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Abstrakt

Dilezitou soucasti aplikaci prochazeni distribuovanou virtudlni scénou je proces planovani
prenosu dat. Jeho hlavnim tkolem je zajisténi efektivniho pfenosu dat a maximalni kvality
renderovaného obrazu. Nejvétsi vliv na kvalitu renderované scény maji omezeni sitového
ptripojeni. Tyto omezeni lze redukovat pomoci multi-resolution reprezentace dat scény,
urcovanim priorit stahovani jednotlivych ¢asti scény, a prednacitanim dat. Pokrocilé metody
pro urcovani priorit a pfednacitani ¢asti scény jsou zalozeny na predikci pohybu uzivatele
vychéazejici z matematického popisu jeho pohybu. Tyto metody jsou schopny predikovat
nasledujici pozici uzivatele jen v kratké vzéalenosti od jeho aktualni polohy. V ptipadé nah-
lych, ale pravidelnych zmén sméru pohybu uzivatele jsou tyto metody nedostateéné co do
presnosti i délky predikce. V této préaci je navrhnut komplexni pfistup k feSeni planovani
prenosu dat spliiujici i tyto pozadavky. Navrhované feseni vyuziva predikci pohybu uzi-
vatele zalozenou na znalostech k urceni priority stahovani dat i pfedstahovani ¢asti scény.
Provedené experimenty nad testovacimi daty ukazuji, ze navrzené schéma planovani pienosu
dat umoznuje dosazeni vyssi efektivity prenosu dat a vyssi kvality renderovaného obrazu
béhem priichodu testovaci scénou.

Abstract

Data transfers scheduling process is an important part of almost all distributed virtual
walkthrough applications. Its main purpose is to preserve data transfer efficiency and
rendered image quality. The most limiting factors here are network restrictions. These
restrictions can be reduced using multi-resolution data representation, download priority
determination and data prefetching algorithms. Advanced priority determination and data
prefetching methods use mathematic description of motion to predict next position of a user.
These methods can accurately predict only close future positions. In the case of sudden but
regular changes in user motion direction (road networks), these algorithms are not sufficient
to predict future position with required accuracy and at required distance. In this thesis a
systematic solution to data transfers scheduling is proposed which solves also these cases.
The proposed solution uses next location prediction methods to compute download priority
or additionally prefetch data needed to render a scene in advance. Experiments show that
compared to motion functions the proposed scheduling scheme can increase data transfer
efficiency and rendered image quality during exploration of tested scene.
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Chapter 1

Introduction

Imagine a mobile application which renders a 3D scene such as foreign city or large land-
scape. The data for rendering the scene is downloaded from network via mobile data
connection. A user of such application is exploring these places, moving towards the points
of interest or is moving all around. In this thesis, a new method is proposed for increasing
rendered image quality and data transfers efficiency for the users of such applications.

The initial purpose of distributed virtual walkthrough applications was to realize a
virtual tourism task which allows users to visit places of interests without physically entering
them (virtual city walkthrough, virtual museum etc). The main requirements are realistic
rendering and informational richness of an explored scene. These requirements increase the
amount of transmitted and processed data.

Distributed virtual walkthrough applications, compared to general distributed virtual
environments, assume continuous user motion. Today’s most popular and widely used
distributed virtual walkthrough applications are e.g. Google Street View (see Figure 1.1)
or intelligent navigations such as AUDI A4, BMW, Waze or Sony. Other applications are
e.g. social virtual networks such as Second Life or Blue Mars.

Figure 1.1: Google Street view! (left), Waze? (center) and Sony 3D car navigation system?
(right) are examples of modern distributed virtual walkthrough applications.

Advances in computing and graphic performance of current mobile and embedded de-
vices, the explosive growth of market with these devices and various digital media data
archives created commercially or community contributed, can further increase the poten-

'http://google.com/streetview
Zhttp://www.waze.com/
http://www.itmedia.co.jp/lifestyle/articles/0404/06 /news073.html



tial and usage of distributed virtual walkthrough applications.

Compared to desktop computers, the content provided by these devices can be asso-
ciated with richer context, such as location, weather, traffic, etc. The most important
hardware feature of these devices is GPS module for determining user location. Knowledge
of user location is the key feature of distributed virtual walkthrough applications designed
to run on mobile devices.

Typical distributed virtual walkthrough applications exploiting the knowledge of user
location are e.g. augmented reality devices such as LifeClipper (historic sites guide), mobile
augmented reality application Nokia City Lens, or project AIDA (see Figure 1.2).

Figure 1.2: AIDA - predictive 3D visualization and navigation system with augmented re-
ality? (left), and Nokia City Lens® - augmented reality system visualizing close restaurants,
point of interests and other points of interest (right).

AIDA is a navigation system which becomes familiar with both the driver and the city.
Instead of focusing solely on determining routes to a specified target, the system analyses
driver behaviour to identify a set of goals the driver would like to achieve. These are e.g.
information about business and shopping districts, tourist and residential areas, as well as
real-time event information related to traffic information such as jams or accidents, etc.

The main bottleneck of distributed virtual walkthrough applications is network con-
nection. It suffers from restrictions such as low bandwidth or higher latency especially
on wireless networks, so the requested data cannot be transferred in time. Data transfers
scheduling algorithms can reduce the impact of these restrictions with the help of multi-
resolution data representation, priority determination and data prefetching algorithms so
they can increase both quality of rendered scene and data transfers efficiency. Rendered
image quality is defined as the ratio between the amount of available data and the amount
of data which is needed to render the scene during its exploration. Data transfer efficiency
is defined as the ratio between the amount of data downloaded and how this data increases
the rendered image quality.

Current scheduling algorithms for distributed virtual walkthrough applications widely
use mathematic description of motion (motion functions) to predict next motion of each
individual user. The predicted position can be used to compute download priority or to

“http:/ /senseable.mit.edu/aida,/
®http://betalabs.nokia.com/trials /nokia-city-lens-for-windows-phone



prefetch scene parts in advance. Unfortunately, these methods predict accurately only near
future positions, and their accuracy decreases also in the case of sudden changes in user
motion direction. For networks with higher latency, low bandwidth or just for fast moving
user a prediction method with higher accuracy and capable to predict farther positions
is needed to keep both data transfers efficiency and rendered image quality as high as
possible. From another point of view, for some applications the rendered image quality
can be a much more important parameter than the data transfer efficiency. In this case,
scheduling algorithms can download a large amount of data in advance but probably only
a small subset of them will be used for rendering especially in the case of false prediction.

This thesis proposes a systematic solution for scheduling of data transfers for distributed
virtual walkthrough applications. It uses next location prediction methods to increase both
data transfers efficiency and rendered image quality. The proposed solution is based on two
key insights. First, next location prediction methods have much higher prediction accuracy
compared to motion functions. Second, next location prediction methods can be adaptively
constructed according to the multi-resolution data representation. This feature allows the
scheduling algorithm to prefetch missing data (scene parts) at specified resolution as is
required by a rendering algorithm.

This thesis is organized as follows. First, a brief review of current state of distributed
virtual walkthrough applications and related background with formulation of thesis objec-
tives is given in Chap. 2. Then a state-of-the-art of streaming of content of 3D scenes
over network is given in Chap. 3, and a survey of scheduling and prefetching mechanisms
for distributed virtual walkthrough applications is summarized in Chap. 4. Further, a
streaming and rendering framework for which a new location-aware data transfers schedul-
ing algorithm is proposed is given in Chap. 5. The location-aware prediction scheme which
is used by the proposed scheduling scheme is described in Chap. 6, and the scheduling
scheme itself it defined in Chap. 7. Finally, results of experimental evaluation of the pro-
posed location-aware data transfers scheduling scheme are shown in Chap. 8 followed by
conclusions in Chap. 9.



Chapter 2

Motivation

The data transfers scheduling process is an important part of almost all distributed virtual
walkthrough applications. Its main purpose is to preserve maximum data transfers efficiency
and rendered image quality during scene exploration.

In distributed virtual walkthrough applications, the rendered image quality is defined
as a ratio between the amount of available data and the amount of data which is needed
during walkthrough to render the explored scene. Data required for rendering the scene
during a walkthrough is precisely determined by the rendering algorithm used.

The ideal scheduling algorithm is defined so that all data necessary to render current
view are downloaded into local storage right before they will be needed by the rendering
algorithm to render the current view. Unfortunately, the network restrictions can signifi-
cantly delay transfers of the requested data. Higher details then will not be available in
time for rendering. In such a case, the rendering algorithm renders the scene only at coarser
resolution (see Figure 2.1).

In high bandwidth networks, scene parts in close neighbourhood of a user can be down-
loaded in advance so they will be available in local cache for rendering future views. All the
data which should be downloaded in advance is determined by data prefetching algorithms.

Data prefetching algorithms cannot exactly identify the scene parts needed for ren-
dering future views especially in the case that the prefetching is based on motion predic-
tion. Consequently, data downloaded in advance will not be necessarily used for rendering.
This behaviour decreases overall data transfers efficiency in case the motion prediction was
wrong.

Data transfer efficiency is defined as ratio between the amount of downloaded data and
how this data contributes to rendered image quality during scene walkthrough. Conse-
quently, data transfers scheduling algorithm is closely related to the rendering algorithm
used, its characteristics and scene data representation. This relation help the scheduler to
determine scene parts needed for rendering the scene at arbitrary user positions.

2.1 Multi-resolution approach

Level-of-detail algorithms is a well known and widely used approach to reduce hardware
requirements for rendering of large scenes. The basic idea is to reduce the amount of
triangles or texture data rendered at each frame without visible degradation of the rendered
image quality.

Suitable level-of-detail algorithm and data reduction metric depend on the requirements



Figure 2.1: Fully loaded view in Google Street View (top) and decreased detail when
moving through the crossroad to the right-hand side(bottom).

of concrete application and on data representation of the scene (e.g. heightmaps for terrains,
triangle meshes with a large amount of triangles, etc.). The level-of-detail algorithms op-
erates with the scene data at various resolutions (various level-of-detail). During rendering
the most appropriate level-of-detail is selected or reconstructed to render the current frame.
Such data representation is called multi-resolution data representation (see Figure 2.2).

GeoLOD 0
Terrain 0

Terrain 1 Geol.OD 1

Terrain 2

Visibility
structuration

Figure 2.2: Multi-resolution geometry (left), multi-resolution textures (center) and more
complex representation of multi-resolution data (right)®.

The multi-resolution data representation is the fundamental requirement for effective
data streaming over network. The multi-resolution form of data enables better scheduling
and higher control of the transfer. For example, it is not physically possible to perceive all
the details of an explored scene for a fast moving user. Therefore, the amount of transferred
data needed for rendering the scene at the required quality (resolution) should be much
smaller compared to a static or a slow moving user.



2.2 Communication and data transfers

Communication and data transfers in distributed virtual walkthrough applications are
widely based on classic client-server model. In this model, each client manages its local
cache and renders the scene. The server holds the whole database with multi-resolution
scene representation. The advantages of the client-server model are easy data consistency
preservation, higher safety and better control over the scene data (e.g. for commercial
reasons). The disadvantage of the client-server model is higher amount of I/O requests at
the server if large number of users are simultaneously connected to the server. The large
number of connected users can increase the overall system response time.

The main bottleneck of distributed virtual walkthrough applications is network connec-
tion. It is affected by restrictions such as high latency and low bandwidth. Distributed
virtual walkthrough applications aim to minimize impact of these restriction to keep the
rendered image quality and data transfers efficiency high.

To reduce a low network bandwidth the multi-resolution data representation is needed.
First much coarser resolution of the scene is downloaded, followed by finer resolutions
successively as they are required by the rendering algorithm. In the case of low network
bandwidth or a fast moving user, the client can receive and render only coarser resolution
of the scene. Finer resolutions of the scene data will not be transmitted except when the
user slows down or stops its motion.

The negative impact of low bandwidth and high latency should be further reduced with
the help of priority determination and data prefetching methods.

Download priority determination algorithms can compute download priority of particu-
lar scene parts based e.g. on user motion, area of interest determination or other visibility
determination algorithms. The goal of the priority determination algorithms is to ensure
the downloaded data will be available as long as possible during the time they are needed
for rendering. It means that the scene parts assumed to be used for longer time during ren-
dering will have higher priority. This behaviour can increase both data transfers efficiency
and the rendered image quality.

Data prefetching algorithms on the other hand can identify scene parts which will be
needed for rendering in near future. The ideal data prefetching algorithm will download
scene parts in advance so that these scene parts will be available as they become requested
by the rendering algorithm. The ideal prefetching algorithm should also ensure all the
downloaded data will be used for rendering thus leading to maximal data transfers efficiency
and rendered image quality.

2.3 Prediction

Current scheduling algorithms for distributed virtual walkthrough applications widely use
mathematic description of motion (motion functions) to predict next position of each indi-
vidual user. The predicted position can be used to compute download priority or to prefetch
scene parts in advance.

Motion functions realize the short time prediction. The mathematic description of
motion can be exploited as a fast and simple prediction with minimal memory and storage
requirements. Unfortunately, methods based on motion functions are accurate only when

6Jean-Eudes Marvie, Pascal Gautron, Pascal Lecocq, Olivier Mocquard, and Francois Gérard. Stream-
ing and synchronization of multi-user worlds through http/1.1. In Proceedings of the 16th International
Conference on 3D Web Technology, Web3D ’11, pages 111-120, New York, NY, USA, 2011. ACM.



predicting near future positions. Their accuracy also decreases in the case of sudden but
regular changes in user motion direction (see Figure 2.3).
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Figure 2.3: If some object frequently visits B at time ¢g after A at time ¢4 and it is currently
passing A at t4, it can be said that the object is likely to be on B at tg instead of Fb”.

In networks with higher latency, low bandwidth or just for a fast moving user a pre-
diction method with higher accuracy and capable to predict farther positions is needed to
keep both data transfers efficiency and rendered image quality as high as possible.

Prediction methods satisfying the accuracy and prediction length demands are repre-
sented by long term prediction methods so called next location prediction methods. These
methods uses knowledge of past behaviour of a user (or users) to predict future locations.
User behaviour here is described e.g. as a sequence of visited places (e.g. home — work —
shop — home) or by sequences of visited cells within wireless mobile networks.

Next location prediction methods are more suitable to be used in multi-resolution en-
vironments as they can accurately predict users locations farther away from their current
positions (see Figure 2.4). The distant locations are related to coarser levels-of-detail.

Figure 2.4: Long term prediction methods describe movement of a user as a sequence of
visited locations (A, B, C). Motion functions predict next position of a user from its current
motion parameters such as speed or motion direction.

"Hoyoung Jeung, Qing Liu, Heng Tao Shen, and Xiaofang Zhou. A hybrid prediction model for moving
objects. In Proceedings of the 2008 IEEE 24th International Conference on Data Engineering, ICDE ’08,
pages 70-79, Washington, DC, USA, 2008. IEEE Computer Society.



Usually, the term ,,motion prediction“ used in literature and through this thesis refers to
prediction based on mathematical description of motion. The term ,,movement prediction*
on the other hand is widely used in literature to describe a prediction with higher level of
abstraction such as places of interests (e.g. home, work, shopping mall, etc.). Therefore,
motion parameters of a user (e.g. speed, angular velocity or motion direction) are not the
most important parameters for the movement prediction methods.

2.4 Objectives

The main objective of this thesis is based on two key insights. First, next location prediction
methods have much higher prediction accuracy compared to motion functions. Second, next
location prediction methods can be adaptively constructed according to the multi-resolution
data representation. This feature allows the scheduling algorithm to prefetch missing scene
parts at specified resolution as will be required by the rendering algorithm.

The main goal of this thesis is to design a systematic solution for scheduling of data
transfers for distributed virtual walkthrough applications which is based on location-aware
prediction scheme. The proposed solution keeps both data transfers efficiency and rendered
image quality as high as possible.

A combination of a Markov chain based predictor and a k-state predictor are originally
adopted as the next location prediction methods for distributed virtual walkthrough appli-
cations. Both the Markov chain based predictor and k-state predictor predicts next user
location based on user’s current movement pattern. The Markov chain based predictor
runs at server. A local movement pattern is used to identify all the users with the same
movement pattern at the server. All the matching patterns over all users are used to con-
struct the Markov chain based predictor. The k-state predictor models behaviour of each
individual user. A local movement pattern is used to found all the matching movement
patterns stored locally by each individual user.

Unfortunately, the next location prediction methods have low prediction rate (in other
words prediction quantity) compared to motion functions. It means that it is not always
guaranteed that a prediction query returns a prediction result. This can happen if the
user behaviour is unknown. The unknown behaviour can happen in the case of insufficient
information about past user movements (typically a new user) or in the case of change
in user behaviour. Prediction result can be also marked as not confident if, for example
two opposite movement directions have similar probability. If a probability distribution
of following particular locations has too high variance then it is not reasonable for data
transfers scheduling algorithm to prefetch any data in advance. Therefore such not confident
prediction result represented by the most probable location is used only for computing
priorities of missing data for rendering the current view. If the prediction scheme did not
return any prediction result, this thesis proposes to extend the next location prediction
methods with a recursive motion function to overcome the low prediction rate problem.

Data transfers in distributed virtual walkthrough applications are supported with multi-
resolution data representation. In this thesis is also proposed a variable sampling of user’s
movement (represented by GPS trajectory) which creates movement patterns with different
granularity. The variable sampling method can increase scalability of the proposed schedul-
ing algorithm so it can schedule to download both distant coarse data representation as well
as close detailed ones as is required by the rendering algorithm used.

It should be noted that it is not the main goal of this thesis to find the minimal form
of data representation suitable for streaming over network. Instead, it is experimentally

10



proved that it is possible to exploit the next location prediction methods to increase data
transfers efficiency and the rendered image quality compared to motion functions.

Consequently, the main contribution of this thesis is the proposed complex prediction
scheme evaluated in pre-defined multi-resolution virtual environment. The proposed pre-
diction scheme can be characterized as follows:

e exploits next location prediction methods
e is adaptive according to multi-resolution data representation
e solves the case when no trajectory pattern is found

e evaluates prediction queries within the client-server environment

The scheduling algorithm based on the top of this prediction scheme is designed so that
the prediction results is used to keep both data transfers efficiency and rendered image
quality high. This behaviour is application dependent and can be changed e.g. so that the
data transfers efficiency will be more important parameter because of pre-paid data limits
on mobile data connections.

11



Chapter 3

Streaming graphics over network

This chapter describes state-of-the-art of methods for streaming content of 3D graphic
scenes over network. Two basic approaches exist to distribute content of 3D virtual scenes
in client-server applications [128]. The first approach is complete scene replication whereas
the second approach is progressive data transmission.

The complete scene replication transfers content of the whole scene to clients so the
scene is completely available at local storage before an application starts [18], [16], [103].
This is advantageous because it keeps transmission process simple.

For some applications, the size of data representation of a scene can be too large to
be downloaded completely in time which is acceptable by users. Therefore, complete scene
replication is widely used in applications which render only small standalone 3D models
(see Figure 3.1) e.g. for web based graphics [117].

stot ist

usti nad labem

haus basilsk

Download TeamViewer

All models are for internal use only Add-on is installed

Figure 3.1: Cadwork viewer plugin for downloading and rendering a variety of 3D models®.

The progressive data transmission [39],[123],[26],[85],[118],[19] assumes that a user can
see only a small part of the whole scene. As the user moves within the scene, the missing

Shttp://www.lexoview.de
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parts of the scene will be downloaded.

This approach has the advantage that for rendering the scene it is sufficient to download
only a small amount of data compared to the complete replication approach. It can speed-
up start of applications and eliminate transfers of data which is not necessary for rendering
(typically invisible scene parts).

To determine visible parts of the scene, visibility determination algorithms can be used.
These algorithms are also useful when optimizing rendering of large scenes. The follow-
ing chapter addresses usability of such algorithms within distributed virtual walkthrough
applications.

3.1 Visibility determination

Visibility determination has been a fundamental problem in computer graphics since the
very beginning of the field [6]. Three kinds approaches to culling invisible objects exist
(see Figure 3.2). Back-face culling algorithms avoid rendering geometry that faces away
from a viewer, view-frustum culling algorithms avoid rendering geometry that is completely
outside a view-frustum and occlusion culling avoid rendering primitives that are occluded
by other primitives.

View-frustum culling

%
B

¢
Qk-Face Culling B e
visible ": :::
1 W f iy S
-1 5 %3

Occlusion Culling

-----

Frustum

Figure 3.2: Three types of visibility culling techniques”.

3.1.1 View frustum culling

View-frustum culling is the most common method used to determine visibility of particular
objects in a scene. These objects can be tested one by one against a view-frustum and are
marked as visible or invisible accordingly[122], [139], [L10], [85], [60].

View-frustum culling can be used also in terrain streaming and rendering algorithms[1 16]
[112], [35], [74], [152], [10] to determine visibility of particular terrain blocks. This approach
is a compromise between testing visibility of all terrain triangles and between rendering and
transferring of whole terrain block (or in general an object) even though only a small part
of the block is visible.

“D. Cohen-Or, Y. L. Chrysanthou, C. T. Silva, and F. Durand. A survey of visibility for walkthrough
applications. IEEE Transactions on Visualization and Computer Graphics, 9(3):412-431, July 2003.
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3.1.2 Occlusion culling

Occlusion culling methods are hardware accelerated methods invented to determine scene
parts occluded by other primitives named occluders. Such occluded geometry is not visible
event though it is inside a viewer’s view-frustum. Evaluation of occluded geometry against
occluders is computationally time-consuming task. Another issue is that this visibility
determination approach is usable only for specific types of scenes such that they contain a
lot of occluded geometry such as urban or indoor scenes [20], [114]. The main contribution
of these methods is that they can reduce the geometry needed for rendering [32].

There is no benefit from application of occlusion culling methods in terrain rendering
applications [55] or with fly-over applications where cost for evaluation of occluded parts
can be larger than rendering of the scene including also the potentially occluded parts [38].

In centralized network applications, only server can determine visibility of scene parts,
because it holds the whole scene representation. If a lot of clients are connected to a
remote server, then the server computation power will become a bottleneck, because it
must perform visibility computation simultaneously for all connected clients. The solution
to this problem is a division of whole scene into virtual cells for which the visibility will be
preprocessed using cell-to-cell or cell-to-object visibility relationship [35], [150].

Optimized occlusion culling for urban scenes is addressed in [150]. A scene is divided
into cells so that cell-to-object visibility can be precomputed. The main contribution is the
occluder fusion which shrinks sets of small occluders to a bigger entities (see Figure 3.3).
Evaluation of occluded geometry by larger occluders is faster.

Occluder

. Vi 11
Occluder Conservative & A _.Fused
: l umbra for e-
neighborhood é’ '

Sample © .
point -

' ET ~Single

' Sample occluder
point umbra

Figure 3.3:  (left) an occluder after shrinking it by e, the umbra from a point sample
provides a good conservative approximation of umbra of the original occluder in a neigh-
bourhood of radius ¢ of the sample point, (right) fused umbra from 5 point samples is
constructed from intersection of individual umbrae®.

In [85] a hybrid method is proposed for visibility determination. This method combines
advantages of cell-to-cell visibility with cell-to-object visibility to reduce the number of
objects referenced from each cell. It increases efficiency of visibility information streaming
between the objects inside each cell and enables prefetching mechanisms to be utilized (see
the subsection 4.1.2 for more details). Such a hybrid visibility determination is further used
within networked virtual environments described in[93],[15] and[36].

8Peter Wonka, Michael Wimmer, and Dieter Schmalstieg. Visibility preprocessing with occluder fusion
for urban walkthroughs.In Proceedings of the Eurographics Workshop on Rendering Techniques 2000, pages
71-82, London, UK, UK, 2000. Springer-Verlag.
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From the streaming point of view, visibility relationships between cells should be down-
loaded first and right before any download request take its place.

3.1.3 Area of interest determination

A different approach to visibility determination is area of interest (AOI) method [39]. Area
of interest is defined as a circle area around a viewer. Size of such area is important for
both streaming and rendering algorithms.

In [52] only the geometry of those objects are transferred which are inside a viewer area
of interest.

Distributed virtual walkthrough system CyberWalk [94], [20] generalizes the area-of-
interest concept proposed in[39] to both viewers and objects (see Figure 3.4). This gen-
eralization aims to minimize the amount of data needed to be downloaded from server to
clients.

A viewer scope (see Figure 3.4) determines, how far a viewer can see whereas an object
scope indicates how far the object can be seen. The larger the scope of the object is, the
more important the object is and the sooner it can be seen (i.e. downloaded to client cache).
The object can only be seen by the viewer only when their scopes overlaps. Hence, not
visible objects to the viewer do not need to be transferred to the client.

viewing region

object scope object scope

viewer scope

Figure 3.4: Object scope and viewer scope. The larger the object, the larger its scope®.

If the number of objects (overall amount of geometry) covered by the viewer scope
becomes too large to be downloaded at requested resolution in time, a method which divides
the viewer scope into several parts with different download priority is proposed in [146](see
Figure 3.5). Priority of each part is determined from distance between given part and the
viewer’s position, and on its presence in view-frustum of the viewer. Priority determination
of particular segments must satisfy condition such that Q14 > Q1p > Qog > Qop > ... >
Qna > an-

Visibility determination algorithms can significantly reduce the amount of streamed
and rendered data, but there are a variety of applications where the visibility determina-
tion will not be sufficient. Therefore, visibility determination algorithms should be used in
a combination with other methods for further reducing the amount of streamed and ren-
dered data. These methods are multi-resolution geometry representation and level-of-detail
(LOD) algorithms [79].

9Beatrice Ng, Antonio Si, Rynson W.H. Lau, and Frederick W.B. Li. A multi-server architecture for
distributed virtual walkthrough. In Proceedings of the ACM symposium on Virtual reality software and
technology, VRST ’02, pages 163—-170, New York, NY, USA, 2002. ACM.
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Viewing vector

View frustum

Figure 3.5: The SMLAOI concept divides AOI to parts with different download priority'°.

3.2 Streaming of 3D geometry

Level-of-detail algorithms are classic technique exploiting multi-resolution data representa-
tion to bridge a scene complexity and hardware capability by regulation of the amount of
detail used to render a scene [30], [79].

