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ABSTRACT

The scope of the presented master thesis was the experimental study of multi-
filament yarns made of AR-glass and used for textile-reinforced concrete. The be-
havior under the tensile loading was investigated by laboratory tests. A high number
of yarn specimens (over 300) of six different lengths (from 1 cm to 74 cm) was tested
to obtain statistically significant data which were subsequently corrected and statis-
tically processed. The numerical model of the multi-filament bundle was studied and
applied for prediction of the yarn performance and for later results interpretation.
The model of n parallel filaments describes the behavior of a bundle with varying
parameters representing different sources of disorder of the response and provides
the qualitative information about the influence of their randomization on the over-
all bundle response. The aim of the carried experiment was to validate the model
presumptions and to identify the model parameters to fit the real load-displacement
curves. Unfortunately, due to unsuccessful correction of measured displacements
devalued by additional non-linear contribution of the unstiff experiment device the
load-displacement diagrams were not applicable to model parameters identification.
The statistical evaluation was carried only for the maximal load values and the effect
of the specimen size (length) on its strength was demonstrated. The size effect curve
did not exclude the existence of spatial correlation of material mechanical properties
modifying the classical statistical Weibull theory.

KEYWORDS
filament, yarn, bundle model, size effect, Weibull theory, experiment, specimen,
textile-reinforced concrete, AR-glass, probability

ABSTRAKT

Cílem předložené práce bylo experimentální studium mnohovláknitých svazů z al-
kalicky odolného skla, které se používají k výrobě textilně vyztuženého betonu.
V rámci laboratorního testu byla zjišťována odezva na tahové zatížení. K získání
statisticky významného souboru dat byl proveden vysoký počet zkoušek (přes 300)
na vzorcích šesti různých délek (od 1 do 74 cm). K predikci a k pozdější inter-
pretaci výsledků zkoušek byl prezentován numerický model svazku mnoha sériově
zapojených vláken se znáhodněnými parametry, které zastupují různé vlivy způsobu-
jící odlišnost odezvy od ideálního svazku. Cílem experimentu bylo ověřit předpok-
lady modelu a případně identifikovat jeho parametry tak, aby odpovídal skutečně
naměřeným zatěžovacím křivkám. Díky neúspěšnému pokusu o opravu naměřených
křivek, jejichž deformace byly ovlivněny příspěvkem netuhých části zatěžovacího
stroje, nebyla identifikace parametrů modelu možná. K statistickému zpracování ex-
perimentu byla použita pouze data naměřených sil (tahových pevností), na kterých
byl demonstrován vliv délky vzorku na jeho pevnost.

KLÍČOVÁ SLOVA
vlákno, svazek vláken, model svazku, vliv velikosti, Weibullova teorie, pokus, vzorek,
textilně vyztužený beton, alkalicky odolné sklo, pravděpodobnost
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INTRODUCTION

Textile-reinforced concrete is a developing composite material with a high potential

of application in civil engineering structures and also in other industrial branches.

The material combines a cementitious matrix providing the compressive strength

and a tensional reinforcement made by multi-axial fabrics. It has many advantages

compared to usual steel-reinforced concrete. The structure reinforced by textile gets

thinner, consequently the amount of used concrete is reduced and the structure

becomes lighter. The material enables wide shape variability which gives more

freedom in the design to engineers and architects.

The textile-reinforced concrete is nowadays applied for façade members, in wastew-

ater treatment systems, water protection wall systems, as integrated formwork el-

ements, for strengthening and rehabilitation of older structures and also the first

textile-reinforced pedestrian bridge with span 8.60m has been built in Germany in

2006 over the Döllnitz river.

The fibers used for the textile reinforcement has to meet several criteria: high

fibre tenancy, breaking elongation and modulus of elasticity much higher than the

modulus of the concrete matrix, so that the stiffness of building component is not

drastically reduced by occurring cracks. The fibers must withstand the chemical

action of alkaline medium without loosing its mechanical properties. The most

common material of fibers is alkali resistant glass (AR-glass) but carbon, aramid and

other (less-suitable) polymers like polypropylene, polyvinyl alcohol, polyethylene

and polyacrylnitrile can be used as well.

Fig. 1: Examples of application of textile-reinforced concrete [22].
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Filaments are combined to yarns. One yarn composes of several hundreds up to

thousands of single filaments. The fineness of the yarn is defined by the unit “tex”

(gram per 1000 meters) and depends on the average filament diameter, the fibre

material density and the number of filaments. Yarns are subsequently combined

into textiles; according to different fabrication process the produced textiles can be,

e. g., plane and circular scrims, bi- or multi-axial warp knits or three-dimensional

spacer wrap knits.

Fig. 2: Reinforcing textiles: bi-axial scrim and wrap knit, 3D spacer wrap knit and

textile in the matrix [22].

The matrix of the composite is usually made by fine grained concrete with limited

maximum grain size (< 2mm). The load-bearing behavior of the composite cannot

be derived from the qualities of used components, however, the bond between the

filaments and matrix has to be taken into account. The better is the anchorage

between them, the higher interaction of components is. From this point of view

a good cohesion a the good infiltration of matrix within the yarn cross-section is

essential. Only the surface of the filaments exposed to the mortar can transmit the

load from mortar to the yarn. For the sake of extending the surface, the shape of

the yarns is not circular but flat.

Historically, the textile-reinforced concrete developed from fiber-reinforced con-

crete with short filaments of random orientation by aligning the filaments in the

direction of the tensile stresses similarly to classical steel reinforcement, which led

to better effectiveness of the reinforcement, increased load-bearing capacity and the

cost reduction. The main advantages of the material are high ductility and strain

hardening. The yarn reinforcement ensures the bridging of cracks occurred in the

steel reinforced
concrete

fiber-reinforced
concrete

textile-reinforced
concrete

concrete

steel rods

glass fibers
(short)

textile

Fig. 3: Different types of concrete reinforcement.
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concrete under tension/bending [16]. The increased energy dissipated by multiple

cracking of the material provides better safety of the structure.

The material is a subject of intensive research in many institutions [19]. The

load-bearing performance and the deformation behavior have been investigated for

decades so that the material can be introduced to the actual production in the future

and safe structural design and serviceability can be ensured by proper standards.

The scope of presented master thesis is the experimental study of multi-filament

yarns made of AR-glass and used for textile-reinforced concrete. The behavior under

the tensile loading was investigated by laboratory tests. A high number of specimens

(over 300) of six different lengths was tested to obtain statistically significant data

which were subsequently corrected and statistically processed. The need of data

correction was caused by additional spurious measured deformation of the laboratory

loading machine and its components. The deformation behavior of the loading test

setup had to be mapped to find the calibration curve serving for the subtraction of

these parazite deformations. The numerical model of the multi-filament bundle was

introduced for prediction of the yarn performance and for later results interpretation.

The thesis is divided into four chapters. The theoretical background together

with the numerical model of a bundle is described in Chapter 1. The chapter defines

the computational model of a bundle of n parallel filaments with variable parameters

representing possible sources of disorder and inquires into the influence of their

randomization on the overall response. These parameters vary from filament to

filament within the bundle cross-section (the filament length, diameter, activation

strain) and also over the length of each filament (strength, E modulus) for filament’s

“material points”. The second half of the chapter copes also with the dependency of

the bundle strength on the number of filaments and their length and the theory of

statistical size effect is presented. Numerical simulations are applied for each variable

parameter and their mutual interaction and the analytical response of continuous

model with infinite number of filaments is presented in parallel.

The following chapters are dedicated to the experiment. Chapter 2 describes the

process of the laboratory testing from the design of sample series and their produc-

tion through the machine setup to the overview of obtained load paths. Experiment

results and their accuracy are discussed in Chapter 3. The data set was edited and

the outlying results were discarded. Measured deformations distorted by parazite

contributions of unstiff loading machine parts were inspected. The estimation of

the correction curve and subsequently the yarn deformation adjustment was per-

formed. The last Chapter 4 copes with the edited test data and their interpretation

in the sense of their possible application for the identification of the numerical model
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parameters.

The final summary of the carried experiment is in the Conclusion. In the Ap-

pendix part of the thesis an additional image documentation of the experiment and

a complete table of detailed experiment results are presented.
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1 BEHAVIOR OF MULTI-FILAMENT YARNS

1.1 Introduction

The yarn structure is a system made by many parallel filaments with random prop-

erties. These properties randomly vary over the length of the yarn as well as within

each cross-section due to imperfections from the production process. To describe

the complex behavior of the bundle, definition and study of each individual random

property and its influence on overall performance is essential. Statistical approach

is applied as the most convenient way to capture the yarn behavior under tension.

Historically the fundamentals of statistical modeling of multi-filaments yarns was

based on the knowledge of probability distributions of extreme values of independet

and identically distributed quantities described by Fisher and Trippett (1928, [12])

and by Weibull (1939, [30]), who introduced the weakest-link model. The theory

was firstly applied on the mechanical problem by Peirce (1926, [17]). This has been

later developed into fiber bundle model (FBM) introduced by Daniels (1945, [9])

and Coleman (1958, [8]) that describes the bundle as a set of parallel fibers, each

with strength given by Weibull probability distribution (Phoenix, Harlow, Smith).

The further research developed other advanced models of the bundle, where another

effects like localization, the effect of a bond between the matrix filaments, non-

linear behavior, possible multiple cracking of the filament, load sharing rule, etc.

are included. The interaction between patterns can be studied by Monte-Carlo

simulations technique.

The presented thesis studied the computational model presented in [7] and [27].

1.2 Computational model

The bundle in this study is modeled as a set of parallel fibers with no interaction

among them as the experiments showed neglectable friction between AR-glass fila-

ments over lengths < 50 cm. Each filament is considered independently acting and

the response of the whole bundle during displacement-controlled tensile loading can

be evaluated in an analytical and numerical approach.

1.2.1 Kinematic model

The deformation–strain relation has to be defined to capture the filament’s kinemat-

ics. Especially the response of the very short bundles (corresponding to the length

if the crack-bridge ≈ 0.0001m) are strongly influenced by the length disorder like

different length of filaments given by the distance of their clamping points, and other
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types of disorder. These effects are expressed by different model parameters. Pa-

rameters used for the bundle model can be divided into two groups: those describing

the the separate filament and those describing the yarn (a set of filaments).

• Parameters appointed to i-th filament can be used regardless of the composi-

tion of the bundle. For alkali resistant (AR-glass), where linear brittle fracture

behavior is considered, these parameters are Young’s modulus of elasticity Ei,

cross-section area Ai and filament strength σi. For cases where the filament

parameters are randomized within the cross-section, no variability of these pa-

rameters over the filament length is considered (parameters are set constant

over the length).

• Parameters appointed to the bundle describe the variability of filaments within

the bundle. Each of the filament parameters is randomized and expressed by

probability distribution function (CDF) –GE(Ei), GA(Ai), Gσ(σi). Differences

in filament lengths from the nominal length l of the bundle are captured by

two extra parameters: parameter λ for the different distance of fixing points

of each filament and parameter θ for the different global activation strain of

each filament due to waviness of filaments in the bundle. The total length of

i-th filament is then li,λ,θ – see Fig. 1.1 right.

li,λ,θ = (1 + θi)li,λ = (1 + θi)(1 + λi)l (1.1)

where λi = (li,λ − l)/l is the ratio between extra length of i-th filament to

the nominal length of the bundle in the initial state of loading and θi =

(li,λ,θ − li,λ)/li,λ is the ratio of filament activation strain (strain of the bundle

in state when the i-th filament starts to transmit force). This ratio is also

called the filament slack.

k
j

i

lλi·l

li,λ

li, ,λ θ

li i,λ·θ

lk k,λ·θ

T [N]

λk l·
x

epoxy resin

li,λ

lj,λ
A xj( ) σj( )x E xj( )

A xi( ) σi( )x E xi( )

Fig. 1.1: Left: Filaments in the bundle and their elementary characteristics varying

over the length. Right: Filament lengths.
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Mentioned parameters are implied to the load-strain diagram equation of the

i-th filament made of linear-elastic brittle material – Eq. 1.2.

qε,i (εi) =







0 for εi < 0,

EiA iεi for 0 ≤ εi ≤ ξi,

0 for ξi < εi

(1.2)

where εi is the strain, ξi = σi/Ei is its critical value (breaking strain) and A is the

cross-sectional area of the i-th filament. More convenient form of this relation can

be obtained by using the Heaviside (unit step) function: H(x) = 1 for x ≥ 0 and

H(x) = 0 elsewhere, which zeros the filament stress out of the filament’s possible

strain interval. The equation 1.2 then becomes:

qε,i(εi) = EiAiεiH(εi)H(ξi − εi) (1.3)

In order to represent and model the response of the bundle with several parallel

fibers of different length, it is convenient to transform the constitutive relation de-

fined as a function of ε (Eq. 1.3) into a common global strain e. The global strain is

equal to the strain imposed on the yarn during the tensile displacement-controlled

loading. The filament stress can be related to the global bundle strain e by following

equivalency: control displacement of the bundle is equivalent to the filament dis-

placement u(εi) ≡ u(e) = el. Then according to Eq. 1.1 the local strain in the i-th

filament becomes:

εi =
u− θili,λ

li,λ,θ
=

el − θi(1 + λi)l
li,λ,θ

=
e− θi(1 + λi)
(1 + θi)(1 + λi)

(1.4)

This form expresses the local strain for the actual filament length instead of the

nominal length. It should be noted that the nominal length l is arbitrary and the

relation between the local strain ε and the global strain e is independent of the choice

of l. The i-th filament force related to the control bundle strain e (the constitutive

law) can be expressed by substituting Eq. 1.4 into Eq. 1.3:

qe,i(e) = EiAi
e− θi(1 + λi)
(1 + θi)(1 + λi)

H [e− θi(1 + λi)]H

[

ξi −
e− θi (1 + λi)
(1 + θi)(1 + λi)

]

(1.5)

Global activation strain ti and global breaking strain xi of the i-th filament

(Fig. 1.2 left) can be obtained from the arguments of Heaviside step functions:

ti − θi(1 + λi) = 0→ ti = θi(1 + λi)

ξi −
xi − θi(1 + λi)
(1 + θi)(1 + λi)

= 0→ xi = θi(1 + λi) + ξi(1 + θi)(1 + λi) (1.6)
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1.2.2 Load-strain diagram for numerical evaluation of finite

n

The mechanical model of the bundle with n filaments is now defined. The overall

response in form of the load-strain diagram of the bundle during tensile loading can

be obtained numerically simply by summing up the contributions of all filaments at

each level of global strain.

T (e) =
n∑

i=1

qe,i (e) (1.7)

Each filament is characterized by three significant points: the inception point,

when the filament starts to transmit force, the point of maximum transmitted force

and the point of rupture, when the transmitted force drops to zero. The last two

cases occur at the same strain level, but differ in the transmitted force. Each of these

points is expressed by two values (strain and the corresponding force), so for one

filament there are only three couples of values completely describing its contribution

to overall response. For the whole bundle these values can be separated into three

vectors each holding n pairs [ej , Ti] of bundle strains and corresponding bundle

forces: t, x(+) and x(−).
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Fig. 1.2: Load-strain diagrams of one filament (left) and the whole yarn (right).
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t =
[

tj , Tj
(t)
]

, where Tj
(t) =

n∑

i=1
qe,i (tj)

x(+) =
[

xj , Tj
(+)
]

, where Tj
(+) =

n∑

i=1
qe,i (xj)

x(−) =
[

xj , Tj
(−)
]

, where Tj
(−) = Tj

(+) − qe,i (xj)







j = 1, ..., n (1.8)

The resulting load-strain diagram is obtained by union of these three vectors into

one vector R =
⋃{t, x(+), x(−)}. Vector R is sorted in an ascending way according

to the yarn strain (first pair member); if two pairs shares the same strain, then the

member with higher yarn force comes first (second member). Sorted vector R con-

tains points of load-strain diagram of the whole bundle, which is piece-wise linear

(Fig. 1.2 right), as it was established by simple summation of filaments’ contribu-

tions. This is only possible if the superposition rule is assumed to be valid.

