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ABSTRACT
The aim of this bachelor thesis is to create a penetration tests of speaker verification system with the 
use  of  the  speech  synthesis  method.  This  work studies  methods  of  spoofing  against  automatic 
speaker verification system. Before designing of the test set, the system and it's components that 
were used in this work  are described. The last chapters of this work include a description of the 
process of designing the test set, realization of the designed test and the last part contains evaluation 
of the results and answers the question if it is possible to penetrate a verification system with the use 
of speech synthesis. 

Abstrakt
Cílem bakalářské  práce  je  návrhnout  sadu penetračních  testů  pro  verifikaci  řečníka  s  použítím 
syntézy řeči  a  dostupných nahrávek cílových mluvčí.  Práce zahrnuje studium  problematiky pro 
syntézu řeči, verifikace řečníka a metod pro spoofing se kterými můžeme  setkat. Před samotným 
návrhem testovací  sady je  popsán systém a jeho komponenty,  který byl  použít  v  této práci.  V 
posledních kapitolách práce je uveden popis návrhu testovacích sad a způsob realizace testů. Na 
závěru jsou vyhodnoceny výsledky a je odpovězeno na otázku, zda je možné prolomit systém pro 
verfikaci řečníka s využitím metody pro syntézu řeči.
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Chapter 1

 1 Introduction

Speaker recognition is a biometric recognition technique, the word biometric can be decomposed as 
bio  and  metric,  where  bio  represents  life  and  metric  represents  measures.  Biometric  is  the 
technology for measuring and analyzing human's behavioral or physiological individuality. It can be 
used for recognizing a person on the basis of his/her voice, face, iris, DNA, signature, fingerprint, 
hand, geometry etc. Speaker recognition is widely used in voice dialing, banking over a telephone 
network, database access services, voice mail,  remote access to computers and a very important 
application of  the  speaker recognition technology is  it's use as a forensics tool. Popularity of this 
technology is based on the fact that it is less prone to attacks. Even though this technology is less 
prone  to  a spoofing  attacks,  we  can  still  perform  a  spoofing  attack  using  multiple  spoofing 
techniques such as voice conversion, text synthesis, replay and impersonation. 

This work is structured into 7 chapters. In the second chapter the definition of Automatic speaker 
recognition and it's main tasks are described. In the  third chapter different spoofing methods that 
can be used for spoofing against automatic speaker recognition are presented and one of the speech 
synthesis techniques is chosen to be used in this work. In the  fourth chapter the chosen spoofing 
method is described in more detail.  In the  fifth chapter  the Text-to-Speech system and it's main 
components that were used in this work for generating the spoofing attack are described.  In the 
sixth chapter the  preparation of data used for the synthesis and the creation of the spoofing task is  
described. Finally, the evaluation of the chosen method is performed and in the last chapter, main 
questions of this work are answered.

 1.1 Claims of this Thesis
The main focus of this thesis was on creating a spoofing attack by using the speech synthesis with 
the help of a Text-To-Speech system called Real-time voice cloning provided by Jemine Corentine 
[1] for generating synthesized audio that is used for the spoofing task. Thesis then summarizes the 
results of the testing and answers the question: If it is possible to penetrate an automatic speaker 
recognition system by using the speech synthesis method.
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Chapter 2

 2 Automatic speaker recognition overview
In this chapter, we describe a speaker recognition systems in general

 2.1.1 Automatic speaker recognition(SRE)

Automatic speaker recognition(SRE)[2] is the process of  comparing two speech signals produced 
by the human  vocal  tract  using specific  characteristics  of  the  speech signal  and answering the 
question whether these two speech signals belong to the same person or not. 

Human  voice  (speech  signal)  is  different  for  each  individual  and  contains  different  types  of 
information that can be used for authentication. Using the the information given from the speech we 
can use it to identify the person. After the speech is produced by the vocal tract, it passes through an 
environment to a point where it is recorded. This environment has a great effect on the quality of 
the speech, which can effect the performance of SRE systems. Using a speech signal mainly three 
kinds of recognition can be performed: Speech recognition (what is spoken), speaker recognition 
(who is speaking) and language  identification (identifying the language spoken  by the speaker).

The SRE can be divided into text-dependent and text-independent. Text-Dependent system assumes 
the knowledge of the speech content and the result of a test trial depends on a spoken phrase, while 
text-independent system does not depend on specific text.

 2.1.2 Speaker recognition 

speaker  recognition  can  be  classified  into  speaker  Identification  and  Verification.  Speaker 
Identification is the process of identifying who is speaking in the recording and speaker Verification 
is  the  process  of  accepting  or  rejecting  identity  claimed  by  the  speaker.  Figure  2.2 is  the 
visualization of the speaker recognition process. 

Speaker identification is a one to n(1 : n) matching system. In speaker identification we analyze 
and compare a speech utterance from an unknown speaker with speech models of known speakers 
in the system. The unknown speaker is identified as the speaker whose model best matches the 
input utterance. 

Speaker verification is a one to one(1 : 1) matching system. In speaker verification, an identity is  
claimed by the unknown speaker, and an utterance of this unknown speaker is compared to the 
model of the speaker whose identity is being claimed. If the match(the score from the verification 
system) is above a threshold(a coefficient that we can set), the identity is accepted and if the match 
is  bellow  the  threshold  the  identity  will  be  rejected.  A  high  threshold  makes  it  difficult  for 
impostors to be accepted by the system, but with it also increases the risk of falsely rejecting valid 
users(false rejection). These two tasks represent a so-called speaker verification  trial.  If the same 
speaker is speaking in the two recordings, then the trial is called a target trial. If it is not the same 
speaker speaking in the two recordings, then the trial is called a non-target trial

The effectiveness  of  speaker  verification  systems can  be evaluated  by using receiver  operating 
characteristics (ROC) curve adopted from psychophysics. The ROC curve is obtained by assigning 
two probabilities, the probability of correct acceptance(false rejection rate) and the probability of 
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incorrect acceptance(false acceptance rate). The  detection error trade-off (DET) curve is also used, 
in which false rejection(missed detections) and false acceptance(false alarms) rates are assigned to 
the vertical and horizontal axes. The comparison of two verification system is shown in figure 2.1

Figure  2.1:  ROC(top)  and  DET(bottom)  curves  comparing  the  performance  of  two  different 
techniques(PLDA and DPLDA), in general the system with lower EER has better accuracy. Figure 
extracted from[2]
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Figure 2.2 describes the process of speaker recognition and verification. On the top(a) is a typical 
process of speaker identification and bottom(b) is the process of speaker verification. Figure 
extracted from [3]

