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The aim of the master's thesis is a study of the behavior of multi-filament used for textile-
reinforced concrete. The strength and deformation characteristics of industrially manufactured 
glass yarns wi l l be experimentally measured within the scope of the thesis by tensile testing. 

Before performing the experiment with glass yarns, the student w i l l suggest and perform ne
cessary experiments to identify the deformation characteristics of the laboratory test machine 
and of the other components employed in the clamping of the sample and in the measurement 
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dure of elimination of spurious deformations wi l l be suggested. 

The technology of the specimen preparation and the procedure of experimental testing have to 
be mastered to avoid any fundamental errors. The realization of a high number of experiment 
series is encouraged to obtain statistically significant data. Results from the experiment w i l l 
be processed with the focus on the parameter identification for a numerical model of multi
filament bundle. 
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ABSTRACT 
The scope of the presented master thesis was the experimental study of multi
filament yarns made of AR-glass and used for textile-reinforced concrete. The be
havior under the tensile loading was investigated by laboratory tests. A high number 
of yarn specimens (over 300) of six different lengths (from 1 cm to 74 cm) was tested 
to obtain statistically significant data which were subsequently corrected and statis
tically processed. The numerical model of the multi-filament bundle was studied and 
applied for prediction of the yarn performance and for later results interpretation. 
The model of n parallel filaments describes the behavior of a bundle wi th varying 
parameters representing different sources of disorder of the response and provides 
the qualitative information about the influence of their randomization on the over
all bundle response. The aim of the carried experiment was to validate the model 
presumptions and to identify the model parameters to fit the real load-displacement 
curves. Unfortunately, due to unsuccessful correction of measured displacements 
devalued by additional non-linear contribution of the unstiff experiment device the 
load-displacement diagrams were not applicable to model parameters identification. 
The statistical evaluation was carried only for the maximal load values and the effect 
of the specimen size (length) on its strength was demonstrated. The size effect curve 
did not exclude the existence of spatial correlation of material mechanical properties 
modifying the classical statistical Weibull theory. 

KEYWORDS 
filament, yarn, bundle model, size effect, Weibull theory, experiment, specimen, 
textile-reinforced concrete, AR-glass, probability 

ABSTRAKT 
Cílem předložené práce bylo exper imentá ln í studium mnohovlákni tých svazů z al
kalicky odolného skla, k teré se používají k výrobě text i lně vyztuženého betonu. 
V rámci l abora to rn ího testu byla zjišťována odezva na tahové zatížení. K získání 
statisticky významného souboru dat byl proveden vysoký počet zkoušek (přes 300) 
na vzorcích šesti různých délek (od 1 do 74 cm). K predikci a k pozdější inter
pretaci výsledků zkoušek byl prezentován numerický model svazku mnoha sériově 
zapojených vláken se znáhodněnými parametry, k teré zastupuj í různé vl ivy způsobu
jící odlišnost odezvy od ideálního svazku. Cílem experimentu bylo ověřit předpok
lady modelu a p ř ípadně identifikovat jeho parametry tak, aby odpovídal skutečně 
n a m ě ř e n ý m zatěžovacím kř ivkám. Díky neúspěšnému pokusu o opravu naměřených 
křivek, jejichž deformace byly ovlivněny př íspěvkem ne tuhých části zatěžovacího 
stroje, nebyla identifikace p a r a m e t r ů modelu možná . K stat is t ickému zpracování ex
perimentu byla použ i t a pouze data naměřených sil ( tahových pevnost í ) , na k terých 
byl demons t rován vl iv délky vzorku na jeho pevnost. 

KLÍČOVÁ SLOVA 
vlákno, svazek vláken, model svazku, vl iv velikosti, Weibullova teorie, pokus, vzorek, 
text i lně vyztužený beton, alkalicky odolné sklo, p ravděpodobnos t 
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I N T R O D U C T I O N 

Textile-reinforced concrete is a developing composite material with a high potential 

of application in civi l engineering structures and also in other industrial branches. 

The material combines a cementitious matrix providing the compressive strength 

and a tensional reinforcement made by multi-axial fabrics. It has many advantages 

compared to usual steel-reinforced concrete. The structure reinforced by textile gets 

thinner, consequently the amount of used concrete is reduced and the structure 

becomes lighter. The material enables wide shape variability which gives more 

freedom in the design to engineers and architects. 

The textile-reinforced concrete is nowadays applied for fagade members, in wastew

ater treatment systems, water protection wall systems, as integrated formwork el

ements, for strengthening and rehabilitation of older structures and also the first 

textile-reinforced pedestrian bridge wi th span 8.60 m has been built in Germany in 

2006 over the Döllnitz river. 

The fibers used for the textile reinforcement has to meet several criteria: high 

fibre tenancy, breaking elongation and modulus of elasticity much higher than the 

modulus of the concrete matrix, so that the stiffness of building component is not 

drastically reduced by occurring cracks. The fibers must withstand the chemical 

action of alkaline medium without loosing its mechanical properties. The most 

common material of fibers is alkali resistant glass (AR-glass) but carbon, aramid and 

other (less-suitable) polymers like polypropylene, polyvinyl alcohol, polyethylene 

and polyacrylnitrile can be used as well. 

F ig . 1: Examples of application of textile-reinforced concrete [22]. 
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Filaments are combined to yarns. One yarn composes of several hundreds up to 

thousands of single filaments. The fineness of the yarn is defined by the unit "tex" 

(gram per 1000 meters) and depends on the average filament diameter, the fibre 

material density and the number of filaments. Yarns are subsequently combined 

into textiles; according to different fabrication process the produced textiles can be. 

e. g., plane and circular scrims, bi- or multi-axial warp knits or three-dimensional 

spacer wrap knits. 

F ig . 2: Reinforcing textiles: bi-axial scrim and wrap knit, 3D spacer wrap knit and 

textile in the matrix [22]. 

The matrix of the composite is usually made by fine grained concrete wi th limited 

maximum grain size (< 2 mm). The load-bearing behavior of the composite cannot 

be derived from the qualities of used components, however, the bond between the 

filaments and matrix has to be taken into account. The better is the anchorage 

between them, the higher interaction of components is. From this point of view 

a good cohesion a the good infiltration of matrix within the yarn cross-section is 

essential. Only the surface of the filaments exposed to the mortar can transmit the 

load from mortar to the yarn. For the sake of extending the surface, the shape of 

the yarns is not circular but flat. 

Historically, the textile-reinforced concrete developed from fiber-reinforced con

crete wi th short filaments of random orientation by aligning the filaments in the 

direction of the tensile stresses similarly to classical steel reinforcement, which led 

to better effectiveness of the reinforcement, increased load-bearing capacity and the 

cost reduction. The main advantages of the material are high ductili ty and strain 

hardening. The yarn reinforcement ensures the bridging of cracks occurred in the 

steel reinforced 
concrete 

fiber-reinforced 
concrete 

textile-reinforced 
concrete 

/ \ / \ 

\ / \ ) \ / 

concrete 

steel rods 
glass fibers 

1 / (short) 

textile 

Fig . 3: Different types of concrete reinforcement. 
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concrete under tension/bending [16]. The increased energy dissipated by multiple 

cracking of the material provides better safety of the structure. 

The material is a subject of intensive research in many institutions [19]. The 

load-bearing performance and the deformation behavior have been investigated for 

decades so that the material can be introduced to the actual production in the future 

and safe structural design and serviceability can be ensured by proper standards. 

The scope of presented master thesis is the experimental study of multi-filament 

yarns made of AR-glass and used for textile-reinforced concrete. The behavior under 

the tensile loading was investigated by laboratory tests. A high number of specimens 

(over 300) of six different lengths was tested to obtain statistically significant data 

which were subsequently corrected and statistically processed. The need of data 

correction was caused by additional spurious measured deformation of the laboratory 

loading machine and its components. The deformation behavior of the loading test 

setup had to be mapped to find the calibration curve serving for the subtraction of 

these parazite deformations. The numerical model of the multi-filament bundle was 

introduced for prediction of the yarn performance and for later results interpretation. 

The thesis is divided into four chapters. The theoretical background together 

wi th the numerical model of a bundle is described in Chapter 1. The chapter defines 

the computational model of a bundle of n parallel filaments with variable parameters 

representing possible sources of disorder and inquires into the influence of their 

randomization on the overall response. These parameters vary from filament to 

filament within the bundle cross-section (the filament length, diameter, activation 

strain) and also over the length of each filament (strength, E modulus) for filament's 

"material points". The second half of the chapter copes also wi th the dependency of 

the bundle strength on the number of filaments and their length and the theory of 

statistical size effect is presented. Numerical simulations are applied for each variable 

parameter and their mutual interaction and the analytical response of continuous 

model wi th infinite number of filaments is presented in parallel. 

The following chapters are dedicated to the experiment. Chapter 2 describes the 

process of the laboratory testing from the design of sample series and their produc

t ion through the machine setup to the overview of obtained load paths. Experiment 

results and their accuracy are discussed in Chapter 3. The data set was edited and 

the outlying results were discarded. Measured deformations distorted by parazite 

contributions of unstiff loading machine parts were inspected. The estimation of 

the correction curve and subsequently the yarn deformation adjustment was per

formed. The last Chapter 4 copes wi th the edited test data and their interpretation 

in the sense of their possible application for the identification of the numerical model 

21 



parameters. 

The final summary of the carried experiment is in the Conclusion. In the A p 

pendix part of the thesis an additional image documentation of the experiment and 

a complete table of detailed experiment results are presented. 
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1 B E H A V I O R OF M U L T I - F I L A M E N T Y A R N S 

1.1 Introduction 
The yarn structure is a system made by many parallel filaments wi th random prop

erties. These properties randomly vary over the length of the yarn as well as within 

each cross-section due to imperfections from the production process. To describe 

the complex behavior of the bundle, definition and study of each individual random 

property and its influence on overall performance is essential. Statistical approach 

is applied as the most convenient way to capture the yarn behavior under tension. 

Historically the fundamentals of statistical modeling of multi-filaments yarns was 

based on the knowledge of probability distributions of extreme values of independet 

and identically distributed quantities described by Fisher and Trippett (1928, [12]) 

and by Weibull (1939, [30]), who introduced the weakest-link model. The theory 

was firstly applied on the mechanical problem by Peirce (1926, [17]). This has been 

later developed into fiber bundle model ( F B M ) introduced by Daniels (1945, [9]) 

and Coleman (1958, [8]) that describes the bundle as a set of parallel fibers, each 

wi th strength given by Weibull probability distribution (Phoenix, Harlow, Smith). 

The further research developed other advanced models of the bundle, where another 

effects like localization, the effect of a bond between the matrix filaments, non

linear behavior, possible multiple cracking of the filament, load sharing rule, etc. 

are included. The interaction between patterns can be studied by Monte-Carlo 

simulations technique. 

The presented thesis studied the computational model presented in [7] and [27]. 

1.2 Computational model 

The bundle in this study is modeled as a set of parallel fibers wi th no interaction 

among them as the experiments showed neglectable friction between AR-glass fila

ments over lengths < 50 cm. Each filament is considered independently acting and 

the response of the whole bundle during displacement-controlled tensile loading can 

be evaluated in an analytical and numerical approach. 

1.2.1 Kinematic model 

The deformation-strain relation has to be defined to capture the filament's kinemat

ics. Especially the response of the very short bundles (corresponding to the length 

if the crack-bridge ~ 0.0001m) are strongly influenced by the length disorder like 

different length of filaments given by the distance of their clamping points, and other 
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types of disorder. These effects are expressed by different model parameters. Pa

rameters used for the bundle model can be divided into two groups: those describing 

the the separate filament and those describing the yarn (a set of filaments). 

• Parameters appointed to z-th filament can be used regardless of the composi

tion of the bundle. For alkali resistant (AR-glass), where linear brittle fracture 

behavior is considered, these parameters are Young's modulus of elasticity Ej, 

cross-section area A* and filament strength <7j. For cases where the filament 

parameters are randomized within the cross-section, no variability of these pa

rameters over the filament length is considered (parameters are set constant 

over the length). 

• Parameters appointed to the bundle describe the variability of filaments within 

the bundle. Each of the filament parameters is randomized and expressed by 

probability distribution function ( C D F ) - GE^E^), G U ( A ) , Ga(ai). Differences 

in filament lengths from the nominal length / of the bundle are captured by 

two extra parameters: parameter A for the different distance of fixing points 

of each filament and parameter 8 for the different global activation strain of 

each filament due to waviness of filaments in the bundle. The total length of 

i-th filament is then lit\,e - see F ig . 1.1 right. 

h,x,e = (1 + 0i)Zi,A = (1 + 0 i ) ( l + K)l (1.1) 

where Aj = — I)/I is the ratio between extra length of i-th. filament to 

the nominal length of the bundle in the ini t ial state of loading and Q{ = 

(k,x,e — h,\)/h,\ is the ratio of filament activation strain (strain of the bundle 

in state when the i - th filament starts to transmit force). This ratio is also 

called the filament slack. 

F ig . 1.1: Left: Filaments in the bundle and their elementary characteristics varying 

over the length. Right: Filament lengths. 
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Mentioned parameters are implied to the load-strain diagram equation of the 

i- th filament made of linear-elastic brittle material - Eq . 1.2. 

{ 0 for Si < 0. 

EiAiEi for ( ) < £ * < & , (1.2) 

0 for & < Si 

where £j is the strain, = <Ji/Ei is its critical value (breaking strain) and A is the 

cross-sectional area of the i - th filament. More convenient form of this relation can 

be obtained by using the Heaviside (unit step) function: H(x) = 1 for x > 0 and 

H(x) = 0 elsewhere, which zeros the filament stress out of the filament's possible 

strain interval. The equation 1.2 then becomes: 
g e i i(ei) = EiAiSiH^Hdi - £i) (1.3) 

In order to represent and model the response of the bundle with several parallel 

fibers of different length, it is convenient to transform the constitutive relation de

fined as a function of e (Eq. 1.3) into a common global strain e. The global strain is 

equal to the strain imposed on the yarn during the tensile displacement-controlled 

loading. The filament stress can be related to the global bundle strain e by following 

equivalency: control displacement of the bundle is equivalent to the filament dis

placement u(Ei) = u{e) — el. Then according to Eq . 1.1 the local strain in the i - th 

filament becomes: 

c _ u - 9ili,x _ e l - 0,(1 + Xj)l _ e- 0,(1 + AQ 

h,x,e h,x,e ( l + #i)(l + Aj) 

This form expresses the local strain for the actual filament length instead of the 

nominal length. It should be noted that the nominal length / is arbitrary and the 

relation between the local strain e and the global strain e is independent of the choice 

of /. The i - th filament force related to the control bundle strain e (the constitutive 

law) can be expressed by substituting Eq . 1.4 into Eq . 1.3: 

^ e ) = £ ^ ^ | ^ i f [ e - f t ( l + A 4 ) ] i f 
e - 9j (1 + \j) 

( l + 0 i ) ( l + Ai 
; i .s) 

Global activation strain and global breaking strain Xi of the i - th filament 

(Fig. 1.2 left) can be obtained from the arguments of Heaviside step functions: 

U ;(1 + A, 
: i + A i ) 

;i + 0,)(i + a, 

ti = ei(i + xi) 

0 ^ a;* = ^(1 + ^ + ^ ( 1 + 00(1 + ^ ) (1.6) 
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1.2.2 Load-strain diagram for numerical evaluation of finite 
n 

The mechanical model of the bundle wi th n filaments is now defined. The overall 

response in form of the load-strain diagram of the bundle during tensile loading can 

be obtained numerically simply by summing up the contributions of all filaments at 

each level of global strain. 

n 

T(e) = J2<leAe) (1-7) 
i=l 

Each filament is characterized by three significant points: the inception point, 

when the filament starts to transmit force, the point of maximum transmitted force 

and the point of rupture, when the transmitted force drops to zero. The last two 

cases occur at the same strain level, but differ in the transmitted force. Each of these 

points is expressed by two values (strain and the corresponding force), so for one 

filament there are only three couples of values completely describing its contribution 

to overall response. For the whole bundle these values can be separated into three 

vectors each holding n pairs [ej,Tj] of bundle strains and corresponding bundle 

forces: t, x^+^ and x* -). 

Fig . 1.2: Load-strain diagrams of one filament (left) and the whole yarn (right). 
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The resulting load-strain diagram is obtained by union of these three vectors into 

one vector 1Z = U { t , x * - ) } . Vector 1Z is sorted in an ascending way according 

to the yarn strain (first pair member); if two pairs shares the same strain, then the 

member wi th higher yarn force comes first (second member). Sorted vector 7Z con

tains points of load-strain diagram of the whole bundle, which is piece-wise linear 

(Fig. 1.2 right), as it was established by simple summation of filaments' contribu

tions. This is only possible if the superposition rule is assumed to be valid. 

