solution of the model (2.13). 

W S reformulation 

Herein, the decision-maker solves each particular scenario independently and so, he can 
make the decision as a reaction to the obtained results. Nevertheless, the W S approach is 
employed for our stochastic scenario-based problem in order to examine some attributes 
of result of each of the scenarios (e.g., "variance" of the network design variables). 
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In other words, the W S decisions x 6 j S and #E„,s are reactions to known b{:S for each 
particular scenario s. Therefore, in contrast to the H N approach [see model (2.13)], the 
decision (or set of the decisions, respectively) on transportation as well as on network 
design is made for each scenario; in other words, both decision variables (i.e., x e ' s and 
5E„'S) includes index s. The following notation is different comparing to the model (2.13): 

• the decision variables are: 
x£:s : the amount of a given product to be transported on edge e in scenario s, 
^E„,S £ {0,1} : 1 if new edge E n is built in scenario s, 0 otherwise. 

So this is a separable model that can be solved by the loop solutions of the separated 
models involving of objective functions and constraints. In accordance with the above-
mentioned notations, the T N D P under the W S approach is formulated as 

V s G 5 : max A,exe,sPi ~ cexe,s - dvjvn,s - Ys(riVi,s + rtvt,s) 
i€l e€E e£E E „ g E n i€l 

E A{^eXe^s = + Vi,a> Vz G / , Vs G + Vi,a> 

E Aj^eXe^s = hJ-> V j G J , hJ-> 

= bk, Vfc G K, 
e£E 

^ E N < $Vn,s E ( -bj), V E n G E n , 

Vta < Vz G / , 
> o, Ve G E, 

^ ^ E „ , s e {0,1}, V E n G E n , 

Vi,si Vi,s > o, Vz G / . 

See Figure 2.4 for a graphical solution for one particular scenario (see Appendix B.2). 

(a) Network flow visualization (nonzero xe>s). (b) Network design visualization (Se>s). 
Figure 2.4: Graphical results (by GAMS) of one fixed scenario; see [A9J. 
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See also [A6], where the authors solved the model with a hybrid algorithm (see Section 
3.2); the (graphical) results (e.g., in Figure 3.2) can be useful to examining some of the 
quantitative scenario-based network design attributes. d»z 
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Chapter 3 

Pricing 
Recently, there has been an increasing focus on the development of pricing as well as 
on marketing strategies and their further applications in industry. The pricing problems 
concern on the determination of selling prices as a decision variable for a product under 
the relevant demand and supply constraints. 

Although, pricing is applied in the N P (see Section 3.1) and in the T N D P (see Section 
3.2) herein, it is not limited for these 2 problems but it can be applied in many other areas. 
See, e.g., its application in lot-size problems [47], integrated forward logistics network 
design with pricing for collection of used products [31] or road toll pricing [125]. The 
author already presented some fundamental ideas for the coordination between production 
and pricing decisions; see [A2, A5] for the N P P and see [A3, A 7 , A8] for the T N D P with 
pricing. 

3.1. News vendor pricing problem 
The first mathematical formulation of price effects in inventory control problems was 
provided by Whi t in [121] in 1955. Unt i l this year, economic theoreticians had disregarded 
several important aspects, causing Whi t in to focus on the hitherto-neglected demand 
aspects. He adapted the NP, where the unit selling price is a decision variable and 
where demand linearly depends on the selling price per unit, where the retailer knows a 
probability distribution of demand. Hence, he knows the amount demanded at any given 
price. Whi t in established a sequential method for firstly determining the optimal ordered 
quantity as a function of selling price, and then the relevant optimal price. In [75], Mil ls 
extended the N P P by a specifying mean demand as a function of the selling price. He 
refined Whitin 's work by modeling the uncertainty in additive form, i.e., the demand is 
specified as D(p, £) = d(p) + £, where d(p) is a decreasing demand function of price p 
and £ is a random variable defined within some range. Specifically, Mil ls established that 
the optimal price under uncertain demand is never greater than the optimal price set 
in the equivalent deterministic monopoly models, called the riskless price. Both Whi t in 
and Mil ls considered the single period form of the problem, i.e. a static problem, where 
only a single price and an ordered amount need to be determined. A detailed comparison 
between the static case and the dynamic case is provided by Kar l in and Carr in [58]. For 
both these cases, additive demand was applied as well as the multiplicative demand case. 
They defined the multiplicative demand D(p,£) = d(p)^. In the dynamic model, 
i.e., the multi-period problem, they employed the infinite-period approximation to the 
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n—period model. However, they did so under the assumption that a single constant price 
needed to be determined at the beginning of the planning horizon. They established that 
the optimal price under multiplicative uncertain demand is never smaller than the riskless 
price, i.e., an opposite outcome to Mi l l s ' outcome for additive uncertainty. 

For useful overviews of the pricing case see [14, 42, 43, 86, 127, 129] and see [29, 76] 
for the dynamic case. 

3 .1.1. Modeling issues 

In the classical newsvendor model (see subsection 2.1), the selling price is considered as 
exogenous, over which the newsvendor has absolutely no control [20]. Here, the pricing 
problem is approached as a price-setting newsvendor problem, i.e., two decision variables 
are defined: the selling price, p, and the ordered quantity, x. Then, the same parameters 
as in (2.1) are considered: buying cost c, salvage value v, and shortage cost s. The demand 
function, D, is both stochastic and price dependent, i.e., D(p,£) replaces £ with regards 
to (2.1), where £ presents the random term. Thus, for each pair (p, £) the retailer knows 
the resulting demand, but he is unable to predict it in advance because he does not know 
which value of the demand wil l assume in reaction to the random term in both cases. The 
objective (profit) function is: 

where x units are stocked at the beginning of the selling period for cost ex. If demand D 
is greater than x, then the revenue ispx and s[D(p,£)—x] denotes shortages multiplied by 
the shortage penalty cost per unit. Otherwise, if demand D is less or equal to an ordered 
quantity x, the income is only pD(p, £) and v[x — D(p, £)] denotes leftovers multiplied by 
salvage value per-unit. Alternatively, (3.1) can be rewritten as: 

n(p,x,Q = p m i n { x , L » ( p , ^ ) } - cx + v[x - D(p,£)]+ - s[D(p,£) -x]+, 

where a+ = max{a, 0} and min{a,6} = a — (a — b)+. The goal is to maximize the 
expected value of the objective function. For this stochastic optimization program the 
so-called expected objective reformulation is defined (see [82, 90]). The expected profit is 
to be maximized and is defined as: 

U(p,x) = E 5[tt(P,x,£)] = E 5 [pmin{x ,L»(p ,^ )} - cx + v[x - D(p,()]+ - s[D(p,£) - x]+]. 

Remark 3.1.1. Without the loss of generality, some authors set the parameters s, v to be 
zero (see, e.g., [129]). In general, the parameters satisfy s > 0, c > v > 0, and p > c. 

3.1.2. Demand function and randomness 

This section is focused on the demand function D(p,£). Price independent randomness 
is further assumed in demand. More specifically, the demand function satisfies 

for x < .D, 

for x > D, 
(3.1) 

(3.2) 
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where £ is a two-dimensional vector, and £ = ( £ m , £ 0 ) and £ m , £ a are the random variables. 
In principle, the stochastic demand curve given by (3.2) should capture a real situation: 
when the price rises then the demand decreases, i.e., d(p) is assumed as strictly decreasing, 
i.e., d'(p) = < 0, that presents the dependency between demand and price; the 
expected value of demand tends toward zero at sufficiently high prices, since demand 
cannot be negative. The assumption of monotonicity satisfies all common items; only 
special luxury items are excluded (i.e., Veblen paradox) [129]. Moreover, d(p) is assumed 
to be a continuous function and twice differentiable. So, d(p) is defined on a closed interval 
[c,p], where d(p) = 0, see [129]. 

For the purpose of this thesis, two special cases of the demand function (3.2) are 
mentioned. Mil ls in [75] defined the additive demand function, where £ m = 1 (or P ( £ m = 
1) = 1) and so D(p, £) = d(p) + £ a . Furthermore, for this case it is assumed that E[£ 0] = 0. 
Another special case of the demand function is the multiplicative demand case defined 
by Kar l in and Carr [58], where £ a = 0 (or P ( £ a = 0) = 1) and so D(p,£) = £md(p). 
Furthermore, here it is assumed that E[£ m ] = 1. For more details on special cases see [15]. 

Then, the expectation of D is specified by a function d(p) for both the cases: 

Ei[D(p,C)]=d(p). 

It is assumed that F(-) represents the cdf of the random variable with pdf /(•) . It is also 
reasonable to consider that F is invertible; see expression (2.6). 

Remark 3.1.2. Some authors consider the mean of the random variable to be a general 
number, e.g., /i, see [86, 134]. 

Remark 3.1.3. Note that the additive and multiplicative cases, which are applied in most 
existing literature, are considered under some special assumptions. A different definition 
is verified by Young [131]. He analyzed a model which combines both the additive and 
multiplicative effects, defining the demand functions as D(p, £) = + d2(p)-

3.1.3. Riskless problem 

In the riskless theory demand is considered as strictly a function of the price p, which 
means that no random factor £ is considered, see [75]. The related objective function is 
denoted by ^(p) and so the problem is: max p {^(p) |p > c}, where 

*(p) = (p-c)d(p), (3.3) 

i.e., the profit for a given price in the certainty-equivalent problem. The optimal riskless 
price p\, can be determined by solving the first order condition d ^ = 0. 

Remark 3.1.4. For the linear function d(p) = a — bp, a,b > 0, which is often used for the 
additive demand case, the optimal riskless price is p% = g ^ £ . 

Remark 3.1.5. For the isoelastic function d(p) = ap~b, a > 0, b > 1, which is often used 
for the multiplicative demand case, it is p% = M^. 

Yao, Chen and Yan [129] define a class of demand functions with an increasing price 
elasticity (IPE), i.e., functions that satisfy 

dp ~ ' 
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where e = —Pj^ denotes the price elasticity of d(p) that gives the percentage change 
in demand in response to a one percent change in price (see [132]). The I P E attribute 
means that for the retailer, it is less desirable to raise the price; in other words, if the 
price increases by a certain percentage, demand decreases by a larger percentage. The 
following lemma by [129] guarantees uniqueness of the first order condition solution. 

Lemma 3.1.1. If d(p) has increasing price elasticity, then the riskless profit ^ is quasi-
concave (or unimodal) in p in the interval [c,p]. The optimal riskless price p\, can be 
uniquely determined by solving ^ = 0. 

See [129] for proof. 

In [129], the authors provide some typical examples with I P E property. Table 3.1 
contains the examples and an extension of some other functions used in the literature. 

Table 3.1: Typical demand functions with IPE property [129]. 
Demand/price function d(p) Conditions Paper 
Linear function d(p) = a(p — p) a > 0 Mil ls [75] 
d(p) = pae~Xp a < 0, A > 0 Kar l in and Carr [58] 
d{p) = (1+p)a 

a > 1 Kar l in and Carr [58] 
Function d(p) concave in p Zabel [133], Ha [46], 

Federgruen and Heching [32] 
Isoelastic function d(p) = ap~b b > 2 Young [131] 
Isoelastic function d(p) = ap~b b > 1 Petruzzi and Dada [86] 
Function d(p) log-concave in p Rosenberg [95] 

3.1.4. Additive demand case 

Remember that this case involves the demand function D(p,£), which is given by (3.2), 
modeled such that £ m = 1 and E[£ t t] = 0. Then: 

D(p,C) = d(p)+Ca. (3.4) 

Here, the reader is subsequently referred to [16, 75, 86, 124, 128, 129, 134]. The objective 
function (3.1) can be rewritten by substituting (3.4) and defining the stocking factor z, 
z = x — d(p), as: 

( £)= i P[z + d(p)]-c[z + d(p)]-s(£a-z), foiz<(a, 
\p[d(p)+Za]-c[z + d(p)]+v(z-Za)], f0TZ>£a. l ' J 

This variable transformation (from x to z) is often used in the newsvendor-related liter
ature (e.g., in [30, 86, 111, 134]); it wi l l be further shown to simplify the computations. 
It also provides an alternative interpretation of the stocking decision: if the choice of z is 
greater than the realized value of the random variable £ a , then leftovers occur, otherwise 
shortages occur. 

The objective is to maximize the expected profit by choosing p and z. However, the 
optimal solution is not necessarily an interior solution. In particular, the value of z can 
be on boundary A or B (see [134]). 
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The convention put forth by Petruzzi and Dada [86] is further used, with the following 
quantities subsequently defined as (the expectation operator is further denoted as E[-]): 

expected leftovers: 

A(z) = E[(z - £„)+] = f\z - t)f(t)dt, (3.6) 
JA 

expected shortages: 

Q(z) = E[(e„ - z)+] = fB(t - z)f(t)dt. (3.7) 
J z 

Then, the expected profit is expressed by: 

U(p,z) = (p - c)[z + d(p)} - (p - v) fZ(z-t)f(t)dt-s fB(t-z)f(t)dt. (3.8) 

Considering (3.6) and (3.7), the loss function can be expressed as: 

L(p, z) = (c- v)A(z) + {p + s - c)G(z), 

where if z is chosen too high, an overage cost (c — v) appraises each of the A(z) expected 
leftovers, and if z is chosen too low, an underage cost (p + s — c) appraises each of the 
Q(z) expected shortages and the expected profit can hence be expressed by: 

U(p,z) = ^(p)-L(p,z), (3.9) 

the riskless profit, which would occur in the absence of uncertainty (see subsection 3.1.3), 
less the expected loss that occurs as a result of the presence of uncertainty (see [85, 86]). 

Through integration by parts, the expected profit can be expressed from (3.8) as: 

U(p,z) = (p - c)[z + d{p)] - (p-v) £ F{t)dt - s JB[1 -F(t)]dt. (3.10) 

Whi t in [121] established the sequential method for first determining the optimal value of 
z as a function of p by using the famous fractile rule for determining z when p is fixed, 
i.e., the result of the common NP. Let the subscript * denote optimality. B y solving the 
first ordered condition 9 n ^ ' z - > = 0, the following expression is observed: 

z* = z{p) = F~l ( P ± ^ l ) . (3.11) 
\p + s — V J 

The problem of maximizing the expected profit H(p, z) over two variables is now reduced 
to a maximization problem over the single variable p: max p U(z(p),p), and so substituting 
(3.11) into (3.10) is p* obtained by solving d n ^ - > ' p - > = 0. The related derivative is: 

dU(z(p),p) ^dd(p) c — v 
dip) + (p - c ) - M + C V

 z* + fZ

 tf(t)dt. (3.12) 
dp v + s — v JA dp dp p + s 

The second derivative w.r.t. p is: 

d2n(^(p),p) _ dcPjp) + 2 d < p ) + 1 jc-vf 
dp2 dp2 dp f(z*) ip + s — v)3 

See Appendix A . l for an expression of (3.13) from (3.12). 

23 



3. P R I C I N G 

Linear pricing function 

For the linear demand function d(p) = b — ap, a,b > 0 (see Remark 3.1.4), Zabel [132] 
developed the sequential method for first determining the optimal value of p as a func
tion of z by using the first partial derivative with respect to p. Further, the method of 
determining the optimal price is outlined. The optimal selling price can be determined 
as: 

P*=p(z)=pl-^ (3.14) 

where p% = (see subsection 3.1.3). Equation (3.14) implies that p* < p% (with 
respect to nonnegativity of Q(z), see [75]). Then the boundary condition for p* is 

c<p*<p% (3.15) 

(or c — s < p* < p%, see [134]). The second partial derivative is d = —2a and 
so n is concave in p for a given z. Then, z* can be found by searching through the 
resulting optimal trajectory to maximize H(p,z*), see [86, 132]. Zhan and Shen [134] 
deal with properties of the solution, its unimodality and geometrical interpretation. They 
also developed an iterative algorithm as well as a simulation based algorithm to solve the 
system of equations (3.11) and (3.14). 

Following, the single period optimal stocking and pricing policy for the additive de
mand case is to stock x* = d(p*) + z* units to sell at the price p* per unit. 

3.1.5. Multiplicative demand case 

For the multiplicative demand case, it is considered that £ a = 0 and E[£ m ] = 1 in the 
demand function D(p,£) given by (3.2). See papers by Petruzzi and Dada [86] and Kar l in 
and Carr [58] for seminal work. Therefore, the demand function is defined as: 

D(p,0 = d(p)U- (3-16) 

Substituting (3.16) and z = ^ (the stocking factor) to model (3.1), it can be obtained: 

7T(P, Z, £r, 
f pzd(p) - czd{p) - sd(p)(Cm -z), for z < £m, 

{ p£,md{p) - czd{p) + vd{p){z - £ m ) ] , for z > £m. 

It can be seen that the effect of z, which is defined in a different way with respect to the 
additive demand case, is the same as for the additive demand case model (3.5), i.e., if z 
is larger than £ m , leftovers occur; if z is smaller, shortages occur. 

For the multiplicative demand case, the following is defined: expected leftovers d(p)A(z), 
expected shortages d(p)Q(z), riskless profit ^(p) and the loss function: 

L(p, z) = d(p)[(c - v)A(z) + (p + s - c)G(z)}, 

where A(z) and Q(z) are defined by expressions (3.6) and (3.7); riskless profit is given 
by (3.3). Expected profit H(p,z) is again expressed by (3.9), where L(p,z) assesses an 
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overage cost (c — v) for each of the d(p)A(z) expected leftovers when z is chosen too high 
and an underage cost (p + s — c) for each of the d(p)Q(z) expected shortages when z is 
chosen too low. The expected profit can be expressed from as: 

n(p, z) = (p- c)zd{p) - (p - v)d{p) [* F(t)dt - sd(p) A l - F(t)]dt. (3.17) 
J A Jz 

The optimal stocking factor z* can be expressed by similar steps as in the additive case; in 
addition, z* is observed identically to that of the additive case, i.e., (3.11). Substituting 
z* into (3.17) is p* obtained by solving ^Sgpgi) = q. The related derivative is: 

du(p,z(P)) ^ d ( p ) + i P _ c V m _ i P _ v ) m [ z * F m - d ( P ) [ ' f w 
J A dp 

dd(p) 
dp 

dp 

fB[l - F(t)]dt. 
Jz* 

dp 

(3.18) 

The second derivative w.r.t. p is: 

d2U(p,z(p)) d2d{p) " 
dp2 dp2 

(p + s - c)z* -(p + s-v) /Z F(t)dt + s [ F(t)dt - sB 
J A J A 

+ 2 
dd(p) 

dp 
F(t)dt + d(p) ic-v 

f(z*) (p + s — v)3 

(3.19) 

Remark 3.1.6. Considering H(p, z) = ^(p) — L(p,z), the necessary optimal condition of 
the price is as follows: 

dp 
[P-c-i(p,z)]-d(p)[i-e(z)] = o. (3.20) 

This condition is further used to compare the optimal price with the N P P A in Chapter 5. 

Isoelastic pricing function 

Let the isoelastic demand curve d(p) be defined as 

d(p) = ap~b, (3.21) 

where a > 0,b > 1.Moreover, it is assumed that A > 0 (see [86]). The related partial 
derivative w.r.t. p is: 

a n ( p , , ) ^ ( 6 _ i ) d M [ i _ e w ] f , + 6 
dp 1> 

(c-v)A(z) + se(z) 
p 

where p\ is the optimal riskless price maximizing the riskless profit \ l / (p): the derivative 
needed is = —(b — \)ap~h~l[p — ^ ] , where (b — \)ap~h~l > 0 for p < oo and so the 

maximum of function is ^(p) is p% = -^j. Further, because 1 — Q(z) > A > 0, for a given 
z, the unique optimal price p* as a function of z can be established: 
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P* = p(z) = P% + 1 
(c - v)A(z) + sG(z) 

(3.22) 

For an exhaustive proof see [86]. From equation (3.22) the boundary condition for p* can 
be established: 

P > P * , 

which was found by Kar l in and Carr [58] and is opposite the related boundary founded 
by Mil ls [75] for the additive case; see expression (3.15). 

3.1.6. Some up-to-date results 

In order to review some selected up-to-date results, the following definitions are needed 
(see [124, 129]): the failure rate function of the random variable r(£) = (ILF(£)), the 
generalized failure rate function g(£) = £ • r (£) as well as the related property called 
generalized strict increasing failure rate (GSIFR): 

for all £. For more details on I P E and G S I F R properties, see [129]. To the author's best 
knowledge, the G S I F R class of distributions and d(p)—functions with I P E property are 
the major and most up-to-date class in the recent literature. 

It can be shown that if the mean demand d{p) has I P E and the distribution F has 
G S I F R (alternatively I F R for the additive and G I F R for the multiplicative demand case, 
see [124]), then II is quasi-concave in p in the range [c,p] and thus the first order condition 
d n ( ^ p ) ' p ) = 0 has a unique solution (see [124, 129]). 