 2.1.3 Process of Speaker recognition system 

In order to perform a speaker recognition task, it is necessary to transform the continuous speech 
into a form that can be used by the system. This process consists of sampling and quantization and 
the result is a discrete version of the signal. The sampling frequency is usually 8kHz or more. In 
speech recognition several layers of information can be extracted from the signal as bellow:

• Acoustic: spectral representation of the speech
• prosodic: features encoding the prosody
• phonetic: analysis of sequences of phonemes specific to the speaker
• idiolect – analysis of sequences of words or short phrases
• linguistic- analysis of linguistic patterns characteristic to speaker's conversation style
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 2.1.3.1 Feature Extraction

Methods for extracting the spectral representation  of speech signal are based on the assumption that 
the signal can be considered stationary within short segments(usually 10ms long segment). These 
segments  can  be  obtained by  windowing  the  signal  with  a  rectangular  window function.  After 
windowing, the power magnitude Fourier spectrum is computed for every frame, which is then 
further  parameterized  into  feature  vector.  In  speaker  verification  the  Mel-Filterbank  Cepstral 
Coefficients (MFCC)  is used for extracting the feature vector. The process of MFCC extractions is 
shown in figure 2.3. In the first step of MFCC the absolute value of the short-term Discrete Fourier 
Transform (DFT) is used to extract the amplitude of the spectrum from each frames. Then, Mel-
filterbank is applied to smooth the spectrum. A vector  of band energies is  then computed as a 
weighted  sum of  squared  values  of  the  amplitude  spectrum.  The  overall  frame  energy is  then 
computed as an average of squared samples. A logarithm of the overall energy is taken and in the 
final step the feature vector is de-correlated and its dimensionality is reduced by projection into a 
certain amount of Discrete Cosine Transform (DCT) bases.

Figure 2.3 MFCC extraction steps, dimensionalities are shown above the blocks for frame lengths 
of 20 and 25 ms at sampling frequency f s = 8kHz. Figure extracted from [2]

 2.1.3.2 Voice Activity Detection

Voice  Activity  Detection  (VAD),  also  known  as  Speech  Activity  Detection  (SAD)  is  a  very 
important pre-processing  step in most of speaker recognition system. It is designed to select only 
those frames from the analyzed utterance, that contain speech. VAD can be implemented with many 
different  approaches.  Noticeably  VAD based on simple  energy thresholding,  Gaussian  Mixture 
Model (GMM) classifier or Neural Networks (NN) trained to discriminate between speech and the 
rest of the audio signal.
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 2.1.3.3 Speaker verification scoring

In Speaker recognition the score of a verification task is usually obtained by evaluating statistic 
models as a log-likelihood between two hypothesis. The two hypothesis correspond to answers of 
“yes” or “no” to the two question: A: is the same speaker speaking in this recording? And B: is the  
speaker speaking in this recording ?. A score can also be obtained, by using a simple metric based 
on a distance between feature vectors characterizing the whole utterance(cosine similarity).

There  are  two  approaches  to  training  the  scoring  model:  generative and  discriminative. 
Generative models are trained to estimate the underlying distribution of the data, from which the 
input features can be generated. Thanks to its simplicity and robustness it is widely used in speaker 
verification scoring. The discriminate models are trained to directly predict class from the input 
data. 

 2.1.3.4 Score Normalization

Score normalization techniques aim to reduce the scores variabilities in order to help the estimation 
of  a  unique  speaker-independent  threshold  during the  decision  step.  Most  of  the  normalization 
techniques are based on the estimation of the impostors scores distribution where the mean,m, and 
the standard deviation  d  depend on the considered speaker model and test utterance. Then score 
normalization for each of the new coming score s can computed as :

score(s)=s−
m
d

 (2.1)

Score  normalization  is  not  required  in  the  current  state-of-the-art  techniques  for  the  text-
independent speaker verification. Some of the popular scoring normalization techniques(for further 
reading [2] ) are listen bellow:

• Zero Normalization – Z-norm

• Test Normalization – T-norm

• ZT-norm

• S-norm
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Chapter 3

 3 Automatic  speaker  verification(ASV)  spoofing 
and it's methods

Spoofing attack – is a situation in which a person or program identifies as another identity by using 
falsified data.

ASV spoofing – Is an attack performed on a speaker recognition system by using spoofed speech 
samples.  The spoofed  samples can  be  obtained  using  voice  conversion  methods  to  convert  an 
impostor speech to the target speaker speech, or by using a recording device to record the speech 
samples  from  the  target  speaker.  The  spoofing  attacks  are  classified  into  five  types,  Speech 
Synthesis (SS), Voice Conversion (VC), replay,  identical twins, and impersonation.  Each of the 
methods and it's availability is shown in figure 3.1 

 3.1 Impersonation

A process of producing the similar voice pattern and speech behaviour of the target speaker. The 
impersonators do not require any machines or technical knowledge to imitate the target speaker. A 
professional impersonator can try to make a better imitation by trying to mimic the target speaker's 
prosody, accent, pronunciation, lexicon, and other high-level speaker traits. Even though this kind 
of attack is proved to be one of the more successful methods, it can not be performed on a larger 
scale, because it takes longer for the impersonator to mimic the target speakers.  According to a 
study reported in [4] found that if the impersonator is aware of the target speaker's voice and has 
similar voice pattern, he will be able to crack the speaker verification system.

 3.2 Replay 

Replay is one of the most easiest and simple spoofing attacks. The replay is a type of attack, where 
the attacker uses a pre-recorded speech signal of the target speaker's voice that is captured using a 
recording device to get access to the system. This attack does not require any specific expertise or 
any sophisticated equipment, therefore it is very easy to implement. The spoofing attack has a little 
to almost no changes(depending on the recording device and environment) in sound characteristics 
from the target speaker's voice.
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 3.3 Speech Synthesis

Speech synthesis (SS) also known as Text-To-Speech (TTS) system, is a technique for generating 
intelligible, natural sounding artificial speech for any text. It is a system, where the text is given at 
the input and the system generates a speech signal at the output. Most speech synthesis systems 
have two main components: text analysis followed by speech form generation. In the text analysis  
component, the input text is converted into a linguistic specification consisting of elements such as 
phonemes,  prosody,  consonants,  vowels.  In  the  speech  form  generation  component,  speech 
waveforms are generated based on the produced linguistic specification. The speech synthesis will 
be explained in more detail in the following chapter 4.