The evaluation of the bundle tensile response in form of a load-strain diagram 

contained in 1Z is a low-demanding and, therefore, a suitable method for analysis 

wi th randomized parameters varying both within the bundle cross-section and along 

the filaments. Random filament parameters introduced in E q . 1.5, whose influence of 

variation on the overall bundle response was investigated, are gathered into vector 0j. 

Qe,i (e) = qe,i,e (e; Oi) wi th 0; = {Ai: Et, ai: 0 i s A,} (1.9) 

In the parametric study the bundle response is investigated for one or more differ

ent randomized parameters from the vector &i wi th defined probability distributions 

and the qualitative effect is visualized. 

1.2.3 Continuous asymptotic evaluation for infinite n 
In the practical applications the number of the bundle filaments is very high (several 

hundreds to thousands). For the high value of filaments n the bundle mean response 

M(e) can be solved analytically [18] as n-multiple of the mean filament response 

fx(e): Me (e) = n\ie (e): 

M e ) = / qe(e;e)dGe(6) (1.10) 
Je 

The individual parameters 9i(i — 1 , . . . , nv) of vector 6 are independent and, there

fore dGe (0) = d d (#i) x d G i (#i) x . . . x dGnv (&nv)i where Gi (9j) is the cumulative 

distribution function of the parameter 9i. Filament's behavior is governed by the 

constitutive law (Eq. 1.5). 

The introduced models were used for parametric studies of influence of each 

parameter and its scatter separately. Obtained results helped for qualitative under

standing and interpretation of measured data and for clarifying observed phenomena. 
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1.3 Parametric studies of properties within the 
bundle cross-section 

A parametric study is a suitable method how to clarify the influence of each pa

rameter, its variation and their interaction on the bundle response. The effect of 

variability in parameters A, 9 and A across the bundle separately and in mutual 

interaction was investigated in [7]; the effect of varying E, a over the length and 

number of filaments n in the bundle was studied in [27]. The filaments' material 

was AR-glass (Tab. 1.1) which corresponds to material used in experiments. 

Tab. 1.1: AR-glass filament material characteristics used in parametric study. 

tensile strength a = 1.25 G P a 

Young's modulus E = 70 G P a 

filament diameter D = 26 um 

breaking strain £ — ajE — 1.768 % 

While demonstrating the effect of randomness of one separate parameter, the 

other are considered constant (in their mean value - Tab. 1.1). For elementary illus

tration the bundle is represented by reduced number of filaments n < 100 (approx. 

100 times less then in real number) and the filament forces are expressed in "scaled" 

value [cN]. The filament response is calculated according to Eq . 1.3 and the ana

lytical mean solution (Eq. 1.10) is always plotted in diagrams for comparison. The 

probability density function for random parameter A and 9 are constant - F ig . 1.3. 

g*0) A 
1/15 1 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Gs(e)A 

Fig . 1.3: Probabil i ty functions for random parameter. 

1.3.1 Scatter of filament lengths 
In ideal state, al l the filaments in the bundle share the same length Zj = /. The 

reality shows that this assumption is not correct and the filament lengths are directly 
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influenced by the technology of yarn production as well as the specimen preparation. 

In the experiment presented in this thesis the ends of the specimen are fixed in 

epoxy resin which can cause two kinds of imperfections. Due to capillary effect 

the epoxide penetrates through the yarn in the longitudinal direction which causes 

uneven distance of the fixing points on both sides of the yarn ends or eventually 

the epoxide doesn't penetrate through the whole yarn cross-section so that the free 

length of filaments in the middle of the yarn is longer. This unevenness of lengths 

is expressed by the parameter A. 

In the following parametric study the nominal length of the bundle is equal to 

the minimum length of filaments in the bundle I = / m i n = m i m ^ . . . ^ (/«,A), A m i n = I — 

Imm = 0, the longest filament has length / m a x , A m a x = / m a x — / . The difference between 

the shortest and the longest filament was set A m a x = 2 mm, which approximately 

corresponds to 1 mm-unevenness on each side. The distribution of the additional 

length A j is linear (see the inset of F ig . 1.4) so that Aj is uniformly distributed 

among all the filaments such that Aj= i v . . ) n = A m a x (i — l)/(n — 1), where A m a x = 

A m a x / 7 . The load-strain diagrams were plotted for different nominal lengths (/ = 

0.5,1,4,10,40,100 mm) wi th constant parameters E, A and £ and zero slack 9 = 0. 

Yarn strain e [%] 

Fig . 1.4: Length scatter influence: load-strain diagrams for different A = A / / ratio. 

F i g . 1.4 shows both the numerical and the analytical solutions: the red curve 

T\ (e) is the numerical solution for n — 16 filaments in the bundle, the blue dotted 

line M\ (e) is the analytical solution according to E q . 1.11 for infinite number of 

29 



filaments. The yellow lines symbolize individual filament load-strain diagrams qi(e) 

with the filament strength Qi (e) and green line T 0 (e) is a special case of bundle 

response for A = 0 - the ideal state for n = 16. 

It is clearly recognizable that the unevenness of filament lengths leads to the 

reduction of bundle stiffness and consequently to the reduction of the bundle peak 

load because the maximum tensile strength is not reached in all filaments at the same 

global strain level. The higher is the A ratio, the lower is the maximal transmitted 

tensile force and the more ductile the behavior is. For the very short specimens 

(I equal to 1 and 0.5 mm) the bundle failure-strain e* grows, while for longer lengths 

stays equal to the breaking strain of the filament e* = £. 

The analytical solution in E q . 1.11 is obtained from Eq . 1.10, where A, E, 

a = const., 9 = 0 and A is uniformly distributed: A ~ R : g\ = 1 / A m a x i f (A) i f ( A m a x — 

The overall response of the bundle is then Me (e) = n\iQ (e). 

EAe 
^ A ( e ; A ) = [ qe(e;\)dGx(\) = - ^ / J-—TH [£ (1 + A) - e] dA 

JX A m a x J {1 + A) 

EAeXw (1 + A m a x ) / A m a x 0 < e < £ l in. 
(1.11) 

E A e [In (1 + A m a x ) - In ( e / £ ) ] / A m a x e > f nonlm. 

The stiffness of the bundle is reduced due to the scatter of filament lengths 

comparing to ideal bundle (A = 0) with r\ ratio: 

r A = l n ( l + A m a x ) / A m a x (1.12) 

The point e* and the corresponding peak load can be found by differentiation of 

Eq . 1.11 (as the stationary point). Depending on the value of A m a x this point can 

lie either on the linear (case I) or on the nonlinear branch of the curve (case II) -

see Eqs. 1.13. 

C A S E I when A m a x < [exp (1) - 1] w 1.718 

e* = £ 
Hi(e*) = EA£hi(l + A m a x ) / A m a x 

C A S E II when A m a x > [exp (1) - 1] w 1.718 

e* = £ ( l + A m a x ) / e x p ( l ) 

fii(e*) = £ A £ l n ( l / A m a x + l ) / e x p ( l ) 

B y substituting the nominal length relation into the previous equations an ex

plicit size effect equations can be expressed. We now investigate the case / = Z m i n , 

^max = 2 mm, wi th A m a x = A m a x / / . It is important to mention that with differ

ent selection of the nominal length a different form of size effect is obtained. For 

example, with alternative definition / = / m a x and A m i n = —2 m m there would be 

a linear equation for short bundles and nonlinear for long ones; in diagrams the 
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shorter yarns would appear stiffer that the long yarns. Despite this fact, the bundle 

strength does not change with different / definition. O n the other hand, the proper 

definition of I gets its importance when investigating the response of the bundle in a 

crack-bridge of textile-reinforced concrete, where the energetic considerations must 

be taken into account for the correct determination of the effective yarn length. 

A s a conclusion of this parametric study it can be stated that scatter of the 

filament lengths due to imperfections at epoxy clamping blocks cause reduction of 

bundle strength, which is more significant for shorter specimens. This effect acts in 

an opposite way compared to the statistical Weibul l size effect. Also introduced more 

ductile behavior of short yarns contrasts with the diagrams measured in experiments. 

1.3.2 Scatter of filament diameters 
Another parameter which is a random variable is the cross-section area of each 

individual filament. Due to technological process of AR-glass filaments production 

the final diameter ranges approximately from 23 to 29 um. For the parametric study 

the mean value D = 26 um wi th COV(-D) = 10 % was assumed (std = 2.6 um). The 

mean bundle response is again obtained from E q . 1.10 wi th E, £ — const., A = 9 = 0 

and filament diameter is defined by its cumulative distribution function (D). 

HA (e; D) = eEH (£ - e) j f D2dGD (D) (1.14) 
4 JD 

1000 -

0.5 8 

0.005 0.01 0.015 
Y a m strain e [%] 

0.02 

F i g . 1.5: Left: Influence of filament area (diameter) scatter on the load-strain dia

gram. Right: Filaments in epoxy resin. 

The bundle breaks at the filament breaking strain e* = £. The difference between 

the response of a bundle without any scatter of filaments areas and a real bundle 

can be obtained from the cumulative distribution function GD (D) as the TD ratio 

comparing their mean values: 

//(e) 
; i . i 5 ) 
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If the distribution GD (D) is assumed to be Gaussian, this ratio has the value of 

TD = (l + COV (D)2^j. When, for example, C O V = 10 % and the mean bundle 

stiffness is changed just by 1 % increment. 

This may lead to the conclusion that the overall bundle behavior and its mean 

response MD (e) is not significantly changed by scatter of filament diameters (es

pecially compared to M 0 (e)). Anyway, this introduces the scatter into the peak 

load. 

1.3.3 Scatter of filament activation strain (slack) 

During the production process filaments in the yarn are reeled together, which in

troduces repeating and easily visible wavy pattern. In this pattern, filaments follow 

different trails and when the experiment sample is prepared, some filaments in the 

bundle can stay loose while others are directly straight. During tensile loading 

these straight fibers start immediately transmitting the load, while originally loose 

fibers are still unloaded (delayed activation effect - slack). This phenomenon can 

be captured by 9 parameter which expresses an additional length of slack fibers. 

In the parametric study the nominal length is again set on the length of the 

shortest filament / = / m i n . The longest filament in the bundle has then the length 

U x = (1 + 9m3X)l. The ratio 9max = (/max — 1)11 is uniformly distributed among all 

the filaments (analogically to the distribution of A) over the range 0 < 6i < 9max. 

Parameters E, A and £ are considered constant and A = 0. The load-strain diagrams 

in F ig . 1.6 are plotted for three different 0-ratios: 9 = 2 £ , 1£ , 0 .5£ (£ is filament 

breaking strain). 

•2£ 
1000 -

% 800 

a 

KV J 
Ue) 
Ue) 

MB(e) 
> l r "=16 

TKi 
\ /Ufa, -

TKi - J "KV 
Q-Q-

y 
. \ 

^1 

u 
• o 

f0.02 0.04 ^0.02 0.04 
Yarn strain e [%] 

£ 0.02 0.04 0.06 

F i g . 1.6: Slack influence: load-strain diagrams for different 0 m a x / £ ratio. 

Individual filament curves qi are plotted by yellow lines, the overall numerical 

bundle response Tg for n — 16 (number of filaments in the bundle) is the sum of 

filament responses and is marked with red color. The green line TQ expresses the 
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ideal bundle diagram for # m a x = 0 and the analytical mean solution Me (e) = n-fxo (e) 

is evaluated with the help of Eqs. 1.16 and plotted by blue dot-line. 

EA 
A*o,i ( e J 

Vo?,! (ej 

9 7 14-
/max j x 

rd# — [(e + 1) In (1 4- e) - e] 
"max 

for e e ( 0 ; m i n ( £ , # m a x ) ) 

£ A ? e -

^max 7̂  1 4-
: d0 (e + r l n ( l + 0 -

1 + e 

A*0,2,n (ej 

, j "max 

EA r e -
^max 7 1 4 

for e e (min (f, # m a x ) ; max (f, 6>max)) A £ < 6>n 

-—d6 = -—[(e+ 1) In (1 + 0 m a x ) - 0 m a x ] 
1 + f Pmax 

for e G (min (£, # m a x ) ; max (£, 6>max)) A £ > 6>n 

( l + ^ m a x ) ( l + 0 -d^ l j l n 
1 + e 

for e e (max (^, 6>m a x); 6>max 4-^ (1 + 6>max)) 

(1.16) 

+ 1 + e 

In the rendered analytical solution there are three significantly recognizable 

branches: branch 1 (ixo,\ (e)) is ascending with gradual increase of stiffness as more 

filaments get activated; branch 2 is a linear function of yarn strain e, either linearly 

growing (//0,2,n (e)) wi th no newly activated or broken filaments (Fig. 1.6 left) or 

a function close to constant function (1x0,2,1 (e)) with both activating and breaking 

filaments (Fig. 1.6 right). Diagram in the middle of F ig . 1.6 misses this branch and 

after the full activation filaments immediately start breaking - branch 3 (iio,3 (e)) 

expressing the reduction of stiffness. 

The maximum load \XQ (e*) = 1x0,3 (e*) is reached in the branch 3 and the corre

sponding strain e* is the maximum from values (e 3 * ,£) , where e3* is the stationary 

point which can be obtained by differentiating the equation for fXo,3 (e). 

° ^ e ) = 0 -»> e3* = ( l + 0 ( l + # m a x ) / e x p ( T ^ - 1 (1.17) 

The size effect formula is obtained by substituting the point e3* into fXo,3 -4 (Xq 

(peak load) and by taking # m a x = A m a x / / wi th A m a x as a given constant. A s a length-

depended equation for the peak load [Xq* (I; A m a x ) is expressed. The resulting formu

las are complicated, but the trend of the size effect is following: according to used 

nominal length definition the curve has different asymptotes. The model used in 

this parametric study (/ = / m m ) leads to constant strength values for short lengths 
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and the strength of the long bundles grows linearly to infinity. Another model used 

in [18] where the nominal length is equal to the longest filament length (/ = / m a x ) 

linearly reaches zero strength value for extremely short yarns (/ —>• 0), the strength 

of extremely long bundles is l imited by the right asymptote at a constant value. 

It may be concluded that the effect of delayed activation caused by waviness of 

the filament yarns acts against the classical statistical size effect and must be con

sidered in evaluation of experiment data in order to interpret the length-dependent 

strength correctly. 

1.3.4 Interaction of filament's length scatter and delayed 
activation 

To combine the effect of different lengths of filaments due to clamping conditions 

with their delayed activation, both parameters A and 9 are considered varying over 

a certain range. The mean bundle response is obtained by double-integration of 

Eq . 1.10: 

Ve,x (e) = J J qe (e; 9, A) dGg (9) dGx (A) = (1.18) 

e - 0 ( l + A) " 
9 X 

e - 0 ( l + A) 

' ' : i + » ) ( ! + ^ H 

e x ;i + *)(i + a) 
H[e-9(l + \)}dGe (9) dG\ (A) 

Although these two parameters were discussed separately so far, they influence 

each other in fact. The distribution functions G\ (A) and Gg (9) interact due to 

chosen definition of strain (Eq. 1.4). It means that the effect of the same # m a x 

is different for various values of A m a x , the extra length due to slack is influenced 

by the extra length of filaments due to A parameter, which can be formulated as: 

A , = 91(1 + A). 

Development of stiffness during the tensile loading can be seen in F ig . 1.7, where 

curves for M 0 (e), M\ (e), Me (e) and M\te (e) are plotted for comparison. Addi t ional 

length ratios are uniformly distributed so that G\ (A) and GQ [9) are linear. The 

scatter of A reduces the stiffness with r\ factor (Eq. 1.12). After reducing the 

stiffness of Me (e) with this factor, it can be seen, that it does not correspond to 

the real stiffness of the MXje (e) curve, which would be overestimated. Especially for 

very short lengths corresponding to the crack-bridges, the evaluation of /XA,6» (e) gets 

important. 

The curves for sample of dimensions / = 30 mm, A m a x = 2/30 and # m a x = 0.009 

corresponding to laboratory experiments is in F ig . 1.7(left); a situation close to 

the crack-bridge is in the same F ig . (right): A m a x = 1.2 (the longest filament 
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F i g . 1.7: Load-strain with acting parameters A, 9 and their interactions. Left: length 

of experiment sample, right: length of crack-bridge. 

is 2.2 times longer than the shortest one) and # m a x = 1.2£ = 0.0214. For the 

laboratory testing the reduction of stiffness due to varying A can be neglected, 

while for the crack-bridge situation it is significant. Also the maximum transmitted 

load is reduced and the corresponding strain e* grew - it can be approximated as 

e* = (1 + A m a x / 2 ) • max (f, 9max). 

