

OPTIMALIZACE PROCESNÍCH PARAMETRŮ LASEROVÝCH SVARŮ NA VAGÓNECH VE FIRMĚ **BOMBARDIER TRANSPORTATION**

Diplomová práce

Studijní obor:

Studijní program: N2301 – Strojní inženýrství 2303T002 – Strojírenská technologie

Autor práce: Vedoucí práce:

Bc. Václav Novák Ing. Jaromír Moravec, Ph.D.

OPTIMIZATION OF PROCESS PARAMETERS OF LASER-BEAM WELDING AT BOMBARDIER **TRANSPORTATION CZECH REPUBLIC** , A. S.

Diploma thesis

Study branch:

Study programme: N2301 – Mechanical Engineering 2303T002 – Engineering Technology

Author: Supervisor: **Bc. Václav Novák** Ing. Jaromír Moravec, Ph.D.

Tento list nahraďte originálem zadání.

Prohlášení

Byl jsem seznámen s tím, že na mou diplomovou práci se plně vztahuje zákon č. 121/2000 Sb., o právu autorském, zejména § 60 – školní dílo.

Beru na vědomí, že Technická univerzita v Liberci (TUL) nezasahuje do mých autorských práv užitím mé diplomové práce pro vnitřní potřebu TUL.

Užiji-li diplomovou práci nebo poskytnu-li licenci k jejímu využití, jsem si vědom povinnosti informovat o této skutečnosti TUL; v tomto případě má TUL právo ode mne požadovat úhradu nákladů, které vynaložila na vytvoření díla, až do jejich skutečné výše.

Diplomovou práci jsem vypracoval samostatně s použitím uvedené literatury a na základě konzultací s vedoucím mé diplomové práce a konzultantem.

Současně čestně prohlašuji, že tištěná verze práce se shoduje s elektronickou verzí, vloženou do IS STAG.

Datum:

Podpis:

TECHNICKÁ UNIVERZITA V LIBERCI Fakulta strojní Akademický rok: 2014/2015

ZADÁNÍ DIPLOMOVÉ PRÁCE

(PROJEKTU, UMĚLECKÉHO DÍLA, UMĚLECKÉHO VÝKONU)

Jméno a příjmení:	Bc. Václav Novák	
Osobní číslo:	S12000456	
Studijní program:	N2301 Strojní inženýrství	
Studijní obor:	Strojírenská technologie	
Vázev tématu: Optimalizace procesních parametrů laserových svarů na nech ve firmě Bombardier Transportation		
Zadávající katedra:	ávající katedra: Katedra strojírenské technologie	

Zásady pro vypracování:

- 1. Seznamte se teoreticky s metodou laserového svařování (fyzikální podstata procesu, svařovací parametry a jejich vliv na tvar svarové lázně).
- 2. Proveďte rešerši využití různých typů laserů v technické praxi.
- 3. Navrhněte experimentální program pro svařování heterogenních spojů se zahrnutím vlivu jednotlivých procesních parametrů.
- 4. Realizujte experimentální program.
- 5. Proveďte vyhodnocení a navrhněte optimální svařovací postup.
- 6. Zhodnoťte výsledky a popište vliv jednotlivých parametrů na vlastnosti svarového spoje.

Rozsah grafických prací:grafy, tabulkyRozsah pracovní zprávy:cca 50Forma zpracování diplomové práce:tištěná/elektronická

Seznam odborné literatury:

 MORAVEC, J. Teorie svařování a pájení - speciální metody svařování. 1. vydání. Liberec: Technická univerzita v Liberci, 2009. ISBN 978-80-7372-439-9.
DUPONT, J. N. a A. J. MARDER. Thermal Efficiency of Arc Welding Processes. Welding Journal. 1995, No. 12, pp. 406 - 416. ISSN 0043-2296.
AWS Welding Handbook. Welding Science and Technology. 9th Ed., Vol. 1. Editor: AWS-s Technical Activities Committee, 2001. ISBN 0-87171-657-7.
AMBROŽ O., B. KANDUS a J. KUBÍČEK. Technologie svařování a zařízení. 1. vydání. Ostrava: Zeross, 2001. s.395. ISBN 80-85-771-81-0.

Vedoucí diplomové práce:

Katedra strojírenské technologie

Ing. Jaromír Moravec, Ph.D.

Datum zadání diplomové práce: Termín odevzdání diplomové práce: 2. března 2015
2. června 2016

prof. Dr. Ing. Petr Lenfeld děkan

V Liberci dne 2. března 2015

Ing. Jaromír Moravec, Ph.D. vedoucí katedry

Poděkování

Tímto bych chtěl poděkovat společnosti Bombardier Transportation Czech Republic, a. s. za poskytnutí laserového pracoviště a laboratoře k vypracování této diplomové práce. Dále bych chtěl poděkovat všem zúčastněným zaměstnancům firmy, zejména tedy panu Ing. Michalu Loskotovi za pomoc při experimentu a hlavně za čas, který mi při práci věnoval. Dále bych chtěl poděkovat vedoucímu práce panu Ing. Jaromíru Moravcovi Ph.D. za odborné vedení při vypracování celé práce.

Diplomová práce vznikla na základě finanční podpory projektu studentské grantové soutěže /SGS 21005/ ze strany Technické univerzity v Liberci v rámci podpory specifického vysokoškolského výzkumu.