The evaluation of the bundle tensile response in form of a load-strain diagram

contained in R is a low-demanding and, therefore, a suitable method for analysis

with randomized parameters varying both within the bundle cross-section and along

the filaments. Random filament parameters introduced in Eq. 1.5, whose influence of

variation on the overall bundle response was investigated, are gathered into vector θi.

qe,i (e) = qe,i,θ (e; θi) with θi = {Ai, Ei, σi, θi, λi} (1.9)

In the parametric study the bundle response is investigated for one or more differ-

ent randomized parameters from the vector θi with defined probability distributions

and the qualitative effect is visualized.

1.2.3 Continuous asymptotic evaluation for infinite n

In the practical applications the number of the bundle filaments is very high (several

hundreds to thousands). For the high value of filaments n the bundle mean response

M(e) can be solved analytically [18] as n-multiple of the mean filament response

µ(e): Mθ (e) = nµθ (e):

µθ(e) =
∫

θ
q e (e; θ)dGθ (θ) (1.10)

The individual parameters θi (i = 1, . . . , nv) of vector θ are independent and, there-

fore dGθ (θ) = dG1 (θ1)×dG1 (θ1)×. . .×dGnv
(θnv

), where Gi (θi) is the cumulative

distribution function of the parameter θi. Filament’s behavior is governed by the

constitutive law (Eq. 1.5).

The introduced models were used for parametric studies of influence of each

parameter and its scatter separately. Obtained results helped for qualitative under-

standing and interpretation of measured data and for clarifying observed phenomena.
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1.3 Parametric studies of properties within the

bundle cross-section

A parametric study is a suitable method how to clarify the influence of each pa-

rameter, its variation and their interaction on the bundle response. The effect of

variability in parameters λ, θ and A across the bundle separately and in mutual

interaction was investigated in [7]; the effect of varying E, σ over the length and

number of filaments n in the bundle was studied in [27]. The filaments’ material

was AR-glass (Tab. 1.1) which corresponds to material used in experiments.

Tab. 1.1: AR-glass filament material characteristics used in parametric study.

tensile strength σ = 1.25 GPa

Young’s modulus E = 70 GPa

filament diameter D = 26 µm

breaking strain ξ = σ/E = 1.768 %

While demonstrating the effect of randomness of one separate parameter, the

other are considered constant (in their mean value – Tab. 1.1). For elementary illus-

tration the bundle is represented by reduced number of filaments n < 100 (approx.

100 times less then in real number) and the filament forces are expressed in “scaled”

value [cN]. The filament response is calculated according to Eq. 1.3 and the ana-

lytical mean solution (Eq. 1.10) is always plotted in diagrams for comparison. The

probability density function for random parameter λ and θ are constant – Fig. 1.3.

g ( )θ e

1/15

1 65432 10987 161514131211

Gθ( )e

1

θmaxθ1= 0 θi

θ

nfil

Fig. 1.3: Probability functions for random parameter.

1.3.1 Scatter of filament lengths

In ideal state, all the filaments in the bundle share the same length li = l. The

reality shows that this assumption is not correct and the filament lengths are directly
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influenced by the technology of yarn production as well as the specimen preparation.

In the experiment presented in this thesis the ends of the specimen are fixed in

epoxy resin which can cause two kinds of imperfections. Due to capillary effect

the epoxide penetrates through the yarn in the longitudinal direction which causes

uneven distance of the fixing points on both sides of the yarn ends or eventually

the epoxide doesn’t penetrate through the whole yarn cross-section so that the free

length of filaments in the middle of the yarn is longer. This unevenness of lengths

is expressed by the parameter λ.

In the following parametric study the nominal length of the bundle is equal to

the minimum length of filaments in the bundle l = lmin = mini=1,...,n (li,λ), ∆min = l−
lmin = 0, the longest filament has length lmax, ∆max = lmax−l. The difference between

the shortest and the longest filament was set ∆max = 2 mm, which approximately

corresponds to 1 mm-unevenness on each side. The distribution of the additional

length ∆i is linear (see the inset of Fig. 1.4) so that λi is uniformly distributed

among all the filaments such that λ i=1,...,n = λmax (i− 1)/(n− 1), where λmax =

∆max/l. The load-strain diagrams were plotted for different nominal lengths (l =

0.5, 1, 4, 10, 40, 100 mm) with constant parameters E, A and ξ and zero slack θ = 0.
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Fig. 1.4: Length scatter influence: load-strain diagrams for different λ = ∆/l ratio.

Fig. 1.4 shows both the numerical and the analytical solutions: the red curve

Tλ (e) is the numerical solution for n = 16 filaments in the bundle, the blue dotted

line Mλ (e) is the analytical solution according to Eq. 1.11 for infinite number of
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filaments. The yellow lines symbolize individual filament load-strain diagrams qi(e)

with the filament strength Qi (e) and green line T0 (e) is a special case of bundle

response for λ = 0 – the ideal state for n = 16.

It is clearly recognizable that the unevenness of filament lengths leads to the

reduction of bundle stiffness and consequently to the reduction of the bundle peak

load because the maximum tensile strength is not reached in all filaments at the same

global strain level. The higher is the λ ratio, the lower is the maximal transmitted

tensile force and the more ductile the behavior is. For the very short specimens

(l equal to 1 and 0.5 mm) the bundle failure-strain e∗ grows, while for longer lengths

stays equal to the breaking strain of the filament e∗ = ξ.

The analytical solution in Eq. 1.11 is obtained from Eq. 1.10, where A, E,

σ = const., θ = 0 and λ is uniformly distributed: λ ∼ R : gλ = 1/λmax H (λ)H (λmax − λ).

The overall response of the bundle is then Mθ (e) = nµθ (e).

µλ (e;λ) =
∫

λ
qe (e;λ)dGλ (λ) =

EAe

λmax

λmax∫

0

1
(1 + λ)

H [ξ (1 + λ)− e] dλ

=







EAe ln (1 + λmax)/λmax 0 ≤ e ≤ ξ lin.

EAe[ln (1 + λmax)− ln (e/ξ)]/λmax e > ξ nonlin.
(1.11)

The stiffness of the bundle is reduced due to the scatter of filament lengths

comparing to ideal bundle (λ = 0) with rλ ratio:

rλ = ln (1 + λmax) /λmax (1.12)

The point e∗ and the corresponding peak load can be found by differentiation of

Eq. 1.11 (as the stationary point). Depending on the value of λmax this point can

lie either on the linear (case I) or on the nonlinear branch of the curve (case II) –

see Eqs. 1.13.

CASE I when λmax ≤ [exp (1)− 1] ≈ 1.718

e∗ = ξ

µi (e∗) = EAξ ln (1 + λmax)/λmax

CASE II when λmax > [exp (1)− 1] ≈ 1.718

e∗ = ξ (1 + λmax)/exp (1)

µi (e∗) = EAξ ln (1/λmax + 1)/exp (1)

(1.13)

By substituting the nominal length relation into the previous equations an ex-

plicit size effect equations can be expressed. We now investigate the case l = lmin,

∆max = 2 mm, with λmax = ∆max/l. It is important to mention that with differ-

ent selection of the nominal length a different form of size effect is obtained. For

example, with alternative definition l = lmax and ∆min = −2 mm there would be

a linear equation for short bundles and nonlinear for long ones; in diagrams the

30



shorter yarns would appear stiffer that the long yarns. Despite this fact, the bundle

strength does not change with different l definition. On the other hand, the proper

definition of l gets its importance when investigating the response of the bundle in a

crack-bridge of textile-reinforced concrete, where the energetic considerations must

be taken into account for the correct determination of the effective yarn length.

As a conclusion of this parametric study it can be stated that scatter of the

filament lengths due to imperfections at epoxy clamping blocks cause reduction of

bundle strength, which is more significant for shorter specimens. This effect acts in

an opposite way compared to the statistical Weibull size effect. Also introduced more

ductile behavior of short yarns contrasts with the diagrams measured in experiments.

1.3.2 Scatter of filament diameters

Another parameter which is a random variable is the cross-section area of each

individual filament. Due to technological process of AR-glass filaments production

the final diameter ranges approximately from 23 to 29 µm. For the parametric study

the mean value D̄ = 26 µm with COV(D)=10 % was assumed (std = 2.6 µm). The

mean bundle response is again obtained from Eq. 1.10 with E, ξ = const., λ = θ = 0

and filament diameter is defined by its cumulative distribution function GD (D).

µA (e;D) = eEH (ξ − e)
π

4

∫

D
D2dGD (D) (1.14)

T0( )e
TD( )e
q ei( )

Yarn strain [%]e

Y
ar

n
 f

o
rc

e
[c

N
]

T

F
il

am
en

t 
fo

rc
e

(
) 

[N
]

q
e

i

n = 16

Fig. 1.5: Left: Influence of filament area (diameter) scatter on the load-strain dia-

gram. Right: Filaments in epoxy resin.

The bundle breaks at the filament breaking strain e∗ = ξ. The difference between

the response of a bundle without any scatter of filaments areas and a real bundle

can be obtained from the cumulative distribution function GD (D) as the rD ratio

comparing their mean values:

rD =
µD (e)
µ (e)

=
1

D̄2

∫

D
D2dGD (D) (1.15)
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If the distribution GD (D) is assumed to be Gaussian, this ratio has the value of

rD =
(

1 + COV(D)2
)

. When, for example, COV = 10 % and the mean bundle

stiffness is changed just by 1 % increment.

This may lead to the conclusion that the overall bundle behavior and its mean

response MD (e) is not significantly changed by scatter of filament diameters (es-

pecially compared to M0 (e)). Anyway, this introduces the scatter into the peak

load.

1.3.3 Scatter of filament activation strain (slack)

During the production process filaments in the yarn are reeled together, which in-

troduces repeating and easily visible wavy pattern. In this pattern, filaments follow

different trails and when the experiment sample is prepared, some filaments in the

bundle can stay loose while others are directly straight. During tensile loading

these straight fibers start immediately transmitting the load, while originally loose

fibers are still unloaded (delayed activation effect – slack). This phenomenon can

be captured by θ parameter which expresses an additional length of slack fibers.

In the parametric study the nominal length is again set on the length of the

shortest filament l = lmin. The longest filament in the bundle has then the length

lmax = (1 + θmax)l. The ratio θmax = (lmax − l)/l is uniformly distributed among all

the filaments (analogically to the distribution of λ) over the range 0 ≤ θi ≤ θmax.

Parameters E, A and ξ are considered constant and λ = 0. The load-strain diagrams

in Fig. 1.6 are plotted for three different θ-ratios: θ = 2 ξ, 1 ξ, 0.5 ξ (ξ is filament

breaking strain).
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Fig. 1.6: Slack influence: load-strain diagrams for different θmax/ξ ratio.

Individual filament curves qi are plotted by yellow lines, the overall numerical

bundle response Tθ for n = 16 (number of filaments in the bundle) is the sum of

filament responses and is marked with red color. The green line T0 expresses the
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ideal bundle diagram for θmax = 0 and the analytical mean solution Mθ (e) = n·µθ (e)

is evaluated with the help of Eqs. 1.16 and plotted by blue dot-line.

µθ,1 (e) =
EA

θmax

e∫

0

e− θ

1 + θ
dθ =

EA

θmax
[(e+ 1) ln (1 + e)− e]

for e ∈ 〈0;min (ξ, θmax)〉

µθ,2,I (e) =
EA

θmax

e∫

e−ξ

1+ξ

e− θ

1 + θ
dθ =

EA

θmax
(e + 1)

[

ln (1 + ξ)− ξ

1 + ξ

]

(1.16)

for e ∈ 〈min (ξ, θmax) ;max (ξ, θmax)〉 ∧ ξ < θmax

µθ,2,II (e) =
EA

θmax

θmax∫

0

e− θ

1 + θ
dθ =

EA

θmax
[(e + 1) ln (1 + θmax)− θmax]

for e ∈ 〈min (ξ, θmax) ;max (ξ, θmax)〉 ∧ ξ ≥ θmax

µθ,3 (e) =
EA

θmax

θmax∫

e−ξ

1+ξ

e− θ

1 + θ
dθ =

EA

θmax

{

(e+ 1) ln

[

(1 + θmax) (1 + ξ)
1 + e

]

− θmax +
e− ξ

1 + ξ

}

for e ∈ 〈max (ξ, θmax) ; θmax + ξ (1 + θmax)〉

In the rendered analytical solution there are three significantly recognizable

branches: branch 1 (µθ,1 (e)) is ascending with gradual increase of stiffness as more

filaments get activated; branch 2 is a linear function of yarn strain e, either linearly

growing (µθ,2,II (e)) with no newly activated or broken filaments (Fig. 1.6 left) or

a function close to constant function (µθ,2,I (e)) with both activating and breaking

filaments (Fig. 1.6 right). Diagram in the middle of Fig. 1.6 misses this branch and

after the full activation filaments immediately start breaking – branch 3 (µθ,3 (e))

expressing the reduction of stiffness.

The maximum load µθ (e∗) = µθ,3 (e∗) is reached in the branch 3 and the corre-

sponding strain e∗ is the maximum from values (e3
∗, ξ), where e3

∗ is the stationary

point which can be obtained by differentiating the equation for µθ,3 (e).

Dµθ,3 (e)
De

= 0 → e3
∗ = (1 + ξ) (1 + θmax) / exp

(

ξ

1 + ξ

)

− 1 (1.17)

The size effect formula is obtained by substituting the point e3
∗ into µθ,3 → µ∗θ

(peak load) and by taking θmax = ∆max/l with ∆max as a given constant. As a length-

depended equation for the peak load µθ
∗ (l; ∆max) is expressed. The resulting formu-

las are complicated, but the trend of the size effect is following: according to used

nominal length definition the curve has different asymptotes. The model used in

this parametric study (l = lmin) leads to constant strength values for short lengths
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and the strength of the long bundles grows linearly to infinity. Another model used

in [18] where the nominal length is equal to the longest filament length (l = lmax)

linearly reaches zero strength value for extremely short yarns (l → 0), the strength

of extremely long bundles is limited by the right asymptote at a constant value.

It may be concluded that the effect of delayed activation caused by waviness of

the filament yarns acts against the classical statistical size effect and must be con-

sidered in evaluation of experiment data in order to interpret the length-dependent

strength correctly.

1.3.4 Interaction of filament’s length scatter and delayed

activation

To combine the effect of different lengths of filaments due to clamping conditions

with their delayed activation, both parameters λ and θ are considered varying over

a certain range. The mean bundle response is obtained by double-integration of

Eq. 1.10:

µθ,λ (e) =
∫

θ

∫

λ

qe (e; θ, λ) dGθ (θ) dGλ (λ) = (1.18)

= EA
∫

θ

∫

λ

e− θ (1 + λ)
(1 + θ) (1 + λ)

H

[

ξ − e− θ (1 + λ)
(1 + θ) (1 + λ)

]

H [e− θ (1 + λ)] dGθ (θ) dGλ (λ)

Although these two parameters were discussed separately so far, they influence

each other in fact. The distribution functions Gλ (λ) and Gθ (θ) interact due to

chosen definition of strain (Eq. 1.4). It means that the effect of the same θmax

is different for various values of λmax, the extra length due to slack is influenced

by the extra length of filaments due to λ parameter, which can be formulated as:

∆θ = θl (1 + λ).

Development of stiffness during the tensile loading can be seen in Fig. 1.7, where

curves for M0 (e), Mλ (e), Mθ (e) and Mλ,θ (e) are plotted for comparison. Additional

length ratios are uniformly distributed so that Gλ (λ) and Gθ (θ) are linear. The

scatter of λ reduces the stiffness with rλ factor (Eq. 1.12). After reducing the

stiffness of Mθ (e) with this factor, it can be seen, that it does not correspond to

the real stiffness of the Mλ,θ (e) curve, which would be overestimated. Especially for

very short lengths corresponding to the crack-bridges, the evaluation of µλ,θ (e) gets

important.

The curves for sample of dimensions l = 30 mm, λmax = 2/30 and θmax = 0.009

corresponding to laboratory experiments is in Fig. 1.7(left); a situation close to

the crack-bridge is in the same Fig. (right): λmax = 1.2 (the longest filament
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Fig. 1.7: Load-strain with acting parameters λ, θ and their interactions. Left: length

of experiment sample, right: length of crack-bridge.

is 2.2 times longer than the shortest one) and θmax = 1.2ξ = 0.0214. For the

laboratory testing the reduction of stiffness due to varying λ can be neglected,

while for the crack-bridge situation it is significant. Also the maximum transmitted

load is reduced and the corresponding strain e∗ grew – it can be approximated as

e∗ = (1 + λmax/2) ·max (ξ, θmax).