1.3.5 Relation between waviness and delayed activation strain 

There is a direct correspondence between filament delayed activation and its wavi

ness. We can observe several wave patterns on the bundle, that are caused either 

due to production technology or during the preparation of experimental samples. It 

is useful to describe particular kinds of waviness to classify its influence on the de

layed activation of filaments wi th respect to the changing nominal length. Basically 

there are two limit cases: (I) the differences of filament lengths Ag in the bundle 

grow linearly with growing nominal length / - this leads into length-independent 

delayed activation 6*m a x; and case (II) with growing nominal length I the length 

differences decrease # m a x —> 0. The study dealt wi th four basic types of bundle 

waviness (Fig. 1.8) and their length-dependence of the slack ratio. 

Wave patterns (a) and (b) are introduced during the yarn production, pattern 

(c) appears due to inaccuracy in the test sample preparation and type (d) arises 

during the reeling of yarn on the bobbins. 

The geometry of the filament is defined by the wave function w(x,a) wi th pa

rameter a G (0,1) defining the filament's position in the bundle. Total length of the 
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Fig . 1.8: Wave patterns with corresponding histograms of 9 for different lengths /. 

(histograms are adopted from [7]) 

2-th filament can be calculated as the integral: 

i 
k = J \/l + w(x,a)/2dx (1.19) 

o 

The filament activation strain is then 9{ = (h — I) /I (considering A=0). His

tograms of parameter 9{ wi th respect to nominal length / show the length-dependency 

for each of considered wave pattern. (Histogram horizontal bars are divided into 10 

segments each representing 10 % fraction of 9i for given nominal length.) No in

teractions between filaments is assumed so that the strain formulation in Eq . 1.4 is 

valid. 

The wave pattern (a) consists of periodic (sinusoidal) waves of equal amplitude 

shifted mutually in x-direction by </?j. The resulting 9 scatter oscillates around the 

common average value (approx. 1.1 %), the variation subsequently decreases with 

growing nominal length (limit case (II)). The second pattern (b) is formed by non-

shifted waves wi th the same length but different amplitudes. The distribution of 

amplitudes a* among filaments is uniform, majority of the filaments get activated at 

small e strains (in the beginning of loading) and wi th the growing nominal length 

the distribution of 9 stabilizes and becomes length-independent (limit case (I)). Case 

(c) is a single-wave pattern of length / created during samples preparation. F i l a 

ments in this pattern have different amplitudes but the distribution is not uniform 

- it contains higher fraction of filaments with larger amplitudes. The considered 

distribution leads to uniform activation density function, which gets reduced to al-
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most zero value with longer lengths / and the effect of delayed activation disappears 

(limit case (II)). The waves in case (d) are caused by coiling the yarn onto a bobbin. 

A l l the filaments share the same length which leads to uniform delayed activation 

density. This distribution does not change wi th growing / - it means it is length-

independent (limit case (I)). W i t h the increasing nominal length linearly grow the 

length-differences of filaments. 

The aim of this geometrical classification was to find and validate the proper 

delayed activation density for different sample-lengths and find the domination wave-

pattern (Fig. 1.9). 

F ig . 1.9: AR-glass yarn. 
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1.4 Random properties over the filament and bun
dle length 

The previous section was focused on the influence of randomization of parameters 

of individual parameters in the bundle on the total response. These parameters 

were: cross-section area, uneven length and delayed activation (slack) of individ

ual filaments due to their waviness. The stiffness and the strength of the bundle 

were evaluated, compared to the ideal bundle and their length-dependency was in

vestigated. Bo th of these two characteristics got reduced due to the variation of 

input parameters as well as both of them showed decreasing trend wi th diminishing 

length - it means in an opposite manner compared to the classical statistical size 

effect [30, 10, 3]. A l l the parameters were randomized within the cross-section and 

stayed constant for the whole length of the filament. It is useful to investigate the 

effect of spatial variation of the stiffness parameter E and the strength parameter 

a. 

In the following section, parameters (strength a and Young's modulus E) are 

randomized along the filament and their spatial distribution as well as the auto

correlation is considered. The strength distribution randomness was considered as 

a stationary random process and a method La t in Hypercube Sampling (LHS) , which 

is a type of Monte Carlo simulation method, was used. 

The reference parameters are in calculations considered either I) as random and 

follow Weibull ian P D F with given mean value, std and C O V or, II) as constant and 

are represented wi th their mean value. For ideal bundle wi th no variation of param

eters (constant values) is the response equal to T 0 (e) = M 0 (e) = nEAeH (£ — e) as 

a function of bundle strain e. Filaments diameter is taken as a constant D = 26 um, 

other values of used parameters and their statistical moments are in Tab. 1.2. These 

values were obtained from former laboratory tests on AR-glass multi-filaments bun

dles. 

Tab. 1.2: Mater ia l parameters used in numerical simulations. 

Tensile strength Young's modulus Breaking strain 

a E £ = aJE  

Mean value a = 1.25 G P a E = 70 G P a &E = 1.786 % 

Standard deviation stdCT = 0.3125 G P a stdE = 10.5 G P a s td c = 0.4464 % 

C O V 0.25 0.15 0.25 

Weibull distribution: 

Shape parameter ma = 4.5422 TUE = 7.9069 = 4.5422 

Scale parameter sa = 1.369 G P a UIE = 74.373 G P a = 1.9557 % 
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1.4.1 Random strength along individual filament 

Considering the cross-section of the bundle, the material properties are randomized 

over the filaments % G ( 1 , . . . ,n ) , while for length randomization the variability of 

strength and stiffness is simulated for material points of each filament Aij, j G 

( 1 , . . . ,p). It is necessary to account for the distance-dependent autocorrelation of 

two material points in the spatial randomization of properties (over the length of 

the filament). The filament strength is dictated by the minimal strength over the 

length (the weakest-link model). To find the strength minima, investigation of the 

lower tai l of the strength probability distribution is of big importance. 

There are two basic approaches of the spatial randomization of strength: 

• The filament is modeled as a chain of a finite number of segments (random vari

ables), each of which represents a part of the filament with a given length and 

have random strength from the same probability distribution. The strengths 

of segments are identically distributed and independent - IID (with no de

pendence). This model leads to Weibull integral for the failure probability P{ 

(Eq. 1.28). 

• The filament strength is randomized as one-dimensional random field (random 

process) with given autocorrelation distance. This approach takes into account 

a distance over which the fluctuation of a random parameter is correlated. This 

distance is a constant (autocorrelation length) and does not depend on the field 

(filament) length. 

Spatial strength randomization using I D D 

Classical Weibull theory of statistical size effect 

The definition of classical Weibul l integral for strength of structures described 

in [30, 3, 20] can be derived from illustrative example of in series coupled segments 

(chain model). Each segment of the chain is independent of others and its strength 

is a random variable wi th a given probability distribution function. If the C D F is 

identical for all segments of the chain, then we call segments as independent and 

identically distributed (IID). A l l the segments share the same loading a (due to 

a common force F). 

Fig . 1.10: Random strength of chain segments. 

The probability of failure of any segment is P\{c) is equal to the strength C D F . 

The probability of survival of one segment is the complement 1 — Pi(o~). The prob-
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ability of survival of the whole chain is 1 — Pf and is given by condition that all 

the segments must survive (the collapse of one segment means the collapse of the 

whole chain). For independent segments, the survival probability is the product of 

survival probabilities of individual segments linked in a series: 

1 - P f = (1 - P 0 ( 1 - P ) . . . ( l - P ) = (1 - Pif (1.20) 
v v ' 

N—times 

B y taking the logarithm of the equation, we obtain: 

l n ( l - P f ) = A H n ( l - P i ) (1.21) 

As the probability of chain failure Pf is a very low number in practical situations, 

the expression can be simplified by substitution l n ( l — P i ) pa — P i , which leads to 

approximation: 

Pi (a) = l-e-NPl(a) (1.22) 

(1-23) Pf (a) = 1 — exp 

where Pi(cr) is the probability distribution of failure of a representative volume 

VT for a given stress level a. Representative volume is a part of the total volume 

V of structure (chain) that is considered independent of other parts. The number 

of independent chain segments is then TV = V/VT. 

Now the function of concentration c(a) = P\(a)/Vr is introduced (representing 

the density (concentration) of the failure probability of structure. Weibul l defined 

an empirical relation for this function (in its simplified, two-parametric version) as: 

1 / a \ m 

with m as the shape parameter and do as the scale parameter of Weibul l distribution. 

The fraction in Malacuya brackets is the positive part of stress (tension) (•) = 

max (•, 0). After substituting the function of concentration into Eq . 1.23, we obtain: 

Pf (a) = 1 — exp 
V I a \ m 

~v\VJ . 
;i.25) 

The behavior of Weibull probability distribution is demonstrated for increasing 

number of chain segments in F ig . 1.11. The random strength of each segment is 

given by Weibull P D F and C D F as: 

P i ( a ; s , m ) = 1 - exp [-(a/s)m] (1.26) 

(m/s) [a Js)m_1 exp \—{ajs)m] a > 0; s, m > 0 

0 a < 0 
/ i (a; s, m) 
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Using E q . 1.20 we can express the C D F and P D F of Weibul l distribution for 

N number of elements: 

pN = l - [ l - F 1 {a; s,m)] 
dFN 

N [1.27) 

N da 
N • / i (a; s, m) [1 - F1 (a; s, m)] N-l 

Graphs of probability density (full line) and cumulative distribution function 

(dash line) are plotted in F ig . 1.11 for different N. The trend of decreasing mean 

value and the standard deviation with increasing number of elements can be ob

served. 
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Fig . 1.11: Weibull strength distribution P D F (full line) and C D F (dashed line). 

This reduction of strength can be even more clearly shown in the double log

arithmic plot of strength as a function of number of segments. For chosen level 

of failure probability Pf = 0.5 (median strength) the size effect curve is presented 

in F ig . 1.12. In logarithmic coordinates, the curve appears as a straight line with 

a slope given by the shape parameter (—1/m). 

Filament strength randomization 

The Weibul l integral for the filament strength using the weakest-link model to

gether wi th Weibull probability distribution expresses the failure probability Pf at 

the stress level a as: 

Pf (a) = 1 — exp 
a \ m d l 
SQ I IQ 

'1.28) 

For a given parameter m of the Weibull distribution (shape parameter) there is 
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Fig . 1.12: Weibull median strength a m e d vs. number of segments TV in double-

logarithmic scale. 

a length l0 and corresponding parameter s0 (scale parameter). A s noted in [27], the 

length IQ (or the representative volume VT) should be better caller "reference". This is 

because in the classical Weibull theory, the choice of IQ and the associated parameters 

m and SQ is arbitrary and can be recalculated from a strength distribution of any 

length. The Weibull theory represents a typical self-similar behavior that lacks any 

characteristics dimensions. That is why the dependence of the median strength 

is a power law. Since a (tensile strength) of the filament is positive and constant, 

Weibull integral can be rewritten as — In (1 — Pf) = I/IQ (a/so)m. The expression for 

strength wi th certain failure probability Pf as a function of the length is obtained: 

In the double-logarithmic scale of I vs. a is this size-effect relation represented 

as a straight line with slope —1/m passing the point [/o,so]-

To obtain the mean strength, the function from Eq . 1.29 must be integrated over 

the range of Pf: 

where T is the Gamma function. 

The variation coefficient ( C O V ) of the strength distribution has the direct corre

spondence with the shape parameter m wi th no dependency on the length and can 

be evaluated as: 

l / m 

(1.29) 

(1.30) 

C O V 
r (1 + 2/m) 

\ r 2 ( l + l / m ) 
- 1 (1.31) 
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The reference length l0 is an arbitrarily chosen length wi th no relation to the total 

length. To obtain the same size effect a (I) and the same failure probability P{ for 

differently chosen reference lengths (/i) the scale parameter s has to be recalculated: 

The simulation process of finding the filament strength is following: 

1. The filament is divided into p = I/IQ nonoverlapping segments, each of which 

has the reference length IQ wi th the random strength (jj governed by the same 

probabilistic distribution. 

2. The filament strength is equal to the minimum from strength of segments (the 

weakest-link model). 

3. The mean filament response is estimated by repeating steps 1) and 2) n S i m -

times (number of simulations) and calculating the average of strength minima. 

4. This process is performed for different filament lengths to see the size effect. 

B y changing the reference length, it is possible to run the simulation even for 

extremely short filaments (the scale parameter has to be adjusted according to 

E q . 1.32). The problem of the theory is that for reference length / i —>• 0 the scale 

parameter s\ —>• oo as well as the filament strength a —> oo - it means that the

oretically, very short filaments would have unlimited strength (see Eq . 1.32). This 

fact is in contradiction with reality and another model has to be used. It is obvious 

that spatial distribution of strength along the filament can not be modeled with 

infinitesimally small reference length and has to be taken into account. 

Spatial strength randomization using stationary random field 

The spatial distribution of strength can be modeled in a form of random field, where 

the autocorrelation is included. A n y used random field in following calculations is 

stationary homogeneous and ergodic wi th autocorrelation function: 

where lp is called correlation length and has a positive value. The shorter is the Ad 

distance, the stronger statistical correlation is applied. The function is called squared 

exponential or bell-shaped or Gaussian autocorrelation function, if the parameter 

r = 2. 
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More about advanced simulation techniques of random fields, their efficiency and 

accuracy can be found in [23, 25, 29, 28]. 

The process of numerical simulations is the same as in the case of IID randomiza

tion, however, the autocorrelation of strength is accounted for. A s mentioned above, 

the final strength of the bundle is obviously the global minimum value of random 

strength process. To find this value, very dense field of discretization points has to 

be generated, which makes this method very demanding on computational equip

ment. This problem has been overcome by investigating the asymptotic behavior 

[27, 26]. 

If the spatial material autocorrelation is taken into account, the mean size effect 

follow the full line in F ig . 1.13: for filament lengths / 3> lp the mean strength tends 

to the classical Weibull theory with no autocorrelation influence (right asymptote), 

while for very short fibers I <^ lp is the strength limited by the length-independent 

mean value (left asymptote). 

Number of segments N 

F i g . 1.13: Modified median Weibul l strength with autocorrelation. 

The transitional zone can be covered by a smooth function representing the 

transition between the left and right asymptotes intersecting in [lp,fj,0]. This ap

proached makes the simulation process unnecessary [2, 4]. For this approach the 

filament is discretized and randomized according to chain model with IID segments 

of IQ length. For filament lengths larger than I > l0 (which is considered as known 

value for given material) is the mean strength obtained from Eq . 1.30 - classical 

Weibull size effect. The strength of shorter filaments / < IQ has the value of fio equal 

to the mean strength value of filament of zero length. This value is also the mean 

strength value for lengths I — l0. The length l0 is a coordinate of intersection of 

mentioned asymptotes. In this approximation mean strengths of extremely short 

and long fibers are described with good accuracy, while the values for filaments of 

I ~ IQ are overestimated. 
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A better approximation of the transitional zone is found through modifying 

E q . 1.29, where the length-dependent function / ( / ) is introduced replacing ( /o / / ) 1 / / m 

member in: 

a (I) = s0[- ^ (1 - Pf)}1/mf (I) = s (/) [- In (1 - P f ) ] 1 / m (1.34) 

wi th s (I) = sof (I) implying that the length dependence of strength is associated 

wi th scale parameter s. If we rewrite the equation to express Pf we can see that 

the function / ( / ) effects only the scale parameter s, while the shape parameter 

m remains unaffected: C D F = Pf = 1 — exp [—a/(sof (0)]™- The value of coefficient 

of variation stays unchanged as well, as it depends only on the m parameter, not on 

length /. The mean size effect can be formulated analogically to Eq . 1.30 as: 

a (I) = s0T (1 + 1/m) f(l) = s (I) T (1 + 1/m) (1.35) 

Three zones of size effect are distinguished in F ig . 1.13 - the mean strength 

is simulated by: single random variable (l/lp —> 0), autocorrelated random process 

[l/lp ~ 1) and a set of IID random variables {l/lp —> oo). 

The used length-dependent function / ( / ) was found intuitively by asymptotic 

matching to interpolate between the two asymptotes within the transitional zone. 

Simulations performed in [27] showed that the numerically obtained mean of minima 

occurred in between two suggested equations: 

(\ I \ " 1 / m 

1/m 

L + l f(l) = f r v i ) (1-37) 

Some researches believe that another possible method how to mimic the effect 

of the spatial variability of strength is by averaging the stresses between neighbor

ing material points, which introduces the dependence between sampling points of 

IID strength randomization. This model is called non-local Weibull integral [5, 1]. 

