
P o w e r e d b y T C P D F (w w
w . t c p d f . o r g)

BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

Penetration Tests of Speaker Verification System
Penetrační testy systému pro verifikaci řečníka

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR Quang Trang Nguyen
AUTOR PRÁCE

SUPERVISOR Ing. OLDŘICH PLCHOT, Ph.D
VEDOUCÍ PRÁCE

BRNO 2020

Vysoké učení technické v Brně
 Fakulta informačních technologií
 Ústav počítačové grafiky a multimédií (UPGM) Akademický rok 2019/2020

Zadání bakalářské práce

Student: Nguyen QuangTrang
Program: Informační technologie
Název: Penetrační testy systému pro verifikaci řečníka

Penetration Tests of Speaker Verification System
Kategorie: Zpracování řeči a přirozeného jazyka

Zadání:
1. Seznamte se se systémem pro rozpoznávání řečníka dostupným ve speech@FIT.
2. Prostudujte problematiku syntézy řeči se zaměřením na imitaci konkrétního řečníka.
3. Seznamte se s metrikami používanými v problematice verifikace mluvčího.
4. Navrhněte sadu penetračních testů systému pro verifikaci řečníka za použití vhodného

softwaru pro syntézu řeči a dostupných nahrávek cílových mluvčí
5. Vyhodnoťte výsledky testů a pokuste se navrhnout kroky vedoucí k větší bezpečnosti

cílového systému.
Literatura:

• Podle doporučení vedoucího.
Pro udělení zápočtu za první semestr je požadováno:

• První tři body zadání.
Podrobné závazné pokyny pro vypracování práce viz https://www.fit.vut.cz/study/theses/
Vedoucí práce: Plchot Oldřich, Ing., Ph.D.
Vedoucí ústavu: Černocký Jan, doc. Dr. Ing.
Datum zadání: 1. listopadu 2019
Datum odevzdání: 31. července 2020
Datum schválení: 31. července 2020

Zadání bakalářské práce/17464/2019/xnguye11

ABSTRACT
The aim of this bachelor thesis is to create a penetration tests of speaker verification system with the
use of the speech synthesis method. This work studies methods of spoofing against automatic
speaker verification system. Before designing of the test set, the system and it's components that
were used in this work are described. The last chapters of this work include a description of the
process of designing the test set, realization of the designed test and the last part contains evaluation
of the results and answers the question if it is possible to penetrate a verification system with the use
of speech synthesis.

Abstrakt
Cílem bakalářské práce je návrhnout sadu penetračních testů pro verifikaci řečníka s použítím
syntézy řeči a dostupných nahrávek cílových mluvčí. Práce zahrnuje studium problematiky pro
syntézu řeči, verifikace řečníka a metod pro spoofing se kterými můžeme setkat. Před samotným
návrhem testovací sady je popsán systém a jeho komponenty, který byl použít v této práci. V
posledních kapitolách práce je uveden popis návrhu testovacích sad a způsob realizace testů. Na
závěru jsou vyhodnoceny výsledky a je odpovězeno na otázku, zda je možné prolomit systém pro
verfikaci řečníka s využitím metody pro syntézu řeči.

Keywords
Speech synthesis, x-vector, decoder, encoder, verification, spoofing, wavenet, neural networks

Klíčová slova
Syntéza řeči, x-vektor, decoder, encoder, verifikace, spoofing, wavenet, neuronové sítě

Reference
Nguyen, QuangTrang. Penetration tests of verification system. Brno, 2020. Bachelor’s
thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Ing.Oldřich Plchot, PhD

ii

Penetration Tests of Speaker Verification System

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the author under the
supervision of Mr. Oldřich Plchot. I have listed all the literary sources, publications and other
sources, which were used during the preparation of this thesis.

…............................

Quang Trang Nguyen

july 26, 2020

Acknowledgements
I would like to thank to Mr Oldřich plchot for all the valuable advices and helps that were provided
while i was working on this thesis.

iii

Table of Contents
 1 Introduction...2

 1.1 Claims of this Thesis..2
 2 Automatic speaker recognition overview...3

 2.1.1 Automatic speaker recognition(SRE)..3
 2.1.2 Speaker recognition ...3
 2.1.3 Process of Speaker recognition system5

 2.1.3.1 Feature Extraction...6
 2.1.3.2 Voice Activity Detection...6
 2.1.3.3 Speaker verification scoring..7
 2.1.3.4 Score Normalization..7

 3 Automatic speaker verification(ASV) spoofing and it's methods..................8
 3.1 Impersonation..8
 3.2 Replay ..8
 3.3 Speech Synthesis..9
 3.4 Voice Conversion..9
 3.5 ASVspoof2015-2019..9

 4 Speech Synthesis ...10
 4.1 Rudimentary Techniques..10
 4.2 Speech Synthesis with Phonemes..10

 4.2.1 Synthesis based On Waveform Coding......................................11
 4.2.2 Synthesis based on Analysis-synthesis....................................11
 4.2.3 Synthesis by Rule..11

 5 Real-time Voice Cloning...13
 5.1 Datasets...14

 5.1.1 VoxCleleb dataset ..14
 5.1.2 LibriSpeech..14

 5.2 Speaker encoder...15
 5.3 Synthesizer..16
 5.4 Vocoder...18

 6 Experiments...20
 6.1 X-Vectors System ..20

 6.1.1 Neural Network architecture...20
 6.2 Experiments and evaluation ..22

 6.2.1 Spoofing ...23
 6.2.2 Preparing data for spoofing task..24
 6.2.3 Spoofing task ..26
 6.2.4 Evaluation ...28

 7 Conclusions..29
 7.1 Future work...29

 8 Appendix A..32

1

Chapter 1

 1 Introduction

Speaker recognition is a biometric recognition technique, the word biometric can be decomposed as
bio and metric, where bio represents life and metric represents measures. Biometric is the
technology for measuring and analyzing human's behavioral or physiological individuality. It can be
used for recognizing a person on the basis of his/her voice, face, iris, DNA, signature, fingerprint,
hand, geometry etc. Speaker recognition is widely used in voice dialing, banking over a telephone
network, database access services, voice mail, remote access to computers and a very important
application of the speaker recognition technology is it's use as a forensics tool. Popularity of this
technology is based on the fact that it is less prone to attacks. Even though this technology is less
prone to a spoofing attacks, we can still perform a spoofing attack using multiple spoofing
techniques such as voice conversion, text synthesis, replay and impersonation.

This work is structured into 7 chapters. In the second chapter the definition of Automatic speaker
recognition and it's main tasks are described. In the third chapter different spoofing methods that
can be used for spoofing against automatic speaker recognition are presented and one of the speech
synthesis techniques is chosen to be used in this work. In the fourth chapter the chosen spoofing
method is described in more detail. In the fifth chapter the Text-to-Speech system and it's main
components that were used in this work for generating the spoofing attack are described. In the
sixth chapter the preparation of data used for the synthesis and the creation of the spoofing task is
described. Finally, the evaluation of the chosen method is performed and in the last chapter, main
questions of this work are answered.

 1.1 Claims of this Thesis
The main focus of this thesis was on creating a spoofing attack by using the speech synthesis with
the help of a Text-To-Speech system called Real-time voice cloning provided by Jemine Corentine
[1] for generating synthesized audio that is used for the spoofing task. Thesis then summarizes the
results of the testing and answers the question: If it is possible to penetrate an automatic speaker
recognition system by using the speech synthesis method.