Abstrakt

Diplomová práce se zabývala svařováním austenitické korozivzdorné oceli pomocí laserového paprsku a kvalifikací postupu svařování pro využití ve výrobě. V úvodní části této práce byly uvedeny základní informace týkající se laseru a technologie svařování laserovým paprskem. Další část byla věnována specifikaci a kvalifikaci postupu svařování a s tím spojené klasifikace vad svarových spojů a zjišťování vad destruktivními a nedestruktivními metodami. Následně bylo pojednáno o charakteristice vysokolegovaných korozivzdorných ocelí a jejich svařování. Experimentální část byla věnována zhodnocení vlivu rychlosti svařování a výkonu laseru na hloubku průvaru. K tomuto účelu bylo vytvořeno za různých rychlostí svařování a výkonů celkem třicet vzorků, u kterých byly poté změřeny hloubky průvarů. Podle provedeného experimentu byly vytvořeny grafy závislosti rychlosti svařování na hloubce průvaru a závislosti výkonu laseru na hloubce průvaru. Z těchto grafů byly vybrány vhodné parametry svařování pro vytvoření předběžné specifikace postupu svařování pWPS, podle které byly svařeny zkušební kusy. Poté následovaly nedestruktivní a destruktivní zkoušky k odhalení vad a určení mechanických vlastností svarového spoje. Splněním těchto zkoušek byla vhodnost volby parametrů ověřena a byl vytvořen protokol o kvalifikaci postupu svařování (WPQR).

Klíčová slova

Svařování laserovým paprskem, specifikace a kvalifikace postupu svařování, klasifikace vad svarových spojů, metody odhalování vad svarových spojů, vysokolegované korozivzdorné oceli

Abstract

Thesis dealt with the welding of austenitic stainless steel by using laser beam welding procedure qualification for usage in production. In the introductory part of this work basic information on laser technology and laser-beam welding were given. Another part was dedicated to the specification and qualification of welding procedures and associated classification of defects of welded joints and destructive and non-destructive methods of defects detection. Subsequently, it briefly discussed the characteristics of high-alloy stainless steel and their welding. The experimental part was devoted to assess the effect of welding speed and the laser power on the depth of penetration. Thirty samples were created by variety of welding speeds and laser powers. For each sample were measured depths of penetration. According to the experiment were created graphs of welding speeds depending on the penetration depth and laser power, depending on the depth of penetration. According to these graphs were selected welding parameters suitable for creation of preliminary welding procedure specifications pWPS by which the test pieces were welded. That was followed by non-destructive and destructive tests to detect any defects and evaluate mechanical properties. By fulfilling those tests has parameter selection appropriateness been validated and the welding procedure qualification record (WPQR) was created.

Keywords

Laser beam welding, welding procedure specification and qualification, weld defects qualification, methods of weld defects detection, high alloyed stainless steel

Obsah

Se	znam	použitých značek a zkratek	11
1	Úvod		13
2	Svařování laserovým paprskem		
	2.1	Podstata vytvoření laserového paprsku	14
		2.1.1 Spontánní emise	
		2.1.2 Stimulovaná emise	15
		2.1.3 Zesílení	15
	2.2	Druhy laserů	
		2.2.1 Pevnolátkové lasery	
		2.2.2 Plynové lasery	19
		2.2.3 Polovodičové (diodové) lasery	20
	2.3	Charakteristika svařování	20
		2.3.1 Režimy svařování	20
		2.3.2 Režimy spínání	21
		2.3.3 Přenos energie	
		2.3.4 Vedení a zaostřování paprsku	
		2.3.5 Ochranný plyn	23
		2.3.6 Použití Přídavného materiálu	
	2.4	Možnosti provedení svaru	24
	2.5	Výhody a nevýhody svařování laserovým paprskem	24
3	Stanovení a kvalifikace postupů svařování kovových materiálů		
	3.1	Kvalifikace svařovacích procedur	25
	3.2	Určování stupňů kvality při laserovém svařování	27
	3.3	Hodnocení svarových spojů	
		3.3.1 Destruktivní zkoušky (DT)	30
		3.3.2 Nedestruktivní zkoušky (NDT)	34
4	Vys	okolegované korozivzdorné oceli	36
	4.1	Struktura vysokolegovaných korozivzdorných ocelí	
	4.2	Svařování korozivzdorných ocelí	40
5	Exp	erimentální část	42
	5.1	Popis pracoviště	42

	5.2	Popis použitého zařízení	43
	5.3	Použitý materiál	47
	5.4	Metodika experimentu	49
	5.5	Vyhodnocení experimentu	53
6	Záv	ěr	63
Po	užitá	literatura	64
Pří	lohy		67
A	Insp	oekční certifikát základního materiálu použitého v první části	
	exp	erimentu	67
B	Insp	oekční certifikát základního materiálu použitého ke kvalifikaci	
	post	tupu svařování	68
С	Insp	oekční certifikát přídavného materiálu použitého ke kvalifikaci	
	WP	QR	69
D	Pře	dběžná specifikace postupu svařování pWPS	70
E	Prot	tokoly NDT a DT pro vzorek č. 5010_1	72
F	Prot	tokoly NDT a DT pro vzorek č. 5010_2	81
G	Prot	tokoly NDT a DT pro vzorek č. 5010_3	90
H	Obs	ah přiloženého CD	99