 3.4 Voice Conversion

Voice  conversion  (VAC)  is  a  spoofing  attack  against  automatic  speaker  verification  using  an 
attacker’s  natural  voice  which  is  converted  towards  that  of  the  target.  It  aims  to  convert  one 
speaker’s voice towards that of another. Most voice conversion requires a parallel corpus where 
source and target speakers read out identical utterances. VC can be used to  create new voices for 
TTS synthesis systems. Other applications include speaking aid devices that generate more natural 
voice sounds to help people with speech disorders, language learning, and signing voice conversion.

 3.5 ASVspoof2015-2019

The ASV spoofing 2015-2019 is a spoofing challenge involved detection of artificial speech created 
using a mixture of voice conversion and speech synthesis techniques.  In ASV spoofing 2015[5] a 
speech synthesis algorithm(S10) implemented with the open-source MARY Text-To-Speech system 
received the highest EER(Equal Error Rate) with 51.17% for the female speakers and 44.20% for 
male speakers. It was trained with 40 utterances per speaker.

Figure 3.1: Available methods and algorithms that can be used, with their  risk and availability,  
figure extracted from [6]
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Chapter 4
In this chapter, we describe the speech synthesis method and it's techniques.

 4 Speech Synthesis 
Speech synthesis is a very popular method for  creating a speech for any given text, it is widely used 
for applications ranging from funny celebs voice-over videos to google text-to-speech apps. It can 
also used for spoofing on speaker verification systems and for developing a counter measures. In 
this chapter the speech synthesis techniques are described. 

 4.1 Rudimentary Techniques
The first rudimentary method is to use a pre-recorded complete or partial messages, and having an 
application program or a speech server to read the static messages out  loud. This method is very 
simple to implement, but it requires all messages to be recorded in advance in order to be uttered by 
a  machine.  This  method  does  not  provide  flexibility,  since  if  a  message  changes,  it  has  to  be 
rerecorded. However, recorded speech sounds more natural than other synthesis techniques and is 
widely used in airports, railway stations, buses and many other places.

A second method is to record all the words of the application and save it in a lexicon in digital 
format. To generate a speech, the synthesizer sequentially looks up the words in the lexicon, fetches 
their digital recording, concatenates them, and converts them into sounds using the digital to analog 
converter of the sound card. Like the first method, it requires recording  of all  the words  in the 
vocabulary, but it is more flexible than the first method, since it is no longer constrained by fixed 
messages. However, the synthesized speech does not sound as natural as the speech generated by 
the  first  method,  because  the  utterance  of  words  varies  according  to  prosodic  context  and the 
concatenation of words is never perfect. 

 4.2 Speech Synthesis with Phonemes
This method generates a speech synthesis of a message using phonemes. This technique shrinks the 
whole messages or words into phonemes, by doing this we can use sound recording of the vowel 
and consonant for generating speech. This dramatically reduces the storage requirements for the 
database.  Speech synthesis with phonemes can deal with potentially unlimited vocabulary and it 
enables us to generate any message dynamically. Phonetic speech synthesizers are also called text-
to-speech converters (TTS) . 
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Most text-to-speech system is composed of two parts: a front-end and a back-end. In the first 
step  the front-end converts raw text containing symbols like numbers and abbreviations into the 
equivalent of written-out words. This process is often referred as tokenization or text normalization, 
after this phonetic transcriptions are assigned to each word. The front-end then assigns phonetic 
transcriptions to each word, and divides and marks the text into prosodic units, like phrases, clauses, 
and sentences. This process is often called text-to-phoneme or grapheme-to-phoneme conversion. 
The output of the front-end is the linguistic(it is made up of phonetic transcription and prosody 
information)  representation.  The  back-end  often  referred  as  the  synthesizer then  converts  the 
symbolic linguistic representation into sound. A typical TTS system is shown in figure 4.1.

Figure 4.1: overview of a typical TTS system, figure extracted from wikipedia

 4.2.1 Synthesis based On Waveform Coding.

Is a method where short segmental units of human voice, usually words or phrases, are stored. The 
speech is then generated by selecting and connecting the desired segments. The quality of the final 
speech is influenced by the the quality of the continuity of the acoustic features at the connections 
between units, this method is preferred in our thesis. The visualization of its process is shown in 
figure 4.2.

 4.2.2 Synthesis based on Analysis-synthesis

In this method words or phrases of human speech are analyzed and stored as time sequences of 
feature parameters. These parameters are then connected and supplied to a speech synthesizer to 
produced the spoken message. The visualization of its process is shown in figure 4.2.

 4.2.3 Synthesis by Rule

This method can produce words sentences based on sequences of phonetic syllabic  symbols  or 
letters. In this method, feature parameters of syllables or phonemes are stored and connected by 
rules, prosodic features are also controlled by rules. The process of this method is shown figure 4.2.

As shown in figure 3.1, both Voice Conversion and speech synthesis with phonemes (TTS) can be 
used  as a tool to create an ASV spoofing attack. In this thesis I decided to use a Text-To-Speech 
system to generate  an ASV spoofing attack,  since it  is widely used nowadays and it  is  widely 
available on the internet, the Text-To-Speech system will be later described in chapter 5.
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Figure  4.2:  Graphic  representation  of  the  three  speech  synthesis  methods  from  left  to  right 
Waveform coding, Analysis-synthesis, Synthesis by rule, figure extracted from [7], the WaveForm 
coding is preferred in our work.
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Chapter 5
In this chapter the Text-To-Speech system that is used in this thesis for generating the synthesized 
voices is described. There are many TTS system that are available on the internet, but most of them 
are either commercial or they needed to be trained before it could generate the desired voice. In this 
thesis  a Real-time voice cloning system was chose,  because it  was available  with a pre-trained 
models and it could generate a synthesized voice from a short utterance of the desired speaker.

 5 Real-time Voice Cloning
Real-time Voice Cloning[1] is a TTS system made by  Jemine Corentin.  The system is largely 
based on a system called Transfer Learning from Speaker Verification to Multispeaker Text-To-
Speech(referred to as SV2TTS throughout this thesis) [8]. The TTS system provides voice cloning 
from a short utterance of the reference speech. Model of the SV2TTS is shown in figure 5.1.

The system is composed of three independently trained neural networks. Graphic visualization of 
the training process for each of the components are shown in figure  5.2. A speaker encoder that 
creates an embedding from the short  utterance of the desired target speaker.  A synthesizer that 
generates a spectrogram from text input. The synthesizer is conditioned  by the embedding given 
from the speaker encoder. A vocoder that inverts the mel-spectrogram generated by the synthesis 
network into  waveforms. The author uses a WaveNet [9] as a vocoder.