However, in the case of filament tensile loading it is impossible to use this model, as 

the stress level is equal for al l material points of chain and no averaging of stress is 

meaningful. 

1.4.2 Random strength along filaments within the bundle 

Having investigated the single filament behavior, it can be proceeded to the evalu

ation of the total bundle response. Bo th of formerly mentioned models (simulation 
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of IID random variables and the random process method) were used to random

ize the set of n filaments in parallel arrangement. In the following definitions, the 

distribution of normalized bundle strength Q*n = sup [T (e)/n] is considered. 

Daniel's numerical recursion 

The classical model of a bundle was formulated by Daniels [9]. The bundle composes 

of a set of n independent parallel linear-brittle fibers equally sharing the tensile load

ing. A l l the filaments % G ( 1 , . . . , n) also share the identical strength function distri

bution Fx (x) = F(i) (x) = P(i) (X < x) and all the other parameters are considered 

constant. The maximum filament tensile strength Qu\ (a) = Xu\ = Aau\ (a) is ran

domized independently for each filament (a denotes the random nature of quantity). 

The set of of the bundle is ordered in an ascending manner (Q(i) < <3(i+i)) and 

the marginal distribution function of is obtained as fx (x) ( P D F ) and Fx (x) 

( C D F ) [14]: 

fii) x [Fx{x)y-1[l-Fx{x)}n-lfx{x) '1.38) 

A n d the bundle maximum tensile force (see F ig . 1.14): 

n — % + 1 
Q*n = max Qi 

Ki<n n 
[1.39) 

n-Q„ 
,2-Q 

—> e 

Fig . 1.14: Estimation of bundle maximum tensile force. 

The yarn load is expressed through the load per filament: Qn = T (e)/n. Since 

we are interested in the bundle strength, we look for the maximum force Q*n and its 

distribution function Gn. Assuming that the filament strength is independent and 

identically distributed random variable wi th the known distribution function Fx, 

the C D F distribution of the maximum tensile filament force is [9]: 

c n (X) = P ( Q : < X ) = 5 ; ( - i 

i=l 
[Fx{x)VG, II x 

n 
;i.4o) 

which is a recursive function where the lowest terms are defined ad Go (x) = 1 and 

G i (x) = Fx (x) ( C D F of a bundle with one filament is equal to C D F of filament 

strength). 
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The main disadvantage of this analytical solution is that Daniels' recursive for

mula is extremely computationally demanding and with the growing number of fila

ments occuring in practise exceeds common computational facilities. Then the only 

possibility how to map the bundle size effect are numerical stochastic simulations 

of Monte Carlo type. The results of both methods are perfectly matching as shown 

in [27]: the mean bundle strength drops wi th increasing number of filaments and 

the response in its shape is getting closer to the asymptotic load-strain curve (for 

n —> oo). The bundle strength distribution asymptotically changes from Weibul l to 

Gaussian for increasing number of filaments n. 

F i g . 1.15 shows the response of one bundle with three different numbers of fil

aments. The overall bundle response is given as simple summation of filament 

strength contributions q^ (superposition rule). The analytic curve = n • for 

n —>• oo and the response of the ideal filament qo (with strength equal to the mean 

value) are plotted for comparison. 

F i g . 1.15: Load-strain curve of a bundle with n filaments together with curves of 

filaments q0 and q^ and their mean curve (bundle). 

The numerical solution of the bundle response was run for n S i m = 100-times 

for four different n — 1,8, 31,160 of filaments. The obtained peak load values were 

statistically processed and the mean strength value wi th the corresponding std are 

marked in F ig . 1.16 wi th a red circle. The mean value decreases for increasing num

ber of filaments as well as the value of std and the response becomes less scattered 

and gets closer to the asymptotic curve //£. 

Asymptotic bundle response 

The fact that with n —> oo the strength distribution converges to the normal dis

tribution is used to verify the asymptotic behavior of stochastic simulations (as

suming filament strength as IID random variable). According to the central limit 

theorem for positive constants //* (mean value) and 7 * (standard deviation) is: 

(y/n(Qn — / x * ) / 7 * ) tends to a normal random variable wi th mean value equal to 0 

and standard deviation equal to 1 (standard normal distribution). The approxima

tion of the bundle strength for large n reads [9]: 
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Yarn strain e [%] 

Fig . 1.16: Load-strain curves of bundles with different number of filaments n as 

a result of Monte Carlo simulations ( n s m i = 100). Mean values of the bundle strength 

± std are depicted, as well as the asymptotic response M^(n —> oo). 

Gn (x) = P (Q*n < x) « $ ( ^ ^ V ^ ) (1-41) 

with $ symbolizing the normal cumulative distribution wi th the following parame

ters: 

mean value fx* — E [Q*] = e* [1 - F (e*)] 

variance (llf /n = D [Q*n] = (e*)2F (e*) [1 - F (e*)] 

The assumption is valid only under the following conditions: the value e* maxi

mizes the function \i (e) = e [1 — F (e)] and is unique and positive; linie^oo/x (e) = 0, 

then /x* = /x (e*) = sup [fx (e)]; e > 0 and the yarn stiffness is F A = 1. 

The problem of random filament limit strength a can be transformed into the 

problem of filament random breaking strain £ [18], as a — E^ (for constant stiffness 

E = const). The linear relation between these two quantities implies that: fx (e) = 

fxa (e) = fi£ (e), which is the normalized asymptotic mean bundle load-strain function 

(n —> oo): 

oo oo oo 

M e ) = Jq(e,Ofz(S)dZ = EAejH(S-e)fz(S)dt = EAe J fz(S)d£ = 
0 0 §=e 

= EAe[l-F((e)] (1.42) 

where the constitutive law is given by Eq . 1.3 and (e), F^ (e) is P D F , resp. C D F 

of filament breaking strain £. 

If the random strain is considered to follow Weibull distribution wi th parameters 

s (scale) and m (shape), then C D F of £ is: 

F((e;s,m) = 1 - exp [-(e/s)m] (1.43) 

fxa (e) = EAeexp [— (e/s) m ] 
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The strain corresponding to the peak load e* can be found by derivation of the stress 

function. B y substituting this value into stress equation, the maximum load //* is 

found, as well as the standard deviation 7 * . 

< ' / ' " ( e ; _ n > _ . „ - l / m -). e * = m " 1 / m s (1.44) 
de 

H*a = H (e*) = £ A m - 1 / m s • exp ( - m " 1 ) 

7 * = P A s m 1 / m y e x p ( - m " 1 ) [1 - exp ( - m " 1 ) ] 

Concerning the asymptotic behavior, the transition to normal distribution is 

valid for the central part of the distribution (close to the mean value). The left tai l 

has to keep the Weibull distribution, as the minimum strength cannot be less then 

zero. However, the importance of the left tai l can be neglected as the distance from 

the central part of the distribution measured in multiples of the standard deviation 

is large with large n. 

Size effect of a bundle with variable number of filaments 

A s observed in simulations in [27], the shape of mean size effect curve - M S E C (in 

double logarithmic scale of yarn strength vs. length) remains the same even for 

growing number of filaments n in the bundle. The curve is just shifted downwards 

(the mean strength of / —>• 0 bundle decreases), but the slope of right asymptote 

(given by parameter m), as well as the intersection point of asymptotes (with re-

coordinate equal to correlation length lp) is kept. The drop-trend of bundle strength 

efficiency (//*„///* 0 ) wi th growing number of n is significant mainly for n < 160; 

wi th higher number of filaments the mean strength ratio stabilizes on a certain value 

(Fig. 1.17 top left; figure adopted from [27]). 

The bundle strength as a function of its length is according to Eq . 1.34 associ

ated wi th the scale parameter of Weibull distribution (I) = s^f (/), subsequently 

F% (e; S£ (I), m^) (Eq. 1.43). To obtain the mean load-strain equation, the length-

dependent distribution of breaking strain is substituted into E q . 1.42: 

[/,£ (e, /) = EAeexp (1.45) 

The peak load / / | (e, I) is found analogically to previous section as load corresponding 

to the stationary point e*, as well as the mean size effect function for maximum load: 

^ ^ = 0 e*(l) = lf(l)m]-1/mss (1.46) 

^ (I) = k (e*, /) = E A m - 1 ^ exp ( - m " 1 ) / (/) = n*J (I) 
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The analytical solution or numerical simulations can be used to to evaluate both ef

fects separately (number of filaments and length), or they can be composed together 

and the combined size effect can be plot as a 3D surface (Fig. 1.17 right). For higher 

number of filaments (n —> oo) the change of ^-coordinate becomes constant and the 

surface can be expressed as a single curve - the mean strength is asymptotically 

independent of the number of parallel filaments. 

Yarn length i n number o f correlation lengths [-] 

Yarn length [m] 

Fig . 1.17: Left top: mean size effect curves for different number of filaments within 

the bundle, curves for n > 160 overlap. Left bottom: Values of C O V and effective 

Weibull shape modulus mcov- Right: Y a r n efficiency for varying length and number 

of filaments. Figure adopted from [27]. 

The value of C O V is independent of the yarn length (—> the inclination of size 

effect curve in double logarithmic scale) - even for the autocorrelated model, how

ever, the value changes for different number of filaments within the bundle. ( C O V 

of a bundle wi th certain n filaments is constant for variation of bundle length, but 

is different from the C O V of a bundle with different n.) This is caused by the 

reduction of std wi th growing n - the rate of reduction is l/\/n. From this, new 

C O V (new slope of the size effect curve) could be evaluated wi th value mcov > m 

(less steep slope of the size effect curve) - F ig . 1.17 left bottom. The influence of 

changing C O V with varying n is not covered by the model. 

1.4.3 Interaction of random stiffness and strength along the 
bundle 

Another random variable of the bundle model can be the Young's modulus of elas

ticity E, that is responsible for the filament stiffness. 
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Random P-modulus and strength along a single filament 

The fluctuation of E(x) modulus over the length of the filaments is modeled as 

autocorrelated random process. The effective modulus of i - th filament can be 

calculated from a set of p random values (each assigned to one material point of the 

filament) by static condensation of all Ej (for springs in series coupling): 

•AJ\N\N\r-ww^^ 

• VWWWWW\, • 

F ig . 1.18: Effective material stiffness Ei and filament strength over the length. 

For very short filaments (I <^ lp) the random process has almost constant value over 

the length and the E modulus is given by a single random variable wi th distribution 

function GE{E). O n the other hand for very long filaments (I 3> lp) the parameter 

scatter gets insignificant and the effective stiffness converges to the limit value E^ 

with low standard deviation. 

Filament strain 

F i g . 1.19: Stress-strain diagrams of constitutive law each time wi th one quantity 

constant. 

The point of break is given not only by elasticity modulus E, but all three quanti

ties of the constitutive law a = E • £ (Hook's law) interact. The randomization of 

the constitutive law can be visualized for three l imit ing cases - each for one variable 

kept constant - F ig . 1.19. The resulting stress-strain curves show the one-parameter 

randomization. This concept does not correspond to real situation, as any mate

rial parameter is not ever a constant value. The two-parameters' randomization 

is shown in F ig . 1.20 for different correlation coefficients between distributions of 

strength a and P-modulus. Uncorrelated, positively and negatively correlated cases 

are depicted. Unfortunately there is no significant evidence for any of these cases. 

Due to this fact the a — E relation is for further computations considered uncorre

lated. 
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between E and a 

Filament strain 

F i g . 1.20: Two-parameter randomization by E and a and their correlation. 

One-parameter randomization of the constitutive law along the bundle 

Numerical simulations of the influence of varying parameter E and a were run in 

order to map the bundle response. Random parameters were simulated by one-

dimensional autocorrelated random field according to Eq . 1.33 for three different 

autocorrelation lengths, resp. l/lp ratio. These varying parameters were applied to 

a bundle model with 16 filaments (illustrative example). 

To simulate the bundle behavior, 16-variate Gaussian random process was gener

ated (16 mutually uncorrelated random fields) in p material points of discretization 

for three autocorrelation lengths lp. Fifty realizations of one random process (rep

resenting n S i m simulations of one filament) are plotted in the first row of F ig . 1.21 

(figure adopted from [27]). Left scale shows the values of random strength, while 

the right one is for P-modulus. 

Short yarn / long corr. length 

b) l/lp= 10 c ) / / / p = 1 0 0 

L o n g yarn / short corr. length 

—i 1 ^ 
L I o. 

0 0.5 1 1.5 2 
Yarn strain e [% 

0.5 1 1.5 2 0 
Yarn strain e [%] 

0.5 1 1.5 2 2.5 
Yarn strain e [%] 

Fig . 1.21: Influence of different correlation length on the bundle response for differ

ent randomized parameters. Figure adopted from [27]. 
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The second row of Fig . 1.21 shows the bundle response for varying tensile strength 

a. The probability density function of the peak values together with the marked 

mean value and standard deviation are situated on the left y-axis of the graph. It 

can be observed that with increasing filament length I the tensile strength is reduced 

and the response become less scattered (reduction of std). 

The same effect of scatter reduction can be seen in the simulations of P-fluctu-

ation (the th i rd row of Fig . 1.21). The std gets reduced with increasing length, 

but oppositely to the random a simulations - the mean value increases for longer 

lengths (opposite size effect). The reason to this phenomenon is that the filaments 

do not reach their peak load at the same time, which is more significant for short 

specimens. 

The stiffness variation of the very short specimens l/lp —> 0 was studied on the 

model with condensed stiffness E^j = Eu\ - one random value for each filament. 

Numerical solution was again used for a bundle with 16 filaments, the random 

E follows the Weibull distribution function GE(E) with parameters specified in 

Tab. 1.2. Analy t ica l solution for infinite n —>• oo was obtained from E q . 1.10 for two 

different ) constant tensile strength of filaments a and b) constant breaking 

strain £. The equation is adjusted as: 

liE\ě (e) = AeJ EH (a/E - e) dGE (E) 
o 

oo 

(e) = AeH(l-e) j'EdGE(E) = ĚAeH (I- e 

:i.48) 

p 
I 200 

0 
0 

- a) T0(e), n - 16 
- a) 

TE\a (e), n - It 
MEW (e) 
filament qi(e) 

100 -

/ U y ^ - ^ «2 = 66.37 -
H t f ^ 50 -

i ~ T + - j i 

m 2 4 0 
Yarn strain e [%] 

F i g . 1.22: The bundle response for varying P-modulus with Weibull distribution. 

Left: case a) with constant a; case b) with constant £. Figure adopted from [27]. 

The case b) is equivalent to the response of the bundle with varying cross-

section area. The mean bundle response is equal to the response of a perfect bundle 

M 
E\Ž\ To(e) 
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Two-parameter randomization of the constitutive law along the bundle 

In the real bundle the randomness of F-modulus and the randomness of a (or £) 

act simultaneously. To describe this complex behavior we can simulate the response 

by numerical methods. Bo th random fields are uncorrelated (see F ig . 1.20 left) and 

filaments don't interact. The analytical solution for the very short and very long 

bundles (asymptotic behavior) can be obtained for n —>• oo. The solution for very 

short bundles, where the random field reduces into random variable wi th given C D F , 

can be integrated: 

Lia,E (e) = J J q (e, a, E) dGE (E) dGa (a) = Ae J J H - e) E DGE (E) dGa (a) 
0 0 0 0 

(1.49) 

For very long bundles the variation of E can be considered as homogenized 

parameter over the filament length, the breaking stress can be substituted by the 

breaking strain (see F ig . 1.19 left) and the mean response is given by E q . 1.42. If 

the £ distribution is given by Weibull equation, then: G% (£) = Fx (£; s^,m^), £ = 

cr/Foo, and then it can be written as (I^E (e) = AE^eexp [— (e/s^)™ 5 ] . 

1.5 Conclusion 
The computational model wi l l be compared with results obtained by physical ex

periment on multi-filament glass yarns of different lengths. B y knowing the force-

displacement diagrams from tensile tests of statistically significant set of samples, 

it could be possible to identify the model parameters and their distributions, their 

interaction and their influence on the bundle response wi th the increasing length, 

so that the numerical model could fit the real yarn behavior. 

Tab. 1.3: Influence of randomness in material parameters on the measured load-

displacement diagrams wi th increasing length. W i t h the increasing length the char

acteristics increases(+)/decreases(-)/stagnates(-). Adopted from [27]. 

Fixed distribution of: A le m,S£, f(l) 

A(J) evolution of ini t ial stiffness • 

B(J) mean peak load + • + + 
C(J) scatter of peak load • -

D(J) mean stiffness + • + 
E(J) scatter of stiffness - -

F(J) post-peak range - • -
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2 E X P E R I M E N T 

2.1 Introduction 
The main scope of this master thesis was to perform an experiment wi th a high 

number of tensile tests of glass-filament yarns. The task was to observe and sub

sequently to describe their behavior with special focus on the statistical size effect. 