1.3.5 Relation between waviness and delayed activation strain

There is a direct correspondence between filament delayed activation and its wavi-

ness. We can observe several wave patterns on the bundle, that are caused either

due to production technology or during the preparation of experimental samples. It

is useful to describe particular kinds of waviness to classify its influence on the de-

layed activation of filaments with respect to the changing nominal length. Basically

there are two limit cases: (I) the differences of filament lengths ∆θ in the bundle

grow linearly with growing nominal length l – this leads into length-independent

delayed activation θmax; and case (II) with growing nominal length l the length

differences decrease θmax → 0. The study dealt with four basic types of bundle

waviness (Fig. 1.8) and their length-dependence of the slack ratio.

Wave patterns (a) and (b) are introduced during the yarn production, pattern

(c) appears due to inaccuracy in the test sample preparation and type (d) arises

during the reeling of yarn on the bobbins.

The geometry of the filament is defined by the wave function w(x, α) with pa-

rameter α ∈ 〈0, 1〉 defining the filament’s position in the bundle. Total length of the
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Fig. 1.8: Wave patterns with corresponding histograms of θ for different lengths l.

(histograms are adopted from [7])

i-th filament can be calculated as the integral:

li =
l∫

0

√

1 + w(x, α)′
2
dx (1.19)

The filament activation strain is then θi = (li − l) /l (considering λ=0). His-

tograms of parameter θi with respect to nominal length l show the length-dependency

for each of considered wave pattern. (Histogram horizontal bars are divided into 10

segments each representing 10 % fraction of θi for given nominal length.) No in-

teractions between filaments is assumed so that the strain formulation in Eq. 1.4 is

valid.

The wave pattern (a) consists of periodic (sinusoidal) waves of equal amplitude

shifted mutually in x-direction by ϕi. The resulting θ scatter oscillates around the

common average value (approx. 1.1 %), the variation subsequently decreases with

growing nominal length (limit case (II)). The second pattern (b) is formed by non-

shifted waves with the same length but different amplitudes. The distribution of

amplitudes ai among filaments is uniform, majority of the filaments get activated at

small e strains (in the beginning of loading) and with the growing nominal length

the distribution of θ stabilizes and becomes length-independent (limit case (I)). Case

(c) is a single-wave pattern of length l created during samples preparation. Fila-

ments in this pattern have different amplitudes but the distribution is not uniform

– it contains higher fraction of filaments with larger amplitudes. The considered

distribution leads to uniform activation density function, which gets reduced to al-
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most zero value with longer lengths l and the effect of delayed activation disappears

(limit case (II)). The waves in case (d) are caused by coiling the yarn onto a bobbin.

All the filaments share the same length which leads to uniform delayed activation

density. This distribution does not change with growing l – it means it is length-

independent (limit case (I)). With the increasing nominal length linearly grow the

length-differences of filaments.

The aim of this geometrical classification was to find and validate the proper

delayed activation density for different sample-lengths and find the domination wave-

pattern (Fig. 1.9).

Fig. 1.9: AR-glass yarn.
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1.4 Random properties over the filament and bun-

dle length

The previous section was focused on the influence of randomization of parameters

of individual parameters in the bundle on the total response. These parameters

were: cross-section area, uneven length and delayed activation (slack) of individ-

ual filaments due to their waviness. The stiffness and the strength of the bundle

were evaluated, compared to the ideal bundle and their length-dependency was in-

vestigated. Both of these two characteristics got reduced due to the variation of

input parameters as well as both of them showed decreasing trend with diminishing

length – it means in an opposite manner compared to the classical statistical size

effect [30, 10, 3]. All the parameters were randomized within the cross-section and

stayed constant for the whole length of the filament. It is useful to investigate the

effect of spatial variation of the stiffness parameter E and the strength parameter

σ.

In the following section, parameters (strength σ and Young’s modulus E) are

randomized along the filament and their spatial distribution as well as the auto-

correlation is considered. The strength distribution randomness was considered as

a stationary random process and a method Latin Hypercube Sampling (LHS), which

is a type of Monte Carlo simulation method, was used.

The reference parameters are in calculations considered either I) as random and

follow Weibullian PDF with given mean value, std and COV or, II) as constant and

are represented with their mean value. For ideal bundle with no variation of param-

eters (constant values) is the response equal to T0 (e) = M0 (e) = nEAeH (ξ − e) as

a function of bundle strain e. Filaments diameter is taken as a constant D = 26 µm,

other values of used parameters and their statistical moments are in Tab. 1.2. These

values were obtained from former laboratory tests on AR-glass multi-filaments bun-

dles.

Tab. 1.2: Material parameters used in numerical simulations.

Tensile strength Young’s modulus Breaking strain

σ E ξ = σ
/

Ē

Mean value σ̄ = 1.25 GPa Ē = 70 GPa ξ̄|Ē = 1.786 %

Standard deviation stdσ = 0.3125 GPa stdE = 10.5 GPa stdξ = 0.4464 %

COV 0.25 0.15 0.25

Weibull distribution:

Shape parameter mσ = 4.5422 mE = 7.9069 mξ = 4.5422

Scale parameter sσ = 1.369 GPa mE = 74.373 GPa mξ = 1.9557 %
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1.4.1 Random strength along individual filament

Considering the cross-section of the bundle, the material properties are randomized

over the filaments i ∈ 〈1, . . . , n〉, while for length randomization the variability of

strength and stiffness is simulated for material points of each filament Mj, j ∈
〈1, . . . , p〉. It is necessary to account for the distance-dependent autocorrelation of
two material points in the spatial randomization of properties (over the length of

the filament). The filament strength is dictated by the minimal strength over the

length (the weakest-link model). To find the strength minima, investigation of the

lower tail of the strength probability distribution is of big importance.

There are two basic approaches of the spatial randomization of strength:

• The filament is modeled as a chain of a finite number of segments (random vari-

ables), each of which represents a part of the filament with a given length and

have random strength from the same probability distribution. The strengths

of segments are identically distributed and independent – IID (with no de-

pendence). This model leads to Weibull integral for the failure probability Pf

(Eq. 1.28).

• The filament strength is randomized as one-dimensional random field (random

process) with given autocorrelation distance. This approach takes into account

a distance over which the fluctuation of a random parameter is correlated. This

distance is a constant (autocorrelation length) and does not depend on the field

(filament) length.

Spatial strength randomization using IDD

Classical Weibull theory of statistical size effect

The definition of classical Weibull integral for strength of structures described

in [30, 3, 20] can be derived from illustrative example of in series coupled segments

(chain model). Each segment of the chain is independent of others and its strength

is a random variable with a given probability distribution function. If the CDF is

identical for all segments of the chain, then we call segments as independent and

identically distributed (IID). All the segments share the same loading σ (due to

a common force F ).

FF

Vr

FF

Fig. 1.10: Random strength of chain segments.

The probability of failure of any segment is P1(σ) is equal to the strength CDF.

The probability of survival of one segment is the complement 1− P1(σ). The prob-

39



ability of survival of the whole chain is 1 − Pf and is given by condition that all

the segments must survive (the collapse of one segment means the collapse of the

whole chain). For independent segments, the survival probability is the product of

survival probabilities of individual segments linked in a series:

1− Pf = (1− P1)(1− P1)...(1− P1)
︸ ︷︷ ︸

N−times

= (1− P1)N (1.20)

By taking the logarithm of the equation, we obtain:

ln(1− Pf) = N ln(1− P1) (1.21)

As the probability of chain failure Pf is a very low number in practical situations,

the expression can be simplified by substitution ln(1 − P1) ≈ −P1, which leads to

approximation:

Pf (σ) = 1− e−NP1(σ) (1.22)

Pf (σ) = 1− exp
[

−V

Vr

P1 (σ)
]

(1.23)

where P1(σ) is the probability distribution of failure of a representative volume

Vr for a given stress level σ. Representative volume is a part of the total volume

V of structure (chain) that is considered independent of other parts. The number

of independent chain segments is then N = V/Vr.

Now the function of concentration c(σ) = P1(σ)/Vr is introduced (representing

the density (concentration) of the failure probability of structure. Weibull defined

an empirical relation for this function (in its simplified, two-parametric version) as:

c (σ) =
1
Vr

〈
σ

σ0

〉m

(1.24)

with m as the shape parameter and σ0 as the scale parameter of Weibull distribution.

The fraction in Malacuya brackets is the positive part of stress (tension) 〈•〉 =
max (•, 0). After substituting the function of concentration into Eq. 1.23, we obtain:

Pf (σ) = 1− exp
[

−V

Vr

〈
σ

σ0

〉m]

(1.25)

The behavior of Weibull probability distribution is demonstrated for increasing

number of chain segments in Fig. 1.11. The random strength of each segment is

given by Weibull PDF and CDF as:

F1 (σ; s, m) = 1− exp [−(σ/s)m] (1.26)

f1 (σ; s, m) =







(m/s) (σ/s)m−1 exp [−(σ/s)m] σ ≥ 0; s, m > 0

0 σ < 0
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Using Eq. 1.20 we can express the CDF and PDF of Weibull distribution for

N number of elements:

FN = 1− [1− F1 (σ; s, m)]N (1.27)

fN =
∂FN

∂ σ
= N · f1 (σ; s, m) [1− F1 (σ; s, m)]N−1

Graphs of probability density (full line) and cumulative distribution function

(dash line) are plotted in Fig. 1.11 for different N . The trend of decreasing mean

value and the standard deviation with increasing number of elements can be ob-

served.
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Fig. 1.11: Weibull strength distribution PDF (full line) and CDF (dashed line).

This reduction of strength can be even more clearly shown in the double log-

arithmic plot of strength as a function of number of segments. For chosen level

of failure probability Pf = 0.5 (median strength) the size effect curve is presented

in Fig. 1.12. In logarithmic coordinates, the curve appears as a straight line with

a slope given by the shape parameter (−1/m).

Filament strength randomization

The Weibull integral for the filament strength using the weakest-link model to-

gether with Weibull probability distribution expresses the failure probability Pf at

the stress level σ as:

Pf (σ) = 1− exp



−
∫

l

〈
σ

s0

〉mdl

l0



 (1.28)

For a given parameter m of the Weibull distribution (shape parameter) there is
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Fig. 1.12: Weibull median strength σmed vs. number of segments N in double-

logarithmic scale.

a length l0 and corresponding parameter s0 (scale parameter). As noted in [27], the

length l0 (or the representative volume Vr ) should be better caller “reference”. This is

because in the classical Weibull theory, the choice of l0 and the associated parameters

m and s0 is arbitrary and can be recalculated from a strength distribution of any

length. The Weibull theory represents a typical self-similar behavior that lacks any

characteristics dimensions. That is why the dependence of the median strength

is a power law. Since σ (tensile strength) of the filament is positive and constant,

Weibull integral can be rewritten as − ln (1− Pf) = l/l0 (σ/s0)
m. The expression for

strength with certain failure probability Pf as a function of the length is obtained:

σ (l) = s0[− ln (1− Pf)]
1/m

(

l0
l

)1/m

(1.29)

In the double-logarithmic scale of l vs. σ is this size-effect relation represented

as a straight line with slope −1/m passing the point [l0, s0].

To obtain the mean strength, the function from Eq. 1.29 must be integrated over

the range of Pf :

σ̄ (l) = s0Γ
(

1 +
1
m

)(

l0
l

)1/m

(1.30)

where Γ is the Gamma function.

The variation coefficient (COV) of the strength distribution has the direct corre-

spondence with the shape parameter m with no dependency on the length and can

be evaluated as:

COV =

√
√
√
√
Γ (1 + 2/m)
Γ2 (1 + 1/m)

− 1 (1.31)
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The reference length l0 is an arbitrarily chosen length with no relation to the total

length. To obtain the same size effect σ(l) and the same failure probability Pf for

differently chosen reference lengths (l1) the scale parameter s has to be recalculated:

s1

s0
=

(

l1
l0

)−1/m

(1.32)

The simulation process of finding the filament strength is following:

1. The filament is divided into p = l/l0 nonoverlapping segments, each of which

has the reference length l0 with the random strength σj governed by the same

probabilistic distribution.

2. The filament strength is equal to the minimum from strength of segments (the

weakest-link model).

3. The mean filament response is estimated by repeating steps 1) and 2) nsim-

times (number of simulations) and calculating the average of strength minima.

4. This process is performed for different filament lengths to see the size effect.

By changing the reference length, it is possible to run the simulation even for

extremely short filaments (the scale parameter has to be adjusted according to

Eq. 1.32). The problem of the theory is that for reference length l1 → 0 the scale

parameter s1 → ∞ as well as the filament strength σ → ∞ – it means that the-

oretically, very short filaments would have unlimited strength (see Eq. 1.32). This

fact is in contradiction with reality and another model has to be used. It is obvious

that spatial distribution of strength along the filament can not be modeled with

infinitesimally small reference length and has to be taken into account.

Spatial strength randomization using stationary random field

The spatial distribution of strength can be modeled in a form of random field, where

the autocorrelation is included. Any used random field in following calculations is

stationary homogeneous and ergodic with autocorrelation function:

Raa (∆d) = exp

[

−
(

|∆d|
lρ

)r ]

(1.33)

where lρ is called correlation length and has a positive value. The shorter is the ∆d

distance, the stronger statistical correlation is applied. The function is called squared

exponential or bell-shaped or Gaussian autocorrelation function, if the parameter

r = 2.
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More about advanced simulation techniques of random fields, their efficiency and

accuracy can be found in [23, 25, 29, 28].

The process of numerical simulations is the same as in the case of IID randomiza-

tion, however, the autocorrelation of strength is accounted for. As mentioned above,

the final strength of the bundle is obviously the global minimum value of random

strength process. To find this value, very dense field of discretization points has to

be generated, which makes this method very demanding on computational equip-

ment. This problem has been overcome by investigating the asymptotic behavior

[27, 26].

If the spatial material autocorrelation is taken into account, the mean size effect

follow the full line in Fig. 1.13: for filament lengths l ≫ lρ the mean strength tends

to the classical Weibull theory with no autocorrelation influence (right asymptote),

while for very short fibers l ≪ lρ is the strength limited by the length-independent

mean value (left asymptote).
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Fig. 1.13: Modified median Weibull strength with autocorrelation.

The transitional zone can be covered by a smooth function representing the

transition between the left and right asymptotes intersecting in [lρ, µ0]. This ap-

proached makes the simulation process unnecessary [2, 4]. For this approach the

filament is discretized and randomized according to chain model with IID segments

of l0 length. For filament lengths larger than l > l0 (which is considered as known

value for given material) is the mean strength obtained from Eq. 1.30 – classical

Weibull size effect. The strength of shorter filaments l < l0 has the value of µ0 equal

to the mean strength value of filament of zero length. This value is also the mean

strength value for lengths l = l0. The length l0 is a coordinate of intersection of

mentioned asymptotes. In this approximation mean strengths of extremely short

and long fibers are described with good accuracy, while the values for filaments of

l ≈ l0 are overestimated.
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A better approximation of the transitional zone is found through modifying

Eq. 1.29, where the length-dependent function f(l) is introduced replacing (l0/l)
1/m

member in:

σ (l) = s0[− ln (1− Pf)]
1/mf (l) = s (l) [− ln (1− Pf)]

1/m (1.34)

with s (l) = s0f (l) implying that the length dependence of strength is associated

with scale parameter s. If we rewrite the equation to express Pf we can see that

the function f(l) effects only the scale parameter s, while the shape parameter

m remains unaffected: CDF = Pf = 1−exp [−σ/(s0f (l))]
m. The value of coefficient

of variation stays unchanged as well, as it depends only on the m parameter, not on

length l. The mean size effect can be formulated analogically to Eq. 1.30 as:

σ̄ (l) = s0Γ (1 + 1/m) f (l) = s (l) Γ (1 + 1/m) (1.35)

Three zones of size effect are distinguished in Fig. 1.13 – the mean strength

is simulated by: single random variable (l/lρ → 0), autocorrelated random process

(l/lρ ≈ 1) and a set of IID random variables (l/lρ →∞).