Seznam použitých značek a zkratek

Označení	Jednotka	Popis
λ	[µm]	Vlnová délka
Р	[W]	Výkon
а	[mm]	Šířka zkušebního kusu
b	[mm]	Délka zkušebního kusu
t	[mm]	Tloušťka zkušebního kusu
HV	[-]	Tvrdost dle Vickerse
F_z	[N]	Zatěžovací síla (Vickers)
d_1	[mm]	Délka úhlopříčky vtisku
d_2	[mm]	Délka úhlopříčky vtisku
d	[mm]	Aritmetický průměr délek změřených úhlopříček d ₁ , d ₂
R _m	[MPa]	Mez pevnosti
Re	[MPa]	Mez kluzu
R _{p0,2}	[MPa]	Smluvní mez kluzu
$A_{\rm x}$	[%]	Tažnost
Z	[%]	Kontrakce
3	[-]	Poměrné prodloužení
$\mathbf{F}_{\mathbf{m}}$	[N]	Maximální přípustná síla
S ₀	[mm]	Průřez zkušební tyčinky před zkouškou tahem
Su	[mm]	Průřez zkušební tyčinky po zkoušce tahem
L ₀	[mm]	Délka zkušební tyčinky před zkouškou tahem
Lu	[mm]	Délka zkušební tyčinky po zkoušce tahem
ΔL_{u}	[mm]	Rozdíl délek L _u a L ₀
Cr _E	[%]	Chromový ekvivalent
Ni _E	[%]	Niklový ekvivalent
ΔF	[%]	Množství delta feritu podle Seferiana

Zkratka	Anglický název	Popis
LPSS	Lamp pumped solid state	Buzení pevnolátkového média výbojkou
DPSS	Diode pump solid state	Buzení pevnolátkového media diadou
LD	Laser diode	Laserová dioda
CW	Continuous wave	Kontinuální buzení
QCW	Quasi continuous wave	Kvazi-kontinuální buzení
pWPS	Preliminary welding procedure	Předběžná specifikace postupu svařování
	specification	
WPQR	Welding procedure qualificati-	Protokol o kvalifikaci postupu svařování
	on record	
WPS	Welding procedure specificati-	Specifikace postupu svařování
	on	
DT	Destructive testing	Destruktivní zkoušení
NDT	Non-destructive testing	Nedestruktivní zkoušení
VT	Visual testing	Vizuální zkoušení
РТ	Liquid penetrant testing	Penetrační zkouška
MT	Magnetic particle testing	Magnetická prášková zkouška
RT	Radiographic testing	Radiografické zkoušení
UT	Ultrasonic testing	Zkoušení ultrazvukem
А	-	Austenit
М	-	Martenzit
F	-	Ferit
FN	Ferrite number	Feritové číslo
МКК	-	Mezikrystalová koroze

1 Úvod

Svařování se používá už od počátků tepelného zpracování, kdy byly kováním k sobě spojovány kovy za účelem vytvoření primitivních nástrojů, zbraní a šperků. Postupem času s rozvojem lidského poznání vznikaly nové způsoby a technologie vytváření spojů. V současnosti lze nerozebíratelný spoj vytvořit také pájením, lepením nebo nýtováním. Tyto technologie mají velké využití ve spojování různých materiálů a oproti svařování i podstatné výhody. Žádná z těchto technologií však nedokáže v současnosti nahradit svařování kovů, co se týče pevnosti spojení.

Většina technologií a postupů je v dnešní době normalizována, aby bylo možné zajistit kvalitu v mezinárodním měřítku. Z tohoto důvodu je potřeba při navrhování postupu svařování dodržovat normy udávající různá pravidla. Jsou to například normy definující použitou technologii svařování, normy definující kvalifikaci postupu svařování, normy kvalifikující operátory, normy definující vady svarových spojů a jejich zjišťování a mnoho dalších. Splněním všech výše uvedených pravidel je následně výrobce schopen prokázat, že je podle daného postupu svařování schopen vytvořit svar požadované kvality.

Tato práce se zabývá právě zaváděním nových výrobních postupů svařování přímo ve výrobním provozu. Konkrétně se jedná o vypracování a kvalifikaci postupu svařování vysokolegované korozivzdorné oceli pomocí laserového paprsku na kolejových vozidlech.

V úvodních kapitolách práce byly postupně popsány princip laseru a technologie svařování laserovým paprskem. Dále byla přiblížena problematika kvalifikace postupu svařování, určování stupňů kvality a hodnocení svarových spojů. Následně jsou pak charakterizovány vysokolegované korozivzdorné oceli, popsáno určování jejich struktury a svařitelnosti. Další kapitola se věnovala samotnému experimentu, jeho metodice, následnému provedení a zobrazení výsledků. Experimentem byly porovnávány ty parametry svařování, které mají největší vliv na velikost průvaru. Podle výsledků experimentu byly vybrány vhodné parametry ke svaření zkušebních kusů, které posloužily ke kvalifikaci postupu svařování WPQR. V poslední kapitole je závěrečné zhodnocení výsledků a jejich použití v praxi.

Práce vznikala ve spolupráci se společností Bombardier Transportation Czech Republic, a. s., sídlící v České Lípě. Společnost k vypracování této práce poskytla laboratoř a moderní laserové pracoviště, které je rozlohou jedním z největších v Evropě.