To obtain statistically significant results, a high number of experiment realizations 

was performed. 

The shape of samples and the production technology was inspired by the exper

iments run previously at R W T H Aachen University ([6] and other) with regards to 

the equipment of and possibilities of experimental laboratory of the Department of 

Structural Mechanics, Faculty of C i v i l Engineering, Brno University of Technology. 

2.2 Experiment preparations 

The material selected for the tensile tests was the AR-glass yarn produced by 

Saint Gobain Vetrotex wi th brand name Cem-FIL Direktroving L T R 5325, 2400 tex 

(Fig. 2.1). The fineness of the yarn is represented by the "tex" unit describing the 

weight of the yarn in grams per kilometer. The basic characteristics of the yarn are 

in the Tab. 2.1: 

Specimen series design 

The experiment was focused on the observation of effect of the size (resp. length) 

on the yarn strength. Consequently, a wide range of yarn lengths was desired with 

emphasis on production of the longest possible specimen length, so that the behavior 

in this region can be mapped. Laboratory equipment enabled the maximum free 

length of the specimen 740 m m (the length of the jaws (holders), the anchoring 

blocks plus the expected elongation length has to be taken into account). The 

Tab. 2.1: Characteristics of tested AR-glass yarns. 

nominal fineness 

glass density 

total yarn area 

number of filaments 

filament area 

filament diameter 

7 = 2.678 g • cm 3 

A = tex/(1000 • 7 ) = 0.8962 m m 2 

n pa 1600 

Ax = A/n pa 560.12 p m 2 

tZi = (AA1/n)1/2 pa 26.7 pm 
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Fig . 2.1: The tested AR-glass yarn on a bobbin. 

shortest length of the specimen was due to technology reasons set 10 mm. Between 

these two values of maximum and minimum length, six length groups were suggested 

with equal distribution of their logarithms. A s the size effect curve is visualized in 

the double-logarithmic scale, the specimens length groups were chosen so that the 

obtained peak-loads would be captured using equidistant spacing - see F ig . 2.2. 

group nr. 1 2 3 4 5 6 

nominal length Lnora 1 cm 2.5 cm 6 cm 13 cm 31 cm 74 cm 

Fig . 2.2: Specimens' length groups. 

The minimum number of samples in each of the length groups was, wi th regards 

to statistical significance, taken as 30 pieces. 

The most problematic part of tensile testing was to deal with the anchoring of 

glass yarns into the machine. Basically, there are two ways how to create bundle 

supports: endings can be either directly coiled up on a cylinder or poured into 

anchoring blocks and clamped (Fig. 2.3). The former one is effortless but wi th the 

problem how to determine the real free length of the yarn, as the tension stress is 

gradually transmitted from the cylindrical support to the yarn. O n the contrary the 
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latter form of support has the free length relatively clear, but it is very laborious and 

time-consuming to create the specimens. (Direct clamping of yarns is not possible, 

as the yarn is made of fragile material that would crush at the support point due to 

lateral compression in clamps.) 

F i g . 2.3: Anchoring types: yarn coiled up (left) and poured in anchoring block 

(right). 

A s the testing machine is equipped with self-locking holders, yarn endings were 

poured into 75 m m long anchoring blocks made of epoxy. Special silicon forms had 

to be made for the purpose of pouring these epoxy blocks. 

Specimen manufacturing 

Production process of epoxy anchoring blocks was the most time-demanding part. 

Moreover, before epoxy pouring itself, a steel mould for production of silicon forms 

had to be set up. 

This steel mould consisted of 4 bounding members (2 steel bars 120x14x14 m m 3 

and 2 steel bars 70x14x14 m m 3 ) , 5 steel blocks (75x8x8 mm 3 ) substituting five future 

epoxy blocks, the chipboard base and 8 screws enabling the mould to be dismantled 

- see F ig . 2.4. To localize the future position of the yarn, short mini-rods were put 

into holes drilled through the shorter side steel members (trenching on to the silicone 

form in short length of about 1 mm). (The init ial intention why these mini-rods 

were introduced was the protection of the furrow cut in silicone form for placing the 

glass yarn. The round ending of the furrow would provide the protection against 

tear during the repeated shuck of the epoxy resins. This idea had to be rejected 

because the round hole caused the outflow of the epoxy from the form to the yarn. 

Due to this reason the rods were inserted to the mould in a short length from the 

outside.) Once the steel mould was manufactured, preparation of the silicone form 

could be performed - see F ig . 2.5. 

The used silicone was a two-component matter produced by A l p i n a company 

wi th commercial name Koraform 50 (Fig. 2.6 left). The components are mixed in 

a weight ratio 10:1 (comp. A (beige color) : comp. B (colorless)); to produce one 

form 80+8 g of silicone was used. Bo th components are very dense liquids and the 

mixing process had to be slow, so that no voids and bubbles were developed. The 

setting time was 24 hours. After that time the mini-rods were pulled out, steel mould 

L = ? 

L 
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F i g . 2.5: A steel mould for the production of silicone forms. 

was dismantled and the hardened silicone form was carefully taken out. Edges of 

the form were neaten by scissors and the furrows for placing the yarn were cut by 

knife. A finished silicone form is in F ig . 2.7. The total number of poured silicone 

forms was 21. Manufacturing of one silicone form takes about one hour. 

Finished silicone forms were placed in special holder-tracks that enabled keeping 

the required free length of the samples - F ig . 2.8. Five yarns of the same length were 

stretched between two silicone forms and the yarn ends were poured into epoxy -

F ig . 2.6 right - product of bacuplast Feserverbundtechnik G m b H wi th commercial 

name E P 210-2 (resin, colorless) and E P H 412-2 (hardener, orange). The weight 

mixing ratio of epoxy resin was 10:4 (comp. A (resin) : comp. B . (hardener)), to 

pour off anchoring blocks for 5 specimens, approx. 65 g(= 46.4 + 18.6) of epoxy was 
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Fig . 2.6: Silicone (left) and epoxide (right). 

F ig . 2.7: A silicone form. 

needed. The hardening time of resin was 24 hours. After one day specimens were 

shucked out, properly labeled and edges were ground down. 

The production of the experiment samples was extremely time-consuming and 

run over several weeks (Tab. 2.2). The most problematic part was to deal with the 

problem of epoxide rising into the yarn starting from the epoxide blocks. Without 

any treatment the epoxide rose even several centimeters along the yarn. When the 

form ends were greased, the length had just slightly reduced. The problem was 

finally solved by strong greasing of the yarn by vaseline: in the width of 5 m m at 

both yarn edges (the part which goes through the sides of the form) was the yarn 

perfectly greased through the whole cross-section. W i t h this treatment, the capillary 

effect was prevented and the length of penetration of epoxide into the free length of 

the yarn was reduced to zero. It should be noted, that this procedure necessitates 

a precise work, so that the desired free length is kept: the specimen is not either 

shorter due to the the capillarity of the epoxide, nor longer due to the opposite 

effect, when the vaseline rises through the yarn and the epoxide cannot penetrate 

through the whole cross-section of the anchoring block. 
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Fig . 2.8: Special tracks for specimen preparation. 

Tab. 2.2: Average time spent on sample testing. 

Time consumed on preparation of 1 specimen 

Test time of 1 specimen 

60 min 

10 min 

The total number of tested samples was 317 pieces. A n overview of the particular 

sample series (label Pxx) according to different days of production is presented in 

Tab. 2.3, where also the numbers of tested samples wi th different nominal lengths 

are displayed at the bottom. There are samples of more length groups in most of 

the series, so that the possible deviation of created samples could not affect just 

one length group. The final number of samples used for experiment evaluation was 

reduced because of significant imperfections caused during the production process 

(some samples were discarded from the statistics). A l l the specimens were stored 

together in the same conditions. 

2.3 Test setup 

Equipment 

Tensile tests were performed using the testing machine Z100 Zwick /Roe l l Gruppe 

equipped by two load cells measuring the force (20 k N and 2.5 kN) and mechanical 
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Tab. 2.3: Number of tested specimens. 

Series Date of 1 2.5 6 13 31 74 sum 

nr. production cm cm cm cm cm cm 

P01 11.8.2011 5 5 

P02 25.8.2011 5 5 5 5 20 

P03 13.9.2011 5 5 5 5 5 5 30 

P04 14.9.2011 4 5 5 10 5 5 34 

P05 15.9.2011 5 5 9 5 5 5 34 

P06 20.9.2011 5 5 5 5 4 5 29 

P07 21.9.2011 5 5 10 

P08 22.9.2011 5 4 5 5 19 

P09 23.9.2011 4 5 2 10 5 26 

P10 24.9.2011 5 5 5 15 

P l l 29.9.2011 5 4 5 14 

P12 30.9.2011 5 5 5 15 

P13 5.10.2011 5 5 5 15 

P14 20.10.2011 5 5 5 15 

P15 21.10.2011 5 5 

P16 22.10.2011 5 4 9 

P17 24.10.2011 5 4 5 14 

P18 25.10.2011 3 5 8 

Number of specimens 53 48 48 55 53 60 317 

tensile clamps (jaws) of combined type (self-locking with pre-stressing screws) -

F i g . A . 3 . The displacement was measured at the top edge of the upper jaw by 

deflection extensometer (Fig. 2.9). The test was controlled by the machine software. 

Testing schedule 

The testing of specimens was performed in nine days. To avoid some effects that 

could influence the results and degrade the experiment statistics, mixed sets of 

samples were tested in 9 different days. Samples of different length and different 

age (from different series) were present in each set. Also the local conditions in the 

laboratory (temperature and relative humidity) were recorded during the testing 

period and are a part of the testing protocol (contracted version in Tab. B.2). 

Testing methodology 

Before the tests were started, all the connections between the machine parts (parts 

connecting the machine cross-head and the sample) were tighten: steel piece was 
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neck connection 
+ tightening screw 

t. s. 
n. c.+1. s. 

cross-head 1 
load-cell 20 kN 

holder 3 

load-cell 2.5 kN 

n. c.+1. s. 

n. c.+1. s.r 

top jaw + 
epoxide block 

yarn w4, k4 

epoxide block 
holder 2 

holder 1 

A measv 
^ displa 

measured 
displacement 

Fig . 2.9: Left: Scheme of the loading device parts wi th a sketch of series coupling 

of deformable components. Right: The point of measured vertical displacement. 

inserted into jaws and loaded by tension force 2000 N . A l l the connection screws were 

tightened by hand and the steel piece was unloaded and removed. Such a procedure 

prestresses all the connections which eliminates the portion of spurious deformations. 

The test program was created for each length group of samples. Parameters of 

the program were set according to Tab. 2.4. Samples were loaded by displacement-

increments of the cross-head of the constant rate and the reaction force was measured 

by the load-cell. The test speed was chosen to correspond to 1.1 % elongation of the 

nominal length per minute. After the measured force dropped by 5 % of the current 

maximum, the test speed switched to a lower value, so that the unloading path was 

recorded and the failure was not catastrophical (this was important especially for 

short lengths). 

Tab. 2.4: Test programme setup. 

Length group nr. 1 2 3 4 5 6 

start position [mm] 10.5 25 60 130 310 740 

pre-load [N] 5 5 5 5 5 5 

test speed [mm/min] 0.11 0.28 0.66 1.43 3.41 8.14 

test speed after 5% reduction [mm/min] 0.05 0.15 0.40 1.20 2.00 8.14 

of FmSLX 

Each sample was investigated before the tensile test: the length of the sample 

was measured by slide caliper, each epoxy block was checked (the length of epoxide 

that penetrated into the free length was eventually measured and recorded) and 

other additional features were noted (unequal waviness, more filaments broken before 
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the test,...). The test was started by setting the force to zero. The sample was 

inserted into the jaws in the vertical position and transverse screws on the jaws 

were tighten by hand. The prescribed pre-load was applied (5 N) and the program 

called for clamping the extensometer. After that the sample started to be loaded 

wi th given test speed (which was reduced after the peak load) unti l the failure. The 

extensometer was undamped, the broken sample removed and the machine returned 

the cross-head into its ini t ial position. 

2.4 Measured results 

Data (displacement, force, time,...) were continuously recorded and saved during the 

test. Force-displacement curves obtained from experiment are plotted in F ig . 2.10. 

Different colors represent different length groups of samples. "Raw" curves plotted in 

the figure are obtained directly from experimental device without any modification. 

Examples of samples before and after the tensile test is in F ig . 2.12. Due to imperfect 

stiffness of the machine, the measured curves (displacements) have to be edited. The 

following chapter deals with the test curves adjustment. 

74 cm 

0 -2 -4 -6 -8 -10 -12 -14 -16 
Measured displacement [mm] 

Fig . 2.10: Unmodified force-displacement curves (all samples). 
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Measured displacement [mm] 

F i g . 2.11: Unmodified force-displacement curves of different length groups. 

F ig . 2.12: Specimens before and after the test. 

64 



3 R E S U L T S E D I T I N G 

3.1 Introduction 
Before it could be proceeded to evaluation of experimentally obtained results, some 

modifications of the data set had to be made. Firstly, the number of samples was 

reduced by elimination of samples either wi th strength value extremely differing from 

the average, or due to serious imperfections caused in the production. El iminat ion 

criteria of outliers are described in this chapter. Furthermore, also the displacements 

measured during the tensile loading embodied some harmful patterns. Identification 

of these patterns and adjustment of the obtained force-displacement curves is also 

discussed in this chapter. 

3.2 Elimination of outliers from the statistics 

To obtain a set of statistical data not influenced by any unintentional effects (such 

as the sample damage, epoxide penetration into the yarn, etc.), some extreme values 

and values corresponding to samples obviously unmatching with the others (in some 

feature) were set aside. The only objective information obtained from the test is the 

maximum force. Therefore, identification of outliers was only possible by exploiting 

this information. A direct usage of - F m a x can not be used because the data exhibit 

a significant dependence on the length L (Fig. 4.2). Therefore, the average effect of 

length must be filtered out from the data. It was conjectured that the C O V is not 

dependent on L. The following formula was used to calculated the relative error of 

each of the sample maximal load - F m a x , j : 

where \i is an average of - F m a x for a corresponding sample nominal length Lnom 

(length group). The values of the relative error were plotted in graphs (Fig. 3.1) 

vs. different criteria - sample age, date of testing, nominal length and sample series 

(samples produced in one day). It was decided that samples wi th absolute value of 

relative error exceeding 0.35 were marked as outliers and discarded from the data 

set used for further statistical processing. In addition, according to visual check of 

samples before testing, the whole series P01 and P02 were also discarded. 

This decision can be supported by graph (d), where the significant trend of 

growing average series strength is clearly visible. This trend was caused by the fact, 

that the sample production procedure was continuously improved as more experience 

rel.error 
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and skills were acquired. The first series contained a lot of imperfections because 

there was no prior practice wi th the sample production. 
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Fig . 3.1: Relative error of samples and outliers' elimination (marked with crosses). 

Rel . errors are plotted vs. various parameters. 

Tab. 3.1: Date of testing and its ordinal number (comment for F ig . 3.1(b)). 

0 12.8.2011 3 29.10.2011 6 22.11.2011 

1 12.10.2011 4 1.11.2011 7 23.11.2011 

2 19.10.2011 5 2.11.2011 8 16.12.2011 

From the other three plots it can be seen that there is no correlation between 

the relative error of strength and sample age (the time between the date of testing 

and the day of production of the sample) - graph (a), date of testing (b) or nominal 

length (c). The drop of values in graph (b) in the first two test dates (nr. 0 and 

1) was caused by testing of samples from the series P01 and P02. These imperfect 

samples were purposely used to learn and to verify the correct test software setup 

and testing procedure. In other testing days, groups of mixed samples (from different 

series) were used to reduce the potential impact of changing laboratory conditions 
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during the days. The ordering number (used as the x-axis in graph (b)) and their 

corresponding dates of testing are overviewed in Tab. 3.1. 

The number of filtered samples (outliers) was 38; the final number of samples 

accepted for the statistical processing was 279, their overview is in Tab. 3.2. 

Tab. 3.2: Number of specimens used for statistics (after elimination of 37 outliers). 

