

Czech University of Life Sciences Prague

Faculty of Economics and Management

Department of Information Engineering

Bachelor Thesis

Birds on line data processing support

Author of thesis:

Mikheil Maisuradze

© 2020 CULS Prague

Declaration

I declare that I have worked on my bachelor thesis titled "Birds on line data

processing support" by myself, and I have used only the sources mentioned at the end of the

thesis. As the author of the bachelor thesis, I declare that the thesis does not break the

copyrights of any person.

In Prague on 30.11.2020 ___________________________

Acknowledgment

First and foremost I wish to thank my thesis supervisor Ing. Josef Pavlíček, Ph.D.,

for the time and instructions he dedicated to me. He has been supportive since the days I

began working on the bachelor thesis “Birds on line data processing support”. Last but not

least I want to thank all who gave me the data and information needed for the thesis.

Birds on line data processing support

Abstract

This bachеlоr thеsis dеals with creating a custom dataset for object detection. In the

thеоrеtical part, it dеscribеs what object detection is. Object detection is explained in various

ways: From the human point of view to its latest updates and all the main history leading to

modern technology. The theoretical part of the thesis describes one of the leading and fast

object detection models YOLO(which can recognize multiple classes of objects in an image).

It includes YOLOs history, explanations of how it works, what is needed for YOLO to create

a custom database, and the YOLO algorithm performance test. It fоllоws with in-depth

descriptions of the used programs and data for this thesis. The first program is LBLImg,

which is an image annotation tool that was used for this thesis for labeling and converting

given data to the format appropriate for the YOLO model. After the LBLImg thesis describes

the programming language Python in which YOLO performs. Next comes information

about the data provided by the thesis supervisor Ing. Josef Pavlíček, Ph.D. Data contains the

photos from the birds (Tit) nest from the year 2017 and specifications of the motion detection

camera used to shoot the images for this thesis.

The practical part ilustratеs thе prоcеss оf dеvеlоpmеnt оf еaliеr mentioned custom database

for the YOLO model to detect birds open mouth and food portion on the image. It alsо shоws

step by step how I used earlier mentioned software and data to accomplish the project and

test results.

Keywords: Data, Lable, LabelImage, Python, Object Detection, YOLO, Database, COCO

database.

Podpora zpracování dat Birds On Line

Abstrakt

Tatо bakalářská prácе sе zabývá s vytvořením vlastního datového souboru pro

detekci objektů. V teoretické části popisuje, co je detekce objektů a je vysvětlena různými

způsoby: Z pohledu člověka až po nejnovější technologii a historii vedoucí k moderní

technologii. V teoretické části práce také popisuje jeden z předních a rychlých modelů

detekce objektů YOLO, v souladu s jeho historií, vysvětlením toho, jak to funguje, a co je

potřeba, aby YOLO vytvořil vlastní databázi, a test algoritmu YOLO. Následuje hluboký

popis použitých programů a dat pro tuto práci. Prvním programem je LBLImg, což je nástroj

pro anotaci obrázků, který byl použit pro tuto práci k označení a převodu daných dat do

formátu vhodného pro model YOLO. Náslеdujе popis programovací jazyka Python, ve

kterem model YOLO je napsana. Dále přicházejí informace o údajích poskytnutých

vedoucím práce Ing. Josef Pavlíček, Ph.D .. Data obsahují fotografie z ptačí hnízdo (sýkora)

z roku 2017 a specifikace kamery pro detekci pohybu použité k fotografování snímků pro

tuto práci.

Praktická část ilustruje postup, jak se zmínit o vlastní databázi pro model YOLO k detekci

otevřených úst a potravy ptáků na obrázku. Postupně také krok za krokem ukazuje, jak jsem

použil výše uvedený software a data k provedení projektu a výsledků testů.

Klíčová slova: Data, Lable, LabelImage, Python, Detekce objektů , YOLO, Database,

COCO database.

Table of content

 introduction .. 1

 Objectives and Methodology ... 2

2.1 Objectives ... 2

2.2 Methodology .. 2

 Theoretical Part .. 3

3.1 Object Detection ... 3

3.2 YOLO (You Only Look Once) .. 5

3.2.1 Features of the YOLO v2 algorithm ... 8

3.2.2 YOLO algorithm performance test ... 8

3.3 Used Programs and Data .. 9

3.3.1 LBLImg .. 9

3.3.2 Python ... 11

3.4 Data used .. 15

4 Practical Part .. 16

4.1 Gathering data and Labeling them ... 18

4.2 Gathering data .. 18

4.3 Labeling Images ... 20

Teach a deep neural network YOLO to recognize food ... 24

4.4 4.3 Using custom trained database in YOLO .. 26

 Perform the test and evaluate the result .. 27

 Conclusion ... 29

 Reference ... 33

 Apendix ... 33

List of pictures
Figure 1Multiplication of boundary c by vector values C ... 6

Figure 2 rectified linear unit function .. 7

Figure 3 Input Image Transformation .. 7

Figure 4 Dimensional Clusters and Direct Layout Prediction ... 8

Figure 5 labelImg Information ... 9

Figure 6 labelImage Visualization (github, n.d.) ... 10

Figure 7 Hotkeys for lablImg (github, n.d.) ... 10

Figure 8 Python Logo (www.python.org, 1990) .. 11

Figure 9Visualization of http://athena.pef.czu.cz/ptacionline/ . (czu, n.d.) 15

Figure 10 example of food inside .. 18

Figure 11 example of food inside .. 19

Figure 12 Bad example of food inside ... 19

Figure 13example open mouth ... 19

Figure 14 Bad example of food inside ... 20

Figure 15 practical visualization LBLImg ... 21

Figure 16 Practical visualization LBLImg ... 22

Figure 17Practicat visualization LBLImg .. 23

Figure 18 YOLO test output .. 28

Figure 19YOLO test output ... 28

file:///C:/Users/CreditPortal/Desktop/bachelor%20thesis.docx%23_Toc35894384

1

 introduction

The topic of the bachelor thesis “Birds on line data processing support” was chosen

deliberately. The main reason for choosing this particular work for the author is interest in

the automatization of processes that cannot be done by a human, or it will take lots of effort

and time to do. In the given topic I touched on the problem of how count bird feeding process.

