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ABSTRACT 
The aim of this thesis is to investigate the problematic of object detection and classi­
fication for traffic analysis. The theoretical part of the paper takes insight on numer­
ous methods and techniques of object detection and classification. Further the paper 
discuses popular frameworks and programming languages for implementation of convo-
lutional neural networks as well as multi-object tracking and communication with loT 
server. The practical part shows implementation of chosen model and additional func­
tionalities, object trackers and communication with selected loT platform as well as data 
processing in cloud and visualization. 
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Rozšířený abstrakt 

Úvod 

Každoročně zvyšující se nároky na systémy řízení dopravy mají za cíl nejen snížit 
dobu vozidel na silnicích, ale také zlepšení bezpečnosti a snížení emisí vytvářené 
stojícími auty v dopravních zácpách. Takovýto systém musí být schopen detekovat 
změny v dopravním provozu a analyzovat je v reálném čase. Novodobé systémy pro 
analýzu dopravy často využívají metody spadající po algoritmy umělé inteligence 
a to nejčastěji hluboké učení, které se v posledních letech stalo velice populární 
a to zejména díky neuronovým sítím. Umělý neuron je základní stavebním blokem 
neuronových sítí, který reprezentuje matematický model s několika vstupy a jedním 
výstupem. Výpočet výstupu neuronu probíhá tak, že je každý z vstupů vynásoben 
váhou, která reprezentuje důleitost konkrétního z vstupů. Poté jsou všechny vstupy 
vynásobené váhami sečteny a je k nim přičtena prahovací hodnota. Výsledná hod­
nota je poté transformována aktivační funkcí a její výsledek je výstupem neuronu. 
Neuronové sítě jsou díky tomu principu schopné na základě odchylky od očeká­
vaného výsledku upravit právě své váhy a prahovací honoty a během procesu učení 
tak zvyšovat svou přesnost. 

Metody hlubokého učení se z pohledu učení dají rozdělit do dvou hlavních kate­
gorii a to učení s učitelem a učení bez učitele. Učení s učitelem využívá vstupní data 
a k nim odpovídající výstupy. Učení bez učitele naopak využívá vstupní data bez 
jakýchkoliv dalších informací a metody tohoto druhu hledají souvislosti mezi daty 
a snaží se je kategorizovat. 

Konvo luční neuronové sítě jsou jedním z nej používanějším druhů neuronových 
sítí a to především pro zpracování dat, která mají tenzorovou topologii. Typicky se 
konvoluční neuronové sítě skládají ze tří vrstev: konvoluční vstva, tzv. poolingová 
vrstva a aktivační vrstva. Konvoluční vrstva využívá filtru nazývaného kernel, který 
se posouvá po vstupních datech a vytahuje jednu hodnotu z dané oblasti. To má 
za následek že každý sektor dat, na které je aplikován kernel je přetransformován 
do jediné hodnoty a díky tomu se tedy snižuje rozměr dat. Aktivační vstva má 
za úkol přepočítat data z poolingové vrstvy do vhodnějšího měřítka. Mezi běžné 
poolingové vrstvy patří například Max pooling nebo Average pooling. Typickým 
zástupcem aktivačních funkci je ReLU funkce, které je nulová pro záporné hodnoty 
a pro kladné hodnoty je výstup roven vstupu. 

Řešení 

Tato práce využívá pro detekci dopravních prostředků plně konvoluční neuronové 
sítě s architekturou YOLOv5, která je nejen schopná detekovat objekty ve snímcích, 



ale také k nim přiřadit rámeček ohraničení. Tato architektura využívá metod jako 
je tzv. Cross Stage Partial a Spatial Pyramid Pooling, které nejen zlepšují extrakci 
detailů z data, ale také zlepšují korekci parametrů neuronových sítí při trénování. 
Implementace je provedena v jazyce Python s využitím knihovny PyTorch, která 
obsahuje veškeré stavební bloky k implementaci algoritmů strojového učení. Im­
plementovaný algoritmus je trénovaný na COCO datasetu, což je obrovský dataset 
více než 150 tisíci obrázky, z nich jsou vytaženy pouze ty obsahující 5 tříd vozidel 
a to konkrétně: osobní vozidlo, kolo, motocykl, autobus a nákladní vozidlo. Celý 
model je trénován s využitím cloud platformy Google Colab, která umožňuje využití 
vysoce výkonných grafických karet a úložiště typu R A M o velké kapacitě. 

Jelikož je dílčím cílem práce také provádět analýzu dopravy, byly k implementaci 
přidány dva algoritmy na trasování objektu, které umožňují nejen přesné počítání 
vozidel konkrétních tříd, ale také výpočet přibližné rychlosti vozidel. První trasovací 
algoritmu funguje na principu přiřazování ID čísla detekovaného objetu, které je ne-
jblíže k poslední známé poloze trasovaného objektu. Druhý algoritmus je založen na 
ploše objektu a přiřazuje ID objektu k detekci jejíž ohraničující rámeček se překrývá 
s rámečkem původního trasovaného objektu o více než je určitá limitní hodnota. 

K reálným testům modelu je vybrána platforma Jetson Nano s 2 GB R A M pamětí 
od NVIDIA a pro zachycení dopravy je zvolena kamera IMX219-120 s 8Mpx sen­
zorem a CSI rozhraním, které umožňuje rychlejší přístup k snímkům než klasické 
USB kamery. 

Experimenty 

Práce předkládá několik experimentů zabývající se vyhodnocení celého systému. 
Model je po natrénování schopen detekovat vozidla ve snímcích s přesností přibližně 
78%. Mimo to je model také schopen předpovědět 67% ohraničujících rámečků, 
jejíchž IoU se skutečným ohraničujícím rámečkem je vetší než 50 % (mAP:0.5). Testy 
na reálném scénáři ukazují závislost modelu nejen na úhlu pohledu, ale také na 
reflektivitě vozidla a jeho barvě. Především pak testy s pohledem shora ukazují 
problematičnost modelu s detekcí vozidel s lesklou černou barvou. 

Rychlost zpracování snímků na reálném systému trvá relativně dlouho a jeden 
snímek je zpracován přibližně za 110 ms, což odpovídá asi 9 snímkům za sekundu. 
Tato hodnota je bohužel příliš nízká a z toho důvodu byl model konvertován do 
formátu TensorRT který je více optimalizovaný s NVIDIA grafickými procesory. 
Tato konverze měla za následek snížení rychlosti zpracování na přibližně 71 ms, které 
již odpovídají přibližně 14 snímkům za sekundu. 

IoU trasovací algoritmus je ve výchozím nastavení používán k trasování ob­
jektů a jejich počítání a odhadu rychlosti. V případě reálného systému byl algo-



ritmus schopen zachytit a korektně trasovat některé pomalé vozidla, avšak díky 
nízké snímkovací rychlosti nebyl systém sledovat všechna vozidla, především ta s 
rychlostí nad 50km/h. Testy na stolním počítací se záběry o 30 snímcích pak uka­
zovaly až na výjimky velice dobré sledovací vlastnosti a byly schopny zachycovat 
i rychlost některých vozidel. Aby však byl systém schopen zaručeně odhadovat 
rychlost všech vozidel, bylo by nutné pracovat se snímkovou frekvencí alespoň 60 
snímků za sekundu. 

Chování systému v závislosti na poloze kamery bylo testováno pro dvě situace. 
V první situaci byla kamera umístěna na straně cesty, což z pohledu predikcí lehce 
zvedlo přesnost. Avšak tato pozice také vedla ke zhoršení výkonu trasovacího algo­
ritmu, jelikož nyní kamera zabírala pouze malou část vozovky a vozidla vstupovala 
a vystupovala ze záběru příliš rychle. To mělo také za následek že nebyly zachyceny 
téměř žádné rychlosti vozidel. Druhá pozice kamery nad vozovkou byla naopak 
mnohem výhodnější pro systém i přesto že předpověděná důvěra v jednotlivé třídy 
byla lehce nižší. Trasovací algoritmus byl schopen nejen lépe trasovat, ale také 
i odhadovat rychlost vozidel. 

Závěr 

Navržený algoritmus detekuje a klasifikuje vozidla s relativně vysokou přesností 
a také je schopen vozidla trasovat, počítat a odhadovat jejich rychlost. Testy na 
hardwaru s vyšší výpočetní kapacitou ukazují téměř bezchybné chování na snímkové 
frekvenci 60 snímků za sekundu, kterých však zvolený hardwarový systém není 
schopen dosáhnout ani po konverzi do vysoce optimalizovaného back-endu (Ten-
sorRT). Volba platformy se tedy prokázala být nedostačující avšak vzhledem k dos­
tupnosti vývojových platforem pro umělou inteligenci v době zadání práce nebyl 
velký výběr. Z hlediska samotného Jetson Nano by bylo výhodnější zvolit verzi 
s 4 G B R A M a vyhnout se tak občasným problémům s docházející pamětí. To 
by také mohlo vézt ke zlepšení rychlosti modelu vzhled k většímu využití R A M 
namísto SWAP paměti, která je uložena společně se systémem na mikro SD kartě a je 
využívána v případě, že v R A M paměti není dostatek místa. Vzhledem k náročnosti 
na frekvenci snímků by bylo vhodné zvolit výkonnější platformu, která by s dostateč­
nou rezervou zvládla zpracovávat záznam například s 60 snímky za sekundu. 
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Introduction 
For the past few decades the traffic in large cities and highways has become source of 
many problems such as efficiency and safety. Mainly for those reason, cities started 
deploying means of traffic control to allow smooth and safe flow of traffic. Traffic 
lights are the main instrument of traffic control. Traffic lights however have the 
disadvantage of having "fixed" time when the green light is on which may cause 
traffic jam in case there are too many vehicles waiting for green light. This may 
have cascade effect if most of those cars intend to go in the same direction. 