2 Svařování laserovým paprskem

Svařování laserovým paprskem je jako ostatní druhy svařování způsob vytvoření nerozebíratelného spoje kovů nebo plastů přiblížením jejich atomů na meziatomovou vzdálenost. Tento druh svařování patří mezi tavné metody svařování a spoj je charakterizován tepelně ovlivněnou oblastí v okolí svaru. Laserový paprsek slouží jako velmi koncentrovaný tepelný zdroj a umožňuje svařovat vysokými svařovacími rychlostmi při dosažení minimálních deformací spojovaných dílů a velmi úzké tepelně ovlivněné oblasti.

Laser je zkratkou pro termín Light Amplification by Stimulated Emission of Radiation, neboli zesílení světla pomocí vynucené emise záření. [1]

Obr. 2. 1: Schéma laseru [3]

2. 1 Podstata vytvoření laserového paprsku

K vytvoření laserového paprsku je potřeba zajištění nerovnovážného prostředí, umožňujícího vyzáření fotonů pomocí excitovaných elementů pohybujících se na různých energetických hladinách. Takovými elementy jsou nejčastěji atomy, mohou jimi ale být i molekuly nebo chemické vazby. Stavu prostředí, ve kterém jsou z větší části excitované elementy, se říká populační inverze a těleso je nazýváno aktivním prostředím. V aktivním prostředí se musí nacházet nejméně tři energetické hladiny, jinak nemůže dojít k populační inverzi. Generace laserového paprsku je v podstatě proces probíhající ve třech krocích, přičemž ke všem dochází téměř ve stejném okamžiku. [1, 2]

2.1.1 Spontánní emise

Budící zdroj dodává energii médiu aktivního prostředí, čímž excituje (budí) atomy média ze základní hladiny na nejvyšší možnou energetickou hladinu. Taková hladina se nazývá budící. Na této hladině však atomy vydrží velmi krátkou dobu (t<10⁻⁸ s) a "spadnou" na hladinu nižší, tzv. pracovní nebo také metastabilní hladinu, na které vydrží podstatně delší dobu (t>10⁻⁸ až 10⁻³ s). Na metastabilní hladině dochází k populační inverzi. Atomy však

mají snahu získat co nejnižší energetický stav a přecházejí zpět na hladinu základní. Při tomto přechodu uvolní přebytečnou energii získanou od zdroje vyzářením fotonu (kvanta elektromagnetického záření). Takto vybuzené fotony jsou základem pro generování laserového paprsku. [1, 2, 3, 4]

2. 1. 2 Stimulovaná emise

Fotony, emitované spontánní emisí, se pohybují rychlostí blízkou rychlosti světla a následně narážejí do dalších excitovaných elektronů. Nárazem je elektron "sražen" na nižší energetickou hladinu, čímž je vytvořen foton, který má stejnou vlnovou délku a amplitudu, je tedy s původním fotonem koherentní. Tento jev se nazývá stimulovaná emise. [1, 2, 3]

2.1.3 Zesílení

K zesílení je používána zpětná vazba, které je dosaženo použitím optického rezonátoru. Ten je zpravidla tvořen z nepropustného zrcadla na jednom konci aktivního prostředí a polopropustného zrcadla na konci druhém. Fotony jsou emitovány ve všech směrech. Mnoho se jich odráží a míří z média ven. Pouze určité množství se pohybuje v podélném směru s osou média. Takto pohybující se fotony se následně odrážejí od zrcadel a procházejí zpět médiem, kde narážejí do dalších atomů. Přibližně polovina fotonů prochází polopropustným zrcadlem ven. Vycházející fotony tvoří monochromatický paprsek určité vlnové délky, který je dále optikou (zrcadly nebo optickými vlákny) směřován do místa svaru. [1, 2, 3]

Obr. 2. 2: Princip buzení laseru [4]

2. 2 Druhy laserů

Lasery pracují na stejném principu. Lze je ale dělit mnoha způsoby. Nejčastěji se odlišují aktivním prostředím, které určuje typ laseru. Dále se mohou lišit vlnovou délkou emitova-

ného paprsku, způsobem buzení nebo podle režimu práce. Na obr. 2. 3 je znázorněno rozdělení podle typu laseru.

Obr. 2. 3: Rozdělení laserů [5]

2.2.1 Pevnolátkové lasery

V praxi se používají tři typy pevnolátkových laserů. Tyto lasery se nejvíce liší tvarem aktivního média. Klasické Nd:YAG lasery mají aktivní médium ve tvaru válce (průměr \approx 3÷12 mm, délka \approx 65 ÷ 100 mm). Diskové lasery mají, jak už z názvu vyplývá, aktivní médium Yb:YAG ve tvaru disku (průměr \approx 10 mm, délka \approx 0,25 mm). Vláknové lasery mají jako aktivní médium dlouhé optické vlákno. [3, 5]

Obr. 2. 4: Druhy pevnolátkových laserů [3]

Neodymové lasery

Lasery s aktivním médiem Nd:YAG (iont Neodymu Nd³⁺ v Yttrium-Aluminium-granátové matrici). Tyto lasery se dále rozlišují podle budících zdrojů. Laserový paprsek generovaný tímto aktivním médiem má vlnovou délku λ =1064 [nm]. [3, 5]