Whith data obtained from the work, we can generate statistics about the frequency of birds

feeding the nestlings. This information will help farmers to make a nature-like environment

for bird farming, Including when and how often nestlings are fed. We are gathering data

about nature's behavior through long observation. With the help of coding in python and

visual detectors, I managed to convert this data into useful information. This information

will teach software on how to recognize when birds are feeding the nestlings, by comparing

frames to the given information. The thesis works only with input photos, which are given

to the detector by the user, but with few adjustments, it can also work on the live stream

video, which will allow us to observe as many bird nests as cameras are given, gain not only

data but already information converted into the numbers.

The work was done in the programming language Python. Python is a dynamic high-

level programming language with a wide range of capabilities, the design of which focuses

on easy-to-read code. The Python standard library is large and versatile. I chose python for

its high speed, highly clear, understandable, and readable syntax. With help of its libraries,

we can easily do huge tasks, with a couple of pre-made functions.

YOLO (You only look once, visual detector, which can recognize multiple classes of

objects in an image) is highly engaging and useful for today's use. It’s fast with a comparison

with other object detection networks.

This work aims to study the possibility of labeling food carried by a bird. The work

will be used to teach the appropriate convolutional neural network. This network will then

be used to verify the machine's ability to detect food accuracy.

In this work, there will be explained all steps to create a deep neural network that will

recognize bird feeding accuracy. Starting from preparing a custom dataset for training

YOLO Object Detector to testing the network.

1

 Objectives and Methodology

 Objectives

 The bachelor thesis is focused on the development of Artificial intelligence with the

ability of object recognition using the programming language Python.

 Work consists of the following partial objectives – collecting all the data for the thesis

photos from inside birds(tits) nest. choosing useful photos from a huge dataset of photos

taken by the camera inside of the nest. Labeling photos, where birds are doing the motions

we are interested in, when there is food inside the nest and when the nestlings have open

mouths. Implementation of network training, for which was used Jupiter notebook an

open-source web application, training will generate weight file for our custom dataset used

for detecting the motions on photos. And the last but the most important part is the making

of a custom dataset for training YOLO object detector and testing, for which we will need

all the above preparation. After finishing the training user can give photos to the detector

which will give the user the information if on the photo are the above mention motions and

how accurate are those matchings.

 Methodology

Solving the bachelor thesis problem will be based on online and book researches to

understand how and in which environment the problem should be solved. The next step was

obtaining data on which the thesis will be based on. These data are around photos from the

bird's nest, which I had to convert into useful information by going through all of them one

by one and choosing the right photo which will be useful to label them. After having the

useful data, I had to make label them in the thesis adequate format (format: YOLO), labeling

was done in the open-source program LabelImg, every label had to be done for every motion,

some of the photos have more than one motion I needed to label, so I had to make labels for

every motion. The next step was to train the network using the Jupyter notebook and generate

a weight file for our custom dataset. After the YOLO network was trained by our custom

dataset. After training network is able to recognize motion on photos the user gives to the

network and give matching accuracy percentage back to the user.

The outcome of this work can be used to solve real-life problems. A particular YOLO

algorithm with our dataset will be used to detect the feeding of nestlings on photos.

1

 Theoretical Part

 Object Detection

The human brain contains many mysteries. With the advent of modern electronics,

attempts have begun to hardware-software playback of his work. The rapid development

and application of the apparatus of artificial neural networks have come over the past half-

century. Currently, the task of detecting and classifying objects in images is quite relevant.

Software is being developed everywhere for automatic control of vehicles, validation of

scanned documents, etc. In other words, algorithms and computer vision programs are

being developed.

First of all, the algorithm for detecting objects in images requires high accuracy and speed

of determining the location of an object and its classification. To date, algorithms have

been proposed that achieve excellent performance according to these criteria. In this paper,

we consider some of them.

In 2013, the first version of the R-CNN (Region-based Convolutional Neural Networks)

algorithm was introduced based on image segmentation and convolutional neural network

methods. Subsequently, these ideas evolved in Fast R-CNN and Faster R-CNN. The Faster

R-CNN algorithm is one of the most accurate in its class. Still, in order to achieve high

accuracy, it is necessary to sacrifice performance, which in turn leads to the inability to

work in real-time

At the end of 2015, the YOLO (You Only Look Once) algorithm was introduced, which

allows fast image processing (about 1000 times faster than R-CNN, 100 times faster than

Fast R-CNN), but with lower accuracy.

In algorithms such as Faster R-CNN, the definition of objects in images occurs in two

stages. The first stage is the results of the work of a deep, fully connected network (Region

Proposal Network, hereinafter RPN), the purpose of which is to determine the regions in

which the desired objects are supposedly located. The second stage is the use of the Fast R-

CNN detector, which searches for objects in the proposed regions. Thus, the RPN selects

1

the areas that Fast R-CNN further checks for objects. However, in this approach, these two

artificial neural networks (ANNs) are trained independently of each other.

The YOLO system solves the detection problem as a regression problem. Due to the high

speed of image processing, it is suitable for use in real-time systems.

One of the important areas of AI(Artificial Intaligence) is computers sight, known as

Computer vision which is the science of computers and software systems that can

recognize and understand images and scenes. Computer vision also consists of various

aspects, such as image recognition, object detection, image generation, super-resolution

images, and much more. Object detection is most likely the deepest and most complex

aspect of computer vision because of the sheer number of practical cases.

Object detection refers to the ability of a computer and software systems to find

objects in an image/scene and identify each object. Object detection is widely used for face

detection, vehicle detection, pedestrian counting, web images, security systems, and

driverless cars. There are many ways to use object detection technology, as well as many

areas to explore. As with any other computer technology, a wide range of amazing and

creative applications for object detection technology will certainly come from

programmers and software developers.

Using modern methods for detecting objects in applications and systems, as well as

creating new applications based on these methods, is not a direct task. Early

implementations of object detection technology included the use of classic algorithms, for

example, from theses supported by OpenCV, a popular computer vision library. However,

these classic algorithms were not able to provide sufficient performance to work in

different conditions.

The breakthrough and rapid implementation of an in-depth study in 2012 led to the

emergence of modern and high-precision algorithms and methods for detecting objects,

such as R-CNN, Fast-RCNN, Faster-RCNN, RetinaNet, and yet fast and high-precision

SSD and YOLO. The use of these methods and algorithms based on deep learning, which

is also based on machine learning, requires a good understanding of the mathematical and

deep learning frameworks. There are millions of expert programmers and software

developers who want to integrate and create new products that use object detection

technology.