The list of mean demand and random factor distributions used in recent literature 
references for the additive demand case provided by [129] is also reviewed in Table 3.2. 
See [129] for a similar table on the multiplicative case. 

Table 3.2: Demand functions and distribution function classes for the additive form. 
Paper d{p) function distribution 
Mil ls [75] (1959) linear uniform 
Ernst [30] (1970) linear P F 2 

Zabel [133] (1972) concave uniform and exponential 
Thowsen [111] (1975) linear P F 2 

Lau and Lau [66] (1988) linear uniform 
Polatoglu [88] (1991) linear uniform 
Ha [46] (2001) concave increasing failure rate 
Petruzzi and Dada [86] (1999) linear increasing failure rate 
Zhan and Shen [134] (2005) linear nondecreasing failure rate 
Yao, Chen and Yan [129] (2006) I P E G S I F R 

3.1.7. Decision dependent randomness 

In this case, the focus is on the fact that £ depends on p, so it is denoted as As 
the decision p may influence the probability distribution of £, we write about the decision 
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dependent randomness case. Similarly, as in two-stage stochastic programs (see [104]), a 
separable case is searched for. Therefore, we would like to find a description of demand 
D by a function separating p, as well as a random variable £ defined in a new way that 
does not depend on p (i.e., D(p, £) = #(p, £) where j : R x R —> R ) . Such models 
are solved in [76] and [86]. Mostly, the random influence £ is introduced in a separable 
additive way. Another previously studied possibility is the multiplicative case discussed 
in [58]. In [A5], the author introduces the case where the demand-price dependence is 
linear; however, the coefficients are uniformly distributed and thus the demand is a linear 
function of price p, i.e., D(p) = ap + j3 where a and /3 are uniformly distributed dependent 
random parameters. The uniform distribution is suitable for cases where the bounds of 
uncertainty are known, otherwise there is a lack of information on the uncertainty. Clearly, 
this linear dependency does not approximate real situations very well. Some authors use 
a hyperbolic/isoelastic dependency (see [76]), that can be piece-wise approximated. So, 
with the regard to the features expanded by Taylor [110], it can be assumed that linear 
approximation is acceptable. 

The expected profit can be expressed as 
x HP) 

n(p,x) = Et[iv(p,x,£(p))] = (p-c)x-(p-v) J [x - t(p)]dFt(p) - s J [t(p) - x]dFt(p), 
a(p) x 

or, alternatively, as 

(p-c)x-s(E[£(p)]-x), x<a(p), 
x HP) 

(p - c)x -ip-v) J [x- t(p)]dFt(p) -s J [t{p) - x]dFt(p), x G [a(p),b(p)}, 
d(p) x 

pE[£(p)] - cx + v(x - E[f (p)]), x > b(p). 

n(p, .r 

Decision dependent uniform distribution 

For linearly dependent uniformly distributed random variables a and j3 (with supports 
[0:2,0:1] and [^1 ,^2]) such that £(p) ~ U(a(p), b(p)), it can be obtained: 

/ \ / x , x fx x-t[p) , , . [HP) t(p)-x , , . 
n(p, x) = (p - c)x -(p-v) ja{p) b { p ) _ a{pf(p) ~ s jx b { p ) _ a { p f ( P ) 

(p - v)[x - a(p)]2 s[x-b{p)f 
= [p — c)x - 2[b(p)-a(p)] 2[b(p)-a(p)Y 

Solving the first order condition dIlg^ = 0, the following expression is obtained for 
optimal x: 

(c — v)a(p) + (p + s — c)b(p) 
x 

,2, 

p + s — V 

Substituting x* into IL(p,x) we get Il(x*,p) = (p - c)x* - h(p)~a(p)[{p - v) { ^ ^ f + 

Kp+s—v, which can be expressed as (p — c)x* — h ^ 2

a ^ [(p — v)j32 + s (jf^J ]. 
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Example: Let us take the following values for the model parameters: po = c = 10, 
Pi = 40, v = 8, s = 2, ao = 45, a\ = 15, bo = 60, and b\ = 20; the related ct\, a2, Pi, f32 can 
be derived by common straight line calculations using the facts that ao = a(po), ai = a(pi), 
bo = b(p0), and bi = b(p1). Then, x m a x = 27.29, p m a x = 32.85, and n (p m a x , ^max) = 
564.8. Therefore, we can see that by considering the price p as a variable, we achieve 
an improvement in the profit; this is an illustration of the key idea of the introduction 
of pricing in the model. To illustrate this observation graphically, we further consider 
the continuous probability distribution analyzed above, ~ U(a(p), b(p)), and the 
aforementioned calculations. See Figures 2 and 3 for a graph of the uniform distribution 
domain. There is only an "inner part" of the function U(p,x) (that corresponds to f2 

from Figure 2.1) in Figure 3, since the objective function maximum is always achieved 
here. 

500.. 

(a) Domain (p,x) of the example. (b) Inner part of the objective function x). 
Figure 3.1: The domain and the objective function of the example. 

3.2. T N D P with pricing 

In addition to the network-design decision variables, which represent the inclusion of 
additional edges (see Section 2.2), pricing variables are included herein. The main idea is 
as follows: if the network operator has the possibility of decision on price(s) charged to the 
customers, the demand profile of the customers can adapt and this can lead to overall more 
sensible network designs. Moreover, since suppliers have imperfect information about the 
demands of their (potential) customers in real-world problems, a scenario-based approach 
to the uncertain demand is used (as in subsection 2.2.2). 

Thus, the entire Section 3.2 concerns the problem of determining the pricing and 
production decisions (i.e., transportation and network design) of a single continuously di
visible item in T N D P over a single period for a stochastic price-dependent demand. More 
specifically, in subsection 3.2.1 it is considered that demand is linearly price-dependent, 
while it is considered that demand is a nonlinear (isoelastic) function of the price in sub-
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section 3.2.2. Remind paper [86] for the linear as well as nonlinear case and [129] for an 
even more general pricing approach which was mentioned in subsection 3.1.6. 

3.2.1. WS reformulation of stochastic T N D P with linear pricing 

In this subsection, the demand is a linear function of price. More specifically, the demand 
is considered to be decreasing, continuous, and defined on a closed interval [86]. Thus, 
the demand function is defined as (for each scenario s and each customer i): 

bi,s(Pi ßi &i,sPi,s , 

where aijS and /3itS capture/reformulate the uncertainty (or uncertain parameters) in the 
linear demand function bijS for a concrete customer i and a scenario s. The scenario-based 
approach assumes to have enough observations of the parameters (for each customer, 
one observation presents one particular scenario, i.e., one particular market situation). 
Then, the selling price pijS is the decision variable (as it is described below). For concrete 
examples see results and figures at the end of this subsection (e.g., figures 3.3a and 3.3b 
and Table 3.3, respectively). 

Then, the following W S (stochastic) mixed-integer bilinear program is defined. Re
mind, that the model is solved for each considered scenario: 

VsG5: 
max J2J2A* 

s.t. 

e%e,sPi,s ^ ] cex e,s - d-En8En 

e€E En(zE„ 
= Ks - v t , + Vi,„ Vz G / , Ks - v t , + Vi,„ 

= b.r- V j G J, b.r-

E A.f~^eXe^s = bk, Vfc G K, 

XEn < SE„,S E (~bj), \/EN G E, 

Vta < ^i,s j Vz G / , 
> o, Ve G E, 

G {0,1}, VEN G E, 

Vi,si Ui,s > o, Vz G / , 
Pi,s > Pi 1 Vz G / , 
Pi,s < Pi •> Vz G / , 
bi,s = ßi,s ^i,sPi,Sf Vz G / , 

(3.23) 

where the following notation is different comparing to the model (2.14): 

• the decision variables are: 

Pi)S : the unit selling price of the product at a node % in scenario s, 

• and parameters: 
aijS : the slope of the linear demand function bijS for customer i in scenario s, 
ßitS : the intercept of the linear demand function bijS for customer i in scenario s, 
pmm . a p r j c e i o w e r bound for customer i, 
p-max . a p r i c e U p p e r bound for customer i. 
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Note, that bijS are the the linear demand functions capturing the decision-dependent 
stochastic (scenario-based) demand parameter. 

Hybrid algorithm for the W S deterministic reformulation 

The aforementioned model (3.23) was programmed in G A M S and solved through the use 
of C P L E X and X A solvers for small test instances obtaining acceptable results. The 
solution used attempted to solve larger test problems in the same way and has led to 
increasing computational time needs. It is evident that it wil l be necessary to use a 
heuristic-based algorithm for the nonlinear pricing network design problem that follows 
as a logical step of our model development (see subsection 3.2.2). Thus, the authors of 
the paper [A7] have decided to utilize previous experience (see, e.g., [A6, A13, 98]) and 
modified previously-studied and developed hybrid algorithm that combines the G A M S 
code with a chosen genetic algorithm ( G A ) . The C + + implementation focusing on G A M S -
G A interface features is set up for the modified G A that was discussed in [96]. The use 
of the algorithm was initially considered for T N D P problems in [A13]. The scheme of the 
algorithm as well as its implementation was already presented in previous papers (e.g., 
[A6]). 

The G A used was presented in the previous work ([A6, A13]). See, e.g., [A6] for a 
short review of the key ideas of the utilized G A that functions as the main part of the 
hybrid algorithm or see a detailed description in the next subsection, i.e. subsection 3.2.2. 
It follows the previous ideas of one of the authors ([96, 97]). 

The main idea of the hybrid algorithm is based on the solution of a stochastic program 
for various sequences of fixed 0 — 1 variables repeatedly for each scenario. The initial idea 
of the algorithm from [A13] was modified in [A6] and is used for this problem, again. 
The optimal objective function values are obtained together with these sequences of zeros 
and ones. They serve as the input fitness value plus elements of the populations for 
G A instances that utilize their own steps (selection, crossover, mutation, and further 
modifications as limited lifetime and sexual recombinations, see [96]) that are hidden 
within the G A structure. Updated sequences of zeros and ones are generated by the G A 
and sent to the G A M S through the updated $INCLUDE file, and the computational loop 
continues until the moment when the satisfactory improvement of the network design is 
obtained. The algorithmic details follow in subsection 3.2.2; see also Appendix B . l for 
selected parts of G A M S code used. 

Computations and results 

Computational results of the model (3.23) are presented here; for comparison purposes, 
the test examples from previous work are utilized (see Figure 2.2). The main emphasis is 
placed on the network design and on the effect of pricing. 

Results of the computations: The model (3.23) was solved for 100 scenarios. Re
sults of the computations are described in Figure 3.2, where the line thickness represents 
frequencies (i.e., for how many scenarios the edge should be built), and hence, probabil
ities that variables SE:S are equal to 1 (or x 6 j S are non-zero for related edges). The fixed 
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lines are drawn as dashed lines to emphasize the role of the edges generated by the WS 
computations. It can also be seen that the stochastic demand usually requires new edges 
to bring about the necessary recourse in the results. In comparison with the H N solutions 
(cf. [A13]), this can be done in a more flexible and cheaper way. See also Table 3.3, which 
provides some numeral results of the frequencies for 100 scenarios. 

Figure 3.2: Summary results graph of the computations: network design variables for 100 
scenarios; line thickness represents the edge usage frequency. 

Effect of pricing: Some illustrative insights for parameters of the linear function are 
provided in Table 3.3 and in figures 3.3a and 3.3b. It can be seen that for some of the 
customers, the price decisions pi)S are determined such that the demand bi)S is equal to 0 
(e.g., for i = 2). This means that the pricing strategy allows us to reduce the number of 
supplied customers by the price decision. On the other hand, some of the price decisions 
are on the bound p™m or p™ax (e.g., for i = 6; see also Figure 3.3b). 

Comparing the obtained results with the results published in [A6], it can be seen that 
the total number of the designed edges (the 0-1 variables) as well as its variability have 
decreased due to the pricing strategy used. Moreover, pricing usually leads to a significant 
improvement in the objective function value (it should never obtain the worst solution). 
Even if the linear pricing does not capture reality very well, it helps us to understand how 
the pricing technique works, e.g., the obtained results provided in Table 3.3 or Figure 3.3 
serve as suitable illustrative tools. 
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Figure 3.3: Linear pricing functions for a fixed scenario (s = 2) with highlighted optimal 
p*}S; used bounds: pfn = 5, pfax = 20. 

Table 3.3: Parameters a and j3 (for s = 2) and computational results (for 100 scenarios); 
remind that nodes 15 and 16 are production places. 

Node Demand and price Shortages /Leftovers Edge Frequency 
i Ph h,2 En l^s=l °En,s 

1 1.370 19.848 11.246 4.441 0 0 16-11 83 
2 1.798 19.989 11.119 0 0 0 13-6 42 

17-27 25 
6 0.150 10.749 20 7.754 0 0 27-8 25 

12 0.295 12.474 20 6.579 6.579 0 

15 -63 0 19.090 23-14 1 
16 - 110 0 96.299 6-3 1 

3.2.2. WS reformulation of stochastic T N D P with nonlinear 
pricing 

This subsection presents a scenario-based W S stochastic M I N L P , which models the de
sign of a transportation network under (non-linearly) price-sensitive stochastic demand. 
Due to the growing popularity of the development of pricing strategies and their further 
applications in industry, the author follows up on previous modeling ideas presented in 
subsection 3.2.1 (or [A7]), where a M I L P with linearly price-dependent stochastic demand 
was modeled. Thus, this case extends the previous model into a more complex case with a 
nonlinear (isoelastic) price-demand dependency and, therefore, the authors also modified 
the previously used hybrid algorithm ([A7, A13]). 

Before the stochastic problem and its W S reformulation are presented, the isoelastic 
pricing function is described. 
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Isoelastic pricing 

Consider a price-setting firm that faces a price-dependent demand function, biiS(piiS), 
describing the dependency between price pi:S and demand b{:S for each customer denoted 
by i and for each possible scenario s. For most goods the elasticity (the responsiveness 
of quantity demanded to price) is negative, so it can be convenient to write the constant 
elasticity demand function with a negative sign on the exponent, in order for the coefficient 
to take on a positive value: bijS(pijS) = cti,sPi s%'s'•> such isoelastic function should capture 
(the most common) real-world situations. 
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Figure 3.4: Example of an isoelastic demand-price function. 

W S stochastic T N D P model with isoelastic pricing function 

In order to develop the mathematical model, the following notation must be changed 
comparing to that used in the model (3.23): 

• the (scenario-based) parameters: 

ctijS : a constant presenting effectiveness of the pricing function biyS for customer i 
in scenario s, ct^s > 0, 

Pi:S : the elasticity (the responsiveness of quantity demanded to price or 
the magnitude of the responsiveness) of the demand function bii8(Pi,8) 
for customer i in scenario s, /3ijS > 1. 

Thus, the stochastic (scenario-based) T N D P with isoelastic pricing is formulated us
ing the W S approach; remind that the model is solved repeatedly, i.e., once for each 
scenario: 
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V S G 5 : 

max Ai)exe)Spi)S 

•Xe,s — E ^En e£E En(zE„ 
s.t. E A{^exe^s = Vz G / , 

E Aj^exe^s = V j G J , 

= Vfc G K, 

< SEn,s E (-bj), \/En G i ? n , 

Vts < Vz G / , 
> o, Ve G E, 

^ &En,a 
G {0,1}, VEn G 
> o, Vz G / , 

Pi,s > TrnJin 
Pi , Vz G / , 

Pi,s < Pi , Vz G / , 

= ai,sPi,s , Vz G / . 

Obviously, the problem (3.24) is mixed-integer nonlinear, but it seems that the exact 
solvers deal with a linearized (MILP) version of the problem. Such nonlinear problems 
often require a heuristic approach, especially large-scale problems. Therefore, a hybrid 
algorithm is further proposed in the rest of this subsection. 

Hybrid algorithm for the W S approach 

The above-mentioned model was coded in G A M S and solved by the B A R O N , M I N O S , and 
C P L E X solvers for suitable test instances. The obtained results are considered accept
able. The next solution attempt targeted large test problems using the same techniques; 
however, this led to an increase in the computational time required [A3]. 

Due to the above, the decision to utilize previous experience was made; see [A13, 51]. 
This resulted in the implementation of a modified hybrid algorithm combining the G A M S 
code with a selected genetic algorithm (GA) . The C + + implementation concentrating 
on the G A M S - G A interface is developed for the updated G A , as was discussed in [96]. 
This can also be replaced by other G A s [73]. The principles of the following algorithmic 
scheme follow the papers [A 13] and [51]: 

1. Initialize the computer environment for parallel computations. 

2. Define the scenario-based G A M S model and load the model and data into *.gms files 
for each scenario. Specify the control parameters for the G A so that one instance 
is created for each scenario. The parameters can be defined either by the user (e.g., 
the population size) or inherited from the G A M S code (e.g., how many edges in the 
network should be taken into account). 

3. Bui ld an initial population for each G A instance. Specifically, the initial values of 
0-1 variables must be generated and copied in the $INCLUDE files, from which they 
are read by the G A M S code. 
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4. The G A M S model is repeatedly solved (in parallel, two loops, one for scenarios and 
one by population size) by using the M I N O S solver. Each run solves the program 
for the fixed values of 0-1 variables. The profit (or, alternatively, cost) function 
values are computed (initially in 3. and then in 8.). 

5. The best results obtained from G A M S in 4. are saved for comparisons. 

6. The termination conditions for the algorithm are tested (in parallel) and the algo
rithm is terminated if they are met. Otherwise, the algorithm proceeds until the 
last scenario solution is obtained. 

7. Input values for the G A from G A M S results are generated, see step 4. Specifically, 
the profit function values for each member of the population of the G A are received 
from the results of the G A M S runs in 4. 

8. The G A run leads to an update of the set of 0-1 variables (population), see [96] for 
details. 

Broadly speaking, the G A works with 0-1 variable 5E„S for each scenario s, while M I N O S 
solves the remaining nonlinear problem (NLP) for fixed binary variables 5iiS, i.e., M I N O S 
computes an optimal x 6 j S , pi)S as well as value of the objective function. Afterward, the 
value of the objective/fitness function from model (3.24) is sent back for the solution 
assessment and then, according to 6., the algorithm continues. 

Description of the utilized genetic algorithm 

This section shortly reviews the key ideas of the utilized G A that functions as the main 
part of the hybrid algorithm; see Section 3.2.2. It follows the previous ideas of one of the 
authors [96]; see also [A13] for its extension. 

In general, a set of genetic operators is considered that contains: the crossover opera
tor, the mutation operator, and eventually other problem-dependent or implementation-
dependent operators. A l l of these operators generate descendants from parents. The 
parent selection operator and the genetic operators have a probabilistic character and the 
deletion operator is usually deterministic. The fitness value / is a non-negative number, 
which captures a relative measure of the quality of every individual in the current pop
ulation. The run of G A used can be described using the following steps: (1) Generation 
of the initial population (random generation is often used) composed of individuals. (2) 
Computation of fitness function values related to 1). (3) Parent selection and generation 
of offspring. (4) Creation of the new population by using deletion operator and addition 
of offspring generated in the previous step. (5) Mutation. (6) If the stopping rule is not 
satisfied, go to step 3), otherwise continue to 7). (7) The result is the best individual in 
the population. It is usually advantageous to use some redundancy in genes, and then 
the physical length of the genes can be greater than one bit. Such a type of redundancy 
by shades was introduced by Ryan [100]. To prevent degeneration and deadlock in a 
local extreme, a limited lifetime of individuals can be used. This limited lifetime is im
plemented via a death operator [96], which represents something like a continual restart 
of the G A . Many G A s are implemented on a population consisting of haploid individuals 
(each individual contains one chromosome). However, in nature, many living organisms 
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have more than one chromosome and there are mechanisms used to determine dominant 
genes. Sexual recombination generates an endless variety of genotype combinations that 
increases the evolutionary potential of the population. Since it increases the variation 
among the offspring produced by an individual, this improves the probability that some 
of them wil l be successful in varying and often unpredictable environments. The modeling 
of sexual reproduction is quite simple. The population is divided into two parts: males 
and females. One parent from each part is selected for crossover. The sex of the individ
ual is stored in the special gene; this gene is not mutated. The sex of the descendant is 
determined by a crossover of the sexual genes of the parents, with the descendant placed 
into the corresponding part of population. The replacement scheme is associated with 
another problem. To ensure monotonous behavior, incremental replacement (steady-state 
replacement) was introduced. Least-fit member replacement can be used where one (or 
more) elements with the worst fitness is replaced, or randomly chosen element(s) can 
be replaced. Therefore, elitism presents a way to keep monotony while generational re
placement is used. One or several best individuals represent the elite. The entire elite is 
directly taken into the next iteration. 