Traditional representation of geometry of 3D objects is based on triangular meshes [79].
Three basic level-of-detail approaches can be used to transmit this geometry representa-
tion over network: discrete level-of-detail, continuous level-of-detail and continuous view-
dependent level-of-detail. The main difference between them is how particular levels-of-
detail are created and how they are used during rendering.

3.2.1 Discrete LOD

Discrete LOD principle consists of creating several instances of a given object with decreas-
ing geometric detail (see Figure 3.6). Creation of these particular instances is done off-line
in a preprocessing step and is controlled by selected error metrics. Generation of discrete
LOD representation is independent from viewer line of sight, because it is not known in
the preprocessing step [79]. Appropriate level-of-detail for each object is selected during
rendering so it corresponds to the error metrics used (see Figure 3.7).

One of the first papers dealing with utilization of discrete LOD for optimizing 3D scene
transfers in client-server environment was [123]. Its basic idea is that elementary data
transmission units are represented by particular levels-of-detail instead of single object
with full detail.

The scene is organized into a tree structure, whilst only its lists contain geometry of
objects in the form of discreet LOD (see Figure 3.8). Only missing LODs are downloaded
as they are requested by a rendering algorithm. As position and viewing direction of a user
have changed, selection of LODs changes and all the missing LODs are scheduled to be
downloaded immediately.

10Wei Wang and Jinyuan Jia. An incremental smlaoi algorithm for progressive downloading large scale
webvr scenes.In Proceedings of the 14th International Conference on 8D Web Technology, Web3D 09, pages
55-60, New York, NY, USA, 2009. ACM.
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Figure 3.6: Simplification of complex object!!.

Figure 3.7: Level-of-detail used to reduce rendering cost of distant, or unimportant geom-
etryn.

Toward effective culling of scene parts that are not visible from current viewpoint is
proposed a hierarchical scene organization [30] (see Figure 3.9). A hierarchical scene orga-
nization becomes a fundamental scene representation for all modern rendering libraries and
tool-kits for rendering 3D graphics, for instance Open Scene Graph [117] or Inventor [143].

Processes in distributed virtual environments are described using standardized lan-
guages such as Vrml97 [17] and later designed X3D language [144], [I4]. They standardize
scene hierarchy, objects description, their behaviour, interaction and rendering. Discrete
LOD is one of the standardized entities with precisely defined behaviour.

A disadvantage of the discrete LOD method is the redundancy during transferring of
particular levels-of-detail of each object. It is because each higher level-of-detail contains all
previous coarser representation extended with new detailed geometry information. Despite
that redundancy, discrete LOD algorithms are widely used because they can be simply
embedded into any streaming and rendering system.

3.2.2 Continuous LOD

Continuous LOD algorithms encode each object with continuous spectrum of detail during
preprocessing whereas discrete LOD algorithms use only several resolutions. An advantage
of continuous LOD representation is that it is possible to extract particular resolution from
the spectrum during rendering.

Objects in the virtual scene can be represented using arbitrary number of polygons
depending on selected error metrics. Continuous change in detail of each object enables a

1David P. Luebke and Benjamin Hallen. Perceptually-driven simplification for interactive rendering. In
Proceedings of the 12th Eurographics Workshop on Rendering Techniques, pages 223-234, London, UK, UK,
2001. Springer-Verlag.
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frunk CAR

LOD )
Body o Translations

Figure 3.8: Car scene graph with discrete LOD. Geometry is placed only in lists of the tree.
Rest of the tree is only a control structure with transformations and rendering states!?.

possibility to control the overall amount of triangles (to preserve constant frame rate) as
well as the amount of consumed system resources [30].

Continuous LOD algorithms are also widely used for streaming 3D geometry over net-
work [52], [139], [94], [23], [26], [75], [76], [3], [80], etc. They can significantly eliminate
redundant data compared to the discrete LOD algorithm except some additional overhead
which is needed to encode objects in the form of progressive representation. A disadvantage
of the progressive algorithms is the higher algorithmic and computational complexity which
is necessary to decode each object to requested resolution during rendering.

Two widely used approaches to represent 3D object using continuous LOD exists: pro-
gressive meshes [53] and wavelets [131].

Progressive meshes

The progressive mesh (PM) representation is efficient, lossless, continuous-resolution rep-
resentation of arbitrary triangle meshes. In PM form, each mesh M is stored as a much
coarser mesh My together with a sequence of n recorded vertex-split operations (see Fig-
ure 3.10) that indicates how to incrementally refine mesh My back to mesh M so that
M = M,,. Each vertex-split operation adds one vertex to current mesh.

An initial mesh M = M, can be simplified into a much coarser mesh M, by applying a
sequence of successive edge-collapse (ecol) operations so that:

(NI = M,,) “Onst ool pptecol o (3.1)

, where “ole is an edge-collapse operation applied onto mesh MZ**!. Each performed
edge-collapse operation generates one vertex-split operation. Thus the process described
by the equation (3.1) is invertible and an arbitrary mesh can be represented using a much
coarser mesh M together with a sequence of n vertex-split operations as follows:

Usl)lll;_l ( ~

MO g vt 32

2Dieter Schmalstieg and Michael Gervautz. Demand-driven geometry transmission for distributed virtual
environments. Comput. Graph. Forum, 15(3):421-431, 1996.
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Figure 3.9: Structure of environment with transformation nodes T and visible part contour
as a possible result of clipping. Each child node represent either transformation or pointer

to more detailed part of scene!3.

Figure 3.10: Illustration of edge collapse and vertex split operations!.

A sequence of meshes My, My, ..., M, can be created, where each successive mesh con-
tains one additional vertex. Thus each object can be represented using arbitrary number
of triangles.

Description of objects represented by progressive meshes in network environment is
standardized using VRML/X3D languages [51], [40], [382], [36]. In [51] each object repre-
sented by progressive mesh is stored in a separate file. Requested vertex-split records are
then downloaded on demand.

Two new entities are defined for VRML/X3D in work [10]. The first entity is named
progindezedTriSet and extends the standard IndexedFaceSet entity. The second entity
is named ProgLOD and contains additional data such as coordinates, indices, normals,

!3James H. Clark. Hierarchical geometric models for visible surface algorithms. Commun. ACM,
19(10):547-554, October 1976.

1 Hugues Hoppe. Progressive meshes.In Proceedings of the 23rd annual conference on Computer graphics
and interactive techniques, SIGGRAPH ’96, pages 99-108, New York, NY, USA, 1996. ACM.
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etc. These VRML/X3D extensions do not specify how the data should be streamed and
rendered. Such a proposal is presented in [32], where the progressive records are compressed
and extended with colour information which is not usually resolved by other algorithms.

Progressive mesh algorithm in its basic form (without any optimizations) is used to
stream geometry of 3D objects in [36]. Here, a complex system for streaming VRML/X3D
representation of planetary sized scene is described without any care about reducing the
amount of transferred data.

Wavelets

Wavelet based representation of arbitrary meshes [131], [67] has more compact form for
streaming compared to the progressive meshes.

Creation of the wavelet based representation from polygonal meshes is similar to the
progressive meshes. An initial object is simplified to a much coarser representation and
is stored together with a sequence of missing detail. These missing details are wavelet
coefficients. Such representation is ready to be streamed over network [135], [63], [3].

Let M, be a triangular representation of an object at resolution n. This object can
be represented in various resolutions by a sequence of meshes My, M1, ..., M,,, where M is
a base mesh (see Figure 3.11(a)) at much coarse resolution and mesh M, is the original
object at full detail.

Figure 3.11: (a) A base mesh M) as a coarse approximation of a circle by a single triangle,
(b) mesh obtained by splitting the base mesh My, and (c) M; as level 1 approximation of
the circle!®.

For example, the base mesh Mj(1, 2, 3) (see Figure 3.11a) is a much coarse representation
of the circle object. To obtain one level higher resolution of the circle object, the triangle
defined by vertices (1,2,3) is divided into the four sub-faces. This introduces three new
vertices (4',5',6") at edge midpoints (see Figure 3.11b).

These three new vertices are translated to fit the approximated circle and are renamed
to (4,5,6) as is shown in Figure 3.11c). Wavelet coefficients (missing details) between the
mesh My and the mesh M; can be expressed as displacement between vertices 4, 5 and 6
from vertices 4’, 5’ and 6’ respectively.

Wavelet decomposition of a mesh M,, produces the base mesh My and sets Wy, W1, ..., W;_1
of wavelet coefficients. Each set W; contains all wavelet coefficients at level i, which repre-
sent missing details between mesh M; and mesh M, ;.

5Mohammed Eunus Ali, Rui Zhang, Egemen Tanin, and Lars Kulik. A motion-aware approach to con-
tinuous retrieval of 3d objects. In Proceedings of the 2008 IEEE 24th International Conference on Data
Engineering, ICDE ’08, pages 843—-852, Washington, DC, USA, 2008. IEEE Computer Society.

20



The value of the wavelet coefficients plays the most important role when streaming them
over network. The higher the value of the coefficients is, the higher its contribution to final
object appearance. Final detail of transferred objects can be affected by transferring only
coefficients with selected values (e.g. only high values).

3.2.3 View-dependent LOD

View-dependent LOD extends the continuous LOD algorithms with view-dependent simpli-
fication criteria to dynamically select the most appropriate LOD for the current view [20].

Many authors use view-dependent progressive meshes for streaming and rendering of
large standalone 3D models [54], [141], [130], [140], [154], [155]. These algorithms allow
selective refinement of arbitrary parts of given object e.g. silhouette (see Figure 3.13) or
geometry inside view frustum (see Figure 3.12).

| N/

Figure 3.12: View-dependent LOD for terrain rendered using ROAM algorithm where the

dark shaded region is outside view frustum, the middle shaded areas are on the border and

the light shaded area is inside view frustum?'®.

Figure 3.13: View-dependent rendering of Stanford bunny!”.

16Mark Duchaineau, Murray Wolinsky, David E. Sigeti, Mark C. Miller, Charles Aldrich, and Mark B.
Mineev-Weinstein. Roaming terrain: real-time optimally adapting meshes.In Proceedings of the 8th confer-
ence on Visualization ’97, VIS ’97, pages 81-88, Los Alamitos, CA, USA, 1997. IEEE Computer Society
Press.

"Hugues Hoppe. View-dependent refinement of progressive meshes. In Proceedings of the 24th annual
conference on Computer graphics and interactive techniques, SIGGRAPH ’97, pages 189-198, New York,

21



Two suitable view-dependent representations of 3D objects which support selective re-
finement exists: vertex trees [54], [38] and hierarchy of mesh update operators [100]. The
hierarchy of mesh update operators such as half-edge collapses (see Figure 3.14) is advan-
tageous, because it reduces storage cost by using only half as many nodes as the vertex
hierarchies and is independent of vertex data.

a) vertex hierarch b) half-edge collapse
) Y )hierarc%yh' P

Figure 3.14: The principal difference between vertex trees and hierarchy of mesh update

operatorslS.

The view-dependent LOD algorithms are practically used to optimize rendering of large

stand-alone models [54], [78], [38], [L00], [151] as well as to optimize transmission of these
models over network.
Authors of [141] and [69] were focused on view-dependent transmission of large triangle

meshes over network, where the vertex trees are reconstructed from progressively received
updates on client so that the view-dependent rendering can be performed locally on the
partially received vertex trees.

Southern at all [130] proposed a framework based on edge collapse and vertex split op-
erations. They extend these operations with spatial information represented by a visibility
sphere. This information is used to determine whether an operation is visible and needs to
be performed during rendering (see Figure 3.15).

Gueziec et al. [51] presented a framework for progressive transmission of geometry for
not only VRML models. They propose a flexible LOD storage scheme named progressive
multi-level mesh. In this scheme, the algorithm assigns a level value to each vertex and
triangle as edges continuously collapses. During each edge-collapse, it also assigns to each
removed vertex a representative which is the remaining vertex on the collapsed edge. The
algorithm can traverse the representation locally so that the view-dependent transmission
and rendering is possible.

Parallelization between a client and a server for view-dependent rendering and transmis-
sion of progressive mesh representation is presented in [155]. It proposes to run the client
and the server processes in parallel, controlled by rendering time to cover a network latency.
If the round-trip-time (RTT) between client and server is long, it manages to overlap the
network latency for one frame with a rendering time for multiple frames.

NY, USA, 1997. ACM Press/Addison-Wesley Publishing Co.

!8Renato Pajarola and Christopher DeCoro. Efficient implementation of real-time view-dependent mul-
tiresolution meshing. IEEE Transactions on Visualization and Computer Graphics, 10(3):353-368, May
2004.
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(@ (b)

Figure 3.15: (a) determination of attributes of a visibility sphere. S, represents radius
of the sphere originating from centroid of base points of the region S.. The error term
¢ indicates a distance between the two points which would be collapsed during an edge
collapse operation. (b) A visibility sphere consists of the sphere (representing the atomic
operation in space), and the cone of associated normals (for deter-mining whether the sphere
is forward facing in real-time)!?.

In a classic sequential approach (see Figure 3.16) a typical frame on the client started
first to send the view parameters to the server, goes through the waiting to get the mesh
updates from the server, and ends as soon as the selected mesh will be updated and rendered.
The problem is that the network overhead and the traversal time on the server side can be
too large to guarantee the interactivity on the client. The proposed multi-frame predictive
parallel strategy forces the client to send changed view parameters to the server each frame.

A common approach to send a refinements over a network is to let the server decide an
order of refinement operations based on view-dependent criteria. Unfortunately, computa-
tional cost of making such ordering prohibits of such sender-driven approach from scaling
to large number of clients. In [25] a different approach is presented based on receiver-driven
protocol. In this protocol, a receiver decides sending order and explicitly requests refine-
ments, while the sender simply sends the requested data. First, the algorithm assigns each
vertex a unique identification number so that the receiver can explicitly request correspon-
dent vertex-split operations. Second, the receiver (client) has to efficiently determine the
importance of a vertex split operation based on partially received mesh.

A system for streaming geometry of terrain and buildings of a city model is described
in [118]. Each building is encoded using a hierarchical representation called PBtree [119].
This representation encodes each building as a set of 2D coordinates of all its walls, its height
and altitude. The PBTree representation also supports LOD by merging and simplification
in-between several PBTrees.

View-dependent LOD algorithms suffer from an additional mesh reconstruction over-
head and from evaluation of missing details at clients. Such evaluation must be performed
upon each change of viewing parameters just during rendering. Preserving consistency of
the rendered scene and its representation on server is also not trivial.

19Richard Southern, Simon Perkins, Barry Steyn, Alan Muller, Patrick Marais, and Edwin Blake. A state-
less client for progressive view-dependent transmission.In Proceedings of the sixzth international conference
on 8D Web technology, Web3D ’01, pages 43-50, New York, NY, USA, 2001. ACM.
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Figure 3.16: Comparison between the sequential approach (left) and the parallel approach
(right), where PRD stands for render procedure and PGU stands for get updates proce-

dure?°.

3.2.4 Image based methods

Image based methods can speed-up rendering of large scenes [62] using approximation of
complex geometry by 2D images mapped onto quadrilateral or simplified geometry.

Billboards

Billboarding is the basic method for simplifying representation of 3D objects. Each billboard
replaces an object or a group of objects with a single 2D image no-matter from which
direction a viewer is looking at it. Each billboard simply just always faces a camera (see
Figure 3.17). The billboard objects can be used for example to represent trees [12].

The billboarding idea is extended in [36] to billboard clouds. Each billboard cloud
represents a geometry as a set of alpha-textured planes (see Figure 3.18.) organized so that
they best approximate a simplified geometry.

207hi Zheng, Prakash Edmond, and Tony Chan. Interactive view-dependent rendering over networks. IEEE
Transactions on Visualization and Computer Graphics, 14(3):576-589, May 2008.
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Figure 3.17: (a) billboard, (b) cross billboard, (c) 3-cross billboard, (d) 4-cross billboard,
(e) billboard slices representing foliage?!.

(a) (b) (©) (d)

Figure 3.18: (a) original model, (b, c) billboard cloud approximation of the original model
with different clustering of the geometry, (d) other approximations using billboard cloud??.

Impostors

Another image-based representation of 3D objects are impostors. Simplest impostor is
represented as a planar impostor [81], [121]. It basically consist of a planar geometry (e.g.
a quadrilateral) with an alpha texture applied onto it.

The main advantage of it is that it can be fast created at runtime and also fast rendered
because of its simple geometry. On the other hand, for parallax movements the impostor
needs to be frequently updated. Other problems are discontinuities on the border between
geometry and planar impostors, and also the visibility between a scene and flat impostors
must be resolved satisfactorily [120].

In [48] and [59] a layered impostors method is proposed as an extension of planar
impostors. It solves some planar impostors limitations, namely parallax movements of a
viewer, correct visibility and seamless integration of them into a scene. The idea of layered
impostors consists in usage of multiple image layers at different distances from the viewer.
Each image layer represents certain depth range [(1].

Another approach to replace geometry by images is the texture depth meshes method [33],

21 A. Jakulin. Interactive vegetation rendering with slicing and blending.In A. de Sousa and J. C. Torres,
editors, Proc. of Eurographics (Short Presentations), Interlaken, Switzerland, 2000.

22Gtephan Behrendt, Carsten Colditz, Oliver Franzke, Johannes Kopf, and Oliver Deussen. Realistic real-
time rendering of landscapes using billboard clouds. Comput. Graph. Forum, 24(3):507-516, 2005.
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[127], [119]. This method is used for rendering objects which are relatively close to a viewer
such that they just cannot be rendered using billboards. The basic idea is to triangulate a
rendered image with respect to depth discontinuities (such as object silhouettes) based on
z-buffer values (see Figure 3.19.). This technique provides good results for both parallax
movements and also the visibility. The texture depth meshes method needs only a little
additional geometry compared to the planar impostors.

Figure 3.19: From left to right: original model, the texture depth mesh (TDM) represen-
tation and finally the mesh of the TDM?3.

Particular methods differ mainly in how the impostor is created, how it is rendered and
how the visual inaccuracies are eliminated. A detailed survey of the image-based methods
reducing the scene complexity is presented in [61] and [105].

Client-server systems which use impostors and billboard algorithms to represent distant
objects are presented in [105], [98]. The main disadvantage of the image-based represen-
tation of 3D objects is that the transmitted image-based representation can be useless if
a viewer is approaching them, because the close object needs to be rendered using full-
resolution triangle mesh which have to be downloaded from scratch then.

Parallax mapping

Modern image-based approach to represent the geometry of complex objects is the paral-
lax mapping method [66] or better the parallax occlusion mapping [137]. The parallax
occlusion mapping reduces the geometry of objects by encoding their surface details into
a texture. The surface is practically stored as a heightmap representation of the replaced
geometry. During rendering of the replaced geometry, its detailed surface is reconstructed
from associated heightmap in pixel shader (see Figure 3.20).

Figure 3.20: Examples of parallax occlusion mapping including corresponding geometry?4.

Parallax occlusion mapping can be potentially used in networked applications, because
it can reduce the amount of data used to represent single 3D objects (see Figure 3.21).

23Gtefan Jeschke. Accelerating the rendering process using impostors, March 2005.
24(C. Dachsbacher and Tatarchuk N.Extended parallax occlusion mapping with accurate silhouette com-
putation.In I3D Poster, 2007.
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Figure 3.21: (left) A 1.100 polygon game soldier character with parallax occlusion mapping
(cca 14Mb), (right) A 1.5 million polygon soldier character with diffuse lighting (45Mb)?2®.

The soldier represented using the parallax occlusion mapping contains 1100 polygons
with memory requirements: vertex buffer(79Kb), index buffer(6Kb) and 3Dc compressed
2048 x 2048 texture (13Mb), total cca 14Mb. The original soldier is the object composed
of 1500000 polygons with memory requirements: vertex buffer(31Mb), index buffer(14Mb),
total cca 45Mb. Several resolutions of the 3Dc compressed texture can be created in a
preprocessing step and streamed from the server to the client with continuously increasing
resolution. A disadvantage of such approach is texture data redundancy when streaming
particular texture level-of-details (for details see the section 3.4).

Image based rendering

Image based rendering (IBR) systems are effective solution to solve rendering of complex
3D scenes mainly on mobile devices. As they have much less computing and rendering
power they cannot render scenes at competitive quality at interactive frame rate compared
to desktop computers. The IBR methods depends mainly on display resolution, compared
to the classic rendering pipeline, where rendering performance is limited by throughput [22].

Communication model of image-based rendering systems is usually based on client-

server architecture [22], [73], [13], [L57]. A scene is rendered at the server from current
current view and streamed to the client which renders the received image as impostor [22],
using MPEG-4 standarts [97], [70] or using panoramic images, which consist of creating

a panorama representation of the scene from several images taken by rotating the camera
around a fixed point [13].

In [22] an image-based rendering system is described based on client-server architecture.
Here, the server renders a scene into an image and sends it to the client. The client
uses McMillan’s 3D warping method to render the received image [90]. The McMillan’s
warping method uses depth images (containing both colour and depth information at each
pixel) together with a viewing 3 x 4 matrix which describes the view setup of the depth
image. Resulting warped image must be created using only a single depth image. Practical
consequence of this approach is that as the output image viewing matrix is changing, the

Z>Natalya Tatarchuk. Practical dynamic parallax occlusion mapping.In ACM SIGGRAPH 2005 Sketches,
SIGGRAPH ’05, New York, NY, USA, 2005. ACM.
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output image start suffering from occlusion artefacts caused by revealing parts of the original
3D scene, which were occluded in the used depth image (see Figure 3.22). he solution to this
problem is an extension of the McMillan’s warping algorithm by layered depth images [125],
but at the expense of increased size of the image rendered at server (the size will grows
linearly with the number of layers).

Figure 3.22: (left) bunny model with occlusion artefacts, (right) layered depth images as
a solution to the occlusion artefacts?S.

A hybrid image-based rendering system was proposed by the authors of paper [95].
Their system renders all distant parts of a terrain model at a server using impostors whilst
the terrain around the viewer is rendered using classical rendering algorithms.

Utilization of IBR techniques is not so wide because computing and graphic power of
contemporary mobile devices is already relatively high.

3.2.5 Geometry data compression

This section contains a brief review of progressive compression techniques, because they
can effectively further reduce the amount of geometry data streamed over network.

Concept of the progressive compression was introduced for the first time by Hoppe in his
progressive meshes [53]. Compression of progressive records is achieved at a high cost, since
positions of split vertices are explicitly encoded. A lot of methods were then introduced
to increase a compression ratio by applying vertex split and edge collapse operations on
sets of independent vertices [138], [L02]. Another approach to improve compression ratio is
presented in [31]. Instead of edge collapses, their approach consists in removing a vertex
and re-triangulating the hole left by previous deletion operation.

Observing that geometry data is larger than connectivity data, more recent research has
focused on geometry-driven compression algorithms [44], [L07]. These works are based on
space subdivision based on kd-tree [44] or more efficient octree cells [107]. A comprehensive
survey of these methods can be found in [106] and [4].

In general, geometry-driven algorithms outperform connectivity-driven algorithms in
terms of lossless compression ratio, but at the expense of quite poor results at intermediate
resolutions (see Figure 3.23), which is the reason why they are not suitable for progressive
transmission over networks.

Additional mesh properties such as colours or texture attributes can often be of greater
size than other data flows within a mesh and can carry a great part of relevant information
in applications such as scientific visualizations. Very few progressive mesh coders allow the

26 Jonathan Shade, Steven Gortler, Li-wei He, and Richard Szeliski. Layered depth images.In Proceedings
of the 25th annual conference on Computer graphics and interactive techniques, SIGGRAPH ’98, pages
231-242, New York, NY, USA, 1998. ACM.
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original model connectivity-driven geometry-driven
34 835 vertices rate: 16.8KB(3.9bpv) rate: 17.4KB(4.0bpv)

Figure 3.23: Original model and results of progressive decoding at similar bit-rates for

state-of-the-art connection-driven algorithm and geometry-driven one?”.

encoding of these information together with geometry except [29]. Here, a geometry-based
method is used together with the kd-tree space decomposition.

Another work [82] proposed a new connectivity-driven progressive encoding of a mesh
and extent it with support for colours associated with vertices. It also proposed a X3D
framework working with such mesh encoding which is suitable for remote progressive sci-
entific visualization of large coloured meshes.

3.3 Streaming of terrains

This section describes state-of-the-art in terrain streaming algorithms. In general, ter-
rain streaming is closely related to terrain data representation and rendering algorithm.
The most common terrain data representations are triangle irregular networks (TIN) and
heightmaps. The terrain created from TIN can be streamed and rendered as a general 3D
geometry with the help of algorithms described in the previous section 3.2. The terrain
represented by heightmaps must be streamed and rendered differently. A comprehensive
survey of interactive terrain rendering of semi-regular multi-resolution models can be found
in [101].

Terrain data is stored at a remote server and are usually progressively transferred to
clients on demand. Time interval between some download request is sent to the server,
and when the transfer of the requested data is finished can be relatively long compared
to accessing local data solely. The size of the time interval is proportional to the network
restrictions such as latency or network bandwidth.

3.3.1 'Triangle irregular networks

Hoppe [55] uses a progressive meshes to simplify a terrain geometry (represented by TIN)
for fast rendering (see Figure 3.24).

He partitioning a terrain model into blocks. Starting from the top detailed level, it
simplifies each block by applying a sequence of edge collapse transformations. To avoid

2T Adrien Maglo, Guillaume Lavoué, Celine Hudelot, Ho Lee, Christophe Mouton, and Florent Dupont.
Remote scientific visualization of progressive 3D meshes with X3D.In ACM, editor, International Conference
on 8D Web Technology (Web3D), July 2010.
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Figure 3.24: Steps in the hierarchical block-based simplification of a terrain done in a

pre-process®®.

refinement dependencies between adjacent blocks, the algorithm constraints edge collapse
operations to leave all boundary vertices untouched. The simplification process terminates
when an approximation error of next best edge collapse exceeds a user-specified threshold
for current level. Then simplification sequences of edge collapse operations are saved to
disk and resulting simplified meshes are stitched together 2x2 at a time. Then the same
process is repeated for the next higher level using these larger blocks.

Methods based on progressive meshes enables the encoded terrain data to be transferred
over network with only small overhead using a progressive streaming approach (see the
section 3.2.2), with optionally compressed progressive records (see the section 3.2.5).