1

 YOLO (You Only Look Once)

The most significant advantage of the YOLO model, in fact, is reflected in the name

- You Only Look Once. This model superimposes a grid on the image, dividing it into

cells. Each cell tries to predict the coordinates of the detection zone with confidence

estimates for these fields and the probability of classes. Then the confidence score for each

detection zone is multiplied by the probability of the class to get the final score.

It is an advanced real-time object detection system. On the official website, you can

find SSD300, SSD500, YOLOv2, and Tiny YOLO, who have been trained with two

different data sets: VOC 2007 + 2012 and COCO. You can find even more configuration

options and datasets for machine learning on the Internet (for example, YOLO9k). Thanks

to the inclusive range of options available, you can choose the version that is most suitable

for your needs. For example, Tiny YOLO is the most “compact” option that can work

quickly, even on smartphones or Raspberry Pi. We liked the last option, and we used it in

our project.

YOLO has a strict input data array size of 608x608 pixels. We needed some kind of

interface that can accept any image, normalize it and feed it into a neural network. And we

have developed this interface. For normalization, it uses TensorFlow, which works much

faster than other solutions we tested (native Python, NumPy, OpenCV).

An example of this can be seen in Fig. 2, gives the tensor size S * S * (B * % + C),

which is enough to build the boundaries of the detected objects. Here S- is the grid

dimension, C- is the number of boundaries used in the estimation for each cell, is the

number of classes that the neural network is able to recognize.

1. The image is superimposed with a grid dimension S * S. Each grid cell

corresponds to a vector of dimension 5 * B + C, where the number 5 determines the

number of indicators of each border. Used indicators: x, y - coordinates of the center of the

border inside the cell (take values from 0 to 1 relative to the size of the cell); w, h - width

and height of the found border (have values from 0 to 1 with respect to the width and

height of the original image, respectively); c - the probability that the boundary is correctly

defined. The first 5 * B values of the vector corresponding to the cell characterize precisely

these parameters. The remaining C values in this vector show the probabilities that the

center of the object is in this cell. At the moment, these probabilities are not tied to

1

boundaries; to find the class probabilities for each of the boundaries, it is necessary to

multiply the boundary c characteristic by these vector values C, as shown in Figure 1.

Figure 1Multiplication of boundary c by vector values C

2. As a result, we obtain boundaries S * S * B with class probabilities. In order to get

the final recognition, you must do the following:

2.1. A class is fixed, for example, a “dog” for which there is a vector with a probability

value of the class “dog” with each of the S * S * B boundaries.

2.2. We reset the values for those boundaries for which the value is less than the threshold

(set in advance).

2.3. Sort the vector in descending order.

2.4. We apply the algorithm NMS (Non maximal suppression). It works according to the

following principle: at the input, a vector of S * S * B probabilities of the “dog” class is

supplied for all boundaries. The maximum value is selected since the vector is sorted, this

element is in the first position, and then this boundary is compared with the boundaries to

the right, which have a class probability of more than zero. The comparison takes place

according to the intersection area: if the intersection area is greater than 0.5, then for the

border, it is less likely that this probability is reset. By this principle, we compare the

remaining boundaries. And then, we fix the next boundary with nonzero probability and

carry out similar comparison operations. Thus, all boundaries for the dog class are

considered,

2.5. Next, the next class is taken, and similar operations of comparison and zeroing are

carried out. After a similar procedure, sparse vectors are obtained with probabilities for

each class for each boundary found.

1

It remains only to decide what boundaries should be applied to the original image. The

selection method is quite simple: each boundary is considered, the maximum probability

value is taken by classes and, if it is greater than zero, then the boundary is applied to the

original image. Otherwise, the next one is skipped and considered.

In the classic case of applying the YOLO algorithm, a grid is built in size, two boundaries

are constructed for each cell, and the network is trained in 20 classes. A three-channel

image of 448x448 size is fed to the input of a neural network. This tensor is passed through

a modified GoogLeNet network (the first 20 layers), at the output of which we have a set

of feature maps with a spatial dimension of 14x14x1024. Next, we use a set of

convolutions with ReLU (rectified linear unit), which is an activation function of the form:

Figure 2 rectified linear unit functuon

 As a result, we get a tensor of size 7x7x1024. At the next stage, this set is passed

through a fully-connected ReLU layer of dimension 4096x1 and then through a fully-

connected layer, at the output of which we have a vector of 1470 elements, which is

transformed into a 7x7x30 tensor. Further, for this tensor, we use the modifications

described above.

Figure 3 Input Image Transformation

1

3.2.1 Features of the YOLO v2 algorithm

Just six months after the publication of YOLO, an improved version was introduced, in

which recognition of about 9000 categories was implemented (while the first version in

real-time could recognize about 200 classes). Significant improvements include

 Batch normalization. It leads to a significant improvement in convergence, eliminates the

need for other forms of regularization. The increase in average recognition accuracy was

2%.

 High Resolution Classifier. Replacing the GoogLeNet framework with ImageNet made it

possible to fine-tune the resulting network for discovery. The increase in average

recognition accuracy was 4%.

Dimensional Clusters and Direct Layout Prediction. In the first version of the neural

network, the estimate of the intersection area, which works well only with boundaries of

comparable sizes, was used as a metric. To solve this problem, as a metric that would work

equally well with borders of different sizes, it was proposed:

Figure 4 Dimensional Clusters and Direct Layout Prediction

That allowed us to increase the accuracy by about 5%.

In total, all these innovations made it possible to increase the accuracy of the neural

network from 63.4% to 76.9%.

3.2.2 YOLO algorithm performance test

The YOLO v2 algorithm was tested on the same sample of images using CPU (processors)

and GPU (graphics cards). GPU calculations were performed using CUDA technology [9].

On average, it took 8.97 s to recognize one image using the CPU, and only 0.92 s when

using the GPU.

1

A significant increase in performance when using the GPU is associated with a high degree

of parallelism of the source code of the YOLO v2 algorithm. Graphic cards allow you to

quickly process the given blocks of images and carry out their classification.

 Used Programs and Data

3.3.1 LBLImg

LabelImg is a graphical image annotation tool. It uses Qt for its graphical interface,

LBLImg is written in Python and. LabelImg can generate labeling in YOLO format.

The main reason I used LBLImg is that it supports the YOLO format. For this project, I

needed to label more than 800 Photos, and LBLImg was the bast choice to choose because

of its easiness. In the practical part of the thesis, it will be furtherly explained how LBLImg

was used, and we can see why it was the best choice.