2

Chapter 2

 2 Automatic speaker recognition overview
In this chapter, we describe a speaker recognition systems in general

 2.1.1 Automatic speaker recognition(SRE)

Automatic speaker recognition(SRE)[2] is the process of comparing two speech signals produced
by the human vocal tract using specific characteristics of the speech signal and answering the
question whether these two speech signals belong to the same person or not.

Human voice (speech signal) is different for each individual and contains different types of
information that can be used for authentication. Using the the information given from the speech we
can use it to identify the person. After the speech is produced by the vocal tract, it passes through an
environment to a point where it is recorded. This environment has a great effect on the quality of
the speech, which can effect the performance of SRE systems. Using a speech signal mainly three
kinds of recognition can be performed: Speech recognition (what is spoken), speaker recognition
(who is speaking) and language identification (identifying the language spoken by the speaker).

The SRE can be divided into text-dependent and text-independent. Text-Dependent system assumes
the knowledge of the speech content and the result of a test trial depends on a spoken phrase, while
text-independent system does not depend on specific text.

 2.1.2 Speaker recognition

speaker recognition can be classified into speaker Identification and Verification. Speaker
Identification is the process of identifying who is speaking in the recording and speaker Verification
is the process of accepting or rejecting identity claimed by the speaker. Figure 2.2 is the
visualization of the speaker recognition process.

Speaker identification is a one to n(1 : n) matching system. In speaker identification we analyze
and compare a speech utterance from an unknown speaker with speech models of known speakers
in the system. The unknown speaker is identified as the speaker whose model best matches the
input utterance.

Speaker verification is a one to one(1 : 1) matching system. In speaker verification, an identity is
claimed by the unknown speaker, and an utterance of this unknown speaker is compared to the
model of the speaker whose identity is being claimed. If the match(the score from the verification
system) is above a threshold(a coefficient that we can set), the identity is accepted and if the match
is bellow the threshold the identity will be rejected. A high threshold makes it difficult for
impostors to be accepted by the system, but with it also increases the risk of falsely rejecting valid
users(false rejection). These two tasks represent a so-called speaker verification trial. If the same
speaker is speaking in the two recordings, then the trial is called a target trial. If it is not the same
speaker speaking in the two recordings, then the trial is called a non-target trial

The effectiveness of speaker verification systems can be evaluated by using receiver operating
characteristics (ROC) curve adopted from psychophysics. The ROC curve is obtained by assigning
two probabilities, the probability of correct acceptance(false rejection rate) and the probability of

3

incorrect acceptance(false acceptance rate). The detection error trade-off (DET) curve is also used,
in which false rejection(missed detections) and false acceptance(false alarms) rates are assigned to
the vertical and horizontal axes. The comparison of two verification system is shown in figure 2.1

Figure 2.1: ROC(top) and DET(bottom) curves comparing the performance of two different
techniques(PLDA and DPLDA), in general the system with lower EER has better accuracy. Figure
extracted from[2]

4

Figure 2.2 describes the process of speaker recognition and verification. On the top(a) is a typical
process of speaker identification and bottom(b) is the process of speaker verification. Figure
extracted from [3]

 2.1.3 Process of Speaker recognition system

In order to perform a speaker recognition task, it is necessary to transform the continuous speech
into a form that can be used by the system. This process consists of sampling and quantization and
the result is a discrete version of the signal. The sampling frequency is usually 8kHz or more. In
speech recognition several layers of information can be extracted from the signal as bellow:

• Acoustic: spectral representation of the speech
• prosodic: features encoding the prosody
• phonetic: analysis of sequences of phonemes specific to the speaker
• idiolect – analysis of sequences of words or short phrases
• linguistic- analysis of linguistic patterns characteristic to speaker's conversation style

5

 2.1.3.1 Feature Extraction

Methods for extracting the spectral representation of speech signal are based on the assumption that
the signal can be considered stationary within short segments(usually 10ms long segment). These
segments can be obtained by windowing the signal with a rectangular window function. After
windowing, the power magnitude Fourier spectrum is computed for every frame, which is then
further parameterized into feature vector. In speaker verification the Mel-Filterbank Cepstral
Coefficients (MFCC) is used for extracting the feature vector. The process of MFCC extractions is
shown in figure 2.3. In the first step of MFCC the absolute value of the short-term Discrete Fourier
Transform (DFT) is used to extract the amplitude of the spectrum from each frames. Then, Mel-
filterbank is applied to smooth the spectrum. A vector of band energies is then computed as a
weighted sum of squared values of the amplitude spectrum. The overall frame energy is then
computed as an average of squared samples. A logarithm of the overall energy is taken and in the
final step the feature vector is de-correlated and its dimensionality is reduced by projection into a
certain amount of Discrete Cosine Transform (DCT) bases.

Figure 2.3 MFCC extraction steps, dimensionalities are shown above the blocks for frame lengths
of 20 and 25 ms at sampling frequency f s = 8kHz. Figure extracted from [2]

 2.1.3.2 Voice Activity Detection

Voice Activity Detection (VAD), also known as Speech Activity Detection (SAD) is a very
important pre-processing step in most of speaker recognition system. It is designed to select only
those frames from the analyzed utterance, that contain speech. VAD can be implemented with many
different approaches. Noticeably VAD based on simple energy thresholding, Gaussian Mixture
Model (GMM) classifier or Neural Networks (NN) trained to discriminate between speech and the
rest of the audio signal.

6

 2.1.3.3 Speaker verification scoring

In Speaker recognition the score of a verification task is usually obtained by evaluating statistic
models as a log-likelihood between two hypothesis. The two hypothesis correspond to answers of
“yes” or “no” to the two question: A: is the same speaker speaking in this recording? And B: is the
speaker speaking in this recording ?. A score can also be obtained, by using a simple metric based
on a distance between feature vectors characterizing the whole utterance(cosine similarity).

There are two approaches to training the scoring model: generative and discriminative.
Generative models are trained to estimate the underlying distribution of the data, from which the
input features can be generated. Thanks to its simplicity and robustness it is widely used in speaker
verification scoring. The discriminate models are trained to directly predict class from the input
data.

 2.1.3.4 Score Normalization

Score normalization techniques aim to reduce the scores variabilities in order to help the estimation
of a unique speaker-independent threshold during the decision step. Most of the normalization
techniques are based on the estimation of the impostors scores distribution where the mean,m, and
the standard deviation d depend on the considered speaker model and test utterance. Then score
normalization for each of the new coming score s can computed as :

score(s)=s−
m
d

 (2.1)

Score normalization is not required in the current state-of-the-art techniques for the text-
independent speaker verification. Some of the popular scoring normalization techniques(for further
reading [2]) are listen bellow:

• Zero Normalization – Z-norm

• Test Normalization – T-norm

• ZT-norm

• S-norm

7

Chapter 3

 3 Automatic speaker verification(ASV) spoofing
and it's methods

Spoofing attack – is a situation in which a person or program identifies as another identity by using
falsified data.

ASV spoofing – Is an attack performed on a speaker recognition system by using spoofed speech
samples. The spoofed samples can be obtained using voice conversion methods to convert an
impostor speech to the target speaker speech, or by using a recording device to record the speech
samples from the target speaker. The spoofing attacks are classified into five types, Speech
Synthesis (SS), Voice Conversion (VC), replay, identical twins, and impersonation. Each of the
methods and it's availability is shown in figure 3.1

 3.1 Impersonation

A process of producing the similar voice pattern and speech behaviour of the target speaker. The
impersonators do not require any machines or technical knowledge to imitate the target speaker. A
professional impersonator can try to make a better imitation by trying to mimic the target speaker's
prosody, accent, pronunciation, lexicon, and other high-level speaker traits. Even though this kind
of attack is proved to be one of the more successful methods, it can not be performed on a larger
scale, because it takes longer for the impersonator to mimic the target speakers. According to a
study reported in [4] found that if the impersonator is aware of the target speaker's voice and has
similar voice pattern, he will be able to crack the speaker verification system.