The used length-dependent function f(l) was found intuitively by asymptotic

matching to interpolate between the two asymptotes within the transitional zone.

Simulations performed in [27] showed that the numerically obtained mean of minima

occurred in between two suggested equations:

f (l) =

(

1
lρ
+

lρ
lρ + l

)−1/m

or (1.36)

f (l) =

(

lρ
lρ + l

)1/m

(1.37)

Some researches believe that another possible method how to mimic the effect

of the spatial variability of strength is by averaging the stresses between neighbor-

ing material points, which introduces the dependence between sampling points of

IID strength randomization. This model is called non-local Weibull integral [5, 1].

However, in the case of filament tensile loading it is impossible to use this model, as

the stress level is equal for all material points of chain and no averaging of stress is

meaningful.

1.4.2 Random strength along filaments within the bundle

Having investigated the single filament behavior, it can be proceeded to the evalu-

ation of the total bundle response. Both of formerly mentioned models (simulation
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of IID random variables and the random process method) were used to random-

ize the set of n filaments in parallel arrangement. In the following definitions, the

distribution of normalized bundle strength Q∗
n = sup [T (e)/n] is considered.

Daniel’s numerical recursion

The classical model of a bundle was formulated by Daniels [9]. The bundle composes

of a set of n independent parallel linear-brittle fibers equally sharing the tensile load-

ing. All the filaments i ∈ 〈1, . . . , n〉 also share the identical strength function distri-
bution FX (x) = F(i) (x) = P(i) (X ≤ x) and all the other parameters are considered

constant. The maximum filament tensile strength Q(i) (α) = X(i) = Aσ(i) (α) is ran-

domized independently for each filament (α denotes the random nature of quantity).

The set of Q(i) of the bundle is ordered in an ascending manner
(

Q(i) ≤ Q(i+1)

)

and

the marginal distribution function of Q(i) is obtained as fX (x) (PDF) and FX (x)

(CDF) [14]:

f(i) (x) = i




n

i



 [FX (x)] i−1[1− FX (x)]n−ifX (x) (1.38)

And the bundle maximum tensile force (see Fig. 1.14):

Q∗
n = max

1≤i≤n

(

Qi
n− i+ 1

n

)

(1.39)

e

n·Qn

4·Q1

3·Q2

2·Q3

1 Q4·

e
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Q4
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Q2
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(  - +1)n i ·Qi

n=4

Fig. 1.14: Estimation of bundle maximum tensile force.

The yarn load is expressed through the load per filament: Qn = T (e)/n. Since

we are interested in the bundle strength, we look for the maximum force Q∗
n and its

distribution function Gn. Assuming that the filament strength is independent and

identically distributed random variable with the known distribution function FX ,

the CDF distribution of the maximum tensile filament force is [9]:

Gn (x) = P (Q∗
n ≤ x) =

n∑

i=1

(−1)i+1




n

i



 [FX (x)] iGn−i

(
nx

n− i

)

(1.40)

which is a recursive function where the lowest terms are defined ad G0 (x) ≡ 1 and

G1 (x) = FX (x) (CDF of a bundle with one filament is equal to CDF of filament

strength).
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The main disadvantage of this analytical solution is that Daniels’ recursive for-

mula is extremely computationally demanding and with the growing number of fila-

ments occuring in practise exceeds common computational facilities. Then the only

possibility how to map the bundle size effect are numerical stochastic simulations

of Monte Carlo type. The results of both methods are perfectly matching as shown

in [27]: the mean bundle strength drops with increasing number of filaments and

the response in its shape is getting closer to the asymptotic load-strain curve (for

n →∞). The bundle strength distribution asymptotically changes from Weibull to

Gaussian for increasing number of filaments n.

Fig. 1.15 shows the response of one bundle with three different numbers of fil-

aments. The overall bundle response Tξ is given as simple summation of filament

strength contributions qξ (superposition rule). The analytic curve Mξ = n · µξ for

n → ∞ and the response of the ideal filament q0 (with strength equal to the mean

value) are plotted for comparison.
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Fig. 1.15: Load-strain curve Tξ of a bundle with n filaments together with curves of

filaments q0 and qξ and their mean curve Mξ (bundle).

The numerical solution of the bundle response Mξ was run for nsim = 100-times

for four different n = 1, 8, 31, 160 of filaments. The obtained peak load values were

statistically processed and the mean strength value with the corresponding std are

marked in Fig. 1.16 with a red circle. The mean value decreases for increasing num-

ber of filaments as well as the value of std and the response becomes less scattered

and gets closer to the asymptotic curve µξ.

Asymptotic bundle response

The fact that with n → ∞ the strength distribution converges to the normal dis-

tribution is used to verify the asymptotic behavior of stochastic simulations (as-

suming filament strength as IID random variable). According to the central limit

theorem for positive constants µ∗σ (mean value) and γ∗σ (standard deviation) is:

(
√

n (Q∗
n − µ∗σ)/γ

∗
σ) tends to a normal random variable with mean value equal to 0

and standard deviation equal to 1 (standard normal distribution). The approxima-

tion of the bundle strength for large n reads [9]:

47



Tξ( )e
T0( )e
Mξ( )e

e*

Yarn strain [%]e

Y
ar

n
 f

o
rc

e
[c

N
]

T

e* e* e*

n 1= n = 8 n 32= n 160=

Fig. 1.16: Load-strain curves of bundles Mξ with different number of filaments n as

a result of Monte Carlo simulations (nsim = 100). Mean values of the bundle strength

± std are depicted, as well as the asymptotic response Mξ(n →∞).

Gn (x) = P (Q∗
n ≤ x) ≈ Φ

(

x− µ∗σ
γ∗σ

√
n

)

(1.41)

with Φ symbolizing the normal cumulative distribution with the following parame-

ters:

mean value µ∗σ = E [Q∗
n] = e∗ [1− F (e∗)]

variance (γ∗σ)
2
/

n = D [Q∗
n] = (e∗)2F (e∗) [1− F (e∗)]

The assumption is valid only under the following conditions: the value e∗ maxi-

mizes the function µ (e) = e [1− F (e)] and is unique and positive; lime→∞µ (e) = 0,

then µ∗σ = µ (e∗) = sup [µ (e)]; e ≥ 0 and the yarn stiffness is EA = 1.

The problem of random filament limit strength σ can be transformed into the

problem of filament random breaking strain ξ [18], as σ = Eξ (for constant stiffness

E = const). The linear relation between these two quantities implies that: µ (e) =

µσ (e) = µξ (e), which is the normalized asymptotic mean bundle load-strain function

(n →∞):

µξ (e) =
∞∫

0

q (e, ξ) fξ (ξ)dξ = EAe

∞∫

0

H (ξ − e) fξ (ξ) dξ = EAe

∞∫

ξ=e

fξ (ξ) dξ =

= EAe [1− Fξ (e)] (1.42)

where the constitutive law is given by Eq. 1.3 and fξ (e), Fξ (e) is PDF, resp. CDF

of filament breaking strain ξ.

If the random strain is considered to follow Weibull distribution with parameters

s (scale) and m (shape), then CDF of ξ is:

Fξ (e; s, m) = 1− exp [−(e/s)m] (1.43)

µσ (e) = EAe exp [−(e/s)m]
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The strain corresponding to the peak load e∗ can be found by derivation of the stress

function. By substituting this value into stress equation, the maximum load µ∗ is

found, as well as the standard deviation γ∗.

dµσ (e)
de

= 0 → e∗ = m−1/ms (1.44)

µ∗σ = µ (e∗) = EAm−1/ms · exp
(

−m−1
)

γ∗σ = EAsm−1/m
√

exp (−m−1) [1− exp (−m−1)]

Concerning the asymptotic behavior, the transition to normal distribution is

valid for the central part of the distribution (close to the mean value). The left tail

has to keep the Weibull distribution, as the minimum strength cannot be less then

zero. However, the importance of the left tail can be neglected as the distance from

the central part of the distribution measured in multiples of the standard deviation

is large with large n.

Size effect of a bundle with variable number of filaments

As observed in simulations in [27], the shape of mean size effect curve – MSEC (in

double logarithmic scale of yarn strength vs. length) remains the same even for

growing number of filaments n in the bundle. The curve is just shifted downwards

(the mean strength of l → 0 bundle decreases), but the slope of right asymptote

(given by parameter m), as well as the intersection point of asymptotes (with x-

coordinate equal to correlation length lρ) is kept. The drop-trend of bundle strength

efficiency (µ∗σ,n/µ∗σ,0) with growing number of n is significant mainly for n < 160;

with higher number of filaments the mean strength ratio stabilizes on a certain value

(Fig. 1.17 top left; figure adopted from [27]).

The bundle strength as a function of its length is according to Eq. 1.34 associ-

ated with the scale parameter of Weibull distribution sξ (l) = sξf (l), subsequently

Fξ (e; sξ (l) , mξ) (Eq. 1.43). To obtain the mean load-strain equation, the length-

dependent distribution of breaking strain is substituted into Eq. 1.42:

µξ (e, l) = EAe exp

[

−
(

e

sξf (l)

)m]

(1.45)

The peak load µ∗ξ (e, l) is found analogically to previous section as load corresponding

to the stationary point e∗, as well as the mean size effect function for maximum load:

dµξ (e, l)
de

= 0 → e∗ (l) = [f (l)m]−1/msξ (1.46)

µ∗ξ (l) = µξ (e∗, l) = EAm−1/msξ exp
(

−m−1
)

f (l) = µ∗σf (l)
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The analytical solution or numerical simulations can be used to to evaluate both ef-

fects separately (number of filaments and length), or they can be composed together

and the combined size effect can be plot as a 3D surface (Fig. 1.17 right). For higher

number of filaments (n →∞) the change of z-coordinate becomes constant and the

surface can be expressed as a single curve – the mean strength is asymptotically

independent of the number of parallel filaments.
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Fig. 1.17: Left top: mean size effect curves for different number of filaments within

the bundle, curves for n > 160 overlap. Left bottom: Values of COV and effective

Weibull shape modulus mCOV. Right: Yarn efficiency for varying length and number

of filaments. Figure adopted from [27].

The value of COV is independent of the yarn length (→ the inclination of size

effect curve in double logarithmic scale) – even for the autocorrelated model, how-

ever, the value changes for different number of filaments within the bundle. (COV

of a bundle with certain n filaments is constant for variation of bundle length, but

is different from the COV of a bundle with different n.) This is caused by the

reduction of std with growing n – the rate of reduction is 1/
√

n. From this, new

COV (new slope of the size effect curve) could be evaluated with value mCOV > m

(less steep slope of the size effect curve) – Fig. 1.17 left bottom. The influence of

changing COV with varying n is not covered by the model.

1.4.3 Interaction of random stiffness and strength along the

bundle

Another random variable of the bundle model can be the Young’s modulus of elas-

ticity E, that is responsible for the filament stiffness.
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Random E-modulus and strength along a single filament

The fluctuation of E(x) modulus over the length of the filaments is modeled as

autocorrelated random process. The effective modulus of i-th filament Ei can be

calculated from a set of p random values (each assigned to one material point of the

filament) by static condensation of all Ej (for springs in series coupling):

Ei = p





p
∑

j=1

E−1
i,j





−1

(1.47)

Ei,j ,, σi j

Ei, σi

Fig. 1.18: Effective material stiffness Ei and filament strength over the length.

For very short filaments (l ≪ lρ) the random process has almost constant value over

the length and the E modulus is given by a single random variable with distribution

function GE(E). On the other hand for very long filaments (l ≫ lρ) the parameter

scatter gets insignificant and the effective stiffness converges to the limit value E∞

with low standard deviation.
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Fig. 1.19: Stress-strain diagrams of constitutive law each time with one quantity

constant.

The point of break is given not only by elasticity modulus E, but all three quanti-

ties of the constitutive law σ = E · ξ (Hook’s law) interact. The randomization of
the constitutive law can be visualized for three limiting cases – each for one variable

kept constant – Fig. 1.19. The resulting stress-strain curves show the one-parameter

randomization. This concept does not correspond to real situation, as any mate-

rial parameter is not ever a constant value. The two-parameters’ randomization

is shown in Fig. 1.20 for different correlation coefficients between distributions of

strength σ and E-modulus. Uncorrelated, positively and negatively correlated cases

are depicted. Unfortunately there is no significant evidence for any of these cases.

Due to this fact the σ − E relation is for further computations considered uncorre-

lated.
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Fig. 1.20: Two-parameter randomization by E and σ and their correlation.

One-parameter randomization of the constitutive law along the bundle

Numerical simulations of the influence of varying parameter E and σ were run in

order to map the bundle response. Random parameters were simulated by one-

dimensional autocorrelated random field according to Eq. 1.33 for three different

autocorrelation lengths, resp. l/lρ ratio. These varying parameters were applied to

a bundle model with 16 filaments (illustrative example).

To simulate the bundle behavior, 16-variate Gaussian random process was gener-

ated (16 mutually uncorrelated random fields) in p material points of discretization

for three autocorrelation lengths lρ. Fifty realizations of one random process (rep-

resenting nsim simulations of one filament) are plotted in the first row of Fig. 1.21

(figure adopted from [27]). Left scale shows the values of random strength, while

the right one is for E-modulus.
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The second row of Fig. 1.21 shows the bundle response for varying tensile strength

σ. The probability density function of the peak values together with the marked

mean value and standard deviation are situated on the left y-axis of the graph. It

can be observed that with increasing filament length l the tensile strength is reduced

and the response become less scattered (reduction of std).

The same effect of scatter reduction can be seen in the simulations of E-fluctu-

ation (the third row of Fig. 1.21). The std gets reduced with increasing length,

but oppositely to the random σ simulations – the mean value increases for longer

lengths (opposite size effect). The reason to this phenomenon is that the filaments

do not reach their peak load at the same time, which is more significant for short

specimens.

The stiffness variation of the very short specimens l/lρ → 0 was studied on the

model with condensed stiffness Ei,j = E(i) – one random value for each filament.

Numerical solution was again used for a bundle with 16 filaments, the random

E follows the Weibull distribution function GE(E) with parameters specified in

Tab. 1.2. Analytical solution for infinite n →∞ was obtained from Eq. 1.10 for two

different cases: a) constant tensile strength of filaments σ̄ and b) constant breaking

strain ξ̄. The equation is adjusted as:

µE|σ̄ (e) = Ae

∞∫

0

EH (σ̄/E − e) dGE (E) (1.48)

µE|ξ̄ (e) = AeH
(

ξ̄ − e
)
∞∫

0

EdGE (E) = ĒAeH
(

ξ̄ − e
)

0

200

400

600

800

1000

0 1 2
0

F
il

a
m

e
n
t 

fo
rc

e
  
  
 [

c
N

]
q

Y
a
rn

 f
o
rc

e
[c

N
]

T

Yarn strain [%]e

i

f0 1 2 3 4

50
Q 66.37=

100

m

a) b)T0(e), n = 16
TE|σ̄ (e) , n = 16
ME|σ̄ (e)
filament qi(e)

Fig. 1.22: The bundle response for varying E-modulus with Weibull distribution.

Left: case a) with constant σ̄; case b) with constant ξ̄. Figure adopted from [27].

The case b) is equivalent to the response of the bundle with varying cross-

section area. The mean bundle response is equal to the response of a perfect bundle

ME|ξ̄(e) = T0(e).
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Two-parameter randomization of the constitutive law along the bundle

In the real bundle the randomness of E-modulus and the randomness of σ (or ξ)

act simultaneously. To describe this complex behavior we can simulate the response

by numerical methods. Both random fields are uncorrelated (see Fig. 1.20 left) and

filaments don’t interact. The analytical solution for the very short and very long

bundles (asymptotic behavior) can be obtained for n → ∞. The solution for very

short bundles, where the random field reduces into random variable with given CDF,

can be integrated:

µσ,E (e) =
∞∫

0

∞∫

0

q (e, σ, E) dGE (E) dGσ (σ) = Ae

∞∫

0

∞∫

0

H
(

σ

E
− e

)

E DGE (E) dGσ (σ)

(1.49)

For very long bundles the variation of E can be considered as homogenized

parameter over the filament length, the breaking stress can be substituted by the

breaking strain (see Fig. 1.19 left) and the mean response is given by Eq. 1.42. If

the ξ distribution is given by Weibull equation, then: Gξ (ξ) = FX (ξ; sξ, mξ) , ξ =

σ/E∞, and then it can be written as µξ,E (e) = AE∞e exp [−(e/sξ)
mξ ].