LPSS (lamp pumped solid state), které jsou buzeny xenonovými nebo kryptonovými výbojkami umístěnými podél aktivního média. Výbojky však mají tu nevýhodu, že velkou část přijaté energie přemění na teplo, a tím se snižuje efektivita přeměny elektrické energie na světelnou. Další nevýhodou výbojek je jejich životnost (zhruba 1000 hodin). Tyto lasery se používají hlavně v pulzním režimu pro splnění požadavků hlubokého průvaru a tepelně ovlivněné oblasti. [3, 5]

DPSS (diode pumped solid state), které jsou buzeny LD (laserovými diodami). Tyto lasery mohou být buzeny buď z boku (stejně jako výbojkami), nebo zezadu. V případě zadního buzení je světlo od diod vedeno optickými vlákny, diody tak mohou být mimo rezonátor. Porovnáním bočního a zadního buzení lze říci, že boční buzení dosahuje vyšších výkonů, ale nižší kvality svazku. [3, 5]

Diskové lasery

Generace paprsku probíhá na podobném principu jako běžné Nd:YAG lasery s tím rozdílem, že aktivním médiem je malý disk z Yb:YAG (iont Ytterbia Yb³⁺ v Yttrium-Aluminiumgranátové matrici). Vlnová délka paprsku generovaného tímto aktivním prostředím je λ =1070 [nm]. Velkou výhodou tvaru disku je rovný teplotní profil, teplo odchází rovnoměrněji a plochu disku lze lépe chladit. To umožňuje dosažení vysokých výkonů (až 16 kW) s dobrou kvalitou výstupního svazku. Nevýhodou těchto laserů je však nízká efektivita přeměny elektrické energie na energii světla. [3, 5]

Obr. 2. 5: Schéma diskového laseru. [15, 16]

Vláknové lasery

Vláknové (fiber) lasery jsou nejmladším typem pevnolátkových laserů, které se začaly v průmyslu používat. V řadě aplikací vláknové lasery nahradily stávající technologii Nd:YAG laserů. Schéma vláknového laseru je zobrazeno na obr. 2. 6.

Obr. 2. 6: Schéma vláknového laseru [3]

Aktivní médiem je křemíkové vlákno (průměr $\approx 1 \div 6 \mu m$, délka \approx několik metrů) dopované Yb, Nd, Th nebo Er, které zároveň slouží jako rezonátor (zrcadla - Braggovy mřížky jsou součástí vlákna). Energie je do vlákna čerpána opticky pomocí sady laserových diod. LD jsou přímo navázány na optická vlákna. Vláknové lasery se vyznačují vysokou účinností, mají nízký příkon a běžně se chladí pouze vzduchem. S jejich vysokou kvalitou svazku umožňující fokusaci do velmi malého průměru je získáván paprsek s vysokou hustotou energie, který umožňuje dosažení velmi efektivního svařování, gravírování a řezání. [3, 5]

2.2.2 Plynové lasery

Plynové lasery mají aktivní prostředí tvořené atomy, molekulami nebo ionty. Mohou pracovat v kontinuálním nebo pulzním režimu.

CO₂ lasery

Používají se zejména pro svařování a dělení materiálu. Aktivní prostředí tvoří směs plynů CO_2 , N_2 a He. Laser je čerpán elektrickým výbojem (stejnosměrný proud), nebo radiofrekvenčně. Aktivní prostředí může být v hermeticky uzavřeném rezonátoru, nebo může rezonátorem proudit kontinuálně. Kontinuálního proudění prostředí se používá u vysokovýkonných laserů, a to zejména kvůli chlazení. Aktivní prostředí generuje paprsek vlnové délky λ =10600 [nm] (infračervené záření). I když infračervené světlo není většinou kovů dobře absorbováno, kombinací vysokého výkonu a malého průřezu paprsku laseru je dosahováno vysoké hustoty výkonu. Velkou nevýhodou je neschopnost přenosu výstupního paprsku optickými vlákny kvůli jeho "velké" vlnové délce a nutnosti převodu paprsku zrcadly. S tím je spojena nutnost pravidelné kalibrace a údržby zrcadel. [3, 5, 6]

Na obr. 2. 7 je zobrazeno schéma radio-frekvenčně buzeného laseru, kde k buzení dochází mezi dvěma elektrodami, které zároveň díky své velké ploše zajišťují chlazení plynu.

Obr. 2. 7: Schéma RF buzeného laseru [5]

Excimerové lasery

Název těchto laserů vychází ze spojení slov "excited" a "dimer", což v překladu znamená excitovaná molekula. Tyto molekuly mohou existovat pouze ve vybuzeném stavu a při návratu do základního stavu se rozpadají na jednotlivé atomy. Excimery vznikají při sráž-kách atomů plynu se svazkem elektronů o vysoké energii. Aktivním prostředím u těchto laserů jsou běžně kombinace halogenů a vzácných plynů (např. Ar+F, Kr+F, Xe+Cl). Vlnové délky jsou podle použité kombinace plynu v rozsahu od 157 do 351 nm. V současnosti jsou tyto lasery jedním z nejvýkonnějších a nejuniverzálnějších světelných zdrojů ultrafialového záření. [3, 5, 6]

2. 2. 3 Polovodičové (diodové) lasery

Během posledních let nacházejí diodové lasery stále větší uplatnění. Laserová dioda (LD) je polovodičová součástka, která mění elektrickou energii na energii světelnou. Samotná LD má výkon pouze pár wattů. Seřazením těchto samostatných LD však mohou být vytvořeny jednolité polovodičové tyčinky s výkonem, až 100 W. Tyto tyčinky pak mohou být následně zkombinovány k vytvoření diodového laseru s výkonem v rozmezí kW (běžně 4 kW). [7]