For those reason, there is need of traffic control system that could count the 
occupancy of the road and analyze the traffic to improve the means of traffic control. 
For those reasons, system that could do such analysis is needed and it has to not 
only be able to count the number of vehicles but also classify them in order to better 
understand the traffic. This is an important information because there is a difference 
in the occupancy when there are couple regular cars, or when there are couple of 
tow trucks. Such a systems needs to learn the difference between types of cars and 
correctly detect and classify then in image or video feed. 

There are many ways to implement such system, but the most commonly used 
way is to use deep learning object detector and classier. Deep learning algorithms 
learn features of objects by processing thousands of images and learning from it. 
After the algorithm is done learning and can detect and classify vehicles with pre­
cision sufficient for its task, it can be deployed in field on a suitable hardware. The 
hardware needed for this system consists out of two main components: camera and 
computer. 

Traffic Analysis Tool Add i t iona l hardware 

Camera 
IMX219-120 —CSI-

Jetson Nano 
2GB - U S B * 

WiFi w Mobi le 
Dongle — — ^ hotspot 

Cloud 

Fig. 1: Proposed system for traffic analysis 
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Based on research made in theoretical part of this thesis, a custom model based 
on YOLOv5 architecture will be implemented and evaluated for its accuracy and 
ability to track objects as well as comunicate with cloud. Real system consisting 
of Jetson Nano 2 Gb and IMX219-120 8Mpx camera will be build and tested on 
bridges or overpasses, since the real system would be normally installed on a pole 
overlooking the traffic. Since these location do not usually have outlets, the system 
will be powered using portable powersource. Jetson Nano can be connected to the 
internet via regular Ethernet cable, however, since that will not be available either, 
W i F i dongle supplied with the Jetson Nano will be used to connect to the internet 
via mobile hotspot, through which the Jetson will be able to upload data to the 
cloud. 
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1 Theory 

The theoretical part of this thesis will introduce a reader to the problematic of 
deep learning and computer vision. The chapter is going to introduce the common 
concepts in deep learning as well as the tools and language used for implementation 
of deep learning algorithms. 

Artificial Intelligence (AI) is a field of computer science which focuses on modeling 
intelligent machines in order to automatize tasks that would otherwise be performed 
by human. The first AIs were working of purely coded bases where the developer 
hard coded rules based on which the decision was made. This is today known as 
symbolic AI . With the increasing need for automatization of more complex tasks, 
implementation of symbolic AI was no longer possible due to large amount of rules 
that would have to be hard coded [1]. 

This problem lead to new approach called Machine learning (ML), which instead 
of producing output based on set of hard coded rules, learns the rules from a set 
of examples and later uses those rules to process new data. M L has become very 
popular in recent years and used in many applications like online advertisement, face 
recognition and autonomous driving. These application often use Deep learning 
(DL) algorithms which use large amount of Artificial Neuron (AN) structured in 
layers to replicate human thinking [1]. 

1.1 Deep learning introduction 

Fig. 1.1: Sub-fields of artificial intelligence. 
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Artificial neuron 

Fig. 1.2: Artificial neuron. 

Artificial neuron is the most basic building block of neural network and its struc­
ture can be seen in Figure 1.2. Each input has its own weight, which is adjusted 
according to how much the specific input is relevant. A N does summation across the 
inputs multiplied by their respective weights. Bias can be added to the summation 
to adjust the level whenever the neuron should be activated or not. The activation 
function then translates the output based on the selected type of activation func­
tion and the value of the output. The equation 1.1 mathematically describes the 
A N shown in Figure 1.2 [2]. 

y — AF(b + £™ = 0£i * Wi) (1.1) 

Deep learning incorporates Neural Network (NN) in successive layers in order 
to learn from data in a hierarchical manner. These models often involve tens or 
even hundreds of layers and the term depth is used to annotate, how many layers, 
excluding input and output layer, contribute to the output. 

In general, deep learning models can be divided into two main learning types 
based on the interaction of the user (teacher) with the data. Supervised learning 
is the first type and it requires annotated (labeled) data for learning process which 
often has to be handled by human. The second type of learning is unsupervised 
learning, which does not require any type of human interaction with the date. The 
algorithm on its own tries to figure out what the output should be. 

1.1.1 Supervised learning 

As the name suggests, supervised learning requires human supervision over a set 
of data that has to be classified. These data are labeled by features that define 
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the meaning of data. For example, these labels could be names of animals on the 
picture (dog, cat, bird . . . ) or predicted values (1, 0.5, 5, . . . ) . Supervised learning 
problems can be grouped into two groups based on the algorithm's output variable. 
When the output variable is a category, we are talking about classification and if 
the output variable is a real value, we are talking about regression [2, 3]. 

The algorithms are trained from these examples and evaluated with test data. 
This is usually done in multiple epochs, where one epoch represents one pass over 
the whole training dataset. Occasionally, an issue called overfitting can occur. Over-
fitting means that the algorithm is precisely tuned to find patterns in training data 
but may not work in the real application for previously unseen data. For this reason, 
it is important that the test data are unforeseen by the algorithm. Supervised train­
ing models have broad application from weather predictions and market prediction 
to speech and image classification. Some popular examples of supervised machine 
learning algorithms are: 

• Convolutional Neural Network (CNN) 
• Recurrent Neural Network (RNN) 

— Long Short-Term Memory (LSTM) 
— Gated Recurrent Unit (GRU) 

In the following text, these networks are briefly introduced. 

Convolutional Neural Networks 

Convolutional Neural Network or shorter ConvNet, is a specific type of neural net­
work that uses a convolution layer for processing data that has grid-like topology. 
This type of network is highly used for processing images which can be interpreted 
as a 2D tensor (black and white images) or 3D tensor (RGB images). Traditional 
C N N consist of three types of layers: Convolution layer, pooling layer, and fully-
connected (also known as dense) layer. The structure of such network can be seen 
on Figure 1.3. 

Input image Convolutions Pooling Fully Connected 

Fig. 1.3: Traditional C N N architecture [4]. 

The most common building block in C N N is convolutional layer in which a filter 
called kernel, slides over the input data and performs element-wise multiplication 
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with the data. The input data on convolutional layer are typically tensors and the 
number channels of kernel match the number of channel of the input data. Padding is 
a term for added zeros around input data in order to improve the feature extraction 
on the edges of the data and also to allow kernel better fit the data. Another 
important parameter is stride, which defines spatial distance between location where 
the kernel is applies and its default value is usually one. In order to calculate 
padding, three parameters need to be taken into account: Size of the input W, size 
of the kernel F and stride S. Padding can be calculated according to the following 
equation: 

p = ( S - l ) * W - S + F ( 1 2 ) 

A n activation function is used after the convolution is done to help the network 
learn complex features. The activation function is applied to each individual value in 
the output tensor. Figure 1.4 shows commonly used activation functions. Sigmoid, 
ReLU, Leaky ReLU, E L U and tanh are functions of real variable while the Softmax 
function outputs vector of probabilities [5]. 

I I I I I I I 

-3 - 2 - 1 0 1 2 3 
x 

Fig. 1.4: Common activation functions. 
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Tab. 1.1: Activation functions [4]. 

Activation function Equation 

Sigmoind 

ReLU 

Leaky ReLU 

E L U 

tanh 

Softmax 

/(*) l+e~x 

f(x) = max(0, x) 

f(x) = max(ex, x) where e « 1 

f(x) = max{a{ex — l),x) where a « 1 
£ ( \ Gx—6 x 

J V / g*" —|- g — íc 

p where p{ = %*' 

Figure 1.5 shows the process of generating an activation map by performing 
convolution of kernel over the image where the padding is set to zero, stride to one 
and kernel size to two. 
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cw+dx 
+gy+hz 
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+ky+lz 

kw+lx+ 
oy+pz Activation Map 

Fig. 1.5: Example of convolution [6]. 

The pooling layer downsamples the input by processing the spatial invariance of 
the input. Typically, they use max or average pooling. The down-sampling is done 
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by a sliding window that selects either maximum or average value of the current 
view. The most commonly used pooling is max pooling because it better preserves 
features [4]. 

Fully-Connected layer(s) (FC) layers are usually used at the end of C N N archi­
tecture and are used to extract objectives such as class scores. FC layers take in 
flattened input (vector) and connect each input to all neurons [4]. 

Recurrent Neural Networks 

R N N are networks designed for sequential data or time-series data. RNNs are com­
monly used for natural language processing and speech recognition by companies 
like Google and Apple. They are different from other neural networks by having 
so called "memory". Layers in these networks are made in such a way that they 
can use previous outputs into account when computing output for new input data. 
The representation of the previous output is called the hidden state. RNNs are 
also distinguishable by the fact that the often share parameters across layers of the 
network [7, 8]. 

The Figure 1.6 demonstrates the concept of R N N . On the left side, we can see 
a traditional recurrent neural network with a loop for the hidden state and on the 
right side we unrolled the network, and we can see the chain-like nature of RNNs. 
Traditional R N N units usually have a very simple structure, such as a single tanh 
layer. 