Series Date of 1 2.5 6 13 31 74 sum 

nr. production cm cm cm cm cm cm 

P03 13.9.2011 1 5 5 5 5 4 25 

P04 14.9.2011 3 5 5 8 5 5 31 

P05 15.9.2011 5 5 9 5 5 5 34 

P06 20.9.2011 4 5 5 5 4 5 28 

P07 21.9.2011 2 5 7 

P08 22.9.2011 5 4 5 5 19 

P09 23.9.2011 4 5 2 10 4 25 

P10 24.9.2011 5 5 5 15 

P l l 29.9.2011 5 4 5 14 

P12 30.9.2011 5 5 5 15 

P13 5.10.2011 5 5 5 15 

P14 20.10.2011 5 5 5 15 

P15 21.10.2011 5 5 

P16 22.10.2011 5 4 9 

P17 24.10.2011 5 4 5 14 

P18 25.10.2011 3 5 8 

Number of specimens 42 45 48 48 48 48 279 

3.3 Impact of jaws on the measured displacements 

While the force reaction induced by displacement loading can be measured with

out any errors, the objective measurement of sample deformation is much more 

challenging. The correct way to get this data, is to measure directly the sample 

elongation wi th any kind of extensometer. The problem is that common types of 

contact extensometers cannot be used for the yarn experiment, because it is impos

sible to connect the device to the sample. The measurement could be improved by 

installation of two displacement-meters on the inner edges of epoxide blocks, whose 

differences of measured values would correspond mostly to the yarn deformation (if 

the epoxide would not deform). However, the loading machine disposes of only one 
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I N C modul (incremental card) and there was only one extensometer available. In the 

presented experiment, the deflection extensometer was placed on the upper side of 

the top jaw (see F i g . 2.9 right), which caused inaccuracy of measured displacements. 

Furthermore, the unstiff behavior of jaws developed other additional displacement 

distortion. 

B y placing the extensometer on the mentioned position the read deformation 

does not belong only to the yarn elongation. It is a sum of deformations of all the 

device parts under the extensometer - see F ig . 2.9 left. These parts are: two steel 

holders connected wi th neck connection and tightened by screw (ki, fo) and the 

bottom and top jaws (/%, k^) holding the sample - a l l these components can be 

modeled as a set of in series coupled springs with unknown stiffness. The springs 

representing jaws contain also the tensile stiffness of the epoxy anchoring blocks and 

their deformation, as well as the events taking place on the contact between them). 

From the measured u (deformation) and k (stiffness) of the whole set, it is desirable 

to eliminate the contribution of machine equipment and get only the u y a x n and kyajXn. 

If the stiffness of the machine equipment causing the additional spurious defor

mation is found, it could be simply subtracted from the measured deformation and 

the resulting difference would belong directly to the yarn elongation. The stiffness of 

the machine (the calibration curve) was sought by different additional experiments. 

0 -0.5 -1 -1.5 -2 
Measured displacement [mm] 

Fig . 3.2: Force-displacement curves of steel bar; displacements measured on different 

spots. 

Firstly, the stiffness of the machine assembly was looked for by loading a very 

stiff material. If the sample deformation under the tensile loading can be considered 

as zero, the whole measured displacement can be attributed to the machine and its 

equipment. This was realized by using a flat steel bar as an experiment specimen. 

The steel was loaded up to - F m a x = 2500 N (keeping the load within the elastic region) 

and the extensometer was placed stepwisely on four different positions (levels) of 
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the assembly, so that the decrease of stiffness can be observed and assigned to 

appropriate part - see F ig . 3.2. 

The yellow curve representing the deformation of two bottom holders and the stiff 

part of the bot tom jaw (point 1) signalizes that these components can be considered 

as perfectly stiff. B y placing the extensometer on the wedge of the bottom jaw 

(point 2) the bi-linear behavior of the jaws appeared. In a certain moment the 

stiffness suddenly dropped and the loading continued wi th a new decreased (but 

again constant) value of stiffness (linear force-displacement curve). In the next step 

the deformation was recorded wi th an extensometer placed in the middle of the steel 

specimen (point 3) on a special small cantilever fixed to the steel bar. Apparently, 

a new effect was introduced in the beginning phase of the test. Comparing to the 

line 2, the ini t ial stiffness was lower and its value gradually grew unti l it reached 

a constant value of stiffness (corresponding to the decreased value in previous case) 

- curves (cyan and blue) continued as parallel lines. This effect of gradual stiffness 

growth can be assigned to some events taking place on the specimen-jaw contact. 

Even though there was a pre-load applied, jaws (the wedge) appeared to be slipping 

on the sample surface unti l it definitely transversely bit into the steel. The straight 

branch of the curve was disturbed by other event visible on all three realizations 

(blue lines) on almost the same displacement value. It can be most likely linked 

wi th some kind of slip either on the steel-jaw contact or inside the jaw construction. 

The last two violet curves were obtained by reading the deformation from the top 

of the upper jaw, where the default point of measurement was situated - point 

4. Compared to the blue curves the approximately half value of stiffness can be 

observed, which is an obvious fact, as both of the jaws were inspected. 

From this experiment, an evident unstiff behavior of used jaws was demon

strated. Anyway, in the case of loading the yarn with epoxy anchoring blocks, 

another parazite deformations can be expected. To investigate the additional de

formation of the epoxide a stiff wire and a string of free length about 2 m m were 

anchored into two resin blocks and loaded. Unfortunately the tests were not suc

cessful, because the cohesion between the steel and the epoxide was not efficient and 

the wire (string) started to slide out of the block. Subsequently, other approach was 

chosen - the calibration curves were sought by testing directly the AR-glass yarns. 

To keep the yarn deformation as small as possible, two yarns (instead of one) poured 

into one sample of very short free length (I pa 4 mm) were used. 

These double-yarns were loaded unti l the break and the deformation was read on 

the default spot. The corresponding force-displacement curves (blue and violet) are 

plotted in F ig . 3.3. Grey curves belong to the steel bar testing from F ig . 3.2, they are 

plotted here for the purpose of comparison of the stiffness. The bi-linear trend was 

again significant, but the transition between the original and the decreased stiffness 
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2500 r j aws before se rv i c ing (2 yarns) 
j aws after s e rv i c ing (2 yarns) 

j aws after s e rv i c ing (steel bar) 

-1.5 -2 -2.5 -3 

M e a s u r e d displacement [mm] 

Fig . 3.3: Force-displacement curves of double yarns. Experiments performed with 

jaws before and after servicing. Grey lines represent curves form F ig . 3.2 for com

parison. 

was not so strict, but appeared as a "wave" - at a certain force level there was 

a sudden growth in deformation (about 0.15 mm) and afterwards the curve continued 

with changed (lower) tangent. The origin of this event wi l l be now discussed. 

Measured displacement [mm] 

Fig . 3.4: Force-displacement curves of different length groups obtained directly from 

experiments. Significant "wave" event with subsequent decrease of stiffness can be 

observed. 

Dur ing the actual testing of the experimental single yarn samples of different 

nominal lengths this "wave" event was present in a l l the tests done before the jaws 

servicing. The examples of curves (each representing one nominal length group) can 

be seen in F ig . 3.4. 

The position of the wave had the direct conjunction with the force applied on 

the transverse screws pre-stressing the jaw wedge. Whi le most of the samples were 
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0 -0.2 -0.4 -0.6 -0.8 -1 -1.2 -1.4 -1.6 
Measured displacement [mm] 

F i g . 3.5: The clamp slack at different force levels (due to different pre-tension of 

transverse clamp screws). 

tested by one person and the wave appear on the force level varying between 200-

400 k N , when the transverse screws were tighten strongly, the wave shifted to the 

force with much higher value (600-700 kN) - see F ig . 3.5. In cases of both curves 

the length of the wave (the slipped displacement) is approximately equal. 

The harmful influence on the displacement measurement was caused by the inner 

construction of the used jaws. The problem was consulted wi th the Zwick /Roe l l 

representative for several times and the jaws were taken to be checked in the company 

domicile in U l m , Germany. Afterwards the test on double yarns was repeated - see 

the violet curves in F ig . 3.3. Unfortunately the problem with bi-linear behavior was 

not solved, only the wave temporarily disappeared (appeared again after several new 

tests). 

The bi-linear calibration curve appeared to be complicated to define, as the point 

of stiffness drop occurred in the varying positions. Furthermore, the ini t ial stiffness 

had a wide range of values - see the zoomed view in F ig . 3.3. Due to this reasons 

first branch of the diagram, as well as the wave event were cut off and the calibration 

curve was defined as a line representing only the second linear branch with a slope 

calculated as an average value from corresponding obtained curves from F ig . 3.2 

and 3.3 measured on the top side of upper jaw. Bo th types of samples (steel bar 

and double yarns) were used to find four different calibration curves: for both of 

the sample types the curve with a zero and a non-zero y-intercept member. Curves 

were plotted in F ig . 3.6. The orange and the violet curve correspond do the double-

yarn calibration samples, the blue and the green lines were defined from the slope 

of curves from steel bar test (with the extensometer placed on the point 4). 

The correction of the force-displacement curves was made by subtracting the 

calibration curve from the second branch of the curve - the init ial steeper part and 
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Fig . 3.6: Calibrat ion curves. 

the wave were cut off. The result of this type of diagrams correction can be seen in 

F ig . 3.7. From the plotted graphs (of three random samples with the nominal length 

1 cm, resp. 2.5 cm and two of length 6 cm) the fact that this displacement reduction 

is not correct is obvious. Evidently, the parazite deformations were not extracted 

from the measured data and the machine unstiff components cannot be substituted 

by one-spring linear model because they do not behave in a linear manner. Its 

behavior is close to the bi-linear wi th unknown parameters, however, in some cases, 

the searched force-displacement correction curve is even more complicated. Due to 

this fact, despite the previous experience with load-displacement curves correction 

[13, 24, 15] the effort to correct the yarn diagrams was not successful. 

3.4 Conclusion 

It had to be concluded that it is not possible to obtain any credible information 

about the yarn deformation with this type of experiment setup because there are 

too many additional deformations which were not identified and quantified. This 

fact was unfortunately not obvious before because the laboratory equipment is new 

and any similar experiments were not realized here before. The strength of the 

yarns with its value less then 1 k N belongs to the region where the jaws show non

linear force-displacement behavior. The company Zwick /Roe l l admitted that this 

behavior cannot be suppressed because it is given by the mechanical construction of 

jaws. They proposed the usage of other type of clamping system - the pneumatic 

jaws were lent to the laboratory of Department of Structural Mechanics. These jaws 

can be used in the future to find more information and edit the past experiment 

results. Other way how to get the correct yarn deformation is to use other type of 

extensometer - e.g., non-contact optical device. 
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F i g . 3.7: Examples of measured and modified force-displacement curves of different 

nominal lengths. 
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4 R E S U L T S I N T E R P R E T A T I O N 

4.1 Introduction 
Knowing the correct load-displacement diagrams of tested samples it could be pro

ceeded to put this information together with the numerical model from the Chap

ter 1. If we knew the yarn strain during the loading, the model could be fitted to the 

real sample performance and the significance of the included sources of randomness 

could be quantified. Based on the specimen loading paths the model parameters (£, 

A, 6) wi th their probability distributions could be estimated and the correspondence 

between the experiment and model results verified. 

physical 
parameters, 

reality 

f " 
model 

parameters 
9,...) 

F i g . 4.1: Correspondence between the physical experiment and the numerical model. 

A s mentioned in the previous chapter, the gathered information about specimen 

deformation under the tensile loading is unreliable and the attempts to extract 

these data from the measured displacements were unsuccessful. Due to this fact 

the potential model parameters identification had to be abandoned (Fig. 4.1) and 

the evaluation of the experiments reduced to the statistical processing of maximum 

sample strength with respect to its length (statistical size effect). 

4.2 Effect of the length on the yarn strength 

The most significant effect of the obtained data set was the strength reduction with 

the length extension. For each of the length groups, an average value of strength 

F m a x , its standard deviation and a coefficient of variation were calculated. Obtained 

values together wi th the average sample free length L and the number of samples 

used for the statistics n s a m are overviewed in Tab. 4.1. The effect of decreasing 

average and std of the strength with the increasing sample length can be observed. 

The value of C o V can be considered as stagnating in the range close to 15 %. The 

number of samples after the elimination of outliers exceeds required 30 pieces in 

each length group (279 in a total sum) and the obtained data can be considered as 

a statistically representative set with a high significance. 
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Tab. 4.1: F ina l experiment statistics: average, std and C o V of yarn strength. 

Length group L L max ^ s a m 

nr. avr [mm] avr [N] std [N] C O V [%] ["] 
1 9.2 824.8 126.3 15.32 42 

2 23.9 795.7 121.3 15.24 45 

3 5 S.8 737.9 122.9 16.66 48 

4 12 S.5 693.2 101.2 14.60 48 

5 30 S.4 625.4 81.0 12.94 48 

6 73 S.5 498.6 78.6 15.77 48 

The graph wi th the samples' peak loads in a double-logarithmic scale is in 

F ig . 4.2. The plotted points represent individual experiments, their color is as

signed to the production series. Samples with relative error of strength exceeding 

± 0 . 3 5 as well as the whole series P01 and P02 are marked wi th a cross (outliers), the 

border lines separating the outliers from the accepted values (rel. error = ±0 .35) 

are marked with dash line. The average of each length group strength (marked with 

a circle ± std) defines the size-effect curve. The red color represents the modified 

(reduced) data set while the light grey shows the trend of the original complete set 

of samples. The fact that these two curves do not notably differ from each other 

confirms the claim of statistically sufficient number of samples. 
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Fig . 4.2: Y a r n strengths vs. yarn lengths of tested sample groups and the size-effect 

curve as an a v e r a g e ± s t d of modified (red) and original (grey) data set. 

Now, the curve can be fitted with the modified Weibul l size-effect function with 
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the included autocorrelation length (Eq. 1.37). Two different curve-fits can be seen 

in F ig . 4.3. The parameters lp (autocorrelation length) defining the point of asymp

totes' intersection, the strength value c of the left asymptote and m (the shape 

parameter of Weibull ian distribution) governing the slope of the right asymptote in 

a double-logarithmic scale were chosen intuitively. 

i i i i i • • • i i i i i i • • • i i i i i i • • • i i i & i 

1 10 100 1000 

Nominal length [mm] 

Fig . 4.3: Estimation of size effect curve parameters. 

The green curve with parameters m = 5.0 and lp = 80 m m seems to correspond 

to the shape of the measured curve for lengths L < 150 m m but overestimates the 

strength of samples over 500 mm. O n the other hand, the yellow curve wi th m = 3.2 

and lp — 170 m m describes the last part of the obtained red curve for longer samples 

wi th a good accuracy, but slightly overestimates the strength of samples wi th the 

length L w lp. What more, the value of m = 3.2, which corresponds to CoV=34 % 

appeared to be unrealistic. (The common value of m G (4 — 6) is mentioned in 

the literature [27].) The C o V of the green fitted line is 23 %, which looks more 

reasonable. 

Anyway, the estimation of these size-effect parameters is just an assumption. 

The other explanation of the shape of the curve could be acquired wi th the help 

of the computational model parameters (Fig. 4.4). If there is no strength autocor

relation of the material, or the autocorrelation length is much lower, the strength 

dependency on the yarn length would be expressed by a line in a double-logarithmic 

scale (classical Weibull size-effect). The strength of shorter samples could be re

duced by the influence of uneven filament length or by the effect of scatter in the 
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filament activation strain (see Tab. 1.3). Furthermore, the other unpredictable ef

fects can also cause the strength reduction of shorter samples (e.g., damage caused 

during the production and manipulation with the sample). Unfortunately, because 

the true deformation diagrams of the yarn are not available, there is no information 

supporting any of mentioned trends. 

length 

Fig . 4.4: Explanation of the experimentally obtained curve shape without the effect 

of autocorrelation of strength. 

The assumption of the presence of other unpredicted influence can be supported 

by the fact that the C o V of the strength has a high value. According to the knowl

edge of the behavior of the bundle model wi th an infinite number of filaments n 

it could be expected that the value of C o V was much lower (proportional to the 

inverse of square root of n). If the value of the shape parameter for one filament 

is m = 5.0 ( C o V i = 23%) the value of C o V for a bundle with n = 2400 should be 

C o V 2 4 0 o = C o V i / v / 2 4 0 0 ~ 0.5% which contrasts wi th the experimentally measured 

value. 
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C O N C L U S I O N 

The master's study presents the results of extensive experimental work on multi

filament yarns. The yarn is composed of several hundreds to thousands filaments 

wi th diameter measured in tens of micrometers and made of alkali-resistant glass. 

The textiles knitted from these yarns are used as a reinforcement for the so-called 

textile reinforced concrete. The textile reinforced concrete is an innovative and de

veloping composite material with a high potential of application not only in civi l 

engineering structures. It combines the characteristics of a cementitious matrix pro

viding the compressive strength with tensile resistance of the textile reinforcement. 