For this thesis I used LBLImg 1.8.1 version

Figure 5 labelImg Information

1

LBLImg has some predefined classes as well. It was not used for this project, but those

classes are extremely helpful for other projects.

Figure 6 labelImage Visualization (github, n.d.)

Figure 7 Hotkeys for lablImg (github, n.d.)

1

Verify Image:

Pressing space can flag the image as verified. The green background will appear after

verification. This verification is used when the user wants to create a dataset automatically.

Then the user can go through all the photos and flag them instead of annotating pictures.

Difficult:

When an object is clearly visible but difficult to recognize without substantial use of

context, the difficult field is set to 1. It means that the object has been explained as

„Difficult“.

3.3.2 Python

Figure 8 Python Logo (www.python.org, 1990)

Python is an interpreted, object-oriented, high-level programming language with

dynamic typing, automatic memory management, and convenient high-level data structures

such as dictionaries (hash tables), lists, tuples.

Supports classes, modules, exception handling, and multi-threaded computing. Python

has an expressive and straightforward syntax. The language supports several programming

paradigms: structural, object-oriented, functional, and aspect-oriented.

Python was developed at the end of 1989. Guido van Rossum (Guido van Rossum)

during the Christmas holidays, when his research laboratory was closed, and he simply had

nowhere to go. He borrowed many of the programming tools inherent in other languages.

The name of the language did not come from the name of the reptile family. The author

named the language after the famous British comedy television show of the 1970s, Monty

Python's Flying Circus.

Unlike other programming languages, Python is not only distributed entirely free of

charge, but it also has absolutely no restrictions in terms of use.

1

No one restricts the commercial use of software products written in this language

without any royalties. Programmers are also free to upgrade the language without notifying

the author.

Version 1.0

Python 1.0 appeared in January 1994. The main new features included in this release

were functional programming tools: lambda calculus, map, filter, and list folding.

Van Rossum claimed that "Python acquired lambda, reduce (), filter (), and map ()

thanks to a Lisp lover who lacked them, and he provided patches that implement these

functions."

The latest version released by Van Rossum while working at the Center for

Mathematics and Computer Science was Python 1.2. Since 1995, Van Rossum has continued

to work on Python at the National Research Initiatives Corporation in Reston, Virginia,

where several versions of the language have been released.

By version 1.4, Python included many new features, among which the most notable

were the named parameters borrowed from Modula-3 and the built-in support for complex

numbers. Also, in 1.4, a simple form of data hiding using name mangling appeared.

BeOpen Version

In 2000, the core of the Python development team moved to BeOpen.com, forming the

BeOpen PythonLab team. Python 2.0 was the only release of BeOpen.com. After him, Van

Rossum and the rest of the PythonLab developers joined Digital Creations.

Version 2.0

Python 2.0 introduces list inclusion — a function borrowed from the functional

programming languages SETL and Haskell.

The syntax in Python for this construct is very similar to Haskell, except that Haskell

preferred to use punctuation characters, and in Python, keywords. Also, in Python 2.0, a

garbage collection system with support for circular references has been added.

1

Starting with the alpha release of Python 2.1, all code, technical documentation, and

specifications belong to the non-profit organization Python Software Foundation (PSF),

created in 2001 based on the Apache Software Foundation.

The release included a change in the language specification that supports nested scope,

as in languages with a static (lexical) scope.

In Python 2.2, there was a combination of Python base types and user-created classes

in one hierarchy. This has made Python a fully object-oriented language.

Version 3.0

Python 3.0 (called “Python 3000” or “Py3K”) was designed to address fundamental

flaws in the language. These changes could not be made, provided that full backward

compatibility with the 2.x version was maintained, so a significant version number change

was required.

The guiding principle behind the development of Python 3 was: "reducing duplicate

functionality by eliminating obsolete ways to do this." Python 3.0 was released on 03.12.

2008.

Python 3.8.2 and 3.9.0a4 are still in development. Python 3.9.0a4 beta version will be

available in 18.05.2020.

What do they write in Python?

 System utilities.

 Web sites (Django, Flask, Pyramid, Tornado, TurboGears).

 Applications for scientific calculations (NumPy, SciPy).

 Prototypes.

 Desktop applications (Tkinter, PyQt, wxPython).

 Games (Pygame).

 Mobile applications (Kivy).

Where is Python used?

 Google uses Python in its search engine.

 Companies like Intel, Cisco, Hewlett-Packard, Seagate, Qualcomm, and IBM

use Python to test hardware.

 The YouTube Video Sharing Service is slowly implemented in Python.

1

 NSA uses Python to encrypt and analyze intelligence.

 JPMorgan Chase, UBS, Getco, and Citadel are using Python to predict the

financial market.

 The popular program BitTorrent for sharing files in peer-to-peer networks is

written in Python.

 Google's popular App Engine web framework uses Python as an application

language

Python syntax

The syntax of the Python language, like the language itself, is very simple. It does not

contain complex non-intuitive constructions. Therefore it is quite simple to learn.

Python syntax guidelines:

 The end of the line is the end of the statement (no semicolon is required).

 Nested instructions are combined in blocks according to the indentation size.

The indentation can be any, the main thing is that the indentation is the same

within one nested block.

 Nested instructions in Python are written according to the same

pattern when the main statement ends with a colon followed by a nested block

of code, usually indented below the line of the main statement.

1

 Data used

From my thesis supervisor, Ing. Josef Pavlíček, Ph.D. I gained acces to the Apache/2.2.15

(CentOS) Server at of the food-bearing photos on: http://athena.pef.czu.cz/ptacionline/ .

Figure 9Visualization of http://athena.pef.czu.cz/ptacionline/ . (czu, n.d.)

On this server, there is a database of photos from inside Parus’s nest from the year 2016.

There is approximately 500 terabyte of data.

 Photos represent snaps from the motion capture camera which was installed in the Tit’s

nest. On the photos, there are two grown Tit birds and six young birds. Hatching is also

captured by a motion camera.

Hardware specifications used to capture the photoes :

 Microphone in the MIC slot. "HMU0603C-65" - Standalone cable microphone. No

microphone.

 Event trigger in the BARRIER slot. "IRBAR" - Standard U-shaped infrared light barrier.

Auxiliary hardware in the IOP0, IOP1, and IOP2 slots. "TS" - Temperature sensor. Only

one piece can be used. "LTS" - Light and temperature sensor. Only one piece can be used.