1.5 Conclusion

The computational model will be compared with results obtained by physical ex-

periment on multi-filament glass yarns of different lengths. By knowing the force-

displacement diagrams from tensile tests of statistically significant set of samples,

it could be possible to identify the model parameters and their distributions, their

interaction and their influence on the bundle response with the increasing length,

so that the numerical model could fit the real yarn behavior.

Tab. 1.3: Influence of randomness in material parameters on the measured load-

displacement diagrams with increasing length. With the increasing length the char-

acteristics increases(+)/decreases(–)/stagnates(·). Adopted from [27].

A
F

1
D

E

C

B

e
[%

]

T
[N

]

Fixed distribution of: lλ A lθ m,sξ, f(l) Ej

A(l): evolution of initial stiffness · · – · ·
B(l): mean peak load + · + – +

C(l): scatter of peak load · · – – –

D(l): mean stiffness + · + · ·
E(l): scatter of stiffness – · – · –

F(l): post-peak range – · – – –
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2 EXPERIMENT

2.1 Introduction

The main scope of this master thesis was to perform an experiment with a high

number of tensile tests of glass-filament yarns. The task was to observe and sub-

sequently to describe their behavior with special focus on the statistical size effect.

To obtain statistically significant results, a high number of experiment realizations

was performed.

The shape of samples and the production technology was inspired by the exper-

iments run previously at RWTH Aachen University ([6] and other) with regards to

the equipment of and possibilities of experimental laboratory of the Department of

Structural Mechanics, Faculty of Civil Engineering, Brno University of Technology.

2.2 Experiment preparations

The material selected for the tensile tests was the AR-glass yarn produced by

Saint Gobain Vetrotex with brand name Cem-FIL Direktroving LTR 5325, 2400 tex

(Fig. 2.1). The fineness of the yarn is represented by the “tex” unit describing the

weight of the yarn in grams per kilometer. The basic characteristics of the yarn are

in the Tab. 2.1:

Tab. 2.1: Characteristics of tested AR-glass yarns.

nominal fineness 2400 tex (=g · km−1)

glass density γ = 2.678 g · cm−3

total yarn area A = tex/(1000 · γ) = 0.8962 mm2

number of filaments n ≈ 1600

filament area A1 = A/n ≈ 560.12 µm2

filament diameter d1 = (4A1/π)1/2 ≈ 26.7 µm

Specimen series design

The experiment was focused on the observation of effect of the size (resp. length)

on the yarn strength. Consequently, a wide range of yarn lengths was desired with

emphasis on production of the longest possible specimen length, so that the behavior

in this region can be mapped. Laboratory equipment enabled the maximum free

length of the specimen 740 mm (the length of the jaws (holders), the anchoring

blocks plus the expected elongation length has to be taken into account). The
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Fig. 2.1: The tested AR-glass yarn on a bobbin.

shortest length of the specimen was due to technology reasons set 10 mm. Between

these two values of maximum and minimum length, six length groups were suggested

with equal distribution of their logarithms. As the size effect curve is visualized in

the double-logarithmic scale, the specimens length groups were chosen so that the

obtained peak-loads would be captured using equidistant spacing – see Fig. 2.2.

group nr. 1 2 3 4 5 6

nominal length Lnom 1 cm 2.5 cm 6 cm 13 cm 31 cm 74 cm

Fig. 2.2: Specimens’ length groups.

The minimum number of samples in each of the length groups was, with regards

to statistical significance, taken as 30 pieces.

The most problematic part of tensile testing was to deal with the anchoring of

glass yarns into the machine. Basically, there are two ways how to create bundle

supports: endings can be either directly coiled up on a cylinder or poured into

anchoring blocks and clamped (Fig. 2.3). The former one is effortless but with the

problem how to determine the real free length of the yarn, as the tension stress is

gradually transmitted from the cylindrical support to the yarn. On the contrary the
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latter form of support has the free length relatively clear, but it is very laborious and

time-consuming to create the specimens. (Direct clamping of yarns is not possible,

as the yarn is made of fragile material that would crush at the support point due to

lateral compression in clamps.)

R

L = ?

F
F

L

Fig. 2.3: Anchoring types: yarn coiled up (left) and poured in anchoring block

(right).

As the testing machine is equipped with self-locking holders, yarn endings were

poured into 75 mm long anchoring blocks made of epoxy. Special silicon forms had

to be made for the purpose of pouring these epoxy blocks.

Specimen manufacturing

Production process of epoxy anchoring blocks was the most time-demanding part.

Moreover, before epoxy pouring itself, a steel mould for production of silicon forms

had to be set up.

This steel mould consisted of 4 bounding members (2 steel bars 120x14x14 mm3

and 2 steel bars 70x14x14 mm3), 5 steel blocks (75x8x8 mm3) substituting five future

epoxy blocks, the chipboard base and 8 screws enabling the mould to be dismantled

– see Fig. 2.4. To localize the future position of the yarn, short mini-rods were put

into holes drilled through the shorter side steel members (trenching on to the silicone

form in short length of about 1 mm). (The initial intention why these mini-rods

were introduced was the protection of the furrow cut in silicone form for placing the

glass yarn. The round ending of the furrow would provide the protection against

tear during the repeated shuck of the epoxy resins. This idea had to be rejected

because the round hole caused the outflow of the epoxy from the form to the yarn.

Due to this reason the rods were inserted to the mould in a short length from the

outside.) Once the steel mould was manufactured, preparation of the silicone form

could be performed – see Fig. 2.5.

The used silicone was a two-component matter produced by Alpina company

with commercial name Koraform 50 (Fig. 2.6 left). The components are mixed in

a weight ratio 10:1 (comp. A (beige color) : comp. B (colorless)); to produce one

form 80+8 g of silicone was used. Both components are very dense liquids and the

mixing process had to be slow, so that no voids and bubbles were developed. The

setting time was 24 hours. After that time the mini-rods were pulled out, steel mould
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Fig. 2.4: A deassembled steel mould.

Fig. 2.5: A steel mould for the production of silicone forms.

was dismantled and the hardened silicone form was carefully taken out. Edges of

the form were neaten by scissors and the furrows for placing the yarn were cut by

knife. A finished silicone form is in Fig. 2.7. The total number of poured silicone

forms was 21. Manufacturing of one silicone form takes about one hour.

Finished silicone forms were placed in special holder-tracks that enabled keeping

the required free length of the samples – Fig. 2.8. Five yarns of the same length were

stretched between two silicone forms and the yarn ends were poured into epoxy –

Fig. 2.6 right – product of bacuplast Feserverbundtechnik GmbH with commercial

name EP 210-2 (resin, colorless) and EPH 412-2 (hardener, orange). The weight

mixing ratio of epoxy resin was 10:4 (comp. A (resin) : comp. B. (hardener)), to

pour off anchoring blocks for 5 specimens, approx. 65 g(= 46.4+18.6) of epoxy was
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Fig. 2.6: Silicone (left) and epoxide (right).

Fig. 2.7: A silicone form.

needed. The hardening time of resin was 24 hours. After one day specimens were

shucked out, properly labeled and edges were ground down.

The production of the experiment samples was extremely time-consuming and

run over several weeks (Tab. 2.2). The most problematic part was to deal with the

problem of epoxide rising into the yarn starting from the epoxide blocks. Without

any treatment the epoxide rose even several centimeters along the yarn. When the

form ends were greased, the length had just slightly reduced. The problem was

finally solved by strong greasing of the yarn by vaseline: in the width of 5 mm at

both yarn edges (the part which goes through the sides of the form) was the yarn

perfectly greased through the whole cross-section. With this treatment, the capillary

effect was prevented and the length of penetration of epoxide into the free length of

the yarn was reduced to zero. It should be noted, that this procedure necessitates

a precise work, so that the desired free length is kept: the specimen is not either

shorter due to the the capillarity of the epoxide, nor longer due to the opposite

effect, when the vaseline rises through the yarn and the epoxide cannot penetrate

through the whole cross-section of the anchoring block.
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Fig. 2.8: Special tracks for specimen preparation.

Tab. 2.2: Average time spent on sample testing.

Time consumed on preparation of 1 specimen ∼ 60 min

Test time of 1 specimen ∼ 10 min

The total number of tested samples was 317 pieces. An overview of the particular

sample series (label Pxx) according to different days of production is presented in

Tab. 2.3, where also the numbers of tested samples with different nominal lengths

are displayed at the bottom. There are samples of more length groups in most of

the series, so that the possible deviation of created samples could not affect just

one length group. The final number of samples used for experiment evaluation was

reduced because of significant imperfections caused during the production process

(some samples were discarded from the statistics). All the specimens were stored

together in the same conditions.

2.3 Test setup

Equipment

Tensile tests were performed using the testing machine Z100 Zwick/Roell Gruppe

equipped by two load cells measuring the force (20 kN and 2.5 kN) and mechanical
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Tab. 2.3: Number of tested specimens.

Series Date of 1 2.5 6 13 31 74 sum

nr. production cm cm cm cm cm cm

P01 11.8.2011 5 5

P02 25.8.2011 5 5 5 5 20

P03 13.9.2011 5 5 5 5 5 5 30

P04 14.9.2011 4 5 5 10 5 5 34

P05 15.9.2011 5 5 9 5 5 5 34

P06 20.9.2011 5 5 5 5 4 5 29

P07 21.9.2011 5 5 10

P08 22.9.2011 5 4 5 5 19

P09 23.9.2011 4 5 2 10 5 26

P10 24.9.2011 5 5 5 15

P11 29.9.2011 5 4 5 14

P12 30.9.2011 5 5 5 15

P13 5.10.2011 5 5 5 15

P14 20.10.2011 5 5 5 15

P15 21.10.2011 5 5

P16 22.10.2011 5 4 9

P17 24.10.2011 5 4 5 14

P18 25.10.2011 3 5 8

Number of specimens 53 48 48 55 53 60 317

tensile clamps (jaws) of combined type (self-locking with pre-stressing screws) –

Fig. A.3. The displacement was measured at the top edge of the upper jaw by

deflection extensometer (Fig. 2.9). The test was controlled by the machine software.

Testing schedule

The testing of specimens was performed in nine days. To avoid some effects that

could influence the results and degrade the experiment statistics, mixed sets of

samples were tested in 9 different days. Samples of different length and different

age (from different series) were present in each set. Also the local conditions in the

laboratory (temperature and relative humidity) were recorded during the testing

period and are a part of the testing protocol (contracted version in Tab. B.2).

Testing methodology

Before the tests were started, all the connections between the machine parts (parts

connecting the machine cross-head and the sample) were tighten: steel piece was
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Fig. 2.9: Left: Scheme of the loading device parts with a sketch of series coupling

of deformable components. Right: The point of measured vertical displacement.

inserted into jaws and loaded by tension force 2000 N. All the connection screws were

tightened by hand and the steel piece was unloaded and removed. Such a procedure

prestresses all the connections which eliminates the portion of spurious deformations.

The test program was created for each length group of samples. Parameters of

the program were set according to Tab. 2.4. Samples were loaded by displacement-

increments of the cross-head of the constant rate and the reaction force was measured

by the load-cell. The test speed was chosen to correspond to 1.1 % elongation of the

nominal length per minute. After the measured force dropped by 5 % of the current

maximum, the test speed switched to a lower value, so that the unloading path was

recorded and the failure was not catastrophical (this was important especially for

short lengths).

Tab. 2.4: Test programme setup.

Length group nr. 1 2 3 4 5 6

start position [mm] 10.5 25 60 130 310 740

pre-load [N] 5 5 5 5 5 5

test speed [mm/min] 0.11 0.28 0.66 1.43 3.41 8.14

test speed after 5% reduction

of Fmax

[mm/min] 0.05 0.15 0.40 1.20 2.00 8.14

Each sample was investigated before the tensile test: the length of the sample

was measured by slide caliper, each epoxy block was checked (the length of epoxide

that penetrated into the free length was eventually measured and recorded) and

other additional features were noted (unequal waviness, more filaments broken before
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the test,...). The test was started by setting the force to zero. The sample was

inserted into the jaws in the vertical position and transverse screws on the jaws

were tighten by hand. The prescribed pre-load was applied (5 N) and the program

called for clamping the extensometer. After that the sample started to be loaded

with given test speed (which was reduced after the peak load) until the failure. The

extensometer was unclamped, the broken sample removed and the machine returned

the cross-head into its initial position.

2.4 Measured results

Data (displacement, force, time,...) were continuously recorded and saved during the

test. Force-displacement curves obtained from experiment are plotted in Fig. 2.10.

Different colors represent different length groups of samples. “Raw” curves plotted in

the figure are obtained directly from experimental device without any modification.

Examples of samples before and after the tensile test is in Fig. 2.12. Due to imperfect

stiffness of the machine, the measured curves (displacements) have to be edited. The

following chapter deals with the test curves adjustment.

Fig. 2.10: Unmodified force-displacement curves (all samples).
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Fig. 2.11: Unmodified force-displacement curves of different length groups.

Fig. 2.12: Specimens before and after the test.
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3 RESULTS EDITING

3.1 Introduction

Before it could be proceeded to evaluation of experimentally obtained results, some

modifications of the data set had to be made. Firstly, the number of samples was

reduced by elimination of samples either with strength value extremely differing from

the average, or due to serious imperfections caused in the production. Elimination

criteria of outliers are described in this chapter. Furthermore, also the displacements

measured during the tensile loading embodied some harmful patterns. Identification

of these patterns and adjustment of the obtained force-displacement curves is also

discussed in this chapter.

3.2 Elimination of outliers from the statistics

To obtain a set of statistical data not influenced by any unintentional effects (such

as the sample damage, epoxide penetration into the yarn, etc.), some extreme values

and values corresponding to samples obviously unmatching with the others (in some

feature) were set aside. The only objective information obtained from the test is the

maximum force. Therefore, identification of outliers was only possible by exploiting

this information. A direct usage of Fmax can not be used because the data exhibit

a significant dependence on the length L (Fig. 4.2). Therefore, the average effect of

length must be filtered out from the data. It was conjectured that the COV is not

dependent on L. The following formula was used to calculated the relative error of

each of the sample maximal load Fmax,i:

rel.error =
Fmax,i − µF

µF
(3.1)

where µ is an average of Fmax for a corresponding sample nominal length Lnom

(length group). The values of the relative error were plotted in graphs (Fig. 3.1)

vs. different criteria – sample age, date of testing, nominal length and sample series

(samples produced in one day). It was decided that samples with absolute value of

relative error exceeding 0.35 were marked as outliers and discarded from the data

set used for further statistical processing. In addition, according to visual check of

samples before testing, the whole series P01 and P02 were also discarded.

This decision can be supported by graph (d), where the significant trend of

growing average series strength is clearly visible. This trend was caused by the fact,

that the sample production procedure was continuously improved as more experience
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and skills were acquired. The first series contained a lot of imperfections because

there was no prior practice with the sample production.

(a)

(c)

(b)

(d)

Fig. 3.1: Relative error of samples and outliers’ elimination (marked with crosses).

Rel. errors are plotted vs. various parameters.

Tab. 3.1: Date of testing and its ordinal number (comment for Fig. 3.1(b)).

0 12.8.2011 3 29.10.2011 6 22.11.2011

1 12.10.2011 4 1.11.2011 7 23.11.2011

2 19.10.2011 5 2.11.2011 8 16.12.2011

From the other three plots it can be seen that there is no correlation between

the relative error of strength and sample age (the time between the date of testing

and the day of production of the sample) – graph (a), date of testing (b) or nominal

length (c). The drop of values in graph (b) in the first two test dates (nr. 0 and

1) was caused by testing of samples from the series P01 and P02. These imperfect

samples were purposely used to learn and to verify the correct test software setup

and testing procedure. In other testing days, groups of mixed samples (from different

series) were used to reduce the potential impact of changing laboratory conditions
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during the days. The ordering number (used as the x-axis in graph (b)) and their

corresponding dates of testing are overviewed in Tab. 3.1.