Figure 5.1: describes the process of the system, the speaker encoder is fed a short utterance of the 
reference speaker to clone. It generates an embedding that is used to condition the synthesizer. A 
text  is  given as  input  to  the  synthesizer.  The Vocoder  takes  the  output  of  the  synthesizer  and 
generates the speech waveform. Figure extracted from [8].
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Figure 5.2: Three-stage training of the SV2TTS, each of the components are trained independently. 
Mel spectrograms fed to the speaker encoder and those used as target for the synthesizer are created 
with different parameters. VoxCleleb1, VoxCleleb2 and LibriSpeech-other were used to train the 
Speaker  encoder.  LibriSpeech-other  was  used  to  train  the  Synthesizer  and  Vocoder.  Figure 
extracted from [1].

 5.1  Datasets
In this subsection each of the datasets that were used for training the three components are 
described.

 5.1.1 VoxCleleb dataset 

VoxCeleb[10] is  an audio dataset  consisting of short  clips of celebrities  speech, extracted from 
videos uploaded to Youtube.  The dataset  consists  of two versions, VoxCleleb and VoxCleleb2. 
VoxCleleb1 contains over 100000 utterances for over 1000 celebrities and VoxCleleb2 contains 
over a million utterances for over 6000 celebrities. Both datasets contain development and test sets, 
there is no overlap between the two versions. 

 5.1.2 LibriSpeech

LibriSpeech  is  a  corpus of  1000 hours  of  read  English  speech with  sampling  rate  of  16  kHz, 
prepared by Vassil Panayotov with the assistance of Daniel Povey[11]. The corpus is derived from 
audiobooks that are part of the LibriVox1 project. It provides both audio and text corresponding to 
the audio.  The dataset is split into subsets as shown in table  5.1. LibriSpeech-train-clean-100 was 
used for generating the synthesized audio and testing set.

1https://librivox.org/
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Table 5.1: Data subsets in LibriSpeech, table extracted from [11]

subset hours minutes per 
speaker

female speakers male speakers

dev-clean 5.4 8 20 20

test-clean 5.4 8 20 20

dev-other 5.3 10 16 17

test-other 5.1 10 17 16

train-clean-100 100.6 25 125 126

train-clean-360 363.6 25 439 482

train-other-500 496.7 30 564 602

 5.2 Speaker encoder
The encoder  is  a model  that consists of a 3-layer LSTM with 768 hidden nodes followed by a 
projection layer of 256 units LSTM layers. The model is trained on LibriSpeech-Other, VoxCleleb1 
and VoxCleleb2 for 1 million steps. The inputs to the model are 40-channels log-mel spectrograms 
with a 25ms window width and a 10ms overlap and the output is the L2-normalized hidden state of 
the  last  layer,  which  is  a  vector  of  256  elements.  It  also  features  a  ReLU  layer  before  the 
normalization. The author used the webrtcvad python package to perform Voice Activity Detection 
(VAD) on the input utterance. The process of VAD is showed in figure 5.3. To monitor the training 
of the encoder, the author observes the ability of the model to cluster the speakers. This is done by 
projecting the utterance embeddings into a two-dimensional space with UMAP shown in figure 5.4.

Figure 5.3: The short spikes in the detection are smothered  out by using a moving average on the 
binary flag. In the final step a dilation is performed on the flag with a kernel size of s + 1(s = 0.2s). 
The audio is then trimmed of the unvoiced parts. The upper orange line is the voiced segments and 
the lower orange line is the unvoiced segments, figure extracted from [1].
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Figure 5.4: UMAP projections of utterance embeddings from  randomly selected batches(each batch 
consists of 10 speakers with 10 utterances each) from the train set at different iterations. Utterances 
from the same speakers are represented by a dot of the same colour, figure extracted from [1].

 5.3 Synthesizer

The Synthesizer  is  a  Tacotron  2[12] without  Wavenet.  The model  is  based on an open-source 
TensorFlow implementation of Tacotron 22.  Tacotron is a reccurent sequence-to-sequence model 
that predicts a mel spectrogram from text. It has an encoder-decoder structure. The Synthesizer is 
trained on LibriSpeech-clean dataset for 150k steps, with a batch size of 144 (utterances) across 4 
GPUs. The number of decoder outputs per step is set to 2s. The loss function is the L2 loss between  
the predicted and ground truth mel spectrograms. The model is set in Ground Truth Aligned (GTA) 
mode  (also  called  teacher-forcing  mode)  during  training,  The  target  mel  spectrograms  for  the 
synthesizer  has  more  features  than  those  used  for  the  speaker  encoder.  The  spectrogram  is 
computed from a 50ms window with 12.5 ms step and has 80 channels. The text input are fed to the 
synthesizer without any  pre-processing. Based on the Mean opinion score (MOS) shown in table 
5.1, the duration of reference speech, that was fed to the encoder to generate the speaker embedding 
for conditioning the synthesizer, should be around 1 seconds or more for the synthesizer to generate 
any meaningful result. The architecture of the synthesizer is shown in figure 5.5.

Table 5.1: Impact of the reference utterance duration. Score from 1 to 5. Figure extracted from [8]

Reference utterance duration

1 sec 2 sec 3 sec 5 sec 10 sec

Naturalness(MOS) 4.28 4.26 4.18 4.2 4.16

Similarity(MOS) 2.85 3.17 3.31 3.28 3.18

2https://github.com/Rayhane-mamah/Tacotron-2
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Figure 5.5: Architecture of the tacotron 2 without Wavenet Figure extracted from [1]

Tacotron 2  model architecture

The blue blocks represent the encoder and the orange blocks represent the decoder. All characters 
from the  input  text  are  first  embedded  as  vectors.  The embeddings  are  then  passed  through 3 
convolutional  layers  to  create  a  input  encoder  frames.  The  frames  are  then  passed  through  a 
Bidirectional LSTM  to produce the encoder output frames. The output frames is concatenated to a 
speaker embedding. The decoder input frames are generated by the Location Sensitive Attention 
mechanism attended to the encoder output frames. Each decoder input frames is then concatenated 
with  the  previous  decoder  frame  output.  This  concatenated  vector  then  goes  through  two 
unidirectional  LSTM layers  before being projected to a single mel  spectrogram frame.  Another 
projection of the same vector to scalar  allows the network to predict when it should stop generating 
frames. The sequence of frames is passed through 5 convolutional layers before it becomes the final 
mel spectrogram.

Long Short Term Memory (LSTM3) - is a special variation of Recurrent neural network (RNN). It 
has the ability to remember information for a longer period. 

Bi-directional long short term memory(BLSTM) - is a network consisting  of two independent 
RNNs  that  were put  together.  This  structure  allows  the  networks  to  have  both  backward  and 
forward information about the sequence at every time step. 