Fig. 1.6: A n unrolled Recurrent Neural Network [8]. 

Traditional R N N however have one problem which is they are not able to learn 
long-term dependencies due to exploding or vanishing gradients in the learning pro­
cess. The vanishing gradient means the gradient that as it decreases exponentially 
(with each layer) as the network learns through back-propagation which causes the 
early layers in the network to learn by a really small amount or not learn at all. The 
exploding gradient is the exact opposite, the gradient is too large, which causes the 
weights of the model to grow, and they will eventually reach a value that cannot 
be handled by the model (NaN value). For that reason, the solution is to either 
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reduce the number of hidden layers or eliminate some of the complexity in R N N . 
Based on this thought, two types of R N N units were developed: Long Short-Term 
Memory (LSTM) and Gated Recurrent Unit (GRU) [8]. 

LSTMs are specially designed to capture long-term dependencies by extending 
the number of layers in a single unit to four, which interact in a certain way. These 
four layers are called gates, and specifically, they are called input gate, output gate, 
forget gate, and cell state [9]. Diagram of the L S T M can be seen at Figure 1.7. 

o o • • -
sigmoid tanh pointwise pointwise vector 

multiplication addition concatenation 

Fig. 1.7: Long Short-Term Memory unit [9]. 

Forget gate is a layer that decides what information should be kept or forgotten. 
Its input is a concatenation of the hidden state from the previous unit and input of 
the current unit. The result of this operation is passed through the sigmoid function 
which output is in a range from 0 to 1. The output of the sigmoid function plays 
role in what information from the previous cell state will be kept or forgotten. The 
lower the number the higher loss of information is produced and vise versa [9]. 

Input gate passes the hidden state through the sigmoid layer and also through 
the tanh layer. The sigmoid layer decides what information from the tanh layer is 
important by point-wise multiplication [9]. 

The cell state of the current unit is calculated from the cell state of the previous 
unit by pointwise multiplication with the output of forget gate which is forget vector. 
After that, we update the cell state by pointwise addition with the output of the 
input gate [9]. 

Lastly, the output gate generates the hidden state for the next unit by pointwise 
multiplication of cell state and output of sigmoid function on which input is again 
concatenation of current input and previous hidden state [9]. 
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Fig. 1.8: Gated Recurrent Unit [9]. 

G R U is a newer generation of R N N and it is very similar to L S T M . It consists 
of two gates, the reset gate, and the update gate. The structure of the G R U can be 
seen in Figure 1.8 [10]. The G R U units in comparison to L S T M , got rid of the cell 
state and the input gate. Since there is no cell state, the hidden state for the next 
unit is generated based on the current input and previous hidden state. These two 
pieces of information are concatenated and passed through an update gate which 
consists of a sigmoid function. The output is represented by values between 0 and 1. 
However, later in the update gate, this value is subtracted from 1 which tells the 
network what and how much information from the previous hidden state should be 
passed to the next G R U unit. The reset gate is similar to the forget gate in L S T M , 
however, the reset gate determines what information from the hidden state should 
be kept or forgotten before its concatenation with the tanh function. 

1.1.2 Unsupervised learning 

Unsupervised learning is used when the problem has too many variables and outputs 
are not known. In that case, unsupervised learning algorithms segment data into 
groups of examples known as clusters or groups of features. The algorithm is at 
this point able to add labels to these groups making them labeled. Unsupervised 
learning is often used in tasks requiring a massive amount of data where labeling 
is not possible. Practically can be used and often is used, as the first step in 
supervised learning application for labeling the data for the supervised learning 
process. Unsupervised learning problems can be divided into clustering problems 
and association problems. Clustering problems are tasks where we look for groups 
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hidden in the data. Association problems are tasks, where we want to discover a rule 
that describes large portions of the data. Some popular examples of unsupervised 
machine learning algorithms are [2, 3]: 

• Self Organizing Map (SOM) 
• Autoencoders 

Self Organizing Maps 

Self Organizing Map (SOM) is a special type of artificial neural network that does 
not learn by back-propagation, instead, it uses competitive learning to adjust weights 
in neurons. This type of artificial N N is used for dimension reduction to reduce data 
by creating a spatially organized representation, which is useful because it helps 
us discover the correlation between data. SOM have two layers, the input layer, 
and the output layer. SOM does not have an activation function in neurons, which 
means that the weights are directly passed to the output layer (feature map). 

As said before, SOM are trained by competitive learning which is done in three 
steps, Competition, Cooperation, and Adaptation. Each neuron in SOM is assigned 
a weight vector with the same dimension as input data. We compute the distance 
between each neuron in the output layer and the input data. The competition 
step is won by the neuron with the smallest distance. The cooperation step is the 
second step in the learning process which says that not only the winning neuron 
will be updated but also its neighbors. Neighbors are chosen by kernel function 
dependent on time and distance from the winning neuron. In the Adaptation step, 
we update neighboring neurons depending on the distance from the winning neuron 
and time [11]. 

Autoencoders 

Autoencoders takes input data and compresses it into a lower-dimensional code and 
then tries to reconstruct it from this representation. Autoencoders, whose block 
diagram is visualized at Figure 1.9, are a specific type of neural network where the 
input and the output are the same. Excluding the input, autoencoders consist of 
three components: encode, code and decoder. The forward function uses the input 
data and the selected encoding method to generate a low-dimensional representation 
of the input called code. The decoder afterward uses only this representation and 
decoding method to reconstruct the input data. The autoencoders have a couple of 
important properties, the first of which is that they are data-specific. This means 
that the input data has to be similar to what the neural network was trained on, 
otherwise it will not work properly. Another property is that the compression will 
never be exactly the same as the input [12]. 
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Fig. 1.9: Block diagram of autoencoder. 

1.2 Deep learning for computer vision 

In the task of object detection in real-time, there are two main architecture families 
to consider: Region based Convolutions Neural Network (RCNN) and You Only 
Look Once (YOLO), each of these architectures taking a different approach at object 
detection. R C N N are region-based C N N employ external region proposal method, 
such as selective search, which is not C N N based, and they extract regions of interest. 
In particular, selective search proposes 2000 Region(s) of Interest (Rol) which tends 
to capture objects in the image. Each is then processed with a convolutional network 
and its output is then classified by Support Vector Machine (SVM), which is a 
supervised learning method, capable of learning a hyperplane which would separate 
the data based on their classes. Since the Rol are not always very accurate and 
might cut off a piece of an object, the bounding box regressor processes the output 
of C N N in parallel with S V M to correct the bounding box. The visualization of 
R C N N and its successors is shown in Figure 1.10. Training and inference of R C N N 
models were very slow because of the number of passes through C N N that had to 
be made. For that reason training of these models on Nvidia K20 took 13 hours and 
their inference was around 13 seconds per image [13]. 

The successor of R C N N , Fast R C N N , is similar to R C N N but instead of propos­
ing Rol from the image, it forwards the whole image through C N N to extract high-
resolution feature map to which is then applied region proposal method. Rol pooling 
layer then passes these regions to fully connected layer(s). The output of FC layer(s) 
is then passed to the softmax classifier and bounding box regressor. This improve­
ment in architecture turned out to be very effective since there is only one pass 
through the C N N . In terms of speed, training of fast R C N N implementations only 
took a couple of hours and the inference took about 2.3 seconds per image on Nvidia 
K40. As it turned out, the inference of Fast R C N N was dominated by region propos­
als, which computation took about 2 seconds. This discovery lead to Faster R C N N , 
which replaced the non C N N region proposal method with C N N based Region Pro­
posal Network (RPN). This sped the inference time to only 0.2 seconds per image 
on Nvidia K40 which is fast enough for some real-time applications [14, 15]. 
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Fig. 1.10: Region based Convolutional Neural Networks architectures. 

You Only Look Once (YOLO) analyzes image as a whole, and it is able to do 
both object detection and classification in a single pass through the network, thus 
the name You Only Look Once. Y O L O architecture divides the image into a grid, 
where each grid cell is responsible for the prediction of an object which center is in 
that cell. Each grid cell predicts a number of bounding boxes which are eliminated 
using Intersection over Union (IoU) technique and only the best bounding boxes 
are kept. The original paper notes a speed of 45 frames per second which is about 
ten times faster than Faster R C N N . 

A couple of improvements were made over the years and there are currently 
five architectures labeled as Y O L O . Y O L O v l (2016) [16], YOLOv2 (2017) [17] and 
YOLOv3 (2018) [18] published by Joseph Redmon and his colleagues, each version 
bringing new improvements over its predecessor. 

In 2020 Alexey Bochkovskiy published YOLOv4 which brought improvement 
in Darknet53 by using Cross Stage Partial technique [19]. Around the same time, 
YOLOv5 was introduced by Glenn Jocher, and it is surrounded by criticism and 
controversy for not bringing any major improvements and not having a paper written 
about it. Last three version has shown a lot of similarities which can better seen 
in Table 1.2, which demonstrates the evolution of different parts of the Y O L O 
architecture as well the framework in which the model was originally implemented. 

The Y O L O models have shown major advances over the R - C N N family over the 
years, mainly in terms of speed, scalability, and better performance when detecting 
smaller objects. For those reasons, YOLOv5 was selected as suitable model for goal 
of this theses and its architecture will be introduces in following subsections. 
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Tab. 1.2: Y O L O Architecture overview. 