The number of filtered samples (outliers) was 38; the final number of samples

accepted for the statistical processing was 279, their overview is in Tab. 3.2.

Tab. 3.2: Number of specimens used for statistics (after elimination of 37 outliers).

Series Date of 1 2.5 6 13 31 74 sum

nr. production cm cm cm cm cm cm

P03 13.9.2011 1 5 5 5 5 4 25

P04 14.9.2011 3 5 5 8 5 5 31

P05 15.9.2011 5 5 9 5 5 5 34

P06 20.9.2011 4 5 5 5 4 5 28

P07 21.9.2011 2 5 7

P08 22.9.2011 5 4 5 5 19

P09 23.9.2011 4 5 2 10 4 25

P10 24.9.2011 5 5 5 15

P11 29.9.2011 5 4 5 14

P12 30.9.2011 5 5 5 15

P13 5.10.2011 5 5 5 15

P14 20.10.2011 5 5 5 15

P15 21.10.2011 5 5

P16 22.10.2011 5 4 9

P17 24.10.2011 5 4 5 14

P18 25.10.2011 3 5 8

Number of specimens 42 45 48 48 48 48 279

3.3 Impact of jaws on the measured displacements

While the force reaction induced by displacement loading can be measured with-

out any errors, the objective measurement of sample deformation is much more

challenging. The correct way to get this data, is to measure directly the sample

elongation with any kind of extensometer. The problem is that common types of

contact extensometers cannot be used for the yarn experiment, because it is impos-

sible to connect the device to the sample. The measurement could be improved by

installation of two displacement-meters on the inner edges of epoxide blocks, whose

differences of measured values would correspond mostly to the yarn deformation (if

the epoxide would not deform). However, the loading machine disposes of only one
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INC modul (incremental card) and there was only one extensometer available. In the

presented experiment, the deflection extensometer was placed on the upper side of

the top jaw (see Fig. 2.9 right), which caused inaccuracy of measured displacements.

Furthermore, the unstiff behavior of jaws developed other additional displacement

distortion.

By placing the extensometer on the mentioned position the read deformation

does not belong only to the yarn elongation. It is a sum of deformations of all the

device parts under the extensometer – see Fig. 2.9 left. These parts are: two steel

holders connected with neck connection and tightened by screw (k1, k2) and the

bottom and top jaws (k3, k5) holding the sample – all these components can be

modeled as a set of in series coupled springs with unknown stiffness. The springs

representing jaws contain also the tensile stiffness of the epoxy anchoring blocks and

their deformation, as well as the events taking place on the contact between them).

From the measured u (deformation) and k (stiffness) of the whole set, it is desirable

to eliminate the contribution of machine equipment and get only the uyarn and kyarn.

If the stiffness of the machine equipment causing the additional spurious defor-

mation is found, it could be simply subtracted from the measured deformation and

the resulting difference would belong directly to the yarn elongation. The stiffness of

the machine (the calibration curve) was sought by different additional experiments.

1

4

2

3steel bar

Measured displacement [ ]mm

1
2
3
4

1 3 42

Fig. 3.2: Force-displacement curves of steel bar; displacements measured on different

spots.

Firstly, the stiffness of the machine assembly was looked for by loading a very

stiff material. If the sample deformation under the tensile loading can be considered

as zero, the whole measured displacement can be attributed to the machine and its

equipment. This was realized by using a flat steel bar as an experiment specimen.

The steel was loaded up to Fmax = 2500 N (keeping the load within the elastic region)

and the extensometer was placed stepwisely on four different positions (levels) of
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the assembly, so that the decrease of stiffness can be observed and assigned to

appropriate part – see Fig. 3.2.

The yellow curve representing the deformation of two bottom holders and the stiff

part of the bottom jaw (point 1) signalizes that these components can be considered

as perfectly stiff. By placing the extensometer on the wedge of the bottom jaw

(point 2) the bi-linear behavior of the jaws appeared. In a certain moment the

stiffness suddenly dropped and the loading continued with a new decreased (but

again constant) value of stiffness (linear force-displacement curve). In the next step

the deformation was recorded with an extensometer placed in the middle of the steel

specimen (point 3) on a special small cantilever fixed to the steel bar. Apparently,

a new effect was introduced in the beginning phase of the test. Comparing to the

line 2, the initial stiffness was lower and its value gradually grew until it reached

a constant value of stiffness (corresponding to the decreased value in previous case)

– curves (cyan and blue) continued as parallel lines. This effect of gradual stiffness

growth can be assigned to some events taking place on the specimen-jaw contact.

Even though there was a pre-load applied, jaws (the wedge) appeared to be slipping

on the sample surface until it definitely transversely bit into the steel. The straight

branch of the curve was disturbed by other event visible on all three realizations

(blue lines) on almost the same displacement value. It can be most likely linked

with some kind of slip either on the steel-jaw contact or inside the jaw construction.

The last two violet curves were obtained by reading the deformation from the top

of the upper jaw, where the default point of measurement was situated – point

4. Compared to the blue curves the approximately half value of stiffness can be

observed, which is an obvious fact, as both of the jaws were inspected.

From this experiment, an evident unstiff behavior of used jaws was demon-

strated. Anyway, in the case of loading the yarn with epoxy anchoring blocks,

another parazite deformations can be expected. To investigate the additional de-

formation of the epoxide a stiff wire and a string of free length about 2 mm were

anchored into two resin blocks and loaded. Unfortunately the tests were not suc-

cessful, because the cohesion between the steel and the epoxide was not efficient and

the wire (string) started to slide out of the block. Subsequently, other approach was

chosen – the calibration curves were sought by testing directly the AR-glass yarns.

To keep the yarn deformation as small as possible, two yarns (instead of one) poured

into one sample of very short free length (l ≈ 4 mm) were used.

These double-yarns were loaded until the break and the deformation was read on

the default spot. The corresponding force-displacement curves (blue and violet) are

plotted in Fig. 3.3. Grey curves belong to the steel bar testing from Fig. 3.2, they are

plotted here for the purpose of comparison of the stiffness. The bi-linear trend was

again significant, but the transition between the original and the decreased stiffness
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yarn
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1 3 42

Fig. 3.3: Force-displacement curves of double yarns. Experiments performed with

jaws before and after servicing. Grey lines represent curves form Fig. 3.2 for com-

parison.

was not so strict, but appeared as a “wave” – at a certain force level there was

a sudden growth in deformation (about 0.15 mm) and afterwards the curve continued

with changed (lower) tangent. The origin of this event will be now discussed.

Fig. 3.4: Force-displacement curves of different length groups obtained directly from

experiments. Significant “wave” event with subsequent decrease of stiffness can be

observed.

During the actual testing of the experimental single yarn samples of different

nominal lengths this “wave” event was present in all the tests done before the jaws

servicing. The examples of curves (each representing one nominal length group) can

be seen in Fig. 3.4.

The position of the wave had the direct conjunction with the force applied on

the transverse screws pre-stressing the jaw wedge. While most of the samples were
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Fig. 3.5: The clamp slack at different force levels (due to different pre-tension of

transverse clamp screws).

tested by one person and the wave appear on the force level varying between 200–

400 kN, when the transverse screws were tighten strongly, the wave shifted to the

force with much higher value (600–700 kN) – see Fig. 3.5. In cases of both curves

the length of the wave (the slipped displacement) is approximately equal.

The harmful influence on the displacement measurement was caused by the inner

construction of the used jaws. The problem was consulted with the Zwick/Roell

representative for several times and the jaws were taken to be checked in the company

domicile in Ulm, Germany. Afterwards the test on double yarns was repeated – see

the violet curves in Fig. 3.3. Unfortunately the problem with bi-linear behavior was

not solved, only the wave temporarily disappeared (appeared again after several new

tests).

The bi-linear calibration curve appeared to be complicated to define, as the point

of stiffness drop occurred in the varying positions. Furthermore, the initial stiffness

had a wide range of values – see the zoomed view in Fig. 3.3. Due to this reasons

first branch of the diagram, as well as the wave event were cut off and the calibration

curve was defined as a line representing only the second linear branch with a slope

calculated as an average value from corresponding obtained curves from Fig. 3.2

and 3.3 measured on the top side of upper jaw. Both types of samples (steel bar

and double yarns) were used to find four different calibration curves: for both of

the sample types the curve with a zero and a non-zero y-intercept member. Curves

were plotted in Fig. 3.6. The orange and the violet curve correspond do the double-

yarn calibration samples, the blue and the green lines were defined from the slope

of curves from steel bar test (with the extensometer placed on the point 4).

The correction of the force-displacement curves was made by subtracting the

calibration curve from the second branch of the curve – the initial steeper part and
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Fig. 3.6: Calibration curves.

the wave were cut off. The result of this type of diagrams correction can be seen in

Fig. 3.7. From the plotted graphs (of three random samples with the nominal length

1 cm, resp. 2.5 cm and two of length 6 cm) the fact that this displacement reduction

is not correct is obvious. Evidently, the parazite deformations were not extracted

from the measured data and the machine unstiff components cannot be substituted

by one-spring linear model because they do not behave in a linear manner. Its

behavior is close to the bi-linear with unknown parameters, however, in some cases,

the searched force-displacement correction curve is even more complicated. Due to

this fact, despite the previous experience with load-displacement curves correction

[13, 24, 15] the effort to correct the yarn diagrams was not successful.

3.4 Conclusion

It had to be concluded that it is not possible to obtain any credible information

about the yarn deformation with this type of experiment setup because there are

too many additional deformations which were not identified and quantified. This

fact was unfortunately not obvious before because the laboratory equipment is new

and any similar experiments were not realized here before. The strength of the

yarns with its value less then 1 kN belongs to the region where the jaws show non-

linear force-displacement behavior. The company Zwick/Roell admitted that this

behavior cannot be suppressed because it is given by the mechanical construction of

jaws. They proposed the usage of other type of clamping system – the pneumatic

jaws were lent to the laboratory of Department of Structural Mechanics. These jaws

can be used in the future to find more information and edit the past experiment

results. Other way how to get the correct yarn deformation is to use other type of

extensometer – e.g., non-contact optical device.
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Fig. 3.7: Examples of measured and modified force-displacement curves of different

nominal lengths.
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4 RESULTS INTERPRETATION

4.1 Introduction

Knowing the correct load-displacement diagrams of tested samples it could be pro-

ceeded to put this information together with the numerical model from the Chap-

ter 1. If we knew the yarn strain during the loading, the model could be fitted to the

real sample performance and the significance of the included sources of randomness

could be quantified. Based on the specimen loading paths the model parameters (ξ,

λ, θ) with their probability distributions could be estimated and the correspondence

between the experiment and model results verified.

model
parameters

,( , , ...)ξ  λ  θ
MODEL

physical
parameters,

reality

Fmax

EXPERIMENT

Fig. 4.1: Correspondence between the physical experiment and the numerical model.

As mentioned in the previous chapter, the gathered information about specimen

deformation under the tensile loading is unreliable and the attempts to extract

these data from the measured displacements were unsuccessful. Due to this fact

the potential model parameters identification had to be abandoned (Fig. 4.1) and

the evaluation of the experiments reduced to the statistical processing of maximum

sample strength with respect to its length (statistical size effect).

4.2 Effect of the length on the yarn strength

The most significant effect of the obtained data set was the strength reduction with

the length extension. For each of the length groups, an average value of strength

Fmax, its standard deviation and a coefficient of variation were calculated. Obtained

values together with the average sample free length L and the number of samples

used for the statistics nsam are overviewed in Tab. 4.1. The effect of decreasing

average and std of the strength with the increasing sample length can be observed.

The value of CoV can be considered as stagnating in the range close to 15 %. The

number of samples after the elimination of outliers exceeds required 30 pieces in

each length group (279 in a total sum) and the obtained data can be considered as

a statistically representative set with a high significance.
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Tab. 4.1: Final experiment statistics: average, std and CoV of yarn strength.

Length group L Fmax nsam

nr. avr [mm] avr [N] std [N] COV [%] [-]

1 9.2 824.8 126.3 15.32 42

2 23.9 795.7 121.3 15.24 45

3 58.8 737.9 122.9 16.66 48

4 128.5 693.2 101.2 14.60 48

5 308.4 625.4 81.0 12.94 48

6 738.5 498.6 78.6 15.77 48

The graph with the samples’ peak loads in a double-logarithmic scale is in

Fig. 4.2. The plotted points represent individual experiments, their color is as-

signed to the production series. Samples with relative error of strength exceeding

±0.35 as well as the whole series P01 and P02 are marked with a cross (outliers), the
border lines separating the outliers from the accepted values (rel. error = ±0.35)
are marked with dash line. The average of each length group strength (marked with

a circle ± std) defines the size-effect curve. The red color represents the modified

(reduced) data set while the light grey shows the trend of the original complete set

of samples. The fact that these two curves do not notably differ from each other

confirms the claim of statistically sufficient number of samples.

Fig. 4.2: Yarn strengths vs. yarn lengths of tested sample groups and the size-effect

curve as an average±std of modified (red) and original (grey) data set.

Now, the curve can be fitted with the modified Weibull size-effect function with
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the included autocorrelation length (Eq. 1.37). Two different curve-fits can be seen

in Fig. 4.3. The parameters lρ (autocorrelation length) defining the point of asymp-

totes’ intersection, the strength value c of the left asymptote and m (the shape

parameter of Weibullian distribution) governing the slope of the right asymptote in

a double-logarithmic scale were chosen intuitively.

m
1

[ , ]l c
ρ

m = 3.2

lρ = 170 mm

m = 5.0
lρ = 80 mm

F̄ (l) = c
(

lρ
l+lρ

) 1

m

c = 830 N

Fig. 4.3: Estimation of size effect curve parameters.

The green curve with parameters m = 5.0 and lρ = 80 mm seems to correspond

to the shape of the measured curve for lengths L < 150 mm but overestimates the

strength of samples over 500 mm. On the other hand, the yellow curve with m = 3.2

and lρ = 170 mm describes the last part of the obtained red curve for longer samples

with a good accuracy, but slightly overestimates the strength of samples with the

length L ≈ lρ. What more, the value of m = 3.2, which corresponds to CoV=34 %

appeared to be unrealistic. (The common value of m ∈ 〈4 − 6〉 is mentioned in

the literature [27].) The CoV of the green fitted line is 23 %, which looks more

reasonable.

Anyway, the estimation of these size-effect parameters is just an assumption.

The other explanation of the shape of the curve could be acquired with the help

of the computational model parameters (Fig. 4.4). If there is no strength autocor-

relation of the material, or the autocorrelation length is much lower, the strength

dependency on the yarn length would be expressed by a line in a double-logarithmic

scale (classical Weibull size-effect). The strength of shorter samples could be re-

duced by the influence of uneven filament length or by the effect of scatter in the
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filament activation strain (see Tab. 1.3). Furthermore, the other unpredictable ef-

fects can also cause the strength reduction of shorter samples (e.g., damage caused

during the production and manipulation with the sample). Unfortunately, because

the true deformation diagrams of the yarn are not available, there is no information

supporting any of mentioned trends.

length

st
re

n
g
th

classical W
eibull law

λ  θ,
measured

Fig. 4.4: Explanation of the experimentally obtained curve shape without the effect

of autocorrelation of strength.

The assumption of the presence of other unpredicted influence can be supported

by the fact that the CoV of the strength has a high value. According to the knowl-

edge of the behavior of the bundle model with an infinite number of filaments n

it could be expected that the value of CoV was much lower (proportional to the

inverse of square root of n). If the value of the shape parameter for one filament

is m = 5.0 (CoV1 = 23%) the value of CoV for a bundle with n = 2400 should be

CoV2400 = CoV1/
√
2400 ≈ 0.5% which contrasts with the experimentally measured

value.
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CONCLUSION

The master’s study presents the results of extensive experimental work on multi-

filament yarns. The yarn is composed of several hundreds to thousands filaments

with diameter measured in tens of micrometers and made of alkali-resistant glass.

The textiles knitted from these yarns are used as a reinforcement for the so-called

textile reinforced concrete. The textile reinforced concrete is an innovative and de-

veloping composite material with a high potential of application not only in civil

engineering structures. It combines the characteristics of a cementitious matrix pro-

viding the compressive strength with tensile resistance of the textile reinforcement.