 3.2 Replay

Replay is one of the most easiest and simple spoofing attacks. The replay is a type of attack, where
the attacker uses a pre-recorded speech signal of the target speaker's voice that is captured using a
recording device to get access to the system. This attack does not require any specific expertise or
any sophisticated equipment, therefore it is very easy to implement. The spoofing attack has a little
to almost no changes(depending on the recording device and environment) in sound characteristics
from the target speaker's voice.

8

 3.3 Speech Synthesis

Speech synthesis (SS) also known as Text-To-Speech (TTS) system, is a technique for generating
intelligible, natural sounding artificial speech for any text. It is a system, where the text is given at
the input and the system generates a speech signal at the output. Most speech synthesis systems
have two main components: text analysis followed by speech form generation. In the text analysis
component, the input text is converted into a linguistic specification consisting of elements such as
phonemes, prosody, consonants, vowels. In the speech form generation component, speech
waveforms are generated based on the produced linguistic specification. The speech synthesis will
be explained in more detail in the following chapter 4.

 3.4 Voice Conversion

Voice conversion (VAC) is a spoofing attack against automatic speaker verification using an
attacker’s natural voice which is converted towards that of the target. It aims to convert one
speaker’s voice towards that of another. Most voice conversion requires a parallel corpus where
source and target speakers read out identical utterances. VC can be used to create new voices for
TTS synthesis systems. Other applications include speaking aid devices that generate more natural
voice sounds to help people with speech disorders, language learning, and signing voice conversion.

 3.5 ASVspoof2015-2019

The ASV spoofing 2015-2019 is a spoofing challenge involved detection of artificial speech created
using a mixture of voice conversion and speech synthesis techniques. In ASV spoofing 2015[5] a
speech synthesis algorithm(S10) implemented with the open-source MARY Text-To-Speech system
received the highest EER(Equal Error Rate) with 51.17% for the female speakers and 44.20% for
male speakers. It was trained with 40 utterances per speaker.

Figure 3.1: Available methods and algorithms that can be used, with their risk and availability,
figure extracted from [6]

9

Chapter 4
In this chapter, we describe the speech synthesis method and it's techniques.

 4 Speech Synthesis
Speech synthesis is a very popular method for creating a speech for any given text, it is widely used
for applications ranging from funny celebs voice-over videos to google text-to-speech apps. It can
also used for spoofing on speaker verification systems and for developing a counter measures. In
this chapter the speech synthesis techniques are described.

 4.1 Rudimentary Techniques
The first rudimentary method is to use a pre-recorded complete or partial messages, and having an
application program or a speech server to read the static messages out loud. This method is very
simple to implement, but it requires all messages to be recorded in advance in order to be uttered by
a machine. This method does not provide flexibility, since if a message changes, it has to be
rerecorded. However, recorded speech sounds more natural than other synthesis techniques and is
widely used in airports, railway stations, buses and many other places.

A second method is to record all the words of the application and save it in a lexicon in digital
format. To generate a speech, the synthesizer sequentially looks up the words in the lexicon, fetches
their digital recording, concatenates them, and converts them into sounds using the digital to analog
converter of the sound card. Like the first method, it requires recording of all the words in the
vocabulary, but it is more flexible than the first method, since it is no longer constrained by fixed
messages. However, the synthesized speech does not sound as natural as the speech generated by
the first method, because the utterance of words varies according to prosodic context and the
concatenation of words is never perfect.

 4.2 Speech Synthesis with Phonemes
This method generates a speech synthesis of a message using phonemes. This technique shrinks the
whole messages or words into phonemes, by doing this we can use sound recording of the vowel
and consonant for generating speech. This dramatically reduces the storage requirements for the
database. Speech synthesis with phonemes can deal with potentially unlimited vocabulary and it
enables us to generate any message dynamically. Phonetic speech synthesizers are also called text-
to-speech converters (TTS) .

10

Most text-to-speech system is composed of two parts: a front-end and a back-end. In the first
step the front-end converts raw text containing symbols like numbers and abbreviations into the
equivalent of written-out words. This process is often referred as tokenization or text normalization,
after this phonetic transcriptions are assigned to each word. The front-end then assigns phonetic
transcriptions to each word, and divides and marks the text into prosodic units, like phrases, clauses,
and sentences. This process is often called text-to-phoneme or grapheme-to-phoneme conversion.
The output of the front-end is the linguistic(it is made up of phonetic transcription and prosody
information) representation. The back-end often referred as the synthesizer then converts the
symbolic linguistic representation into sound. A typical TTS system is shown in figure 4.1.

Figure 4.1: overview of a typical TTS system, figure extracted from wikipedia

 4.2.1 Synthesis based On Waveform Coding.

Is a method where short segmental units of human voice, usually words or phrases, are stored. The
speech is then generated by selecting and connecting the desired segments. The quality of the final
speech is influenced by the the quality of the continuity of the acoustic features at the connections
between units, this method is preferred in our thesis. The visualization of its process is shown in
figure 4.2.

 4.2.2 Synthesis based on Analysis-synthesis

In this method words or phrases of human speech are analyzed and stored as time sequences of
feature parameters. These parameters are then connected and supplied to a speech synthesizer to
produced the spoken message. The visualization of its process is shown in figure 4.2.

 4.2.3 Synthesis by Rule

This method can produce words sentences based on sequences of phonetic syllabic symbols or
letters. In this method, feature parameters of syllables or phonemes are stored and connected by
rules, prosodic features are also controlled by rules. The process of this method is shown figure 4.2.

As shown in figure 3.1, both Voice Conversion and speech synthesis with phonemes (TTS) can be
used as a tool to create an ASV spoofing attack. In this thesis I decided to use a Text-To-Speech
system to generate an ASV spoofing attack, since it is widely used nowadays and it is widely
available on the internet, the Text-To-Speech system will be later described in chapter 5.

11

https://en.wikipedia.org/wiki/Speech_synthesis#cite_note-3

Figure 4.2: Graphic representation of the three speech synthesis methods from left to right
Waveform coding, Analysis-synthesis, Synthesis by rule, figure extracted from [7], the WaveForm
coding is preferred in our work.

12

Chapter 5
In this chapter the Text-To-Speech system that is used in this thesis for generating the synthesized
voices is described. There are many TTS system that are available on the internet, but most of them
are either commercial or they needed to be trained before it could generate the desired voice. In this
thesis a Real-time voice cloning system was chose, because it was available with a pre-trained
models and it could generate a synthesized voice from a short utterance of the desired speaker.

 5 Real-time Voice Cloning
Real-time Voice Cloning[1] is a TTS system made by Jemine Corentin. The system is largely
based on a system called Transfer Learning from Speaker Verification to Multispeaker Text-To-
Speech(referred to as SV2TTS throughout this thesis) [8]. The TTS system provides voice cloning
from a short utterance of the reference speech. Model of the SV2TTS is shown in figure 5.1.