3https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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 5.4 Vocoder
The vocoder in this system is WaveNet. WaveNet is one of the main  state-of-the-art when it 

comes to voice naturalness in TTS, but it is the slowest practical deep learning architecture. The 
vocoder that is used in this system is an open source PyTorch implementation that is based on 
WaveRNN, the model architecture of the WaveRNN is shown in figure 5.7.

In WaveRNN, the 60 convolutions from WaveNet are replaced by a single GRU [13] layer. The 
author  uses  batched  sampling  with  the  open-souce  implementation  WaveRNN4 by  github  user 
fatchord, with a segment length of 8000 samples and an overlap length of 400 samples. A folded 
batch of size 2 willl yield about 1 second of audio for 16kHz speech.  Batched sampling is used to 
improve the speed performance of the WaveNet.  In batched sampling,  the original  utterance  is 
divided in segments of fixed length and the generation is done in parallel over all segments. Folding 
is  used to preserve some context  between the end of a  segment  and the beginning of the next 
segment, where a small section of the end of a segment is repeated at the beginning of the next  
segment. The folded segments is then forwarded by the model. Overlapping sections of consecutive 
segments were merged by a cross-fade to get the unfolded tensor. This process is illustrated in 
Figure 5.6.

Figure 5.6: batch folding from the WaveRNN, figure extracted from  [1], batching sampling was 
used on the original utterances to improve the the performance of the vocoder since the WaveRRN 
is known for being very slow. 

4https://github.com/fatchord/WaveRNN
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Figure 5.7: Model architecture of the WaveRNN 

WaveRNN model architecture

At each training step a mel spectrogram and it's wave-form are cut into segments. The inputs to the 
model are the spectrogram segment to predict and the waveform segment. The mel spectrogram 
goes through an upsampling network to match the length of the target waveform.  A Resnet-like5 

model uses the spectrogram as input to generate features that will condition the layers throughout 
the transformation of the mel spectrogram to a waveform. This conditioning vector is then split 
equally into four ways along the channel dimension, and the first  part is concatenated with the 
upsampled spectrogram and with the waveform segment of the previous time step. The resulting 
vector then goes through GRU layers and dense layers. Between each step, the conditioning vector 
is concatenated with the intermediate waveform. At the end an audio is produced by the last two 
dense layers. 

5https://towardsdatascience.com/an-overview-of-resnet-and-its-variants-5281e2f56035
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Chapter 6

 6 Experiments

The main task of this thesis is, to generate a spoofing attack on a speech verification system by 
using the speech synthesis method, and evaluate the  results to answer the question: Is it possible to 
penetrate a speech verification system with this method? In this chapter,  we describe the x-vector 
extractor that was used for extracting the x-vectors  for training the speaker verification system and 
for subsequent generating of x-vectors for the spoofed data. Further the process of generating the 
spoofing task and the results of it are shown later in this chapter.

 6.1 X-Vectors System  

The X-vector  extractor is comprised of  a deep neural network (DNN) that maps variable-length 
speech segments to embeddings that  are called x-vectors.  The extractor uses sequence of features 
from those frames in the analyzed utterance, which contain voice and transforms them into x-vector. 
X-vector is a fixed vector representation of the analyzed utterance.  Once extracted, the x-vectors 
can be used for speaker identification (SID) task. The x-vector extractor[14] that was used in this 
thesis was trained on 1.2 million speech segments from 7,146 speakers from the VoxCeleb 1 and 2 
development sets plus additional 5 million segments obtained with data augmentation. All training 
segments were 200 frames long. The model was evaluated on the original trials of the VOiCES 
challenge – model 14 [14] in table 6.2.   

 6.1.1 Neural Network architecture

The network, illustrated in Figure  6.1, consists of layers that operate at the segment-level, layers 
operating  on  speech  frames,  a  statistics  pooling  layer  that  aggregates  over  the  frame-level 
representations and a softmax output layer. The first 5 layers of the network work at the frame-
level,  with a time-delay architecture. For example, where  t  is the current time step, then at the 
input, we splice together frames at t {t − 2, t − 1, t, t + 1, t+ 2} which give us the total of 5 temporal  
context(these context are added to the input of the next layer). In the next two layers output of the 
previous layer is spliced together at time {t − 2, t, t + 2} and {t − 3, t, t + 3}. The next two layers  
operate without any added temporal context. The size of the layers depends on the splicing context 
that was used. Layers usually have a size of 512 to 1536 dimensions. The statistics pooling layers 
computes mean and standard deviation of the last frame-level layer( 2 statistics for each of the input 
dimensions, the output will have 2 times the input dimensions). These statistics are then passed to 
two additional hidden layers with 512 dimensions. Our X-vector extractor is a modification of this 
model.
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Figure 6.1: Diagram of the DNN. Segment-level embeddings a or b can be extracted from any 
layers after Statistics pooling layer. Figure extracted from[15]

X-vector extractor model

Model architecture of the X-vector extractor is shown in table 6.1. The training network consists of 
9 layers(1 – 9) that operate on a frame-to-frame level, a statistics pooling layer and two layers that 
operate on segment-level. The embeddings can be extracted from any layer of the network after the 
statistics pooling layer. The statistics pooling layer computes mean and standard deviation of frame 
layer 9 output. The embeddings are then centered and dimensionality is reduced to 250 dimensions 
using LDA, length normalization of embeddings is applied. Afterwards, the standard Probabilistic 
Discriminant  Analysis(PLDA) model  is  used to  compare  pairs  of  embeddings.  For training  the 
PLDA backend, segments from each session of the VoxCleleb1 and 2 development were used.
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Table 6.1: x-vector  architecture model,  table extracted from [16] ,  where K is different  feature 
dimensionalities, T is the number of training segment frames and N is the number of speakers.

Layer Layer context (Input) × output 

frame 1 [t  −  2, t  −  1, t, t  +  1, t  +  2] (5 × K) × 512 

frame 2 [t] 512 × 512 

frame 3 [t  −  2,  t,  t  + 2 ] (3 × 512) × 512 

frame 4 [t] 512 × 512 

frame 5 [t – 3 , t, t + 3] (3 × 512) × 512 

frame 6 [t] 512 × 512 

frame 7 [t – 4, t, t + 4 ] (3 × 512) × 512 

frame 8 [t] 512 × 512 

frame 9 [t] 512 × 1500 

stats pooling [0, T] 1500 × 3000 

segment1 [0, T] 3000 × 512 

segment2 [0, T] 512 × 512 

softmax [0,T] 512 × N 

Table 6.2: evaluation of the X-vector extractor, table extracted from [16].