Obr. 2. 8: Uspořádání diod do tyčinky [7]

Laser je buď s přímým vedením paprsku do fokusační optiky, nebo s možností navázání do optického vlákna. Ploška, do které lze paprsek zaostřit, je oproti klasickým laserům větší, a tudíž se tyto lasery používají hlavně pro svařování, nanášení a povrchové kalení. Díky nižším vlnovým délkám λ = 808 až 980 [nm] lze tyto lasery použít i při svařování některých plastů. Velkou předností polovodičových laserů je jejich kompaktnost a vysoká účinnost přeměny světla (až 60 %). Velkou nevýhodou je závislost parametrů generovaného záření na teplotě. Z tohoto důvodu jsou u těchto laserů kladeny vysoké nároky na chlazení. [7]

2. 3 Charakteristika svařování

Prakticky všechny techniky svařování laserovým paprskem lze klasifikovat do dvou základních režimů. Jedná se o režimy svařování vedením tepla a svařování keyhole (svařování "klíčovou dírkou"). Oba tyto principy mohou probíhat bez dodávání přídavného materiálu do místa svaru. Dále je možné charakterizovat svařování režimem spínání buzení.[4]

2. 3. 1 Režimy svařování

Nejběžněji používané je svařování keyhole, kdy je laserový paprsek fokusován k dosažení vysoké hustoty výkonu (běžně 1 MW/cm²). V místě dopadu laseru na svařovaný materiál vzniká kapilára vyplněná parami kovů pod vysokým tlakem. Tlak plynů z ní vystupujících pak brání jejímu uzavření. Z jejích stěn se následně vedením dostává vložená energie laserového paprsku do taveniny a dále do tuhého materiálu. Páry kovů jsou však vysokou teplotou ionizovány a vzniká plasma. Takto indukovaná plasma tryská vysokou rychlostí z místa svaru. Tento jev je nežádoucí, a proto se páry kovů běžně vychylují ochranným

plynem (Ar, Ar+Co₂, N₂, He), který má také rafinační účinek na tuhnoucí svarový kov. [1, 3, 4]

Obr. 2. 9: Svařování klíčovou dírkou (vlevo) a svařování vedením tepla (vpravo) [4]

Při svařování vedením tepla se využívá nízké hustoty výkonu a absorpcí povrchem a vedením v materiálu dochází pouze k tavení materiálu. Tímto postupem se svařuje do malých hloubek průvarů (v řádu milimetrů). Rychlost svařování může být oproti svařování keyhole vyšší a pro některé aplikace je závislost hloubky průvaru na rychlosti svařování vhodná. Zvláště v těch případech, kde je rychlost svařování důležitější než úzký a hluboký průvar. Tento způsob svařování lze používat při svařování tenkých materiálů. [1, 3, 4]

2. 3. 2 Režimy spínání

Existují dva základní režimy spínání. Liší se dobou, po kterou je aktivní médium buzeno. Užívají se dva základní druhy buzení, a to buzení kontinuální, anebo pulzní. Dále existuje režim kvazi kontinuálního buzení.

Buzení kontinuální (CW – continuous wave) - laser generuje souvislý svazek paprsku. Buzení probíhá kontinuálně stálým zdrojem buzení. Tato operace je velice náročná na chlazení, protože vzniká velké množství tepla. U některých aktivních médií nelze tento režim použít. Používá se při řezání, kalení, svařování atd. [1, 3]

Kvazi kontinuální buzení (QCW – quasi continuous wave) - režim svařování, který je přechodem mezi kontinuálním a pulzním režimem. Buzení je v určitých intervalech (v řádech nanosekund) vypínáno z důvodu výrazného snížení množství vzniklého tepla, ale současně za přibližného zachování souvislosti svazku paprsku. [1, 3]

Pulzní (Pulsed) - buzení je v určitých intervalech vypínáno (v řádech milisekund), a to z důvodu různých aplikací, nebo protože aktivní médium není schopné kontinuálního bu-

zení. Velkou výhodou použití pulzního buzení je možnost tvarování pulzu k docílení požadované kvality svazku. Využívá se zejména pro svařování. [1, 3]

2. 3. 3 Přenos energie

Energie laserového paprsku se při dopadu na základní materiál mění na energii tepelnou. Materiál se taví a vzniká klíčová dírka (v režimu keyhole). Přenos energie z paprsku na materiál závisí především na dvou faktorech. [9]

Prvním z nich je odrazivost části energie paprsku od povrchu základního materiálu a povrchu roztaveného materiálu svaru. Množství odražené energie závisí na stavu povrchu materiálu, zejména tedy drsnosti povrchu, ale také na teplotě. Velmi také záleží na vlnové délce laserového paprsku a výkonu laseru samotného. Množství odražené energie paprsku s vlnovou délkou 1 µm může být u leštěných materiálů při pokojové teplotě až 90 %. U paprsku s menší vlnovou délkou je na povrchu s větší drsností odrazivost menší než 50 %. Odrazivost materiálu může mít za následek nestabilitu procesu svařování. V současnosti se odrazivost materiálů stává méně důležitou, a to díky laserovým zařízením s vysokým výkonem a kvalitou paprsku. [9]