Instead of working with blocks of terrain, a batched dynamic adaptive meshes (BDAM)
[28] method divides an input space into binary trees of right triangles. Each right triangle
represents a terrain patch which is composed of larger group of triangles. These patches
can be computed off-line in a preprocessing step. The BDAM method simplifies pairs of
triangles inside each patch by performing edge collapses based on quadric error metric [415].
The solution to stream the data over network can be based on progressive meshes, but the
work did not propose any solution for this.

The BDAM algorithm is used also in [19]. Here, a new parallel simplification algorithm
runs effectively on current multi-core CPU and GPU. It has the advantage that it does not
require the use of the regular grid so it can be applied to general 3D models.

Mesh simplification is done by successive contractions, or collapses of its edges. To
control the error induced by these collapses, the quadric error metric (QEM) method was
selected because it is naturally well adaptable to parallelism [16]. Both refinement oper-
ations as well as simplification of the model must support parallel execution. The only
operation performed during a refinement process is vertex split. This is why a point can
never see its valence (number of neighbour vertices) decreasing but only increasing, each
time one of its neighbours is split in turn. Therefore, only valence vr of a point R at the
time of its creation (R is a point which remains after an edge collapse) is required by a
decoder: during decompression, a point R will be candidate to a split when its valence
reaches vg.

To enable streaming, it is necessary that order of points during the refinement process

Z8Hugues Hoppe. Smooth view-dependent level-of-detail control and its application to terrain rendering.
In Proceedings of the conference on Visualization 98, VIS '98, pages 3542, Los Alamitos, CA, USA, 1998.
IEEE Computer Society Press.
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on client side is identical to that of the simplification. To ensure this consistency, points
after each simplification stage (collapse batches) are reordered.

Binary structures describing decompression of a model can be compressed by any en-
tropy algorithm such as gzip. Unfortunately, no solution is proposed to handle textures in
both terms of streaming and compressing them.

3.3.2 Heightmaps

Pajarola [99] developed a restricted quad-tree triangulation of terrains, which are repre-
sented by heightmaps. It also proposes a progressive transmission of terrain data over net-
work. The input heightmap is divided into blocks. Each block is triangulated by traversing
a quad-tree hierarchy so that each block is rendered using a single triangle strip. This pro-
cedure is not optimal for GPU, because it requires re-meshing the quad-tree and re-sending
generated geometry back to GPU for every frame as a viewer change its view or position.

He also proposed a progressive transmission of particular height points. The restricted
quad-tree traversal builds up a progressive mesh (defined on vertex insert operation) as a
sequence of vertices which can be transmitted successively. It has the disadvantage that
the traversal must be done on the server to identify the vertices to transmit.

Kim and Ra [68] proposed a networked visualization algorithm combined with wavelet-
based compression. In their approach, a restricted quad-tree mesh model is updated in real
time by wavelet coefficients decoded from a compressed bit-stream. The terrain elevation
grid is divided into blocks and the wavelet coefficients are pre-computed and stored on the
server as hierarchical block-based tree of bit-streams for each block (see Figure 3.25).
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Figure 3.25: Server-client data streaming relationships in?.

In [17] a geometry compression scheme is presented for restricted quad-tree meshes. The
idea behind it is to build a triangle strip from generalized information such as triangle types

(determined by edges across which a path enters and leaves each triangle), windings, and
height values. A compression factor of 8 — 9 is achieved by employing such generalized strip

29Jin Kook Kim and Jong Beom Ra.7 A real-time terrain visualization algorithm using wavelet-based
compression. Vis. Comput., 20(2):67-85, May 2004.
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representation of quad-tree meshes to incrementally encode vertex positions. It allows sig-
nificant reduction of bandwidth requirements when rendering large digital elevation models
(which have to be paged from disk). The decompression can be effectively done on GPU.
The triangle strips are pre-computed and compression is performed in the pre-processing
step. Unfortunately, no solution is proposed to stream such compressed data over network.

TerraVision system II [116] streams and visualizes large terrain datasets using VRML. It
exploits the multi-resolution approach, where the global digital elevation model (GDEM)
of a terrain and the texture map are divided off-line to a regular grid of square tiles at
different resolutions. These tiles are then stored together with other additional information
into particular files (see Figure 3.26).
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’ Hierarchy of Two terrain tile
A tree file GeoTile files pyramids A feature file

Figure 3.26: Unidirectional arcs represent in-line links to files over network. Each tree file
contains a definition of hierarchy of references to geotile files. Each geotile contains reference
to a heightmap, a texture and to additional information such as buildings, streets, names
etc3V.

A newly proposed VRML node called QuadLOD efficiently manages loading and un-
loading of higher levels-of-detail. In effect, the tree files are the glue that holds the geotiles
in the quad structure. The tree file initially downloads a single geotile. As a viewer needs
more detail, the initial geotile is replaced with its four children (at higher-resolution) and
so on. This behaviour is implemented by the QuadLOD node and can be easily applied
to general VRML principles. The system induces the data redundancy and no solution is
proposed to ensure continuity between different levels-of-detail of adjacent geotiles.

Another terrain streaming approach is proposed in [112]. Here, a full terrain heightmap
is divided into small regular tiles which are streamed and managed adaptively. The adaptiv-
ity consists in capability of the rendering algorithm to render the scene on any kind of device
(including slow hand-held as well as desktop workstations) by exploiting device capacity to
draw as much triangles as possible for a target frame rate and memory limitations.

Each visible terrain tile is rendered using a set of precomputed triangle strips. Each

39Martin Reddy, Yvan Leclerc, Lee Iverson, and Nat Bletter. Terravision ii: Visualizing massive terrain
databases in vrml. IEEE Comput. Graph. Appl., 19(2):30-38, March 1999.
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triangle strip is created with different density (see Figure 3.27). The rendering system
renders a specified area around an moving user whilst missing tiles are downloaded or
loaded from cache (see Figure 3.28). It always keeps vertices data of all visible tiles around
a viewer in memory and it only selects the precomputed triangle strip with required number
of triangles. It allows to control the overall number of triangles only by selecting the strip-
masks with different density, so that it can render the terrain on any kind of devices
including also slow hand-helds.

Level 0 Level 1 Level 2 Level 3 Level 4

Figure 3.27: Each triangle strip is precomputed and renders covered height points using
different number of triangles3!.

Remaved or cached

Figure 3.28: Tiles management and caching: a) a square render area made of three belts
centered on a viewpoint, b) square area preservation on viewpoint move and c) illustrates
caching all tiles stored in memory are rendered (only the black rectangular area is rendered
in normal setup)3!

A disadvantage of this algorithm is that the distant tiles or tiles with low importance
contain the full resolution of height data even they are not always fully utilized because the
strip with less number of indices can be selected for those tiles. The terrain tiles are also
transferred only at the highest resolution without considering the rendering requirements.
Moreover, the terrain triangulation is not watertight and is resolved only with the well
known shadow plane projection algorithm.

Streaming of a terrain heightmap is proposed also in [152]. Here, the hierarchical
representation of input heightmap is created as in geometrical mip-mapping algorithm [34]

31Joachim Pouderoux and Jean-Eudes Marvie. Adaptive streaming and rendering of large terrains using
strip masks. In Proceedings of the 3rd international conference on Computer graphics and interactive tech-
niques in Australasia and South Fast Asia, GRAPHITE ’05, pages 299-306, New York, NY, USA, 2005.
ACM.
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by sampling from the input heightmap with step 2", where n is current level-of-detail in the
hierarchy. First only coarser data in the large range of terrain around a user is transferred.
Further, the detailed data in the user view frustum is transmitted. Since coarser height
data is already present in the client cache, only missing height data will be transferred from
server to the client.

During rendering the terrain, the detailed data must be restored from the basic coarse
data and from received increments. Such approach can reduce redundancy between succes-
sive levels-of-detail but at the expense of reconstruction of them by the client (in the case
they are not yet in the client cache).

A generic solution for streaming of heightmaps for a planetary scale terrain renderer is
proposed in [74]. Here the sample height map is divided into a complete and uniform tree
of blocks (each block is regular fixed size part of terrain heightmap) and samples of these
blocks are organized in a structure with increasing resolution (see Figure 3.29).
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Figure 3.29: Construction of a three-level quad-tree of blocks: (a) Successive uniform

subdivisions of the terrain (red frames cover the same terrain area). Block 1 is the root
and covers the entire terrain. (b) Corresponding tree of blocks2.
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The main idea is similar as in [152] so that samples within each block are shared across
all LODs instead of duplicating them (see Figure 3.30).
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Figure 3.30: Block refinements of basic block with 9 height samples (these points come from
parent), (a) Red samples (second LOD) are interleaved between black ones (first LOD), (b)
Green samples (third LOD) are added and the array is now full®2.

32Raphael Lerbour, Jean-Eudes Marvie, and pascal Gautron. Adaptive streaming and rendering of large
terrains: A generic solution.In The 17th International Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision’2009. Vaclav Skala, feb 2009.
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All height samples from the much coarser level and all height samples from the next
finer levels are serialized in a coarse to fine order and are stored on server. An advantage
is no redundancy when incrementally streaming the terrain blocks, but at the expense of
costly data structure operations at client. The same principle is used also in the system for
streaming large complex scenes trough HTTP [30].

Extension of the BDAM algorithm - C-BDAM (compressed batched dynamic adaptive
meshes) [19] is based on the idea, that controlling triangle shapes during simplification
to reduce triangle counts is no longer of primary importance regarding the modern GPU.
Instead of working with irregular triangle networks the regular grid is used rather and the
mesh simplification/refinement operators are replaced by digital signal processing opera-
tions. Instead of using edge collapse and vertex split operations, the C-BDAM algorithm
uses a wavelet analysis for coarsening of the heightmap and a wavelet synthesis for refine-
ment of it.

In [10] a similar approach is described as in C-BDAM [19]. Here, the used wavelet
schema can be constructed using a parallel single-pass compression process which can be
decoded by clients even with low computational power.

Wavelet based encoding of terrain details is used also in [118]. Here, the terrain data
in a suitable form for streaming is represented as a much coarse polyhedron with a set
of wavelet coefficients which can be interpreted as local deformations of the input ter-
rain shape. Wavelet based solutions are advantageous for their compression efficiency and
intrinsic ability to multi-resolution visualization and streaming with low complexity of a
reconstruction algorithm.

A hybrid algorithm to stream only a portion of large terrain around a viewer is described
in [95]. The proposed algorithm combines rendering of heightmap around the viewer with
impostors. The terrain is divided by regular grid to equal sized height tiles so that each tile
covers a square area including (2" 4+ 1)z(2" 4 1) height values, where n is an integer value
greater than zero. Each tile is then associated with single quad-tree. The quad-tree stores
much coarse height tile at its root. The quad-tree is recursively subdivided and each child
node adds a set of terrain points which were missing in the previous levels.

The hybrid part of the algorithm is based on the idea, that distant parts of the terrain
can be rendered at the server (panorama) and transferred back to the client which effectively

renders them as impostor (see Figure 3.31).
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Figure 3.31: (a) Synthesis of nearby terrain rendered at client and the panorama rendered

at server, (b) splitting the view volume as a terrain to be rendered and a panorama®3.

33José M. Noguera, Rafael Jests Segura, Carlos J. Ogayar, and Robert Joan-Arinyo. Navigating large
terrains using commodity mobile devices. Computers & Geosciences, 37(9):1218-1233, 2011.
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When streaming terrain data, the server sends only height points for requested quad-tree
nodes. Until they arrived to the client, the coarser data is used to render the terrain. Update
of the panorama images is based on perspective projection principle so that the changes in
projection of distant points for small moves of a viewer are almost unnoticeable. Therefore,
updating strategy of the panorama images is based on estimation of the error incurred in a
rendered scene when the viewer moves but the panorama would not be updated. A detailed
description of a client-server architecture which extends the previous hybrid algorithm with
multi-client environments is presented in [96].

Suarez et al. [132] introduced a virtual globe framework. They render a planetary scale
terrain using a simple quad tree of chunks of heightmap, where he gaps between the tiles
at different LOD are resolved simply by skirts (see Figure 3.32).

—

it

Figure 3.32: (left) A terrain chunk without skirts, (right) with skirts34.

In [35] a terrain tiles streaming system transmits a very low resolution heightmap for en-
tire terrain dataset at the beginning. As a viewer moves, higher detailed data is streamed to
a client depending upon the viewer position. When requesting some tile, the last transferred
resolution of the tile is checked and only residues between the requested high resolution tile
and the super-sampled version of the low resolution tile is transmitted to the client. The
residue is compressed using a progressive transform codec (PTC) [83] before transmission.

In [57] the authors pointed out that when using a 4-8 hierarchy, the rectangular tiles
associated to each diamond could be also compressed using standard 2D image compression
methods. The work proposes an efficient method for incorporating compression of both
height and texture information within the BDAM algorithm.

3.4 Streaming and rendering of textures

Utilizing large amount of textures is not usually the main point of interest of published
multi-resolution rendering techniques. But the amount of texture data can be more than one
order of magnitude larger (typically terrain heightmaps with high resolution orthographic
textures) compared to the amount of geometry data.

Large textures processing was first studied by Williams [148]. He introduced texture
level-of-detail, represented by images with increasingly reduced resolution arranged into a
pyramid. Starting with the finest level, each coarser level represents an image using one
quarter of the texels from previous finer level (half the number of texels in each dimension).
Per-pixel rendering with is accomplished by projecting the pixels into the mip-map space
using texture coordinates and camera transformations. The rendered pixels are coloured

34José P. Sudrez, Agustin Trujillo, Manuel de la Calle, Diego D. Gémez-Deck, and Jose M. Santana. An
open source virtual globe framework for ios, android and webgl compliant browser. In Proceedings of the
3rd International Conference on Computing for Geospatial Research and Applications, COM.Geo ’12, pages
22:1-22:10, New York, NY, USA, 2012. ACM.
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using a variant of trilinear interpolation of eight texels taken from two adjacent levels from
the mip-map hierarchy.

Reddy at al. [116] utilized a multi-resolution approach, where the global digital elevation
model of terrain and also the texture map are divided off-line to a regular grid of square
tiles at different resolutions. These tiles are then stored together with other additional
information into separate files (see Figure 3.26 and Figure 3.33). The rendering algorithm
efficiently manages loading and unloading of the higher levels-of-detail from these files.

@ (b)

Figure 3.33: An example image pyramid showing (a) four different resolutions of the original
image, where each level is segmented into 128 x 128 pixel tiles, and (b) how this structure

can be used to alter the image resolution in different regions3?.

Dollner et al. [37] used memory-mapped texture files for textured terrain visualization.
Their method utilizes a tree of texture patches in conjunction with a hierarchical model of
the terrain geometry (see Figure 3.34). During rendering, the hierarchical terrain model
is simultaneously traverses together with the texture tree of patches, selecting terrain and
texture data according to a user-defined visual error requirements.

Ulrich [142] combined a quad-tree of mip-map tiles, called chunks, to handle huge tex-
tured terrains. The texture and the geometry chunks are generated in a preprocessing step.
A single texture is defined for each chunk. Its resolution is determined by screen-space error
metric at run-time. At the pre-processing step, it can be guaranteed that a projected texel
size at run-time will not exceed 1 texel per pixel.

Cignoni et al. [28] demonstrated an ability to display of large textured terrains in real-
time. They used a quad-tree texture hierarchy and bin-tree of triangle patches over triangle
irregular mesh (TIN). Triangle patches are constructed off-line and are selectively refined
from scratch each frame. The textures are organized in a quad-tree of square tiles. Their
rendering algorithm traverses the texture quad-tree and corresponding patches in the ge-
ometry bin-tree until defined space error tolerance is reached.

In [56] a texture mip-map quad-tree (TMQ) is used to represent large textures for
terrains. Each node of the TMQ corresponds to a rectangle region from the original texture,

35Martin Reddy, Yvan Leclerc, Lee Iverson, and Nat Bletter. Terravision ii: Visualizing massive terrain
databases in vrml. IEEE Comput. Graph. Appl., 19(2):30-38, March 1999.
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Figure 3.34: Conceptual model of multiple texture layers. Each texture layer contains
a texture tree which is in conjunction with the terrain LOD [37]. The work distinguish
between four texture layers: colour texture layer, luminance, topographic layer with shading
information and finally the visibility layer which specifies the visibility of other texture

layers36.

and each sub-image in a region is further organized into a mip-map (see Figure 3.35). All
nodes in the TMQ has the same resolution, but cover different sized triangle regions. All
triangles within each region share the same texture no matter how far they are from a
viewpoint. This causes aliasing in closer views. Therefore, for each texture assigned with
nodes is generated a mip-map structure, which is further compressed to reduce redundancy.

Most multi-resolution texture algorithms use a quad-tree of textures, where all tiles
have the same number of texels and particular children cover one fourth of the area covered
by their parent. Selecting adjacent tiles where texels per unit area differ by factor of four
(factor of two in each direction) can produce visual discontinuities. In [57] a novel texture
hierarchy is introduced to handle the texture level-of-detail for extremely large surfaces.
It provides twice as many levels-of-detail compared to the conventional quad-tree-style

36 Jiirgen Dollner, Konstantin Baumann, and Klaus Hinrichs. Texturing techniques for terrain visualization.
In Proceedings of the 11th IEEE Visualization 2000 Conference (VIS 2000), VISUALIZATION ’00, pages —,
Washington, DC, USA, 2000. IEEE Computer Society.
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Figure 3.35: The first three levels of texture mip-map quad-tree (TMQ). Each node covers
one quarter of its parent and is pre-filtered into a mip-map and compressed3”.

refinement schemes such as mip-maps. The texture hierarchy is based on 4-8 refinement of
raster tiles, in which texture grids in effect rotate 45 degrees for each level of refinement
(see Figure 3.36).
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Figure 3.36: Low-pass filtering is performed by collecting both cell-centered values (hollow
dots) and vertex-centered values (solid dots) from the four children of a tile (diamond).
One child is highlighted, and weight masks for interior and corner cases (which potentially

needs data from adjacent tiles) are given®®.

To generate one level coarser texture tile, half of each of its four children tiles are needed.
The filtering works as follows. New vertex-centered values will be stored as new values in
a coarser tile, and are recomputed using weighted averages from an old cell- and vertex-
centered values obtained from its children. This low-pass per-pixel view-dependent filtering
is twice as close to an ideal cut-off frequency for an average pixel. It allows rendering
systems to avoid complexity and performance costs of per-pixel blending between texture
levels-of-detail compared to the quad-tree based solutions.

The general approach to handle large scale texture data is virtual clipmaps method

3"Wei Hua, Huaisheng Zhang, Yanging Lu, Hujun Bao, and Qunsheng Peng. Huge texture mapping for
real-time visualization of large-scale terrain. In Proceedings of the ACM symposium on Virtual reality
software and technology, VRST ’04, pages 154-157, New York, NY, USA, 2004. ACM.

38Lok M. Hwa, Mark A. Duchaineau, and Kenneth I. Joy. Adaptive 4-8 texture hierarchies. In Proceed-
ings of the conference on Visualization 04, VIS ’04, pages 219-226, Washington, DC, USA, 2004. IEEE
Computer Society.
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presented in [134] as an extension of mip-maps. It also utilizes a factor-of-four texture
pyramid and i allows arbitrarily large out-of-core textures to be handled. This algorithm
utilizes the fact that the complete mip-map pyramid is rarely used during rendering a single
view, allowing large textures to be used, because much of the pyramid can be clipped away.
Recently, implementation of these principles is possible with programmable GPU [39] and
is known as virtual textures, megatextures or sparse virtual textures.

All textures used in the scene are stored (baked) into a single large texture. The texture
coordinates of all textured objects in the scene are transformed into the large texture. The
large texture is further partitioned into tiles and arranged in a pyramidal structure called
texture atlas, thus containing all texture mip-maps (see Figure 3.37).
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Figure 3.37: An example of texture atlas with ten mip levels of the single large virtual
39

texture”.

During rendering, a texture tile at appropriate level-of-detail is determined for each pixel
and all the tiles needed for rendering the current frame are uploaded to a single physical
texture object allocated at GPU. The texture coordinates of the underlying geometry have
to be remapped from the large virtual texture space to the small physical texture on GPU
(see Figure 3.38) according to address of the uploaded texture tiles in the physical texture.

The main advantages of the virtual texture algorithm are that it is no more necessary
to clip the scene geometry according to the texture tiles, the consumed physical texture
memory stays always fixed no matter what size of the virtual texture is, and finally it has
per pixel precision.

The disadvantage is that the identifiers of missing texture tiles have to be downloaded
from GPU to CPU to select and upload the requested tiles to the physical texture by CPU.
The time for uploading the missing tiles to GPU is large, but this task can be done using
hardware supported DXT compression for the best performance. Current high end graphics
accelerator AMD Radeon 7970 supports hardware accelerated creation of texture atlases
and hardware accelerated determination of missing texture tiles with its Partially Resident
Textures technology [5].

39 Albert Julian Mayer. Virtual texturing. Master’s thesis, Institute of Computer Graphics and Algorithms,
Vienna University of Technology, Favoritenstrasse 9-11/186, A-1040 Vienna, Austria, October 2010.
39 Albert Julian Mayer. Virtual texturing. Master’s thesis, Institute of Computer Graphics and Algorithms,
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Figure 3.38: The page-table texture contains addresses of loaded virtual texture tiles in the
physical texture on the GPU3Y.

3.4.1 Streaming of texture data

Rendering algorithms can exactly determine the texture tiles needed to be downloaded from
a remote server to clients. Handling of the large amount of textures is usually supported
with quad-tree structures of texture tiles. Streaming systems request texture tiles from the
remote server starting from the much coarse resolution and continue to the finer ones as
they are requested by the rendering algorithm.

The main difficulty of current texture streaming systems is redundancy of transferred
texture data. Consider the widely used quad-tree structures. All tiles at the finest level of
the quad-tree compose together the original full resolution texture. Coarser texture tiles
from higher levels of the quad-tree hierarchy contain only redundant data as they can be
obtained from the finest level.

Instead of transferring particular texture mip-map levels represented by tiles from dif-
ferent quad-tree levels, it will be more effective to enable the progressive transferring of the
texture data. Progressive transferring of textures gets more important in the case, that it
is possible to download only mip-map levels needed to produce the best visual representa-
tion for given viewpoint. This can be achieved successfully e.g. with the virtual textures
algorithm, which is per-pixel precise.

Many of today image compression methods propose progressive transmission mecha-
nisms, including row interlacing (GIF), scan-based progressive encoding (JPEG),and hi-
erarchical progressive encoding [126], [58]. The hierarchical progressive encoding schemes
based on zero-tree techniques enable scalable progressive transmission based on resolution
or peak signal-to-noise (PSNR). However, the resulting reduced redundancy comes at the
expense of computational cost for decoding.

Another alternative is S3 texture compression (S3TC), which provides good compression
ratio (6:1). It is directly supported in hardware even on old graphic accelerators. This
technique is very useful to reduce system bus transfers as well as consumed GPU memory.

Vienna University of Technology, Favoritenstrasse 9-11/186, A-1040 Vienna, Austria, October 2010.
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Unfortunately the S3TC has no progressive like feature concerning mip-maps. Moreover
the compression ratio is worse than standard loose image compression techniques such as
jpeg so that they are not the best choice for streaming over network.

Marvie et al. [34] presented a new progressive texture map (PTM) format that encodes
mip-map levels of a texture map into a compact and progressive way which allows trans-
ferring of mip-maps level by level with minimal redundancy. The PTM consists in storing
only a portion of each level, whilst the rest can be reconstructed using few additional data
and previous coarser mip level (see Figure 3.39).
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Figure 3.39: Three lower levels of a square PTM. For each level, the dotted lines surround
pixels that are transmitted from server to a client (partial mip-map level) and the bold lines
surround pixels that are computed on the client side. F' is a low-pass filter that transforms
a level n into a level n — 1protect?C.

The low pass filter F'is a 2 x 2 matrix applied to each colour component of the source
mip-map level and is defined as follows:

(1)

A colour component [} "J L of a texture pixel P” L of mip-map level n—1 is obtained using
the equation 3.4, where I'; is intensity of colour component of pixel P; of the mip-map
level n having a width and a height equal to [,, and h,, respectively.

Vi,j € Z
Z i2tij2rm |t < hn-1 (3.4)
00§<nl’b<§11 J<ln
The PTM is used to stream textures over network also in [36] (see Figure 3.40).

49Jean Eudes Marvie and Kadi Bouatouch. Remote rendering of massively textured 3D scenes through
progressive texture maps.In The 3rd IASTED conference on Visualisation, Imaging and Image Processing,
volume 2, pages 756-761. ACTA Press, Sept 2003.
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Figure 3.40: Progressive textures are encoded by chunks representing partial mip-map
levels, and lossless reconstruction of missing texels (in red) at a client*!.

Small mip-map resolutions are stored in the first chunk of data, whilst the higher resolu-
tions are stored in the next chunks. Each chunk is compressed using lossless ZIP compression
method. A disadvantage of the progressive texture maps is that the lossless compression
must be used, because the original uncompressed data is necessary to reconstruct the con-
secutive mip-map levels. Therefore, the amount of transferred data using lossy compression
with sending the complete mip-map levels is similar as for the PTM, but the PTM algorithm
has additional computation overhead at the client side to reconstruct the finer mip-maps.

41 Jean-Eudes Marvie, Pascal Gautron, Pascal Lecocq, Olivier Mocquard, and Francois Gérard. Stream-
ing and synchronization of multi-user worlds through http/1.1. In Proceedings of the 16th International
Conference on 3D Web Technology, Web3D ’11, pages 111-120, New York, NY, USA, 2011. ACM.
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Chapter 4

Scheduling and Prefetching
Mechanisms for Walkthrough
Applications

This chapter describes state-of-the-art of scheduling and data prefetching algorithms used
in distributed virtual walkthrough applications. The data prefetching is an important part
of complex process of scheduling data transmission over network.

The most frequently used scheduling and data prefetching algorithms are based on
visibility determination (e.g. view-frustum culling, area of interest (AOI) determination,
potential visible sets, etc.), motion functions, or combination of both approaches.

4.1 Visibility determination

Visibility determination algorithms can significantly reduce the overall amount of trans-
ferred data because it is not necessary to transmit the hidden geometry. The basic visibil-
ity determination algorithm widely used in walkthrough applications is well known view-
frustum culling. It is based on very simple idea such as only the objects in view-frustum of
a viewer will be downloaded. Other widely used visibility determination methods are Area
o Interest (AOI) determination and potential visible sets (PVS) determination.