YOLOv3 YOLOv4 YOLOvS 

Framework Darknet Darknet PyTorch 
Backbone Darknet53 CSPDarknet53 CSPDarknet53 

Neck F P N PANet PANet 
Head Dense Prediction YOLOv3 head YOLOv3 head 

1.2.1 YOLOv5 Architecture 

The architecture of YOLOv5 can be separated into three parts: Backbone, Neck 
and Head. The Backbone is a term used for the part of the network where the input 
image is processed and on its output are feature maps at three different scales. The 
neck is designator for the part of the network that reprocesses the feature maps and 
outputs more relevant feature maps. Lastly, the Head is the part of the network 
that converts the feature maps into predictions. 

Backbone 

In the YOLOv4 paper [19], the authors considered three options: CSPDarknet53, 
CSPResNet50 and EfficientNet-B3. Authors made experiments and theoretical re­
search on these networks and came to a conclusion that the CSPDarknet53 was the 
most optimal feature extractor and its structure can be seen in Figure 1.11, which 
shows the largest version of YOLOv5. It consists of Convolution Base Layer (CBL), 
Cross Stage Partial networks (CSP) and Spatial Pyramid Pooling (SPP), all of which 
will be explained later on. The feature extractor is a series of convolutional layers 
which decrease the size and increase the depth. This is done by passing the feature 
map through a series of convolutional layers with kernel sizes l x l and 3x3. The 3x3 
convolutional layer helps the network to keep the spatial orientation while the l x l 
convolutional layer helps to reduce the depth of the feature map. 

Both YOLOv4 and YOLOv5 use this network with slight differences, the YOLOv4 
uses the Mish activation function whereas YOLOv5 uses the Sigmoid activation 
function. Both models then use SPP [20] at the bottom of CSPDarknet53 to fur­
ther increase the spatial information hidden in the feature map. The cross stage 
partial network modification of Darknet53 also allows for better learning since CSP 
allows better gradient flow in backpropagation which nearly eliminates the vanishing 
gradients problem. 
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Fig. 1.11: Architecture of YOLOv5. 

Neck 

As a Neck, YOLOv4 and YOLOv5 use Path Aggregation Network (PAN) which 
allows the models to boost information flow not only in instance segmentation as 
the original paper [21] claims, but it also boosts the flow of information in object 
detection. The neck is designed to further process and rationale the feature maps 
extracted by the backbone network. This is done by a series of up-and-down sam­
pling and in this case concatenation with previous. It is being said that the neck is 
a key link in the object detection task which is proven by not only experiments but 
also theoretically. 

Head 

The backbone in combination with the neck, extract feature maps which are pro­
cessed through one additional convolutional layer. The output tensor contains all 
necessary information about the prediction for every cell on that scale. The actual 
size of the output is derived from the size of the input image as follow: 

• Image-size / 32 
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• Image-size / 16 
• Image-size / 8 
The example of how the output tensor is structured is shown in Figure 1.12. 

There are B predictions, where B represents the number of anchor boxes for that 
scale. Each prediction contains 5 + C values, where C is a number of classes (Class 
scores) and 5 is for bounding box coordinate and objectness score. How the bounding 
box can be calculated is shown in Figure 1.12. The objectness score represents how 
sure the model is that there is an object with a center in that particular grid. Based 
on this information and usage of IoU and Non-Maximum Suppression (NMS), the 
algorithm is able to predict the best bounding box for the object. 
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Fig. 1.12: Y O L O output representation [22, 23]. 

1.3 Deep learning Frameworks 

Framework is a software package or library that contains basic building block for de­
signing, training and validation of deep learning networks. Following subsection will 
describe the most popular frameworks for implementation of deep learning models 
and select suitable framework which will be used for the goal of this thesis. 

1.3.1 PyTorch 

PyTorch is one of the top machine learning frameworks, and it is based on the Torch 
library. It is developed by Facebook's AI Research lab, and it is free and open-source 
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software. PyTorch contains deep learning building blocks starting from deep learning 
primitives, basic N N layer types to activation and loss functions and optimizers. 
As it was previously mentioned, PyTorch is based on Torch, which is written in 
C U D A , C++, and Lua, a relatively unpopular programming language. Instead of 
Lua, PyTorch uses python, which makes it very popular among AI developers. It 
contains a set of pre-trained models like Faster R C N N , Mask R C N N , and popular 
datasets like MS-COCO, MNIST, CIFAR, etc. [24]. 

1.3.2 TensorFlow 

TensorFlow is an open-source framework for AI, particularly for machine learning. 
It is developed by Google's Google Brain team. TensorFlow can be used in a variety 
of programming languages, notably Python, Javascript/Java, and C++. It also 
allows the use of C U D A for G P U acceleration on compatible cards. In comparison 
to PyTorch, it is a bit more difficult to learn but it has a bigger community behind 
it, thus finding resources is easier. Similar to PyTorch, TensorFlow also has a couple 
of pre-trained models and datasets which are easily accessible [25]. 

1.3.3 Keras 

Keras is an open-source and very simplistic framework that provides a Python in­
terface for artificial neural networks. Keras acts as an interface for the TensorFlow 
library. Its original author is Francois Chollet, an active member of AI commu­
nity and author of books Deep Learning with Python (edition I and II). Keras is 
a very intuitive open-source framework designed for developing and evaluating DL 
algorithms. Keras also has cross-platform capabilities, which allow better scalability 
and high sophisticated architectures. Keras contains pre-trained less sophisticated 
networks like ResNet, EfncientNet, DenseNet in numerous versions, and datasets 
like MNIST, CIFAR, IMBD, and Boston House price regression dataset [26]. 

1.3.4 MATLAB 

M A T L A B , which is both a programming environment and a language, has its own 
deep learning framework in form of a Deep Learning toolbox. It also has Simulink 
support which allows the more intuitive building of deep learning architectures by 
using building blocks and allows them to see the diagram of the network's architec­
ture as they build it. M A T L A B has also shown an increase in speed over python by 
roughly three times. Excluding the trial version, M A T L A B is not available in any 
form for free, hence only a small community uses it for programming deep learning 
algorithms, that being mainly academic workers or students [27]. 
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1.3.5 Nvidia Caffe 

Nvidia Caffe or NVCaffe is a deep learning framework developed by the Berkley 
Vision and Learning Center, and it is maintained by Nvidia. It is purely coded in 
C++ and C U D A , and it supports interfaces like the command line, Python, and 
M A T L A B . It has a huge database of download-ready models and a well-organized 
website. On the other hand, even though it supports Python and is developed by 
Nvidia, not many people use it, so there is not much to learn from besides the official 
documentation [28]. 

1.4 Selection of Programming Language 

1.4.1 Python 

Python is a very versatile object-oriented programming language ranked first in the 
latest annual ranking of popular programming languages by IEEE Spectrum [29] 
and it is also the first language at Popularity of Programming Language (PYPL) 
index. Its power comes from a large library ecosystem, including popular modules for 
math, scientific computing, and machine learning. Stack Overflow trends also show 
increasing interest in Python, and it is currently the most questioned programming 
language on it. Python is liked by many for its scalability, ease of use, flexibility, 
and open-source nature. It supports development paradigms like object-oriented, 
functional imperative, and procedural [30]. 

1.4.2 C/C++ 

The two languages have been popular for many years and have been the main 
programming language of many people around the globe. C / C + + are considered 
low-level languages that are easy to learn and are used in many applications. These 
languages have been used a lot in machine learning and numerous libraries for ma­
chine learning were programmed in C /C++. In particular libraries like Torch and 
TensorFlow utilize these languages a lot [31]. 

1.4.3 R 

R is also a very popular programming language that is designed for statistical com­
puting and data-mining application including machine learning. It is a programming 
language mainly used by data scientists and data miners who are not used to coding. 
It is graphics-based and very easy to learn the language used in machine learning 
for methodologies like classification, regression, decision trees, etc. [32]. 
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1.4.4 JavaScript/Java 

Java and JavaScript were rated as the second and the fifth (respectively) most pop­
ular programming languages in the latest annual ranking by IEEE Spectrum [29]. 
These languages originally developed for Web applications have proven their worth 
even in machine learning applications due to their support for heavy data process­
ing competencies. Companies like Google, Facebook, Microsoft are utilizing these 
languages for high-profile projects that process huge amounts of data [33]. 

1.5 Available datasets 

Dataset is a pack of data used for training and validation of models. For our task, 
the dataset consists of images and annotations. The annotations can be represented 
in csv file, json file or just a regular text file. The YOLOv5 original implementation 
uses annotations for a single image are written in text file and each image has its 
own annotation text file, where the name of annotation file and image are matching 
except the file extensions. Following subsection will introduce couple of suitable 
dataset for the goal of this thesis and one of them will be selected for training of the 
implemented model. 

1.5.1 COCO 

The Common Objects in Context (COCO) dataset is one of the most popular 
datasets for object recognition there is. The COCO 2017 train/val dataset con­
sists of more than 123K images with around 880K instances divided into 80 classes. 
The dataset was originally introduced in 2015 by Microsoft and later in 2017 up­
dated by adding around 120K unlabeled images (for unsupervised learning). For 
our application there is a lot of irrelevant images and instances, so the sub dataset 
needs to be extracted. Since the goal of this thesis is to detect objects on the road, 
the interest goes to classes that could occur on the road which are mainly person, 
car, bicycle, motorcycle, car, and truck. The numbers of instances of these classes 
that can be found in the COCO dataset are listed in Table 1.3 [34]. 