These textiles had developed from the fiber-reinforced concrete (with a randomly

oriented short fibers reinforcement) by aggregation and orientation of filaments in

the direction of the tension, which led to better efficiency of the reinforcement. The

main advantages of this material are the thickness (and subsequently the weight)

reduction of the concrete members compared to the common steel-reinforcement

system and the ductile response on load of the structure.

The experiment was focused on the yarn response under the tensile loading. The

yarns were anchored in an epoxy resin blocks and loaded by the testing machine

in the experimental laboratory of the Department of Structural Mechanics, Brno

University of Technology. More than 300 specimens of six different nominal lengths

(from 1 cm to 74 cm) were tested to obtain data with a high statistical signifi-

cance. The measured values of the samples’ force-deformation dependency (load-

displacement curves) were examined and statistically processed. Firstly, samples

marked as outliers were eliminated from the data set and the tendency of displace-

ment correction has followed. The need of displacement adjustment was caused by

the fact that measured values of deformation did not completely belong to the yarn

sample, but also the loading machine and its unstiff components contributed to the

measured displacement. This parazite deformations had to be subtracted from the

measured values to obtain the true load-displacement curves of the samples.

For the prediction and for the further evaluation of the carried experiment, the

numerical model adopted from [7, 27] was presented. The yarn is modeled as a bun-

dle composed of many filaments with a zero-friction among them and with random

parameters representing different types of disorder sources. Some parameters are

assigned to the certain filament within the bundle cross-section, the other vary over

the single filament’s length. The influence of the individual parameter randomiza-

tion and their mutual interaction was modeled and the qualitative bundle response

was demonstrated. Furthermore, the effect of the bundle length as well as the effect

of the number of filaments on the bundle strength was also described in terms of

the classical statistical Weibull size-effect theory and its modification introducing
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the spatial autocorrelation of the material characteristics. In parallel, the analytical

behavior of the bundle with an infinite number of fibers is presented to be compared

with results of the numerical simulations.

By knowing the true load-displacement diagrams from the experiment, the pa-

rameters of the computational model and their distribution could be identified so

that the model would fit the reality. Unfortunately, this intention was not fulfilled

as the test-curves’ adjustment was not successful due to the fact that the elimi-

nation of the spurious deformation was too complicated to manage. The loading

machine and its components (especially the used types of jaws) exhibited strongly

non-linear behavior under the tensile loading. The stiffness of the loading device

was investigated by a series of complementary tests. However, the linear calibration

curves established on the basis of these tests were not correct and suitable for the

results’ adjustment. Consequently, the only objective information obtained from

the experiment were the bundle strengths (maximal load value) and the statistical

evaluation had to be reduced to processing of these data.

The strength of each yarn was plotted versus its length in a double-logarithmic

scale. The obtained size-effect curve was intuitively fitted by the equation of mod-

ified Weibull size effect with the spatial strength autocorrelation. Although those

two curves matches each other with a good accuracy, it should be stated that the

sample strength could be influenced also by other effects, e.g., effects of parameters

discussed in the theoretical part of the thesis (model parameters as unequal length of

the filaments or the individual activation strain of each filament in the bundle), with

a friction among filaments of the longer lengths or with other unpredictable factors

(as the local conditions changing in time or the human factor). Without knowing

the correct load-deformation curves, these statements are only hypothetical.

Anyway, the obtained experience should be exploited for a new future testing.

With a better test equipment (non-contact extensometer or two contact extensome-

ters, pneumatic jaws), a correct displacement measurement can be expected and

a potential correction of already carried experiment could be possible. Furthermore,

the investigation of interaction between the yarn and the concrete matrix can be

tested, e.g., by the fragmentation tests [11, 21].

It is hardly possible to predict the result of en experiment without any previous

experience. This type of material research requires the perfect knowledge of the test

equipment and its setup, as the method itself and the used device strongly influence

the final result. The information about material obtained from an experiment should

be always treated within the context of used method and local conditions. The

fact that the experiment result do not have to prove the real physical material

characteristics should be kept in mind. Anyway, the experimental testing remains

an important method in analyzing and explaining the nature of reality.
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LIST OF SYMBOLS, PHYSICAL CONSTANTS

AND ABBREVIATIONS

A cross-section area

AR-glass alkali resistant glass

CDF cumulative distribution function

COV coefficient of variation

D filament diameter

D[...] variance (dispersion)

E Young’s modulus of elasticity

Gi(θi) cumulative distribution function of a random parameter

Fmax maximal load

H(·) Heaviside (unit step) function

L length of sample

Lnom nominal length

MSEC mean size effect curve

Pf probability of failure

PDF probability density function

Q∗
n maximum tensile force of n-filament yarn normalized by n

R⊣⊣ autocorrelation function

T (+), T (−) yarn force at the breaking strain before and after filament rupture

avr average

e bundle/yarn strain

f(l) length effect due to the spatially varying strength

l nominal length of the test specimen

lρ autocorrelation length
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m Weibull modulus (shape parameter)

n number of filament in the bundle

nsam number of samples

nsim number of simulations

nr. number

p number of material points used to discretize a filament in the bundle

qe,i(e), qε,i(εi) global and local representation of the constitutive law

s scale parameter of Weibull distribution

std standard deviation

M set of material points if i-th filament

R set of points representing the bundle load-strain diagram

Γ Gamma function

γσ standard deviation of strength distribution

α random nature

ε filament strain

θ filament activation strain - slack

λ ratio of extra filament length to the nominal length

µθ(e), µ0(e) mean load/strain function of the filament with and without

imperfections

ξ filament breaking strain

σ stress, strength
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A EXPERIMENT DOCUMENTATION (FIGURES)

Fig. A.1: A steel form with a silicone form.

Fig. A.2: Freshly cast silicone form (left) and epoxide anchoring blocks (right).

III



Fig. A.3: Test machine Zwick/Roell Gruppe Z100.

Fig. A.4: Test of a sample of length 1 cm (left) and 2.5 cm (right).

IV



Fig. A.5: Test of a sample of length 6 cm (left) and 13 cm (right).

Fig. A.6: Test of a sample of length 31 cm (left) and 74 cm (right).

V



Fig. A.7: Broken samples.

Fig. A.8: Self-locking jaws (front) and pneumatic jaws and (rear).

VI



B EXPERIMENT RESULTS IN DETAIL

Tab. B.1: Results of laboratory testing (ordering according to the length group and

date of experiment)

Specimen Length Breaking Deformation Date of Date of Age

number L force Fmax dL at Fmax experiment production

- [mm] [N] [mm] - - [day]

LENGTH GROUP nr. 1: l ∼ 10 mm

P13-01 9.0 884 1.42 12.10.2011 5.10.2011 7

P05-04 11.5 752 1.56 19.10.2011 15.9.2011 34

P05-05 10.0 587 1.18 19.10.2011 15.9.2011 34

P08-02 9.5 821 1.46 19.10.2011 22.9.2011 27

P08-04 9.0 702 1.16 19.10.2011 22.9.2011 27

P09-01 9.0 793 1.46 19.10.2011 23.9.2011 26

P09-02 8.5 867 1.55 19.10.2011 23.9.2011 26

P03-02 9.0 453 0.58 29.10.2011 13.9.2011 46

P06-01 9.5 612 0.90 29.10.2011 20.9.2011 39

P11-04 8.4 891 1.35 29.10.2011 29.9.2011 30

P14-02 9.0 977 1.51 29.10.2011 20.10.2011 9

P03-01 9.4 542 0.73 1.11.2011 13.9.2011 49

P04-04 10.2 600 0.95 1.11.2011 14.9.2011 48

P11-03 8.0 882 1.38 1.11.2011 29.9.2011 33

P03-04 9.0 518 0.62 2.11.2011 13.9.2011 50

P04-03 9.0 702 0.97 2.11.2011 14.9.2011 49

P06-02 9.0 699 1.32 2.11.2011 20.9.2011 43

P06-03 10.0 697 0.94 2.11.2011 20.9.2011 43

P09-03 8.4 888 0.71 2.11.2011 23.9.2011 40

P13-04 8.5 825 0.67 2.11.2011 5.10.2011 28

P14-01 9.2 945 1.52 2.11.2011 20.10.2011 13

P17-02 9.0 978 1.28 2.11.2011 24.10.2011 9

P17-03 9.0 1030 1.65 2.11.2011 24.10.2011 9

P05-02 8.9 805 1.27 22.11.2011 15.9.2011 68

P08-05 9.1 856 1.47 22.11.2011 22.9.2011 61

P11-05 9.2 900 1.47 22.11.2011 29.9.2011 54

P13-03 8.1 914 1.36 22.11.2011 5.10.2011 48

P14-04 10.2 977 1.70 22.11.2011 20.10.2011 33

P03-05 9.2 486 0.85 23.11.2011 13.9.2011 71

VII



Tab. B.1: (continued)

Specimen Length Breaking Deformation Date of Date of Age

number L force Fmax dL at Fmax experiment production

- [mm] [N] [mm] - - [day]

P04-02 9.2 666 1.35 23.11.2011 14.9.2011 70

P05-03 8.2 797 1.67 23.11.2011 15.9.2011 69

P06-04 10.0 777 1.63 23.11.2011 20.9.2011 64

P08-03 8.0 789 1.58 23.11.2011 22.9.2011 62

P09-05 9.3 975 1.88 23.11.2011 23.9.2011 61

P11-02 8.7 761 1.45 23.11.2011 29.9.2011 55

P13-05 8.9 972 1.90 23.11.2011 5.10.2011 49

P14-05 10.5 909 1.72 24.11.2011 20.10.2011 35

P17-04 10.1 931 1.75 24.11.2011 24.10.2011 31

P03-03 8.4 520 0.59 16.12.2011 13.9.2011 94

P05-01 9.0 705 1.16 16.12.2011 15.9.2011 92

P08-01 8.6 667 1.00 16.12.2011 22.9.2011 85

P11-01 8.9 765 1.25 16.12.2011 29.9.2011 78

P13-02 8.8 933 1.35 16.12.2011 5.10.2011 72

P14-03 9.0 1010 1.31 16.12.2011 20.10.2011 57

P17-01 9.3 883 1.37 16.12.2011 24.10.2011 53

P17-05 10.3 975 1.44 16.12.2011 24.10.2011 53

LENGTH GROUP nr. 2: l ∼ 25 mm

P06-08 22.0 717 1.45 19.10.2011 20.9.2011 29

P06-09 22.0 799 1.51 19.10.2011 20.9.2011 29

P07-01 22.0 509 1.02 19.10.2011 21.9.2011 28

P07-05 22.0 446 0.90 19.10.2011 21.9.2011 28

P12-04 23.0 811 1.59 19.10.2011 30.9.2011 19

P12-05 23.0 853 1.70 19.10.2011 30.9.2011 19

P04-08 25.6 915 1.44 29.10.2011 14.9.2011 45

P08-02 22.2 635 1.12 29.10.2011 22.9.2011 37

P10-05 25.0 799 1.37 29.10.2011 24.9.2011 35

P14-09 24.2 1030 1.55 29.10.2011 20.10.2011 9

P03-06 26.3 636 1.25 1.11.2011 13.9.2011 49

P05-06 24.2 767 1.47 1.11.2011 15.9.2011 47

P10-04 24.0 930 1.62 1.11.2011 24.9.2011 38
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Tab. B.1: (continued)

Specimen Length Breaking Deformation Date of Date of Age

number L force Fmax dL at Fmax experiment production

- [mm] [N] [mm] - - [day]

P03-07 25.8 872 1.72 2.11.2011 13.9.2011 50

P04-06 25.2 841 1.55 2.11.2011 14.9.2011 49

P05-08 24.0 690 1.52 2.11.2011 15.9.2011 48

P06-07 20.7 800 1.65 2.11.2011 20.9.2011 43

P07-02 21.1 531 1.12 2.11.2011 21.9.2011 42

P08-07 21.9 694 1.34 2.11.2011 22.9.2011 41

P10-02 23.8 977 1.69 2.11.2011 24.9.2011 39

P12-01 23.8 781 1.69 2.11.2011 30.9.2011 33

P14-07 24.4 930 1.65 2.11.2011 20.10.2011 13

P17-10 24.1 757 1.67 2.11.2011 24.10.2011 9

P03-10 26.8 632 1.29 22.11.2011 13.9.2011 70

P05-07 23.1 762 1.53 22.11.2011 15.9.2011 68

P08-06 22.0 648 1.31 22.11.2011 22.9.2011 61

P14-10 25.0 1040 2.05 22.11.2011 20.10.2011 33

P17-07 23.2 828 1.50 22.11.2011 24.10.2011 29

P03-09 26.0 799 1.83 23.11.2011 13.9.2011 71

P04-09 24.7 776 1.67 23.11.2011 14.9.2011 70

P05-09 23.6 703 1.57 23.11.2011 15.9.2011 69

P06-06 21.7 670 1.74 23.11.2011 20.9.2011 64

P07-04 21.9 505 1.21 23.11.2011 21.9.2011 63

P08-09 21.6 654 1.46 23.11.2011 22.9.2011 62

P10-01 24.6 914 2.14 23.11.2011 24.9.2011 60

P12-02 22.6 821 1.92 23.11.2011 30.9.2011 54

P14-06 25.5 911 2.05 23.11.2011 20.10.2011 34

P17-06 24.0 942 2.14 23.11.2011 24.10.2011 30

P03-08 26.9 826 1.38 16.12.2011 13.9.2011 94

P04-07 24.5 927 1.53 16.12.2011 14.9.2011 93

P05-10 23.8 752 1.32 16.12.2011 15.9.2011 92

P06-10 22.9 689 1.21 16.12.2011 20.9.2011 87

P07-03 22.2 526 0.88 16.12.2011 21.9.2011 86

P10-03 25.0 859 1.46 16.12.2011 24.9.2011 83

P12-03 24.3 890 1.49 16.12.2011 30.9.2011 77
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Tab. B.1: (continued)

Specimen Length Breaking Deformation Date of Date of Age

number L force Fmax dL at Fmax experiment production

- [mm] [N] [mm] - - [day]

P14-08 25.3 966 1.55 16.12.2011 20.10.2011 57

P17-08 24.4 809 1.20 16.12.2011 24.10.2011 53

P04-10 25.5 696 1.14 16.12.2011 14.9.2011 93

LENGTH GROUP nr. 3: l ∼ 60 mm

P04-12 62.0 747 1.78 19.10.2011 14.9.2011 35

P04-13 64.0 754 1.77 19.10.2011 14.9.2011 35

P05-11 58.0 640 1.68 19.10.2011 15.9.2011 34

P05-13 58.0 625 1.51 19.10.2011 15.9.2011 34

P11-08 60.0 729 1.88 19.10.2011 29.9.2011 20

P11-10 59.0 718 1.83 19.10.2011 29.9.2011 20

P09-08 58.2 918 2.13 29.10.2011 23.9.2011 36

P10-07 58.0 830 1.97 29.10.2011 24.9.2011 35

P12-07 58.6 827 2.13 29.10.2011 30.9.2011 29

P14-14 57.7 900 2.36 29.10.2011 20.10.2011 9

P03-11 59.2 515 1.46 1.11.2011 13.9.2011 49

P05-15 58.1 514 1.47 1.11.2011 15.9.2011 47

P06-14 57.2 628 1.78 1.11.2011 20.9.2011 42

P03-12 58.5 561 1.65 2.11.2011 13.9.2011 50

P04-14 62.4 643 1.75 2.11.2011 13.9.2011 50

P05-14 57.8 536 1.64 2.11.2011 15.9.2011 48

P05-19 57.8 812 2.09 2.11.2011 15.9.2011 48

P05-20 58.0 650 1.37 2.11.2011 15.9.2011 48

P06-12 57.1 743 1.50 2.11.2011 20.9.2011 43

P09-06 57.4 723 1.51 2.11.2011 23.9.2011 40

P10-08 59.2 831 1.41 2.11.2011 24.9.2011 39

P12-06 59.0 867 2.25 2.11.2011 30.9.2011 33

P14-12 58.0 862 2.09 2.11.2011 20.10.2011 13

P03-13 57.7 555 1.61 22.11.2011 13.9.2011 70

P05-17 57.9 753 1.88 22.11.2011 15.9.2011 68

P10-09 58.2 831 2.19 22.11.2011 24.9.2011 59

P12-09 59.0 878 2.34 22.11.2011 30.9.2011 53
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Tab. B.1: (continued)