4.1.1 Area of interest

Scheduling of data transmission in distributed virtual walkthrough applications is widely
solved using AOI determination algorithms. The AOI is defined as a circular area around
a viewer [123], [52], [111], [146], [27].

A complex strategy for rendering in distributed virtual environments is presented in [123].
Here, several techniques including level-of-detail, progressive refinement and graceful degra-
dation are combined together to deliver the requested data just in time over network to the
rendering process.

Instead of downloading a complete scene content, it is sufficient to transfer only the
data in a spherical area around a user which represents its AOI (see Figure 4.1). The
fundamental idea is to consider static levels-of-detail as a unit of network transmission.
Only those levels-of-detail of objects that are needed for rendering needs to be available
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Figure 4.1: A distributed geometry database - a server stores geographically dispersed
objects (small white circles). View of each client (user) is limited to an AOI (large circles).
If the AOIs overlap, clients can see each other (small black circles)?2.

o
o o

locally in the client cache. As the user moves the selection of LODs changes.

To compensate delay introduced by transferring the missing LODs, a prefetching mech-
anism is used such as when LOD selection algorithm selects certain level-of-detail, the
prefetching algorithm requests the next finer level instead (see Figure 4.2).

object path o

time request| display
t1 LODI1

t2 LOD2 | LODI1
t3 LOD3 | LOD2
t4 - LOD3
t5 - LOD2
t6 - LODI1
t7 -

Figure 4.2: A prefetching strategy. As an object moves through the AOI (see arrow), it
traverses multiple zones indicating which LOD of the object is displayed. The next finer
LOD is always requested one zone in advance to compensate network delay??.

Since the objects approached will be displayed with increasing resolution, the distance
of them from the viewer must be sufficient regarding the network latency. If the prefetching
algorithm fails or until a requested LOD is received, an available coarser LOD is displayed
instead. This strategy assumes high frame to frame coherence. The prefetching algorithm
also fails if the viewer or objects are moving too fast so an appropriate LOD cannot be
downloaded in time.

Chim et al. [27] introduced a storage caching and prefetching mechanism which allows
virtual objects from a remote database server to be cached in a local storage of a client
at various resolutions. The database sever contains objects encoded as progressive meshes
and are streamed to the local storage on clients on demand. Each object in a scene has
its own object scope. The object scope is similar to the AOI. Each object scope defines an
area in which the object will be visible for a viewer (see Figure 4.3).

The viewer has also its own scope called viewer scope. Practically, it defines the viewer’s
depth of sight. The viewer can see an object only when their scopes intersects. To determine

42Djeter Schmalstieg and Michael Gervautz. Demand-driven geometry transmission for distributed virtual
environments. Comput. Graph. Forum, 15(3):421-431, 1996.
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object scope

object scope

viewing region

viewer scope

Figure 4.3: Organization of the virtual world3.

an appropriate resolution of visible objects for rendering, the authors propose a new function
for optimal resolution estimation. Optimal resolution of an object model can be defined
according to a visual importance of the object to the viewer. The visual importance is
defined as a percentage of its maximum resolution, i.e. the number of progressive records,
and is determined according to the object distance from the viewer and an angular distance
of the object from viewing direction, i.e. line of sight (see Figure 4.4).

object scope

viewer scope

object scope

object o

Figure 4.4: Visual importance of an object o to a viewer V in a virtual environment?3.

The visual importance of the object o can be defined with the following formula:

Do,maac - Do

Do,maa:

IO = ( >2é7K0|9‘70 S DO S Do,maz (41)

where D, 1,4 is defined as a sum of radii of a viewer scope and an object scope, D, indicates
current distance of the object from the viewer, 6, is the angular distance (—7 < 6, < )
of the object o from the viewer’s line of sight, i.e., its viewing direction T, and K, is

a constant for adjusting decrement rate of object o due to increase in 6,. The optimal
resolution of the object o is then defined as I, fraction of the number of progressive records.

43Jimmy H. P. Chim, Mark Green, Rynson W. H. Lau, Hong Va Leong, and Antonio Si. On caching
and prefetching of virtual objects in distributed virtual environments. In Proceedings of the sizth ACM

international conference on Multimedia, MULTIMEDIA ’98, pages 171-180, New York, NY, USA, 1998.
ACM.
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To enable prefetching, the server maintains a separate profile for each viewer V, con-
taining a set of historical movement vectors {ml, m, ey mn_l}. When the viewer V' moves
to a new position, the new movement vector m,, is calculated. Each vector is calculated
from corresponding viewer position and orientation, containing the moving direction and
the moving distance.

The server attempts to predict th next movement vector and transmits such progressive
records that would be needed if the viewer V will be at the predicted position. These
predicted progressive records are transferred in addition to the needed records for renderable
objects at the current position. Three different schemes are proposed to compute weights
of the members of the set of historical movement vectors: mean, window, and exponential
weighted moving average (EWMA). For details see the section 4.2.

Different AOI method was proposed by Hesina at al. [52]. They optimally utilized net-
work bandwidth by downloading only the exact portion of geometry which is necessary for
rendering the current view. Their solution is based on progressive geometry data struc-
tures (see Figure 4.5) and on the observation such that relative importance of each object
is proportional to its size in final image [12].

" 253 triangles 930 triangles 931 triangles - 13594 triangles,’
o (2%) / R ‘\(6.841%) (6.848%) (100%)

geometry data transmission

Figure 4.5: Smooth levels-of-detail allow progressive transmission of an object and display
44

it at desired resolution™*.
The importance of given object can be expressed by the number of polygons with the
following formula:

B A(z)*- P
p(a) = S AG (4.2)

where p(z) is the selected number of polygons for the object O(z); P is the number of
polygons determined by rendering algorithm to preserve rendering cost of the current frame
with the given set of objects; A(1) is the screen-size of the object O(i) and « is the correction
factor (0 < o < 1), which express the fact that visual quality does not linearly depend on
the number of polygons.

As each client must know in advance which objects or which parts of them should
be downloaded, a larger AOI radius is considered for prefetching. For each object in the
prefetching AOI, the amount of geometry that should be downloaded must be determined.
The prefetching algorithm assumes that the user has travelled toward each object in the

44 Gerd Hesina and Dieter Schmalstieg. A network architecture for remote rendering.In Proceedings of the
Second International Workshop on Distributed Interactive Simulation and Real-Time Applications, DIS-RT
'98, pages 88—, Washington, DC, USA, 1998. IEEE Computer Society.
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prefetching AOI by a constant distance. From an increased screen size the desired number
of polygons p(z) of each object is computed as in previous formula:

_ . Ax)>P
P = S 4 (4.3

where p(z) is the desired number of polygons for the object O(x) and A(7) is the increased
screen-size of O(7).

The amount of geometry which should be downloaded for each object can be calculated
as a difference between the desired and the available number of polygons and is further
weighted by available bandwidth expressed as the number of polygons downloaded per
time unit:

_ (p(x) — avail(x))- P
>_p(i) — avail(i))

where DL(z) is the number of polygons to be downloaded for the object O(z), avail(x) is
the number of locally available polygons for the object O(z) and P is the polygon budget
per time unit.

Park et al. [104] assumed that considering the possibility of rapid rotation of user move-
ment, ignoring angular distance is more reasonable for determining download priority of
objects. Hence, they distinguish between walking mode (expecting rapid rotations) and
moving mode.

Moreover, they proposed user-based prefetching exploiting object access priority gen-
erated from spatial distance and individual user interests, because the spatial relationship
fails to determine which types of objects are more important for the individual users. By
combining the interest score and the popularity score of each object with spatial relation-
ship, the prefetching accuracy can be increased. Access priority of the object O by the user
A is determined as follows:

DL(z) (4.4)

AP(A,0) = aDS(A,0) + (1 — )[BIS(A,0) + (1 — B)PS(O, W)] (4.5)

where DS(A,0), IS(A,0) and PS(A,W) represent the distance score, the interest score
and the popularity score respectively. The o and 8 are modulation parameters, where «
controls degree of spatial relationship in the calculation of access priority of the objects,
and S determines which one contributes more to access priority between the interest and
the popularity. The prefetching is based on considering larger area of interest around the
user as in [52].

An architecture for just-in-time data replication in network virtual environments focused
on quality of service is presented in [111]. Data replication is controlled as in a pull network
model, where a data flow is controlled by clients. This requires, that each client has acquired
the description of the virtual environment before any navigation process starts.

The scene-graph is composed of nodes which are defined as a pairs of geometrynodeU RL
and sizeofgeometry file. Download time of each node can be estimated based on its known
data size and on available bandwidth. This estimation model and user navigation are com-
bined together so they define the prediction model for achieving requested QoS. Prefetch
manager keeps a table with time penalties (calculated from estimated client network band-
width) for all not downloaded nodes in user AOI. Final size of the user’s AOI is computed
so that the largest (in terms of data size) object in the scene can be downloaded in time
for being rendered.
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Two methods are used to estimate the time T4 Wwhen geometry of a node becomes
visible. The first method uses magnitude of a viewpoint speed vector while the second
method takes into consideration direction of a viewpoint motion:

size(object)
T, = —" 4.6
download bandwidth ( )
Tbuffer = Lresponse + Tparam (47)
VO — R
. Topsie = IV Coti Hm“m”l”’“e“) (4.8)
- (Hﬁobju - Rvisible,area)
I1. Tvisible = W (49)
obj
< ’ HVE 0bj||>

where ¥ is speed of the viewpoint and ||ﬁ|| is viewpoint-object vector.

Speed estimation used in the second T equation employs a moving average predic-
tor, which is described in detail in the section 4.2. The advantage of the second method
is that the prefetching is more optimized thus reduce wasting of bandwidth. The buffer-
ing time Ty, fer is composed of response time of server and a parameter proportional to
standard deviation of instant traffic measurements.

Replication policy is defined so that whenever a time to get to a node is less than
its download time plus buffer time (accounting for variation in connection bandwidth), a
geometry will be requested (see Figure 4.6):

Tvisible < Tdownload + Tbuffer (410)

/ v*T;\downloa&(,\B)

| s@ —

Figure 4.6: Prediction for just-in-time data replication. The black dots are visible areas of

objects A, B and of the viewer®.

Figure 4.6 illustrates download mechanism for the first replication method. The repli-
cation condition was represented by circles proportional to the time computed using the

45@G. Popescu. On scheduling 3d model transmission in network virtual environments. In Proceedings of
the Sizth IEEE International Workshop on Distributed Simulation and Real-Time Applications, DS-RT ’02,
pages 127—, Washington, DC, USA, 2002. IEEE Computer Society.
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equations 4.6 to 4.8. The download starts when the circle A or B overlap the viewpoint
circle.

Object transferring priority determined from its position in an AOI is presented in [75].
Here, the important objects are the ones whose scopes intersect with the viewer scope. The
viewer scope is divided to three regions with different transferring priority of objects inside
them as is shown in Figure 4.7a.

5

R

%
QHKNXS

XXX

bl

»

Prefetching
Region

() (b)

Figure 4.7: (a) the viewer scope partitioning and (b) prioritized content delivery queues*®.

The region @) is visible region with highest download priority. ()2 is potential visible
region, composed of QQa, and Q9. All objects inside ()» are not actually visible to a
viewer, but will become visible if the viewer moves forward or turns around. Objects from
this region can be transferred to clients right after all objects from region (); are already
transferred. Finally, Q)3 is a prefetching region such that objects inside it can be pre-fetched
only if all objects from the previous regions are already downloaded.

The content delivery queues shown in Figure 4.7b are determined as follows. Objects
inside each queue are first sorted by their angular distances A,, from viewer line of sight and
then, they are sorted by their distances D,, ;,, from the line of sight. Scheduling algorithm
here first selects a query from the left-most vertical sub-queue (lowest A,,) to the right-most
one (highest A,,), one by one. Objects from each sub-queue are selected to transfer starting
from the top to bottom.

In [146] a new prefetching scheme called scalable multi-layer area of interest (SMLAOI)is
proposed to solve the case the number of objects covered by a viewer AOI becomes too large
to be downloaded satisfactorily. This scheme divides the area of interest around the viewer
to several concentric circles. Each circle is divided into two sectors, the first @), with 120
degrees and the another one Q) with 240 degrees (see Figure 4.8).

The scene management algorithm divides the whole scene into a grid of 2D cells and
determines a list of overlapped virtual objects for each cell. The virtual objects are
progressively represented and are described using the VRML/X3D extensions as is de-
scribed in [40]. Such representation of virtual world and its objects is suitable for the
SMLAOI algorithm, because the download priority of content of all cells can be set as
Q1a > Q1p > Q24 > Qop > ... > Qpa > Qnp, where n is the number of circles (layers).

46Frederick W. B. Li, Rynson W. H. Lau, and Danny Kilis. Gameod: an internet based game-on-demand
framework. In Proceedings of the ACM symposium on Virtual reality software and technology, VRST ’04,
pages 129-136, New York, NY, USA, 2004. ACM.
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Figure 4.8:  The SMLAOI concept divides the AOI to parts with different download
priority?7.

4.1.2 Potential visible sets

Marvie et al. [85] presented VRML-X3D extension describing precomputed cell-to-cell, cell-
to-object and hybrid visibility relationships in context of progressive transmission. A virtual
scene is composed of cells. Each cell (VRML97 build-in node named ConvexCell) is delim-
ited by a convex volume whose boundaries are described using a set of convex polygons.

During navigation, the current cell holding a viewpoint determines the geometry which
is needed to be downloaded and displayed. Each cell contains its own geometry and a list of
all potentially visible cells (see Figure 4.9b). During navigation, the set of potential visible
cells for the current cell is downloaded. First, the cells completely outside of a view frustum
are culled from rendering based on their convex volumes. Second, the objects inside the
remaining cells are also culled by the view frustum. Only the objects that are present in
the view frustum are rendered.

To handle indoor scenes (cell-to-cell visibility) together with outdoor scenes such as
streets with lamps (cell-to-object visibility), the authors developed a hybrid visibility ap-
proach. It has the advantage, that it can eliminate large amount of references to objects
when cell-to-object visibility is used (see Figure 4.9a). The large amount of references
appears because each cell references a lot of the same objects.

The proposed hybrid visibility approach divides outdoor scenes (for example streets with
lamps) into cells and references these cells instead of individual objects (see Figure 4.9¢).

The pre-fetching scheme consists of three steps. The first fetching step is performed
when a navigation starts or when viewpoint is moved to different cells. In this step, the
content of the current cell and also the information about its potential visible sets are
downloaded. In the second step, content of the adjacent cells to the current cell and their
potential visible sets are downloaded asynchronously. Once te content of the first adjacent
cell is downloaded, the third step can start pre-fetching. The third step relies on motion
prediction to find the next adjacent cell that will be visited but whose content are not
yet downloaded. The motion prediction algorithm uses ray-casting to determine the next
adjacent cells so that the ray is computed from the two most recent viewpoints.

4"Wei Wang and Jinyuan Jia. An incremental smlaoi algorithm for progressive downloading large scale
webvr scenes.In Proceedings of the 14th International Conference on 3D Web Technology, Web3D 09, pages
55-60, New York, NY, USA, 2009. ACM.
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Figure 4.9: (a)cell-to-geometry relationship, the green volume is the evaluated cell and the
red marked geometry represent visible objects, (b) cell-to-cell visibility relationships, the
green cells are potentially visible from the red one, (c) hybrid visibility relationship, where
the lamps are objects visible from the evaluated red cell and the green cell composes the

potential visible cell from the red one*®.

Later, Marvie et al. in [86] proposed a complex planetary rendering system. They
used the previous hybrid visibility algorithm [35], and data streaming supported by various
methods for each layer of the planet (see Figure 4.10).  The scheduling and prefetching

; GeoLOD 0
Terrain 0

Terrain 1

Terrain 2

Terrain 3
Visibility
structuration

Figure 4.10: Altitude of the viewpoint drives management of the levels-of-detail. At ground
level a more optimized representation of the world based on visibility relationships between
cells of a uniform grid is used. The terrain itself is managed separately using dedicated
streaming techniques based on HTTP/1.1 chunk reads*’.

mechanisms here are controlled by visibility determination between the scene nodes equally
as is described in [85].

A method, where the scene is represented using a graph, where the nodes are view-cells
(parts of streets) and te edges denote adjacencies among these cells is proposed in [20] (see
Figure 4.11). The pre-fetching algorithm is transformed into graph partitioning problem
where the partitions might overlap with each other.

8 Jean-Eudes Marvie and Kadi Bouatouch. A vrml97-x3d extension for massive scenery management in
virtual worlds. In Proceedings of the minth international conference on 8D Web technology, Web3D ’04,
pages 145-153, New York, NY, USA, 2004. ACM.

49 Jean-Eudes Marvie, Pascal Gautron, Pascal Lecocq, Olivier Mocquard, and Francois Gérard. Stream-
ing and synchronization of multi-user worlds through http/1.1. In Proceedings of the 16th International
Conference on 3D Web Technology, Web3D ’11, pages 111-120, New York, NY, USA, 2011. ACM.
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Figure 4.11: View cells (parts of streets) to graph mappping®®.

The method they proposed is developed for virtual walk through urban environments,
where buildings are occluders so that a viewer navigating along the streets may only see
only a small part of the whole scene. The graph is partitioned into prefetch groups using two
following criteria: high probability of transitions from the source and destination nodes into
the same group, and nodes in which the viewer stays for short time should pull their adjacent
nodes into the same group. The authors experimented with simulated annealing method to
minimize the maximum transition cost or minimize the popular path cost. The experiments
are performed only with synthetic input data sets. Therefore, practical application of this
method has not been proven. It is also difficult to develop an efficient heuristic so the global
optimization can help local optimization or vice versa.

Data prefetching for image based rendering systems on mobile platforms is proposed
in [13]. Here, a scheduling and buffering mechanism for on-time image delivery is specified
for remote virtual environment exploration applications. The main idea of the buffering
scheme here is to have all the possible viewpoints that the user can visit in next step
available already in client cache memory (see Figure 4.12).

The server decides which viewpoints will be requested by the rendering engine based
on the last received position updates. The server application also determines the priority
of all possible viewpoints. The viewpoint with the highest priority will be used to render
the scene on the server. The scheduling mechanism uses a fixed look ahead (LA) approach
which requests images that may be needed in LA steps in advance. Each step is defined
as the time it takes to move from one viewpoint to another. The scheduling mechanism at
the server must guarantee, that the scene image rendered on the server will arrive to the
client before its deadline. The deadline is the time when an image is no more needed for
rendering. The server must keep the following equation valid:

T, < D — (T, + T, + Ti) (4.11)

where T is the time the request stay in the scheduler queue at server, T, is the time to

0Gafak Burak Cevikbas, Giirkan Koldas, and Veysi Isler. Prefetching optimization for distributed urban
environments.In Proceedings of the 2008 International Conference on Cyberworlds, CW ’08, pages 291-297,
Washington, DC, USA, 2008. IEEE Computer Society.
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E = Image

N = priority (steps)

(a) (b) (c)

Figure 4.12: (a) Shows all of possible user movements and steps necessary to reach the
images. Both client and server maintain an updated map such as the one in the picture.
(b) The user rotated the viewpoint to the left. Observe that priorities assigned to each
image have changed. These changes must be reflected in the scheduler queue by updating
deadlines of each image. (c) In this picture, the user moved forward after a rotation to the
left. Again, priorities have been modified®!.

render one frame at server, T, is the time to prepare warping and compression at server
and 7; is time in what the image arrives to the client.

4.2 Motion functions

In general, motion prediction methods can be roughly classified into the short time and
the long time prediction methods. The short time prediction methods so called motion
functions can predict the next motion of a viewer based on its current motion parameters.
That is why these methods have accurate results when predicting locations close to the
viewer.

As was described in the section 4.1.1, Chim et al. [27] introduced the prefetching method
for DVE based on the knowledge of he set of weighted movement vectors {ml, Mo, ..., mn,l}.
When the viewer V' moves to a new position, the new movement vector m,, is calculated.
Three different schemes was proposed to compute the weights of the members of the set
of historical movement vectors: mean, window, and exponential weighted moving average
(EWMA), see Figure 4.13.

In the mean scheme, the next movement vector my,,; is predicted as the average of
previous n movement vectors. The predicted vector is computed as mp41 = %Z?:l .
The intermediate vectors are not necessarily needed for the prediction, but only the running

N (=),
sum of suffices 1,41 = ———"
is previously predicted vector.

In the window scheme, each viewer is associated with a window of size W. The next
movement vector is predicted as the average of W most recent movement vectors. The
mean scheme can be used to predict the next movement vector only if n < W, otherwise

, where n is the number of movement vectors and m,,

51 Azzedine Boukerche and Richard W. Nelem Pazzi. Scheduling and buffering mechanisms for remote
rendering streaming in virtual walkthrough class of applications.In Proceedings of the 2nd ACM international
workshop on Wireless multimedia networking and performance modelingy WMuNeP ’06, pages 53-60, New
York, NY, USA, 2006. ACM.
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Figure 4.13: Prediction of next moving direction: (a) mean, (b) window, (c¢) EWMA with
low «, (d) EWMA with high a2

the predicted vector will be computed as Mm,+1 = M, + %(mn — mn_w).

To avoid the need of the moving window, and to fast adapt to changes in the viewer
motion, the EWMA scheme assigns weight o to each previous movement vector so the recent
vectors have higher weights. The new parameter a represents exponentially decreasing
weight (the most recent vector has the weight of 1, the previous vector has the weight of
@, the next previous vector has the weight of a? and so on). The larger the alpha is, the
more the previous vectors affect prediction of the next movement vector:

A~ _ 1 n n—i
M =g, o (4.12)

n

where S, = >, a" Tt = 11_70; . Asn — oo, S, = 7. Therefore, the movement
prediction can be approximated by (1 — a)> ", o™~ mi;. Incrementally, 7,41 can be
approximated by am, + (1 — a)m,,.

The EWMA prediction needs to be further corrected with residuals. Each residual of
a movement vector is denoted as ?n = M, — mn To catch non-stationary changes in
directions (pure rotations), residual of angle between 7, and M, is considered instead.
This angle can be expressed as ¢, = arg(rhy,) — arg(my), where arg(mi,) is argument of
the vector 7, in a complex plane so that 77, can be predicted by rotating m,, through an
angle of —¢,,. This corresponds to a multiplication by e **" in the complex plane.

Since the 7,41 is predicted, the ¢,+1 must be predicted as well. Thus, ¢,+1 = ag, +
(1 — a)¢n, and mnﬂ = Mpgie Ont1,

A comprehensive solution for virtual walkthrough applications which includes progres-
sive multi-resolution caching of a mesh geometry and the prefetching technique based on
prediction of a viewer movements such as in [27] is proposed in [26]. The caching mechanism
here tries to maintain at least a minimum resolution of a scene to provide at least coarse
scene rendering.

1

Teler [139] presented a new 3D scene streaming approach for remote walkthroughs
where a user on a client machine interactively navigates through the scene which resides
on a remote server. The proposed streaming algorithm selects object representation to
send based on an integral of a benefit measure along a predicted path of movement. The
movement prediction is done by the server and is based on the assumption that once the

2Jimmy H. P. Chim, Mark Green, Rynson W. H. Lau, Hong Va Leong, and Antonio Si. On caching
and prefetching of virtual objects in distributed virtual environments. In Proceedings of the sixth ACM
international conference on Multimedia, MULTIMEDIA ’98, pages 171-180, New York, NY, USA, 1998.
ACM.
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user started a particular type of motion, she is likely to continue it in near future. This
approach does not consider any previous positions of the user.

Scheduling of 3D model transmission in network virtual environments is studied in [110].
The virtual environment here is composed of 3D geometry objects encoded as progressive
meshes. Both a viewer and the objects have defined their own view scopes as in [27] (see
the section 4.1). The server receives updates of the viewpoint position and schedules trans-
ferring of missing geometry for the current view area. The proposed streaming algorithm
operates with a visual error of the objects rendered at the client to optimize their transfer-
ring. The authors evaluated quality of the visual perception of each object using accuracy of
its 3D representation and its importance in the rendered scene with the following formula:

Sg 3 Dob' X
Erryy; = (1 — Smaz) (1 B RAOJI)ROb‘] (4 13)
obj — .
et (1= s Re

for Dyj, < Raor, and where S is the size of the object in bytes at current resolution, Sy,q.
is the total size of the object, R0y is the radius of the viewing area, R; is the radius
of the object’s bounding sphere, D,; is the distance between the viewpoint and the object
and N is the number of objects in the viewing area. The importance of all objects depends
on distance between them and the viewpoint.

Two scheduling policies was proposed to evaluate the visual quality. First, a greedy
sub-optimal scheduling policy is selected for transferring the data blocks which improves
most the visual quality at the client at each time step. The second policy uses a viewpoint
motion model similar to the well known random way point, which is widely used model
for mobility management in wireless communications networks. This model assumes that
a user moves at constant speed, with a direction angle determined as follows: a direction
remains the same with probability pb, or is picked randomly from interval (0, ¢mq.] With
probability (1 — pb). The probability can be expressed as pb = szed, where speed is speed
of the viewpoint and k is parameter controlling randomness of the motion.

A client-server architecture, where clients send at regular time intervals a position up-
date messages to a server is proposed in [73]. The server renders the scene according to the
updated positions from a client and sends rendered image of the scene back to the client.
Two prefetching schemes are proposed by the authors within this architecture. The first
approach is a locality-based technique. It assumes that the position of the user changes only
a little in comparison with possible changes in orientation. In this case, the server renders
and sends the rendered images with larger field of view (FOV) to minimize the impact of
network restrictions. The second prefetching approach is based on a motion prediction such
the server predicts next user motion based on its motion history. The rendered scene image
is send along a predicted path. The prediction itself is based on the linear average window
technique [27].

The localization-based approach with larger FOV increases network traffic, but guar-
antees a much higher hit-ratio for certain movement patterns. The experiments show, that
the linear motion prediction almost always outperforms the localization-based approach in
terms of hit-ratio for circular movement patterns, random walk pattern, rotation ratio or
step size changes.