So, the G A used herein for problem-related computations uses ranking selection, hap-
loid chromosomes, shadows, and limited lifetime, as described above. Uniform crossover 
was used and the probability of mutation of every gene was 5%. Every 0-1 variable was 
stored in one gene, having a length of 3 bits. This redundant coding uses the shades 
technique mentioned above. The population size was 20 individuals; such a low value 
was chosen in relation to the computational complexity of the evaluation of fitness. The 
maximum number of iterations was limited to 50. The maximum lifetime of an individual 
was set to 5 iterations. 

Computations and results 

The main idea of the hybrid algorithm is based on the solution of a stochastic program for 
various sequences of the fixed 0 — 1 variables repeatedly for each scenario. This extends 
the idea of [A13] with modifications of the hybrid algorithm in Section 3.2.2. Thus, the 
optimal objective function values are obtained together with these sequences of zeros and 
ones. They serve as the input fitness value plus elements of the populations for the G A 
instances that utilize their own above-mentioned steps that are hidden within the G A 
structure. Updated sequences of zeros and ones are generated by the G A and sent to the 
G A M S through the updated $ INCLUDE file and the computational loop continues until a 
satisfactory improvement of the network design is obtained. For the purpose of future 
comparison, test examples from [A7] were utilized. The comparison between M I N O S and 
the proposed hybrid solution wil l be the subject of a future research, but it was already 
shown through other M I N L P problems that the usage of exact solvers is not applicable in 
real (large) problems due to the huge computational timeframe involved [A7]. Therefore, 
the use of the hybrid approach has one more reason in the M I N L P ' s . 

Figure 2.2 represents an initial visualization of an example. The results are described 
in Figure 3.5, where the thickness of the lines represents the frequencies of usage in m 
scenarios, and hence, the probabilities that variables xe related to the edges are non-zeros. 
The fixed lines are drawn as dashed lines to emphasize the role of the edges generated by 
the W S computations. It may also be seen that the stochastic demand usually requires 
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new edges to bring about the necessary adaptation in the results. In comparison with the 
H N solutions (cf. [A13]), it can be done in a more flexible and cheaper way. Figure 3.5 
also shows that only suboptimality has been reached by computations for some scenarios, 
as extra unnecessary edges are switched on by the G A runs (e.g., 5-28). 

Figure 3.5: Visualization of results for the hybrid algorithm for 100 scenarios. 

To compare the obtained results, due to the extreme time requirements of finding 
a traditional G A M S M I N L P solution, one scenario case was utilized; visualization of 
the result is provided in Figure 3.6. However, author leaves further comparison of time 
requirements as well as the values of objective functions for further research. 

Figure 3.6: Visualization of results from GAMS for 1 scenario. 
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Discussion 

The entire Section 3.2 presents a stochastic programming approach to the T N D P with 
stochastic price-dependent demands while subsection 3.2.2 deals with the isoelastic form 
of the price-demand function. The proposed mixed-integer nonlinear model is solved 
with the original hybrid algorithm involving G A for the solution of the W S network 
design problem. The previously introduced hybrid algorithm (see [A7, A13]) has been 
modified and successfully tested. This reconfirms authors' conclusions in [A13] about the 
portability of the approach to other problems. 

In author's further research, it is planned to compare (or improve) the proposed hybrid 
algorithm with similar ideas dealing with differential evolution, specifically with multi-
chaotic success-history based parameter adaptation for differential evolution [A4], which 
is a novel version of the standard G A that, hopefully, may achieve better computational 
results for the M I N L P problems. Moreover, some obvious suboptimalities (see, e.g., Figure 
3.5) produced by the G A can easily be eliminated by appending a local search procedure 
to the G A run. 

Similar mixed integer (nonlinear) stochastic programs may appear in many application 
areas, including N D P [89], traffic networks [51] or waste management problems [A4, 136]. 
Therefore, the suggested hybrid algorithm can be modified and widely applied. 
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Chapter 4 

Newsvendor Problem with 
Advertising 

Coordinating marketing and production decisions still ranks as one of the most chal
lenging practical and theoretical problems of operations management. Indeed, a number 
of producers have used innovative marketing strategies to gain effective control of their 
inventories. This chapter discusses the problem of simultaneously determining the quan
tity necessary to order and the advertising expenditure required for a product for which 
demand is random. 

Again, the problem is approached by formulating a stochastic single-period problem, 
which is referred to as the NP. 

A typical N P reveals that the quantity ordered maximizes the expected profit. In 
the setting given herein, the newsvendor is faced with advertising-sensitive stochastic 
demand where the demand-related random element depends on advertising decisions. 
It is assumed, that a suitable advertising strategy can lead to increases in sales. Note 
that the assumption of a fixed price corresponds to an instance of the buyers effectively 
representing mere price-takers. 

Although, N P has been studied for decades, it still serves as a suitable tool to illustrate 
many new marketing situations ([20, 54, 105, 123]). In this chapter, it is used notation that 
is frequently utilized for the newsvendor problem with pricing (NPP, see section 3.1) in 
order to show how marketing aspects interact with production decisions in the newsvendor 
problem with advertising (NPA) . Moreover, inspired by [86], who presented findings on 
N P P for the linear price-demand function in an additive demand model, as well as the 
hyperbolic price-demand function for a multiplicative demand case (higher prices cause a 
decrease in demand), suitable (and more complex) functions related to various advertising 
situations for additive and multiplicative cases (an increase in advertising expenditure 
brings about higher sales) are presented. Using suitable notations and procedures, it is 
the aim to further the understanding of the matter and to present new results. 

Note, that this chapter is mostly based on material that was published in [A2]. 
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4.1. Literature review 
The various sources of literature pertaining to the subject are detailed below (in addition 
to the above mentioned topics, i.e. N P and N P P ) . Prior to introducing the model as 
one comprising a combination of conceptual notions, a review is given on the primary 
resources utilized. 

4 .1.1. Advertising 

Advertising policy is a crucial aspect of marketing. The key questions are the following: 
What is the effect for the retailer? How much should be spent on advertising? How 
often? What marketing channel should be used? The authors of [11] and [55] published 
two possible approaches to expenditure frequency - a constant advertising stream (ex
tremely expensive) or pulses of advertising conducted at irregular intervals (the preferred 
option); see also [63]. A major issue is that concerning the actual effectiveness of advertis
ing. Advertising response functions are typically assumed to adhere to the following: (1) 
a concave-downward function (usually an advertising response function without a thresh
old); (2) an S-shaped logistic function (an advertising response function with a threshold); 
for reference purposes see [5, 7, 55, 68, 107]. In general, the responsiveness of sales to 
advertising may start to decline beyond a level of spending on advertising ([8]). This 
phenomenon of diminishing returns is better represented by a downward-sloping curve 
on a graph in which the advertising levels relate to the sales results. Alternatively, some 
modelers prefer to assume that the relationship is actually S-shaped. Initially, when ad
vertising budgets are low, sales exhibit no response to advertising at all. It is supposed 
that it takes some time for advertising to take effect as repeated exposure is required. 
Afterward, a point of increasing returns is discerned when sales really begin to respond to 
further advertising once the advertising budget exceeds a minimum, critical-level thresh
old. Eventually, the curve begins to slope downwards again, when the phase of diminishing 
returns reappears; see also [44] for further analysis of the S-shaped function. Publications 
by [64, 80, 87] provide a comprehensive overview on such themes and proceed to detail 
recent principles of marketing. 

4.1.2. The newsvendor problem with advertising 

A single period inventory problem with advertising was given by [38]. Furthermore, the 
interface between decision-making on marketing and manufacturing has been studied by 
many researchers, examples being [13, 28, 35, 48, 69, 72], to whom reference is made in 
this paper. 

The effect exhibited by advertising on sales represents an important aspect of demand-
based problems. When a retailer/newsvendor faces demands of the stochastic advertising-
sensitive type, he is forced to make decisions concerning advertising and inventory prior 
to the demand being met [116]. [63] and [116] assume that the mean demand is strictly 
increasing and strictly concave in advertising expenditure. [63] provides an extensive re
view of related literature and the advertising problem, attempting to solve the problem 
for uniform, exponential and normal demand distributions. [118] investigated circum
stances under which advertising leads to increased sales under additive demand. Later, 
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[117] extended the problem to cover the situation pertaining to a perishable product sub
ject to being ordered under emergency conditions, first for a multiplicative model, then 
going on to investigate the general demand function in [116]. Finally, [119] applied the 
results to coordinating a supply chain with advertising, as well as setting a price for the 
manufacturer. 

4.2. Problem formulation and demand function 

In the classical N P (see Section 2.1) or in the N P P (Section 3.1), the newsvendor's mar
keting effort, which can be used to enhance the demand, is not taken into consideration 
at all [20]. Therefore, the following situation is assumed: First, the retailer has to decide 
about an amount a to advertise for a product to be sold and simultaneously has to buy 
and stock x units of the product for a unit cost c. Then, the selling period begins. If 
demand D is greater than x, all stocked units are sold for revenue px, where p is a unit 
price, p > c. In this case, a loss given by a unit shortage penalty cost s for all shortages, 
D — x, is considered. Otherwise, if demand D is less or equal to x, the revenue is only 
pD and leftovers, x — D, are salvaged through a unit salvage value v, v < c. Then, the 
objective (profit) function is denoted by ir(a, x, £ m , £ a ) being defined as follows: 

The decision variables are the order quantity denoted by x and the amount spent on the 
advertising denoted by a, while the demand D(a, £ a , £ m ) , which depends on the advertising 
expenditure a and is affected by the random elements £ 0 , £ m , is not completely known 
when the decisions are made. 

One of the keys to understanding the marketing problems lies in the relation between 
demand and advertising response function. Therefore, the next section focuses on the 
demand function together with the definition of its related uncertainty. Then, the basic 
concepts of the advertising response function are presented. 

4.2.1. Demand function and randomness 

Also this modification of the N P deal with problems where the decision-maker does not 
know the real demand. Therefore, the demand is further modeled using a (response) func
tion, which can be affected by the advertising expenditure and which somehow depends 
on a random element (similarly as in Chapter 3.1). 

Inspired by many papers on the N P P ([58, 75, 86, 129]) and some on the N P A ([62, 
116, 118]), it is further assumed that advertising-related randomness is independent of 
the demand, which helps to avoid complexities. 

Let the demand function be denoted as D(a,£a,£m) now and let it satisfy 

where £ a ,£m are independent continuous random variables. This chapter further deals 
with two special cases of demand function D(a,^a,^m): a) the multiplicative demand 

(4.1) 

D(a,Ca,Cm) = d(a)Cm + C, (4.2) 
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case (section 4.3) and b) the additive demand case (section 4.4). In order to define the 
multiplicative demand case, let P ( £ a = 0) = 1 and let the random variable £ m be defined on 
the domain [Am, Bm] and satisfy E[£ m ] = 1. In the additive demand case, let P(£,m = 1) = 
1 and let the random variable £ a be defined on the domain [Aa, Ba] and satisfy E[£ a] = 0. 
Then, for both cases, the expectation of D is specified as: E[D(a, £ a , £ m ) ] = d(a). 

In comparison with the N P P references where the additive form of the randomness 
is commonly used for the linear demand function while the multiplicative form for the 
hyperbolic demand function, this chapter examines the effects of the additive as well as 
multiplicative form on the optimal advertising strategy for the concave and the S-shaped 
functions, which, on other hand, corresponds to some ideas in the N P P study [129]. 

Before the multiplicative demand form is modeled and examined in section 4.3 and 
the additive demand form in section 4.4, assumptions and properties of the advertising 
response function d(a) are introduced. 

4.2.2. Advertising response function 

The response function describes the sales effect of additional amounts of advertising, even 
though it sometimes illustrates the amount of advertising needed to trigger buying [55]. 
Two (general) functions that are often used are further assumed: a) the concave response 
function, which is presented in subsection 4.5 ([55, 63]); b) the S-shaped response function, 
which is presented in subsection 4.5 [55]. 

Although the S-shaped function is very important from the marketing literature per
spective, it has not yet been considered by researchers dealing with operational research 
in the discussed context. According to the marketing literature trying to approximate 
the advertising situations, the S-shaped function is defined as a bounded real function 
defined for all nonnegative input values with a positive derivative at each point, which 
is first convex and then concave. It means, in the beginning, when advertising budgets 
are low, sales do not respond significantly to advertising. It supposedly takes time for 
advertising wear-in. It can be seen the point of increasing returns, as sales really begin 
to respond to increased advertising, as the advertising budget exceeds some minimum 
critical-level threshold. Finally, the curve begins to slope downward again, as once again 
the diminishing-returns phase appears, see [5, 7]. 

Let the response function d(a) be continuous, nonnegative, twice-differentiable and 
increasing on its domain [0, amax] in the advertising expenditure a [62, 68]. Moreover, 
since d(0) > 0 holds, d(a) is positive. 

To capture a real situation/dependency between the advertising expenditure and de
mand, three particular functions are presented in section 4.5, which are provided for their 
illustrative-suitable behavior. 
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4.3. Multiplicative demand model 
Let the demand function D(a, £ O J £ m ) be defined in the multiplicative form (see subsection 
4.2.1) and let F(-) denote a cdf and /(•) be a pdf of £ m . In order to assure that demand 
is positive, it is required that Am > 0. Then, the demand is in the multiplicative form 

DM(a,Cm) = d(a)Cm, (4.3) 

see [58] for similar ideas in the N P P . The objective function (4.1) can be rewritten by 
substituting (4.3) and utilizing the 'stocking factor' defined as 

(4.4) 
~ d(a)' 

where z > 0 (note that if x = 0 and since d[a) > 0, then z = 0). A similar transformation 
of the objective (variable transformation, respectively) has already been used to simplify 
the calculations in the N P P [86, 134]. It provides an alternative interpretation of the 
stocking decision: if the choice of z is greater than the realized value of random variable 
£ m , then leftovers occur, otherwise shortages occur [86]. A n important managerial inter
pretation for z demonstrates that, although z is defined differently for each of the two 
mentioned demand cases (see section 4.4 for the additive case), its meaning is consistent 
for both: z represents a stocking factor that [86] defined as a surrogate for safety factor 
by [106]. 

Then, the N P A is as follows: 

, t . J pzd(a) - czd(a) - sd(a)[£m - z] - a, for z < f m , 
7r(a, z, £m) = < (4-5) 

[ p£md{a) - czd(a) + vd(a)[z - £m\ - a, for z > £m. 

For better understanding, notation for both multiplicative and additive cases is unified: 
the same symbols TT are also used for both objective functions involving either x or z 
variables. 

The objective is to maximize the expected profit by choosing a and z. However, the 
optimal solution is not necessarily an interior solution, in particular, the value of z can 
be on the boundary, Am or Bm [134]. 

The expected profit U(a,z) can be expressed as: 

n(a, z) = E[7r(a, z, U)} = d(a) f [pt + v(z - t)] F(t)dt 

+d(a) / [pz - s(t - z)] F(t)dt - czd(a) - a (4.6) 
J z 

Defining the riskless profit [75, 86], which would occur in the absence of uncertainty, as 

*(a) = (p - c)d(a) - a, (4.7) 

and the so-called expected loss per unit as 

l(z) = (c - v)A(z) + (p + s - c)O(z), (4.8) 
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where d(a)A(z) denotes expected leftovers and d(a)Q(z) expected shortages, the expected 
profit given by (4.6) can be rewritten as 

n(a, z) = (a) - L (a , z) = d(a)[p - c - - a. (4.9) 

Note that L(a,z) = d(a)l(z) is the expected loss that occurs as a result of the presence 
of uncertainty [86, 106] and p — c — l(z) denotes the so-called per-unit expected benefit, 
i.e., margin minus expected loss. If z is chosen too high, in (4.9) or in (4.8), respectively, 
an overage cost (c — v) appraises each of the d(a)A(z) expected leftovers, and, if z is 
chosen too low, an underage cost (p + s — c) appraises each of the d(a)Q(z) expected 
shortages. The equivalence of expressions (4.6) and (4.9) can be obtained by a sequence 
of straightforward substitutions; see Appendix A.2 . 

Remark 4.3.1. The transformation from x to z presents an advantage of determining 
optimal values a* and x* that maximize the expected profit, using the following steps: 

1. A n optimal stocking factor z* is first determined using input parameters (subsection 
4.3.1). Because of the form of (4.9) and (4.6), z* can be obtained independently on 
optimal value a*. 

2. Using a suitable function d(a), an optimal advertising a* can be expressed and an 
optimal order quantity x* is determined such that x* = z*d(a*) (subsection 4.3.2). 

4.3.1. Optimal stocking quantity 

To maximize U(a,z) over two variables, two steps described in Remark 4.3.1 are fol
lowed. Solving the first order condition (with respect to z), an expression for optimal z 
is expressed as: 

F(z*) = P ± ^ . 
p + s — V 

It is comparatively easy to show that H(a, z) is concave in z on [0, oo): d g^' 2^ = (v ~P~ 
s)F(z)d(a), where v — p — s < 0. Moreover, assuming that F is invertible, the optimal 
and unique z* can be expressed as 

*• = F " 1 { 2 ± l ^ l \ , (4.10) 
Kp + s 

which corresponds to the standard N P result [93, 121]. 

4.3.2. Optimal advertising expenditure 

Substituting (4.10) into (4.9) leads to the following expected profit expression: 

n(a, z*) = d(a)[p - c - l(z*)] - a, (4.11) 

where l(z) is given by (4.8). Notice in (4.11) that, Hp — c — l(z*) < 0, the expected profit 
H(a,z*) is, under our assumptions about d(a) in subsection 4.2.1, negative and strictly 
decreasing in a, which does not capture any real situation [116], similarly if p—c—l(z*) = 0. 
This leads to the following assumption. 
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Assumption 4.3.1. The per-unit expected benefit must be positive, i.e., p — c — l(z*) > 0. 

This assumption simply means that the expected profit per unit is greater than zero 
(price p minus cost c minus expected loss per unit l(z*) is greater than zero). Otherwise, if 
a loss is expected, the only good strategy is to "do nothing" (x = a = 0 and so z = 0), see 
section 4.6 for illustrative examples. As Assumption 4.3.1 depends on the expected loss 
function l(z), it also depends on the distribution F. The more shortages or leftovers are 
expected (caused, for example, by greater variance of the distribution), the greater is the 
expected loss l(z). Similarly to other parameters from the expected loss function given by 
(4.8), e.g., as s increases, so does l(z). Since the assumption is crucial for further analysis, 
more detailed insights for the uniform distribution is provided in subsection 4.6.1. 

Further, the expected profit expression given by (4.11) is assumed. Solving the first 
order condition of H(a, z*) with respect to a, leads to the following remark. 

Remark 4.3.2. The optimal advertising expenditure a* must satisfy the (necessary) opti-
mality condition, which is given by: 

^1 = I U 12) 
da p-c-l{z*)' v ' ' 

4.3.3. Monotonocity 

Consider the second derivative of the expected profit given by (4.11): 

f ^ - f M f r - t - W . , 4 , 3 , 

Then, due to Assumption 4.3.1, the following lemma is obtained from (4.13). 

Lemma 4.3.1. The intervals of concavity and convexity of the expected profit H(a, z*) with 
respect to a are identical with the intervals of concavity and convexity of the response 
function d(a). 

The following assumption, together with Assumption 4.3.1, wi l l further help us to guar
antee solution/optimality uniqueness for selected types of demand functions (i.e. for the 
concave and the S-shaped function). The assumption results from expression (4.9), or 
(4.12) respectively. 

Assumption 4.3.2. The demand function d(a) satisfies that limAa-)>o+

 rf(A<^~rf(°) > _ — L _ 
nnrl K m » d ( a m a x ) - d ( a m a x - A a ) 1 

and l i m A a ^ 0 + ^ < P-c-i(z*) • 
Remark 4.3.3. In such case, where the function d{a) is defined on a higher range than 
[a, amax], the conditions can be rewritten to: > p _ c \ ^ and d d ( a ™ ^ < _ _ L _ _ 

Concave response function 

Suppose that the demand/response function d(a) is strictly concave in domain of a [63], 
see Figure 4.1. Then, the following theorem can be deduced. 

Theorem 4.3.2. If the response function d(a) is strictly concave, then, under assumptions 
4.3.1 and 4.3.2, the expected profit U(a,z*) is strictly concave in a and so the globally 
optimal advertising expenditure a* is unique and is given by solution of (4.12) with respect 
to decision variable a. 
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Proof. Since the response function d(a) is considered to be strictly concave in its domain 
then under Assumption 4.3.1 and Lemma 4.3.1, it is obtained that LI(a, z*) is also strictly 
concave in a, see (4.13). Moreover, under Assumption 4.3.2, the expected profit U(a,z*) 
is to be increasing at the initial point and decreasing at the end point. Then, the crit
ical point determined from the optimality condition (4.12) is unique and is the optimal 
advertising amount a* (see section 4.6 for illustrative examples). • 

S-shaped response function 

Theorem 4.3.3. If the response function d(a) is S-shaped, then, under assumptions 4.3.1 
and 4.3.2, the expected profit LI(a, z*) is strictly quasi-concave in a and so the globally 
optimal advertising expenditure is unique and is given by (4.12). 