Svařování laserovým paprskem je běžně doprovázeno také vypařováním základního materiálu. To má za následek vytvoření oparu tvořeného částicemi odpařenými ze základního materiálu. U vysoce výkonných laserů může laserový paprsek opar částečně ionizovat a vytvořit tak plasmu. To může způsobovat ztenčování paprsku a snížení jeho účinnosti. Obvykle se vzniku plasmy předchází odfukováním pomocí plynu proudícího tryskou. K tomu se běžně používají atomární helium, atomární argon nebo molekulový dusík. [9]

2. 3. 4 Vedení a zaostřování paprsku

Způsob vedení laserového paprsku závisí zejména na vlnové délce a tedy na použitém aktivním médiu. U plynových CO₂ laserů lze paprsek kvůli jeho velké vlnové délce vést pouze pomocí zrcadel. U pevnolátkových laserů a polovodičových laserů je paprsek spojovací jednotky veden do optického vlákna, kterým se dále dostává do fokusační hlavy, viz obr. 2. 11. [10]

Obr. 2. 11: Princip navádění laserového paprsku do optického vlákna [10]

Fokusační hlava, viz obr. 2. 12, se skládá minimálně z dvou konvexních rovinných čoček. Vstupní čočka slouží jako kolimátor, který různoběžné paprsky převádí do rovnoběžného směru. Posunováním kolimační čočky lze nastavovat průměr paprsku. Druhá čočka zaostřuje paprsek do místa svaru. Součástí fokusačních hlav jsou často zabudované kamery, díky kterým je možné pozorovat oblast svaru při svařování. [10]

Obr. 2. 12: Schéma 90° fokusační hlavy [10]

Fokusačních hlav existuje velké množství. Vhodnost typu hlavy se určuje podle velikosti, tvaru, pracovních vzdáleností a rozpočtu. [10]

2. 3. 5 Ochranný plyn

Použití ochranného plynu je potřebné pro většinu aplikací. Potřeba ochrany a druh ochranného plynu závisí na svařovaných materiálech. Dostatečná ochrana je velmi důležitá pro zachování mechanických i fyzikálních vlastností svařovaných materiálů. Oproti tomu při svařování měkkých ocelí se v mnoha případech svařuje bez ochranného plynu. Také vysokorychlostní svařování tenkých materiálů může být prováděno bez použití ochranného plynu. [9]

2. 3. 6 Použití přídavného materiálu

Přídavný materiál se používá při svařování s mezerou mezi základními materiály k zamezení vzniku neúplného vyplnění svaru. Přídavné materiály mohou být použity také pro zajištění metalurgických potřeb. Pro použití přídavného materiálu je třeba zajistit velmi přesné navádění drátu do místa svaru. [9]

2. 4 Možnosti provedení svaru

Laserové svařování lze aplikovat pro většinu běžných tvarů spojů používaných ve výrobě. Patří mezi ně ploché a tupé svary a svary na trubce (informace o polohách viz obr. 2. 10).

Obr. 2. 10: Možnosti provedení svarů **a.** Plochý I spoj, **b.** Svar přeplátovaného spoje, **c.** Koutový svar přeplátovaného spoje, **d.** Koutový svar T spoje, **e.** Provedení T spoje, **f.** Lemové svary na přírubě [4]

2. 5 Výhody a nevýhody svařování laserovým paprskem

Zejména svařování v režimu keyhole disponuje množstvím výhod oproti jiným metodám tavného svařování. [9]

- Spoj je tvořen minimem svarového kovu. S tím je spojeno minimální množství vneseného tepla, úzká tepelně ovlivněná oblast a minimální smrštění a deformace.
- Svařování vysokými rychlostmi a většina spojů je vyhotovena jednou svarovou housenkou, nebo dvěma, každou z jedné strany.
- Svary je možno vytvořit na materiálech s tloušťkou několik stovek milimetrů. Horní limit pro plně penetrované tupé svary v ocelích svařovaných z jedné strany je 25 mm.

Nevýhody jsou hlavně tyto: [9]

- Vysoké doby chladnutí, které vyžadují zvláštní pozornost k zamezení ztráty materiálových vlastností.
- Vznik prasklin a pórů u některých materiálů.
- Materiály s vysokou odrazivostí mohou být obtížně svařitelné paprsek laseru se namísto absorpce odráží.
- Ruční svařování je nepraktické. V praxi musí být používáno mechanické pracoviště s předem naprogramovanými operacemi.
- Přísné požadavky na přípravu spoje a přesné umisťování svaru.
- Povrchové nátěry mohou mít za následek vznik vad.

3 Stanovení a kvalifikace postupů svařování kovových materiálů

Svařování je podle terminologie norem systémů zabezpečení jakosti jako zvláštní proces. Tyto normy obvykle požadují, aby zvláštní procesy byly prováděny podle písemných specifikací postupu. K vytvoření svarového spoje požadované kvality je tedy potřeba dodržování postupu svařování. Norma ČSN EN ISO 15607 definuje všeobecná pravidla pro stanovení a kvalifikaci postupů svařování, které jsou normou ČSN EN ISO 15614-11 upřesněny pro svařování laserovým a elektronovým paprskem. [11,12]