A motion-aware approach for efficient evaluation of continuous queries on 3D object
databases is described in [2]. Multi-resolution representation of 3D objects utilizes wavelet
based approach, where details are encoded by wavelet coefficients with higher values. These
coeflicients are retrieved from the server based on ,,speed to resolution“ mapping function.
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This function simply maps higher wavelet coeflicients to fast moving objects and conversely
maps both low and hight coefficients for slow moving objects. As a user moves, new
download queries are sent to the data server. The server sends only the data which is not
already retrieved by the previous queries (see Figure 4.14).

D’ F C’

D__ G|l c 3
6\ Q

t—1

A B

Figure 4.14: Continuous data retrieval initiated by queries Q;_; and Q3.

Each query retrieves all the vertices that fall inside its frame and also all the vertices
from the neighbour frames which are connected with the query frame. For example, for the
query frame @Q;_1, the client retrieves vertices {1,6} which are inside it and the neighbour
vertices {3,4,5} that connect to 1 and or 6.

To overcome the high retrieval latency caused by communication between the client
and the server for each query frame, the authors propose a predictive buffer management
scheme. The proposed buffer management scheme uses a state estimation based on motion-
prediction to determine probability distribution of data (wavelet coefficients) to be accessed.
State s; of the moving client at time ¢ is defined by positions of the client from h most recent
timestamps, i.e. s; = [p(t),p(t—1),...,p(t—n)]T, where p(t) is a position vector. Prediction
of the future state at time ¢t + 1 is s;41 = Asy, where A is a transition matrix, called one
step predictor.

The transition matrix can be used also for multi-step predictions - the predicted state
at time ¢ + 4 can be calculated as s;.; = A’s;. The transition matrix can be calculated by
recursive motion function (described hereinafter) which supports linear and a broad class
of non-linear motion patterns. The total space is divided into grid cells and the probability
is evaluated for each cell of that space.

The prediction does not provide any confidence estimation of the prediction results.
Hence, after predicting a future state, expected confidence of the predicted state is estimated
by calculating error covariances of that state. If §; is the predicted state and s; be the true
state, then error of the prediction is e; = s; — §;. Similarly, prediction error of the state t+1
is erys = Ai(st — §¢). From this, a covariance matrix P;, which is a measure of uncertainty
of the predicted state 3; can be defined as P, = Ele;e’]. Then, probability of predicted
state §; is estimated and conditioned on all prior estimates. Hence, the probability of a
state can be estimated using a normal probability distribution as follows:

P(St) ~ N(E(St),Pt) = N(gt, Pt) (414)

53Mohammed Eunus Ali, Egemen Tanin, Rui Zhang, and Lars Kulik. A motion-aware approach for efficient
evaluation of continuous queries on 3d object databases. The VLDB Journal, 19(5):603-632, October 2010.
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where the predicted value $; is mean of the probability distribution and a variance for this
prediction is obtained from singular values of P;. The total data space is divided into grid
cells. Probability of visiting these cells is calculated rather than determining probability
for each point of the space (see Figure 4.15).
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Figure 4.15: (a) Motion prediction for the next time-stamp and (b) probabilities of visiting
different cells.

Figure 4.15a shows current position [ and query frame @Q); at time ¢ and the next query
frame ;11 predicted at I', (%, and [, with probabilities 0.5, 0.3, and 0.2, respectively.
Similarly, next queries with future timestamps such as ;42 can be used to calculate the
probabilities of visiting them.

Finally, probability of following the four directions (determined by the cells inside the
two dotted lines - see Figure 4.15b) can be obtained by summing up all the cell probabilities
related to those specific directions and normalizing them. Computed probabilities for the
different directions are used to determine a data block which will be transmitted to the
client’s buffer.

4.2.1 Indexing and managing of moving objects

A lot of methods for indexing and managing information of objects moving in one, two
or three dimensional spaces in spatio-temporal databases exists [145], [72], [136], [2], [24].
These methods are important for several emerging applications including traffic supervision,
flight control, mobile computing, etc.

Assuming conventional databases, data remains constant unless it is explicitly modified.
Capturing continuous movement with such a behaviour would entail performing very fre-
quent updates or recording outdated position thus leading to inaccurate data. A solution
to this problem is, rather than storing the updated positions, to store functions of time that
express the positions of the objects. Then updates are necessary only when parameters of
the stored functions have been changed [145]. Additionally, the current motion parameters
such as position and velocity can be stored together with the motion function.

53Mohammed Eunus Ali, Egemen Tanin, Rui Zhang, and Lars Kulik. A motion-aware approach for efficient
evaluation of continuous queries on 3d object databases. The VLDB Journal, 19(5):603-632, October 2010.
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The database system can deduce the object position for all queries involving time £.
The database uses stored motion function, motion parameters stored at the same time as
the motion function and current motion parameters of given object to predict its position.

Widely used spatio-temporal prediction schemes assume only linear movement [145], [72].
Specifically, o(t) = o(t,) + vo(t — t,), where t, is last time-stamp when object o issued an
update, o(t,) is location of object o at time ¢,, and v, denotes its current velocity (constant
since t,). Both o and v, are d-dimensional vectors (where d is dimensionality of input data
space) since they capture the information of o on all axes. An update is necessary whenever
v, (i.e. speed or direction of motion) changes.

Unfortunately, the motion of objects is not always linear and piece-wise linear segments
cannot be effectively applied for prediction (see Figure 4.16). The non-linear model [1] can
be more accurate compared to the linear ones in some cases. In [1] a quadratic function is
used to describe the object motion as follows:

Qo

5 (t=10)? (4.15)

o(t) = o(to) + vo(t — o) +
where a, is acceleration vector of the object o. Although this model captures linearity as a
special case (and therefore has higher applicability), it cannot represent the motion curve
shown in Figure 4.16.

N predicied positions
-~ at time 2

predicted positions
ai time |

o(0)

X

Figure 4.16: Failure of linear prediction (white dots)4.

Figure 4.16 shows that the linear prediction of the object 0 moving along a curvature
during 6 timestamps is very imprecise. Consider a prediction query issued at the time 1
which asks for locations of the object o at next four timestamps. The linear prediction
model uses the position 0(0) and o(1) to predict the four next positions (white dots). The
predicted positions deviate from the real ones significantly. Similar observations hold for
a predictive query issued at time-stamp 2, where prediction is based on positions o(1) and
0(2).

Prediction of moving objects with unknown motion patterns is presented in [136]. Here,
a new recursive motion function which supports a broad class of non-linear motion patterns
is proposed. The function does not presume any a-priori movement model but can predict
motion of each object by examining its recent locations.

Let o be the object whose motion type is unknown. Given current locations of the
object 0 at h most recent timestamps, the objective is to derive a motion function which

%4Yufei Tao, Christos Faloutsos, Dimitris Papadias, and Bin Liu. Prediction and indexing of moving
objects with unknown motion patterns.In Proceedings of the 2004 ACM SIGMOD international conference
on Management of data, SIGMOD ’04, pages 611-622, New York, NY, USA, 2004. ACM.
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correctly captures all these locations and predicts future trajectory of the object o.
The proposed recursive motion function is defined as follows:

o(t) = Cyo(t—1)+Cy-o(t—2) + ...+ Cp - o(t — f) (4.16)

where C;(1 < i < f) is a d x d constant matrix, o(t) is location of object o at time ¢, and
f is a system parameter called retrospect. This equation can express an extensive number
of simple and complex movement types (by varying C;), including polynomials, ellipses,
sinusoids, etc.
Motion state s,(t) of an object o at time ¢ is defined as a vector {o(t), o(t — 1), ...,0(t —
f + 1)} enclosing its location at f most recent timestamps (s,(t) is a (d- f) x 1 vector).
The equation 4.16 can be transformed to equivalent matrix form:

So(t) = Ko - so(t — 1) (4.17)

where K, is a constant (d- f) x (d- f) motion matrix for object o. The following notations
will be used: k;; is element of K, at i—th row and j—th column (1 < i,j < d- f), ki is
i—th row, i.e., a 1 x (d- f) vector, and o(t).z; is o(t) coordinate on i—th dimension.

For simple case of d =2 and f = 2 the equation 4.17 becomes:

O(t).l’l kll k12 k13 k14 O(t — 1).:]31

0(75).1’2 _ ]{221 kQQ k‘23 k24 . O(t — 1).1’2 (4 18)
o(t —1).x1 1 0 0 0 o(t —2).21 '
o(t —1).z2 0 1 0 O o(t —2).x

In general k;; =0 fori>d+1andi# j+d,and k;; =1 fori>d+1andi=j+d.
Motion matrices indicate whether there are dependencies among dimensions. In general,
motion type is axis-independent if and only if:

kij =0,V1 <i < d and (j mod d) # (i mod d) (4.19)

Another crucial observation is that all motion matrices should satisfy translation rule:
So(t) = Ko - 8o(t — 1) = so(t) +c= Ko - (so(t — 1) +¢) (4.20)

where translation vector cis a (d- f) x 1 vector in the form ¢ = (cy, ¢, ..., ¢q, ..., €1, C2, ..., Cq)
(i.e. ¢1,cg,...,cq repeated f times), for arbitrary constants ¢y, co, ..., ¢q.

In general, the translation rule indicates that if K, captures a trajectory o1, it also
expresses any other trajectory oo translated from o;. The equation 4.20 imposes some
important constraints on elements of motion matrix, i.e., the translation rule implies:

c=K,-c (4.21)
where c is any translation vector. For arbitrary values of d and f, the equation 4.21 holds

if and only if:

kl] =+ k’L(]-i—d) + ki(j+2d) + ...+ ki(j+f+d) = O Otherwise

The last important property of K, is, based on motion state s(7.) at current time 7,
that state T, + ¢ (i.e., t timestamps later) can be efficiently computed as:
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5o(Te+t) = KL - 54(T) (4.23)

The prediction task is now reduced to find correct K, (i.e. determining corresponding
movement type) after which parameters of a motion are automatically finalized by s,(t—1).

Let [,(t) is actual location of object o at time ¢t. Given l,(T.—h+1),l,(T.—h+2), ..., 1,(T¢)
at the h most recent timestamps, the goal is to decide a function o(t) that minimizes summed
squared distances (ssd) between computed (by o) and actual locations:

T

ssd= Y |lo(t) = o(t)]? (4.24)

t=Tc—h+1

where |l,(t) — o(t)|? = Z‘ij:l[lo(t).xi —o(t).2;]? and I,(t).2; is coordinate of [,(t) on its i—th
dimension.

For instance, in linear model a process of minimizing ssd is equivalent to find the best
fitting line, which can be computed using least squared error method. The objective of the
recursive motion is to decide the optimal K.

K, involves d? - f unknowns, which constitute the first d rows from ki, to kge. The h
locations define h — f + 1 motion states (where f is the retrospect), or specifically:

so(Tc_h+f):{lo(Tc_h+f)7lo(Tc_h+f_1)7'--7lo(Tc_h+1)}
So(Tc_h+f+1) :{ZO(TC_h+f+1)al0(Tc_h+f)7"-alo(Tc_h+2)}

(4.25)
So(Te) = {lo(Te), lo(Te — 1), .., lo(Te — f+ 1)}
Therefore, the optimal K, should satisfy the following h — f equations:
So(t) =Ko so(t—1) for T, —h+ f+1<t<T, (4.26)

The equations are solved corresponding to single row (from ki, to kgi) at a time. It
suffices to elaborate the solution for k1, (i.e., an 1 x (d - f) vector) as the extension to the
other rows is straightforward.

Consider, d = f = 2, where each equation in the set 4.26 is in the form of 4.18. The
extracted k1, part of the formula 4.18 is as follows:

l(t)..%’l =k - l(t — 1)..7}1 + k19 - l(t — 1).1‘2 + k13 - l(t — 2).$1 + k14 - l(t — 2)..%'2 (4.27)
The above equation can be written into the following form which also holds for general

d and f (recall that s(i — 1) isa (d- f) x 1 vector):
I(t).x1 = k1x - s(t — 1) (4.28)

Since a similar formula is obtained from all (h — f) equations in 4.26, the h — f (linear)
equations for the d - f variables in k1, are obtained and are organized into a matrix form
(notice that k1, now appears on the right of the multiplication sign):

s(T,—1)T UT.).m
s(TC‘.—' 2)T oy = T, - '1).931 (4.29)
s(T. —h+ )T (T, —h+f+1)z
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where the superscript T stands for transpose. Let’s denote:

s(T, — )T UT.).z1
S = s(T. —2)F ,and [ = UTe = 1)z (4.30)
s(T, —h+ f)T (T, —h+f+1)x

where S isa (h— f) x (d- f) matrix and [ a (h— f) x 1 vector. A robust solution of the linear
equation set S - ki, = [ can be obtained using singular value decomposition (SVD) [113].
The SVD decomposes S into U - W - VT where U is a (h — f) x (d - f) column-orthogonal
matrix, W = [diag(w1, w2, ..., wq.r] is a (d- f) x (d- f) diagonal matrix with positive elements
w1, W, ..., Wq.; on the diagonal, and V is a (d- f) x (d- f) orthogonal matrix (i.e., V-VT = I,
the identity matrix). Thus, ki, is solved as:

1 1 1
ki, =V - [diag(—, —, ...,—)] - (UT -1 4.31
=V g )] (O (4.31)
If h—f > d- f the SVD produces a ki, that minimizes |S-k1.|?, so that the equation 4.24
can be rewritten to:

d Te
ssd=> " > lo(t).wi — o(t).al (4.32)
i=1t=T,—h+1
Similarly, the solution of each i—th row k;. of K, minimizes the ssd, thus the overall
K, minimizes ssd.

4.3 Next location prediction

Long time prediction methods so called next location prediction methods assume that there
is always a certain regularity in user movement patterns so the movement is not completely
random. Movement of a user is described by a sequences of visited locations instead of
current motion parameters.

Human trajectories show a high degree of temporal and spatial regularity, following
simple and reproducible patters [50]. Analysis of location histories can be roughly classified,
according to the manner by which data is modeled, into two general approaches: state-space
models and data mining methods.

Next location prediction methods has several other potential applications such as eval-
uation of geo-privacy mechanisms, location-based services or design of location-aware han-
dover management in wireless networks, where the mobility is usually described by a spatial
trajectories represented e.g. by sequence of GPS coordinates. A detailed survey of com-
puting with spatial trajectories is given in [153].

4.3.1 Virtual environments

In [71] the advantages of the next location prediction methods are described for on-line
gaming environments. The author proposed a hybrid method, where a combination of a
short term prediction method and a long term prediction method is used to reduce latency.

The short term prediction is represented by hybrid mouse motion predictor which com-
bines linear model for slow mouse motion and an elliptic model for mouse motion at high
velocity [21].
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The long term prediction method uses a statistical approach to predict next user posi-
tion. A virtual environment is divided into regular zones (square cells), which form basic
units for statistical prediction. Given a boundary location x, where a user enters a zone,
the probability that the user will leave the zone at a particular boundary location y can
be evaluated from statistics collected for each zone. Probability distribution function is
modelled using a Gaussian mixture (see Figure 4.17).

\60%

| 40%,

Figure 4.17: Statistical prediction of exit positions depends on enter positions®®.

Based on the computed probability values, the neighboring zone(s) which the user will
likely visit next can be estimated. The author further proposes to construct a path tree for
the current user’s zone by accumulating statistics from zone to zone (see Figure 4.18).

Figure 4.18: An example path tree: left image shows part of the Central London while the
right image shows a superimposed path tree, starting from current user position (the black
zone)®>.

The path tree in Figure 4.18 shows probability of various paths which are reachable
from the current user location. The problem with the path tree is how to compute a
prediction error. With a single predicted path, euclidean distance between actual user
location and a predicted location can be used. With many potential paths each with a
different probability, it is no longer straightforward matter to compute the accuracy. For
example, a user is currently in a zone that shows an exit to the left with a 60% probability

55Rynson W. Lau and Addison Chan. Motion in games. chapter Motion Prediction for Online Gaming,
pages 104-114. Springer-Verlag, Berlin, Heidelberg, 2008.
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and an exit to the right with a 40% probability. If the user turns left, should it be said
that the prediction has a 100% accuracy or 60% accuracy? The author considers only exits
with the highest probability when measuring accuracy of this method.

The path tree allows a prediction of more than one cell ahead but for the expense of
decreasing prediction accuracy as the prediction length increases. Because the transition
statistics are collected only from zone to zone, the information about continuous movement
is lost. Multi-resolution characteristic of the scene data is also not considered.

4.3.2 State-space models

State-space models attempt to capture variation in spatial sequences. Bhattacharya et
al. [11] used a simplest Markov model, which assumes that a process S is a time-invariant
Markov chain defined as:

PV =wvVi =1, , Ve = vgp—1]
= P [V = vg|Vi—1 = vpp—1] (4.33)
= P.[V; = vi|Vie1 = vi_1]

for any arbitrary choice of k and 4, where V; is a stationary stochastic process such that V;
assumes that the value v; € V; is an event such that a user is in cell v;.

One-step transition probabilities between two adjacent cells P; j = P.[Vi, = v;|Vi—1 = vj]
are estimated from movement history database.

The authors further evaluate an entropy of the proposed simplest Markov chain model
as well as higher order Markov chains to show that the higher the order of the Markov
chain is the lower the improvements in model richness is. For an universal model, they
estimate appropriate order dictated by input sequence using LZ78 compression algorithm.
In practice, a natural limitation can appear such that quantity of data available for analysis
becomes the main limiting factor for the order of the Markov-chain model.

Ashbrook et al. [8] proposed a system that automatically clusters GPS data taken over
a period of time into frequently visited locations (POI, places) at multiple scales. Each
place is defined by its GPS coordinates. A significant place can be identified by a time a
user stay at that place. The idea behind it is that users usually stops for longer time at
significant or important places. Based on source data, the authors define that staying for
ten minutes at the same position determines the significant place. A variant of k-means
clustering algorithm is used because close significant places should be considered as single
significant location or cluster (see Figure 4.19).

These significant locations can obscure prediction opportunities on smaller scales. Hence,
the authors proposed a concept of sub-locations. The sub-locations are determined for each
cluster using the same k-means algorithm but with varying radius. As the locations is
known, each GPS trajectory can be encoded as a sequence of visited places or at higher
level of abstraction as a sequence of visited locations. Hence, each location has assigned
an unique ID so that each GPS trajectory can be described as a sequence of these IDs.
Finally, a Markov model is created based on these sequences of locations, with transition
probabilities estimated from the travelling frequencies between two different locations.

The k-means algorithm has several drawbacks for detecting the significant locations.
First, it needs to know the number of clusters before clustering begins. Second, all points
are included in the final clustering results, which makes the results quite sensitive to noise
and third, the k-means algorithm is non-deterministic i.e. the final clustering depends on
the initial random assignment of places to clusters [156]. Therefore, instead of k-means a
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Figure 4.19: Hlustration of location clustering algorithm. The X denotes center of a cluster.
The white dots are points from a cluster, and the dotted line shows location of the cluster
in the previous step. At step (e), the mean has stopped moving, so all of the white points

will be part of this significant location®®.

density based algorithm will be more suitable for clustering significant locations for Mo-
bility Markov Chain (MMC) algorithm [413]. Here, a density-joinable DJ-cluster [156] is
used to overcome the k-means drawbacks. Behaviour of each individual user is modelled
as a discrete stochastic process in which probability of moving to another state (significant
location or place of interest) depends only on the previous visited state and probability dis-
tribution of transitions between these two states. The Mobility Markov Chain is composed
of a set of states P = {p1,...,pr} and a set of transitions ¢; ;. Each state corresponds to a
significant location which has assigned a semantic label such as ,,work“, ,home*, etc. Each
transition ¢; ; represents a probability of moving from state p; to state p;.

A n-MMC algorithm, based on order-m Markov chain is further applied to increase
prediction accuracy. The transition probabilities are computed for sequences of n last
visited locations (see Figure 4.20).

Recently a Mixed Markov-chain model (MMM) [7] method is proposed for user next lo-
cation prediction. The authors noted, that the discrete-time Markov chain and the Hidden
Markov models cannot model behaviour of all users with single universal model. Therefore,
they proposed to classify trajectories into patterns corresponding to groups of similarly
moving users. Each pattern does not show an individual behaviour, but it shows a common
behaviour among similar users. In this setup, the next location prediction is based on the

*Daniel Ashbrook and Thad Starner. Using gps to learn significant locations and predict movement across
multiple users. Personal Ubiquitous Comput., 7(5):275-286, October 2003.
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Figure 4.20: (left) Graphical representations of 2-MMC model (,W¢*, ,H* ,L* and ,,O¢
stand for Home, Work, Leisure and Others locations respectively) for single user, (right)
and of 1-MMC model®”.

Markov model which belongs to a group of individuals with similar mobility behaviour. A
specific Markov model is generated for each group. As the MMM method has higher pre-
diction rate compared to the Markov chain based prediction and Hidden Markov model, the
authors did not evaluate its accuracy, which is usually a much more important parameter.

Mathew et al. [87] constructed Hidden Markov Model (HMM) to predict future user
locations. Input history trajectories are clustered to locations based on their characteristics
(i.e. temporal period in which they occurred) so that these locations can be later used to
train the HMM. The location characteristics are used as unobservable parameters. The
history database is clustered with selected characteristics to different clusters so that each
cluster is used to train different HMM. ,,Continuous®“ GPS trajectories within each cluster
are discretized using hierarchical triangular mesh [129] to efficiently train the HMMs.

In general, the HMMs based methods succeed only when dealing with uncertainty [115]
(i.e. they generalize well), but they suffer from higher training complexity and slow relearn-
ing [109].

4.3.3 Data mining methods

The data mining methods explore association rules and frequent patterns from databases
[92], [65]. Trajectories are defined as an ordered sequences of time-stamped locations, which
are further analysed by variations of a-priori algorithms [91].

Data mining method for predicting future locations of moving objects from movement
data is presented in [92]. Here, the association rules from trajectories database are extracted
in a form such that they are transformed from original continuous domain of moving object
positions into a discretized domain of edges of a superimposed grid. Prediction is realized

57Sébastien Gambs, Marc-Olivier Killijian, and Miguel Nufiez del Prado Cortez. Next place prediction
using mobility markov chains.In Proceedings of the First Workshop on Measurement, Privacy, and Mobility,
MPM 12, pages 3:1-3:6, New York, NY, USA, 2012. ACM.
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by a matching function which selects a best association rule which matches partial object
trajectory. The on-line matching of partial trajectories through the database of movement
rules is executed very fast, but at the cost of expensive and burdensome computations for
discovering the association rules and frequent trajectories.

Jeung et al. [65] presented a novel hybrid prediction model for moving objects. The
authors addressed a problem how to discover trajectory patterns and how to manage a
potentially large number of mined trajectory patterns to answer predictive query effectively.
Their hybrid prediction algorithm provides accurate results for both distant time queries
and non-distant time queries. If a prediction query did not return any candidate trajectory,
the recursive motion function (see the section 4.2.1) will be used instead.

The main goal of the data mining techniques is to maximize confidence computed from
the previous occurrences and they often do not consider spatial neither temporal distance.
This is a reason why state-space models generalize the matching process much better. The
other general disadvantage of the trajectory pattern mining methods is the expensive and
burdensome computations necessary to discover association rules and their confidences.
Hence, these methods are not applicable in highly dynamic systems with the large amount
of new trajectories frequently arriving.

4.4 Terrain environments

Data prefetching algorithm for terrain streaming applications is proposed in [35]. The
terrain is represented by heightmap tiles sampled at different resolutions which are stored
at server. At the beginning, the system transfers only a very low resolution heightmap
of the entire terrain. As a viewer moves, the detailed terrain tiles are streamed to the
client device depending upon then viewer position. When requesting some tile, the last
transmitted resolution of the tile is checked and only the residue between the high resolution
tile and the super-sampled version of the low resolution tile is streamed to the client.

Closer tiles have higher detail compared to distant tiles (see Figure 4.21). As view
frustum of the viewer moves, newer higher resolution tiles are streamed to the client device.
Only tiles inside or intersecting the view frustum are streamed to the client.

Bounding rectangle /\ \ __ | Tiles rejected out of
/-’ ; projection
¢ P S P
Projection of view v
frustum on the /

base plain

Distances separated by |
LOD transition distance_

?/ : ~Tiles assigned with 1=2

Tiles assigned with =1

Base Line—— ] Tiles assigned with 1=0

Figure 4.21: View frustum culling and LOD assignment for terrain tiles®

583oumyajit Deb, Shiben Bhattacharjee, Suryakant Patidar, and P. J. Narayanan. Real-time streaming
and rendering of terrains. In Proceedings of the 5th Indian conference on Computer Vision, Graphics and
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The client uses a motion prediction method for prefetching data from server in advance.
The motion parameters for the predictor are determined from past viewer positions. Practi-
cally, motion parameters from last five frames are averaged to generate motion parameters
for the next frame. Assuming constant rate of change in acceleration, a next position vector
P;41 can be expressed using the following formula:

Piy1 = P+ c1(tivn — t)vi + ca(Tiy1 — t:)*(2a; — ai—1) (4.34)

where ¢; and ¢y are constants, a; is acceleration, v; is velocity and P; is position vector in
i-th frame which need t¢; time to render. The constant acceleration is not a good assumption
for rotational motion. The time ¢;11 must be estimated from older known frame times by
averaging them. Once future position of the viewer is known, the terrain data corresponding
to the estimated position can be pre-fetched.

Royan at al. [118] proposed a networked environment based on hierarchical level-of-
detail models which utilizes view-dependent progressive streaming of geometry and texture
data. They use two hierarchical LOD models separately for terrain data and for groups of
buildings. To reduce the impact of round trip delays a client-side LOD selection process
must update a local 3D model with a minimum number of server requests.

Without any details, they introduces a notion of observer lookahead and some special
cases of motion (e.g. flight simulation). Their algorithm also assumes that rotations are
relatively slow. When streaming 3D buildings, the authors expect the amount of transferred
data per second will not be higher than 10kB, which is well bellow bandwidth of most
broadband Internet connections. In this case, the main factor affecting perceived latency
is the view-dependent LOD selection method and resulting client-server communication
handling.

Speculative prefetching of terrain tiles is presented in [124]. Here, a user view direction
is predicted by fitting a spline through a list of last viewing parameters so the tiles that are
predicted to become visible in near future can be pre-fetched in advance.