Proof. Since the response function is supposed to be S-shaped, under Assumption 4.3.1, 
the expected profit function LI (a, z*) is also first convex and then concave in a. Moreover, 
using Assumption 4.3.2, the expected profit LI (a, z*) increases at the initial point and so 
it wi l l increase until it reaches its maximum. In other words, LI(a, z*) is strictly quasi-
concave in a. Then, from the optimality condition (4.12), one critical point a* can be 
expressed that presents the optimal advertising amount, which always lies in the concave 
range (see section 4.6 one illustrative and one counter example are provided). • 

In order to solve the original problem of maximizing the expected value of the objective 
function given by (4.1) with respect to decision variable x, a final step is to determine an 
optimal order quantity x* from (4.4). The pair [a*,x*] then presents the optimal solution 
of the original N P A given by (4.1) for the multiplicative demand case defined by (4.3) for 
the expected objective function case, see (4.6) and (4.9). 

4.3.4. Comparison with riskless problem 

Consider the advertising decision without demand uncertainty and note that the profit 
of such a deterministic problem is called riskless profit, ^(a) , given by (4.7). Solving the 
first order condition of ^(a) leads to the following necessary optimality condition: 

dd(a) __ 1 
da p — c 

which must be satisfied by the optimal riskless advertising a%. 

(4.14) 

Remark 4.3.4. If the response function d(a) is either concave or S-shaped, then, under 
Assumption 4.3.2, the necessary optimal condition (4.14) is also sufficient for the optimal 
riskless advertising a\ as (4.13) and Lemma 4.3.1 can be adequately applied. 

Based on the optimality condition (4.14), the following theorem can be proved under 
assumptions 4.3.1 and 4.3.2 considering concave and S-shaped functions. 

Theorem 4.3.4. For the multiplicative demand model, the optimal advertising a* is always 
less than or equal to the optimal riskless advertising a%. 

46 



4.4. A D D I T I V E D E M A N D M O D E L 

Proof. Using expressions (4.12) and (4.14), it can be expressed that ^ < p _ c \ ^ => 
dd<f^' < dd(a \ For both functions, concave and S-shaped, the optimal advertising a*, 
if it exists and is greater than zero, belongs to the concave part of d(a). Then, for the 
concave part of d(a), is decreasing and so if d d ^ ^ < - then a% > a*. See section 
4.6 for illustrative examples. • 

Remark 4.3.5. Recall that the optimal price for multiplicative uncertain demand is not 
less than the riskless price in the N P P [86]. 

Even though there are similar structures of the the expected profit functions, which 
is (3.9) in the N P P case, while the N P A equivalent is given by (4.9), the demand function 
is defined differently: d(p) is decreasing in p in the pricing case, but d{a) increases in a in 
the advertising case. Therefore, it is not surprising that the observation on the effect of 
uncertainty given by Theorem 4.3.4 is opposite to its N P P equivalent (see Remark 4.3.5). 

4.4. Additive demand model 
Let the demand function (4.2) be defined in the additive form (see subsection 4.2.1) and 
let F(-) denote the cdf and /(•) the pdf of £ 0 . Then, the demand is in the additive form 

DA(a,Q = d(a) + Ca- (4.15) 

Considering model (4.1), demand function (4.15) and defining the stocking factor z G R 
clS Z —— X d(a) (if x = 0 then a = 0 but d(0) > 0), the following model is obtained: 

, z ^ x _ J P[d(a) + z]- c[d(a) + z] - s[(a - z] - a, for z < fO J 

| p[d(a) + £0] - c[d(a) + z] + v[z - £ 0] - a, for z > £0. 

The expected profit H(a, z) can be expressed by: 

U(a, z) = E[vr(a, z, Q] = *(a) - l(z). (4.16) 

Riskless profit ^(a) and expected loss l(z) are given by (4.7) and (4.8) substituting £ m in 
expected quantities expressions, where A(z) are expected leftovers and Q(z) are expected 
shortages. 

From expressions (4.16) it can be seen that the decisions on a and z are made inde
pendently, unlike in the multiplicative model (see (4.9) and (4.12)). Therefore, for the 
additive demand model, the optimal advertising a* is always equal to the optimal riskless 
advertising a\, (see (4.14)), while the optimal stocking quantity z* corresponds to that 
from the multiplicative case, see (4.10). 

Indeed in our setting the additive model is questionable: can the optimal advertising 
be resistant to the demand uncertainty? However, this analysis can help the interested 
manager to choose a suitable model by using statistical observations and evaluation of the 
demand variance. Therefore, after two following theorems that are equivalent to that of 
the multiplicative case are established, numerical results are investigated in Section 4.6. 

The difference in observations on optimal advertising between the multiplicative and 
additive demand cases can be mainly explained by their variances and coefficients of 
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variation, respectively. While in the additive case the variance of the demand is constant 
(independent of a), i.e., O~2[DA(CL,£a)] = a\ that is the constant variance case, in the 
multiplicative case the variance is a function of the response function, i.e., c r 2 [D M ( a , £ m ) ] = 
[d(a)] 2a| f , and the coefficient of variation is constant, i.e., CV[DM(CI, £ m ) ] = um that is the 
constant coefficient of variation case. See [62] for a similar variance analysis. 

Theorem AAA. If the response function d{a) is strictly concave, the expected profit 
H(a,z*) is strictly concave in a and, under Assumption 4.3.2, the optimal advertising 
amount is unique and is given by (4.14). 

Proof. The proof is much the same as the one of Theorem 4.3.2. • 

Theorem 4.4.2. If the response function d(a) is S-shaped, then, under Assumption 4.3.2, 
the expected profit H(a,z*) is strictly quasi-concave in a and so the optimal advertising 
amount is unique and given by (4.14). 

Proof. The proof is much the same as the one of Theorem 4.3.3. • 

Finally, the optimal order quantity can then be determined as x* = z* + d(a*). 

4.5. Suitable examples of the response functions 

Advertising concave function without threshold in demand 

Here, it is considered an advertising function with diminishing returns, which is given by 

where a G [0,1] and OJ > 0 are empirically determined constants indicating the effective
ness of advertising and do > 0 represents the initial demand (for a = 0). If UJ = 0, then 
the demand is independent of advertising expenditure. The larger the value of a, the 
more effective advertising is. For more details on the function and its analysis, see [63]. 

d(a) = do + ooaa, (4.17) 

Solving the first order condition for 
H(a,z*) with respect to a, we get 

concave without threshold 
s-shaped  

concave with threshold 

a* = ^üoa[p - c - l(z*)]. (4.18) 
100-

Note that the following expressions for op
timal advertising expenditure are true for 
the multiplicative demand case, while, for 
the additive demand case, it must be sub
stituted l(z*) = 0 to obtain the results, 
see/compare (4.12) and (4.14). 

80-

60-
d 

4 0 -

Figure 4.1 illustrates three particular 
function examples presented in this section. 
Section 4.6 provides numerical examples in
volving these functions. 

0H 1 1 1 1 1 1 1 1 1 R 
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Advertising concave function with threshold in demand 

Here, the function d(a) has an asymptotic behavior (an upper bound in demand). Based 
on the empirical study by [23], the following function is suggested as a suitable candidate: 

(4.19) 

where 9 and 8 are positive real numbers and do is an initial demand. This function has a 
horizontal asymptote defined by demand value 9 + do- The choice of 8 decides the speed 
towards the asymptote. A small value of 8 indicates a slow speed while a large value of 8 
indicates a fast speed. 

Similarly, here 

a* = s+jf68[p-c-l{z*)] - 1. 

d(a) = d0 + 6 
a + 1 

Advertising S-shaped function example 

A logistic function/curve represents a typical "S" shape graph. According to theoretical 
definitions of the S-shaped response function ([5, 7, 55, 68, 107]) and according to the 
experimental marketing research results (e.g. [23]), it is suggested the following function: 

Q 
d(a) = d0 + -as- , (4.20) 

where 9 specifies an upper asymptote, 7 is a coefficient of growth, Q\ defines a lower 
asymptote (see, e.g., [34] for a mathematical description/analysis of the function). The 
interested reader is also referred to other S-shaped functions as the Gompertz function. 

Here, the optimal advertising for the S-shaped function is expressed by: 

In 
|i-|[p- c-z( z*)]e7+i v

/-4[p- c-z( z*)]e 7+[p- c-z( z*)] 2e2 72| e/ 

7 

4.6. Numerical examples and the multiplicative case 
results 

So far, conditions for existence of a (non-zero) solution as well as theorems ensuring its 
uniqueness were discussed; both using the input parameters p, c, s, v, parameters of d(a) 
and, especially, distribution function F. In order to exemplify managerial information on 
the optimal decisions, some insights using the uniform distribution of the random variable 
are further provided; e.g. a situation with minimal knowledge of demand behavior within 
a given range (a uniform distribution). That is, a situation where it with certainty can 
be defined an upper and a lower bound for demand; everything between the bounds is 
equally probable. Alternatively, if only some information is known, it is referred to usage of 
either the piece-wise uniform (histogram like, i.e. empirical with additional uncertainty) 
probability distribution or the triangular distribution. Hence, in upcoming examples 
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the N P A is illustrated by using the uniform distribution (subsection 4.6.1). Results are 
followed by the managerial viewpoint inspired interpretation in subsection 4.7. 

In this section, some interesting insights into the decision making described in sections 
4.3 and 4.4 are provided. Therefore, in Table 4.1, there are presented parameters leading 
to illustrative response functions (section 4.2.2), see Figure 4.2a. Note, that one example 
(i.e. d 4(a)) for the S-shaped function, for which Assumption 4.3.2 is not met (and so 
II(a, z*) is not quasi-concave), is included; see the left hand derivative, i.e. ^ 4 ^ , for d 4(a) 
in Table 4.1. 

Table 4.1: Numerical examples of response functions given by (4-17)-(4-20). 

Type Indie. Parameters dd(0 ) 
d a Ass. 4.3.2 d d ( 1 5 0 ) 

d a Ass. 4.3.2 

(4.17) 
(4.19) 
(4.20) 
(4.20) 

di(a) 
d2(a) 
d3(a) 
dzi(a) 

a = A to = 20 
e = 100 5 = 1 
0 = 100 6i = \ 7 = § 
0 = 100 Qx = \ 7 = ^ 

O O 

50 
0.249 
0.050 

/ 
/ 
/ 
X 

0.180 
0.027 
0.165 
0.001 

/ 
/ 
/ 
/ 

1: concave without threshok 
2: concave with threshold 

— 3: s-shaped meeting the assumptions 
4: s-shaped: Assumption 2 is not met 

200-

100 

1: Less risky Business 1 2: Less risky Business 2 
3: Risky Business 1 4: Risky Business 2 

pdf 
1 

B -A , 
mi mi 

0 A , AAA , B.B.B 
m4 mi m2 ml 1 ml mi m 

E. 
(a) Response function examples d\(a) - d±(a). (b) Uniform distribution examples U\ - U±. 

Figure 4-2: Visualization of numerical examples from tables 4-1 and 4-2. 

4.6.1. Uniform distribution 

Let the random variable £ T O be uniformly distributed, i.e., £ m ~ U(Am, Bm). Then, from 
(4.10), it can be obtained that z* = Am + ip+s~^_T~Am). Substituting z* into (4.8) 
leads to l(z*) = (z* - Am)^ = B™~A™ (c - v)*±^. Using the obtained l(z*), condition 
p — c — l(z*) > 0 from Assumption 4.3.1 converts to 

Bm — Am p -\- s — c 0 1 \ 
p — c c — v) > 0. 4.21 
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Since the expression (4.21) as well as optimal advertising expenditure a* crucially depends 
on price p and cost c as well as on the range [Am, Bm], which relates to the variance, some 
insights into impact of the parameters are further provided. Note that variance a2 of the 
uniformly distributed random variable £ m is ^ ( - B m — Am)2. 

4.6.2. Impact of variance 

Considering the demand function di(a) and a product with p = 15, c = 10, v = 8, s = 2 
and do = 100, the following four examples of various uniform distributions are introduced 
in Table 4.2 (see also Figure 4.2b). 

Table 4-2: Numerical examples of various uniform distributions U\ - U4 for di(a). 

Ui A • a2 z* I C O p-c-l(z*) a* X* 

0.8 1.2 0.0133 1.111 0.311 4.689 117.6 204.0 
u2 

0.65 1.35 0.0408 1.194 0.544 4.456 109.3 217.1 
u3 0.5 1.5 0.0833 1.278 0.778 4.222 101.2 229.9 
u4 0.2 1.8 0.2133 1.444 1.244 3.756 85.6 254.2 

Therefore, with increasing variance of the random element, the optimal z* as well 
as l(z*) increases, see (4.21). Since from (4.12), a higher l(z*) leads to a lower optimal 
advertising a*, which corresponds to a lower expected demand d(a*), the optimal strategy 
is to buy a higher amount x* of the product, although a less profit U(a*,x*) is expected 
(see Table 4.3). 

In Figure 4.3a, the decreasing dependency of the optimal advertising a* on the range 
Bm — Am (on the variance, respectively) is illustrated. It can be seen, that for some special 
cases of response function (e.g. for small en's in function (4.17)), the general dependency 
between the optimal advertising a* and variance can be approximated by a linear function, 
see function graph in Figure 4.3a. 

4.6.3. Impact of price and cost changes 

Impact on Assumption 4.3.1: Assumption 4.3.1 crucially depends on the margin 
(p — c)/p, see (4.21). The higher the margin the more likely the assumption wil l be 
fulfilled. Therefore, an insight into the impact of the p — c change is provided: in Figure 
4.4a, there is illustrated the dependency by varying c (by means of (4.21)). 

Impact on optimal advertising: Consider the first derivative w.r.t. a of expression 
given by (4.11) and substitute z* (and l(z*) respectively) for the uniform distribution. 
Then, taking derivative w.r.t. p leads to 

an(a,z')-
da 1 

dp 
dd(a) 

da 
B„ Am (c - vf 

(p + s — 1 
> 0. 
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(a) Dependency between a* and Bm — Am. (b) Expected profit functions IT(a, z*). 

Figure 4-3: Illustration of examples: optimal advertising a* as function of Bm — Am and 
expected profit functions H(a, z*) related to that from Figure 4-2a (for Us). 

(a) Assumption 4-3.1: expected unit lossp-
l(z*), see (4-21), as function of the cost c. 

(b) Assumption 4-3.2: illustration of dependency 
on the S-shaped function parameter 7. 

Figure 4-4'- Visualizations of dependencies between selected parameters and assumptions 
4-3.1 and 4-3.2 for the uniform distribution U3. 

Therefore, n(a, z*) is strictly supermodular in (a,p) (see [118]) and the optimal advertising 
is strictly increasing in selling price p. W i t h the same procedure but w.r.t. c, it is 
expressed: 

0( 
9n(a ,z ' ) -

da 
dc 

d(a) 
B„ Am 2c P-

p + s 
1 <0, 
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which means that II(a, z*) is strictly submodular in (a,c) and the optimal advertising is 
strictly decreasing in buying cost c. 

Therefore, any increase in the unit profit margin, i.e. range p — c (see [62]), leads to 
higher optimal advertising expenditure a*. 

4.6.4. Impact of demand function 

In Table 4.3, there are provided numerical results of optimal quantities for response func
tion examples di(a) - d^(a) using two uniform distribution examples U\ and U3. See also 
Figure 4.3b for illustration of expected profit functions to the related demand functions 
from Figure 4.2a. 

Table 4-3: Numerical results: optimal quantities for di(a) - d^a) and U\, U3. 

di(a) d2(a) d3(a) di(a) di(a) d2(a) d3(a) d±{a) 

a* 117.6 37.0 21.5 91.0 101.2 34.5 21.3 89.9 
di(a*) 183.6 183.8 200.0 197.8 179.9 183.2 199.5 197.6 
X* 204.0 204.2 221.7 219.8 229.9 234.1 254.9 252.5 
U(a*,x*) 743.2 824.7 914.3 836.6 658.4 739.1 821.2 744.3 

In Figure 4.4b, it is illustrated how parameter 8 of the S-shaped function affects 
the Assumption 4.3.2. If the left hand derivative of the response function is less than 
l/\p — c — l(z*)], then the Assumption 4.3.2 is violated (left "negative" part of the function 
in Figure 4.4b). In other words, for small <5's is the advertising not effective in the initial 
period, i.e. the expected profit is negative (see Figure 4.3b). 

4.7. Discussion of the results 
The numerical examples presented in Section 4.6 indicate how: a) variance of the random 
element may affect the optimal advertising as well as order quantity, b) profit margin 
changes (denoted p — c) can impact optimal advertising and expected profit and c) vari
ous response functions as well as given various parameters settings representing different 
markets or market strategies influence the profit. 

The illustrative uniform distribution shows how a manager can utilize his often incom
plete knowledge on the advertising/demand-related uncertainty. For example, the lack of 
knowledge can be represented by the lower and upper bounds for the interval specifying 
the region of uncertainty. Then, no further available information naturally leads to the 
choice of the uniform distribution. In case of an additional information in the form of a 
small set of historical data, it may be used the piece-wise uniform probability distribution 
(with histogram like probability density function) or the triangular distribution that lead 
to similar computations. Furthermore, it was also shown how the manager can evaluate a 
particular situation regarding to assumptions 4.3.1 and 4.3.2. Specifically, when Assump
tion 4.3.1 is violated then the only one optimal strategy is to "do nothing". In addition, 
when Assumption 4.3.2 is not met then it does not necessarily mean that the advertising 
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strategy cannot lead to increases in sales (especially for the S-shaped function), however, 
there is no guarantee that a unique solution (advertising expenditure) of the first first 
order condition wil l be found or by straightforward application of basic calculus formulas. 

Finally, the most interesting ideas for a real-world manager that can be derived from 
subsection 4.6.1 are related to the choice of a suitable marketing strategy. From our 
modeling point of view, this marketing strategy is based on the choice of advertising 
response function. Such a choice can lead to increases in profit, see Table 4.3. However, 
the situation can become more complex. As it is seen from Figure 4.3b and Table 4.3, the 
shape of chosen response function can significantly modify the shape of original objective 
function for the case with no advertising. It may change the optimal solution location from 
quantitative point of view, however, the shape of the objective changes also qualitatively. 
Therefore, the manager can design his marketing strategy, and so, the related response 
function in the way that wil l influence his operational decision making needs. Thus, 
although marketing decisions are not easy to perform, even in our fundamental N P A -
setting, it was shown that even discussion of concrete explanatory examples can provide 
valuable insights into decision making, i.e. how to determine (approximate) the optimal 
decisions and related quantities. 
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Chapter 5 

Newsvendor Problem with Joint 
Pricing and Advertising 

Coordination between advertising, pricing, and production decisions still falls within the 
very challenging problems associated with operations and computational management; 
see, e.g., [6, 70]. Typically, marketing decisions (e.g., pricing and advertising) are made 
independently of knowledge of production and logistics constraints, possibly leading to 
the sub-optimality of the decisions. Here, marketing decisions are seen together with 
logistic decisions aiming for improved company performance. 

In the aforementioned models the retailer/distributor cannot jointly adjust the price 
and the advertising amount (marketing effort) to stipulate the market demand. Here, 
a decision-maker may adjust the current selling price in order to increase or reduce the 
demand in most cases; moreover, he has the opportunity to influence the final demand 
by choosing appropriate marketing activities, e.g., providing shelf spaces, promotional 
displays, advertising, after-sales service support, and other demand-enhancing activities 
[20]. In a word, price and marketing efforts can be used to affect the final sale of the 
products ordered, and hence to exert influence on the initial ordering decision [20]. 

The newsvendor problem with pricing and advertising ( N P P A ) combines all of the 
introduced operational and marketing strategies used in sections 2.1, 3.1, and 4. It means 
that the N P P A is a problem over three decision variables (ordering, pricing, and adver
tising) and one random variable (influencing the demand). 

This thesis follows two papers on the N P P A : [20] and [119]. In the paper by T. 
Wang and Hu [119], they deal with the multiplicative demand form, where the demand 
D(a,p) is nonnegative, twice-continuous differentiable, strictly concave, and is defined on 
[0, oo) x [0, oo); conceivably, D(a,p) is strictly increasing and concave in the advertising 
premium, while it is strictly decreasing and convex in the sale price. In the paper by Dai 
and Meng [20], which combines the N P P A with its risk-averse form, two demand cases 
are investigated: the marketing-dependent price-multiplicative case and the marketing-
dependent price-additive case; see Section 5.1. 
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5.1. Problem formulation and demand function 
The N P P A model is similar to the N P A model (4.1); the crucial difference is that p is 
the decision variable, so the newsvendor faces stochastic demand D(a,p,£a,£m). Thus, 
the newsvendor simultaneously decides on: the advertising amount a, the selling price p, 
and the amount x of a product to be stocked and sold. Fsubs Replacing P ( a , £ a , £ m ) with 
D(a,p,!;a,{;m) in the N P A model (4.1), the N P P A model is expressed as 

ipx - cx - s[D(a,p,£a,£m) -x] -a, for x < D, 
TT{a,p, x, £ a , £ m ) = < (5.1) 

[pD(a,p,£a,£m) - cx + v[x - D(a,p,£a,£m)\ - a, for x > D. 