The system is composed of three independently trained neural networks. Graphic visualization of
the training process for each of the components are shown in figure 5.2. A speaker encoder that
creates an embedding from the short utterance of the desired target speaker. A synthesizer that
generates a spectrogram from text input. The synthesizer is conditioned by the embedding given
from the speaker encoder. A vocoder that inverts the mel-spectrogram generated by the synthesis
network into waveforms. The author uses a WaveNet [9] as a vocoder.

Figure 5.1: describes the process of the system, the speaker encoder is fed a short utterance of the
reference speaker to clone. It generates an embedding that is used to condition the synthesizer. A
text is given as input to the synthesizer. The Vocoder takes the output of the synthesizer and
generates the speech waveform. Figure extracted from [8].

13

Figure 5.2: Three-stage training of the SV2TTS, each of the components are trained independently.
Mel spectrograms fed to the speaker encoder and those used as target for the synthesizer are created
with different parameters. VoxCleleb1, VoxCleleb2 and LibriSpeech-other were used to train the
Speaker encoder. LibriSpeech-other was used to train the Synthesizer and Vocoder. Figure
extracted from [1].

 5.1 Datasets
In this subsection each of the datasets that were used for training the three components are
described.

 5.1.1 VoxCleleb dataset

VoxCeleb[10] is an audio dataset consisting of short clips of celebrities speech, extracted from
videos uploaded to Youtube. The dataset consists of two versions, VoxCleleb and VoxCleleb2.
VoxCleleb1 contains over 100000 utterances for over 1000 celebrities and VoxCleleb2 contains
over a million utterances for over 6000 celebrities. Both datasets contain development and test sets,
there is no overlap between the two versions.

 5.1.2 LibriSpeech

LibriSpeech is a corpus of 1000 hours of read English speech with sampling rate of 16 kHz,
prepared by Vassil Panayotov with the assistance of Daniel Povey[11]. The corpus is derived from
audiobooks that are part of the LibriVox1 project. It provides both audio and text corresponding to
the audio. The dataset is split into subsets as shown in table 5.1. LibriSpeech-train-clean-100 was
used for generating the synthesized audio and testing set.

1https://librivox.org/

14

https://librivox.org/

Table 5.1: Data subsets in LibriSpeech, table extracted from [11]

subset hours minutes per
speaker

female speakers male speakers

dev-clean 5.4 8 20 20

test-clean 5.4 8 20 20

dev-other 5.3 10 16 17

test-other 5.1 10 17 16

train-clean-100 100.6 25 125 126

train-clean-360 363.6 25 439 482

train-other-500 496.7 30 564 602

 5.2 Speaker encoder
The encoder is a model that consists of a 3-layer LSTM with 768 hidden nodes followed by a
projection layer of 256 units LSTM layers. The model is trained on LibriSpeech-Other, VoxCleleb1
and VoxCleleb2 for 1 million steps. The inputs to the model are 40-channels log-mel spectrograms
with a 25ms window width and a 10ms overlap and the output is the L2-normalized hidden state of
the last layer, which is a vector of 256 elements. It also features a ReLU layer before the
normalization. The author used the webrtcvad python package to perform Voice Activity Detection
(VAD) on the input utterance. The process of VAD is showed in figure 5.3. To monitor the training
of the encoder, the author observes the ability of the model to cluster the speakers. This is done by
projecting the utterance embeddings into a two-dimensional space with UMAP shown in figure 5.4.

Figure 5.3: The short spikes in the detection are smothered out by using a moving average on the
binary flag. In the final step a dilation is performed on the flag with a kernel size of s + 1(s = 0.2s).
The audio is then trimmed of the unvoiced parts. The upper orange line is the voiced segments and
the lower orange line is the unvoiced segments, figure extracted from [1].

15

Figure 5.4: UMAP projections of utterance embeddings from randomly selected batches(each batch
consists of 10 speakers with 10 utterances each) from the train set at different iterations. Utterances
from the same speakers are represented by a dot of the same colour, figure extracted from [1].

 5.3 Synthesizer

The Synthesizer is a Tacotron 2[12] without Wavenet. The model is based on an open-source
TensorFlow implementation of Tacotron 22. Tacotron is a reccurent sequence-to-sequence model
that predicts a mel spectrogram from text. It has an encoder-decoder structure. The Synthesizer is
trained on LibriSpeech-clean dataset for 150k steps, with a batch size of 144 (utterances) across 4
GPUs. The number of decoder outputs per step is set to 2s. The loss function is the L2 loss between
the predicted and ground truth mel spectrograms. The model is set in Ground Truth Aligned (GTA)
mode (also called teacher-forcing mode) during training, The target mel spectrograms for the
synthesizer has more features than those used for the speaker encoder. The spectrogram is
computed from a 50ms window with 12.5 ms step and has 80 channels. The text input are fed to the
synthesizer without any pre-processing. Based on the Mean opinion score (MOS) shown in table
5.1, the duration of reference speech, that was fed to the encoder to generate the speaker embedding
for conditioning the synthesizer, should be around 1 seconds or more for the synthesizer to generate
any meaningful result. The architecture of the synthesizer is shown in figure 5.5.

Table 5.1: Impact of the reference utterance duration. Score from 1 to 5. Figure extracted from [8]

Reference utterance duration

1 sec 2 sec 3 sec 5 sec 10 sec

Naturalness(MOS) 4.28 4.26 4.18 4.2 4.16

Similarity(MOS) 2.85 3.17 3.31 3.28 3.18

2https://github.com/Rayhane-mamah/Tacotron-2

16

https://github.com/Rayhane-mamah/Tacotron-2

Figure 5.5: Architecture of the tacotron 2 without Wavenet Figure extracted from [1]

Tacotron 2 model architecture

The blue blocks represent the encoder and the orange blocks represent the decoder. All characters
from the input text are first embedded as vectors. The embeddings are then passed through 3
convolutional layers to create a input encoder frames. The frames are then passed through a
Bidirectional LSTM to produce the encoder output frames. The output frames is concatenated to a
speaker embedding. The decoder input frames are generated by the Location Sensitive Attention
mechanism attended to the encoder output frames. Each decoder input frames is then concatenated
with the previous decoder frame output. This concatenated vector then goes through two
unidirectional LSTM layers before being projected to a single mel spectrogram frame. Another
projection of the same vector to scalar allows the network to predict when it should stop generating
frames. The sequence of frames is passed through 5 convolutional layers before it becomes the final
mel spectrogram.

Long Short Term Memory (LSTM3) - is a special variation of Recurrent neural network (RNN). It
has the ability to remember information for a longer period.

Bi-directional long short term memory(BLSTM) - is a network consisting of two independent
RNNs that were put together. This structure allows the networks to have both backward and
forward information about the sequence at every time step.

3https://colah.github.io/posts/2015-08-Understanding-LSTMs/

17

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

 5.4 Vocoder
The vocoder in this system is WaveNet. WaveNet is one of the main state-of-the-art when it

comes to voice naturalness in TTS, but it is the slowest practical deep learning architecture. The
vocoder that is used in this system is an open source PyTorch implementation that is based on
WaveRNN, the model architecture of the WaveRNN is shown in figure 5.7.