Bettio et al. [10] developed a networked terrain rendering engine which operates with
data which is represented by heightmaps supported with the BDAM algorithm . The BDAM
algorithm recursively partitions an input domain in a hierarchy of right triangles. The
algorithm further utilizes wavelet based encoding to compress differences between terrain
patches (diamonds) with different level-of-detail.

The wavelet coefficients from requested diamond patch are transmitted using HTTP /1.1
persistent connection with pipelining. The pipelining approach allows multiple HTTP re-
quests to be written together to single open socket without waiting for the corresponding
responses. The client receives the responses in the order in which they were issued. The
pipelining can significantly improve response times especially in the case of small sizes of
the requested patches as they are highly compressed.

Diamond patches which are needed to refine a diamond graph from the current point
of view are requested first. Each such request is pushed in a priority queue. Only limited
number of requests are issued based on the estimated network bandwidth. The prefetching
is done in this stage by pushing a set of diamonds which are not scheduled for refinement,
but are likely to be refined in near future to the queue. Since these diamonds are at the end
of the requests queue, they are considered only if all previous requests have been completed.

Image Processing, ICVGIP’06, pages 276—288, Berlin, Heidelberg, 2006. Springer-Verlag.

68



Chapter 5

Streaming and rendering
framework

The description of the scene rendering algorithm used and data representation is important
part of this thesis, because the location-aware data transfers scheduling is tightly related to
them. Therefore, the proof-of-concept implementation of the framework described in this
chapter is necessary to prove the results of both the proposed prediction scheme and data
transfers scheduling algorithm.

The distributed virtual environment is represented by a 3D scene composed of large
terrain with high-resolution orthographic textures. The terrain is populated by buildings
generated from cartographic data obtained from well known Open Street Map project
database (see Figure 5.1).

Figure 5.1: Output of the implemented virtual environment framework running on iPad
(right) is similar to the AIDA augmented reality system (left).

The AIDA system analyses driver’s behaviour to identify a set of goals the driver would
like to achieve (e.g. information about business and shopping districts, tourist and resi-
dential areas, as well as real-time event information related to traffic information such as
jams, accidents, etc.). This thesis utilizes the driver’s behaviour to optimize streaming of
the data needed for rendering the visualized 3D scene instead of identifying the goals of the
AIDA system.

The described framework is primarily implemented to prove the results of the proposed
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prediction and scheduling schemes, but also to see that various applications of the schemes
are possible. For example, the analysis of the driver’s (or a user) behaviour can be used
to decide which scene parts presented in local cache will be preserved on storage limited
devices or thin clients.

This chapter briefly describes the rendering algorithm used, the client-server framework
and data resources used to render the scene.

5.1 Client-server architecture

Communication between clients and a server in distributed virtual environments is usually
based on a pull or a push model. In the pull model, each client sends requests to the
server to obtain necessary data for rendering the current view. Hence, each client needs to
have knowledge of the visualized scene structure and spatial data organization. In the push
model, each client continuously sends its position or other motion data to the server. Based
on this information, the server can identify data needed to render the current view and sends
the data to client cache. This approach has the advantage, that no prior knowledge of the
scene structure is required at clients. On the other hand, this approach is more CPU-
demanding for the server. The server has also no knowledge of data already presented in
clients cache.

This thesis uses a hybrid demand driven communication model such that both client
and server can initiate transferring of scene data from server to clients (see Figure 5.2).

GPS N
i Current trajectory
Server subsystem Client subsystem

local scene data cache

|—>[ Send requests queue }_-- —————————————————— individual trajectories

Database module
-
v
1
Texture tiles Terrain tiles Cartographic
database database database Renderer

Trajectory
database

Predictor

| Predictor —*[ Data requests queue}*——-— ————{ Missing data queuel‘—

request prediction \ request prediction
e~ el P

Figure 5.2: The proposed client-server framework with hybrid demand driven communi-

cation model.
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5.1.1 Server sub-system

The server receives missing data requests from clients. These requests are accepted through
an input data requests queue. Each request is evaluated by the server so that it selects
appropriate data tiles from database module and sends them back to the clients through
the output requests queue.

If prediction at the client did not succeed, then it will be performed by the server.
The server performs the prediction based on different principles and with different data
compared to the prediction done by clients. As the server contains trajectories from all
users, it can predict movement of each user by matching its current movement pattern with
movement patters from all users with the same behaviour (see next chapter for details).

If the predictor at the server succeeds, the priority of current missing data by client
is computed and the scene data needed by the client to render the scene at the predicted
position is pushed to the end of the send requests queue. The data which is needed by
the client to render the scene at some predicted position is determined by server based on
knowledge of client rendering algorithm. The server maintains a profile for each user to
remember the scene parts already sent to each client. Hence, only the missing data related
to the predicted position will be sent to the client.

The server is implemented as web server with the help of Boost asio library. The
Boost asio library effectively uses threading and network sockets sharing to serve multiple
simultaneous connections at a time. The database module uses MongoDB which is a noSQL
document database. It contains all the scene data including terrain elevation tiles, terrain
texture tiles and cartographic tiles. It also contains a trajectory database which can be
used for the prediction tasks.

5.1.2 Client sub-system

Input of the client subsystem can be e.g. a mobile client with ability to determine its own
geographic position using GPS hardware. The path of each mobile client is described by
continuous sequence of geographic positions (GPS trajectory).

The current client position is further used as an input to a renderer which renders a
scene viewed from the current position. The renderer determines also all the missing data
(scene parts) which is needed to render the scene at current client position. The resulting
missing data requests are pushed to a missing data queue. All the requests from this queue
are sent to a remote server.

Each client can additionally predict its next position based on its current trajectory.
The trajectory forms a movement pattern which can be used as an input to a local predictor.
The local predictor determines scene parts potentially needed for rendering the scene at a
predicted position. The scene parts which are needed to render the scene at the predicted
position, but are not available in a local cache, are pushed at the end of the missing data
queue. The predicted position is used also to compute priorities of current missing data
to render the current view. If the local predictor does not answer a prediction query, the
prediction will be performed at server.

The client application is implemented as a thick client running on both iPad device and
desktop workstations (see Figure 5.3).
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Figure 5.3: The client application runs on iPad with the help of Cocoa API (left). Qt
framework is used on Windows, Linux and MacOSX systems (right).

5.2 Multi-resolution data representation

Multi-resolution data representation is a necessary form of input data for both fast rendering
and efficient streaming of the scene parts over network. It allows streaming and rendering
of the scene parts at coarser resolutions in the case of slow network connection, fast moving
user or limited rendering capabilities of target devices. In the proposed framework, each
client renders a scene which is composed of three layers: terrain geometry layer, terrain
textures layer and cartographic layer (including only buildings).

5.2.1 Terrain geometry and textures layer

The terrain layer contains height-map tiles (obtained from ASTER global digital elevation
model [64]) which are further organized into an elevation data pyramid (see Figure 5.4).

Figure 5.4: Each tile from coarser level (left) can be covered by its four children (center),
continuing recursively (right) to the bottom of the pyramid. Each child tile covers one
quarter of the area covered by its parent tile.
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Each tile through all levels of the elevation data pyramid has resolution of 256 x 256
height points. The top level of the pyramid contains a single tile which covers the whole
terrain at a much coarser resolution. The four child tiles cover the same area as their parent
tile thus resulting in double resolution. Tiles at the bottom of the elevation data pyramid
cover the whole terrain at the highest possible resolution.

The texture layer contains high resolution orthographic texture tiles which are mapped
onto the terrain tiles. Each tile has the resolution of 256 x 256 pixels and is also included
inside a texture data pyramid (see Figure 5.5) similarly to the terrain tiles.

Figure 5.5: Part of the textures data pyramid which is created similarly as the elevation
data pyramid..

As the elevation and textures data is obtained from real datasets, it is defined that each
elevation tile is covered by an array of 8 x 8 texture tiles. Consequently, each 256 x 256
terrain tile is covered by a texture data with the resolution of 2048 x 2048 pixels.

5.2.2 Cartographic layer

The cartographic layer is composed of cartographic data obtained from the Open Street
Map project database (see Figure 5.6). The OSM data is obtained as a single xml file which
holds all the cartographic information within a retrieved area. This file is divided during
a preprocessing step into regular square tiles, each covering only small part of the whole
xml file. The area covered by each tile is determined by the size of the terrain tiles used at
their finest resolution. This enables the streaming an the rendering system to request and
render only the cartographic information in close neighbourhood of the client.

In fact, only declaration of buildings is used. The buildings from each tile are prepro-
cessed so that corners of each building are annotated with altitude value to positioning the
building onto the rendered terrain.

Each building is defined as a multi-polygon entity with single outer and zero or more
inner members (corners). Other additional information such as roof types, floor levels or
building height are also available, but not for all buildings.

The cartographic data contains also definition of streets (physical location, names, types,
etc.), buildings (their outlines, nested outlines, roof types, height, floor levels, etc.) and
many other information.
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Figure 5.6: Visualization of the OSM database®® (left) and 3D visualization of the buildings
in the implemented framework (right).

This thesis supports rendering of 3D buildings only (see Figure 5.6) as they can greatly
increase the 3D perception of the rendered scene. The buildings can be optionally used to
visualize additional information from other data sources (e.g. business, shopping informa-
tions, etc.).

5.3 Terrain rendering algorithm

The terrain rendering part of the implemented framework is based on a new tile based
geometry clipmap algorithm which is suitable for smooth and fast rendering of large tex-
tured terrains in client-server environment. This method is a side product of this thesis
and will be shortly introduced here because the rendering algorithm is tightly related to
the proposed scheduling scheme.

Traditional geometry clipmap algorithm renders the terrain as a set of nested regular
grids centered about a viewer. As the viewer moves, the grids are incrementally updated
with the possibility to crop the update if it is too costly within a frame. For the tile
based streaming of large textured terrains, both the incremental update and the cropping
mechanisms become ineffective. In our new tile based geometry clipmap algorithm, each
grid of the clipmap is logically divided into a uniform array of square patches. This allows
an independent update of the rendered terrain data as new tiles become locally available,
selective cropping, and also effective toroidal update of the rendered terrain data on GPU.
The proposed algorithm can fast render and fluently update large textured terrains streamed
from a remote server even on commodity hardware including also mobile platforms.

5.3.1 Review of geometry clipmaps algorithm

The geometry clipmaps algorithm [77] as well as its GPU based implementation [9] assume
coherent movement of viewer so that only small L-shaped region needs to be processed each
frame. If the data needed for rendering particular levels of the clipmap is not immediately
available then the update and cropping mechanisms become ineffective. For the GPU-
based geometry clipmaps the cropping mechanisms is not straightforward to implement at
all. The update and the cropping mechanisms have to respect how the girds are partitioned
(see Figure 5.7).

http://wiki.openstreetmap.org/wiki/Building
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Figure 5.7:  Partitioning a clipmap ring for GPU-based geometry clipmap®® (left) and
original geometry clipmap® (right)

As the tile by tile streamed terrain data is not available immediately within a single
frame, the coherence between two updates is no more valid. It can be seen from Figure 5.7,
the partitioning of the rings do not allow effective update of the related buffers on GPU as
the tiles needed for rendering becomes available one by one.

The new tile based geometry clipmaps algorithm logically partitions each level of the
clipmap into an uniform array of square patches. Such partitioning allows an independent
update of elevation and texture buffers on GPU covered by these patches, selective cropping
and it still keeps the effective toroidal update of the rendered data on GPU. The proposed
algorithm allows the large textured terrain to be rendered at interactive frame rates on
commodity hardware or even on mobile devices.

The geometry clipmap algorithm is not the optimal solution concerning the minimal
amount of transferred elevation data. This is not a serious issue in our case where the
amount of texture data is more than one order of magnitude larger than the amount of
elevation points. The textures are handled similarly as in the texture clipmap algorithm
which is close to level-of-detail treatment of images in texture mapping. Therefore, the
streaming and rendering of texture tiles can be considered nearly optimal passing over the
redundancy.

5.3.2 Resources management

Implementation of the new tile based geometry clipmaps algorithm follows the widely sup-
ported OpenGL ES 2.0 standard. This restriction permits the usage of advanced OpenGL
features, but on the other hand all mobile devices supporting this standard can use the
proposed algorithm without any modifications.

The tile based approach has two advantages over the GPU-based and original geometry
clipmaps. The first is that the cropping mechanism can be easily handled and the second
is that the opengl resources can be updated locally as new data becomes downloaded. The

S9A. Asirvatham and Hugues Hoppe. Terrain rendering using GPU-based geometry clipmaps. Addison-
Wesley, 2005.

S1Frank Losasso and Hugues Hoppe. Geometry clipmaps: terrain rendering using nested regular grids.
ACM Trans. Graph., 23(3):769-776, August 2004.
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Original GPU-based tile-based

. . in 2D t .
Elevation data | in vertex buffer ix turZer ox in vertex buffer

incrementally vertex texture

updated by CPU | update independent update, CPU

Vertex buffer

generated every

Index buffer frame by CPU constant constant
i tal .

Texture buffer ?;;Z?;EESU not resolved independent update, CPU
Textu.re constant not resolved constant
coordinates

. zero-area . index buffer selection in
Watertight triangles blending constant time, CPU
Cropping horizontal and no variable per patch basis

vertical

Table 5.1: Comparison between original, GPU-based and the new tile-based geometry
clipmaps method for terrain rendering.

effective update mechanisms is very important because the amount of elevation data and
texture data is the main limiting factor against smooth rendering. Table 5.1 shows a com-
parison between the original geometry clipmaps algorithm [77], its GPU implementation [9]
and our tile-based method.

The original geometry clipmaps consider only normals and colour maps with resolution
twice a higher than resolution of geometry. The texture update is similar to the geometry
update i.e. it is incrementally updated. For real orthographic texture data the incremental
update of the texture buffer object on GPU is not effective. Our method uses a single vertex
buffer object and a single texture object for each level of the clipmap. These two objects
are the only updated resources on GPU (see Figure 5.8). As the viewer moves the patches
which fall outside of a given grid are identified. In a parallel process an appropriate terrain
data for such invalidated patches are prepared, and only the sub-parts of the vertex and
texture buffers on GPU which are covered by them are updated. The stitching of boundaries
between different levels of the clipmap is resolved at per patch basis. The constant texture
coordinates and index buffers are precomputed at the beginning for a single level of the
clipmap and are reused over all levels.

5.3.3 Formal definition of the patches

Each level of the clipmap is marked as L;, where ¢ € 0..N — 1, and N is number of levels
of the clipmap. Each level L consists of a 2D uniform array of M x M patches P;j, where
J,k € (0..M — 1) is the index of the patch in the array, and M must be even and dividable
by four.

Each patch P covers an appropriate part of both vertex buffer object and texture
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OpenGL resources for clipmap with n levels

| Texture coordinates
index buffers

Vertex buffer 1 = Vertex buffer 2

Texture object 1 " Texture object 2

Vertex buffer n

Texture object n

Figure 5.8: Only the yellow sub-sets needs to be updated as a viewer moves, the blue set
is precomputed once at the beginning and is shared between all n levels of the clipmap.

object specified by the index [j, k] (see Figure 5.9A- 5.9C). Each patch contains precomputed
indices such that it renders the covered set of elevation points with appropriate texels
sampled from the texture object.

Number of elevation points covered by each patch P is D x D and D must be odd. The
boundary elevation points within each patch are the same between all adjacent patches.
This behaviour is needed for independent updates and rendering of the terrain data covered
by particular patches. The independence is also important because of stitching between
patches from different levels. Similarly, the boundary texels covered by each patch are also
the same between all adjacent patches because of the texture filtering (see Figure 5.9C.).
The width of the border with repeated pixels depends on used texture filtering. The re-
peated elevation points and texels induce a redundancy which depends on the size of the
array of patches P x P, on the size of the patches and on size of the border of texels between
adjacent patches.

5.3.4 Index buffers

The index buffers are precomputed before the application starts. Fourteen permutations
of indices are generated for each patch for t-junction free transitions between patches from
adjacent levels of the clipmap (see Figure 5.10).

The index buffers are computed only for a single level and are shared between all levels.
As fourteen index buffers are generated for each patch, the overall number of index buffers
generated within the tile-based rendering of the geometry clipmap is 14 - M - M.
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Figure 5.9: (A,C) Each patch with index [j, k] covers an appropriate set of elevation points
in vertex buffer object and appropriate texels in the texture object. (B) Example of two
levels, the coarser level is rendered as a ring, the finest inner level is rendered using all
patches. (C) Texels at border of each patch are the same between all adjacent patches
because of filtering (here 8px border is used).

5.3.5 Tile-based geometry clipmap rendering

The clipmap is rendered as a set of concentric square rings centered around the viewer.
Therefore, only a subset of the M x M array of patches is needed to render the rings
except the finest level Ly, which is rendered completely (see Figure 5.9B.). The tile-based
rendering is described using the algorithm 1 and consists of three steps.

In the first step, all N levels of the clipmap are examined from the much coarser level
Lx_1 to the level Ly and position states of all the patches are determined. These position
states are boolean values: inside_ring and inside_hollow.

In the second step, all N levels of the clipmap are examined from the much coarser level
Ly_1 to the level Ly and the patches which are inside ring (inside_ring) are temporarily
stated as to be rendered. Only the patches inside the hollow are further inspected. All four
child patches from level L; 1 covered by a patch P from level L; are tested if they can be
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Figure 5.10: The fourteen permutations of indices precomputed for each patch.

rendered (are valid). If at least one of the four child patches is not valid, then the patch P
from the level L; will be forced to render even it is inside the hollow. We call this feature of
our algorithm as selective cropping, because all the four child patches from level L; 1 will
be forced not to render.

In the third step of the algorithm, an appropriate index buffer from the fourteen per-
mutations will be selected to stitch the geometry of adjacent patches from two successive
levels of the clipmap. The selection of the index buffer for a patch P is based on examining
render states of the four adjacent patches of the patch P within the given level. The render
states are boolean values: render, force_render, and force_not_render. Finally, if a patch
has the force_render state set to true, then it will be rendered even it is inside the hollow.
If the render state is force_not_render, then the patch will not be rendered even it is inside
ring and is valid.

A the viewer is moving, the patches which fall outside current level boundaries are
invalidated and the elevation and texture data covered by that invalidated patches must be
updated with new data. As soon as the new data for an invalidated patch P;j, is prepared
(P.new_data_prepared) by a prepare thread, the new data will be used to update the vertex
buffer object (VBO) and texture object (TO) covered by the patch. The position of the
update is determined from the [j, k| index.

5.3.6 Preparing patches for the render rings

The viewer position in the scene is defined by [latitude, longitude] geographic coordinates.
To identify the elevation data tiles which are necessary to prepare the patches, the viewer
position is projected from the [latitude, longitude] geographic coordinates to a 2D space
using the Mercator projection.
Let’s assume, the position of a viewer in 2D space after the Mercator projection is
p = [z,y], where x,y € R. The viewer position p can be further scaled to level L; using the
following formula:
ps = round(p)\2" (5.1)

where ps = [z, ys] is the scaled point, zs,ys € Z and i is index of the target level L;. The
level at the highest resolution has index ¢ = 0.
The scaled point ps can be used to determine an index I. of the center patch in the
scaled space as:
I.=p\(D—-1) (5.2)
where D is number of elevation points covered by the patch in one dimension (see the
subsection 5.3.3).
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Algorithm 1 Adaptive clipmap rendering algorithm

vec2 frame_steady_pos = camera.getWorldPos2D();
for level = N — 1 to 0 do

determine position states of all M x M patches
end for

for L=N—-1to0do
for P=0to M x M do
if P.invalid & P.new_data_prepared then
update VBO and TO
end if
if P.inside_ring then
P.render = true
end if
if P.inside_hollow then
if P.children.render != true then
P.force_render = true
P.children.force_not_render = true
end if
end if

end for

for P=0to M x M do
determine index buffer for P
P.render()
end for
end for

Indices of boundary patches of the level L; can be computed using the following formulas

Li,=1.— % + || 1. mod 2||

M (5.3)

I, = 1.+ -5 1+ ||Z. mod 2|

where I}, is index of the bottom left boundary patch, Ij; is index of the top right boundary

patch inside the level L; and M is number of patches in a row within each level (see the
subsection 5.3.3).

Indices of the boundary patches can be used to test if some patch is inside the level L;
i.e. set the position states of the patches. To complete the render rings, the inner patches
inside the level L; which fall inside the hollow of the ring at the level L; (see Figure 5.11)
need to be determined.

The equations 5.1- 5.4 are re-computed for level L; 1 to get indices of boundary patches
at the finer level:

M
Iloup = Icup -5 + chup mod 2||
u (5.4)
Thiy, = Loy, + -5~ 1+ chup mod 2||
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Figure 5.11: The green square bounds a level L;, the I}, and I; are indices of boundary
patches of the level. The yellow square bounds the hollow inside the level L; and the Iy10u,,
and Ijo0wni are indices of boundary patches of the hollow at level L;.

where the subscript [,,, and Ip;,, are indices of boundary patches at level L;_;. Indices
of these boundary patches can be transformed to level L; so that the transformed indices
will index the boundary patches of the hollow at the level L;:

Ihollowlo - Iloup /2

(5.5)
Ihollow;”- = Ihiup/2

where the Ijoiow,, is index of the left bottom patch and the Ijg0u,, is index of the top
right patch inside the hollow within level L;.

The boundary patches is used to identify all the elevation tiles and texture tiles which
are needed to prepare the levels for rendering. The index I, ,) of a patch is used to compute
a scale point py:

Ps = Iz + (D = 1) (5.6)

where p; is an elevation point placed in the bottom left corner of the patch. The server
stream terrain elevation tiles with resolution of 256 x 256 elevation points. Then the terrain
tile which contains the point ps is computed as:

terain_tile = ps/256 (5.7)

The texture tiles streamed from server have resolution of 256 x 256 texels and each texture
tile covers an array of 32 x 32 elevation points. Then the appropriate texture tile which
contains the point ps is computed as:

texture_tile = ps/32 (5.8)
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From the bottom left and top right elevation points of the patch P ,, the terrain and
texture tiles which are needed to prepare data for the patch are determined.

The indices of the outer boundary patches of current level L; is used to test if all the
patches within the level L; cover valid elevation and texture data. If some patch covers a
data which is outside current level, the toroidal update mechanism will prepare new data
for the patch and the this new data are uploaded to the GPU at appropriate place at vertex
and texture buffers.

5.3.7 Toroidal updates of the vertex and texture objects

During rendering, all the patches within each level are tested if they are still inside a level.
If some patch P[]-’k] with index I falls outside the I;, and the I; boundaries, it is stated
as invalid and is scheduled to a prepare thread. The prepare thread prepare data for the
invalidated patch. The data which is needed to update the vertex and texture buffer objects
is determined from the index [j,k| of the invalidated patch and the index [jk| also specify
the updated part of the pengl buffer objects. The new index I,,¢,, of the invalidated patch
is computed using the following formula:

Inew = 11 + ((M + []a k] - (Ilo mod M)) mod M) (59)

where the (I}, mod M) defines a patch with array index [j;,, kjo] where current boundary
patch with index Ij, is placed. Then the resulting ((M + [4, k] — [jio, k10]) mod M) realizes
the toroidal update.

As the viewer moves, the patches which fall outside particular level boundaries are
invalidated and new data are uploaded to the GPU buffer objects. The toroidal update has
the advantage that the opengl buffers covered by the patches can be selectively updated so
that the changes in the buffers are local and the rest of the buffers remains untouched.
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Chapter 6

Prediction for location-aware data
transfers scheduling

In this chapter the location-aware prediction scheme for data transfers scheduling algorithm
is proposed. The location-aware prediction methods are based on the knowledge of users
location history. Here, the knowledge database is composed of sequences of visited locations
collected for each user. Analysis of history of these sequences of locations can be used to
construct predictors which are able to predict next adjacent location of a moving user. Such
kind of prediction is called next location prediction. Next location prediction methods are
widely used in cellular telecommunication network for handover management, prevent call
drop-off and increase quality-of-service.

Almost all movement prediction algorithms rely on the fact that user movement is based
on some pattern and it is not completely random [50]. This observation is beneficial for
many applications, including also distributed virtual walkthrough applications.

In walkthrough applications, the mobility of users is usually described by spatial tra-
jectories represented by the sequences of GPS coordinates. Such spatial trajectories can
be directly used as an input of motion function based predictors. Unfortunately, the GPS
trajectories cannot be used directly as an input of next location prediction methods. The
reason of it is that instead of sequence of last visited positions the next location prediction
methods use sequence of last visited locations to perform the prediction (see Figure 6.1a).

For example, the locations in telecommunication networks are determined by distribu-
tion of base transceiver stations (BTS) which form a cellular network, or by discovered
places of interests in location-aware applications (see Figure 6.1Db).

6.1 Knowledge database

In the preprocessing step, the knowledge database is created from encoded sequences of
locations which are discovered from input GPS trajectories. This section describes how
these locations can be discovered from the input GPS trajectories and how the discovered
locations can be encoded to a form which is suitable for the later described next locations
prediction methods.
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Figure 6.1: The next location prediction methods use discovered locations ,,A“, , B¢, ,C*
and the motion functions based predictors use the black and gray squares for prediction (a).
The probabilities of transition between discovered locations (,, Work®, ,Home*, ,,Sport“ and
»Leisure“) are used to decide the next most probably visited location.

6.1.1 Movement representation

The mobility of a user is defined using a GPS trajectory ¢ which is represented by a con-
tinuous sequence of GPS coordinates:

t = [lat,Ing|o[lat,Ing]y...[lat,Ing]n—1 (6.1)

where the [lat, Ing] is a pair of latitude and longitude geographic coordinates, n is the length
of the trajectory ¢ and trajectory ¢ starts at the position [lat,ingo.

The GPS trajectories can be directly used as input of motion function based predictors,
but they cannot be used as input for next location prediction methods as they require
sequences of visited locations.

These locations can be discovered from input GPS trajectories using various clustering
mechanisms [8]. Current methods discover the visited locations mainly as places of interests
(places with high density of visiting users or places where the users stay for a long time,
etc.) as is shown in Figure 6.1b.