5 .1.1. Demand function and randomness 

Let the demand function be denoted as P ( a , p , £ a , £ m ) and let it satisfy 

D{a,p,ia,im) = di(a)[d 2(p) +fa]fm, (5-2) 

where £ a , £ m are independent continuous random variables. [20] refers to two special cases 
of the demand function P ( a , p , £ a , £ m ) : a) the marketing-dependent price-multiplicative 
( M D P M ) case and b) the marketing-dependent price-additive ( M D P A ) case. 

In the M D P M case, let P ( £ a = 0) = 1 and let the random variable £ m be defined on 
the domain [Am, Bm] and satisfy E[£ m ] = 1. In the M D P A case, let P ( £ m = 1) = 1 and let 
the random variable £ a be defined on the domain [Aa, Ba] and satisfy E[^ 0] = 0. Then, for 
both cases, the expectation of D is specified as: E[D(a,p, £0, ^m)] = di(a)d,2{p) = d(a,p). 

In this thesis, the M D P M case is further investigated. 

5.2. M D P M demand model 
Let the demand function D(a,p,^a,^m) be defined in the M D P M form and let P(-) and 
/(•) denote the cdf and pdf of £ m , respectively, and let d(a,p) denote a general demand 
function that wil l be further specified as d\{a)d2{p)- Then, the demand is in the M D P M 
form 

DM{a,p,im) = d(a,p)£m. (5.3) 

The objective function (5.1) can be rewritten by substituting (5.3) and defining the "stock
ing factor" as z = -rf^ : 

I t , \ pzd{a,p) - czd{a,p) - sd{a,p){^m - z) - a, for z < £m, 
TT(a,p,Z,U)= < c A ( v At \^ At \( t \ f (5A> 

{ p^md{a,p) - czd(a,p) + vd(a,p)(z - f m ) - a, tor z > £m. 

The objective is to maximize the expected profit U(a,p, z); therefore, the expected profit, 
where H(a,p,z) = E[ir(a,p, z, £m)], is expressed as: 

U(a,p,z) = *(a,p) - L(a,p,z) = *(a,p) - d(a,p)l(p, z), (5.5) 
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where ty(a,p) = (p — c)d(a,p) — a and l(p, z) = (c — v)A(z) + (p + s — c)Q(z). Remember 
that d(a,p)A(z) denotes expected leftovers and d(a,p)Q(z) expected shortages. 

5.2.1. Optimal stocking quantity 

To maximize U(a,p, z) over three variables, according to the previous experience from the 
N P P and N P A , the optimal stocking quantity is expressed as first. Taking dRKp.z) = 0, 
the following expression for the optimal stocking quantity z* is expressed: 

z* = F - 1 ( i ± l ^ ) . 
\p + s — v ) 

Remember, that this quantity corresponds to the standard N P optimal quantity expression 
(2.6) and to the optimal stocking quantity of the N P P (3.11) as well as of the N P A (4.10). 

5.2.2. Optimal price 

Taking = 0, it can be observed: ^^[p - c - l{z,p)\ - d{a,p)[Q{z) - 1] = 0. 
Similarly, substituting the general demand function d(a,p) with its multiplicative form 
di(a)d2(p), the following is expressed: 

^ M [ p _ c _ n z p ) ] _ d2(p)[e(z) - 1 ] = o. (5.6) 
dp 

Theorem 5.2.1. Under our assumptions (i.e., if d(p) has I P E and cdf has G S I F R ) , U(a,p, z) 
is quasi-concave in p, and optimal price of the M D P M model is unique and is always equal 
to that of the multiplicative form in the N P P . 

Proof. The proof is obvious comparing two optimal price conditions, the N P P condition 
(3.20) and the N P P A condition (5.6); see also [20]. • 

Optimal p and z can then be found similarly as in the N P P case; see Section 3.1. 

Example: Let d2(p) = rp 13', which corresponds to the isoelastic pricing function given 
by (3.21). Substituting the isoelastic function d2(p) into expression (5.6) 

dU(a,p, z) 
dp iß i)̂ M[i 

p 

0 ( 
ß 

ß - i 
(c - v)A(z) + sO(z) 

Pi 

and so the optimal price expression corresponds to that of the N P P , i.e. (3.22). Note, 
that py is the optimal riskless profit; see (5.11) for its example for the isoelastic pricing 
function. Then, the expression of the optimal price follows: 

P* = P% + 
ß (c - v)A(z) + sO{z) 

ß - 1 1 - e(z) ' 
(5.7) 
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5.2.3. Optimal advertising expenditure 

Taking m(~aga 'z - = 0, it can be observed: dd(~g^ - = p«_c_](z« p^ • Substituting the gen
eral demand function d(a,p*) with its multiplicative form di(a)d2(p*), the following is 
expressed: 

drfi(a) = 1 / 5 gx 
da d2{p*)[p* — c — l(z*,p*)] 

Optimal advertising depends on the choice of p as well as d2(p*); see (5.8). Moreover, 
with increasing p (or p*, respectively) the optimal value of d2(p*) decreases. Therefore, 
optimal advertising for the N P P A depends on specification not only di(a) but also d2(p). 
Remember that p* is equivalent to that of the N P P (see Theorem 5.2.1). 

Example: Consider di(a) = do + w a a , which corresponds to the advertising response 
function given by (4.17). Substituting the function into (5.8), the optimal advertising a* 
can be expressed as: 

a* = 1-^uad2(p*) [p* - c - l{z*,p*)], 

which is equal to the optimal advertising of the equivalent N P A times 1 _ ^/d 2 (p); see the 
equivalent N P A result (4.18). 

Remember that the optimal ordering quantity is determined as x* = z*d(a*,p*). 

5.2.4. Comparison with riskless problem 

Let the riskless objective function be defined as 

*(a,p) = (p- c)d1(a)d2(p) - a. 

Taking d^g^ = 0, an optimality condition for a^ is expressed as: 

ddi(a) 1 
da d2{p){p-c) 

(5.9) 

Then, an equivalent result to that of N P A is observed: if the response function d\{a) is 
either concave or S-shaped, then, under Assumption 4.3.2, the necessary optimal condition 
(5.9) is also sufficient for the optimal riskless advertising a%. 

Based on the optimality condition (5.9), the following theorem can be proven under 
assumptions 4.3.1 and 4.3.2 considering concave and S-shaped functions. 

Theorem 5.2.2. For the M D P M , the optimal advertising a* is always less than or equal 
to the optimal riskless advertising a%. 

Proof. See proof of Theorem 4.3.4. • 
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a% is observed: 
Example: Considering d\{a) = do + ouaa and d2{p) = T 1 3, the following expression for 

*,= l-{/oja(p-c). (5.10) 

f)p Taking ^("'P) = 0, an optimality condition for p*y, can be expressed as: 

, , s / \ dd2(p) 
d2(p) + ( p - c ) ^ ^ = 0. 

Example: Considering d2(p) = rp~^, the following expression for p\, is observed: 

A = fa. ( m i ) 

Since (3 — 1 > 0 , c — v > 0 and 1 — Q(z*) > 0, the following theorem can be proved. 

Theorem 5.2.3. For the isoelastic pricing function in the M D P M , the optimal pricing p* 
is always greater than or equal to the optimal riskless pricing p%. 

Proof. See [58, 86] for similar observations and related proofs. • 

5.3. Literature review for further research 

This section reviews some existing literature references that deal with other cases of the 
coordination of marketing and production decisions; it may serve as inspiration for further 
research into the N P P A . 

5.3.1. Newsvendor problem with marketing effort 

In addition to the literature review provided in Section 4.1 (i.e., literature on the N P A ) , 
it is also referred to in the literature dealing with the so-called marketing effort instead 
of advertising; these are quite similar terms, but such a short note may help a reader to 
avoid any confusion. 

For example, Taaffe et al. [109] deal with the so-called selective newsvendor with 
marketing effort. Note that they investigate two different variance cases (w.r.t. the 
marketing-dependency): 1. demand variance independent of marketing effort, 2. demand 
variance dependent on marketing effort. 

5.3.2. Supply chain 

In the literature references reviewed herein, the marketing and production decisions are 
considered within supply chain problems. 

He et al. [49] consider a single effort level e to summarize the retailer's activities in 
promoting sales and g{e) captures the retailer's cost of exerting an effort level e, where: 
g(0) = 0, g'(e) > 0, and g"(e) > 0. Demand is considered to be stochastically increasing 
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in effort and decreasing in price, i.e., the distribution (of a random variable £) satisfies 
d F ( ~ ^ ' P ^ < o and d F ^ Q p ' p ^ > 0. Specifically, the demand function is defined as D = 
d(p, e) + £, where d(p, e) decreases in price and is concave and increasing in effort. Later, 
they provide results for d(e,p) = a + be — kp and g(e) = yue2/2, where a, b, k, \i > 0 and £ 
is uniformly distributed. 

X u et al. [126] first consider the N P P model; the model includes the following: 
multiplicative stochastic demand, I P E on mean demand, increasing generalized failure 
rate on the distribution of the random factor, mean demand increases in price, and the 
random factor is independent of price; then, under two assumptions, i.e., on I P E and 
I G F R , TT(P, X) is quasi-concave. Then, the pricing and marketing-dependent demand 
function is defined as D(p,e) = d(p)f(e)e. Under some assumptions, they provide a 
theorem on the quasi-concavity of the profit function. They also provide a dynamic 
pricing-inventory model. 

Taylor [110] deals with the so-called sale timing in a supply chain. The demand is 
modeled in the additive form and depends on both effort and pricing. They provide a 
result for the linear demand case: D(e,p,£) = a + e + £ — bp, where the cost of effort is 
quadratic. 

Hong et al. [52] consider a problem of joint advertising, pricing and collection decisions 
in the (remanufacturing) supply chain. The demand function is considered as D(a,p) = 
(j)—(3p+9y/a, s.t. <f),/3,9 > 0,where <f> is the market scale, (3 is the price elasticity coefficient, 
and 9 is the demand sensitivity to the advertising level of the retailer. They assume that 
the retailer's demand function is downward sloping with regard to the self-price effect and 
upward sloping with regard to the self-advertising effect, with cost of marketing effort 
"only" being a (which corresponds to the advertising case). 

5.3.3. Risk averse newsvendor 

Dai and Meng [20] present risk-averse under marketing and pricing dependency. The 
dependency is defined in the following two forms (which are also mentioned above): 

a) the M D P M model, where d{e,p,C) = a(e)/3(p)£, £ G [L, U], 0 < L < U, and 
t>ar(£) < oo. (3(p) is defined on a closed interval [c,p(e)], and continuous, strictly 
decreasing, and twice-differentiable in p, where p{e) is the maximum admissible 
price for the given effort level e; 

b) the M D P A demand model, where d{e,p,C) = a(e)[/3(p) + £], £e[L,U],L<0< U, 
and = 0, Var( < oo. 

For both cases, they assume that a(0) = 1. If e = 0, then it is reduced to the price-
additive, and price-multiplicative model, respectively. Moreover, p(e) is non-decreasing 
in e since a(e) is an increasing function of e. In particular, j3(p(ej) = 0 for the M D P M 
demand model and j3(p(ej) + L = 0 for the M D P A demand model. 
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Chapter 6 

Waste Processing Facility Location 
Problem with Stochastic 
Programming: Models and Solutions 

The growing concern for the environment leads to the integration of new solutions into 
traditional waste management (WM) in practice. About 3 billion tons of wastes are 
generated in the European Union countries yearly; see [9]. Moreover, due to popula
tion increase, the migration of non-EU inhabitants, and economic development in the 
E U countries, the amount of waste generated is rapidly increasing [27, 41]. Therefore, 
municipal solid waste producers often face problems of insufficiency in available facility 
capacities to meet future waste disposal demands [53]. 

Municipal W M consists of various activities that can be clustered into four processing 
steps: waste generation, collection, transformation, and disposal [40]. This chapter (and 
paper [A12] respectively) deals with the second stage: collection that also involves waste 
transportation to waste processing units. Hence, the chapter concerns mathematical 
modeling and related decision-support computations of the optimal W M , including facility 
location planning, in this step; see, e.g., [41] for an extensive review of W M modeling, 
and see also [136] for facility location in the context of the so called waste-to-energy 
plant planning. So, W M decision-making problems belong to the class of optimization 
problems, whose importance has recently significantly increased in practice. Therefore, 
the mathematical modeling of particular situations and the related computational support 
can help decision-makers to control W M as well as to achieve cost savings [39]. 

Existing modeling and solution challenges are related to the fact that the studied 
problems often combine deterministic and stochastic parameters together with nonlinear 
terms and both continuous and discrete decision variables. Since many parameters in 
such a W M system can be uncertain, the straightforward applicability of deterministic 
mathematical programming methods can be doubtful [53]. Thus, to model real world 
requirements in a suitable way, the SP approach has been selected and applied in the 
model building process. 

Among the above-mentioned problems, it is focused on a so-called waste processing 
facility location problem ( F L P ) that defines the task of choosing the set of open and 
running waste processing units in the best way from the point of view of total expected 
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costs; see also [A4]. Thus, the facility location decisions must be made when a logistics 
system is started from scratch, i.e., when new products or services are launched or when 
existing product distribution or services are expanded [39]. Specifically, in this paper, it is 
dealt only with waste producer preferences, and so the related processing, transportation, 
and investment costs are minimized. 

In this chapter, the F L P is considered within the transportation network. In general, 
the network design of transportation problems still belongs to interesting research topics 
in transportation planning [61, 135]. Various approaches have been taken to solve network 
design problems; see [71] and [108] for a review of network design problems and see [4] 
for a detailed review of solution techniques. See also [A6] for author's previous ideas 
and further references on a hybrid computational approach to network design problems 
dealing mostly with switching on and off the edges and arcs of the transportation network. 

The next sections of the chapter are organized as follows. Section 6.1 describes the de
veloped F L P within waste transportation network design models. Two considered models 
are subsequently presented, described, and discussed. Firstly, a common transportation 
network flow is enriched with the on-off waste processing capacities in the chosen nodes to 
represent the facility location. Then, the randomly-varying waste production is modeled 
by scenarios and a two-stage stochastic integer linear program is obtained. As the second 
step, the environmentally-friendly behavior of waste producers through ideas inspired by 
the utilization of pricing mechanisms in operations research problems is suggested and 
modeled. The discussed modeling ideas are explained by means of an explanatory ex
ample in Section 6.1 The results of computations that were realized for various larger 
instances with the utilization of both traditional and heuristic algorithms by using model 
and algorithm implementations in G A M S and M A T L A B are commented on in Section 6.2. 
Finally, Section 6.3 concludes the chapter and outlines some directions for future research 
and suggests some new computational and modeling ideas for future development. 

6.1. Models and explanatory examples 

In this section, the cost-minimizing stochastic mixed integer nonlinear program for the 
above-mentioned problem is developed in two steps. The introduced models use the 
following sets of indices, parameters, and decision variables. The sets of indices are as 
follows: 

/ : set of transportation network related nodes representing places, i £ I, 
E : set of transportation network related edges representing routes, e G E, 
S : set of included scenarios representing uncertainty, s G S. 

In this case, nodes with waste producers, transition places, and waste processing units 
can be identified. In addition, it is distinguished between existing processing units and 
those units that can be newly established. The edges of model routes may serve for the 
transportation of waste. The structural information describing the network is completed 
with the following input parameters: 

02 



6.1. M O D E L S A N D E X P L A N A T O R Y E X A M P L E S 

ü i j e : network description by node-edge incidence matrix, 
b~s : available amount of produced waste in node i for scenario s, 
bf : available waste processing capacity in node i, 
ce : cost per transported unit of waste by edge e, 
fi : cost per processed unit of waste in node i, 
g~ : cost per unprocessed waste left in node i, 
gf : cost per unit of unused capacity in node i, 
hi : cost per switched on processing unit in node i, 
qs : probability of achieving scenario s. 

It is further assumed that the waste producers considered in the model coordinate 
their decision steps and behave as one decision maker. So, among the model elements, 
the following decision variables are included: 

x£:s : waste transported by edge e for scenario s, bounded by xu,e, 
yi:S : amount of waste processed in node i by scenario s, 
u~s : amount of untransported waste from node i for scenario s, 
ufjS : amount of unused processing capacity in node i for scenario s, 
v~s : amount of waste transported from node i for scenario s (negative), 
vfs : amount of waste transported to node i for scenario s, 
Si : indicator of switching on-off extra waste processing capacity in i. 

The first model is a scenario-based two-stage M I L P that is described as follows: 

min Y Qs J2 CeXe,s + J2L + 9i ui)S + gfuls) + J2 h i $ i (6.1) 
\e£E iel J iei 

s.t. Cti^eXe^s 

e£E:a(i,e)>0 
= Vi,si V i G / , s G S, (6.2) 

= - % s i Vz G / , s G S, (6.3) 
e€E:a(i,e)<0 

Vi,s + uL = btSi, Vz G / , s G S, (6.4) 
-b~s + vf = v i , s + Vi,a + U i > 8 , V i G / , s G S, (6.5) 

^e,s i Vi, St ^i,s) ^i,S5 ^i,St ^i,S > o, Vie I, e G E,s G S, (6.6) 
< X\J,ei VeeE,seS, (6.7) 

s, E {0,1}, Vz G / . (6.8) 

The objective function (6.1) minimizes the total cost that is a sum of the scenario-
related costs involving transportation costs, processing costs, penalizing costs for remain
ing waste, penalizing costs for unused capacity, and investment costs following investment 
decisions that must be the same for all scenarios. Eq . (6.2) means that all flows entering 
node i are summarized as vfs. Similarly eq. (6.3) says that all flows leaving node i are 
summarized as v~s. Eq . (6.4) represents a constraint on the processed amount of waste 
that is bounded by processing unit capacity. This equation also allows processing units to 
switch on for new waste. To make differentiate between already-built processing units and 
newly established ones, the value of the first stage decision variables Si can be fixed. So, 
the value 0 is used for transition nodes and value 1 is utilized for the existing processing 
units. Eq . (6.5) provides the balance constraint of inputs and outputs in node i. Finally, 
(6.6)-(6.8) specify the domains of the decision variables. For the initial explanation, the 
transportation network were utilized (in Figure 6.1). Such a simple example can be solved 
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11 

Figure 6.1: Test network - visualization of simple input data 

almost intuitively for one scenario case. Therefore, the output for the single scenario is 
listed in the form of a G A M S results file that also contains all of the input data: 

Input data and results for data case: 01 - mid waste production 

Total optimal cost zmin = 
Partial optimal cost h*d = 
Partial optimal cost p*(gM*uM) = 
Partial optimal cost p* (c*x) = 
Partial optimal cost p* (f*y) = 
Partial optimal cost p*(gP*uP) = 

SI scenario optimal cost gM*uM = 
scenario optimal cost c*x = 
scenario optimal cost f*y = 
scenario optimal cost gP*uP = 

2650.00 
600.00 investment of new units 

0.00 average for unprocessed waste 
900.00 average transportation costs 

1100.00 average for processing waste 
50.00 average for unused capacity 

0.00 p(Sl ) = 1.000000 
900.00 

1100.00 
50.00 

nodes i | 
investment costs h | 
building unit d | 
product h*d | 

Nl N2 N3 N4 
0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 

N5 N6 N7 N8 
0.0 0.0 1000.0 600.0 
1.0 1.0 0.0 1.0 
0.0 0.0 0.0 600.0 

Scenario SI with probability p(Sl ) = 1.000000 

nodes i Nl N2 N3 N4 N5 N6 N7 N8 
produced waste bM>= 35.0 30.0 0.0 0.0 0.0 0.0 0.0 0.0 

left waste uM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

related cost gM 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
product gMuM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

output flow vM 35.0 30.0 45.0 0.0 0.0 0.0 0.0 0.0 
-vM -35.0 -30.0 -45.0 0.0 0.0 0.0 0.0 0.0 

j c*x c X ax(Nl) ax(N2) ax(N3) ax(N4) ax(N5) ax(N6) ax(N7) ax(N8) 
Ela2 0.0 3 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Ela3 350.0 10 0 35.0 -35.0 0.0 35.0 0.0 0.0 0.0 0.0 0.0 
Ela7 0.0 8 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
E2a3 80.0 8 0 10.0 0.0 -10.0 10.0 0.0 0.0 0.0 0.0 0.0 
E2a4 0.0 10 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
E2a8 220.0 11 0 20.0 0.0 -20.0 0.0 0.0 0.0 0.0 0.0 20.0 
E3a5 150.0 6 0 25.0 0.0 0.0 -25.0 0.0 25.0 0.0 0.0 0.0 
E3a6 100.0 5 0 20.0 0.0 0.0 -20.0 0.0 0.0 20.0 0.0 0.0 
E3a7 0.0 4 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

64 



6.1. M O D E L S A N D E X P L A N A T O R Y E X A M P L E S 

E3a8 0.0 4.0 0.0 1 0.0 0.0 0. .0 0. .0 0. .0 0. .0 0. .0 0. .0 
E4a5 0.0 6.0 0.0 I 0.0 0.0 0. .0 0. .0 0. .0 0. .0 0. .0 0. .0 
E4a6 0.0 5.0 0.0 I 0.0 0.0 0. .0 0. .0 0. .0 0. .0 0. .0 0. .0 

c*x= 900.0 out: vP 1 0.0 0.0 45 .0 0. .0 25 .0 20 .0 0. .0 20 .0 
in: -vM 1 -35.0 -30.0 -45.0 0.0 0. 0 0. 0 0.0 0. 0 

capacity bP>= 1 0.0 0.0 0. .0 0. .0 30 .0 20 .0 30 .0 20 .0 
unused uP 1 0.0 0.0 0. .0 0. .0 5 .0 0. .0 0 .0 0. .0 
processed y 1 0.0 0.0 0. .0 0. .0 25 .0 20 .0 0. .0 20 .0 

related cost f 1 0.0 0.0 0. .0 0. .0 20 .0 20 .0 10 .0 10 .0 
product iy 1 0.0 0.0 0. .0 0. .0 500. .0 400. .0 0. .0 200. .0 

cost unused gp 1 10.0 10.0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 
product gPuP 1 0.0 0.0 0. .0 0. .0 50 .0 0. .0 0. .0 0. .0 

(a) Results for 1 scenario. (b) Results for 5 scenarios. 
Figure 6.2: Test network - visualization of results. 