In WaveRNN, the 60 convolutions from WaveNet are replaced by a single GRU [13] layer. The
author uses batched sampling with the open-souce implementation WaveRNN4 by github user
fatchord, with a segment length of 8000 samples and an overlap length of 400 samples. A folded
batch of size 2 willl yield about 1 second of audio for 16kHz speech. Batched sampling is used to
improve the speed performance of the WaveNet. In batched sampling, the original utterance is
divided in segments of fixed length and the generation is done in parallel over all segments. Folding
is used to preserve some context between the end of a segment and the beginning of the next
segment, where a small section of the end of a segment is repeated at the beginning of the next
segment. The folded segments is then forwarded by the model. Overlapping sections of consecutive
segments were merged by a cross-fade to get the unfolded tensor. This process is illustrated in
Figure 5.6.

Figure 5.6: batch folding from the WaveRNN, figure extracted from [1], batching sampling was
used on the original utterances to improve the the performance of the vocoder since the WaveRRN
is known for being very slow.

4https://github.com/fatchord/WaveRNN

18

https://github.com/fatchord/WaveRNN

Figure 5.7: Model architecture of the WaveRNN

WaveRNN model architecture

At each training step a mel spectrogram and it's wave-form are cut into segments. The inputs to the
model are the spectrogram segment to predict and the waveform segment. The mel spectrogram
goes through an upsampling network to match the length of the target waveform. A Resnet-like5

model uses the spectrogram as input to generate features that will condition the layers throughout
the transformation of the mel spectrogram to a waveform. This conditioning vector is then split
equally into four ways along the channel dimension, and the first part is concatenated with the
upsampled spectrogram and with the waveform segment of the previous time step. The resulting
vector then goes through GRU layers and dense layers. Between each step, the conditioning vector
is concatenated with the intermediate waveform. At the end an audio is produced by the last two
dense layers.

5https://towardsdatascience.com/an-overview-of-resnet-and-its-variants-5281e2f56035

19

https://towardsdatascience.com/an-overview-of-resnet-and-its-variants-5281e2f56035

Chapter 6

 6 Experiments

The main task of this thesis is, to generate a spoofing attack on a speech verification system by
using the speech synthesis method, and evaluate the results to answer the question: Is it possible to
penetrate a speech verification system with this method? In this chapter, we describe the x-vector
extractor that was used for extracting the x-vectors for training the speaker verification system and
for subsequent generating of x-vectors for the spoofed data. Further the process of generating the
spoofing task and the results of it are shown later in this chapter.

 6.1 X-Vectors System

The X-vector extractor is comprised of a deep neural network (DNN) that maps variable-length
speech segments to embeddings that are called x-vectors. The extractor uses sequence of features
from those frames in the analyzed utterance, which contain voice and transforms them into x-vector.
X-vector is a fixed vector representation of the analyzed utterance. Once extracted, the x-vectors
can be used for speaker identification (SID) task. The x-vector extractor[14] that was used in this
thesis was trained on 1.2 million speech segments from 7,146 speakers from the VoxCeleb 1 and 2
development sets plus additional 5 million segments obtained with data augmentation. All training
segments were 200 frames long. The model was evaluated on the original trials of the VOiCES
challenge – model 14 [14] in table 6.2.

 6.1.1 Neural Network architecture

The network, illustrated in Figure 6.1, consists of layers that operate at the segment-level, layers
operating on speech frames, a statistics pooling layer that aggregates over the frame-level
representations and a softmax output layer. The first 5 layers of the network work at the frame-
level, with a time-delay architecture. For example, where t is the current time step, then at the
input, we splice together frames at t {t − 2, t − 1, t, t + 1, t+ 2} which give us the total of 5 temporal
context(these context are added to the input of the next layer). In the next two layers output of the
previous layer is spliced together at time {t − 2, t, t + 2} and {t − 3, t, t + 3}. The next two layers
operate without any added temporal context. The size of the layers depends on the splicing context
that was used. Layers usually have a size of 512 to 1536 dimensions. The statistics pooling layers
computes mean and standard deviation of the last frame-level layer(2 statistics for each of the input
dimensions, the output will have 2 times the input dimensions). These statistics are then passed to
two additional hidden layers with 512 dimensions. Our X-vector extractor is a modification of this
model.

20

Figure 6.1: Diagram of the DNN. Segment-level embeddings a or b can be extracted from any
layers after Statistics pooling layer. Figure extracted from[15]

X-vector extractor model

Model architecture of the X-vector extractor is shown in table 6.1. The training network consists of
9 layers(1 – 9) that operate on a frame-to-frame level, a statistics pooling layer and two layers that
operate on segment-level. The embeddings can be extracted from any layer of the network after the
statistics pooling layer. The statistics pooling layer computes mean and standard deviation of frame
layer 9 output. The embeddings are then centered and dimensionality is reduced to 250 dimensions
using LDA, length normalization of embeddings is applied. Afterwards, the standard Probabilistic
Discriminant Analysis(PLDA) model is used to compare pairs of embeddings. For training the
PLDA backend, segments from each session of the VoxCleleb1 and 2 development were used.

21

Table 6.1: x-vector architecture model, table extracted from [16] , where K is different feature
dimensionalities, T is the number of training segment frames and N is the number of speakers.

Layer Layer context (Input) × output

frame 1 [t − 2, t − 1, t, t + 1, t + 2] (5 × K) × 512

frame 2 [t] 512 × 512

frame 3 [t − 2, t, t + 2] (3 × 512) × 512

frame 4 [t] 512 × 512

frame 5 [t – 3 , t, t + 3] (3 × 512) × 512

frame 6 [t] 512 × 512

frame 7 [t – 4, t, t + 4] (3 × 512) × 512

frame 8 [t] 512 × 512

frame 9 [t] 512 × 1500

stats pooling [0, T] 1500 × 3000

segment1 [0, T] 3000 × 512

segment2 [0, T] 512 × 512

softmax [0,T] 512 × N

Table 6.2: evaluation of the X-vector extractor, table extracted from [16].

System Name/Configuration SITW core-core VOiCES dev VOiCES eval

MinDCF EER MinDCF EER MinDCF EER

16kHz MFCC xvec&PLDA(VOXCELEB) 0.21 1.9 0.26 2.04 0.48 6.04

 6.2 Experiments and evaluation

The main task of this thesis is, to generate a spoofing attack on a speech verification system by
using the speech synthesis method, and evaluate the results to answer the question: Is it possible to
penetrate a speech verification system with this method?

Since training each of the three components takes a lot of time, I decided to use a pre-trained model
that was provided by the author of the TTS system for each of the components. The components are
trained as bellow :

• Encoder – trained 1.56M steps with a batch size of 64(It was trained for about 20 days with
a single GPU, the GPUs used for training are GTX 1080 Ti)

• Synthesizer – trained 256k steps with a batch size of 144(1 week with 4 GPUs)

22

• Vocoder – trained 428k steps with a batch size of 100(4 days with a single GPU)

• Datasets that were used for training are mentioned earlier in chapter 5.

The spoofed audio were generated with these parameters:

Encoder:
Mel window length = 25 ms, Mel window step = 10 ms, Mel channels = 40. sampling rate =

16kHz, number of spectrogram frames in a partial utterance = 1600 ms, number of spectrogram
frames at time interference = 800ms, window size of the VAD = 30 ms, number of frames to
average together when performing the moving average smoothing = 8, maximum number of
consecutive silent frames a segment can have = 6, audio volume normalization = -30.

Synthesizer:

Encoder part: number of encoder convolutional layers = 3, size of encoder convolution filters for
each layer = 5, number of encoder convolution filters for each layer = 512, number of LSTM units
for each direction (forward and backward) = 256.

Decoder part: number of layers and number of units of pre-net = [256, 256], number of decoder
lstm layers = 1024, maximum decoder steps during interference = 2000.