Once the clustering is finished, the input GPS trajectories are encoded into sequences
of visited places of interest (e.g. home — work — sport — home). This approach is not
suitable to control data transfers scheduling for distributed virtual walkthrough applications
because the density of discovered places of interests cannot cover prediction requirements
during the continuous movement of a user. Therefore, instead of using the clustering
methods, the locations are determined based on the scene data representation and on the
rendering algorithm used.

6.1.2 Locations determination

The locations here are determined from the rendering algorithm used and data representa-
tion. As was specified earlier, the scene is rendered using a set of concentric square rings
centered around the user (see the subsection 5.3.5). Each render ring requires the data
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tiles at specified resolution from the elevation and textures data tiles pyramid and from
cartographic database.

Each location is defined as a square bounded area called location tile I, 1, where x,y €
Z>o are indices to a discrete 2D space of location tiles. The borders of each location
tile are determined from the smallest data tile representation. In the described rendering
framework, the borders of the location tiles are determined from the area covered by single
texture tile (see Figure 6.2).

Terrain tile Cartographic tile Texture tiles Locations
O0008088080 OOO080888
O000080808 OOC0008088
OO0 00808 OO000080808
0 o o o o o
O0000080 OO00080008
OO0000080 O0O0008000
O00O0008080 OOO00088E
OO0 OOO00E0O0E

Figure 6.2: Comparison of sizes of terrain (elevation) tile, cartographic tile, texture tile and
location tiles (from left to right). Each terrain tile and cartographic tile covers an array of
256 x 256 elevation points and each texture tile as well as each location tile covers 32 x 32
elevation points.

The size of the array of covered elevation points by each terrain and texture tile is
determined from the source data as they are from real datasets. The texture tiles are used
as a definition of the location tiles size because they are the smallest element among other
tile types (elevation and cartographic tiles). It means that each elevation or cartographic
tile is covered by a set of 8 x 8 texture tiles. The usage of the texture tiles for this task
assures that when a set of required elevation or cartographic tiles is changed at some level,
then the set of texture tiles has been changed as well.

6.1.3 Trajectories projection

As the size of the location tiles (covered area of elevation points) can now be determined
from the size of the texture tiles, the input GPS trajectories can be transformed to a
sequence of location tiles.

Each GPS trajectory is projected using Mercator projection to the discrete 2D space of
location tiles so that each [lat, Ing] pair is projected to some location tile Uz Afterwards,
each GPS trajectory t can be encoded using a continuous sequence of location tiles:

T =l ylolzyh -l ylm (6.2)

where T is the projected trajectory, !z oz} - ljz,y)m_, 1S @ sequence of location tiles, m
is length of the projected trajectory and x,y € Z>p. Length m of the projected trajectory
T is not necessarily the same as length n of the input GPS trajectory ¢ because more than
one geographic coordinates from the GPS trajectory can be projected to the same location
tile.

The projected trajectory is continuous which means that every two successive locations
Uz, and [z ), ., are adjacent in the 2D space of location tiles so that

[T, ylkr1 = [2, Yk = [Tha1 — Tk, Yrg1r — Ur) (6.3)
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where —1 <z — 2 < 1land -1 < yp1 —yr < 1.

The same input GPS trajectories are further projected into the 2D space of location
tiles, but with resolution of the space decreased by power of 2 (see Figure 6.3). The data
tiles assigned to these locations are taken from the higher levels (which contain coarser
resolution of the data tiles) of the elevation and texture data pyramid.
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Figure 6.3: Subset of input GPS trajectories projected to location tiles at various resolution
levels (increasing by power of two from left to right).

The idea of the projection at various resolution levels has an important advantage
concerning the prediction. It allows the next location prediction methods to be performed
at selected resolution thus allowing to compute priority or prefetch data tiles at particular
resolution (see the section 7).

6.1.4 Trajectories encoding and storage

Once the projection is finished, each GPS trajectory ¢ is represented by a set of trajectories
T created at various resolution (see Figure 6.4).

Each trajectory T is further encoded by chain code of eight directions [11] (see Fig-
ure 6.5) to efficient storage, and fast evaluation of prediction queries.

For example, the red trajectory starting from left in Figure 6.4, will be encoded as a
sequence of directions 2 -0 —-0—-2—>2—>2—>2 2523234 —2—>2—>4—4at
the finest resolution and as a sequence 0 — 2 — 2 — 2 — 2 — 4 at the coarser resolution.

Trajectories encoded in the form of eight directions have to be stored in a form which will
be suitable for further described next location prediction methods. The general approach
to solve this problem is local movement patterns.

A local movement pattern is a general solution to solve satisfactorily movement predic-
tion during a long time movement run. Instead of remembering the movement from the
beginning, the local movement pattern allows to exploit only several past locations which
are potentially more important for the prediction.

This thesis proposes that the local movement patterns will be created as follows. A local
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Figure 6.4: Example trajectory (red) projected into the 2D space of location tiles at finest
resolution (top) and at one level coarser resolution (bottom).
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Figure 6.5: Codes for eight possible movement directions to adjacent locations from current
(center) location.

movement pattern M7’ is computed for each location tile of the trajectory 7. The local
movement pattern M7 (k) for location tile Uz, from trajectory 7' is defined as a sequence
of 9 successive location tiles from the location tile If .,

MT(k) =1 I (6.4)

Y kt1 YTyl kg2 * 0 l[x:y]k+9

where 0 < k < m and m is length of the trajectory T' (see Figure 6.6).

Concerning the prediction accuracy and the results (see the section 8) it is sufficient to
remember nine successive location tiles followed by the user from each tile of the trajectory
T.

For storage and evaluation it is more efficient to store the sequence of nine successive
directions followed from a location tile [, ., instead of the sequence of nine successive
location tiles. The sequence of the nine successive directions and its length can be efficiently
encoded using only a single 32 bit integer value which is suitable for efficient storage and
fast evaluation of the prediction queries.

Each direction is encoded using 3 bits. Then a sequence of 9 directions can be stored
using 27 bits plus 4 bits to encode the length d of the sequence. The length is important
because length of sequences for last nine location tiles is shorter than nine tiles. This
value forms a local movement pattern defined for each location tile from the trajectory T
These local movement patterns are computed for each location tile for all input trajectories
projected at all resolution levels.
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Figure 6.6: Three local movement patterns M T (k), M (k+1) and MT (k + 2) with prede-
fined length of 9 are computed for the green location tiles.

The local movement patterns forms a knowledge database which is used as an input for
the following NLP methods.

6.2 Next location prediction

The next location prediction methods suitable for distributed virtual walkthrough applica-
tions implemented within this thesis have to satisfy several requirements: efficient learning,
fast adaptation to new behaviour of each individual user, high prediction accuracy and
quantity, and fast evaluation of prediction queries. The most important requirement when
streaming data for distributed virtual walkthrough applications is prediction accuracy, be-
cause each wrong prediction can decrease data transfers efficiency and rendered image
quality.

Learning of NLP methods can be stated as efficient, if the knowledge database can
be modified by adding or removing trajectories so that the prediction methods do not
need to be completely relearned. Considering fundamental characteristics of different next
location prediction methods [109], this requirement is met by both the Markov chain based
predictor [8], [109], [43] and also by the K-state predictor [108].

6.2.1 Markov chain based predictor

A Markov chain is a sequence of random variables X1, X2, X3, ..., Xn with the Markov
property, namely that, given the present state, the future and past states are independent.
More formally

Pr(Xp+1=z|X1 =21, Xo =x9, ..., Xy = 2p) = Pr( X, = x| X, = 2yp) (6.5)

where the possible values of X; form a state space (countable set) of the chain.

The Markov chain based predictor used in this thesis as a next location prediction
method is based on definition of Markov chain of order j. A Markov chain of order j is a
process satisfying the following equation

PT(XTH‘l = xn+1|XTL - xn)Xn—l =Tn-1,.-- 7X0 = .’EO) = (6 6)
Pr(Xnt1 = op1|Xn =2, Xno1 = 2p—1,..., Xy—j = xp—j) forn > j .
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The Markov chain of order j selects its next state depending upon j past states. Here,
the state space of the Markov chain of order j is defined by all location tiles [|, ,; from
the 2D discrete space of location tiles. Therefore, from current location tile [, ,; ~the
Markov chain of order j can select next location tile [, ., ., based on past j location tiles
Holu-yiar lagla-gia - Ul

For current location tile [[, ), the Markov chain operates with transition frequency
counters which count an overall number of transitions from the current location tile [, . to
the eight adjacent tiles as is described by the chain code of eight directions (see Figure 6.7).

Figure 6.7: The blue one tile is current location tile I[, ) , whereas the green tile is the
(j + 1)th past location tile [, ) . and for the red tiles the frequencies of transition from
current location tile are counted.

The frequency counters computed for the current location tile /|, ,; are incremented by
local movement patterns which are stored for the (j + 1)th past location tile Uzy), ;- Let
K is a set of local movement patterns such that

K ={M"(n—j),M"(n—j),.... M (n—j)} (6.7)

where Tj, (0 < k < m) is the trajectory from knowledge database from which the pattern
M7x(n— j) was taken, m is the count of local movement patterns stored for the location tile
lz,y]._;» 1 identifies the current tile and j is order of the Markov chain predictor (j = 8).

The frequency counters computed for the current tile [, , are incremented only using
a subset of patterns from the set K. Only those local movement patterns which satisfy the
following condition can be used. As each local movement pattern contains nine successive
directions, first eight of these directions can be applied from (j + 1)th location tile l[x,y}n,j-
If current tile [, ,, is reached after applying these eight directions, the 9th direction can
be used to increase the appropriate frequency counter (see the subsection 6.3.2 for more
formal definition of the matching process).

The local movement patterns from the set K whose application leads to current location
tile I[; ., can be identified using simple bitwise operations as the local movement patterns
are stored as single 32 bit integer values. Intuitively, this allows fast construction of the
next location predictors by exploiting vector operations or parallelization.

After passing through all patterns of the set K, the direction with the highest value of its
frequency counter should be selected as a prediction result. Unfortunately, this is not that
simple. Instead, confidence of such selection has to be computed to ensure the prediction is
reasonable. The confidence of the selected direction is computed as the ratio between the
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value of its frequency counter and the sum of frequency values from all directions

f(dsel)
S0 £(ds)

where C'(d;) is confidence of the selected direction dg;, f(dse;) is value of frequency counter
of selected direction and f(d;) is value of frequency counter of direction d; where the index
1 is related to the chain code of eight directions. Therefore, the confidence here is also the
probability that the selected direction dg.; with the highest value of the frequency counter
f(dser) will be followed by a moving user. The selected direction will be returned as a
prediction result only if its confidence is greater than 90%:

C(dser) = (6.8)

C(dser) > 90% (6.9)

otherwise the prediction will be marked as not confident. The lower is the confidence
threshold, the lower is the accuracy (see the section 8). If the confidence is not applied at
all, the accuracy is decreased by 5-8% depending on which resolution of the location tiles
was used for the prediction.

The confidence threshold is applied because the prediction accuracy is the most impor-
tant parameter concerning the distributed virtual walkthrough applications character and
also because the goal of this thesis is to keep both data transfers efficiency and rendered
image quality high. If the confidence will be for example 50%, i.e. two directions should be
returned as a prediction result, or if the confidence will be for example 12.5% i.e. all the
directions can be returned as a prediction result, then it will be better not to return any
prediction result (to keep the data transfers efficiency high).

Markov chain based predictor has a disadvantage that it cannot reflect fast to changes
in habits [109] neither temporary changes (street closures because of road works, etc.) in
behaviour of individual users. Consequently, this disadvantage can lead to confident but
wrong prediction for relatively long time until the frequency counters reflect the changed
behaviour.

6.2.2 K-state predictor

The concept of k-state predictor as a next location predictor inside a smart office building
is introduced in [108]. It can be also successfully used with the trajectories projected into
the 2D space of location tiles and encoded by the chain code of eight directions.

The k-state predictor is constructed as a simple finite automaton with k-states. Actually,
only a 2-state predictor is used with eight contexts where each context represents one
direction as is defined by the chain code of eight directions. The eight directions are used
because of the tile based rendering the scene where a user will move within a regular grid
of location tiles. The two states are a weak and a strong states (see Figure 6.8).

If the 2-state predictor is in strong state then the appropriate direction is returned
as prediction result, otherwise no prediction is returned. The process of constructing the
k-state predictor is similar to the Markov chain based predictor. Instead of increment
frequency counters, the 2-state predictor switches between its contexts and states as the
set K of local movement patterns is traversed. For example, consider a 2-state predictor
is in undefined context at the beginning. After applying e.g. eight right directions from
the local movement pattern shown in Figure 6.7 followed by single up direction, it will be
switched to up context in the weak state. If the same pattern will be repeated (a user
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Figure 6.8: The 2-state predictor with eight strong (red) and eight week states. Each context
of the predictor represent one direction from the used chain code of eight directions.

moves along the same way again) followed by the up direction again, the up context will
be switched to the strong state and the up direction will be returned as a prediction result.
This functionality can be easily extended by other dimension, such as time, day of a week,
etc.

6.3 Proposed prediction scheme

This section describes the prediction scheme which incorporates the two Markov chain based
and k-state predictors to the client-server architecture of the framework. The prediction
scheme should achieve several goals:

e adaptivity to multi-resolution scene representation (perform the prediction with dif-
ferent granularity)

e evaluation of prediction queries in the client-server architecture

e ability to solve the case when no trajectory pattern is found

6.3.1 Adaptivity to multi-resolution scene representation

The adaptivity of the prediction scheme to the multi-resolution scene data representation
is provided by projecting the input GPS trajectories to the 2D space of location tiles at
various resolutions (see the section 6.1.3). The result of this approach is that each GPS
trajectory t is represented by a set S of trajectories 7"

S={1°T'. .., T"} (6.10)

where TV is a trajectory obtained by projecting the input GPS trajectory ¢ using Mercator
projection to the 2D space of location tiles, T is a trajectory obtained by projecting the

91



input GPS trajectory ¢ to scaled 2D space of location tiles by factor of 2!, the T is a
trajectory obtained by projecting the input GPS trajectory ¢ to scaled 2D space of location
tiles by factor of 2" and r is number of available resolution levels.

Local movement patterns are created for all tiles from all projected trajectories from the
set S and over all input GPS trajectories . The Markov chain and k-state predictors can
be then constructed from local movement patterns selected at a desired resolution. This
allows the predictors to predict a next location tile at appropriate resolution.

During the scene walkthrough, a user forms a current GPS trajectory t.. As the user
moves, the trajectory t. is continuously projected to the 2D space of location tiles thus
forming the set S..

S.=A{1°, 1!, ..., T"} (6.11)

For simplicity, consider only the current trajectory 7. without specifying the resolution
level. Given a current location tile [, ;. a current local movement pattern MZe(c—j) can
be extracted from the current trajectory T,

MCTC(C—j) (6.12)

= l[m,y]c—j+1l[$’y}c—j+2 e l[xvy]c—,7'+9
where ¢ identify current tile, j is order of the predictor, the constant 9 is predefined local
movement pattern length and j < 9.

Then input of the proposed prediction scheme is current local movement pattern M (c—
j) and output is a predicted location tile [ ., -

6.3.2 Evaluation of prediction queries in the client-server architecture

The described Markov chain and k-state predictors have different characteristics concerning
the adaptivity to changes in behaviour of users. Therefore, the 2-state predictor is used as
a local predictor running at client devices whilst the Markov chain based predictor is used
to model trends in behaviour of users with similar habits and it runs at server.

When constructing these predictors, the local movement patterns from the set K which
is loaded for the location tile [, ;.. from local (2-state) or remote (Markov chain) knowl-
edge database are matched with the current local movement pattern MZc(c — 7).

If the predefined length of the local movement patterns is 9 locations (or directions),
then the maximum order allowed for the next location predictors is 8. For this value of the
order, the equation 6.12 can be re-written as

Me(c—8) =1

It can be seen from the equation 6.13, that the next adjacent location tile I, .., to
the current tile /[, ). can be used as a prediction result for the predictors at order of 8. As
the directions are used instead of the locations, the predicted direction can be computed
from the difference between the location tiles I[, ;. , and [, .. The prediction is further
encoded by the chain code of eight direction.

The frequency counters and the states of the 2-state predictors can be initialized only
by such local movement patterns from the set K which match the first eight locations of
the current local movement pattern

(6.13)

ele_rlzwlers - - Ul zalen

MTe(c —8) = MTr(c —8) (6.14)

Z[Q%vyC]cf?l[wufUC]ch tre l[“/'av?/a}c = l[xevye]cf7l[l'eaye]c—6 e l[xe,ye]c (615)
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From the above equations, it can be seen that the matching process compares the indices
[z, ye] and [z, y.] between appropriate locations of the two patterns.

First, the 2-state predictor is constructed and evaluated based on the individual user
trajectories stored in the local knowledge database. If the k-state predictor does not return
any prediction result or the prediction result is marked as not confident, then the Markov
chain based predictor at server will be further incorporated to the prediction process.

As the Markov chain based predictor needs the knowledge database (local movement
patterns) of all users in the system, it will be constructed and evaluated at server. It
receives the location tile [, ,) . from which the current local movement pattern )/ Te(n—j)
is determined and current location tile I[, ), and it tries to search all the matching local
movement patterns stored on server for constructing the Markov chain based predictor.

Prediction quantity of both predictors is relatively low because of lack of movement
data for new users, users with new behaviour or low confidence of the predicted directions.
The standard solution to this problem is prediction by partial matching and in this thesis
it is further extended with application of recursive motion function.

6.3.3 Solving the case when no trajectory pattern is found

The case when no trajectory pattern is found can happen if the process of matching the set
of local movement patterns K from knowledge database and the current local movement
pattern M ¢(c—j) did not find any matched local movement pattern. The standard solution
to this problem is a method called prediction by partial matching.

Prediction by partial matching

Prediction by partial matching (PPM) is based on shortening the length of the matched
sequence of location tiles. The length of the matched sequence of location tiles is initially
determined by the order of the predictors i.e j = 8.

Consider that the length of the matched sequence of location tiles is shortened by s
locations. Then the equations 6.14 and 6.15 will be rewritten as follows

MIe(c—8,5) = MTr(c—8,5) (6.16)

l[xmyc}c—'?-‘—sl[xmyc]c—()‘-‘rs te l[xc,yc}c - l[x57ye]c—7+sl[xeaye]c—6+s tt lhe#]e]c (617)

Both the local movement patterns from the set K and the current local movement
pattern are shortened until the predictor did not return some prediction result or other
conditions are met. Note that the set K contains still the local movement patterns loaded
from the location tile [f, .. i.e. l|;,]._, and only the matched sequence of location tiles is
shortened.

The disadvantage of this approach is that the shorter the sequence of the matched local
movement patterns is, the less is the prediction accuracy. From the results, a minimal
acceptable local movement pattern length can be determined so that the predictors have
increased quantity, but still have high prediction accuracy (see the section 8).

If the next location predictors return a prediction result (predict a direction) by short-
ening the matched sequence of location tiles, such prediction is marked as not confident.
Even such prediction result is not confident, it is still better than accuracy of motion func-
tion based predictors (see the section 8). Therefore, such prediction result can be used to
compute priorities for downloading only missing data tiles for rendering the current view,
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but not for prefetching them in advance for rendering future views, because the goal of
the scheduling algorithm in this thesis is to keep the data transfers efficiency high (see the
section 8).

Recursive motion function

If both the Markov chain and 2-state predictors do not respond to a prediction query (i.e.
no matching patterns were found), the proposed prediction scheme predicts next movement
using state-of-the-art recursive motion function (RMF) [136].

Input of the RMF method is a sequence of past GPS coordinates so that it can predict
next position based on motion function determined from these past GPS positions. The
predicted GPS position is projected using Mercator projection to the discrete 2D space of
location tiles at the finest resolution only. If the location tile determined from the projection
does not differ from the current location tile, the RMF predictor is applied again to predict
more steps ahead until a difference between current tile and the predicted tile occurs.

The RMF method has lower accuracy compared to the next location predictors even
the prediction by partial matching is used, but it is still more accurate compared to the
linear predictors. On the other side, the RMF method has high quantity compared to
the next location predictors. As the prediction accuracy is the most important requirement
concerning the distributed virtual walkthrough applications and also the goals of this thesis,
the prediction result of the RMF method can be used only to compute priorities of currently
missing data tiles at the finest resolution level.

6.3.4 Prediction scheme overview

The result of each next location predictor has three states. These three states are confident
state, not confident state and empty state. Confident prediction can be used for both
determining download priority of missing data tiles which are required for rendering the
scene from the current user position and also for determining missing data tiles for the
future user location (see chapter 7). Not confident prediction result can be used only for
determining the download priority of missing data tiles needed for rendering the scene from
the current user position.

The two described next location prediction methods give a confident result only if the
confidence estimation of a selected direction is higher than 90% (for the Markov chain based
predictor) or if the context of the 2-state predictor is in strong state and the shortening by
the PPM method was not applied (see the section 8). If the next location predictors satisfy
the conditions (confidence equals to 90% for the Markov predictor or the 2-state predictor
is in strong state) but with applied shortenings by the PPM, the prediction is marked as
not confident. Otherwise empty state is returned.

Only if the empty state is returned, the RMF method can be used for determining the
download priority of missing data tiles which are required for rendering the scene from
current user position at the finest resolution level only. At the coarser resolution levels, the
RMF prediction result cannot be applied because of the low accuracy of the RMF method
when predicting distant positions. In this case the download priority of current missing
data tiles is determined from the distance between the current user position and centers of
the missing data tiles needed for rendering the current view.

The prediction scheme defines that first the 2-state predictor will be evaluated at the
client. If the state of its prediction result will be not confident or empty, then a server
will be asked to do the prediction. In this case, the client additionally performs the RMF
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prediction and sends its result to the server together with current local movement pattern
M — ).

The server creates the Markov chain predictor based on the received current local move-
ment pattern M e(c—j). If the prediction result is marked as confident, the server computes
download priority of all the data tiles which are missing by the client for rendering the scene
from the current user position. As soon as all these missing data tiles are downloaded, then
the confident prediction result will be used to determine and download the missing data
tiles which will be potentially required for rendering the scene if the user is moving in the
direction determined by the predicted location tile [[, ;.. If the prediction is not confi-
dent, then only the download priority of missing data tiles which are required for rendering
the scene from the current user position is computed based on the predicted tile lj, . . ;-
If the prediction state is empty, then the received result of the RMF method is used to
compute the download priority of missing data tiles which are needed to render the scene
from the current user position at the finest resolution level only.

The prediction scheme is evaluated at particular resolution levels whenever the user
passes from the current location to some adjacent location at appropriate resolution level.
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Chapter 7

Data transfers scheduling scheme

In this thesis, a data transfers scheduling algorithm based on the proposed prediction scheme
is proposed to achieve effective data transfers with maximum rendering quality during the
scene exploration within the framework.

First, the rendering algorithm determines which data tiles are missing for rendering the
scene from current user position (current view). The scheduling algorithm then determines
priority of download of these missing tiles based on the predicted location tile If; . ;-

As soon as all the missing data tiles required by the current view are downloaded, the
scheduling algorithm uses the predicted location [|, . ., to schedule download of missing
data tiles for the case the user will move in the direction determined from the current and
predicted locations [, . and lj; .., ,-

Within the client-server approach, both the client and the server can compute the
download priority or schedule download data tiles in advance depending on where the
prediction was done.

7.1 Rendering requirements

The current user position can be used to determine exactly all the data tiles from the three
data layers which are needed to render the scene from current user position (see Figure 7.1)
by the rendering algorithm described in the section 5.3.

In Figure 7.1 a user moves to the right location tile. The red point is current user
position, the black square delimits the area of elevation points covered by single level
of the clipmap for the current user position and the full red square marks current user
location. The black square determines all the texture tiles (yellow squares), elevation and
cartographic tiles (green tiles) which are required by the rendering algorithm to render the
current level of the clipmap pyramid from the current user position. The light blue colour of
terrain and texture data tiles indicates that the data tiles are not needed to render the given
level of the clipmap. As the user moves to the right, two terrain (and also cartographic)
tiles will be needed to render the level of the clipmap.

More precisely the missing data tiles for rendering the scene from the current user
position are determined as follows. The rendering algorithm uses the current user position
to determine current patch (see the subsection 5.3.3). Each patch covers a square bounded
area of elevation point and each level of the clipmap is rendered using an array of patches.
The four corner elevation points of each patch can be used to determine the data tiles
needed to render the patch. By examining all the patches within a level of the clipmap, all
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Figure 7.1: If the user moved to the right location tile, the new data tiles will be required
for rendering the levels of the clipmap.

the data tiles for rendering the whole level can be determined. Practically, the size of each
patch is usually smaller than the size (in terms of area of covered elevation points) of the
location tiles (32 x 32 elevation points). The size of the patches depends on the rendering
requirements and can be changed dynamically during rendering.

As the user continuously moves through the scene, the scheduling algorithm generates
requests for downloading the data tiles which are not available in cache memory, but are
required for rendering the scene from the current user position. The scheduling algorithm
generates these requests for all the levels of the clipmap pyramid starting by generating the
requests for downloading the data tiles at much coarser resolution level continuing to the
finer resolutions.

7.1.1 View frustum

In the framework, the view frustum culling is used solely to increase the rendered scene
frame rate. If a patch (see the subsection 5.3.3) from the given level of the clipmap is outside
the view frustum, then it is not rendered, but it is still considered when the scheduling
algorithm determines the missing data tiles for rendering the current view.

This behaviour is application dependent. In this framework it is expected that the scene
can be viewed from the top view, where the frustum culling has no effect as well as from
the first person view, where it can be considered when downloading the missing data tiles.
If the view frustum culling will be incorporated into the scheduling scheme, the data tiles
which are outside the current view frustum and are missing from local cache will not be
downloaded.

The view frustum is not considered in the scheduling scheme neither in the prediction
scheme. The reason for that is that the view frustum is likely related to the motion func-
tion based prediction. Therefore, it is not reasonable to use the view frustum for the next
location prediction methods because its direction can change many times (this is still ap-
plication dependent) until a user changes its location tile. Moreover, the information about
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the view direction for the input trajectories which are used to learn the predictors and test
the scheduling method is not available.

7.2 Application of the prediction scheme

Output of the prediction scheme is represented by the predicted location tile |, .., by
direction which is computed from the difference between the current location tile |, .,
and the predicted tile [, ,; ., with confidence of the prediction. This information is used
to compute download priorities of data tiles needed for rendering the current view and to
additionally prefetch all the data tiles potentially needed for rendering the future views if
a user moves in the predicted direction.