 Video cameras in the CAM0 and CAM1 slots. If both cameras are used offline for

triggered event recording, CAM0 records prior to CAM1. "UI-1541M" - Monochrome

http://athena.pef.czu.cz/ptacionline/

1

camera by IDS, 1280x1024 px. Offline performance only. "UI-1641C" - Color camera by

IDS, 1280x1024 px. Offline performance only. "UVC" - Generic USB Video Class

camera. Online/offline. No night vision camera, there was no need to have to take photos in

night mode, because given birds do not feed at night.

Radiofrequency identification reader in the RFID slot. "ELB149C5M" - 125 kHz RFID

reader.

 Wifi modem assembled on the SQM4-VF6 module. "AR4100" - Qualcomm Atheros

AR4100 SIP (SQM4-VF6-W module).

 On-board temperature sensor. "MCP9804" - 0.25-degree temperature sensor.

 Sleep (power-saving) mode settings. When the system is in this mode, the event trigger,

RFID reader, and offline cameras are powered off, disallowing to record any video. Up to

three intervals applicable - separate the values by commas. Start time of the sleep mode. Is

from 18:00. The end time of the sleep mode: 04:00

 Automatic records upload to the remote data server. Up to three intervals applicable -

separate the values by commas. The start and end times of data upload are from 22:00 till

04:00. It was necessary to upload every day the photos to the server. Because of the huge

amount of data. It is impossible to locally save all data into the camera.

4 Practical Part

In the practical part, will explained all the main practical steps in order to complete the work.

The first step, the most important part was is defining and analyzing the problem of the work

Birds On Line, with help of my supervisor we did this part with excellence and we got the

smart solution for the right problems. The solution was to create artificial intelligence and

teach it how to recognize whether birds are feeding the nestlings or not, on the photos user

will give to it. This solution combines two separate knowledge for the artificial intelligence,

first, it has to recognize if there is food on the photo. Second, it also has to understand if

nestlings have open mouths. If these two conditions are met we can declare that birds are

feeding the nestlings.

1

To complete the above-mentioned solution I had to start from the beginning. The beginning

was to get photos of the nest with nestlings. Those photos were provided by the Thesis

supervisor: Ing. Josef Pavlíček, Ph.D. who gave me access to the

http://athena.pef.czu.cz/ptacionline/. On this server is located huge data of photos, taken

inside of Tits nest. From this huge data, I have to gather around 800 photos on which there

are clearly visible food inside the nest and nestlings' open mouth. It has to be this amount

because camera captured the hatching of nestlings and their growth as well, so nestlings do

not look similar in every photo, and for the artificial intelligence newly hatched nestlings

open mouth and open mouth of the grown nestling are different photos. For this purpose, I

had to go through almost all the data and gather 800 right photos for the next step, which is

to label those photos.

To train the Artificial intelligence I had to convert those actions(open mouth and food in the

nest) in camera captured photos into the numbers understandable for our neural network

called YOLO(you only look once). And for the purpose to convert actions into numbers I

had to label the exact action on every photo and converted it to the YOLO format. For this

purpose, I used a graphical image annotation tool LabelImg, which can convert labels into

the YOLO format.

After labeling I had to get ready to train my custom object detector, for which I had to make

several files train.txt, test.txt and classes.names, detailed information about the files I will

explain below in this work. Briefly, those files are names and the location of the output of

the previous step(labeling images and conversion into the YOLO format) gathered together.

This step is needed to train our custom dataset and get the file named weights with help of a

darknet detector. Weights file is the combination every before step into one file. This is the

“brain” of the artificially intelligent.

With the weights file, I can proceed to the last step. Which was creating the python code.

Code has to be able to get photos from the user (the user has to save files to the given

location) go through our pre-trained weights and detect the actions we taught our network.

After detection code gives back photos to the user with squares around the found action. On

these squares is the information about which action they represent.

Every step with further details will be explained in the practical part

http://athena.pef.czu.cz/ptacionline/

1

 Gathering data and Labeling them

 From Thesis supervisor: Ing. Josef Pavlíček, Ph.D. I got access to the server

http://athena.pef.czu.cz/ptacionline/ where is all the photos taken inside birds nest by motion

camera. Approximately 500 terabytes of photos are gathered on this server. Because of the

huge number of photos taken by a motion camera and their size, processing the data was

highly time-consuming. After gathering the information-carrying photos from all the data, it

was necessary to label the predefined actions on all of the photos, which are nestlings' open

mouths and appearance of food on photos. Last and the most significant part of the gathering

and labeling data was to convert them into a useful format, which is the YOLO format.

 Gathering data

The first and one of the most significant steps was to understand what kind of data was

useful for this project.

With help from my supervisor: Ing. Josef Pavlíček, Ph.D. I decided to choose two types of

photos: 1. When food appears in a photo, 2. When nestling has an open mouth.

We chose those two labels because those two actions indicate that birds are feeding the

nestlings. These two actions combined give one action, which detection we need to teach to

Artificial Intelligence.

EXAMPLES:

1. When grown birds have food inside the nest. On the photo, it should clearly be visible

that the bird has a portion of food in its beak.

Example:

GOOD:

Figure 10 example of food inside

http://athena.pef.czu.cz/ptacionline/

1

Figure 11 example of food inside

BAD

Figure 12 Bad example food inside

2. Action when nestling has an open mouth on a photo.

Example:

GOOD

Figure 13example open mouth

1

BAD

Figure 14 Bad example of food inside

 Labeling Images

After I gathered the correct database of photos, I had to find two ‘actions’: open mouth and

food appearance in photos and convert them into machine understandable code to proceed

with teaching artificial intelligence how to recognize those actions in a user given photos.

After finding them I had to label them and save them into the correct format.

For the labeling purpose, I needed software that would be able to do all the above mentioned,

after consulting those needs with my Thesis supervisor: Ing. Josef Pavlíček, Ph.D. he gave

me a solution as a graphical image annotation tool LBLImg. Which is user friendly and

highly fast to work with. I had to go through its annotations to work with it properly.

I named two labels(classes): open_mouth and food_inside and proceed with the work.

In this phase, I had to go through all the gathered photos which were around 800 pieces,

square the right action for the project and label them accordingly what actions those were.

After processing each photo I had to save one by one into the YOLO format which is a .txt-

extension where is written an object number and coordinates on the photo(an example is

given below).

The output of the labeling photos is those .txt extensions with YOLO format for our actions

open_mouth and food_inside.

1

Steps for labeling the photos:

LBLImg is highly easy to use, with knowing what to expect from the software. After

realizing what was needed for the project I used software according to those needs.