Specimen Length Breaking Deformation Date of Date of Age

number L force Fmax dL at Fmax experiment production

- [mm] [N] [mm] - - [day]

P14-15 58.3 913 2.27 22.11.2011 20.10.2011 33

P03-15 58.8 484 1.32 23.11.2011 13.9.2011 71

P04-15 63.2 591 1.86 23.11.2011 14.9.2011 70

P05-18 59.0 670 2.09 23.11.2011 15.9.2011 69

P06-11 57.0 760 2.30 23.11.2011 20.9.2011 64

P09-09 57.3 834 2.34 23.11.2011 23.9.2011 61

P09-10 58.0 785 2.50 23.11.2011 23.9.2011 61

P10-10 59.0 915 2.56 23.11.2011 24.9.2011 60

P11-06 59.8 727 2.22 23.11.2011 29.9.2011 55

P12-10 59.4 804 2.37 23.11.2011 30.9.2011 54

P14-11 58.8 825 2.51 23.11.2011 20.10.2011 34

P03-14 58.5 520 1.28 16.12.2011 13.9.2011 94

P04-11 63.0 674 1.77 16.12.2011 14.9.2011 93

P05-12 58.0 944 1.55 16.12.2011 15.9.2011 92

P06-13 58.2 831 1.86 16.12.2011 20.9.2011 87

P09-07 57.6 647 1.66 16.12.2011 23.9.2011 84

P10-06 59.0 754 1.88 16.12.2011 24.9.2011 83

P11-07 58.8 785 1.99 16.12.2011 29.9.2011 78

P12-08 59.6 862 2.14 16.12.2011 30.9.2011 77

P14-13 58.6 830 2.06 16.12.2011 20.10.2011 57

P06-15 57.9 675 1.69 16.12.2011 20.9.2011 87

LENGTH GROUP nr. 4: l ∼ 130 mm

P03-17 128.0 528 2.22 19.10.2011 13.9.2011 36

P03-20 129.0 477 2.25 19.10.2011 13.9.2011 36

P05-22 129.0 669 2.81 19.10.2011 15.9.2011 34

P05-25 130.0 554 2.61 19.10.2011 15.9.2011 34

P10-11 126.0 662 2.67 19.10.2011 24.9.2011 25

P10-13 127.0 757 3.20 19.10.2011 24.9.2011 25

P04-25 131.8 620 2.60 29.10.2011 14.9.2011 45

P06-20 128.0 669 3.06 29.10.2011 20.9.2011 39

P08-14 127.8 727 3.08 29.10.2011 22.9.2011 37
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Tab. B.1: (continued)

Specimen Length Breaking Deformation Date of Date of Age

number L force Fmax dL at Fmax experiment production

- [mm] [N] [mm] - - [day]

P12-13 127.8 862 3.27 29.10.2011 30.9.2011 29

P04-24 131.0 580 2.47 1.11.2011 14.9.2011 48

P06-18 128.0 717 3.02 1.11.2011 20.9.2011 42

P09-12 127.0 746 2.89 1.11.2011 23.9.2011 39

P03-18 128.5 552 2.27 2.11.2011 13.9.2011 50

P03-19 129.2 541 2.79 2.11.2011 13.9.2011 50

P04-17 128.5 539 2.52 2.11.2011 14.9.2011 49

P04-22 131.3 661 2.87 2.11.2011 14.9.2011 49

P05-24 128.6 606 2.82 2.11.2011 15.9.2011 48

P06-17 126.8 685 2.96 2.11.2011 20.9.2011 43

P08-15 128.7 766 6.42 2.11.2011 22.9.2011 41

P10-14 125.8 833 3.35 2.11.2011 24.9.2011 39

P12-15 127.3 789 3.02 2.11.2011 30.9.2011 33

P16-02 128.0 768 3.06 2.11.2011 22.10.2011 11

P04-21 132.0 672 2.77 22.11.2011 14.9.2011 69

P04-23 132.4 687 3.26 22.11.2011 14.9.2011 69

P12-14 127.2 798 3.44 22.11.2011 30.9.2011 53

P16-25 129.1 807 3.21 22.11.2011 22.10.2011 31

P18-02 129.0 798 3.12 22.11.2011 25.10.2011 28

P03-16 128.9 593 2.67 23.11.2011 13.9.2011 71

P04-19 127.8 503 2.49 23.11.2011 14.9.2011 70

P05-21 129.9 592 2.81 23.11.2011 15.9.2011 69

P06-19 127.1 766 3.52 23.11.2011 20.9.2011 64

P08-12 128.1 744 3.49 23.11.2011 22.9.2011 62

P09-11 128.2 718 3.28 23.11.2011 23.9.2011 61

P10-12 125.6 842 3.56 23.11.2011 24.9.2011 60

P12-12 126.9 786 3.30 23.11.2011 30.9.2011 54

P16-01 128.8 751 3.27 23.11.2011 22.10.2011 32

P18-03 127.9 772 3.59 23.11.2011 25.10.2011 29

P04-18 129.3 532 2.36 16.12.2011 14.9.2011 93

P05-23 130.0 573 2.42 16.12.2011 15.9.2011 92

P06-16 127.5 762 2.79 16.12.2011 20.9.2011 87
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Tab. B.1: (continued)

Specimen Length Breaking Deformation Date of Date of Age

number L force Fmax dL at Fmax experiment production

- [mm] [N] [mm] - - [day]

P08-11 128.7 746 3.07 16.12.2011 22.9.2011 85

P08-13 129.2 790 3.08 16.12.2011 22.9.2011 85

P10-15 126.4 770 3.09 16.12.2011 24.9.2011 83

P12-11 128.0 713 2.94 16.12.2011 30.9.2011 77

P16-03 129.0 753 2.94 16.12.2011 22.10.2011 55

P16-04 127.8 824 3.08 16.12.2011 22.10.2011 55

P18-01 128.0 673 2.62 16.12.2011 25.10.2011 52

LENGTH GROUP nr. 5: l ∼ 310 mm

P06-23 308.0 622 2.17 19.10.2011 20.9.2011 29

P06-25 308.0 624 5.21 19.10.2011 20.9.2011 29

P07-09 307.0 683 5.18 19.10.2011 21.9.2011 28

P07-10 307.5 645 5.53 19.10.2011 21.9.2011 28

P09-17 306.5 696 5.75 19.10.2011 23.9.2011 26

P09-20 307.0 729 5.46 19.10.2011 23.9.2011 26

P03-24 308.0 608 4.98 29.10.2011 13.9.2011 46

P04-30 312.0 490 4.18 29.10.2011 14.9.2011 45

P05-30 309.0 452 4.42 29.10.2011 15.9.2011 44

P13-09 307.4 719 5.48 29.10.2011 5.10.2011 24

P05-28 310.0 469 4.07 1.11.2011 15.9.2011 47

P09-18 306.4 687 5.60 1.11.2011 23.9.2011 39

P13-10 308.0 684 5.37 1.11.2011 5.10.2011 27

P03-23 308.7 468 4.50 2.11.2011 13.9.2011 50

P04-27 311.3 616 4.88 2.11.2011 14.9.2011 49

P05-29 309.8 421 3.40 2.11.2011 15.9.2011 48

P06-22 306.0 650 5.89 2.11.2011 20.9.2011 43

P07-08 308.1 693 6.01 2.11.2011 21.9.2011 42

P09-24 306.0 607 5.11 2.11.2011 23.9.2011 40

P09-25 306.8 598 5.10 2.11.2011 23.9.2011 40

P13-08 308.9 706 6.15 2.11.2011 5.10.2011 28

P16-09 308.7 729 5.77 2.11.2011 22.10.2011 11

P18-08 310.0 733 5.68 2.11.2011 25.10.2011 8
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Tab. B.1: (continued)

Specimen Length Breaking Deformation Date of Date of Age

number L force Fmax dL at Fmax experiment production

- [mm] [N] [mm] - - [day]

P03-21 307.8 554 5.06 22.11.2011 13.9.2011 70

P04-29 311.0 615 5.28 22.11.2011 14.9.2011 69

P09-19 305.9 646 5.06 22.11.2011 23.9.2011 60

P16-10 309.4 642 5.12 22.11.2011 22.10.2011 31

P18-04 310.1 685 5.82 22.11.2011 25.10.2011 28

P03-22 307.6 534 4.51 23.11.2011 13.9.2011 71

P04-28 311.4 600 5.18 23.11.2011 14.9.2011 70

P05-26 309.4 517 4.47 23.11.2011 15.9.2011 69

P06-21 306.6 605 5.70 23.11.2011 20.9.2011 64

P07-07 307.4 648 5.38 23.11.2011 21.9.2011 63

P09-21 306.5 630 5.61 23.11.2011 23.9.2011 61

P09-23 307.0 628 5.85 23.11.2011 23.9.2011 61

P13-06 308.3 702 5.82 23.11.2011 5.10.2011 49

P16-06 309.7 679 5.70 23.11.2011 22.10.2011 32

P18-06 310.2 656 5.32 23.11.2011 25.10.2011 29

P03-25 307.7 526 4.46 16.12.2011 13.9.2011 94

P04-26 311.8 635 5.22 16.12.2011 14.9.2011 93

P05-27 308.9 485 3.83 16.12.2011 15.9.2011 92

P07-06 308.9 619 5.10 16.12.2011 21.9.2011 86

P09-16 307.2 596 5.15 16.12.2011 23.9.2011 84

P09-22 306.6 628 5.38 16.12.2011 23.9.2011 84

P13-07 307.5 704 5.46 16.12.2011 5.10.2011 72

P16-08 310.2 709 5.91 16.12.2011 22.10.2011 55

P18-05 309.0 723 5.82 16.12.2011 25.10.2011 52

P18-07 308.7 726 5.82 16.12.2011 25.10.2011 52

LENGTH GROUP nr. 6: l ∼ 740 mm

P03-29 740.0 358 6.47 19.10.2011 13.9.2011 36

P05-31 738.0 411 8.30 19.10.2011 15.9.2011 34

P05-32 739.0 352 7.68 19.10.2011 15.9.2011 34

P11-14 737.0 572 10.97 19.10.2011 29.9.2011 20

P11-15 737.0 565 11.23 19.10.2011 29.9.2011 20
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Tab. B.1: (continued)

Specimen Length Breaking Deformation Date of Date of Age

number L force Fmax dL at Fmax experiment production

- [mm] [N] [mm] - - [day]

P06-29 738.2 458 8.83 29.10.2011 20.9.2011 39

P08-16 740.0 583 10.98 29.10.2011 22.9.2011 37

P09-28 734.5 668 10.95 29.10.2011 23.9.2011 36

P13-11 738.8 497 8.92 29.10.2011 5.10.2011 24

P04-35 740.5 368 6.92 29.10.2011 14.9.2011 45

P04-32 740.0 395 7.76 1.11.2011 14.9.2011 48

P15-01 740.5 546 11.28 1.11.2011 21.10.2011 11

P03-28 740.0 361 6.58 2.11.2011 13.9.2011 50

P04-33 740.8 373 6.74 2.11.2011 14.9.2011 49

P05-35 739.5 376 7.89 2.11.2011 15.9.2011 48

P06-27 738.7 481 10.30 2.11.2011 20.9.2011 43

P08-17 739.0 493 9.58 2.11.2011 22.9.2011 41

P09-26 734.0 591 11.99 2.11.2011 23.9.2011 40

P13-12 737.0 649 11.15 2.11.2011 5.10.2011 28

P15-04 740.0 577 11.43 2.11.2011 21.10.2011 12

P17-11 739.2 448 8.70 2.11.2011 24.10.2011 9

P03-30 740.0 390 6.09 22.11.2011 13.9.2011 70

P06-28 740.0 466 9.48 22.11.2011 20.9.2011 63

P11-13 737.4 601 10.85 22.11.2011 29.9.2011 54

P13-15 737.9 494 9.23 22.11.2011 5.10.2011 48

P15-05 740.0 563 10.63 22.11.2011 21.10.2011 32

P17-12 738.5 566 11.34 22.11.2011 24.10.2011 29

P04-31 740.2 426 8.87 23.11.2011 14.9.2011 70

P05-34 737.6 476 7.74 23.11.2011 15.9.2011 69

P08-20 738.0 536 9.25 23.11.2011 22.9.2011 62

P09-27 732.8 581 10.44 23.11.2011 23.9.2011 61

P11-12 736.8 603 10.83 23.11.2011 29.9.2011 55

P13-13 737.5 550 10.21 23.11.2011 5.10.2011 49

P15-02 739.5 573 10.31 23.11.2011 21.10.2011 33

P17-14 738.4 511 11.00 23.11.2011 24.10.2011 30

P03-26 740.0 415 7.53 23.11.2011 13.9.2011 71

P04-34 740.3 421 8.20 16.12.2011 14.9.2011 93
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Tab. B.1: (continued)

Specimen Length Breaking Deformation Date of Date of Age

number L force Fmax dL at Fmax experiment production

- [mm] [N] [mm] - - [day]

P05-33 739.8 410 7.73 16.12.2011 15.9.2011 92

P06-26 740.8 485 8.75 16.12.2011 20.9.2011 87

P06-30 738.8 493 9.22 16.12.2011 20.9.2011 87

P08-18 737.7 519 10.91 16.12.2011 22.9.2011 85

P08-19 737.2 547 8.85 16.12.2011 22.9.2011 85

P09-29 733.7 547 9.80 16.12.2011 23.9.2011 84

P09-30 734.0 570 8.93 16.12.2011 23.9.2011 84

P11-11 738.2 536 9.43 16.12.2011 29.9.2011 78

P13-14 736.8 573 10.86 16.12.2011 5.10.2011 72

P15-03 740.3 534 10.62 16.12.2011 21.10.2011 56

P17-13 739.7 557 10.33 16.12.2011 24.10.2011 53

P17-15 739.4 534 10.41 16.12.2011 24.10.2011 53
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Tab. B.2: Laboratory conditions: temperature and relative humidity with their

extreme values in a certain time period.

date time temp. hum. temp. rel. hum.

[°C] [%] max [°C] min [°C] max [°C] min [°C]

20.10.2011 20:08 22.6 42.4 22.7 21.7 46.6 38.6

21.10.2011 12:40 21.4 40.7 22.9 20.6 46.6 38.6

18:33 23.5 39.3 23.8 23.4 39.8 37.6

22.10.2011 12:20 21.4 38.0 23.7 20.6 40.2 38.0

27.10.2011 10:06 21.1 46.4 21.6 20.6 52.0 44.9

29.10.2011 11:30 20.9 43.8 21.3 20.4 47.0 42.8

17:03 22.4 42.4 22.4 20.4 44.8 41.7

31.10.2011 9:45 20.0 44.8 22.5 19.8 45.8 41.8

18:00 21.1 45.9 21.3 20.6 45.9 44.3

1.11.2011 10:00 20.9 42.8 21.3 20.3 45.9 42.8

15:50 21.8 44.9 21.9 20.9 44.9 42.8

18:50 22.6 44.0 22.6 21.8 45.0 43.9

2.11.2011 10:10 21.1 44.3 22.6 20.5 44.3 43.3

16:40 22.9 43.5 22.9 21.0 44.8 42.3

21:36 23.0 41.9 23.0 22.4 43.5 40.3

3.11.2011 14:20 21.8 42.3 23.1 21.2 42.3 39.6

21.11.2011 12:30 20.8 32.4 23.0 19.4 34.3 30.8

22.11.2011 15:00 21.3 30.8 21.3 20.4 33.0 30.8

23.11.2011 10:30 31.8 29.8 23.5 20.9 31.0 27.4

21:00 23.8 28.8 23.9 21.8 32.0 25.3

24.11.2011 14:30 22.3 22.3 23.9 21.8 29.8 28.7

15.12.2011 12:45 21.0 35.5 24.1 19.5 36.3 29.6

16.12.2011 11:30 21.9 33.1 23.2 20.8 35.3 32.5
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