System Name/Configuration SITW core-core VOiCES dev VOiCES eval 

MinDCF EER MinDCF EER MinDCF EER

16kHz MFCC xvec&PLDA(VOXCELEB) 0.21 1.9 0.26 2.04 0.48 6.04

 6.2 Experiments and evaluation  

The main task of this thesis is, to generate a spoofing attack on a speech verification system by 
using the speech synthesis method, and evaluate the  results to answer the question: Is it possible to 
penetrate a speech verification system with this method? 

Since training each of the three components takes a lot of time, I decided to use a pre-trained model 
that was provided by the author of the TTS system for each of the components. The components are 
trained as bellow :

• Encoder – trained 1.56M steps with a batch size of 64(It was trained for about 20 days with 
a single GPU, the GPUs used for training are GTX 1080 Ti)

• Synthesizer – trained 256k steps with a batch size of 144(1 week with 4 GPUs)
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• Vocoder – trained 428k steps with a batch size of 100(4 days with a single GPU)

• Datasets that were used for training are mentioned earlier in chapter 5.

The spoofed audio were generated with these parameters:

Encoder: 
Mel window length = 25 ms, Mel window step = 10 ms, Mel channels = 40. sampling rate = 

16kHz,  number of spectrogram frames in a partial utterance = 1600 ms, number of spectrogram 
frames at time  interference = 800ms, window size of the VAD = 30 ms, number of frames to 
average together when performing the moving average smoothing = 8, maximum number of 
consecutive silent frames a segment can have = 6, audio volume normalization = -30.

Synthesizer:

Encoder part: number of encoder convolutional layers = 3, size of encoder convolution filters for 
each layer = 5, number of encoder convolution filters for each layer = 512, number of LSTM units 
for each direction (forward and backward)  = 256.

Decoder part: number of layers and number of units of pre-net = [256, 256], number of decoder 
lstm layers = 1024, maximum decoder steps during interference = 2000.

Attention  Mechanism:  dimension  of  attention  space  = 128,  number  of  attention  convolution 
filters = 32, kernel size of attention convolution = 31.

Vocoder:

Target number of samples to be generated in each batch entry = 8000(for a 16kHz, a target  
number of 8000 means that the target audio will be cut in chunks of 0.5 seconds which will all be 
generated together, usually the higher number the slower the generating process, but the quality of 
the output audio will be better.)

Number of samples for crossfading between batches = 400.

 6.2.1 Spoofing 

In spoofing task, I tried to simulate a spoofing attack. The scenario can correspond for example to 
an attack  on a bank over a telephone network. Where a x-vector based speaker verification system 
represents our bank. The goal is to gain access to the bank account of a target speaker by using a 
synthesized voice of the target speaker that was generated by our TTS system. The audio that were 
used for synthesis represent the target speaker's original voice. The goal is to fool the system with 
our synthesized voice, by doing this we are trying to increase the false  acceptance rate (false alarm) 
of the system. 

Before going further into the data preparation and experiments some of the definitions that will be 
used later will be described. 
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False alarm rate – The score is extracted from the scoring files for each of the trial and compared 
to a threshold (this threshold was selected extracted from the Test 1 task). If the the score is above 
the threshold and it came from a synthesized trial then we mark this trial as falsely accepted trial 
made by the system. The false alarm rate [%] is then computed as bellow:

false alarm rage=
∣ falsely accepted trial∣

∣nontarget trial∣
∗100 (6.1)

Miss rate – is computed  is computed from the scores generated by the system. If the score of a trial 
is bellow the threshold and it came from the same speaker then we mark it as falsely rejected trial 
made by the system and the miss rate is computed as bellow:

miss rate=
∣ falsely rejected trial∣

∣target trial∣
∗100  (6.2)

Equal Error Rate (EER) - is defined as a location on ROC or DET curve, where the false alarm 
rate and miss rate are equal.  It is a very common measure characterizing the performance of a 
biometric system. In general the lower EER value, the higher the accuracy of the biometric system. 
It is widely used for comparing performance between two biometric systems.

Minimum  possible  Detection  Cost  Function  (Min  DCF)  –  is  a  metric  for  evaluating  the 
verification system. It is designed to consider the minimum possible of the overall costs based on 
types of two types of detection errors. It is defined as bellow:

minDCF=miss
t

[C miss p (miss∣T , t) p( H s)+C fa p( fa∣T , t) p( H d)] (6.3)

Where Cmiss and  C fa are the costs of the Miss(Miss rate) and Fa(False alarm),  t is threshold, 
and  p (H s) and p (H d ) can be written as  p tar and  pnon  prior probability of target and 
non-target trial.

Voice Activity Detection (VAD)   –  In this thesis a python script was used to extract the speech 
frames from the audio. The VAD was applied(25 ms in 16kHz) to the audio files before they were 
passed to the x-vectors extractor. The script works with these parameters:

• window length = 400

• window overlap = 240

• threshold = 0.5

Probabilistic  Linear  Discriminant  Analysis  (PLDA)  –  is  used  to  compute  the  score  of  a 
verification trials, it computes the log-likelihood ratio of a pair of x-vectors.
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 6.2.2 Preparing data for spoofing task

Before the preparation of data for the spoofing task, an experiment was done with the TTS system. 
The experiment was to generate a synthesized voice from audio of different duration and observe 
the quality  of the synthesized  voice.  The result  of this  experiment  was,  that  the quality  of  the 
synthesized  voice  does  not  depend  on  the  duration  of  the  reference  speech.  Based  on  this 
information and information shown in table 5.1, we can then skip the process of choosing audio of 
certain duration for generating the synthesized audio. For this task I used the LibriSpeech dataset, 
specifically  the  train-clean-100  subset  which  provides  a  cleaner  version  of  audio.  This  subset 
consists of more than 100 hours of read English speech with sampling rate of 16 kHz from 251 
different English speakers. The main reason for choosing this data set is that it is easily obtainable  
and  it  provides  both  audio  and  text  files  for  each   audio  file.  Each  speaker  from the  dataset 
represents  one  hypothetical  target  of  the  bank  in  our  scenario.  The  audio  files  of  the  speaker 
represent  recording that  we obtained through a recording machine.  The libriSpeech dataset  are 
structured as bellow in figure 6.2:

Figure 6.2: structure of the dataset, where the speaker ID represents a speaker, book ID represents 
the book from which are the the text of the speech came from.