After opening the software we see that it has a graphical interface that is highly user-friendly.

Every button has discretion and icon so users can work fast by checking specifications only

with peripheral sight.

Below is an illustration of how I used this program for the thesis.

STEPS:

 1. Step is to choose the directory where the photos are stored and the directory where the

LBLImg should save the YOLO format .txt files. For choosing the direction where photos

are stored we only have to click on the icon with Open Dir and we will see the new window

(depends on what OS user is using) and from this window, we can choose the directory.

The same way is chosen directory where to save YOLO format labels(in .txt extension).

Figure 15 practical visualization LBLImg

1

2. The most important part is to choose the right format for the project. For the thesis, I

needed to choose the YOLO format.

Choosing a format is by clicking the format button, which does not indicate that it is the

format, only the format name, after clicking on the format name it changes to a different

format and we need to click on it as long as the YOLO format does not appear(as shown on

the screen below).

Figure 16 Practical visualization LBLImg

3. Step. After setting up all the necessary settings I opened the dictionary by clicking the

open icon and chose the first photo. The chosen photo will display in the software and I

already can start labeling actions on the chosen photo. After done labeling the current photo

I changed the photo by clicking on the next image which has right direction arrow.

 How I labeled images:

1. Have to find an exact area which we want to label. This is the area

where the action is displayed.

2. Then click on Create/nRectBox, which allows us to select the chosen

area.

3. I selected the action area by clicking and dragging the cursor.

4. In this step, we have to give the name of the label we defined(we have

two labels: open_mouth and food_inside) .

1

5. After selecting all areas and made the labeling of them, I have to save

the YOLO file, by clicking on the save button so that LBLImg and

without choosing directory(because I have chosen the save directory in

the first step) save it to the chosen directory.

Figure 17Practicat visualization LBLImg

4. After saving the labels in YOLO format, LBLImg will generate a .txt file which will be

used to tech algorithm.

.txt-file for each photo-file in the chosen directory and with the same name as the photo.

With .txt format, and put in to .txt file object number and object coordinates on chosen

photo, for each action in new line: <object-class> <x> <y> <width> <height>.

Explnation of line:

o <object-class> - is integer number of object from 0 to (classes-16)(in my project

there are 2 classes but LBLImg itself had 14 its own cases(label names), so custom

lables got the class numbers 15 and 16)

o <x> <y> <width> <height> - float values relative to width and height of image, it is

in between 0.0 to 1.0.

1

o Example: <x> = <absolute_x> / <image_width> or <height> = <absolute_height>

/ <image_height>

o We have to know that <x> and <y> - are not the top left corner but the center of

the rectangle.

For example for photo1.jpg you will be created photo.txt containing:

15 0.470703 0.614583 0.085156 0.151389

16 0.357031 0.595833 0.051562 0.091667

16 0.398438 0.444444 0.050000 0.088889

 Train a deep neural network YOLO to recognize food

After all the previous steps I could start training the model using the photos and labels I

created earlier. For model training, I had to implement this data into architecture.

This architecture I use is proposed by Joseph Redmon and is called YOLO. This is an

abbreviation for You Only Look Once, which in English means "You only watch once."

That is, the digital image data passes through the neural network only once. Due to this, the

predictive model is productive and analyzes up to 60 frames per second.

Even though I trained the model on my own data set, it was beneficial not to train it from

scratch, but to use the “transfer of training". That is, use as a starting point the weight of

another, already trained model. So I have used the ready architecture YOLO and changes

adopted it to my use. This means changing the training batch, change the number of filters

accordingly to my dataset, and created two necessary files classes.names.txt(contains names

of classes(labels)) and obj.data. (includes parameters for training) and save those two files

in the location ./darknet/cfg/.

classes.names.txt example:

open_mouth

food_inside

1

Obj.data file includes all the parameters for training. Trai.txt and test.txt files are

combination of all YOLO format output of the labeling photos. I have put 95% of it in

train.txt nad rest 5% into the test.txt which is created to test the above mentioned 95%.

obj.data example:

classes= 2

train = \Desktop\ALL DATA + LBL\train.txt

valid = \Desktop\ALL DATA + LBL\test.txt

names = \Desktop\ALL DATA + LBL\classes.names

backup = backup

Because training, which itself implies a weight file, needs huge memory and graphics

processing unit. For this reason, I had to use Jupyter Notebook to train the model and

generate a custom weight file.

For training itself, I used Darknet which is an opensource neural network framework that

allows CPU and GPU computation. I installed the darknet. And checked it correctness.

After all the necessary files and installations I continued with training. After darknet

installation, I only need to save all necessary files into the location ./darknet/cfg/.

To start training the deep neural network I executed the darknet by command line.

Line: ./darknet detector train cfg/obj.data cfg/yolov3-tiny.cfg darknet53.conv.74

As long as the weight file is huge, it was saving by iteration of 100 till the 900 and after 900,

every10 000.

The result of the training is a weight file that will bet the brain of my project. After running

the python code and giving it the photo, the python script will go through this huge file and

will determine what it sees.

The weight file, Which will be used to run the YOLO detection with my own dataset.

1

 Using custom trained database in YOLO

This is the final stage of the project. I used already existing python code and rewrite it for

my thesis project. The code itself uses an input photo which the user will save to the given

directory and the weight file directory. Code should open the photo and analyze it with the

help of the weight file where is the all information needed for the Artificial Intelligent to

determine whether or not on the given photo are the actions we predefined at the beginning

of the project. Which are nestlings open mouths and food appearance in the nest. After

analyzing the photo code will give the user the same photo to the pre-defined directory only

with the colored squares with the label names on it accordingly to what those squares are

bounding. Examples will be shown below.

I created photo input, and photo output directories and wrote them in the code for the little

above then amateur user. Users will have to go to the given directory put photo and run the

script. The user will be notified that the script has finished and the output photo will appear

in the directory for output photos.

Those are important parts of the code(for code itself please see the appendix):

 I used the necessary python packages for the project: NumPy, argparse, time, cv2, and os.

After importing the packages it is important to create the argument parse and load the

customer class labels our model was trained on.

 For a better experience, I chose colors to represent each label. So in the next part I initialized

a list of colors to represent each class, open_mouth is red and food_inside is yellow.

The main part is to give brains for our model, so in the next part wrote a path to the weights

file which was generated from YOLO training in the previous step and model configuration.

and load our YOLO object detector trained on our dataset.