Attention Mechanism: dimension of attention space = 128, number of attention convolution
filters = 32, kernel size of attention convolution = 31.

Vocoder:

Target number of samples to be generated in each batch entry = 8000(for a 16kHz, a target
number of 8000 means that the target audio will be cut in chunks of 0.5 seconds which will all be
generated together, usually the higher number the slower the generating process, but the quality of
the output audio will be better.)

Number of samples for crossfading between batches = 400.

 6.2.1 Spoofing

In spoofing task, I tried to simulate a spoofing attack. The scenario can correspond for example to
an attack on a bank over a telephone network. Where a x-vector based speaker verification system
represents our bank. The goal is to gain access to the bank account of a target speaker by using a
synthesized voice of the target speaker that was generated by our TTS system. The audio that were
used for synthesis represent the target speaker's original voice. The goal is to fool the system with
our synthesized voice, by doing this we are trying to increase the false acceptance rate (false alarm)
of the system.

Before going further into the data preparation and experiments some of the definitions that will be
used later will be described.

23

False alarm rate – The score is extracted from the scoring files for each of the trial and compared
to a threshold (this threshold was selected extracted from the Test 1 task). If the the score is above
the threshold and it came from a synthesized trial then we mark this trial as falsely accepted trial
made by the system. The false alarm rate [%] is then computed as bellow:

false alarm rage=
∣ falsely accepted trial∣

∣nontarget trial∣
∗100 (6.1)

Miss rate – is computed is computed from the scores generated by the system. If the score of a trial
is bellow the threshold and it came from the same speaker then we mark it as falsely rejected trial
made by the system and the miss rate is computed as bellow:

miss rate=
∣ falsely rejected trial∣

∣target trial∣
∗100 (6.2)

Equal Error Rate (EER) - is defined as a location on ROC or DET curve, where the false alarm
rate and miss rate are equal. It is a very common measure characterizing the performance of a
biometric system. In general the lower EER value, the higher the accuracy of the biometric system.
It is widely used for comparing performance between two biometric systems.

Minimum possible Detection Cost Function (Min DCF) – is a metric for evaluating the
verification system. It is designed to consider the minimum possible of the overall costs based on
types of two types of detection errors. It is defined as bellow:

minDCF=miss
t

[C miss p (miss∣T , t) p(H s)+C fa p(fa∣T , t) p(H d)] (6.3)

Where Cmiss and C fa are the costs of the Miss(Miss rate) and Fa(False alarm), t is threshold,
and p (H s) and p (H d) can be written as p tar and pnon prior probability of target and
non-target trial.

Voice Activity Detection (VAD) – In this thesis a python script was used to extract the speech
frames from the audio. The VAD was applied(25 ms in 16kHz) to the audio files before they were
passed to the x-vectors extractor. The script works with these parameters:

• window length = 400

• window overlap = 240

• threshold = 0.5

Probabilistic Linear Discriminant Analysis (PLDA) – is used to compute the score of a
verification trials, it computes the log-likelihood ratio of a pair of x-vectors.

24

 6.2.2 Preparing data for spoofing task

Before the preparation of data for the spoofing task, an experiment was done with the TTS system.
The experiment was to generate a synthesized voice from audio of different duration and observe
the quality of the synthesized voice. The result of this experiment was, that the quality of the
synthesized voice does not depend on the duration of the reference speech. Based on this
information and information shown in table 5.1, we can then skip the process of choosing audio of
certain duration for generating the synthesized audio. For this task I used the LibriSpeech dataset,
specifically the train-clean-100 subset which provides a cleaner version of audio. This subset
consists of more than 100 hours of read English speech with sampling rate of 16 kHz from 251
different English speakers. The main reason for choosing this data set is that it is easily obtainable
and it provides both audio and text files for each audio file. Each speaker from the dataset
represents one hypothetical target of the bank in our scenario. The audio files of the speaker
represent recording that we obtained through a recording machine. The libriSpeech dataset are
structured as bellow in figure 6.2:

Figure 6.2: structure of the dataset, where the speaker ID represents a speaker, book ID represents
the book from which are the the text of the speech came from.

The first task was to prepare the audio files for generating synthesized voices of our targets. A
python script was used to extract a number(given as a parameter) of audio files from each of the
speakers in the audio file folder. Each of the audio files is then passed to the TTS system to generate
the corresponding synthesized audio for each speaker. The text input, that is used for the
synthesizer, is the original text that was read in the audio. It is extracted from the transcript file in
the audio folder. The transcript file is a TXT file, where each of it's line represents the name of the
audio file and text that was read in the audio. Both the original audio files and the synthesized audio
files are then moved to two different folders, a folder named “syn” for the synthesized audio and a
folder named “orig” for the original audio. These folders will be used later for the x-vectors
embedding extraction. Another python script is then used to choose a number of unused audio from
each speaker. The script systematically chooses a number(given as a parameter) of audio for each of
the speakers. The reason for not choosing all the unused audio for generating the enrollment is that
a real life bank does not have a lot of recorded speech segments for each of it's clients. The next
step was to extract x-vectors embeddings for the spoofing attack. The x-vectors for the synthesized
audio, original audio and unused audio were extracted by using a python script(referred as
“extractor” through out this thesis) that was provided by my supervisor, the x-vectors extraction
model is described earlier in this chapter 6. Voice Activity Detection(VAD) was applied to the
audio before it was passed to the extractor. The script that was used to generate VAD only worked
with WAV files, but the audio that are provided by the LibriSpeech have FLAC format so it was

25

necessary to convert the FLAC audio to WAV. A sound processing program called SoX (Sound
eXchange) was used to convert the audio to a 16b WAV audio files. After the extracting process
three files, that are needed for the evaluation of the verification trial, were created. The first file the
enroll segment and the second file are the enroll and test segments of the verification trial and the
third file is the verification task itself.

The enroll segment file is created from the x-vectors that were extracted from the unused audio
files. This file has the format of :

 “enrollment name” = ”path to the unused audiofile x-vector”.

The test segment file is created from the x-vectors that were extracted from both original audio
files that were used to generate the synthesized voice and the synthesized audio files. This file has
the format of :

“test name” = “path to the synthesized audio file x-vector”.

“test name” = “path to the original audio file x-vector”.

The verification task is created from the enroll segment file and test segment file. It has the
format of :

“path to the enrollment audio file x-vector” “path to the synthesized audio file x-vector” “impostor”

“path to the enrollment audio file x-vector” “path to the original audio file x-vector” “target”

Before the evaluation the verification task, this file was needed to be converted into it's H5
representation. H5 is a data file saved in the Hierarchical Data Format(HDF). It contains
multidimensional arrays of our target and non-target trials.

For the evaluation of the verification trial a python script was used to pass these files to our
hypothetical bank. The bank then generates a score for each of the verification trials.

 6.2.3 Spoofing task

In this subsection we will describe the process of making the verification trial, the first test will be
used as our baseline, the second and third test will simulate the spoofing attack on a bank over a
telephone network.