1.5.2 Pascal VOC 

Pascal V O C (Visual object classes) is an older and smaller dataset introduced in 
2005 and developed till 2012. The current and final version of the dataset consists 
of 11530 images with 27450 Rol annotated objects of 20 classes. Classes in this 
dataset are structured optimally however there are some redundant classes for the 
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Tab. 1.3: Selected instances in COCO dataset. 

Class Number of instances 

Car 43 867 
Motorcycle 8 725 

Bicycle 7113 
Bus 6 069 

Truck 9 973 

goal of this thesis. The dataset gets much smaller when the selected classes are 
extracted [35]. 

1.5.3 Stanford Cars 

Stanford Cars[36] is a set of 16 185 images with 196 classes and it is roughly split 
50-50 into train and test images. The classes are very detailed and are typically 
at level Make, Model, Year, etc. This type of class structure is inadequate for the 
goal of this thesis for a couple of reason. Firstly, the dataset is small and cannot 
represent adequately each Make-Model- Year. Another problem that might come up 
during testing is that the dataset contains mostly single-object images whereby in 
our application there will be a lot of background noise and models needs to better 
learn features of selected classes. Lastly, the geolocation difference would be also an 
issue since different car models are sold at US and Europe. 

1.6 Platforms for Internet of Things 

A suitable platform for IoT is necessary for the task of this thesis and for that 
reason, this section introduces some of the popular cloud-based platforms and selects 
a suitable candidate for the implementation in the practical part. 

1.6.1 ThingSpeak 

ThingsSpeak is an IoT analytic platform developed by MathWorks® which is based 
in the cloud and allows users to aggregate, visualize and analyze live data streams 
from numerous devices. Further, the platforms allow to execution of M A T L A B code 
directly in the cloud to extract relevant information from the received data. The 
platform incorporates numerous applications which can react based on analyzed 
data and it also has its own Python API , which allows for a single command upload 
and download of the data. The ThingSpeak has numerous licenses including free, 
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student, or academic licenses, which vary in the number of channels, update interval, 
and annual message limit. The free version offers 3 million messages per year but 
only 4 channels and the update interval is limited to 15 seconds. Student license 
offers 33 million messages per year with update intervals down to 1 second as well as 
10 channels per purchasable unit and the price starts at 55€ per unit per year. The 
academic license is similar to a student license with the difference in the number of 
channels per unit which is 250 channels for the academic license and the price starts 
at 250€ per unit per year. 

1.6.2 Ubidots 

Ubidots is a cloud-based platform supporting a large number of devices and cloud-
based analysis with its analytic engine. The platform directly supports numerous 
popular devices as well as it contains APIs for multiple languages including Python 
and C. Ubidots is available for free as well as in a licensed version with the main 
difference being the number of devices. The free version allows users to utilize up to 
3 devices with real-time updates. The IoT Entrepreneur license increases the device 
limit to 25 devices as well as adds 2-year data retention with the price being 53$ 
per month. Professional license costs 199$ per month and it increases the number 
of the device to 200 and the data retention is similar to the previous license 2 years. 
The Industrial license is for large-scale projects with up to 1 000 devices for the price 
of 499$ per month. 

1.6.3 ThingsBoard 

Thingsboard is well known open-source IoT platform for data collection, processing, 
and visualization. The platform offers a wide variety of functionalities for data 
processing, device management, and visualization. The platform offers Python API 
and is available for free, however, the free version does not offer cloud services and 
has to be installed on other cloud platforms such as Google Cloud Platform, Azure, 
or DigitalOcean. The subscription-based version offers its own cloud and starts at 
10$ per month for up to 30 devices, 30 assets, and up to 10 million data points 
per month. The Prototype subscription supports up to 100 devices and 100 assets 
with up to 100 million data points per month and goes for 149$ per month. The 
Startup subscription further increases the numbers of assets and devices to 500 and 
data points per month to 500 million for the price of 399$ per month. The highest 
subscription level offers up to 1 000 devices and 1000 assets with 1 billion data points 
per month for 749$ per month. 
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1.6.4 Thinger.io 

Thinger.io is an open-source platform for device management, data storage, and 
visualization. The platform offers support for a large variety of devices and contains 
numerous coding examples and guidelines for C programming language, but unfortu­
nately does not offer Python A P I yet. The platform also offers a very small amount 
of data processing functionalities and is mainly focused on the direct visualization 
of data and its storage. The platform offers a free subscription for 2 devices and 
is limited to a single developer, community shared cloud, and basic features. The 
Small subscription is 25$ per month and offers unlimited devices, a private cloud, 
and extended features. The Medium subscription is focused on larger projects sup­
porting unlimited devices managed by up to 5 developers and runs in a private cloud 
and offers business-level features as well as a custom domain for the price of 129$ 
per month. The Large subscription allows access to up to 15 developers, a better 
private cloud, 5 private domains, and on top of that it offers daily backups and costs 
259$ per month. There is also an unlimited subscription for 519$ per month and 
it offers a high-end private cloud and unlimited features that are contained in the 
other subscriptions. 
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2 Traffic analysis tool 
Following sections are taking insight into implementation of custom YOLOv5 in 
PyTorch framework. The Model and all its parts are coded using PyCharm pro­
gramming environment in Python 3.8. Since the goal of this thesis is to implement 
real world system, appropriate hardware will be discussed and selected. 

2.1 Model implementation 

2.1.1 Building blocks 

Based on the original implementation, the YOLOv5 architecture consists of 5 main 
building blocks. Convolution (Conv) module which can be seen in Figure 2.1, con­
sists of three layers: Convolution, batch normalization, and activation. PyTorch 
already contains all of these layers due to which the implementation is straightfor­
ward. The Conv module is based on nn.Module class, and contains two methods for 
a forward pass. The first method is a simple forward method for passing the input 
through all three layers mentioned earlier. The second method is forward _ fuse 
which passes the input only through convolutional and activation layers. This is 
done as preparation for the implementation of fusion of convolution and batch nor­
malization which will be mentioned later. 

The second building block is the standard bottleneck needed for the cross stage 
partial blocks as well as for the shortcuts for the different scales. The Bottleneck 
module consists of two Conv Modules through which the input is passed. Depend­
ing on the input and output channels of the Bottleneck module and the value of 
the shortcut argument, the module either returns the result of input being passed 
through two Conv modules or it performs an addition between the output of the 
second Conv module and the input of Bottleneck module. The block diagram of the 
Bottleneck module is shown in the Figure 2.1: 

Cross stage partial module is made out of previously implemented modules and 
since it contains three Conv modules, the class is labeled as C3. In C3 module, 
whose block diagram can be seen in Figure 2.1, the input goes through two sepa­
rate branches simultaneously, wherein the first branch, the input is passed through 
Conv block and Bottleneck block and in the second branch, the input is passed only 
through Conv module. Both branches are then concatenated along the first dimen­
sion (depth) and the concatenated data are passed through the third Conv module 
and the output is then returned. 

The fourth block of YOLOv5 is a modified version of Spatial Pyramid Pooling, 
which instead of defining three different max-pooling layers utilizes only one, and 
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Class Conv(nn.Module) Class Bottleneck(nn.Module) 

nn.Conv2d(cl, c2, k, s, p) 

Conv(cl, c_, 1, 1) 

nn. Batch Norm2d(c2) 

nn.SILUO or nn.Identity!) 

Conv(c_, c2, 3, 1) 

L •+( Add 

Class C3(nn.Module) 

Convfcl c_, 1, 1) 

4 > 

Bottleneck! c_, c_, 1, 1) Convfcl , c_, 1, 1) 

1 • ! torch.cat A 1 

Conv(cl, c_, 1, 1) 

Fig. 2.1: Block diagrams of Conv, Bottleneck and C3 module. 

perform multiple passes through it which slightly reduces processing speed. The 
block diagram of SPPF can be seen in Figure 2.2. The module passes then input 
through Conv module and performs three passes through the max-pooling layer, 
after which the input is concatenated with the output of each pass through the max-
pooling layer in a specific order noted in Figure 2.2. The result of the concatenation 
is then passed through the last Conv module whose output is then returned by the 
SPPF module. 

The last module is the Detect module, which transforms the output of each scale 
into a more convenient format. This specific module is the same used in the previous 
version of Y O L O and as it was described in theory. It performs the last pass through 
a single convolutional layer for each detection layer and converts the feature maps 
from format [bs, na * (nc + 5),gs, gs] to [bs, nl, gs, gs, nc + 5], where bs is the batch 
size, na is the number of anchors, nc is the number of classes and nl is the number 
of detection layers. In case the training function is running, the class returns the 
transformed tensor, however in the case of inference, the forward methods further 
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1 
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• 
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1 
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1 

• U> 

Fig. 2.2: Block diagrams of faster spatial pyramid pooling. 

process the data by scaling the coordinates of bounding boxes and returning the 
tensor with predictions (Figure 1.12) as well as the transformed tensor. 