After all the preparations we can write input code for photos the user needs to test.

 Then we are creating code for boxes with a name and color to create a blob from the input

images and pass of the YOLO object detector, giving users our bounding boxes with all

information needed.

1

 Perform the test and evaluate the result

Before starting generating my own dataset I had to control all the steps by already created

weights to be sure that I was going on the right path. It was part of my training for this project

because I was a beginner in Artificial Intelligence training and in Python programming

language.

Tests had to be performed after the project's every step because everything from the

beginning had to be the correct to create the weight file and after its creation, I had to control

the python script for every bug and misspells of the words. The Crucial was to chose also

packages for the python. After all the preparation tests I finally could perform the conclusion

test for the project.

First I tested if the project works, checked every line of the code, and performed the test.

First I have put the photo which I wanted to test in the directory for the input photos and

after I ran the code. After a couple of tries and debugging the first test performed as expected.

I got the output of the same photo with the named squares bounding the area with the same

action as the square name was. So Test was accepted and the project was finished.

To test for my project from the user's view and determine what kind of knowledge is needed

for the user to have I performed a test on 2 participants. The first Participant failed because

of the lack of knowledge of the python language and the second performed well. So the

output of the test was that the user has to have some experience in the python language to

perform the object detector.

 The test was performed on 50 photos. On every photo, the object detector detected the

actions and gave the imputed photo back with the information (square bounding the action,

with the name of the according label of the action).

1

Output photos:

Figure 19YOLO test output

Figure 18 YOLO test output

1

 Conclusion

This section compiles the work done by me and gives a deeper understanding of the research

purposes, its results, and meanings of those results for future researches.

In conclusion will be briefly given the main findings from my work, methods I used to

complete the thesis, results, and problems connected with the completion of the thesis. The

conclusion is concluded by analyzing how and why this work will help me in my future

researches.

Before starting the main points I would like to thank my thesis supervisor Ing. Josef Pavlíček,

Ph.D. who gave me the opportunity to work on this interesting topic, for the consultations

and notes, which he gave me to complete the thesis.

 Findings

I chose this topic to emerge my knowledge in Python language coding and for the

understanding of how artificial intelligence works.

The main purpose of my work was to understand how to work with artificial intelligence,

how to teach it to certain functions, and gain the needed output from it. In my case, I had to

teach AI how to see what actions are shown in the photo. To teach Artificial intelligence to

see the action I got the data, in this case, photos from the tits nest.

Working with artificial intelligence is fragile, because of its sensitivity. Every step should

be beforehand analyzed and controlled to reach the goal of the project.

One of the best findings for me was working in the python language. This was the first

time for me to code in Python language and it left a huge impact on me, with its simplicity

and power of its packages. Because of it, I’m continuing my development in this language

and already got a huge step up from the beginning of my work with it.

 Methods Used

To complete the thesis I used the detection method called YOLO (You Only Look Once).

This method is a single shot detector which means it only looks once on the given shoot

and the response is rapid. It is the fastest method I found to work with, it even makes real-

1

time inference possible, so it was the best method to use for thesis and for my future

development as an IT specialist. YOLO itself uses Darknet-53 as the feature extractor.

Data preparation was a huge part of the thesis. I got access to the photos taken inside of the

tits nest with 6 nestlings. In the preparation part mainly work was done manually. I had to

manually go through the photos and choose the ones suitable for the thesis, I had to collect

around 800 photos where was shown exact actions I wanted Artificial intelligence to

detect.

After I got the collection of the photos I had to label them into the YOLO format, for this

purpose I used LabelImg. LabelImg is a tool for graphical image annotation. It has a user-

friendly interface. All work in LabelImg should have to be done manually. It means that I

had to go through all 800 chosen photos and on every single photo. On every photo, I

Selected the above-mentioned actions on the photo and name them accordingly. Output

was the weight file which is the brain of the python code(the sight understanding for the

machine).

The weight file was used together with the python code to detect actions on the given

photos. Photos are given to the code by a user. The user has to save photos to the directory

from which python code takes input photos and after running the python program, the

output photo will be saved into the output directory.

 Results and Problems

As result oh the thesis I got fully functioning program which detects nestlings open mouth

and appearance of the food inside the nest. If those two actions will be detected on the

same given photo we can 95% say that birds are feeding the nestlings.

Results are far more than just this project, this code and methods can be used to make

much bigger projects, for example, we can implement the same weight file to the python

script which will detect actions on real-time streaming videos.

The problem that consumed most of the thesis preparation time was the manual work done

by me to complete the program. T to find the necessary photos and labeling them was the

hardest and routine work that had to be done to gain a custom dataset for deep learning.

In the beginning, the problem also was an understanding of python, because this was the

first time I ever worked in this language, but this problem slowly but strongly faded away.

1

The problem also was the device speed because to create a weight file, I had to use a

Jupyter Notebook to overcome this problem.

 Future Research

My future research is deeply connected with the python language, I am already working on

the automatization of data processing, which itself combines the spread package of the

python which is the connection of the server or database or simple os to the google

spreadsheets. This connection can be used in various ways, imput data can be from any

data source thanks to the Python packages, as well as the output.

Also, I am planning to deeper my knowledge of teaching artificial intelligence. Not only in

the way this thesis was done but in the data processing way as well. I plan to teach AI how

to process data, how to react to certain changes in the input data, and give output for the

human user in a preferred way.

Direct output from the thesis is to continue research on image recognition. On software

which can be uploaded on the cloud and can be distributed to the smart cameras by the

internet. This way software can detect in real-time, not only birds feeding but anything that

will be taught to the AI

I see this project as one of the key points in my studies at the university. Because its

implements in itself teaching a machine how to be like a human and see things. People use

their eyesight every day to recognize familiar faces, notice obstacles in their path, and

broaden their horizons. Today we live in the era when machines also can be taught the say

functions, for example, self-driving cars, etc. The future of IT is in machine learning and

machine communications between each other.

Computer vision describes the process where it’s using an artificial intelligence algorithm

that can identify and process images (photographs, video, etc.), and since the computer

“understands” the content creates the corresponding analysis results afterward. In particular,

computer vision can classify, identify, verify, and detect objects. Machine learning

technologies have promoted the development of computer vision, in particular, the iterative

1

process of learning neural networks and significant leaps in computing power, data storage,

and high-quality but inexpensive input devices.