The first task was to prepare the audio files for generating synthesized voices of our targets. A 
python script was used to extract a number(given as a parameter) of audio files from each of the  
speakers in the audio file folder. Each of the audio files is then passed to the TTS system to generate 
the  corresponding  synthesized  audio  for  each  speaker.  The  text  input,  that  is  used  for  the 
synthesizer, is the original text that was read in the audio. It is extracted from the transcript file in 
the audio folder. The transcript file is a TXT file, where each of it's line represents the name of the 
audio file and text that was read in the audio. Both the original audio files and the synthesized audio 
files are then moved to two different folders, a folder named “syn” for the synthesized audio and a 
folder  named  “orig”  for  the  original  audio.  These  folders  will  be  used  later  for  the  x-vectors 
embedding extraction. Another python script is then used to choose a number of unused audio from 
each speaker. The script systematically chooses a number(given as a parameter) of audio for each of 
the speakers. The reason for not choosing all the unused audio for generating the enrollment is that 
a real life bank does not have a lot of recorded speech segments for each of it's clients. The next 
step was to extract x-vectors embeddings for the spoofing attack. The x-vectors for the synthesized 
audio,  original  audio  and  unused  audio  were  extracted  by  using  a  python  script(referred  as 
“extractor” through out this thesis) that was provided by my supervisor, the x-vectors extraction 
model is described earlier  in this chapter  6. Voice Activity Detection(VAD) was applied to the 
audio before it was passed to the extractor. The script that was used to generate VAD only worked 
with WAV files, but the audio that are provided by the LibriSpeech have FLAC format so it was 
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necessary to convert the FLAC audio to WAV. A sound processing program called SoX (Sound 
eXchange) was used to convert the audio to a 16b WAV audio files.  After the extracting process 
three files, that are needed for the evaluation of the verification trial, were created. The first file the 
enroll segment and the second file are the enroll and test segments of the verification trial and the 
third file is the verification task itself.

The enroll segment file is created from the x-vectors that were extracted from the unused audio 
files. This file has the format of :

 “enrollment name” = ”path to the unused audiofile x-vector”. 

The test segment file is created from the x-vectors that were extracted from both original audio 
files that were used to generate the synthesized voice and the synthesized audio files. This file has  
the format of :

“test name” = “path to the synthesized audio file x-vector”. 

“test name” = “path to the original audio file x-vector”.

The verification task is created from the enroll  segment file and test segment file. It has the 
format of :

“path to the enrollment audio file x-vector” “path to the synthesized audio file x-vector” “impostor”

“path to the enrollment audio file x-vector” “path to the original audio file x-vector” “target”

Before  the  evaluation  the  verification  task,  this  file  was  needed  to  be  converted  into  it's  H5 
representation.  H5  is  a  data  file  saved  in  the  Hierarchical  Data  Format(HDF).  It  contains 
multidimensional arrays of our target and non-target trials.

For the evaluation of the verification trial a python script was used to pass these files to our 
hypothetical bank. The bank then generates a score for each of the verification trials.

 6.2.3 Spoofing task

In this subsection we will describe the process of making the verification trial, the first test will be 
used as our baseline, the second and third test will simulate the spoofing attack on a bank over a 
telephone network.

In the Test 1 task we try to test the performance of the speaker verification  system with our  x-
vectors embedding of the original audio from the test segment file and x-vectors embeddings from 
the  unused audio files from the enrollment segment file for each of the speakers. In this task each of 
the x-vectors from the original audio are tested against the x-vectors  from the unused audio, where 
if the speaker ID of the original audio does not match the speaker ID of the unused audio the trial is 
generated as non-target trial and if they do match the trial is then generated as target trial. This task 
consists of 997 target and  995 non-target trials. For each trial a score is then computed with the  
PLDA model. The PLDA computes the log-likelihood ratio(the score) of a pair of x-vectors, in our 
case the x-vectors of the original audio and unused audio. Each of the scores are then compared to 
the Equal Error Rate threshold (Threshold) to determine whether the trials are accepted or rejected 
by our hypothetical bank. This test was used as the baseline for all the following test. The Equal  
Error Rate threshold (EER_th), total number of non-target trials N and total number of target trials 
T were extracted from the output of the evaluation script, this threshold(EER_th) is then used in the 
evaluation for all the remaining tasks. A python script was used to calculate the false alarm rate and 
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miss  rate  from the  scoring  file.  The first  step  of  the  script  was  the  divide  the  trials into  two 
categories  accepted trials and rejected trials, to achieve this, the script compares the score of the 
selected trial to the EER_th,  if this score is above the threshold the trial is moved to the accepted  
trial and if the score is bellow the threshold the trial is moved to the rejected trials. For the miss 
rate(falsely rejected trials made by the system) the script selects all trials from the  rejected trials 
that  have the same speaker  ID in the enroll  and test  segment   and counts  them together.  This 
number with T is then used with the formula(6.2) to compute the final miss rate in %. For the false 
alarm rate(falsely accepted trials by the system) the script selects all trials from the accepted trial  
that have different different speaker ID in the enroll and test segment. This number with N is then 
used with the formula(6.1) to compute the final false alarm rate in %.

In the Test 2 task we try to simulate the spoofing task with our synthesized audio. X-vectors of 
the  synthesized  audio  were  added  to  the  verification  trial.  In  this  task  the  x-vectors  of  the 
synthesized audio is matched against the x-vectors of the unused audio for each of the speakers and 
the trials  are  marked as impostors.  It  was necessary to include  some of the target  trials  so the 
evaluation script does not fail. After the evaluation process  the same python script, that was used in 
task 1,  is used to compute the false alarm rate and miss rate of this task using the formula (6.1) and 
(6.2).  The script first selects all the accepted trials by comparing the score of each trial with the 
threshold(EER_th from task 1), if the score is above the threshold the trial is then accepted by the 
system. The next step is to filter out all these accepted trials that contain the synthesized x-vectors, 
after this the speaker IDs of the trial is matched against each other to verify that this trial is truly 
falsely accepted by the system, these trials are then counted together and used with the formula(6.1) 
and N to get the final false alarm rate in %. And for miss rate the formula(6.2) was used, all the 
rejected trials(scores bellow the threshold) that do not contain a synthesized x-vector  are selected. 
After  this  all  the trials  with  the  same speaker  ID in  their  enroll  and test  segment  are  counted 
together, this number with T is then used with the formula(6.2) to compute the final miss rate in %.