2.1.2 Model 

The original implementation of YOLOv5 as well as some of the previous versions 
of Y O L O , used .yaml files to specify the order of modules in the network, dataset 
configuration, and hyper-parameters. The build of the model is done in a separate 
class called Model. This class is initialized with the architecture .yaml file and can 
be further specified with the number of channels, number of classes, and anchors. 
For easier use, the default value of channels is 3 and the numbers of channels and 
anchors are in default read from the config file. The init method checks the config 
file path and loads the information in form of a dictionary. The init method then 
calls parse_ model function, which loops through the input dictionary and adds each 
module into a nn. Sequential according to the module arguments, which are unpacked 
from the dictionary. This particular nn.Sequential class represents implemented 
model and is returned to the init method and its biases and weights are initialized. 
Model class contains two methods, one of which is the forward method, which takes 
the image as an argument and passes it through all the layers, and the second is the 
fuse method. 

The fuse method processes the list of layers of the model and whenever there is 
a convolutional layer followed by batch normalization layer, it replaces that couple 
with single convolutional layer [39] with weights W and biases b, which effectively 
reduces the number of layers and allows for faster inference. The weights and biases 
are calculated according to the following equations: 
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W = W B N * W C O N V 

b = W B N * b c o N V + b B N 

(2.1) 

(2.2) 

2.2 Dataloader and dataset 

Dataloaders are an essential part of training and validation on large datasets and 
take up a large portion of the code. In the following sub-sections each dataloader 
and its methods will be briefly explained. 

2.2.1 Dataloader 

Dataloader is a derived class from PyTorchs DataLoader class with the only differ­
ence being it contains is the sampler which runs forever. This dataloader is used for 
training and validation and uses LoadlmageAndLabels class derived from PyTorch 
Dataset class. The initialization of this class does a couple of things. Firstly, it 
assigns some of the initial arguments to the class attributes which will be used later 
on. Next, the class looks through the directory specified in dataset_conf ig.yaml 
and looks for images with the supported data type. The algorithm then automati­
cally processes image paths and figures out the label paths. Caching is used on both 
image and label paths to improve the training speed and cache files are in default 
saved in R A M . The LoadlmageAndLabes methods are described in the following 
table: 

Tab. 2.1: Summary of LoadlmageAndLabels class methods. 

Name Description 

init Loads images and labels and caches them 
len Lenghts of the dataset 

getitem Returns image and labels with specific index 
cache labels Caches labels in a R A M memory 

collate fn Merges batch sample 

2.2.2 LoadlmagesAndClips 

Loadlmages is a dataloader class used specifically for inference and it is capable of 
processing both images and video clips. Similar to the previous dataloader, when the 
class is initialized, it goes through the specified directory and finds all compatible 
images and video clips, and saves its paths. The files are read during iteration in 
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the next method. A n additional method is used to update the file path is the 
current file is processed and to measure speed, a setup method was created, which 
allows the user to input marker and distance for speed estimation. The following 
table briefly summarizes all implemented methods: 

Tab. 2.2: Summary of LoadlmagesAndClips class methods. 

Name Description 

init Class initialization 
iter Iterator method 
next Method for getting next image 
len Return number of files 

next_file Method for reading new video clip 
setup Method for setting up speed measurement 

2.2.3 LoadCamera 

LoadCamera class is designed to work both with USB and Camera Serial Interface 
(CSI) cameras which loads frames from the camera in the background of the actual 
inference, so the algorithm does not wait for the actual frame acquisition. This 
method works very well and increases performance. The initialization of this class 
creates a daemon thread targeted on the update method, which based on the camera 
frame rate, captures the image and passes it back as a class attribute which is later 
read by the algorithm and processed for inference. The setup method is run only once 
and its task is to acquire markers and distance information for speed measurements. 
A l l class methods are summarized in the following table: 

Tab. 2.3: Summary of LoadCamera class methods. 

Name Description 

init Class initialization 
iter Iterator method 
next Method for getting next image 
len Return number of files 

update Method called by daemon thread to update image 
setup Method for setting up speed measurement 
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2.3 Augmentation 

Augmentation is an essential part of training that helps to improve generalization 
which results in better performance. This project uses a couple of augmentation 
techniques such as mosaic augmentation, flip, hue saturation value augmentation, 
and perspective augmentation whose probability or value is defined in the hyp. yaml 
file. 

The main augmentation performed is the mosaic augmentation introduced in 
the third version of Y O L O and what it does is, it creates a two-by-two grid out 
of them which effectively puts more instances into a single image which then acts 
similar to what we would see if we increased batch size. Mosaic augmentation is 
performed in its function and besides creating the mosaic and updating the label 
and its bounding boxes, it applies random perspective, which is another type of 
augmentation that is performed. Perspective augmentation has its function and 
again based on hyper-parameters, it rotates, scales, shears, translates, or changes 
perspective using OpenCV functions. 

Two more augmentations are implemented. The first is a left-right flip performed 
using a NumPy function. The last augmentation is Hue Saturation Value (HSV) 
which modifies the magnitude of hue, saturation, or/and value based on gain speci­
fied in the hyperparameter file. 

2.4 Training 

Training is done using the train. py file which is designed to be run from command 
windows with the help of an argument parser. The user can specify parameters such 
as device, image size, optimizer, or batch size. If all necessary data are available, the 
Training function starts initializing the model, data loaders, and optimizer. Since the 
YOLOv5 uses the exponential moving average of everything in the model state_ diet 
to significantly improve the learning process, train. py uses the same function to do 
the same thing since PyTorch does not have support for it yet. After all preparations 
are executed, the code enters a loop for epoch and then loop for batch. The code 
computes loss after each batch and uses backpropagation to optimize the weights 
and the biases. The cycle repeats until all batches have passed through this loop. 

Then the validation process starts by calling the Validation function in val .py. 
This function similarly to the batch loop, processes the images, however instead of 
performing backpropagation, it computes metrics that are returned to the Training 
function. Based on these metrics, we can calculate fitness which represents the 
weighted combination of each metric. Based on this fitness value and the best 
previous value, parameters of the model (weights) are saved according to Figure 2.3. 
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Initialize model 
Initialize dataloader 

Fig. 2.3: Training loop. 

2.5 Inference 

For the purpose of inference, a separate python file was made to as clear as pos­
sible. In the detect.py file, run function is executed in similar fashion as it was 
in train.py. A very simple code was written for the inference due to additional 
custom classes which made the loading of models (weights) easy. The model mod­
ule is assigned through the Inference class which is initialized with the paths to 
the weights. These weights are then loaded through function attempt_ load as an 
nn.ModuleList and going through this list assigns additional attributes and param­
eters to each module. The module list is then passed back to the init method of 
Inference class where it is used as a module for the forward method. After that, 
the model instance of a class Inference is made in the run function of detect.py 
file. Based on the input data (image file, video file, camera feed), the model makes 
predictions to which non-maximum suppresion is applied and the bounding box is 
re-scaled and added to the original image. If set, the file is then saved to the project 
directory. The block diagram of the inference loop is shown in the Figure 2.4: 
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Fig. 2.4: Inference loop. 

2.6 Tracking 

This section introduces two simple methods for Multi-Object Tracking (MOT) for 
tracking by detection as well as summarizes their advantages and disadvantages. 
The main class behind both trackers is a Track class which is specifically made for 
storing attributes of tracked objects, and instance of it is created for each tracked 
object. The class stores information about age as well as about number of frames 
its been lost for and it keeps track of past class IDs of the objects, from which it 
take the most common predicted class. Every-time the class attributes are updated 
using the update method, the estim_speed method is called which checks for object 
center passing thresholds set during Rol selection, and assings timestamp to each 
threshold. Based on time of travel and distance it calculates estimated speed. 

2.6.1 Centroid tracker 

Centroid tracker works as the name suggests by tracking the centers of detected 
objects in consequential frames and calculates the euclidean distance between the 
centroids of the current frame and the centroids of existing objects that are being 
tracked. The tracked centroids are then updated to the centroids from the current 
frame that have the smallest euclidean distance. The tracking algorithm usually 
stores information about the age of the tracked object and the number of frames 
the object has been lost, based on which the tracked object may get deleted in case 
its been lost for a large number of frames. Tracking objects using this method is 
very dependent on the speed of objects and the detection has to be done at a frame 
rate where the change of object location in two consequential frames is very small. 
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The disadvantage of this type of object tracking is that in case the objects start 
overlapping, the tracking algorithm may at that point swap their IDs which results 
in incorrect tracking [37]. 

This type of tracker was implemented as a class named CentroidTracker which 
contains numerous attributes including list of tracked objects, counter vehicles for 
each class since last upload to cloud and values with distance and limits information 
for speed estimation. The implementation refers to each tracked objects as a track 
and the class methods mostly self explanatory. The summary of all methods of the 
CentroidTracker class can be seen in following table: 

Tab. 2.4: Summary of CentroidTracker class methods. 

Name Description 

init Class initialization 
add track Method for adding new track 

_remove track Method for removing lost track 
update track Method for updating existing track 

get track Method returning all existing 
_preprocess input Method for input data conversion 

update Method performing centroid association 
speed_est_setup Method passing information for speed estimation 

count Method for counting vehicle classes 
upload Method for daemon thread which upload data to cloud 

2.6.2 loll tracker 

IoU Tracker is an area-based tracker which performs IoU between bounding boxes 
of the tracked objects and the bounding boxes of objects detected in the current 
frame. The tracked objects bounding boxes are usually updated if the performed 
IoU is above a certain threshold which has to be fine-tuned based on the movement of 
detected objects. This approach partially solves the issue with object overlapping or 
their occlusion, complete overlapping still may result in incorrect tracking, however, 
that is not an issue in our case, because, the roads are mainly viewed from poles 
above the road [38]. 