These textiles had developed from the fiber-reinforced concrete (with a randomly 

oriented short fibers reinforcement) by aggregation and orientation of filaments in 

the direction of the tension, which led to better efficiency of the reinforcement. The 

main advantages of this material are the thickness (and subsequently the weight) 

reduction of the concrete members compared to the common steel-reinforcement 

system and the ductile response on load of the structure. 

The experiment was focused on the yarn response under the tensile loading. The 

yarns were anchored in an epoxy resin blocks and loaded by the testing machine 

in the experimental laboratory of the Department of Structural Mechanics, Brno 

University of Technology. More than 300 specimens of six different nominal lengths 

(from 1 cm to 74 cm) were tested to obtain data wi th a high statistical signifi

cance. The measured values of the samples' force-deformation dependency (load-

displacement curves) were examined and statistically processed. Firstly, samples 

marked as outliers were eliminated from the data set and the tendency of displace

ment correction has followed. The need of displacement adjustment was caused by 

the fact that measured values of deformation did not completely belong to the yarn 

sample, but also the loading machine and its unstiff components contributed to the 

measured displacement. This parazite deformations had to be subtracted from the 

measured values to obtain the true load-displacement curves of the samples. 

For the prediction and for the further evaluation of the carried experiment, the 

numerical model adopted from [7, 27] was presented. The yarn is modeled as a bun

dle composed of many filaments with a zero-friction among them and wi th random 

parameters representing different types of disorder sources. Some parameters are 

assigned to the certain filament within the bundle cross-section, the other vary over 

the single filament's length. The influence of the individual parameter randomiza

t ion and their mutual interaction was modeled and the qualitative bundle response 

was demonstrated. Furthermore, the effect of the bundle length as well as the effect 

of the number of filaments on the bundle strength was also described in terms of 

the classical statistical Weibull size-effect theory and its modification introducing 
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the spatial autocorrelation of the material characteristics. In parallel, the analytical 

behavior of the bundle wi th an infinite number of fibers is presented to be compared 

with results of the numerical simulations. 

B y knowing the true load-displacement diagrams from the experiment, the pa

rameters of the computational model and their distribution could be identified so 

that the model would fit the reality. Unfortunately, this intention was not fulfilled 

as the test-curves' adjustment was not successful due to the fact that the elimi

nation of the spurious deformation was too complicated to manage. The loading 

machine and its components (especially the used types of jaws) exhibited strongly 

non-linear behavior under the tensile loading. The stiffness of the loading device 

was investigated by a series of complementary tests. However, the linear calibration 

curves established on the basis of these tests were not correct and suitable for the 

results' adjustment. Consequently, the only objective information obtained from 

the experiment were the bundle strengths (maximal load value) and the statistical 

evaluation had to be reduced to processing of these data. 

The strength of each yarn was plotted versus its length in a double-logarithmic 

scale. The obtained size-effect curve was intuitively fitted by the equation of mod

ified Weibull size effect wi th the spatial strength autocorrelation. Al though those 

two curves matches each other with a good accuracy, it should be stated that the 

sample strength could be influenced also by other effects, e.g., effects of parameters 

discussed in the theoretical part of the thesis (model parameters as unequal length of 

the filaments or the individual activation strain of each filament in the bundle), with 

a friction among filaments of the longer lengths or wi th other unpredictable factors 

(as the local conditions changing in time or the human factor). Without knowing 

the correct load-deformation curves, these statements are only hypothetical. 

Anyway, the obtained experience should be exploited for a new future testing. 

W i t h a better test equipment (non-contact extensometer or two contact extensome-

ters, pneumatic jaws), a correct displacement measurement can be expected and 

a potential correction of already carried experiment could be possible. Furthermore, 

the investigation of interaction between the yarn and the concrete matrix can be 

tested, e.g., by the fragmentation tests [11, 21]. 

It is hardly possible to predict the result of en experiment without any previous 

experience. This type of material research requires the perfect knowledge of the test 

equipment and its setup, as the method itself and the used device strongly influence 

the final result. The information about material obtained from an experiment should 

be always treated within the context of used method and local conditions. The 

fact that the experiment result do not have to prove the real physical material 

characteristics should be kept in mind. Anyway, the experimental testing remains 

an important method in analyzing and explaining the nature of reality. 
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LIST O F S Y M B O L S , P H Y S I C A L C O N S T A N T S 
A N D A B B R E V I A T I O N S 

A cross-section area 

AR-glass alkali resistant glass 

C D F cumulative distribution function 

C O V coefficient of variation 

D filament diameter 

D[...] variance (dispersion) 

E Young's modulus of elasticity 

Gi(6i) cumulative distribution function of a random parameter 

-fmax maximal load 

H(•) Heaviside (unit step) function 

L length of sample 

Ln0m nominal length 

M S E C mean size effect curve 

Pf probability of failure 

P D F probability density function 

Q* maximum tensile force of n-filament yarn normalized by n 

7?-H autocorrelation function 

J"(-) yarn force at the breaking strain before and after filament rupture 

avr average 

e bundle/yarn strain 

f(l) length effect due to the spatially varying strength 

I nominal length of the test specimen 

lp autocorrelation length 
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m Weibul l modulus (shape parameter) 

n number of filament in the bundle 

n s a m number of samples 

n S i m number of simulations 

nr. number 

p number of material points used to discretize a filament in the bundle 

qe,i{e), q£,i(£i) global and local representation of the constitutive law 

s scale parameter of Weibull distribution 

std standard deviation 

M. set of material points if z-th filament 

1Z set of points representing the bundle load-strain diagram 

T Gamma function 

7o- standard deviation of strength distribution 

a random nature 

e filament strain 

0 filament activation strain - slack 

A ratio of extra filament length to the nominal length 

fj>e{e), /xo(e) mean load/strain function of the filament with and without 

imperfections 

£ filament breaking strain 

a stress, strength 
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E X P E R I M E N T D O C U M E N T A T I O N ( F I G U R E S ) 

Fig . A . l : A steel form with a silicone form. 
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A.2 : Freshly cast silicone form (left) and epoxide anchoring blocks (right). 
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B E X P E R I M E N T R E S U L T S I N D E T A I L 

Tab. B . l : Results of laboratory testing (ordering according to the length group and 

date of experiment) 

Specimen Length Breaking Deformation Date of Date of Age 

number L force F m a x d L at - F m a x experiment production 

- [mm] [N] [mm] - - [day] 

LENGTH GROUP nr. 1: I ~ 10 m m 

P13-01 9.0 884 1.42 12.10.2011 5.10.2011 7 

P05-04 11.5 752 1.56 19.10.2011 15.9.2011 34 

P05-05 10.0 587 1.18 19.10.2011 15.9.2011 34 

P08-02 9.5 821 1.46 19.10.2011 22.9.2011 27 

P08-04 9.0 702 1.16 19.10.2011 22.9.2011 27 

P09-01 9.0 793 1.46 19.10.2011 23.9.2011 26 

P09-02 8.5 867 1.55 19.10.2011 23.9.2011 26 

P03-02 9.0 453 0.58 29.10.2011 13.9.2011 46 

P06-01 9.5 612 0.90 29.10.2011 20.9.2011 39 

P l l - 0 4 8.4 891 1.35 29.10.2011 29.9.2011 30 

P14-02 9.0 977 1.51 29.10.2011 20.10.2011 9 

P03-01 9.4 542 0.73 1.11.2011 13.9.2011 49 

P04-04 10.2 600 0.95 1.11.2011 14.9.2011 48 

P l l - 0 3 8.0 882 1.38 1.11.2011 29.9.2011 33 

P03-04 9.0 518 0.62 2.11.2011 13.9.2011 50 

P04-03 9.0 702 0.97 2.11.2011 14.9.2011 49 

P06-02 9.0 699 1.32 2.11.2011 20.9.2011 43 

P06-03 10.0 697 0.94 2.11.2011 20.9.2011 43 

P09-03 8.4 888 0.71 2.11.2011 23.9.2011 40 

P13-04 8.5 825 0.67 2.11.2011 5.10.2011 28 

P14-01 9.2 945 1.52 2.11.2011 20.10.2011 13 

P I 7-02 9.0 978 1.28 2.11.2011 24.10.2011 9 

P I 7-03 9.0 1030 1.65 2.11.2011 24.10.2011 9 

P05-02 8.9 805 1.27 22.11.2011 15.9.2011 68 

P08-05 9.1 856 1.47 22.11.2011 22.9.2011 61 

P l l - 0 5 9.2 900 1.47 22.11.2011 29.9.2011 54 

P13-03 8.1 914 1.36 22.11.2011 5.10.2011 48 

P14-04 10.2 977 1.70 22.11.2011 20.10.2011 33 

P03-05 9.2 486 0.85 23.11.2011 13.9.2011 71 
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Tab. B . l : (continued) 

Specimen Length Breaking Deformation Date of Date of Age 

number L force F m a x dL at - F m a x experiment production 

- [mm] [N] [mm] - - [day] 

P04-02 9.2 666 1.35 23.11.2011 14.9.2011 70 

P05-03 8.2 797 1.67 23.11.2011 15.9.2011 69 

P06-04 10.0 777 1.63 23.11.2011 20.9.2011 64 

P08-03 8.0 789 1.58 23.11.2011 22.9.2011 62 

P09-05 9.3 975 1.88 23.11.2011 23.9.2011 61 

P l l - 0 2 8.7 761 1.45 23.11.2011 29.9.2011 55 

P13-05 8.9 972 1.90 23.11.2011 5.10.2011 49 

P14-05 10.5 909 1.72 24.11.2011 20.10.2011 35 

P I 7-04 10.1 931 1.75 24.11.2011 24.10.2011 31 

P03-03 8.4 520 0.59 16.12.2011 13.9.2011 94 

P05-01 9.0 705 1.16 16.12.2011 15.9.2011 92 

P08-01 8.6 667 1.00 16.12.2011 22.9.2011 85 

P l l - 0 1 8.9 765 1.25 16.12.2011 29.9.2011 78 

P13-02 8.8 933 1.35 16.12.2011 5.10.2011 72 

P14-03 9.0 1010 1.31 16.12.2011 20.10.2011 57 

P17-01 9.3 883 1.37 16.12.2011 24.10.2011 53 

P I 7-05 10.3 975 1.44 16.12.2011 24.10.2011 53 

LENGTH GROUP nr. 2: i ~ 25 m m 

P06-08 22.0 717 1.45 19.10.2011 20.9.2011 29 

P06-09 22.0 799 1.51 19.10.2011 20.9.2011 29 

P07-01 22.0 509 1.02 19.10.2011 21.9.2011 28 

P07-05 22.0 446 0.90 19.10.2011 21.9.2011 28 

P I 2-04 23.0 811 1.59 19.10.2011 30.9.2011 19 

P12-05 23.0 853 1.70 19.10.2011 30.9.2011 19 

P04-08 25.6 915 1.44 29.10.2011 14.9.2011 45 

P08-02 22.2 635 1.12 29.10.2011 22.9.2011 37 

P10-05 25.0 799 1.37 29.10.2011 24.9.2011 35 

P14-09 24.2 1030 1.55 29.10.2011 20.10.2011 9 

P03-06 26.3 636 1.25 1.11.2011 13.9.2011 49 

P05-06 24.2 767 1.47 1.11.2011 15.9.2011 47 

P I 0-04 24.0 930 1.62 1.11.2011 24.9.2011 38 

VII I 



Tab. B . l : (continued) 

Specimen Length Breaking Deformation Date of Date of Age 

number L force F m a x d L at - F m a x experiment production 

- [mm] [N] [mm] - - [day] 

P03-07 25.8 872 1.72 2.11.2011 13.9.2011 50 

P04-06 25.2 841 1.55 2.11.2011 14.9.2011 49 

P05-08 24.0 690 1.52 2.11.2011 15.9.2011 48 

P06-07 20.7 800 1.65 2.11.2011 20.9.2011 43 

P07-02 21.1 531 1.12 2.11.2011 21.9.2011 42 

P08-07 21.9 694 1.34 2.11.2011 22.9.2011 41 

P10-02 23.8 977 1.69 2.11.2011 24.9.2011 39 

P12-01 23.8 781 1.69 2.11.2011 30.9.2011 33 

P14-07 24.4 930 1.65 2.11.2011 20.10.2011 13 

P17-10 24.1 757 1.67 2.11.2011 24.10.2011 9 

P03-10 26.8 632 1.29 22.11.2011 13.9.2011 70 

P05-07 23.1 762 1.53 22.11.2011 15.9.2011 68 

P08-06 22.0 648 1.31 22.11.2011 22.9.2011 61 

P14-10 25.0 1040 2.05 22.11.2011 20.10.2011 33 

P17-07 23.2 828 1.50 22.11.2011 24.10.2011 29 

P03-09 26.0 799 1.83 23.11.2011 13.9.2011 71 

P04-09 24.7 776 1.67 23.11.2011 14.9.2011 70 

P05-09 23.6 703 1.57 23.11.2011 15.9.2011 69 

P06-06 21.7 670 1.74 23.11.2011 20.9.2011 64 

P07-04 21.9 505 1.21 23.11.2011 21.9.2011 63 

P08-09 21.6 654 1.46 23.11.2011 22.9.2011 62 

P10-01 24.6 914 2.14 23.11.2011 24.9.2011 60 

P12-02 22.6 821 1.92 23.11.2011 30.9.2011 54 

P14-06 25.5 911 2.05 23.11.2011 20.10.2011 34 

P17-06 24.0 942 2.14 23.11.2011 24.10.2011 30 

P03-08 26.9 826 1.38 16.12.2011 13.9.2011 94 

P04-07 24.5 927 1.53 16.12.2011 14.9.2011 93 

P05-10 23.8 752 1.32 16.12.2011 15.9.2011 92 

P06-10 22.9 689 1.21 16.12.2011 20.9.2011 87 

P07-03 22.2 526 0.88 16.12.2011 21.9.2011 86 

P10-03 25.0 859 1.46 16.12.2011 24.9.2011 83 

P12-03 24.3 890 1.49 16.12.2011 30.9.2011 77 

I X 



Tab. B . l : (continued) 

Specimen Length Breaking Deformation Date of Date of Age 

number L force F m a x Ö.L at -Fmax experiment production 

- [mm] [N] [mm] - - [day] 

P14-08 25.3 966 1.55 16.12.2011 20.10.2011 57 

P I 7-08 24.4 809 1.20 16.12.2011 24.10.2011 53 

P04-10 25.5 696 1.14 16.12.2011 14.9.2011 93 

LENGTH GROUP nr. 3: I ~ 60 m m 

P04-12 62.0 747 1.78 19.10.2011 14.9.2011 35 

P04-13 64.0 754 1.77 19.10.2011 14.9.2011 35 

P05-11 58.0 640 1.68 19.10.2011 15.9.2011 34 

P05-13 58.0 625 1.51 19.10.2011 15.9.2011 34 

P l l - 0 8 60.0 729 1.88 19.10.2011 29.9.2011 20 

P l l - 1 0 59.0 718 1.83 19.10.2011 29.9.2011 20 

P09-08 58.2 918 2.13 29.10.2011 23.9.2011 36 

P10-07 58.0 830 1.97 29.10.2011 24.9.2011 35 

P12-07 58.6 827 2.13 29.10.2011 30.9.2011 29 

P14-14 57.7 900 2.36 29.10.2011 20.10.2011 9 

P03-11 59.2 515 1.46 1.11.2011 13.9.2011 49 

P05-15 58.1 514 1.47 1.11.2011 15.9.2011 47 

P06-14 57.2 628 1.78 1.11.2011 20.9.2011 42 

P03-12 58.5 561 1.65 2.11.2011 13.9.2011 50 

P04-14 62.4 643 1.75 2.11.2011 13.9.2011 50 

P05-14 57.8 536 1.64 2.11.2011 15.9.2011 48 

P05-19 57.8 812 2.09 2.11.2011 15.9.2011 48 

P05-20 58.0 650 1.37 2.11.2011 15.9.2011 48 

P06-12 57.1 743 1.50 2.11.2011 20.9.2011 43 

P09-06 57.4 723 1.51 2.11.2011 23.9.2011 40 

P10-08 59.2 831 1.41 2.11.2011 24.9.2011 39 

P12-06 59.0 867 2.25 2.11.2011 30.9.2011 33 

P14-12 58.0 862 2.09 2.11.2011 20.10.2011 13 

P03-13 57.7 555 1.61 22.11.2011 13.9.2011 70 

P05-17 57.9 753 1.88 22.11.2011 15.9.2011 68 

P10-09 58.2 831 2.19 22.11.2011 24.9.2011 59 

P12-09 59.0 878 2.34 22.11.2011 30.9.2011 53 

X 



Tab. B . l : (continued) 