Test 3 task is generated in a similar way as Test 2 with the only different is, that the audio are 
generated with a different vocoder interference parameters for the batch folding process. In the Test 
2 these parameters were:  target length = 8000 and overlap = 400(which were the default parameters 
recommended by the author) and in the Test 3 task  the parameters were: target length = 16000 and 
overlap = 800. By doing this the synthesized the quality of  audio should be better, but with the 
costs  of  the  speed  of  generating  the  synthesized  audio,  it  will  takes  about  2  times  longer  the 
generate the same amount of audio in task2. And for computing the false alarm rate and miss rate 
.The  methods, that  were used in task TEST 2 , were used.  Example of how a verification trial is 
being made is shown in table 6.3 
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table 6.3: graphic representation of the verification trial, for example trial 2 where A2 is the original 
audio of the speaker A and A3 is the unused audio of the same speaker – this trial will be classified 
as a target trial and for trial 3 where B3 is a synthesized audio and B1 is the unused audio of 
speaker B – this trial will be classified as non-target trial in the verification trial.

Enroll segment 

T
es

t s
eg

m
en

t 

A1 A2 A3 B1 B2 B3 B4

A1 XXX XXX XXX XXX XXX XXX XXX

A2 Trial 1 XXX Trial 2 XXX XXX XXX XXX

A3 XXX XXX XXX XXX XXX XXX XXX

B1 XXX XXX XXX XXX Trial 5 XXX XXX

B2 XXX Trial 4 XXX Trial 3 XXX XXX XXX

B3 XXX XXX XXX XXX XXX XXX XXX

B4 XXX XXX XXX XXX XXX XXX XXX

Table 6.3: The result of the testing, the verification trials were evaluated on a our hypothetical bank, 
The MinDCF was extracted from the output of the evaluation script. The number of target and non-
target trials are almost identical in all the tests. Non-target trials(996-997) and target trials(996-997)

Name False 
alarm[%]

Miss rate[%] EER[%] MinDCF Threshold

Test 1 1.60804 1.50451 1.50603 0.02808 1.44978

Test 2 32.12851 1.50451 5.22088 0.19679 1.44978

Test 3 39.45783 1.50451 6.92424 0.36624 1.44978

 6.2.4 Evaluation 

From the result in table 6.3 we can see that Test 3 has the highest False alarm rate of 39.6%. This 
mean that 39.6% of our 996 synthesized voices that were generated by the Real-time voice cloning 
system with the batch folding modification(target length = 16000 and overlap = 800) were falsely 
accepted by our tested speaker  verification system.  Based on this  result  we can claim that  our 
method was fairly successful  in penetrating the verification system since this kind of attack can be 
realized  on  a  very  large  scale,  the  only  real  problem with  this  method  is  to  obtain  the  voice 
recording of the target speaker and by this we can conclude that a spoofing attack on a speech based 
biometric systems or at least systems that are similar to our tested system can be carried on with the  
speech synthesis method.
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Chapter 7

 7 Conclusions

The aim of this thesis was to study the the automatic speaker verification system and methods 
which can be used for generating a spoofing attack, create a spoofing scenario and realize it on a 
speaker verification system.

The thesis was structured in two half. In the first half we focused on studying the automatic  
speaker recognition system and it's main task and  speaker verification spoofing and it's methods. In 
the second half a Text-To-Speech (TTS) system called Real-time voice cloning that was based on 
the SV2TTS was described in detail, further a testing dataset representing a spoofing scenario was 
created and realized on a speaker verification system based on x-vectors.

From the  results  of  the  testing,  we  can  conclude  that  it  is  possible  to  penetrate  a  speaker 
verification system with our cloned voice of the target speaker. Three python script were created to 
create the spoofing data. The first script worked with the Text-To-Speech system for generating the 
synthesized voice. The second script was a combination of bash utility find and python OS module 
to create the trial enroll, test and condition. The third python script was created to compute the false 
alarm rate and miss rate. From examinating the score file an average score of the falsely accepted 
was computed to improve the system. In my case the average score  was 4.42431137455 and by this 
I propose the system to set it's threshold to 14 or higher in order to defend at the cost of increased  
Miss Rate. The spoofed segments also has a  great weight on the Error Equal Rate(EER) of the 
system.  The  EER increased  from 1.50603% to  6.92424% this  increase  shows  that  the  system 
accuracy of the system decreased with our testing segments. 

 7.1 Future work
Our  generated  testing  data  can  also  be  used  to  test  a  i-vector  based  system and  compare  the 
performance between this two systems. All the data that are necessary for generating a spoofing 
task are prepared,  the only thing left  is  to extract  the i-vectors from these data  and generate  a 
verification trial  using the python scripts  that  were created in this  work. By doing this  we can 
compare the performance of the two systems and and study if we are able to penetrate a i-vector  
based system with the speech synthesis method.
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 8 Appendix A

HOW TO
The TSS is compressed in zip file, before using, unzip the file, for installing the necessary libraries 
use

• pip install -r requirements.txt 

• for generating the synthesized audio use python demo_cli.py -- syn(folder to move the 
synthesized audio) --org (folder to move the original audio)  --data (path to the dataset) --n 
(number of audio that you want to synthesize for 1 speaker). Or you can use my public 
folder on merlin /pub/users/xnguye11/synthesis/Real-Time-Voice-Cloning, everything is 
prepared in this folder, just need to run python demo_cli.py

For generating the the .wav file for the vad use the wav.py  and wav2vad.py script 

• python wav.py input(path to the unused audio) output(path to the folder u want the wav to 
be moved) n(number of audio files u want to generate)

• /pub/users/xnguye11/synthesis/evaluation/datascripts

For creating the test and enroll segment use enroll.py and for creating the verification trial use 
test1.py

• python enroll.py path test org enroll

• path – path to the x-vector directory, test – synthesized x-vector folder, org original x-vector 
folder, enroll enroll folder.

• /pub/users/xnguye11/synthesis/evaluation/enroll/ contains both these files

• python test1.py syn.scp org.scp enroll.scp , this path creates both the original and the 
synthesized verification trial.

• syn.scp(contains path to the synthesized x-vector) – the file generated by enroll.py

• org.scp(contains path to the original x-vector) – the file generated by enroll.py

• enroll.scp(contains path to the enroll  x-vector) – the file generated by enroll.py

 For evaluation the score use the back_run_evaluate.sh script, this script requires more setting, use 
the script in my shared folder. The x-vectors was generated with the help of my supervisor.

• /pub/users/xnguye11/synthesis/evaluation/

• python back_run_evaluate.sh >> out.txt

• and the score file of the verification trial will be generated in the  /VoiCES_experimental/ 
folder.

For scoring use the txt1.py script – it will calculated the false alarm and miss rate into a txt file.

• Python txt1.py output score

• output – output of the evaluation script

• score – score file – it is in the VoiCES_experimental, use the no_kaldi....txt file
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U can listen to some of the synthesized audio in  /pub/users/xnguye11/synthesis/syn1 - /syn2/ and

/pub/users/xnguye11/synthesis/ori1/ - /ori2/ the original audio used for synthesis.
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