In the Test 1 task we try to test the performance of the speaker verification system with our x-
vectors embedding of the original audio from the test segment file and x-vectors embeddings from
the unused audio files from the enrollment segment file for each of the speakers. In this task each of
the x-vectors from the original audio are tested against the x-vectors from the unused audio, where
if the speaker ID of the original audio does not match the speaker ID of the unused audio the trial is
generated as non-target trial and if they do match the trial is then generated as target trial. This task
consists of 997 target and 995 non-target trials. For each trial a score is then computed with the
PLDA model. The PLDA computes the log-likelihood ratio(the score) of a pair of x-vectors, in our
case the x-vectors of the original audio and unused audio. Each of the scores are then compared to
the Equal Error Rate threshold (Threshold) to determine whether the trials are accepted or rejected
by our hypothetical bank. This test was used as the baseline for all the following test. The Equal
Error Rate threshold (EER_th), total number of non-target trials N and total number of target trials
T were extracted from the output of the evaluation script, this threshold(EER_th) is then used in the
evaluation for all the remaining tasks. A python script was used to calculate the false alarm rate and

26

miss rate from the scoring file. The first step of the script was the divide the trials into two
categories accepted trials and rejected trials, to achieve this, the script compares the score of the
selected trial to the EER_th, if this score is above the threshold the trial is moved to the accepted
trial and if the score is bellow the threshold the trial is moved to the rejected trials. For the miss
rate(falsely rejected trials made by the system) the script selects all trials from the rejected trials
that have the same speaker ID in the enroll and test segment and counts them together. This
number with T is then used with the formula(6.2) to compute the final miss rate in %. For the false
alarm rate(falsely accepted trials by the system) the script selects all trials from the accepted trial
that have different different speaker ID in the enroll and test segment. This number with N is then
used with the formula(6.1) to compute the final false alarm rate in %.

In the Test 2 task we try to simulate the spoofing task with our synthesized audio. X-vectors of
the synthesized audio were added to the verification trial. In this task the x-vectors of the
synthesized audio is matched against the x-vectors of the unused audio for each of the speakers and
the trials are marked as impostors. It was necessary to include some of the target trials so the
evaluation script does not fail. After the evaluation process the same python script, that was used in
task 1, is used to compute the false alarm rate and miss rate of this task using the formula (6.1) and
(6.2). The script first selects all the accepted trials by comparing the score of each trial with the
threshold(EER_th from task 1), if the score is above the threshold the trial is then accepted by the
system. The next step is to filter out all these accepted trials that contain the synthesized x-vectors,
after this the speaker IDs of the trial is matched against each other to verify that this trial is truly
falsely accepted by the system, these trials are then counted together and used with the formula(6.1)
and N to get the final false alarm rate in %. And for miss rate the formula(6.2) was used, all the
rejected trials(scores bellow the threshold) that do not contain a synthesized x-vector are selected.
After this all the trials with the same speaker ID in their enroll and test segment are counted
together, this number with T is then used with the formula(6.2) to compute the final miss rate in %.

Test 3 task is generated in a similar way as Test 2 with the only different is, that the audio are
generated with a different vocoder interference parameters for the batch folding process. In the Test
2 these parameters were: target length = 8000 and overlap = 400(which were the default parameters
recommended by the author) and in the Test 3 task the parameters were: target length = 16000 and
overlap = 800. By doing this the synthesized the quality of audio should be better, but with the
costs of the speed of generating the synthesized audio, it will takes about 2 times longer the
generate the same amount of audio in task2. And for computing the false alarm rate and miss rate
.The methods, that were used in task TEST 2 , were used. Example of how a verification trial is
being made is shown in table 6.3

27

table 6.3: graphic representation of the verification trial, for example trial 2 where A2 is the original
audio of the speaker A and A3 is the unused audio of the same speaker – this trial will be classified
as a target trial and for trial 3 where B3 is a synthesized audio and B1 is the unused audio of
speaker B – this trial will be classified as non-target trial in the verification trial.

Enroll segment

T
es

t s
eg

m
en

t

A1 A2 A3 B1 B2 B3 B4

A1 XXX XXX XXX XXX XXX XXX XXX

A2 Trial 1 XXX Trial 2 XXX XXX XXX XXX

A3 XXX XXX XXX XXX XXX XXX XXX

B1 XXX XXX XXX XXX Trial 5 XXX XXX

B2 XXX Trial 4 XXX Trial 3 XXX XXX XXX

B3 XXX XXX XXX XXX XXX XXX XXX

B4 XXX XXX XXX XXX XXX XXX XXX

Table 6.3: The result of the testing, the verification trials were evaluated on a our hypothetical bank,
The MinDCF was extracted from the output of the evaluation script. The number of target and non-
target trials are almost identical in all the tests. Non-target trials(996-997) and target trials(996-997)

Name False
alarm[%]

Miss rate[%] EER[%] MinDCF Threshold

Test 1 1.60804 1.50451 1.50603 0.02808 1.44978

Test 2 32.12851 1.50451 5.22088 0.19679 1.44978

Test 3 39.45783 1.50451 6.92424 0.36624 1.44978

 6.2.4 Evaluation

From the result in table 6.3 we can see that Test 3 has the highest False alarm rate of 39.6%. This
mean that 39.6% of our 996 synthesized voices that were generated by the Real-time voice cloning
system with the batch folding modification(target length = 16000 and overlap = 800) were falsely
accepted by our tested speaker verification system. Based on this result we can claim that our
method was fairly successful in penetrating the verification system since this kind of attack can be
realized on a very large scale, the only real problem with this method is to obtain the voice
recording of the target speaker and by this we can conclude that a spoofing attack on a speech based
biometric systems or at least systems that are similar to our tested system can be carried on with the
speech synthesis method.

28

Chapter 7

 7 Conclusions

The aim of this thesis was to study the the automatic speaker verification system and methods
which can be used for generating a spoofing attack, create a spoofing scenario and realize it on a
speaker verification system.

The thesis was structured in two half. In the first half we focused on studying the automatic
speaker recognition system and it's main task and speaker verification spoofing and it's methods. In
the second half a Text-To-Speech (TTS) system called Real-time voice cloning that was based on
the SV2TTS was described in detail, further a testing dataset representing a spoofing scenario was
created and realized on a speaker verification system based on x-vectors.

From the results of the testing, we can conclude that it is possible to penetrate a speaker
verification system with our cloned voice of the target speaker. Three python script were created to
create the spoofing data. The first script worked with the Text-To-Speech system for generating the
synthesized voice. The second script was a combination of bash utility find and python OS module
to create the trial enroll, test and condition. The third python script was created to compute the false
alarm rate and miss rate. From examinating the score file an average score of the falsely accepted
was computed to improve the system. In my case the average score was 4.42431137455 and by this
I propose the system to set it's threshold to 14 or higher in order to defend at the cost of increased
Miss Rate. The spoofed segments also has a great weight on the Error Equal Rate(EER) of the
system. The EER increased from 1.50603% to 6.92424% this increase shows that the system
accuracy of the system decreased with our testing segments.

 7.1 Future work
Our generated testing data can also be used to test a i-vector based system and compare the
performance between this two systems. All the data that are necessary for generating a spoofing
task are prepared, the only thing left is to extract the i-vectors from these data and generate a
verification trial using the python scripts that were created in this work. By doing this we can
compare the performance of the two systems and and study if we are able to penetrate a i-vector
based system with the speech synthesis method.