Specimen Length Breaking Deformation Date of Date of Age 

number L force F m a x d L at - F m a x experiment production 

- [mm] [N] [mm] - - [day] 

P14-15 58.3 913 2.27 22.11.2011 20.10.2011 33 

P03-15 58.8 484 1.32 23.11.2011 13.9.2011 71 

P04-15 63.2 591 1.86 23.11.2011 14.9.2011 70 

P05-18 59.0 670 2.09 23.11.2011 15.9.2011 69 

P06-11 57.0 760 2.30 23.11.2011 20.9.2011 64 

P09-09 57.3 834 2.34 23.11.2011 23.9.2011 61 

P09-10 58.0 785 2.50 23.11.2011 23.9.2011 61 

PlO-10 59.0 915 2.56 23.11.2011 24.9.2011 60 

P l l - 0 6 59.8 727 2.22 23.11.2011 29.9.2011 55 

P12-10 59.4 804 2.37 23.11.2011 30.9.2011 54 

P14-11 58.8 825 2.51 23.11.2011 20.10.2011 34 

P03-14 58.5 520 1.28 16.12.2011 13.9.2011 94 

P04-11 63.0 674 1.77 16.12.2011 14.9.2011 93 

P05-12 58.0 944 1.55 16.12.2011 15.9.2011 92 

P06-13 58.2 831 1.86 16.12.2011 20.9.2011 87 

P09-07 57.6 647 1.66 16.12.2011 23.9.2011 84 

P10-06 59.0 754 1.88 16.12.2011 24.9.2011 83 

P l l - 0 7 58.8 785 1.99 16.12.2011 29.9.2011 78 

P12-08 59.6 862 2.14 16.12.2011 30.9.2011 77 

P14-13 58.6 830 2.06 16.12.2011 20.10.2011 57 

P06-15 57.9 675 1.69 16.12.2011 20.9.2011 87 

LENGTH GROUP nr. 4: I ~ 130 m m 

P03-17 128.0 528 2.22 19.10.2011 13.9.2011 36 

P03-20 129.0 477 2.25 19.10.2011 13.9.2011 36 

P05-22 129.0 669 2.81 19.10.2011 15.9.2011 34 

P05-25 130.0 554 2.61 19.10.2011 15.9.2011 34 

P10-11 126.0 662 2.67 19.10.2011 24.9.2011 25 

P10-13 127.0 757 3.20 19.10.2011 24.9.2011 25 

P04-25 131.8 620 2.60 29.10.2011 14.9.2011 45 

P06-20 128.0 669 3.06 29.10.2011 20.9.2011 39 

P08-14 127.8 727 3.08 29.10.2011 22.9.2011 37 

X I 



Tab. B . l : (continued) 

Specimen Length Breaking Deformation Date of Date of Age 

number L force F m a x dL at - F m a x experiment production 

- [mm] [N] [mm] - - [day] 

P12-13 127.8 862 3.27 29.10.2011 30.9.2011 29 

P04-24 131.0 580 2.47 1.11.2011 14.9.2011 48 

P06-18 128.0 717 3.02 1.11.2011 20.9.2011 42 

P09-12 127.0 746 2.89 1.11.2011 23.9.2011 39 

P03-18 128.5 552 2.27 2.11.2011 13.9.2011 50 

P03-19 129.2 541 2.79 2.11.2011 13.9.2011 50 

P04-17 128.5 539 2.52 2.11.2011 14.9.2011 49 

P04-22 131.3 661 2.87 2.11.2011 14.9.2011 49 

P05-24 128.6 606 2.82 2.11.2011 15.9.2011 48 

P06-17 126.8 685 2.96 2.11.2011 20.9.2011 43 

P08-15 128.7 766 6.42 2.11.2011 22.9.2011 41 

P10-14 125.8 833 3.35 2.11.2011 24.9.2011 39 

P12-15 127.3 789 3.02 2.11.2011 30.9.2011 33 

P16-02 128.0 768 3.06 2.11.2011 22.10.2011 11 

P04-21 132.0 672 2.77 22.11.2011 14.9.2011 69 

P04-23 132.4 687 3.26 22.11.2011 14.9.2011 69 

P12-14 127.2 798 3.44 22.11.2011 30.9.2011 53 

P16-25 129.1 807 3.21 22.11.2011 22.10.2011 31 

P18-02 129.0 798 3.12 22.11.2011 25.10.2011 28 

P03-16 128.9 593 2.67 23.11.2011 13.9.2011 71 

P04-19 127.8 503 2.49 23.11.2011 14.9.2011 70 

P05-21 129.9 592 2.81 23.11.2011 15.9.2011 69 

P06-19 127.1 766 3.52 23.11.2011 20.9.2011 64 

P08-12 128.1 744 3.49 23.11.2011 22.9.2011 62 

P09-11 128.2 718 3.28 23.11.2011 23.9.2011 61 

P10-12 125.6 842 3.56 23.11.2011 24.9.2011 60 

P12-12 126.9 786 3.30 23.11.2011 30.9.2011 54 

P16-01 128.8 751 3.27 23.11.2011 22.10.2011 32 

P18-03 127.9 772 3.59 23.11.2011 25.10.2011 29 

P04-18 129.3 532 2.36 16.12.2011 14.9.2011 93 

P05-23 130.0 573 2.42 16.12.2011 15.9.2011 92 

P06-16 127.5 762 2.79 16.12.2011 20.9.2011 87 

X I I 



Tab. B . l : (continued) 

Specimen Length Breaking Deformation Date of Date of Age 

number L force F m a x d L at - F m a x experiment production 

- [mm] [N] [mm] - - [day] 

P08-11 128.7 746 3.07 16.12.2011 22.9.2011 85 

P08-13 129.2 790 3.08 16.12.2011 22.9.2011 85 

P10-15 126.4 770 3.09 16.12.2011 24.9.2011 83 

P12-11 128.0 713 2.94 16.12.2011 30.9.2011 77 

P16-03 129.0 753 2.94 16.12.2011 22.10.2011 55 

P16-04 127.8 824 3.08 16.12.2011 22.10.2011 55 

P18-01 128.0 673 2.62 16.12.2011 25.10.2011 52 

LENGTH GROUP nr. 5: I ~ 310 m m 

P06-23 308.0 622 2.17 19.10.2011 20.9.2011 29 

P06-25 308.0 624 5.21 19.10.2011 20.9.2011 29 

P07-09 307.0 683 5.18 19.10.2011 21.9.2011 28 

P07-10 307.5 645 5.53 19.10.2011 21.9.2011 28 

P09-17 306.5 696 5.75 19.10.2011 23.9.2011 26 

P09-20 307.0 729 5.46 19.10.2011 23.9.2011 26 

P03-24 308.0 608 4.98 29.10.2011 13.9.2011 46 

P04-30 312.0 490 4.18 29.10.2011 14.9.2011 45 

P05-30 309.0 452 4.42 29.10.2011 15.9.2011 44 

P13-09 307.4 719 5.48 29.10.2011 5.10.2011 24 

P05-28 310.0 469 4.07 1.11.2011 15.9.2011 47 

P09-18 306.4 687 5.60 1.11.2011 23.9.2011 39 

P13-10 308.0 684 5.37 1.11.2011 5.10.2011 27 

P03-23 308.7 468 4.50 2.11.2011 13.9.2011 50 

P04-27 311.3 616 4.88 2.11.2011 14.9.2011 49 

P05-29 309.8 421 3.40 2.11.2011 15.9.2011 48 

P06-22 306.0 650 5.89 2.11.2011 20.9.2011 43 

P07-08 308.1 693 6.01 2.11.2011 21.9.2011 42 

P09-24 306.0 607 5.11 2.11.2011 23.9.2011 40 

P09-25 306.8 598 5.10 2.11.2011 23.9.2011 40 

P13-08 308.9 706 6.15 2.11.2011 5.10.2011 28 

P16-09 308.7 729 5.77 2.11.2011 22.10.2011 11 

P18-08 310.0 733 5.68 2.11.2011 25.10.2011 8 

XI I I 



Tab. B . l : (continued) 

Specimen Length Breaking Deformation Date of Date of Age 

number L force F m a x dL at - F m a x experiment production 

- [mm] [N] [mm] - - [day] 

P03-21 307.8 554 5.06 22.11.2011 13.9.2011 70 

P04-29 311.0 615 5.28 22.11.2011 14.9.2011 69 

P09-19 305.9 646 5.06 22.11.2011 23.9.2011 60 

P16-10 309.4 642 5.12 22.11.2011 22.10.2011 31 

P18-04 310.1 685 5.82 22.11.2011 25.10.2011 28 

P03-22 307.6 534 4.51 23.11.2011 13.9.2011 71 

P04-28 311.4 600 5.18 23.11.2011 14.9.2011 70 

P05-26 309.4 517 4.47 23.11.2011 15.9.2011 69 

P06-21 306.6 605 5.70 23.11.2011 20.9.2011 64 

P07-07 307.4 648 5.38 23.11.2011 21.9.2011 63 

P09-21 306.5 630 5.61 23.11.2011 23.9.2011 61 

P09-23 307.0 628 5.85 23.11.2011 23.9.2011 61 

P13-06 308.3 702 5.82 23.11.2011 5.10.2011 49 

P16-06 309.7 679 5.70 23.11.2011 22.10.2011 32 

P18-06 310.2 656 5.32 23.11.2011 25.10.2011 29 

P03-25 307.7 526 4.46 16.12.2011 13.9.2011 94 

P04-26 311.8 635 5.22 16.12.2011 14.9.2011 93 

P05-27 308.9 485 3.83 16.12.2011 15.9.2011 92 

P07-06 308.9 619 5.10 16.12.2011 21.9.2011 86 

P09-16 307.2 596 5.15 16.12.2011 23.9.2011 84 

P09-22 306.6 628 5.38 16.12.2011 23.9.2011 84 

P13-07 307.5 704 5.46 16.12.2011 5.10.2011 72 

P16-08 310.2 709 5.91 16.12.2011 22.10.2011 55 

P18-05 309.0 723 5.82 16.12.2011 25.10.2011 52 

P18-07 308.7 726 5.82 16.12.2011 25.10.2011 52 

LENGTH GROUP nr. 6: I ~ 740 m m 

P03-29 740.0 358 6.47 19.10.2011 13.9.2011 36 

P05-31 738.0 411 8.30 19.10.2011 15.9.2011 34 

P05-32 739.0 352 7.68 19.10.2011 15.9.2011 34 

P l l - 1 4 737.0 572 10.97 19.10.2011 29.9.2011 20 

P l l - 1 5 737.0 565 11.23 19.10.2011 29.9.2011 20 

X I V 



Tab. B . l : (continued) 

Specimen Length Breaking Deformation Date of Date of Age 

number L force F m a x d L at - F m a x experiment production 

- [mm] [N] [mm] - - [day] 

P06-29 738.2 458 8.83 29.10.2011 20.9.2011 39 

P08-16 740.0 583 10.98 29.10.2011 22.9.2011 37 

P09-28 734.5 668 10.95 29.10.2011 23.9.2011 36 

P13-11 738.8 497 8.92 29.10.2011 5.10.2011 24 

P04-35 740.5 368 6.92 29.10.2011 14.9.2011 45 

P04-32 740.0 395 7.76 1.11.2011 14.9.2011 48 

P15-01 740.5 546 11.28 1.11.2011 21.10.2011 11 

P03-28 740.0 361 6.58 2.11.2011 13.9.2011 50 

P04-33 740.8 373 6.74 2.11.2011 14.9.2011 49 

P05-35 739.5 376 7.89 2.11.2011 15.9.2011 48 

P06-27 738.7 481 10.30 2.11.2011 20.9.2011 43 

P08-17 739.0 493 9.58 2.11.2011 22.9.2011 41 

P09-26 734.0 591 11.99 2.11.2011 23.9.2011 40 

P13-12 737.0 649 11.15 2.11.2011 5.10.2011 28 

P15-04 740.0 577 11.43 2.11.2011 21.10.2011 12 

P17-11 739.2 448 8.70 2.11.2011 24.10.2011 9 

P03-30 740.0 390 6.09 22.11.2011 13.9.2011 70 

P06-28 740.0 466 9.48 22.11.2011 20.9.2011 63 

P l l - 1 3 737.4 601 10.85 22.11.2011 29.9.2011 54 

P13-15 737.9 494 9.23 22.11.2011 5.10.2011 48 

P15-05 740.0 563 10.63 22.11.2011 21.10.2011 32 

P17-12 738.5 566 11.34 22.11.2011 24.10.2011 29 

P04-31 740.2 426 8.87 23.11.2011 14.9.2011 70 

P05-34 737.6 476 7.74 23.11.2011 15.9.2011 69 

P08-20 738.0 536 9.25 23.11.2011 22.9.2011 62 

P09-27 732.8 581 10.44 23.11.2011 23.9.2011 61 

P l l - 1 2 736.8 603 10.83 23.11.2011 29.9.2011 55 

P13-13 737.5 550 10.21 23.11.2011 5.10.2011 49 

P15-02 739.5 573 10.31 23.11.2011 21.10.2011 33 

P17-14 738.4 511 11.00 23.11.2011 24.10.2011 30 

P03-26 740.0 415 7.53 23.11.2011 13.9.2011 71 

P04-34 740.3 421 8.20 16.12.2011 14.9.2011 93 

X V 



Tab. B . l : (continued) 

Specimen Length Breaking Deformation Date of Date of Age 

number L force F m a x dL at - F m a x experiment production 

- [mm] [N] [mm] - - [day] 

P05-33 739.8 410 7.73 16. 12.2011 15.9.2011 92 

P06-26 740.8 485 8.75 16. 12.2011 20.9.2011 87 

P06-30 738.8 493 9.22 16. .12.2011 20.9.2011 87 

P08-18 737.7 519 10.91 16. .12.2011 22.9.2011 85 

P08-19 737.2 547 8.85 16. .12.2011 22.9.2011 85 

P09-29 733.7 547 9.80 16. .12.2011 23.9.2011 84 

P09-30 734.0 570 8.93 16. .12.2011 23.9.2011 84 

P l l - 1 1 738.2 536 9.43 16. .12.2011 29.9.2011 78 

P13-14 736.8 573 10.86 16. .12.2011 5.10.2011 72 

P15-03 740.3 534 10.62 16. .12.2011 21.10.2011 56 

P17-13 739.7 557 10.33 16. .12.2011 2410.2011 53 

P17-15 739.4 534 10.41 16. .12.2011 2410.2011 53 

X V I 



Tab. B.2: Laboratory conditions: temperature and relative humidity with their 

extreme values in a certain time period. 

date time temp. hum. temp. rel. hum. 
[°C] [%] max [°C] min [°C] max [°C] min [°C] 

20.10.2011 20:08 22.6 42.4 22.7 21.7 46.6 38.6 

21.10.2011 12:40 21.4 40.7 22.9 20.6 46.6 38.6 

18:33 23.5 39.3 23.8 23.4 39.8 37.6 

22.10.2011 12:20 21.4 38.0 23.7 20.6 40.2 38.0 

27.10.2011 10:06 21.1 46.4 21.6 20.6 52.0 44.9 

29.10.2011 11:30 20.9 43.8 21.3 20.4 47.0 42.8 

17:03 22.4 42.4 22.4 20.4 44.8 41.7 

31.10.2011 9:45 20.0 44.8 22.5 19.8 45.8 41.8 

18:00 21.1 45.9 21.3 20.6 45.9 44.3 

1.11.2011 10:00 20.9 42.8 21.3 20.3 45.9 42.8 

15:50 21.8 44.9 21.9 20.9 44.9 42.8 

18:50 22.6 44.0 22.6 21.8 45.0 43.9 

2.11.2011 10:10 21.1 44.3 22.6 20.5 44.3 43.3 

16:40 22.9 43.5 22.9 21.0 44.8 42.3 

21:36 23.0 41.9 23.0 22.4 43.5 40.3 

3.11.2011 14:20 21.8 42.3 23.1 21.2 42.3 39.6 

21.11.2011 12:30 20.8 32.4 23.0 19.4 34.3 30.8 

22.11.2011 15:00 21.3 30.8 21.3 20.4 33.0 30.8 

23.11.2011 10:30 31.8 29.8 23.5 20.9 31.0 27.4 

21:00 23.8 28.8 23.9 21.8 32.0 25.3 

24.11.2011 14:30 22.3 22.3 23.9 21.8 29.8 28.7 

15.12.2011 12:45 21.0 35.5 24.1 19.5 36.3 29.6 

16.12.2011 11:30 21.9 33.1 23.2 20.8 35.3 32.5 

X V I I 