Additionally, Figure 6.2a shows the effect of one scenario that leads to the additional 
switching on of available capacity in node 7 (see boldface circle) and extra routes (see 
boldface edges) used for waste transport. More scenarios taken into account obviously 
lead to an increase in newly-used processing units (see both nodes 7 and 8) and additional 
routes used for transportation; see Figure 6.2b. 

To generalize the model, the pricing related ideas mentioned above are introduced. 
Therefore, it is assumed that waste producers, who are trying to minimize their total costs, 
can improve their behavior and influence the amount of waste as the decision variable. 
Consequently, the prices may change. It is reasonable to assume the monopolistic type of 
behavior is derived from the set of waste processors and from the government, who decide 
upon the related prices. So, the second considered and generalized model is the following 
scenario-based two-stage stochastic M I N L P : 
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min Qs [Yl ce(xe:S)xe:S + Y(fi(Vi,s)yi,s + 9i (K ui,s + 9iUts) + E M i (6.9) 

S.t. E Q>i,e%e,s = V i E I,S E S, (6.10) 
e£E:a(i,e)>0 

Y/ ^i,e^e,s = - % s i V i E I,S E S, (6.11) 
ee£:a(i,e)<0 

= KS., V i E I,S E S, (6.12) 

~Ks + ^> = %s + Vi,s + Ui,a, V i E I,S E S, (6.13) 
= K,a> \/i E I, S E S, (6.14) 

%e,sj Vi,sj ^i^si ^i,si ^i,si ^i,s > o, V i E I,e E E,s E S, (6.15) 
< xxj,ei VeEE,sES, (6.16) 

Si E {0,1}, Vz E I, (6.17) 
bh,i <bi < bU:i, b~s > o, Viei,seS. (6.18) 

In the second model (6.9)-(6.18), most of the constraints [see (6.10)-(6.13), (6.15)-
(6.17) and compare with (6.2)-(6.8)] remain the same; however, several important modi
fications have been included. The cost coefficients newly depend on the decision variables 
[see the objective function (6.9)], and the functions c e (x e j S ) , fi(yi,s), and g^ibi) were in
troduced instead of the coefficients c e , fi, and g\ respectively. It is also assumed that a 
decrease of the amount transported or processed wil l lead to an increase of the related 
unit cost specified by the price coordinating processing units. Similarly, it is assumed 
that the unit governmental penalty for unprocessed waste wil l increase with decreasing 
production of the waste. See Figure 6.3 for an example of the fi(Vi}S) function. 

(20 2-x /<°-2 2 0 > + 10) 

Figure 6.3: modeling pricing ideas. 
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It is highlighted the fact that under the assumption of the strict monotonicity of 
these functions, traditional pricing related formulas can appear in the case that it is 
decided to deal with inverse functions. However, the related interpretation derived from 
the viewpoint of the producers seems to be unrealiztic for such a case. Therefore, the 
original pricing ideas were converted into the final ones that are included in the model. 
The decision of the waste producers wit regard to the amount of the waste delivered for 
processing is denoted by 6, and changes are only allowed within the bounds and < bu,%, 
see (6.18). Random disturbances following this decision modeled by 8i)S are expected. 
Then, the b~s is a dependent variable defined by (6.14). 

(a) Results for 50 scenarios (b) Results for pricing-like mechanism 
Figure 6.4: Test network - visualization of results. 

The last figures in this section illustrate the effect of pricing ideas included; see model 
(6.9)-(6.18). Allowing price changes wil l motivate waste producers to increase, e.g., re
cycling attempts and it may also reduce their total costs, waste produced, and waste 
processed. Specifically, fewer processing units must be opened and fewer routes are used 
cf. Figures 6.4a involving a solution for 50 scenarios for the first model (6.1)-(6.8) and 
6.4b describing the results for the second model (6.9)-(6.18). 

6.2. Computations and results 

Two above-mentioned models were programmed in G A M S and solved through the use of 
B A R O N , M I N O S , and C P L E X solvers for small test instances obtaining acceptable re
sults. The next computations were realized for larger instances of the model (6.9)-(6.18). 
However, solution difficulties have appeared when the original G A M S code was applied, as 
computations have led to increasing computational time requirements. Therefore, heuris
tics have been discussed and the previous authors' ideas related to the suitable hybrid 
algorithm have been detailed; see [A6]. Instead of previous implementations based on a 
combination of the G A M S and C + + codes, it was preferred the complete implementation 
in M A T L A B . This implementation combines the f mincon function with genetic algorithm 
implementation to follow the algorithmic scheme: 

1. Set up an instance of a scenario-based two-stage mixed integer nonlinear program 
in M A T L A B . Set up control parameters for the genetic algorithm implemented in 
M A T L A B . 
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2. Create an initial population for the G A instance. So, the initial values of 0 — 1 
variables are generated and fixed to obtain a scenario-based (separable) nonlinear 
program. 

3. Several runs of random generators are needed for a specified population size and 
number of considered scenarios. Repeatedly run the fmincon procedure in M A T -
L A B to obtain the set of scenario-related solutions. Each run solves the program 
for the fixed values of 0 — 1 variables. 

4. The objective function values are also computed for new individuals created by 
means of the genetic operators, initially in 2. and then in 3. Store the best results 
obtained from M A T L A B (the optimal objective function values and optimal values 
of all variables for all scenarios) for comparisons. 

5. Test the algorithm termination rules and stop in case of their satisfaction. Otherwise 
continue until the moment when the last scenario solution is obtained. 

6. Generate input values for the G A from fmincon results; see step 4. Specifically, the 
objective function values for each member of the population of the G A are obtained 
from results of the runs in 3. 

7. Run G A to update the set of 0 — 1 variables (population); see, e.g., [74] for details. 
Return to step 3. 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 

Figure 6.5: Visualization of hybrid algorithm results. 
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6.3. D I S C U S S I O N 

The results obtained by the hybrid algorithm implementation in M A T L A B are illus
trated for one instance of data and model (6.9)-(6.18) in Figure 6.5. A special post
processing procedure, dynamically supporting the visualization of the obtained results, 
has been implemented in M A T L A B as well. The red nodes represent constructed waste 
processing units (e.g., incinerators), the blue nodes identify waste producers, and the 
white nodes are transition nodes. Let us emphasize that for these test computations to 
simplify the data instance coding, it is not assumed any already-built waste processing 
units. Then, the edges are differentiated by the flow. The black edge denotes a non-zero 
flow while the blue edge identifies a zero flow. Similarly, instances of various sizes have 
been tested and the collected experience is contained in Table 6.1. The average computa
tional times show the expected increasing trends with an increase in the number of nodes 
and number of scenarios. 

Table 6.1: Test results. 

Number of nodes 10 20 40 50 

Number of scenarios 
Computational time [s] 

1 

27 
5 

137 
10 

184 
1 

46 
5 

1070 
1 

288 
3 

3027 
1 

427 

Number of nodes 12 24 42 55 

Number of scenarios 
Computational time [s] 

1 

32 
5 

151 
10 

193 
1 

62 
5 

1122 
1 

309 
3 

3227 
1 

493 

Number of nodes 14 28 44 60 

Number of scenarios 
Computational time [s] 

1 

39 
5 

163 
10 

205 
1 

71 
5 

1197 
1 

327 
3 

3302 
1 

564 

Number of nodes 16 32 46 65 

Number of scenarios 
Computational time [s] 

1 

45 
5 

182 
10 

226 
1 

83 
5 

1251 
1 

339 
3 

3411 
1 

617 

Number of nodes 18 28 48 70 

Number of scenarios 
Computational time [s] 

1 

53 
5 

199 
10 

245 
1 

96 
5 

1307 
1 

378 
3 

3571 
1 

691 

6.3. Discussion 
In the paper [A12], authors generalized a well-known F L P to the specific problems of 
waste processing; see [130] and [136]. They adopted the standpoint of the waste pro
ducers and minimize the W M costs which they face, which is derived from the related 
processing, transportation, and investment costs. They built two stochastic programs 
starting from the transportation network flow model with on-and-off waste-processing 
capacities in selected nodes and randomly-varying waste production modeled by scenar
ios. Then, pricing ideas from revenue management have been utilized to allow for the 
environmentally-friendly behavior of waste producers. For computational purposes, a 
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modified hybrid algorithm is implemented in M A T L A B and the obtained results are v i 
sualized. It is also assumed, as new waste management technologies are developed and 
various vehicles are needed during waste collecting, fleet size and vehicle routing problems 
(see, e.g., [84]) wi l l necessarily be solved as part of the so-called smart cities projects. 

Legend: 

Waste to Energy Plant 

+ Landfill 

RDF co-incineration 

o Town 

Transport edge 

Figure 6.6: Real-world transportation network for the Czech Republic. 
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Chapter 7 

Conclusions and Further Research 

The thesis is based on two underlying demand-based problems: the newsvendor problem 
and the transportation network design problem. Both problems are used throughout the 
work as tools for examining how marketing decisions may affect the particular decisions of 
each of the underlying problems. Therefore, this chapter is further divided into particular 
conclusions on the newsvendor problem and, later, on the transportation network design 
problem. 

7.1. Marketing decisions within NP ' s 

N P and N P P 

The N P (section 2.1) as well as the N P P (section 3.1) review some selected existing 
results that are further utilized in follow-up sections on the N P A and on the N P P A ; in 
these sections, that are the core of the newsvendor related branch of the thesis, original 
results are provided. 

However, in addition to the review contributions of the N P and N P P sections, there 
are also some original contributions in the work. Especially, the section on the N P P 
provides original insights into decision dependent randomness as a currently challenging 
research topic. 

N P A 

This study demonstrates the possibility of solving an extension of the N P model in which 
stocking quantity and advertising expenses are set simultaneously and in which the so-
called multiplicative and additive demand cases were utilized; in order to deal with the 
level of uncertainty. The major point of the research was to obtain an appropriate model 
for demand with an appealing and intuitive economical interpretation - but one that still 
unified the existing concepts. Notation was adopted as used in the scientific literature 
available (on the N P P ) so as to provide a simple structure for the model and its solution. 

Employing this notation, an algorithm was devised to solve the problem that com
prised the following steps: 1. Using input parameters, first an optimal stocking factor 
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z* is determined; 2. B y applying z* and a concrete (suitable) function d(a), an optimal 
advertising a* can be expressed while z* and a* determine the optimal order quantity x*. 

Two appropriate-general demand functions are identified that stem from the literary 
sources on economics: the concave and the S-shaped response (demand) functions. For 
both of these, we not only solved the relevant problem, but also provided some necessary 
conditions to guarantee a solution that is also unique. 

A n important finding concerns the difference between Theorem 4.3.4 and the related 
observation for the additive case. It was revealed that optimal advertising in the multi
plicative demand case never exceeds the optimal advertising in the equivalent determinis
tic model while, in the additive case, it is always equal; i.e., advertising is independent of 
the uncertainty involved. This difference can be explained by expressions (4.9) and (4.16), 
which show that for the additive case the loss function is independent of the advertising 
amount a. The reference sources mentioned ([58, 75, 86]) give rise to an appropriate 
discussion on a similar situation for N P P where the optimal price under conditions of 
multiplicative uncertain demand is never less than the riskless price while the optimal 
price under additive uncertain demand is never greater than the optimal riskless price. 

The difference in observations on optimal advertising between the multiplicative and 
additive demand cases can also be explained by their variances and coefficients of vari
ation, respectively. While in the additive case the variance of the demand is constant 
(independent of a), in the multiplicative case the variance is a function of the response 
function and the coefficient of variation is constant. 

Several original, definite functions were identified that brought about potentially suit
able advertising response functions, which subsequently produced several results and i l 
lustrations of numerical examples for the uniform distribution of the random variable. 

N P P A : Comparison with N P P and N P A 

In the section on the N P P A , the demand was modeled on the multiplicative-demand price-
multiplicative demand form that corresponds to a combination of multiplicative demand 
forms in the N P P and the N P A . The observation for this case (i.e., N P P A in M D P M 
form) is equivalent to that of N P A and N P P : the optimal price for the multiplicative 
uncertain demand (in the isoelastic form) is always greater than or equal to the optimal 
riskless price while the optimal advertising (in the concave or S-shaped form) is always 
less than or equal to the optimal riskless advertising. 

A n interesting question arises: wil l marketing efforts increase the retailer's order quan
tities? Then, the following intuitive explanation follows: as the market becomes larger, 
the retailer may set a higher price to earn a higher margin per unit sold while ordering 
less to reduce the left-over inventory risk [124]. However, the intuitive explanation is dis
proved by our efforts: the optimal price is equivalent in the N P P A as well as in the N P P 
case (for the introduced multiplicative models), while the optimal advertising depends on 
the optimal price as well as on the price-demand (pricing) function and its optimal value. 

From a managerial perspective, most of the findings given herein might seem some
what theoretical. However, a problem that simultaneously comprises advertising and 
pricing decisions should be of greater practical importance. Obviously, the same holds 
for the indication that uncertainty does not necessarily lead to greater advertising ex-
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penses. It is the intention to continue to pursue such a direction in future research, with 
the expectation of achieving results that are both theoretically and practically relevant. 
The results add valuable managerial insight into these problems, which may be of higher 
importance in future volatile and globalized markets. The newsvendor platform is simple 
and does not cover the most complex practical situations. Sti l l , the need for more research 
in this direction is evident. 

Further research 

The main challenging topics that were identified through the work consist of: an extension 
of the advertising response functions to other S-shaped functions (e.g., [65]), its gene
ralization, and a focus on the variability of the random factor [62] as decision-dependent 
randomness [A5]. Moreover, the advertising decisions can be combined with other op
erational decisions such as pricing [86]; other aspects such as risk analysis [54] or any 
combination of the topics [20] are also challenging. Cost variability ideas, e.g., [81], may 
also lead to interesting new results. 

7.2. Stochastic T N D P ' s with (and without) pricing 

Section 2.2 subsequently describes models on: deterministic T N D P and stochastic T N D P 
with wait-and-see as well as here-and-now deterministic reformulations (approaches) that 
are further used in Section 3.2, where pricing is applied in the linear as well as in the 
nonlinear price-demand dependency. 

Section 3.2.1 presents a specific network design problem with uncertain demands lead
ing to the large-scale separable mixed integer bilinear program. The previously introduced 
hybrid algorithm (see [A6, A13]) has been modified and successfully tested for a more gen
eral bilinear case in comparison with the previous network flow case. It has proven our 
assumption that a suitable pricing strategy can decrease the variability of the network 
design solution. The linear function used in this section is not fully in accordance with 
real situations. However, the linear function used in our model may be replaced with a 
nonlinear one (e.g., isoelastic or hyperbolic); nevertheless, such a nonlinear function can 
be approximated by a piecewise linear function and the approach of the section can prove 
to be useful. 

Such cases (i.e., the isoelastic or hyperbolic pricing functions) lead to stochastic mixed 
integer nonlinear models that provide new challenges and difficulties for our hybrid algo
rithmic approach. Therefore, the hybrid algorithm, which is suggested in Section 3.2.2, 
was modified for needs of such stochastic mixed-integer nonlinear problems. Apparently, 
the algorithm is portable and can be widely applied, especially, in large-scale problems 
where the exact solutions are not available or prove to be time-consuming. 

Further research 

A particularly interesting motivating application problem has recently appeared in the 
case of waste-to-energy generation. The problem of finding the optimal waste-to-energy 
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plant capacity with respect to uncertain future demand for heat and electricity was dis
cussed in [33]. Such a problem in its reduced form can be initially modeled by the NP . This 
simplification can be very useful for initial managerial strategic decisions about the prin
cipal investment level. This decision can further be made more precise by the utilization 
of a more complex model. In addition, the usual interplay between the strategic decision 
regarding capacity and returns under uncertain demands can be originally enriched by the 
impact of advertising. The advertising process is then related to the information campaign 
directed towards the waste producers while the pricing mechanism is linked to a so-called 
gate fee price for the processed waste. Hence, we plan to use the present research results 
in this recent real-world managerial problem, combining strategic investment policy and 
operational decisions with respect to uncertain demands. 

Some of the ideas have already been utilized and published by the author in the 
following different but similar topics (papers): the vehicle routing problem with profits 
[A14] and the facility location problem for waste management [A4, A12]. 
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Appendix A 

Supplementary calculations 
to the N P ' s 

A . l . N P P supplementary calculations 
(3.12) —> (3.13): Consider the first derivative of the expected profit w.r.t. p given 
by expression (3.12). Moreover the following is considered: ^ = f(F-1(P))%' where 

_ p+s-c ^ where F~l denotes the inverse function to function F. Then, the second 
r p+s—v 

derivative is as follows: 

d 2n(z(p),p) _ d 2d(p) + 2 dd(p) _ d p ^ + c-v 1 dp + d p ^ 
dp2 dp2 dp dp p + s — v / ( . F _ 1 ( p ) ) dp dp 

p / E i - i / \\ 1 dp 1 dp 
( ( p ) ) / ( F - i ( p ) ) d p " + P / ( F - i ( p ) ) d p " 

Then, substituting back the stocking factor z* = F~x (p), the following is obtained: 

d2Il(z(p),p) dd2(p) dd(p) 1 (c-v)2 

~-{P - c) - » + 2 — — + 
dp 2 dp 2 dp f(z*) (p + s — v)3' 

which proves the expression (3.13). 

(3.17) —> (3.18) —> (3.19): Calculations in the multiplicative demand form are similar 
to that in the additive form (see above). Alternatively, see [129, 124] 

A.2. N P A supplementary calculations 
Herein, it is shown that the expected profit expressions (4.6) and (4.9) are equivalent. 
First, the N P A is considered in the form (4.5). Then, it is clear that 

n(a, z) = E^[—czd(a) + pd(a) min(z, £) — sd(a) max(£ — z, 0) + vd{a) max(z — £, 0) — a]. 
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A . S U P P L E M E N T A R Y C A L C U L A T I O N S TO T H E N P ' S 

Substituting expected quantities given by (3.6) and (3.7) it is obtained that: 

U(a,z) =—czd(a) + pd(a) 
B 

tf(t)dt+ / zf(t)dt 
B 

sd(a) / (t-z)f(t)dt 

vd{a) / (z-t)f(t)dt-a. 

This expression is clearly equivalent to (4.6). Considering that z = JA zf(t)dt it is further 
observed that: 

n(a, z) =-cd(a) / zf(t)dt + pd(a) 
J A 

B 
tf(t)dt+ / tf{t)dt 

pd(a)E[£[ 

- pd(a) F tf(t)dt + cd(a) F tf(t)dt + - cd(a) F tf(t)dt 
Jz J A J A 

v ' 
cd(a)E[g] 

+ pd(a) zf(t)dt - sd(a) J (t - z)f(t)dt + vd(a) J^{z - t)f(t)dt - a. 

Substituting back the expected quantities given by (3.6) and (3.7) and considering that 
E[£] = 1 (see Section 4.3), we obtain: 

Il(a, z) =(p- c)d(a) - a- d(a) [(c - v)A(z) + (p + s - c)Q(z)] 

9(a) 

*(a) - L(a,z). 