29

Bibliography
[1] Jemine Corentin. Automatic Multispeaker Voice Cloning. 2019.
[2] PLCHOT, Oldřich. Extensions to Probabilistic Linear Discriminant Analysis
for Speaker Recognition. Brno, CZ. 2014.
[3] Sadaoki Furui. Chapter 7 - Speaker Recognition in Smart Environments.
Human-Centric Interfaces for Ambient Intelligence. Academic Press. 2010.
p.135-162. 978-0-12-374708-2.
[4] Haizhou Li, Hemant A. Patil, and Madhu R. Kamble. Tutorial On
Spoofing Attack of Speaker Recognition. Kuala Lumpur, Malaysia. Asia-Pacific
Signal and Information Processing Association (APSIPA 2017). 2017.
[5] Wu, Zhizheng and Kinnunen, Tomi and Evans, Nicholas and Yamagishi,
Junichi and Hanilçi, Cemal and Sahidullah, Md. the First Automatic Speaker
Verification Spoofing and Countermeasures Challenge. 09. 2015.
[6] Muhammad, Jalaluddin and Akbar. A Overview of Spoof Speech Detection
for Automatic Speaker Verification. 02. 2019.
[7] A and Ganesh, Akila. An Overview of Speech Recognition and Speech
Synthesis Algorithms. 07. 2012.
[8] Jia, Ye and Zhang, Yu and Weiss, Ron and Wang, Quan and Shen, Jonathan
and Ren, Fei and Chen, Zhifeng and Nguyen, Patrick and Pang, Ruoming and
Moreno, Ignacio and Wu, Yonghui. Transfer Learning from Speaker Verification
to Multispeaker Text-To-Speech Synthesis. 06. 2018.
[9] oord, Aaron and Dieleman, Sander and Zen, Heiga and Simonyan, Karen
and Vinyals, Oriol and Graves, Alex and Kalchbrenner, Nal and Senior, Andrew
and Kavukcuoglu, Koray.WaveNet: A Generative Model for Raw Audio.2016.
abs/1609.03499.
[10] Nagrani, Arsha and Chung, Joon Son and Xie, Weidi and Zisserman,
Andrew. VoxCeleb: Large-scale Speaker Verification in the Wild. 10. 2019.
vol .60. p.101027.
[11] Panayotov, Vassil and Chen, Guoguo and Povey, Daniel and Khudanpur,
Sanjeev. Librispeech: An ASR corpus based on public domain audio books. 04.
2015. p.5206-5210.
[12] Shen, Jonathan and Pang, Ruoming and Weiss, Ron and Schuster, Mike
and Jaitly, Navdeep and Yang, Zongheng and Chen, Zhifeng and Zhang, Yu
and Wang, Yuxuan and Skerry-Ryan, RJ and Saurous, Rif and
Agiomyrgiannakis, Yannis and Wu, Yonghui. Natural TTS Synthesis by
Conditioning WaveNet on Mel Spectrogram Predictions. 12. 2017.
[13] Cho, Kyunghyun and van Merriënboer, Bart and Gulcehre, Caglar and
Bougares, Fethi and Schwenk, Holger and Bengio, Y. Learning Phrase
Representations using RNN Encoder-Decoder for Statistical Machine
Translation. 2014.
[14] Ladislav Mošner and Oldřich Plchot and A. Johan Rohdin and Jan
Černocký. Utilizing VOiCES dataset for multichannel speaker verification with
beamforming. Proceedings of Odyssey 2020 The Speaker and Language
Recognition Workshop. Tokyo, JP. International Speech Communication
Association. 2020. p.187--193.

30

[15] Snyder, David and Garcia-Romero, Daniel and Povey, Daniel and
Khudanpur, Sanjeev. Deep Neural Network Embeddings for Text-Independent
Speaker Verification. 2017. p.999-1003.
[16] Matějka Pavel, Plchot Oldřich, Zeinali Hossein, Mošner Ladislav, Silnova
Anna, Burget Lukáš, Novotný Ondřej and Glembek Ondřej. Analysis of BUT
Submission in Far-Field Scenarios of VOiCES 2019 Challenge. Proceedings of
Interspeech. Graz. 2019. 2019. 9. p.2448--2452. ISSN 1990-9772.

31

 8 Appendix A

HOW TO
The TSS is compressed in zip file, before using, unzip the file, for installing the necessary libraries
use

• pip install -r requirements.txt

• for generating the synthesized audio use python demo_cli.py -- syn(folder to move the
synthesized audio) --org (folder to move the original audio) --data (path to the dataset) --n
(number of audio that you want to synthesize for 1 speaker). Or you can use my public
folder on merlin /pub/users/xnguye11/synthesis/Real-Time-Voice-Cloning, everything is
prepared in this folder, just need to run python demo_cli.py

For generating the the .wav file for the vad use the wav.py and wav2vad.py script

• python wav.py input(path to the unused audio) output(path to the folder u want the wav to
be moved) n(number of audio files u want to generate)

• /pub/users/xnguye11/synthesis/evaluation/datascripts

For creating the test and enroll segment use enroll.py and for creating the verification trial use
test1.py

• python enroll.py path test org enroll

• path – path to the x-vector directory, test – synthesized x-vector folder, org original x-vector
folder, enroll enroll folder.

• /pub/users/xnguye11/synthesis/evaluation/enroll/ contains both these files

• python test1.py syn.scp org.scp enroll.scp , this path creates both the original and the
synthesized verification trial.

• syn.scp(contains path to the synthesized x-vector) – the file generated by enroll.py

• org.scp(contains path to the original x-vector) – the file generated by enroll.py

• enroll.scp(contains path to the enroll x-vector) – the file generated by enroll.py

 For evaluation the score use the back_run_evaluate.sh script, this script requires more setting, use
the script in my shared folder. The x-vectors was generated with the help of my supervisor.

• /pub/users/xnguye11/synthesis/evaluation/

• python back_run_evaluate.sh >> out.txt

• and the score file of the verification trial will be generated in the /VoiCES_experimental/
folder.

For scoring use the txt1.py script – it will calculated the false alarm and miss rate into a txt file.

• Python txt1.py output score

• output – output of the evaluation script

• score – score file – it is in the VoiCES_experimental, use the no_kaldi....txt file

32

U can listen to some of the synthesized audio in /pub/users/xnguye11/synthesis/syn1 - /syn2/ and

/pub/users/xnguye11/synthesis/ori1/ - /ori2/ the original audio used for synthesis.

33

	1 Introduction
	1.1 Claims of this Thesis

	2 Automatic speaker recognition overview
	2.1.1 Automatic speaker recognition(SRE)
	2.1.2 Speaker recognition
	2.1.3 Process of Speaker recognition system
	2.1.3.1 Feature Extraction
	2.1.3.2 Voice Activity Detection
	2.1.3.3 Speaker verification scoring
	2.1.3.4 Score Normalization

	3 Automatic speaker verification(ASV) spoofing and it's methods
	3.1 Impersonation
	3.2 Replay
	3.3 Speech Synthesis
	3.4 Voice Conversion
	3.5 ASVspoof2015-2019

	4 Speech Synthesis
	4.1 Rudimentary Techniques
	4.2 Speech Synthesis with Phonemes
	4.2.1 Synthesis based On Waveform Coding.
	4.2.2 Synthesis based on Analysis-synthesis
	4.2.3 Synthesis by Rule

	5 Real-time Voice Cloning
	5.1 Datasets
	5.1.1 VoxCleleb dataset
	5.1.2 LibriSpeech

	5.2 Speaker encoder
	5.3 Synthesizer
	5.4 Vocoder

	6 Experiments
	6.1 X-Vectors System
	6.1.1 Neural Network architecture

	6.2 Experiments and evaluation
	6.2.1 Spoofing
	6.2.2 Preparing data for spoofing task
	6.2.3 Spoofing task
	6.2.4 Evaluation

	7 Conclusions
	7.1 Future work

	8 Appendix A