The implementation consists out of class IoUTracker, which inherits methods 
from CentroidTracker class and overrides the update method which now instead of 
calculating euclidean distance between tracked objects and detected objects, per­
forms intersection over union of bounding boxes of tracked objects and bounding 
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boxes of detected objects. The method summary of the IoUTracker class is shown 
in following table: 

Tab. 2.5: Summary of IoUTracker class methods. 

Name Description 

init Class initialization 
add track Method for adding new track 

_remove track Method for removing lost track 
update track Method for updating existing track 

get track Method returning all existing 
_preprocess input Method for input data conversion 

update Method performing IoU association 
speed_est_setup Method passing information for speed estimation 

count Method for counting vehicle classes 
upload Method for daemon thread which upload data to cloud 

2.7 Selection of hardware 

2.7.1 Computer selection 

In most cases, computer vision models with deep learning algorithms require a lot of 
computational power either due to requirements of high fps or/and high resolution. 
For the goal of this thesis, the smallest version of YOLOv5 was chosen in order to 
run the model on a single-board computer. There is a couple of option to consider 
such as the Nvidia Jetson Nano and Google Coral Dev board as well as Raspberry 
P i with additional computational power in a form of a USB accelerator such as Intel 
Neural Compute stick or Coral USB accelerator. The Coral Dev board is the most 
powerful one, with onboard Tensor Processing Unit (TPU) and up to 4 G B of R A M . 

The Jetson Nano is less powerful than The Coral Dev board and its power is 
focused in Graphical Processing Unit (GPU) with R A M size up to 4GB. Latest 
Raspberry P i is also very powerful with its Central Processing Unit (CPU) and up 
to 8GB of R A M . C P U however, is not very suitable for deep learning applications. 
This issue can be fixed by adding a USB accelerator such as Coral Edge T P U 
or Intel Neural Network stick with Visual Processing Unit (VPU). Due to chip 
shortage, most of this hardware is currently not available, for that reason, only 
available versions will be discussed further. 

The Coral Dev board is definitely a very strong candidate for the goal of this 
thesis, however, it also has some disadvantages like small deep learning framework 
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support and it is limited to Tensorflow lite. Jetson Nano on the other hand supports 
a wide variety of frameworks as well as has better software support. In terms of 
price, The Coral Dev board is currently priced at around 3 000 C Z K for the 2 GB 
R A M version, while the Jetson Nano, is also available with 2GB R A M for around 
1 500 C Z K . 

Based on these parameters, Jetson Nano was evaluated as the best platform for 
the implementation of the goal of this thesis for its flexibility, price, and frameworks 
support. Table 2.6 shows the specification of the 2GB R A M version of the Jetson 
Nano Dev board. 

Tab. 2.6: Jetson Nano. 

Parameter Jetson Nano Google Coral Raspberry PI 4B 

C P U Cortex - A57 Cortex - A53 Cortex - A72 
R A M 2/4 G B 1/4 GB 1/2/4/8 GB 
G P U 128-core Maxwell™ GC7000 Lite -

On-Board WIFI NO Y E S Y E S 
MIPI CSI Y E S Y E S Y E S 

Video codec H.264/H.265 H.263/H.264/H.265 H.264/H.265 

2.7.2 Camera selection 

Two types of cameras can be used on Jetson nano, a USB or a CSI. The advantage of 
USB is the high interaction with C P U , thus it is faster when utilizing C P U . CSI on 
the other hand is directly routed into memory which allows much faster processing 
of the video feed. Both types of cameras can be used on Jetson Nano, however, the 
CSI version better for the goal of this thesis since it is directly connected to the 
G P U , and it is also less expensive than a USB camera. The CSI camera for Jetson 
Nano uses an IMX219-77 sensor from Sony, which is an 8Mpx sensor capable of 
a resolution of 3280x2464 at 30 frames per second. 

2.7.3 Additional hardware (optional) 

Since the task of this thesis is to analyze the traffic and utilize the IoT server 
to graph statistics, the connection to the internet is necessary. Jetson Nano can 
be connected to the internet via Ethernet cable or W i F i USB dongle. Since the 
selected development kit comes with a USB W i F i dongle, It will be used as a means 
of connection to the internet via a mobile hotspot. The Jetson Nano requires a quite 
strong power supply. The manual states at least a 5V/3A power supply connected 
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to the USB-C is needed to run the development kit without issues. Since part of the 
evaluation will be done in the field, a portable power supply is needed. According to 
internal measurements, the system draws a current of around 2.4 A when no external 
peripheries are connected. For the in-field test, a power bank with a capacity of 
20 000mAh is going to be used. Based on these two values, it can be estimated that 
the system will be able to run for around 8.3 hours. 

2.8 Library requirements 

Implementation of the project was done purely in PyCharm with Python 3.8 inter­
preter and it requires wide variety of libraries and packages. Installation on windows 
can be simply done using pip3, however in order to run the project on Jetson Nano, 
it is quite problematic and requires additional steps mainly in PyTorch installation. 
The main difference in Windows desktop P C and Ubuntu on Jetson Nano is the 
support by PyTorch and Python version. PyTorch supports A R M aarch64 proces­
sor architecture only with Python 3.6 version of PyTorch but same version is no 
longer supported on Windows. However, this is not an issues due to minor changes 
between Python 3.6 and 3.8, and no changes to the project were required. Nvidia 
offer pre-build wheels [40] for PyTorch and torchvision. 

The following requirements are needed for the project: 
• numpy ~= 1.22.3 
• opencv-python ~= 4.5.5.64 
. Pillow ~= 9.0.1 
. P y Y A M L - = 6 . 0 
• requests ~= 2.27.1 
• scipy~= 1.8.0 
• tqdm~= 4.63.1 
. torch~= 1.8.2+culll 
• torchvision ~= 0.9.2+culll 
• pandas ~ = 1.4.1 
• wandb~= 0.12.11 
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3 Experiments 

This chapter focuses on the experiments performed during the development of the 
model as well as summarizes system performance in various tasks. The COCO 
dataset was selected for the training of the model, however since the model would 
be heavily biased towards cars, the number of instances in car class was limited to 
11 000 instances. 

3.1 Object detection and classification 

As was described earlier, the algorithm can perform inference on various sources 
including video clips and cameras. The model was initially tested on video clips 
made by Apple iPhone 12 with its 12Mpx, f/1.6 camera. The performance in terms 
of object detection was good, however, there were a couple of issues with false 
detection such as detecting and classifying road signs or shadows as a vehicle. A n 
example of the false detection can be seen in Figure 3.1. 

Fig. 3.1: Initial detection example 

At that point the model was detecting objects with about 60 % confidence, and 
about 50 % of the predicted bounding boxes had intersection over union with ground 
truth bounding boxes higher than 50 %, which is very good and as it can be seen 
in Figure 3.1, bounding boxes on unseen images (video frames) are very precise. To 
this point, the model was purely trained on desktop P C with GTX960 4 GB graphic 
card. 

The first trained model was a good start for fine-tuning training settings and 
working more with the dataset. Moving the training to the Google Colab and 
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upgrading to Pro membership, allowed the utilization of better graphic cards, par­
ticularly the Tesla P100 with 16 GB of memory. Training on better hardware highly 
increases the model performance by allowing to train with batch sizes up to 64 images 
which resulted in better generalization and the model bounding box predictions. 

Training implements a couple of metrics based on which the training algorithm 
evaluates model fitness. Precision is the ratio of true positives (correct predictions) 
to the number of positive predictions(true positives plus false positives). This rep­
resents how many of the predictions made were correct. Recall is the ratio of true 
positives to the total number of expected predictions. In other words, says how 
many of the expected objects were detected by the model. The mAP:0.5 metric is 
a bounding box related metric, where a true positive prediction is which has IoU of 
the predicted bounding box and the ground truth bounding box larger than 50 %. 
The metric calculates precision for each class and from that, it calculates the mean 
average precision. The mAP:0.5-0.95 performs similar computation except the mean 
average is now calculated over a ten of IoU threshold starting from 50 % to 95 % 
with a step of 5 %. 

Figure 3.2 shows the evolution of metrics based on which the model is evaluated 
in the final session of training. The training showed significantly better results than 
the previous tests and the total detection precision reaches 78 % and 67% of the 
predicted bounding boxes had more than 50 % IoU with the ground truth bounding 
box. 
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Table 3.1 shows the final percentile of each metric for each class. These results 
show reasonable detection precision and metrics for evaluating bounding boxes. It 
also shows a sort of expected results for the bicycle and motorcycle classes which 
are in the dataset mainly represented in up-close pictures and without riders, which 
makes these two classes very similar, and due to this fact, these classes have the 
lowest detection precision out of all trained classes. 

Tab. 3.1: Precision on specific class. 

Class Detection precision To] Recall [% mAP:0.5 T l mAP:0.5-0.9 To] 

Bicycle 67.3 48.4 56.6 28.1 
Car 85.7 62.6 68.6 43.3 

Motorcycle 64.3 81.1 71.4 38.4 
Bus 83.6 71.7 79.9 61.1 

Truck 68.2 50.8 59.6 37.1 

The weather and car color both affected detection and its confidence. Visually 
the model has issues with detecting black metallic cars when the weather was cloudy 
and white cars on sunny days. This is most likely caused by the cars reflecting light or 
other objects while moving due to which the car appeared to have unusual features. 