L(a,z) 

Then, it is proved that the expected profit expressions given by (4.6) and (4.9) are equiv
alent. 
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Appendix B 

G A M S Data Set for the T N D P ' s 

This file is a supplement material to papers [A8, A 9 , A6 , A 7 , A 3 , A10, A13]. It is also 
published for all researchers dealing with T N D P that want to use our network setting 
and compare the results, alternatively. Therefore, in order to make our research more 
accessible, we provide (experimental) data of our network that we use through our papers 
dealing with modeling and solving techniques for stochastic T N D P , see, e.g., [A9]. 

B . l . Gams code: Data set 

Further text/code parts are G A M S implementations of our network. 

Opt ion Seed=6; 
Opt ion 0PTCR=0; 
Opt ion 0PTCA=0; 

S c a l a r s n number of nodes / 3 0 / 
c l number of customers / 1 4 / 
c2 number of p l a n t s / 2 / 
g p r i c e / 5 0 / ; 

This means that we further work with a network of 30 points, where indices 1, 2 , 1 4 
(defined as Icus in G A M S ) represents customers, 15,16 (Ipla) plants and 17, ..,30 (Inod) 
"general" nodes. Coordinations of the nodes are randomly generated below (uniform 
distribution); using "Option seed = 6" guarantees that the "random numbers" are always 
the same. 

Sets i points /1*30/ 
s scenarios /1*100/ 
j coordinates / Xcoor, Ycoor / 

k edges 
/1-8, 1-9, 1-10, 1-13, 1-14, 1-15, 1-19, 1-23, 1-24, 2-4, 2-5, 2-11, 2-20, 2-21, 2-25, 2-26, 2-28, 2-30, 
3- 5, 3-6, 3-7, 3-10, 3-13, 3-15, 3-19, 3-22, 3-23 ,3-28, 3-29, 4-2, 4-5, 4-10, 4-11, 4-16, 4-17, 4-20, 
4- 25, 4-26, 4-28, 4-29, 4-30, 5-2, 5-3, 5-4, 5-7, 5-10, 5-15, 5-22, 5-26, 5-28, 5-29, 5-30, 6-3, 6-7, 
6-13, 6-15, 6-19, 6-23, 7-3, 7-5, 7-6, 7-10, 7-13, 7-15, 7-19, 7-22, 7-28, 7-29, 8-1, 8-9, 8-10, 8-11, 
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8-12, 8-17, 8-18, 8-23, 8-24, 8-25, 8-27, 9-1, 9-8, 9-10, 9-14, 9-15, 9-24,10-1, 10-3, 10-4, 10-5, 10-7, 
10- 8, 10-9, 10-11, 10-15, 10-16, 10-17, 10-22, 10-23, 10-24, 10-28, 10-29, 11-2, 11-4, 11-8, 11-10, 11-12, 
11- 16, 11-17, 11-18, 11-20, 11-21, 11-24, 11-25, 11-27, 11-29, 11-30, 12-8, 12-11, 12-17, 12-18, 12-21, 
12- 24, 12-25, 12-27, 13-1, 13-3, 13-6, 13-7, 13-14, 13-19, 13-23, 14-1, 14-9, 14-13, 14-19, 14-23, 15-1, 
15- 3, 15-5, 15-6, 15-7, 15-9, 15-10, 15-22, 15-23, 15-28, 15-29, 16-4, 16-10, 16-11, 16-17, 16-24, 
16- 29, 17-4, 17-8, 17-10, 17-11, 17-12, 17-16, 17-18, 17-21, 17-24, 17-25, 17-27, 17-29, 18-8, 18-11, 
18- 12, 18-17, 18-21, 18-24, 18-25, 18-27, 19-1, 19-3, 19-6, 19-7, 19-13, 19-14, 19-23, 20-2, 20-4, 20-11, 
20-21, 20-25, 20-30, 21-2, 21-11, 21-12, 21-17, 21-18, 21-20, 21-24, 21-25, 21-27, 21-30, 22-3, 22-5, 22-7, 
22-10, 22-15, 22-28, 22-29, 23-1, 23-3, 23-6, 23-8, 23-10, 23-13, 23-14, 23-15, 23-19, 23-24, 24-1, 
24- 8, 24-9, 24-10, 24-11, 24-12, 24-16, 24-17, 24-18, 24-21, 24-23, 24-25, 24-27, 24-29, 25-2, 25-4, 25-8, 
25- 11, 25-12, 25-17, 25-18, 25-20, 25-21, 25-24, 25-27, 25-30, 26-2, 26-4, 26-5, 26-28, 26-29, 26-30, 
27- 8, 27-11, 27-12, 27-17, 27-18, 27-21, 27-24, 27-25, 28-2, 28-3, 28-4, 28-5, 28-7, 28-10, 28-15, 
28- 22, 28-26, 28-29, 28-30, 29-3, 29-4, 29-5, 29-7, 29-10, 29-11, 29-15, 29-16, 29-17, 29-22, 29-24, 
29- 26, 29-28, 30-2, 30-4, 30-5, 30-11, 30-20, 30-21, 30-25, 30-26, 30-28/ 

kl(k) edges /1-8, 1-10, 1-13, 1-15, 1-19, 1-24, 2-4, 2-5, 2-11, 2-20, 2-21, 2-25, 2-26, 2-28, 3-5, 3-6, 
3-10, 3-13, 3-19, 3-22, 3-23 ,3-28, 3-29, 4-2, 4-5, 4-10, 4-16, 4-17, 4-20, 4-25, 4-26, 4-28, 5-2, 5-3, 
5-4, 5-7, 5-10, 5-15, 5-22, 5-26, 5-28, 5-30, 6-3, 6-7, 6-13, 6-15, 6-19, 7-5, 7-6, 7-10, 7-13, 7-15, 7-19, 
7- 22, 7-28, 7-29, 8-1, 8-9, 8-10, 8-11, 8-17, 8-18, 8-23, 8-25, 8-27, 9-8, 9-10, 9-14, 9-15, 9-24, 10-1, 
10- 3, 10-4, 10-5, 10-7, 10-8, 10-9, 10-11, 10-16, 10-17, 10-22, 10-23, 10-28, 11-2, 11-8, 11-10, 11-12, 
11- 16, 11-18, 11-20, 11-21, 11-24, 11-27, 11-29, 11-30, 12-11, 12-17, 12-18, 12-24, 12-25, 12-27, 13-1, 
13- 3, 13-6, 13-7, 13-14, 13-19, 14-9, 14-13, 14-19, 14-23, 15-1, 15-5, 15-6, 15-7, 15-9, 15-22, 15-28, 
15-29, 16-4, 16-10, 16-11, 16-17, 16-24, 17-4, 17-8, 17-10, 17-12, 17-16, 17-18, 17-21, 17-25, 17-27, 
17- 29, 18-8, 18-11, 18-12, 18-17, 18-21, 18-24, 18-25, 18-27, 19-1, 19-3, 19-6, 19-7, 19-13, 19-14, 
19- 23, 20-2, 20-4, 20-11, 20-21, 20-25, 20-30, 21-2, 21-11, 21-17, 21-18, 21-20, 21-24, 21-27, 21-30, 
22- 3, 22-5, 22-7, 22-10, 22-15, 22-28, 22-29, 23-3, 23-8, 23-10, 23-14, 23-19, 23-24, 24-1, 24-9, 24-11, 
24- 12, 24-16, 24-18, 24-21, 24-23, 24-25, 24-27, 24-29, 25-2, 25-4, 25-8, 25-12, 25-17, 25-18, 25-20, 
25- 24, 25-27, 25-30, 26-2, 26-4, 26-5, 26-28, 26-29, 26-30, 27-8, 27-11, 27-12, 27-17, 27-18, 27-21, 
27-24, 27-25, 28-2, 28-3, 28-4, 28-5, 28-7, 28-10, 28-15, 28-22, 28-26, 28-29, 28-30, 29-3, 29-7, 
29-11, 29-15, 29-17, 29-22, 29-24, 29-26, 29-28, 30-5, 30-11, 30-20, 30-21, 30-25, 30-26, 30-28/ 

Parameter Node(i,j); 
Node(l,j) = uniform(0,100); 

Parameter p(s) probability of a scenario s / l 0.2, 2 0.2, 3 0.2, 4 0.2, 5 0.2/; 

Parameters 
c(k) transporting cost (k) 
/1-8 102, 1-9 1, 1-10 17, 1-13 13, 1-14 2, 1-15 18, 1-19 18, 1-23 5, 1-24 26, 2-4 22, 2-5 131, 2-11 24, 
2- 20 14, 2-21 89, 2-25 21, 2-26 3, 2-28 138, 2-30 3, 3-5 27, 3-6 10, 3-7 1, 3-10 35, 3-13 34, 3-15 19, 
3- 19 58, 3-22 5, 3-23 29, 3-28 35, 3-29 62, 4-2 22, 4-5 46, 4-10 60, 4-11 3, 4-16 7, 4-17 16, 4-20 8, 
4- 25 8, 4-26 11, 4-28 51, 4-29 6, 4-30 9, 5-2 131, 5-3 27, 5-4 46, 5-7 21, 5-10 71, 5-15 67, 5-22 16, 
5- 26 96, 5-28 1, 5-29 21, 5-30 95, 6-3 10, 6-7 19, 6-13 7, 6-15 12, 6-19 19,6-23 6, 7-3 1, 7-5 21, 7-6 
19, 7-10 45, 7-13 48, 7-15 28, 7-19 76, 7-22 8, 7-28 26, 7-29 71, 8-1 102, 8-9 87, 8-10 70, 8-11 53, 
8- 12 1, 8-17 33, 8-18 3, 8-23 134, 8-24 33, 8-25 44, 8-27 3, 9-1 1, 9-8 87, 9-10 26, 9-14 5, 9-15 29, 
9- 24 31, 10-1 17, 10-3 35, 10-4 60, 10-5 71, 10-7 45, 10-8 70, 10-9 26, 10-11 42, 10-15 3, 10-16 30, 
10- 17 18, 10-22 23, 10-23 11, 10-24 7, 10-28 87, 10-29 37, 11-2 24, 11-4 3, 11-8 53, 11-10 42, 11-12 51, 
11- 16 7, 11-17 6, 11-18 33, 11-20 6, 11-21 36, 11-24 33, 11-25 5, 11-27 30, 11-29 7, 11-30 13, 12-8 1, 
12- 11 51, 12-17 35, 12-18 3, 12-21 2, 12-24 37, 12-25 41, 12-27 3, 13-1 13, 13-3 34, 13-6 7, 13-7 48, 
13- 14 10, 13-19 3, 13-23 4, 14-1 2, 14-9 5, 14-13 10, 14-19 8, 14-23 12, 15-1 18, 15-3 19, 15-5 67, 
15- 6 12, 15-7 28, 15-9 29, 15-10 3, 15-22 18, 15-23 5, 15-28 83, 15-29 38, 16-4 7, 16-10 30, 16-11 7, 
16- 17 4, 16-24 28, 16-29 1, 17-4 16, 17-8 33, 17-10 18, 17-11 6, 17-12 35, 17-16 4, 17-18 17, 17-21 36, 
17- 24 12, 17-25 12, 17-27 17, 17-29 6, 18-8 3, 18-11 33, 18-12 3, 18-17 17, 18-21 5, 18-24 20, 18-25 27, 
18- 27 1, 19-1 18, 19-3 58, 19-6 19, 19-7 76, 19-13 3, 19-14 8, 19-23 9, 20-2 14, 20-4 8, 20-11 6, 
20- 21 34, 20-25 1, 20-30 9, 21-2 89, 21-11 36, 21-12 2, 21-17 36, 21-18 5, 21-20 34, 21-24 45, 21-25 25, 
21- 27 5, 21-30 77, 22-3 5, 22-5 16, 22-7 8, 22-10 23, 22-15 18, 22-28 24, 22-29 32, 23-1 5, 23-3 29, 
23- 6 6, 23-8 134, 23-10 11, 23-13 4, 23-14 12, 23-15 5, 23-19 9, 23-24 35, 24-1 26, 24-8 33, 24-9 31, 
24- 10 7, 24-11 33, 24-12 37, 24-16 28, 24-17 12, 24-18 20, 24-21 45, 24-23 35, 24-25 33, 24-27 21, 
24- 29 35, 25-2 21, 25-4 8, 25-8 44, 25-11 5, 25-12 41, 25-17 12, 25-18 27, 25-20 1, 25-21 25, 25-24 33, 
25- 27 24, 25-30 15, 26-2 3, 26-4 11, 26-5 96, 26-28 103, 26-29 32, 26-30 1, 27-8 3, 27-11 30, 27-12 3, 
27- 17 17, 27-18 1, 27-21 5, 27-24 21, 27-25 24, 28-2 138, 28-3 35, 28-4 51, 28-5 1, 28-7 26, 28-10 87, 
28- 15 83, 28-22 24, 28-26 103, 28-29 26, 28-30 102, 29-3 62, 29-4 6, 29-5 21, 29-7 71, 29-10 37, 29-11 7, 
29- 15 37, 29-16 1, 29-17 6, 29-22 32, 29-24 35, 29-26 32, 29-28 26, 30-2 3, 30-4 9, 30-5 95, 30-11 13, 
30- 20 9, 30-21 77, 30-25 15, 30-26 1, 30-28 102/ 

d(kl) cost of building a new edge (j) - default value 0 
/ 1-8 326, 1-10 40, 1-13 40, 1-15 51, 1-19 64, 1-24 73, 2-4 61, 2-5 364, 2-11 96, 2-20 33, 2-21 285, 
2- 25 83, 2-26 5, 2-28 551, 3-5 64, 3-6 21, 3-10 139, 3-13 82, 3-19 140, 3-22 11, 3-23 92, 3-28 99, 
3- 29 123, 4-2 61, 4-5 112, 4-10 193, 4-16 19, 4-17 56, 4-20 23, 4-25 24, 4-26 30, 4-28 103, 5-2 364, 
5- 3 64, 5-4 112, 5-7 68, 5-10 170, 5-15 268, 5-22 38, 5-26 231, 5-28 2, 5-30 344, 6-3 21, 6-7 60, 
6- 13 22, 6-15 44, 6-19 47, 7-5 68, 7-6 60, 7-10 126, 7-13 115, 7-15 67, 7-19 274, 7-22 15, 7-28 73, 
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7-29 199, 8-1 326, 8-9 314, 8-10 196, 8-11 148, 8-17 119, 8-18 10, 8-23 428, 8-25 142, 8-27 8, 9-8 314, 
9- 10 84, 9-14 17, 9-15 103, 9-24 111, 10-1 40, 10-3 139, 10-4 193, 10-5 170, 10-7 126, 10-8 196, 10-9 84, 
10- 11 134, 10-16 107, 10-17 64, 10-22 46, 10-23 43, 10-28 244, 11-2 96, 11-8 148, 11-10 134, 11-12 121, 
11- 16 27, 11-18 131, 11-20 25, 11-21 145, 11-24 107, 11-27 121, 11-29 23, 11-30 36, 12-11 121, 12-17 69, 
12- 18 638, 12-24 120, 12-25 165, 12-27 306, 13-1 40, 13-3 82, 13-6 22, 13-7 115, 13-14 36, 13-19 9, 
14- 9 17, 14-13 36, 14-19 30, 14-23 49, 15-1 51, 15-5 268, 15-6 44, 15-7 67, 15-9 103, 15-22 43, 15-28 232, 
15- 29 150, 16-4 19, 16-10 107, 16-11 27, 16-17 14, 16-24 110, 17-4 56, 17-8 119, 17-10 64, 17-12 69, 
17- 16 14, 17-18 40, 17-21 72, 17-25 29, 17-27 47, 17-29 13, 18-8 10, 18-11 131, 18-12 338, 18-17 40, 
18- 21 19, 18-24 62, 18-25 53, 18-27 1, 19-1 64, 19-3 140, 19-6 67, 19-7 274, 19-13 9, 19-14 30, 19-23 29, 
20- 2 33, 20-4 23, 20-11 25, 20-21 95, 20-25 2, 20-30 21, 21-2 251, 21-11 145, 21-17 72, 21-18 19, 
21- 20 95, 21-24 145, 21-27 11, 21-30 276, 22-3 11, 22-5 38, 22-7 15, 22-10 46, 22-15 43, 22-28 58, 
22- 29 116, 23-3 92, 23-8 427, 23-10 43, 23-14 49, 23-19 29, 23-24 97, 24-1 73, 24-9 111, 24-11 107, 
24- 12 120, 24-16 110, 24-18 62, 24-21 145, 24-23 97, 24-25 132, 24-27 58, 24-29 139, 25-2 83, 25-4 24, 
25- 8 142, 25-12 165, 25-17 29, 25-18 53, 25-20 2, 25-24 132, 25-27 88, 25-30 58, 26-2 5, 26-4 30, 
26- 5 231, 26-28 371, 26-29 103, 26-30 2, 27-8 8, 27-11 121, 27-12 306, 27-17 47, 27-18 1, 27-21 11, 
27- 24 58, 27-25 88, 28-2 551, 28-3 99, 28-4 103, 28-5 2, 28-7 73, 28-10 244, 28-15 232, 28-22 58, 
28- 26 371, 28-29 71, 28-30 245, 29-3 123, 29-7 199, 29-11 23, 29-15 150, 29-17 13, 29-22 116, 29-24 139, 
29- 26 103, 29-28 71, 30-5 344, 30-11 36, 30-20 21, 30-21 276, 30-25 53, 30-26 2, 30-28 245/; 

Parameters qplus(i) compensation 
qminus(i) compensation; 

Loop(Icus, qplus(Icus)=100); 
Loop(Icus, qminus(Icus)= 100); 

The incidence matrix A(i, k) can be implemented via "include" statement in G A M S as 
follows: 

\$INCLUDE D:\....\incidence_matrix.txt 

The same can be done with the demand file. It can either be randomly generated as 

Parameters pro(i) capacity of i(rpoduction) 
dem(s,i) capacity of i in scenario s(demands) 

Loop(s, Loop(Icus, dem(s,Icus)=uniformint(10,20))); 

Loop(Ipla, pro(Ipla)=-(sum(Icus, sum(s,dem(s,Icus))))/(c3*card(s))); 

or you can use our file: 

\$INCLUDE D:\....\demand.txt 

See next section - it is shown how can the file look like. 

The network is presented in, beside others, Figure 2.2 (alternatively, Figure 2 in [A9]): 
see the paper for our optimization model, hybrid/heuristic solution technique as well as 
graphical solution of the two-stage stochastic (scenario-based) T N D P . 