7.2.1 Priority determination

For a fast moving user or slow network connection, it is not possible to transfer all the
required data tiles for all levels of the clipmap in time. Even worse, some tiles required for
rendering the current view will be downloaded late, so that they are no longer needed for
rendering the current view but were downloaded.

To reduce such negative impact of the network restrictions, the priority of missing data
tiles for the rendering current view can be computed so both the data transfers efficiency
and the rendered image quality will be as high as possible. The data transfers efficiency is
defined as the ratio between the amount of downloaded data tiles and how these data tiles
contribute to the rendered image quality. Rendered image quality is defined as the ratio
between the time for which each data tile is needed for rendering the current view and the
time for which the tile is available i.e. present in local cache.

Therefore, the priority of missing data tiles for rendering the current view is determined
using the predicted location tile [f, )., as follows. The difference between the current
location and the predicted location tile determines the predicted movement direction (more
precisely the predicted direction is direct result of the prediction scheme). The predicted
movement direction is used to compute a reference location I, ) which is the predicted
location translated so that is lies outside the area covered by data tiles needed for rendering
the current level of the clipmap (see Figure 7.2).

Terrain tile Locations Texture tiles Locations
OO0O00O0O0O0 00000000 O0O0O0O0O000on
OO0O00000O0 DDTII_IHHTJT! HI_IDEDDDD

CI= O O
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Figure 7.2: The red point is current user position. The black square delimits the area of
elevation points covered by single level of the clipmap for the current user position. The
red square marks current user location. The blue filled square is the reference location
Uiz, such that it lies outside the area of the data tiles needed for rendering the level of the
clipmap.
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The reference tile is determined individually for each type of the data tiles as is shown
in Figure 7.2 (the reference location tile for the cartographic data is the same as for the
terrain tile). The priority of the data tiles is then computed as a distance between center of
the reference location tile [, ,; and center of the missing data tiles. The less the distance
is, the higher is the priority.

This priority determination is done for all levels of the clipmap (i.e. for all resolutions
of the data tiles) if the predicted tile is for these levels available. If the prediction result
is not available at some level, it cannot be decided where the used will continue within
that level. I can be for example considered that the user will continue the current type of
motion, but this should be rarely true especially at coarser levels. Therefore, if the direction
of next movement of the user at the issued level cannot be determined, then rather than
giving a higher priority to the distant tiles, the download priority is computed as a distance
between the center of current location tile /|, ;. and centers of the missing data tiles. Then
the smaller the distance is, the higher the priority.

7.2.2 Data prefetching

As soon as all the data tiles which are needed for rendering the current view are downloaded
for all levels of the clipmap, then the data transfers scheduling algorithm can use the
predicted location tile [[, ) ., to prefetch additional data tiles in advance. The prefetching
of the data tiles can be done only if the prediction is marked as confident.

As the current user position is used to determine the current patch within each level
(i.e. render ring) of the clipmap, the predicted direction is used to determine a patch which
is adjacent to the current patch along the predicted direction. The potentially missing data
tiles can be then determined for the adjacent patch similarly as they are determined for the
current patch (see the section 7.1).

For simplicity, consider the size of the patches equals to the size of the location tiles.
Then the adjacent patch along the predicted direction equals to the predicted location (see
Figure 7.3).

In Figure 7.3 the size of the patches equals to the size of the location tiles. The red
square delimits the data tiles (single terrain and cartographic tiles and an array of 5 x 5
texture tiles) which are needed for rendering the current view from current patch (defined
by the four red corner elevation points). The blue square delimits the data tiles which will
be needed for rendering the level of the clipmap in the case the user enters the predicted
patch (defined by the four blue corner elevation points). The green texture tiles will be
prefetched if they are missing in local cache, the sets of terrain and elevation tiles remain
the untouched.

The size of the patches is used to determine the missing data tiles for rendering the
future view instead of the location tiles, because the patches are closely related to the
rendering algorithm. If the location tiles are used to determine the future missing data tiles
and size of the patches is significantly smaller than the size of the location tiles, then there
is a high probability that the prefetched data tiles will not be used for rendering.

Priority of the missing data tiles which will be probably needed for rendering the scene
from the predicted patch can be computed using the same principle as was described in
the subsection 7.2.1. It means that the predicted location tile is moved along the predicted
direction so that the reference tile [|, ,j lies outside the area covered by data tiles needed
for rendering the current level of the clipmap from the predicted patch. The priority of
the data tiles is then computed as a distance between the center of the reference location
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Figure 7.3: Here, the size of the patches equals to the size of the location tiles. The four
red and blue points are used to determine the data tiles needed to render the current level
of the clipmap.

tile [[; ), and the center of the data tiles determined to be pre-fetched. The smaller the
distance is, the higher the priority.

7.2.3 Data transfers scheduling scheme overview

Every data transfers scheduling algorithm including also the one proposed in this thesis
always depends on the data representation and the rendering algorithm. The scheduling
algorithm proposed here exploits the proposed location-aware prediction scheme to control
download of data tiles. The goal of the scheduling algorithm is to use the predicted direction
from the prediction scheme to keep both the data transfers efficiency and rendered image
quality as high as possible. The prediction result determines download priority of missing
data tiles for rendering the current view and also to prefetch data tiles in advance.

100



Chapter 8

Experimental evaluation

A proof-of-concept of the client-server streaming and rendering framework which is proposed
in chapter 5 was implemented to support evaluation of the proposed location-aware data
transfers scheduling algorithm. The client part of the framework can run on iPad, windows
or Linux and renders the described virtual environment. It also exploits the proposed
scheduling algorithm with the proposed prediction scheme to increase both quality of the
rendered scene and data transfers efficiency.

The experiments concern evaluation of the prediction accuracy and quantity of the
proposed prediction scheme and evaluation of the location-aware data transfers scheduling
algorithm. The experiment are set so that various network restrictions are simulated and
the rendered image quality and data transfers efficiency are evaluated for each experiment.
Real trajectories are used to model behaviour of users.

The purpose of the experiments is to prove that the proposed scheduling algorithm
outperforms state-of-the-art methods for data transfers scheduling in distributed virtual
walkthrough applications. The parameters which are measured are prediction accuracy and
quantity of the proposed prediction scheme, and the effect of the prediction scheme to the
rendered image quality and data transfers efficiency during walkthrough the environment.

As the general purpose of the scheduling schemes is to reduce the impact of network
restrictions, the effect of the scheduling scheme is evaluated for various network bandwidth
and latency. The second important factor which affect the rendered image quality and data
transfers efficiency is the speed of a moving user. Therefore, the following experiments with
the proposed scheduling algorithm are performed:

e Slow moving user, high bandwidth and high latency to prove the scheduling algorithm
is efficient on fast networks, but with high latency.

e Fast moving user, high bandwidth and high latency to prove the scheduling algorithm
is working as expected if large amount of data cannot be downloaded in time for
rendering,.

e Fast moving user, low bandwidth and zero latency to prove the scheduling algorithm
is efficient also on slow networks with zero latency just to see the low bandwidth is
handled by the scheduling algorithm also efficiency and outperforms the state-of-the-
art scheduling scheme based on the recursive motion function method.
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8.1 Input trajectories dataset

All the experiments were done with GPS trajectories obtained from the well known Open
Street Map gpx database. The trajectories were downloaded from a rectangle area specified
by two [latitude, longitude] coordinates. The low corner is [49.9812545,14.230042] and the
high corner is [50.182172,14.617306]. This area covers the city of Prague and its close
neighbourhood (see Figure 8.1).
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Figure 8.1: Size of the area (pink) from which the input trajectories are obtained.

The gpx trajectories dataset contains 2,648 trajectories recorded using various GPS
devices. The GPS trajectories are collected by concrete users, but can be exported from
the OSM database only as anonymous user. The trajectories cover local streets, highways
and foot paths at various lengths.

As was specified in the section 6.1, the GPS trajectories are projected into the 2D space
of location tiles so that each location can be associated with one texture tile. The area
covered by each location tile (at the finest resolution) is defined as an array of 32 x 32
elevation points i.e. an geographic area with the size of [0.000278,0.000278] degrees per
each location tile.

The number of resolution levels of the location tiles is set to 5. It is not reasonable to
define more resolution levels because the length of the GPS trajectories projected to the
2D space of location tiles, which is scaled by factor higher than 2° will be too short.

Accuracy and quantity of the next location prediction methods is evaluated using 20-fold
cross validation. Each trajectory set contains 132 GPS trajectories. The input trajectories
are assigned to the sets using modulo 20 operation. The validation is performed so that
19 sets are used for learning both the Markov chain based predictor and also the k-state
predictor and the remaining set is used to evaluate the prediction accuracy and quantity
of the predictors. This process is repeated 20 times for each set and compute the resulting
accuracy and quantity as an average value across results from all validation passes.

As the trajectories can be downloaded only as anonymous records, it is not possible to
assign them to individual users. Instead, all the input trajectories are assigned to a single
user and both the Markov chain based predictor and the K-state predictor are constructed
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with this assumption.

8.2 Prediction accuracy and quantity

The length of the local movement patterns is set to 9 location tiles (9 movement directions)
which are followed (applied) from the (j+1)th location tile [, . along the trajectory. For
this length of the stored local movement patterns, the highest order j,q. of the two defined
next location predictors is jmqer = 8, because the last location tile (movement direction) is
reserved for constructing (frequency counters and context switching) the predictors.

The experiments over the input trajectories show that the selected length of the local
movement patterns is sufficient, because when the length of a local movement pattern is
shortened to 7 location tiles (or directions), the accuracy is decreased only negligibly and
the quantity is slightly higher for both predictors (see Figure 8.2. and Figure 8.3.).
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Figure 8.2: Comparison of accuracy and quantity of Markov chain based predictor for
different lengths of local movement patterns and different resolution levels of the location
tiles.

The quantity and accuracy in Figure 8.2 account only confident predictions. The signif-
icant quantity drops off for the shortest lengths of local movement patterns (shorter than
3 locations) is caused by increased amount of not confident predictions. The confidence
threshold which was set to 90% and the low ,selectivity“ of short local movement patterns
are the reasons of the quantity drops off.

Accuracy and quantity were evaluated also for the 2-state predictor (see Figure 8.3)
which is constructed from all local movement patterns gathered over all input trajectories.
As can be seen from the results, the 2-state predictor has very low accuracy and increased
quantity for the shortest lengths of the local movement patterns. Compared to the Markov
chain based predictor, there is no drop off in prediction quantity for the shortest local
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Figure 8.3: Comparison of accuracy and quantity of 2-state predictor for different lengths
of local movement patterns and different resolution levels of the location tiles.

movement patterns. It is because the 2-state predictor misses the confidence estimation
method which is used in the Markov chain based predictor. If the 2-state predictor has
more states, then the quantity for the shortest patterns will be lower and the accuracy will
be higher.

Based on this observation about the confidence, it can be said that the weaker the
confidence estimation method is (e.g. the confidence threshold), the lower the accuracy.

In practice, the 2-state predictor can temporarily have low prediction quantity compared
to the Markov chain based predictor especially for the new users or for users with changed
behaviour.

As the accuracy is the most important parameter concerning the goals of this thesis,
the length of the local movement pattern used through the next experiments is set to 7
locations. From the results, the accuracy of both the K-state predictor and Markov chain
based predictor is higher than 95% for the first four resolutions of the location tiles and
higher than 90% for the last resolution even though the length of the local movement
pattern is set to 7 locations.

8.2.1 Prediction by partial matching

The proposed prediction scheme uses also prediction by partial matching for both Markov
chain based and K-state predictors. Figure 8.4 and Figure 8.5 show effect of the PPM
to accuracy and quantity of the next location predictors for all possible shortenings of
the matched sequence of location tiles between current local movement pattern and the
local movement patterns from the set K defined for location tile [f, ) ., and for all five
resolutions of the location tiles.

Initial length of the matched sequence of locations is 8 directions for local movement
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Figure 8.4: Comparison of accuracy and quantity of Markov chain based predictor for
different lengths of the matched sequence of location tiles, and for different resolution levels
of the location tiles.

patterns with length of 9 locations. The results show, that the higher the length of the
shortening is, the lower the accuracy is but the higher the quantity of prediction is. Based
on the results the similar increase in quantity is reached if the local movement patterns are
shortened from 9 location tiles to 7 location tiles, or if the shortening length of the PPM is
2 locations for both predictors.

As the length of local movement patterns was set to 7 locations, then if the shortening
by the PPM method was applied to return non-empty prediction, then the prediction will
be marked as not confident. Such prediction result will be used to compute only priorities
of data missing tiles which are needed for rendering the current view.

8.2.2 Recursive motion function and linear prediction

The recursive motion function algorithm uses six past GPS locations to create the predictor.
It can be created only for the finest resolution of the location tiles, because of the character
of this method.

The prediction accuracy of the recursive motion function is 55% and its quantity is 97%.
Prediction accuracy of simple linear predictor is 39% and its quantity is 99%. It can be seen
from the results, that even the prediction by partial matching uses the longest shortening
of the matched sequence of location tiles, its prediction accuracy is still higher compared
to the results of the recursive motion function. Therefore, the RMF method is used only
if the next location predictors did not return any prediction results at all (no trajectory
pattern is found).
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Figure 8.5: Comparison of accuracy and quantity of 2-state predictor for different lengths
of the matched sequence of location tiles, and for different resolution levels of the location
tiles.

8.3 Scheduling scheme evaluation

The goal of the proposed scheduling scheme is to keep both rendered image quality and
data transfers efficiency as high as possible during walkthrough the described virtual envi-
ronment.

The amount of time for which each data tile is rendered and the amount of time for
which each data tile is available when it is needed for rendering are measured. These times
are measured only for the texture tiles as they are the smallest piece of data which is needed
for rendering the scene i.e. the scene cannot be rendered without textures. Moreover, the
texture tiles data set is more than one order of magnitude larger than the elevation and
cartographic data sets.

The rendered image quality is then defined as the ratio between the time the texture
tiles are available for rendering and the time the texture tiles are needed for rendering. The
data transfers efficiency is defined as the ratio between the amount of downloaded texture
tiles and how these texture tiles contribute to the rendered image quality. The quality and
efficiency are evaluated over all texture tiles within each level of the clipmap separately.

Several experiments were proposed to measure the impact of the location-aware data
transfers scheduling scheme to the rendered image quality and data transfers efficiency. In
these experiments, the parameters which are changed are motion speed of user, network
latency and connection bandwidth.

In the experiments, the results of the proposed scheduling scheme are compared against
a scheduling scheme based on the RMF prediction only and against a scheduling scheme
which has 100% accuracy and quantity of the prediction. The 100% accurate predictor is
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represented by 2-state predictor learned from current trajectory so that it returns always
confident prediction for each prediction query.

The experiments are performed on local area network with network latency and band-
width emulated at linux server using ,,tc“ command with ,netem* kernel component. The
experiments are performed over trajectories from first bundle of input GPS trajectories
which are not used to learn the predictors and the results are averaged.

In the experiments, it is expected from relatively recent measurements of 3G mobile data
networks [133] that average bandwidth of current 3G networks varies from approx. 1000kbps
to 3000kbps and latency from approx. 50ms to 100ms depending on many conditions.

8.3.1 Settings of the rendered scene

The scene is rendered using the described rendering algorithm (see Figure 8.6). The clipmap
has five levels (i.e. five resolutions of elevation and texture data tiles are required for
rendering the scene) and renders also the cartographic layer (buildings). Each level is
rendered using 16 x 16 array of patches, where each patch covers an area of 13 x 13 elevation
points. Therefore, each level covers an area of 208 x 208 elevation points with texture
mapped onto it with the size of 1536 x 1536 pixels.

The size of each texture tile is 256 x 256 pixels, which covers an area of 32 x 32 elevation
points, each terrain tile covers an area of 256 x 256 elevation points and single cartographic
tile is defined for each terrain tile (see the section 5.2 for more detailed description of the
scene data). Based on the covered area by each level of the clipmap at most an array of
6 x 6 texture tiles, array of 2 x 2 terrain tiles and cartographic data tiles will be needed to
render each level.

Figure 8.6: Streamed and rendered scene in wire-frame mode with the five levels where
each level is rendered using an array of 16 x 16 patches.
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8.3.2 Slow moving user, high bandwidth and high latency

In the first experiment (see Figure 8.7), the rendered image quality and data transfers
efficiency are measured for motion speed which was set to 60km /h, network bandwidth to
2000kbps and latency to 100ms.
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Figure 8.7: Comparison of rendered image quality and data transfer efficiency between the
proposed (2SP+MCH+RMF) scheme, the RMF(NOP) scheme and the 2SP(100%) scheme
for slowly moving user, high bandwidth and higher network latency.

The (2SP+MCH+RMF) is the declaration of the proposed scheduling scheme, the RMF
(NOP) stands for the recursive motion function used only for the finest resolution level and
no prediction (NOP) for the coarser resolutions, where the priority of missing data tiles
for rendering the current view is determined from the distance between the current user
position and the centers of the missing data tiles. The less the distance is, the higher the
priority is. The 2SP(100%) stands for the 2-state predictor which has 100% accuracy and
100% quantity of prediction.

As the user is moving slowly and the bandwidth is high, all the data tiles for all levels
of the clipmap can be downloaded so that the prefetching can download some data tiles in
advance. The rendered image quality and data transfers efficiency is high for the three last
levels for all three scheduling schemes. The quality of both (2SP+MCH+RMF) and the
2SP(100%) schemes is twice higher compared to the RMF(NOP) scheme.

The efficiency of all three schemes is similar over all the resolution levels. The efficiency
of the RMF(NOP) is also high, because there is no data tiles prefetched in advance and the
speed is sufficiently high so the requested tiles for rendering the current view are downloaded
relatively fast.

The efficiency of the RMF(NOP) scheduling scheme is slightly higher for the first level
compared to the second level, because the downloaded data tiles for the first level are more
utilized during rendering.
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The effect of the RMF on computation of download priority of tiles at the first resolution
level is evaluated as well. Instead of using the RMF for the first resolution level, the priority
of the data tiles is computed using the distance from the current user position and the
centers of the missing data tiles. The rendered image quality drops down from the 18.2% to
3% and the data transfer efficiency drops down from 84% to only 23.4%. From this result,
even the accuracy of the RMF is not as high as the accuracy of the next location prediction
methods, it is still very useful for determining the download priority of the missing data
tiles.

8.3.3 Fast moving user, high bandwidth and high latency

In the second experiment the motion speed is set to 130km/h which simulates a fast moving
user on a highway. The results show (see Figure 8.8) that no data prefetching is applied
here, because the complete set of data tiles over all levels of the clipmap was not downloaded
during rendering.
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Figure 8.8: Comparison of the rendered image quality and data transfer efficiency between
the proposed (2SP+MCH+RMF) scheme, the RMF(NOP) scheme and the 2SP(100%)
scheme for fast moving user, high bandwidth and higher latency.

Here, the 2SP(100%) scheme has almost twice a higher quality compared to both
(2SP+MCH+RMF) scheme for the second resolution level and is higher over all the reso-
lution levels. The rendered image quality of the RMF(NOP) is very low for the second and
third levels.

The efficiency of the (2SP+MCH+RMF) is significantly better compared to the RMF
(NOP) scheme for the second resolution level. The efficiency of the RMF(NOP) scheme
is very low for the second level because considering the quality of the RMF(NOP) scheme
at the second level, the data tiles which were downloaded are not used for rendering. The
reason that they are not used is that they are downloaded too late and are no more needed
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for rendering.

The efficiency of the (2SP+MCH+RMF') and the 25SP(100%) is similar over all resolution
levels. From this results, it can be said that the proposed (2SP+MCH+RMF) scheme keeps
both the rendered image quality and data transfers efficiency high considering the rendering
algorithm and the rendered data.

8.3.4 Fast moving user, low bandwidth and zero latency

For the last experiment, the motion of user is set again to 130km /h, but with low bandwidth
and zero latency. This experiment shows the effect to quality and efficiency of the proposed
(2SP+MCH+RMF) scheduling scheme at low bandwidth networks and for fast moving
users (see Figure 8.9).
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Figure 8.9: Comparison of the rendered image quality and data transfer efficiency between
the proposed (2SP+MCH+RMF) scheme, the RMF(NOP) scheme and the 2SP(100%)
scheme for fast moving user, low bandwidth and zero latency.

The results show that the 2SP(100%) scheme outperforms both the proposed (2SP+MCH
+RMF) and the RMF (NOP) scheme. The quality of the proposed (2SP+MCH+RMF)
scheme is much higher compared to the RMF(NOP) scheme at the second resolution level.
The quality of all the three schemes is similar over the last three levels, because the band-
width is sufficient to download the data tiles fast so the download priority plays a less
important role in this case.

The data transfers efficiency of the (2SP+MCH-+RMF) and the 2SP(100%) is much
higher compared to the RMF (NOP) scheme for the second level. But the efficiency of the
RMF(NOP) scheme is much better compared to the previous experiment. It is because
the network delay is set to zero in this experiment. It has the consequences that the data
tiles which started to be downloaded will be downloaded sooner compared to the second
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experiment. Therefore, they will be used for rendering for a longer time.

The terrain rendering algorithm is not tested within this thesis as the rendering perfor-
mance of the proposed algorithm is not the main point of interests of this thesis. Anyway,
it renders the scene at interactive frame-rates even on the iPad2 device. This allows the
streaming and rendering framework to run on today’s mobile devices. Please, see the at-
tachment of this thesis for the screen-shots from the iPad device.

8.3.5 Summary of the scheduling scheme results

The results from the three experiments performed show that the proposed data transfers
scheduling scheme corresponds to the expected results. It means the scheduling algorithm
keeps both the data transfers efficiency and rendered image quality as high as possible.
The results also show that the proposed scheduling algorithm significantly outperforms the
scheduling scheme based on the state-of-the-art recursive motion function in all experiments.
Compared to the ideal scheduling scheme, the proposed scheduling algorithm has very
similar efficiency, but the ideal scheme outperforms the proposed algorithm in quality in
some cases.

The contributions of the proposed scheduling algorithm which is based on the proposed
prediction scheme are the following. First the increased quality is advantageous for users,
because the scene is rendered in higher detail and second the efficiency of the data transfers
allows to render the scene in higher detail with less transferred data which can be beneficial
in case of pre-paid data limits.
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Chapter 9

Conclusions

The goal of this thesis was to propose and experimentally evaluate the new location-aware
data transfers scheduling algorithm which utilizes the proposed prediction scheme to in-
crease both the rendered image quality and data transfers efficiency within the pre-defined
multi-resolution client-server environment.

Nowadays, thanks to the sharp increase of popularity of mobile and embedded devices,
the distributed virtual walkthrough applications receives an increased degree of interest.
As the mobile data connections still suffer from significant network restrictions, the data
transfers scheduling algorithms are the most important part of the distributed virtual walk-
through applications. As the mobile device can represent an individual behaviour of its user,
the data transfers scheduling can exploit of such feature. Consequently, the main contribu-
tion of this thesis is the proposed complex prediction scheme which exploits the knowledge
of individual behaviour of given user or behaviour of groups of users with the same habits
to increase the rendered image quality and data transfers efficiency.

The proposed prediction scheme uses the combination of the Markov chain based predic-
tor and the 2-state predictor as the next location predictors in the client server environment.
The predictors are trained from real trajectories using local movement patterns. The local
movement patterns are applied so that only the last location tile is used to construct the
predictors. The local movement patterns can be used so that e.g. last two location tiles
can be applied. In this case, the conditional probability of moving a user to location tiles
which are adjacent to the first predicted tile can be computed. As the goals of this thesis
is to keep the rendered image quality and data transfers efficiency high, the conditional
probability is not computed, because it is not reasonable to perform the prediction more
steps ahead with these requirements.

The experimental evaluation of the proposed location-aware data transfers scheduling
algorithm outperforms the state-of-the-art scheduling scheme which is based on the recur-
sive motion function. The data transfers efficiency of the proposed algorithm is very similar
to the scheduling scheme which is based on the ideal predictor. Compared to the state-of-
the-art scheduling method, the efficiency of the proposed method is about 60% bigger for
the second resolution level for the fast moving user and high latency networks. The image
quality of the proposed method is approximately two times bigger than the quality of the
state-of-the-art method with the same setup, but it is also two times lower compared to the
ideal prediction scheme. If the network restrictions are relatively negligible and the user is
moving slow, the proposed method outperforms the state-of-the-art approach two times in
quality. For low bandwidth networks, the increase of quality of the proposed method over
the state-of-the-art method is 10% and the data transfer efficiency increases about 33%.
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The significant increase of the efficiency and quality of the proposed method over the
state-of-the-art method is advantageous, because the scene can be rendered in higher de-
tail whereas the amount of transferred data is smaller compared to the state-of-the-art
scheduling scheme. It can be beneficial in the case of pre-paid limits on data connections.

The advantages of the proposed scheduling scheme which exploits the next location
prediction methods is that it is adaptive to behaviour of individual users. The disadvantage
is that the next location predictors depend on the knowledge database which needs to be
kept up to date. Especially the Markov chain based predictor evaluated at server needs
GPS trajectories collected by all users of the system. This can be potentially problematic
as the users of the system have to be asked to agree with that. On the other hand, the
trajectories at the server can be stored as anonymous records.

Further research can be focused on exploitation of the temporal information within the
prediction scheme. It can further increase the prediction accuracy which, in effect leads to
the better data transfers scheduling. Another area which should receive a high degree of
attention is how the predicted locations can be used to solve cache invalidation in devices
with limited storage space.
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Appendix A

Scene streaming and rendering

The following video shows the streaming and rendering of the terrain:
http://wuw.youtube.com/watch?v=s8Ge-Vro96I&feature=youtu.be

The following video shows the rendering of the terrain from top view:
http://www.youtube.com/watch?v=2UzSy49gsPU&feature=youtu.be
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Appendix B

Scene rendering screenshots

Figure B.1: Rendered terrain with buildings from user view on iPad 2 device. The data are
streamed from remote server using the scheduling and prefetching mechanism proposed in
this thesis.
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Figure B.3: Bird view of the rendered scene.
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Figure B.5: Rendering of the terrain on windows.
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