3.2 Inference speed 

Inference speed is a very important aspect that influences both the system's ability 
to analyze in real-time and also the performance of tracking algorithms. For that 
reason, a couple of experiments were performed to achieve the smallest inference 
time possible. The first tests were performed on video clips on which the inference 
speed was about 38 ms per frame on P C and 130 ms per frame on Jetson Nano. The 
Jetson Nano performance was from the hardware perspective accurate and expected, 
however, the performance on P C , showed to be influenced both by the speed of the 
hard drive and also by the activity of background services and other applications, 
which caused the inference speed to be unstable (occasionally the inference speed in­
creased up to 44ms per image). After minimizing the influence of other applications 
the inference on P C was stable at about 35 ms per frame. 

The inference speed using a camera as a source was slightly better with an 
inference time of about 25 ms on P C and about 110 ms on Jetson Nano. The Jetson 
Nano performance, however, was not good enough for precise tracking or speed 
measurements, and for that reason, the model was converted to TensorRT which 
is a better-optimized back-end for NVIDIA GPUs, which helped to improve the 
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inference speed on both platforms. Table 3.2 shows inference speed for both back-
ends on a scenario with 10 objects and live visualization off (visualization using 
OpenCV was slightly increasing the inference time). 

Tab. 3.2: Model speed performance on both platforms with camera as a source. 

Platform G P U back-end avg. FPS 

Desktop P C GTX960 OC 4GB PyTorch 33 
TensorRT 40 

Jetson Nano 2GB 128 CUDA® core NVIDIA Maxwell PyTorch 9 
TensorRT 14 

3.3 Tracker performance 

Tracker is an essential part the algorithm and its flawless performance is necessary 
to precisely count vehicles and estimate their speed. Both the centroid and IoU 
trackers perform well in high frame rate conditions, however, the centroid tracker is 
very primitive and it often swaps IDs of the tracked objects when they get too close 
to each other. IoU tracker, on the other hand, was performing very well and had 
little to no IDs swaps and its performance was reliable. For that reason, IoU is set 
as the default tracker in the project. 

Experiments performed on desktop P C (running at 30 FPS) showed very good 
results from the algorithm and there were little to no errors in tracking vehicles. The 
speed estimating is calculated based on the object center passing over two threshold 
lines for which the distance is know. In case the object is on the line or close to it 
(± 5 pixels) the object is time-stamped and after it reaches the second threshold 
line, the speed is computed based on the difference of these time-stamps and the 
distance entered during the setup. This presents an issue since the Jetson Nano is 
not capable of processing more than 14 frames per second, due to which the speed 
of most vehicles is not captured. 

Figure 3.3 shows tracking and speed estimation using a bicycle at a speed of 
25km/h. As it can be seen, the algorithm at this speed is capable of keeping up 
with the objects, but unfortunately, 14 FPS was not good enough for the algorithm 
to capture the bicycle near the threshold lines, and the speed was not calculated. 
The bounding box label shows object ID, class CLS, confidence CF , and speed SP. 

To test performance on higher frame rates, the road was captured using a mobile 
phone with 60 frames per second and when running inference on this video, it was 
clear that the tracking algorithm performed very well and kept track of all objects, 
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Fig. 3.3: Jetson Nano tracker performance test. 

and also performed their speed estimation. Figure 3.4 shows a tracked vehicle with 
object number 0 and which belongs to class 1 which refers to the car class. The 
estimated speed is based on the distance between red lines and the time of travel. 
The distance between red lines was not physically measured but it was taken from 
the TP133 standard [41] for the horizontal road markings. In this case, the length 
of the line is 3 meters and the length of space between two lines is 6 meters, which 
makes the distance 12 meters in total. 

3.4 View angles 

The camera location is certainly a huge aspect both in detecting and predicting 
objects, but it also influences tracker performance. Practically, systems for traffic 
analysis are usually mounted on poles overlooking the traffic or on the side of the 
road. The system was tested in both mount location and in terms of prediction 
confidence and bounding box prediction, it performed nearly identical with a slight 
increase in confidence when the system was located on the side of the road. These 
results were expected since from the side the model can better visualize the feature 
and outlines of the car. 

In terms of tracking, the algorithm performed better when viewed from above 
the road where the camera captured a larger part of the road, due to which the 
change in position of the vehicles between two consequential frames appeared small. 
That helped the tracking algorithm to perform better both in tracking and also 
in evaluating the speed since it was able to precisely capture the objects on the 
threshold lines and timestamp the frames. When viewed from the side, the view 
of the camera was more narrow due to the change in position of vehicles in two 
consequential frames being bigger and the tracker required a higher frame rate to 
perform as well as in the other position. The algorithm did not perform well in terms 
of speed estimation since when viewed from the side, the threshold line (horizontal 
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Fig. 3.4: Simulation of detection with 60 FPS 

or vertical) captured different distances for each lane. 

3.5 Cloud analysis and visualization 

A n important aspect of visualization and analysis is a cloud-based platform that is 
reliable, easy to use, and capable of performing additional processing. The initial 
data collection was performed using the Ubidots platform which was very easy to use 
due to its Python API . This was very effective and it allowed for a public dashboard 
with all the data and it allowed visitors to timelines and visualize certain parts of 
collected data. However the free version turned out to be used by a lot of projects 
and the access to the data was often unavailable for a couple of days, due to which 
the visualization and data collection was switched to the ThingSpeak. 
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The dashboard on ThingSpeak[42] shows numerous transit graphs which tend 
to capture traffic flow. A n example of visualization can be seen in Figure 3.5 which 
shows the number of instances for each class for the past 24 hours. The graph shows 
the car class is the superior user of this road and we can also see increased traffic 
flow in the morning and the afternoon at around 15 P M . 

Log of c l a s s i n s t a n c e s 

39:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:0C 

Fig. 3.5: Log of instances visualized in cloud 
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Conclusion 
The implemented algorithm uses fully convolutional YOLOv5 architecture and a 
IoU tracker built on top of it to track, count, and estimate vehicle speed. The 
deep learning model is trained using a subset of the C O C O dataset which contains 
five basic vehicle classes. The evaluation of the model shows that it is capable of 
predicting vehicles with the precision of about 78 % and predicting bounding boxes 
where more than 67 % of predicted bounding boxes have IoU with the ground truth 
boxes higher than 50 % which is very good. The algorithm initially tested and devel­
oped on desktop P C with GTX960, 16 G B of R A M , and Intel I5-6660K C P U , shows 
good performance in bounding box predictions and confidence on various vehicles 
when tested on video clips captured at the overpass at Hradecka street in Brno. 
The tracking algorithm works very well in high frame-rate situations (simulated us­
ing 60 FPS video clip) and is capable of estimating speed without any issues. The 
tracker also performed well on 30 FPS video clips, however, the speed estimations 
are not reliable since the algorithm was capable of capturing only a fraction of the 
passing cars at set threshold lines. The real system consisting of NVIDIA Jetson 
Nano and Sony IMX219-77, unfortunately, did not meet the expectations. The sys­
tem was capable of running the algorithm at about 9 FPS using PyTorch back-end 
and 14 FPS with TensorRT back-end. At that frame-rate the algorithm was barely 
capable of tracking and usually lost tracks after they got too close to the overpass 
where the camera was located. This is caused by larger shifts in position when the 
vehicles are closer to the camera. Visually the prediction made on Jetson Nano has 
high confidence and has precise bounding boxes. The system was separately tested 
for speed estimation using a bicycle and even in this case, the algorithm was not 
capable of capturing the bicycle speed. The system is capable of sending collected 
data using the internet into a ThingSpeak cloud where it is ready to visualize road 
usage for each class and average speed. 
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Symbols and abbreviations 
AI Artificial Intelligence 

A N Artificial Neuron 

C B L Convolution Base Layer 

C N N Convolutional Neural Network 

C O C O Common Objects in Context 

C P U Central Processing Unit 

CSI Camera Serial Interface 

CSP Cross Stage Partial networks 

D L Deep learning 

F C Fully-Connected layer(s) 

H S V Hue Saturation Value 

G P U Graphical Processing Unit 

G R U Gated Recurrent Unit 

IoU Intersection over Union 

L S T M Long Short-Term Memory 

M L Machine learning 

M O T Multi-Object Tracking 

M S - C O C O Microsoft-Common Object in Context 

N M S Non-Maximum Suppression 

N N Neural Network 

P A N Path Aggregation Network 

P Y P L Popularity of Programming Language 

R C N N Region based Convolutional Neural Network 

R N N Recurrent Neural Network 
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Rol Region(s) of Interest 

R P N Region Proposal Network 

S O M Self Organizing Map 

SPP Spatial Pyramid Pooling 

S V M Support Vector Machine 

T P U Tensor Processing Unit 

V O C Visual Object Classes 

V P U Visual Processing Unit 

Y O L O You Only Look Once 
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A Content of the electronic attachment 

/ 
Python files 

Root directory of the archive 
Source code files 

dataset.py 

detect.py 

iou_tracker.py 

tracker.py 

train.py 

utilities.py 

_val.py 

Lyolo.py 

YAML f i l e s Project configuration files 
dataset_config.yaml 

_hyp.yaml 

1 model_config.yaml 

Text f i l e Project requirements file 
L requirements.txt 
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