B.2. Demand.txt 
Table dem(s,i) demand 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 
1 17 16 13 17 16 19 11 10 14 10 17 13 11 17 138 63 0 0 0 0 0 0 0 0 0 0 0 0 
2 13 11 17 10 17 10 10 13 13 16 12 11 10 10 63 110 0 0 0 0 0 0 0 0 0 0 0 0 
3 13 15 15 19 17 11 14 13 10 19 18 18 16 18 152 64 0 0 0 0 0 0 0 0 0 0 0 0 

29 30 
0 0 
0 0 
0 0 
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4 13 19 12 15 15 13 17 16 13 16 18 14 15 19 138 77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 12 13 12 16 10 13 15 14 10 18 12 18 19 16 84 114 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
6 17 10 16 12 13 13 12 10 15 17 18 12 12 10 109 78 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
7 19 15 11 13 16 19 19 16 14 13 15 11 13 14 65 143 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
8 11 18 10 11 13 11 18 13 15 18 19 13 12 18 121 79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
9 11 13 12 14 18 13 12 18 15 15 14 11 19 11 110 86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
10 16 10 18 11 17 15 16 18 16 13 14 13 17 12 135 71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
11 13 17 14 11 15 14 17 11 18 14 17 19 10 15 67 138 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
12 15 12 14 12 14 15 13 13 19 10 17 10 18 14 93 103 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
13 10 13 19 12 12 19 16 13 13 15 18 14 15 19 90 118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
14 12 11 13 17 18 18 19 14 13 11 17 19 17 10 92 117 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
15 19 12 18 17 14 19 11 19 10 10 15 14 16 15 104 105 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
16 12 16 12 17 13 15 17 18 12 12 16 12 15 15 111 91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
17 16 16 17 11 16 15 15 11 17 13 15 14 11 19 117 89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
18 18 16 13 12 14 10 11 15 15 13 17 12 12 14 79 113 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
19 16 13 17 15 15 11 10 14 14 15 15 18 19 11 116 87 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
20 18 17 16 16 11 14 11 15 15 17 13 16 12 17 75 133 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
21 18 12 18 19 17 15 18 15 12 12 18 19 13 11 123 94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
22 17 13 14 11 13 13 10 13 12 14 12 11 14 15 116 66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
23 17 17 11 14 14 17 15 18 12 17 18 14 18 18 146 74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
24 12 13 17 13 19 13 16 17 17 12 18 15 11 18 64 147 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
25 16 14 14 13 11 16 10 18 15 17 13 17 13 18 149 56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
26 19 13 14 10 19 10 12 12 15 14 14 10 12 19 107 86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
27 13 15 19 15 14 19 16 13 14 16 14 19 14 15 133 83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
28 16 16 19 17 11 11 18 15 11 10 14 10 12 14 125 69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
29 18 10 15 16 18 11 14 18 15 13 11 14 11 10 72 122 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
30 10 11 15 13 13 19 18 19 16 13 18 19 11 16 67 144 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
31 12 11 10 17 17 15 19 12 16 17 13 12 12 16 71 128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
32 15 10 18 15 19 10 14 19 14 14 12 18 13 17 93 115 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
33 19 18 13 16 15 14 14 12 10 14 18 15 18 14 153 57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
34 12 11 10 10 19 10 16 19 12 10 18 16 17 16 73 123 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
35 18 15 16 13 13 13 11 10 18 15 19 18 18 14 114 97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
36 12 17 13 15 13 15 14 10 17 11 10 13 10 18 95 93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
37 11 14 12 14 17 15 15 13 15 14 12 15 16 14 50 147 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
38 14 14 10 15 13 13 13 11 17 12 13 12 14 14 136 49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
39 11 19 10 18 19 19 11 17 17 14 13 16 12 15 132 79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
40 10 10 10 15 10 15 13 15 17 14 16 11 18 14 50 138 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
41 17 11 16 13 18 13 11 12 18 18 12 19 16 15 152 57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
42 16 18 17 18 15 19 16 13 14 15 14 15 18 11 75 144 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
43 10 15 10 12 18 14 17 17 14 17 18 13 14 12 66 135 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
44 15 14 17 17 15 13 13 19 14 16 11 11 19 18 84 128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
45 16 11 19 10 10 10 14 12 13 15 15 10 12 18 56 129 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
46 16 17 13 14 12 17 13 13 12 12 13 17 18 19 92 114 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
47 11 19 16 16 15 12 16 14 15 14 18 14 15 13 92 116 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
48 16 12 14 18 15 13 14 15 12 15 18 17 11 16 123 83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
49 14 19 11 12 14 11 10 18 12 12 16 15 11 13 137 51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
50 17 15 17 16 18 12 14 14 10 12 19 12 11 11 87 111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
51 12 11 14 10 11 11 10 18 18 12 16 17 12 12 100 84 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
52 10 11 13 17 15 15 10 13 18 15 12 14 19 19 126 75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
53 18 15 14 10 18 19 10 19 12 17 19 13 15 17 98 118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
54 14 12 18 14 14 18 16 16 17 11 15 11 18 14 109 99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
55 19 12 16 10 16 15 10 11 15 16 14 11 15 16 62 134 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
56 15 15 17 15 13 16 17 19 13 15 13 16 19 11 126 88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
57 19 15 18 17 19 13 17 18 15 19 17 13 10 11 105 116 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
58 12 19 12 11 10 13 10 10 19 16 11 19 18 14 114 80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
59 17 17 17 14 11 12 19 18 13 18 13 16 10 14 73 136 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
60 12 11 14 15 16 14 15 17 17 12 12 14 14 15 91 107 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
61 10 13 15 19 13 18 13 13 14 10 15 16 10 13 108 84 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
62 10 13 14 13 14 13 19 18 16 14 12 17 13 13 88 111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
63 15 10 16 12 14 19 13 18 17 19 12 18 16 19 132 86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
64 13 10 16 11 12 16 11 17 18 10 10 17 16 14 62 129 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
65 19 13 19 14 16 12 18 18 13 16 17 10 18 13 124 92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
66 19 19 16 18 14 14 11 14 10 10 17 10 10 16 100 98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
67 11 18 13 14 13 18 13 16 15 15 12 14 10 15 61 136 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
68 14 15 16 15 13 11 16 15 15 11 12 19 15 11 65 133 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
69 14 16 16 12 17 16 17 15 11 12 19 15 14 11 124 81 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
70 14 15 16 11 17 11 14 18 10 19 14 18 10 18 146 59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
71 11 19 13 14 16 10 19 13 14 13 13 17 18 17 75 132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
72 14 13 19 15 15 15 13 17 19 19 12 14 12 11 54 154 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
73 11 14 15 10 19 11 16 11 11 10 10 12 13 17 103 77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
74 19 16 16 12 19 10 16 15 10 18 10 19 19 14 142 71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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75 16 13 10 12 14 16 12 17 15 14 16 18 14 19 70 136 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
76 13 11 11 17 19 13 13 16 15 13 16 13 15 12 73 124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
77 18 19 12 11 15 14 14 11 13 17 19 10 10 14 136 61 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
78 10 15 18 10 15 12 17 15 18 13 19 14 11 18 60 145 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
79 16 15 17 15 12 13 15 15 15 11 18 13 16 17 66 142 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
80 15 14 10 12 13 14 14 13 18 15 15 10 16 19 85 113 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
81 12 13 19 12 16 12 18 17 16 18 16 17 12 17 76 139 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
82 14 15 15 14 15 16 18 19 14 14 15 19 11 16 94 121 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
83 19 17 13 17 13 10 15 13 13 18 13 13 14 17 149 56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
84 16 11 14 17 19 18 11 18 15 14 18 16 15 18 141 79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
85 16 18 13 11 13 11 18 14 19 18 11 15 14 10 132 69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
86 19 11 16 14 19 13 17 12 19 10 17 14 10 16 51 156 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
87 14 10 11 19 11 15 17 11 14 18 12 14 15 18 77 122 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
88 11 17 16 11 16 12 18 13 12 14 18 17 10 11 123 73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
89 11 17 12 16 16 15 13 10 17 18 18 11 14 17 104 101 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
90 16 16 11 13 13 12 19 19 14 18 16 19 11 13 73 137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
91 18 11 10 17 10 19 10 19 14 15 16 11 17 16 61 142 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
92 15 13 19 18 14 11 12 16 19 10 11 11 16 17 135 67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
93 13 10 17 10 18 13 16 17 12 11 17 13 10 10 71 116 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
94 17 12 16 13 16 17 13 13 10 17 18 12 16 18 132 76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
95 15 13 16 11 15 13 11 10 12 13 12 11 19 16 67 120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
96 12 18 18 10 14 11 15 10 12 18 18 14 19 11 81 119 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
97 12 13 18 12 10 18 15 17 18 16 12 17 17 15 156 54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
98 11 10 17 10 14 16 12 15 16 16 19 10 15 15 103 93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
99 16 13 19 19 16 19 10 12 11 14 17 15 16 19 116 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
100 11 . 15 16 13 18 13 16 17 • 12 14 17 14 13 12 149 52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

B.3. Incidence matrix.txt 
Table A(i,k) incidence matrix of the graph/network 

1-9 1-14 1-23 2-30 3-7 3-15 4-11 4-29 4-30 5-29 6-23 7-3 8-12 8-24 9-1 10-15 10-24 10-29 11-4 11-17 11-25 12-8 12-21 13-23 14-1 15-3 15-10 
1 - 1 - 1 - 1 1 1 
2 -1 
3 - 1 - 1 1 1 
4 -1 -1 -1 1 
5 -1 
6 -1 
7 1 -1 
8 - 1 - 1 1 
9 1 -1 

10 -1 -1 -1 1 
11 1 -1 -1 -1 
12 1 -1 -1 
13 -1 
14 1 -1 
15 1 1 -1 -1 
16 
17 1 
18 
19 
20 
21 1 
22 
23 1 1 1 
24 1 1 
25 1 
26 
27 
28 
29 1 1 1 
30 1 1 

+ 
15-23 16-29 17-11 17-24 21-12 21-25 23-1 23-6 23-13 23-15 24-8 24-10 24-17 25-11 25-21 29-4 29-5 29-10 29-16 30-2 30-4 

1 1 
2 1 
3 
4 1 1 
5 1 
6 1 
7 
8 1 
9 

10 1 1 
1 1 1 1 
12 1 
13 1 
14 
15 -1 1 
16 -1 1 
17 -1 -1 1 
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18 
19 
20 
21 -1 -1 1 
22 
23 1 -1 -1 -1 -1 
24 1 -1 -1 -1 
25 1 -1 -1 
26 
27 
28 
29 1 -1 -1 -1 -1 
30 -1 -1 

1-8 1-10 1-13 1-15 1-19 1-24 2-4 2-5 2-11 2-20 2-21 2-25 2-26 2-28 3-5 3-6 3-10 3-13 3-19 3-22 3-23 3-28 3-29 4-2 4-5 4-10 4-16 4-17 4-20 4-25 
1 -1 -1 -1 -1 -1 -1 
2 -1 -1 -1 -1 -1 -1 -1 -1 1 
3 -1 -1 -1 -1 -1 -1 -1 -1 -1 
4 1 - 1 - 1 -1 -1 -1 -1 -1 
5 1 1 1 
6 1 
7 
8 1 
9 

10 1 1 1 
11 1 
12 
13 1 1 
14 
15 1 
16 1 
17 1 
18 
19 1 1 
20 1 1 
21 1 
22 1 
23 1 
24 1 
25 1 1 
26 1 
27 
28 1 1 
29 1 
30 

4-26 4-28 5-2 5-3 5-4 5-7 5-10 5-15 5-22 5-26 5-28 5-30 6-3 6-7 6-13 6-15 6-19 7-5 7-6 7-10 7-13 7-15 7-19 7-22 7-28 7-29 8-1 8-9 8-10 8-11 8-17 8-18 
1 1 
2 1 
3 1 1 
4 - 1 - 1 1 
5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 
6 -1 -1 -1 -1 -1 1 
7 1 1 - 1 - 1 - 1 -1 -1 -1 -1 -1 -1 
8 -1 -1 -1 -1 -1 -1 
9 1 

10 1 1 1 
11 1 
12 
13 1 1 
14 
15 1 1 1 
16 
17 1 
18 1 
19 1 1 
20 
21 
22 1 1 
23 
24 
25 
26 1 1 
27 
28 1 1 1 
29 1 
30 1 

8-23 8-25 8-27 9-8 9-10 9-14 9-15 9-24 10-1 10-3 10-4 10-5 10-7 10-8 10-9 10-11 10-16 10-17 10-22 10-23 10-28 11-2 11-8 11-10 11-12 11-16 11-18 
1 1 
2 1 
3 1 
4 1 
5 1 
6 
7 1 
8 - 1 - 1 - 1 1 1 1 
9 -1 -1 -1 -1 -1 1 

10 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 
11 1 -1 -1 -1 -1 -1 -1 
12 1 
13 
14 1 
15 1 
16 1 1 
17 1 
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is 
19 
20 
21 
22 
23 1 
24 
25 
26 
27 
28 
29 

11-20 11-21 11-24 11-27 11-29 11-30 12-11 12-17 12-18 12-24 12-28 12-27 13-1 13-3 13-6 13-7 13-14 13-19 14-9 14-13 14-19 14-23 15-1 15-5 15-6 

10 
11 
12 
13 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

10 
11 
12 
13 

-1 -1 -1 -1 -1 -1 1 
-1 -1 -1 -1 -1 -1 

-1 -1 -1 -1 -1 -1 1 
1 -1 -1 -1 -1 

-1 -1 -1 

15-7 15-9 15-22 15-28 15-29 16-4 16-10 16-11 16-17 16-24 17-4 17-8 17-10 17-12 17-16 17-18 17-21 17-25 17-27 17-29 18-8 18-11 18-12 18-17 18-21 

15 -1 -1 -1 -1 -1 

18 
19 
20 
21 

-1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

-1 -1 -1 -1 -1 

23 
24 
25 
26 
27 
28 
29 

10 
11 
12 
13 

18-24 18-25 18-27 19-1 19-3 19-6 19-7 19-13 19-14 19-23 20-2 20-4 20-11 20-21 20-25 20-30 21-2 21-11 21-17 21-18 21-20 21-24 21-27 21-30 22-3 

16 
17 
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18 
19 
20 
21 

-1 -1 -1 
-1 -1 -1 -1 -1 -1 -1 

-1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 -1 -1 

24 1 
25 
26 
27 
28 
29 

22-5 22-7 22-10 22-15 22-28 22-29 23-3 23-8 23-10 23-14 23-19 23-24 24-1 24-9 24-11 24-12 24-16 24-18 24-21 24-23 24-25 24-27 24-29 25-2 25-4 

10 
11 
12 
13 

16 
17 
18 
19 
20 
21 
22 -1 -1 -1 -1 -1 -1 
23 
24 
25 
26 
27 
28 1 
29 1 

-1 -1 -1 -1 -1 -1 
1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

25-8 25-12 25-17 25-18 25-20 25-24 25-27 25-30 26-2 26-4 26-5 26-28 26-29 26-30 27-8 27-11 27-12 27-17 27-18 27-21 27-24 27-25 28-2 28-3 28-4 28-5 

10 
11 
12 
13 

16 
17 
18 
19 
20 
21 

25 -1 -1 -1 
26 
27 
28 
29 

-1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 

-1 -1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 

28-7 28-10 28-15 28-22 28-26 28-29 28-30 29-3 29-7 29-11 29-15 29-17 29-22 29-24 29-26 29-28 30-5 30-11 30-20 30-21 30-25 30-26 30-28 

10 
11 
12 
13 

16 
17 
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is 
19 
20 
21 

23 
24 
25 
26 
27 
28 
29 -1 -1 -1 -1 
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List of symbols and abbreviations used 
A b b r e v i a t i o n s 

E O E x p e c t e d o b j e c t i v e 

F L P F a c i l i t y l o c a t i o n p r o b l e m 

G A G e n e t i c a l g o r i t h m 

H N H e r e - a n d - n o w 

I P In teger p r o g r a m m i n g 

L P L i n e a r p r o g r a m m i n g 

M D P A M a r k e t i n g - d e p e n d e n t p r i c e - a d d i t i v e ( d e m a n d ) 

M D P M M a r k e t i n g - d e p e n d e n t p r i c e - m u l t i p l i c a t i v e ( d e m a n d ) 

M I L P M i x e d - i n t e g e r l i n e a r p r o g r a m m i n g / p r o g r a m m e 

M I N L P M i x e d - i n t e g e r n o n l i n e a r p r o g r a m m i n g / p r o g r a m m e 

N D P N e t w o r k d e s i g n p r o b l e m 

N L P N o n l i n e a r p r o g r a m m i n g 

N P N e w s v e n d o r p r o b l e m 

N P A N e w s v e n d o r p r o b l e m w i t h a d v e r t i s i n g 

N P P N e w s v e n d o r p r o b l e m w i t h p r i c i n g (or N e w s v e n d o r p r i c i n g p r o b l e m ) 

N P P A N e w s v e n d o r p r o b l e m w i t h ( jo in t ) p r i c i n g a n d a d v e r t i s i n g 

S P S t o c h a s t i c p r o g r a m m i n g 

s. t. sub jec t t o 

T N D P T r a n s p o r t a t i o n n e t w o r k d e s i g n p r o b l e m 

W M W a s t e m a n a g e m e n t 

w s W a i t - a n d - s e e 

S y m b o l s : U n i f i e d 

K the set o f r e a l n u m b e r s 

K " the set o f r e a l n - t u p l e s 

S y m b o l s : N e w s v e n d o r p r o b l e m s ( N P , N P P , N P A a n d N P P A ) 

a a d v e r t i s i n g a m o u n t , a l t e r n a t i v e l y f u n c t i o n p a r a m e t e r i n t h e N P P 

A, B l ower a n d u p p e r b o u n d s o f the r a n d o m v a r i a b l e 

b f u n c t i o n p a r a m e t e r i n t h e N P P 

c b u y i n g cos t p e r u n i t 

d d e m a n d f u n c t i o n (i .e. d(p),d(a) a n d d(a,p)) 

D g e n e r a l d e m a n d r a n d o m f a c t o r - d e p e n d e n t f u n c t i o n 

e pr i ce e l a s t i c i t y f u n c t i o n ; a l t e r n a t i v e l y , m a r k e t i n g effort 
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E(-) e x p e c t a t i o n o p e r a t o r 

/ ( • ) p r o b a b i l i t y d i s t r i b u t i o n / d e n s i t y f u n c t i o n (pdf ) 

F(•) c u m u l a t i v e d i s t r i b u t i o n f u n c t i o n (cdf) 

g g e n e r a l i z e d f a i lu re r a t e f u n c t i o n 

L ( expec t ed ) loss f u n c t i o n 

p p r i c e p e r u n i t ( se l l ing) 

r f a i l u re r a t e f u n c t i o n 

s s h o r t a g e cost 

t v a r i a b l e o f i n t e g r a t i o n ( i n s t e a d o f r a n d o m v a r i a b l e £ ) 

v sa lvage v a l u e 

x f i r s t -s tage d e c i s i o n v a r i a b l e - a n o r d e r i n g q u a n t i t y 

z s t o c k i n g fac to r 

a. a f u n c t i o n p a r a m e t e r 

/3 f u n c t i o n p a r a m e t e r 

5 a r esponse f u n c t i o n p a r a m e t e r 

7 a r esponse f u n c t i o n p a r a m e t e r 

A e x p e c t e d lef tovers 

7r p r o f i t ( ob jec t ive ) f u n c t i o n 

IT e x p e c t e d p r o f i t f u n c t i o n 

Nli r i sk l e s s p ro f i t f u n c t i o n 

to a r esponse f u n c t i o n p a r a m e t e r 

p c r i t i c a l r a t i o i n t h e N P s 

6 a r esponse f u n c t i o n p a r a m e t e r 

© e x p e c t e d shor t ages 

£ r a n d o m ( s tochas t i c ) v a r i a b l e 

S set o f r a n d o m v a r i a b l e s , £ G S 

S y m b o l s : U n i f i e d for t r a n s p o r t a t i o n p r o b l e m s ( T N D P s a n d F L P ) 

E set o f edges, e G E 

I set o f n o d e s i n the n e t w o r k , i £ I 

S set o f scenar ios , s G S 

c t r a n s p o r t i n g cos t p e r u n i t ( b y a n edge) 

q p r o b a b i l i t y o f a c h i e v i n g a s c e n a r i o 

x first-stage d e c i s i o n v a r i a b l e - a t r a n s p o r t i n g q u a n t i t y 
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S y m b o l s : T r a n s p o r t a t i o n n e t w o r k d e s i g n p r o b l e m s ( T N D P s ) 

A n e t w o r k d e s c r i p t i o n b y node-edge i n c i d e n c e m a t r i x 

b d e m a n d , a l t e r n a t i v e l y p r o d u c t i o n o r a m o u n t a t a n o d e 

d d e s i g n i n g edge cost 

p p r i c e p e r u n i t ( se l l ing) 

p m a x a p r i c e u p p e r b o u n d 

p m * n a p r i c e l o w e r b o u n d 

r~ u n i t p e n a l t y cos t for lef tovers 

r + u n i t p e n a l t y cos t for shor t ages 

y~ s econd-s tage d e c i s i o n v a r i a b l e - lef tovers for a c u s t o m e r i n a s c e n a r i o 

y + s econd-s tage d e c i s i o n v a r i a b l e - sho r t ages for a c u s t o m e r i n a s c e n a r i o 

5 0-1 ( in teger) n e t w o r k d e s i g n v a r i a b l e 

S y m b o l s : F a c i l i t y l o c a t i o n p r o b l e m ( F L P ) 

a n e t w o r k d e s c r i p t i o n b y node-edge i n c i d e n c e m a t r i x 

b~ a v a i l a b l e a m o u n t o f p r o d u c e d was t e i n n o d e 

6 + a v a i l a b l e was t e p r o c e s s i n g c a p a c i t y i n n o d e 

c t r a n s p o r t i n g cos t p e r u n i t 

/ cos t p e r p r o c e s s e d u n i t o f was t e i n n o d e 

g~ cos t p e r u n p r o c e s s e d u n i t o f was t e i n a n o d e 

cos t p e r u n u s e d u n i t o f c a p a c i t y i n a n o d e 

h s w i t c h e d o n p r o c e s s i n g u n i t cos t i n a n o d e 

u~ a m o u n t o f u n t r a n s p o r t e d was t e 

a m o u n t o f u n u s e d p r o c e s s i n g c a p a c i t y 

v~ a m o u n t o f was t e t r a n s p o r t e d f r o m a n o d e 

t>+ a m o u n t o f was t e t r a n s p o r t e d t o a n o d e 

x f i r s t -s tage d e c i s i o n v a r i a b l e - a t r a n s p o r t i n g q u a n t i t y 

y a m o u n t o f was t e p r o c e s s e d i n a n o d e 

5 0-1 ( in teger) v a r i a b l e - i n d i c a t o r o f s w i t c h i n g on-of f e x t r a was t e p r o c e s s i n g c a p a c i t y 
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