Computer vision, thinking, and speed of communication is one of the most sought after areas

at this stage in the development of global digital computer technology. It is required in many

areas, even in the areas we have never thought the machine could do good work. But with

the fast-growing new technology, which is getting smaller and faster every day, we can

overcome every obstacle and make a smart intelligent machine that will benefit mankind.

1

 Reference

Angelova, J. R. (2015). Real-time grasp detection using convolutional neural networks.

Seattle, WA, USA.

Davies, E. R. (2017). Computer Vision: Principles, Algorithms, Applications, Learning

(ISBN-13: 978-0128092842).

Forsyth, P. (2011). Computer Vision: A Modern Approach (2nd Edition) (ISBN -

9789332550117).

Hartley, R. (2004). Multiple View Geometry in Computer Vision .

Johnson J., K. A. (13.05.2018). Convolutional Neural Networks for VisualRecognition.

Načteno z http://cs231n.github.io/convolutional-networks/

Joseph Redmon, A. F. (2017). YOLO9000: Better, Faster, Stronger. Načteno z

https://pjreddie.com/darknet/yolo/.

Mahendran, V. (2019). Custom object training and detection with YOLOv3, Darknet and

OpenCV. Načteno z https://blog.francium.tech/custom-object-training-and-

detection-with-yolov3-darknet-and-opencv-41542f2ff44e

Minichino, J. H. (2020). Learning OpenCV 4 Computer Vision with Python 3.

Ponnusamy, A. (2019). Načteno z Preparing Custom Dataset for Training YOLO Object

Detector: https://www.arunponnusamy.com/preparing-custom-dataset-for-training-

yolo-object-detector.html

Prince, S. J. (2012). Computer Vision: Models, Learning, and Inference (ISBN-13: 978-

1107011793).

Redmon J., D. S. (2015). You Only Look Once: Unified, Real-Time Object Detection //

Computer Vision and Pattern Recognition (ISBN: 978-1-4673-8851-1).

Solem, J. E. (2012). Programming Computer Vision with Python: Tools and algorithms for

analyzing images (ISBN-13: 978-1449316549).

Szeliski, R. (2010). Computer Vision: Algorithms and Applications (Texts in Computer

Science) (ISBN-13: 978-1848829343).

Tomassini, A. T. (2001). Soft Computing: Integrating Evolutionary, Neural and Fuzzy

Systems (ISBN 978-3-662-04335-6).

Vaidya, B. (2018). Hands-On GPU-Accelerated Computer Vision with OpenCV and

CUDA: Effective techniques for processing complex image data in real time using

GPUs (ISBN-13: 978-1789348293).

 Apendix

 Python code for custom trained database in YOLO

import the necessary packages

import numpy as np

import argparse

import time

import cv2

import os

create the argument parse, parse the arguments

ap = argparse.ArgumentParser()

1

ap.add_argument("-i", "--image", required=True,

 help="path to input photo")

ap.add_argument("-y", "--yolo", required=True,

 help="base path to YOLO")

ap.add_argument("-c", "—confidence ", type=float, default=0.5,

 help="min. probability to filter weak detections")

ap.add_argument("-t", "--threshold", type=float, default=0.3,

 help="threshold when applyong non-maxima suppression")

args = vars(ap.parse_args())

load the custom class labels our YOLO model was trained on

labelsPath = os.path.sep.join([args["yolo"], "classes.names"])

LABELS = open(labelsPath).read().strip().split("\n")

initialize a list of colors to represent each possible class label

np.random.seed(42)

COLORS = np.random.randint(0, 255, size=(len(LABELS), 3),

 dtype="uint8")

the paths to the YOLO weights and model configuration

weightsPath = os.path.sep.join([args["yolo"], "yolov3.weights"])

configPath = os.path.sep.join([args["yolo"], "yolov3.cfg"])

load our YOLO object detector trained on custom dataset (2 classes)

print("loading YOLO")

net = cv2.dnn.readNetFromDarknet(configPath, weightsPath)

load our input image

image = cv2.imread(args["photo"])

(H, W) = image.shape[:2]

define only the output layer name from YOLO.

ln = net.getLayerNames()

ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]

create a blob from the input images and pass of the YOLO object detector, giving user

our bounding boxes.

blob = cv2.dnn.blobFromImage(image, 1 / 255.0, (416, 416),

 swapRB=True, crop=False)

net.setInput(blob)

start = time.time()

layerOutputs = net.forward(ln)

end = time.time()

timing data on YOLO

print("[INFO] YOLO took {:.6f} seconds".format(end - start))

initialize lists of detected bounding boxes, confidences, and class IDs, respectively.

boxes = []

1

confidences = []

classIDs = []

loop over each of the layer outputs

for output in layerOutputs:

 # loop over each of the detections

 for detection in output:

 # get the class ID and confidence of

 # the current object detection

 scores = detection[5:]

 classID = np.argmax(scores)

 confidence = scores[classID]

 # filter out weak predictions by ensuring the detected

 # probability is greater than the minimum probability

 if confidence > args["confidence"]:

 # scale the bounding box coordinates back relative to the

 # size of the image, keeping in mind that YOLO actually

 # returns the center (x, y)-coordinates of the bounding

 # box followed by the boxes' width and height

 box = detection[0:4] * np.array([W, H, W, H])

 (centerX, centerY, width, height) = box.astype("int")

 # use the center (x, y)-coordinates to derive the top and

 # and left corner of the bounding box

 x = int(centerX - (width / 2))

 y = int(centerY - (height / 2))

 # update our list of bounding box coordinates, confidences,

 # and class IDs

 boxes.append([x, y, int(width), int(height)])

 confidences.append(float(confidence))

 classIDs.append(classID)

apply non-maxima suppression to suppress weak, overlapping bounding

boxes

idxs = cv2.dnn.NMSBoxes(boxes, confidences, args["confidence"],

 args["threshold"])

ensure at least one detection exists

if len(idxs) > 0:

 # loop over the indexes we keep

 for i in idxs.flatten():

 # extract the bounding box coordinates

 (x, y) = (boxes[i][0], boxes[i][1])

 (w, h) = (boxes[i][2], boxes[i][3])

 # draw a bounding box and label on the image

 color = [int(c) for c in COLORS[classIDs[i]]]

1

 cv2.rectangle(image, (x, y), (x + w, y + h), color, 2)

 text = "{}: {:.4f}".format(LABELS[classIDs[i]], confidences[i])

 cv2.putText(image, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX,

 0.5, color, 2)

show the output image

cv2.imshow("Image", image)

cv2.waitKey(0)