3.1. Kvalifikace svařovacích procedur

Kvalifikace svařovacích procedur slouží k prokázání, že výrobní operace plně souhlasí s odpovídajícím postupem svařování a to i s předběžným a následujícím zpracováním. Před použitím jednotlivých postupů svařování ve výrobních operacích by měl výrobce dokumentovat vhodnost specifikace svařovacího postupu (WPS) pro zajištění vytvoření svaru požadované jakosti. Podle normy ČSN EN ISO 15614-11 termín "svařovací postup" zahrnuje všechny činnosti, které mají vliv na výsledky svařování, jako je příprava, svařovací parametry, následné zpracování a opravy. [12]

Vypracování a kvalifikace postupu svařování

Kvalifikace musí být provedena před samotným použitím postupu svařování ve výrobě. Výrobcem musí být připravena předběžná specifikace postupu svařování (pWPS), která bude zároveň použitelná pro vlastní výrobu. pWPS se připravuje na základě zkušenosti z praxe, celkových znalostí technologie svařování a musí specifikovat tolerance pro všechny důležité parametry. Takto připravená pWPS je následně použita jako podklad pro vypracování protokolu o kvalifikaci postupu svařování (WPQR) a podle toho je následně možné vytvořit specifikaci postupu svařování (WPS), která bude používána ve výrobních operacích. Na obr. 3. 1 je zobrazen postupový diagram pro vypracování a kvalifikaci WPS. [11]

Rozsah kvalifikace

WPS je specifikována pro určité podmínky platnosti, které musejí být nezávisle splněny. WPS je platná pouze pro dané výrobní zařízení, základní materiály, přídavné materiály, geometrii sestavy, typ svaru, polohu svařování, potřebu předehřevu, tepelné zpracování po svařování a počet vrstev svaru. Doba platnosti je neomezená. [12]

Obr. 3. 1:Postupový diagram pro vypracování a kvalifikaci WPS [11]

Zkouška postupu svařování

Kvalifikace může být provedena podle jednoho ze stupňů přípustnosti B, C a D k příslušným úrovním jakosti, kde na stupeň B jsou kladeny nároky nejvyšší a na stupeň D nároky nejnižší. Úroveň jakosti by měla být uvedena ve výrobkové normě nebo by ji měl stanovit odpovědný konstruktér. [12]

Zkušební kus

Slouží k reprezentaci sestavy, která je svařována. Musí mít dostatečnou velikost k zajištění odvodu adekvátního tepla a pro nedestruktivní a destruktivní zkoušení. Musí být navržen, aby reprezentoval součást a geometrii spoje a musí mít dané přesné rozměry. [12]

Obr. 3.2: Zkušební kus pro lineární tupý svar. [12]

Po svaření zkušebních kusů podle parametrů stanovených pWPS následuje zkoušení a kontrola podle požadavků stupňů přípustnosti.

3.2 Určování stupňů kvality při laserovém svařování

K určování stupňů kvality pro svařování elektronovým a laserovým paprskem slouží norma EN ISO 13919-1, která uvádí nejčastěji se vyskytující vady. Tato norma obsahuje zjednodušený výběr vad svarů na základě označení uvedeného v normě EN ISO 6520-1. Rozsahy vad jsou rozděleny celkem do tří skupin podle stupně kvality označených písmeny B, C a D. Stupeň kvality B má z těchto tří nejvyšší požadavek na kvalitu provedení svaru a stupeň D má tento požadavek nejnižší. To znamená, že každý stupeň kvality má svůj určitý rozsah přípustnosti pro jednotlivé vady. Norma platí pro rozsah tlouštěk materiálu od 0,5 mm do 12 mm. V tabulce 4.1 jsou uvedeny označení nejčastěji vyskytujících se vad u laserového svařování se stručným popisem a možnou příčinou vzniku. [9,13,14]

Označení vady a	Označení a vysvětlení (podle	Možná příčina (Podlo ČSN EN 1011-6)
vadv podle	101111y EN 150 0520-1)	(Foule CSN EN 1011-0)
EN ISO 6520-1		
Trhlina (100)	Vada způsobená místním porušením v tuhém stavu, která se může objevit vlivem ochlazování nebo napětí.	Kalicí trhlina z důvodu příliš vysokého obsahu uhlíku, rychlost ochlazování je příliš vysoká. Malé vady charakteru krystalizačních trhlin. Likvační trhlina způsobená precipitací nízkotavitelných eutektik na hranicích zrn a napětím ze smrštění během ochla- zování.
Kráterová trhli- na (104)	Trhlina v kráteru na konci svarové housenky	Trhlina zpravidla na konci svaru jako důsledek omezení smršťování během tuhnutí horní vyklenuté svarové hou- senky.
Dutina (200)	Dutina vytvořená uzavře- ným plynem	Znečištění svarového spoje. Odpařování prvků. Neúplné odplynění doprovodných a legujících prvků způsobené rychlým chladnutím svarové lázně. Nestabilita plynové dutiny.
Shluk pórů a řádek pórů (2013 a 2014)	Skupina pórů s nepravidelným geometric- kým rozmístěním, nebo řada pórů orientovaná rovnoběž- ně s osou svaru.	Znečištění svarového spoje. Složení materiálu, např. prvky s nízkým tlakem par při odpaření. Pórovitost u neúplně provařených sva- rů. Pórovitost při snížení výkonu svazku.
Staženina a krá- terová sraženi- na (202 a 2024)	Dutina způsobená smrště- ním během tuhnutí. Staženina na konci svarové housenky, která nebyla od- straněna před nebo během následujících svarových housenek.	Neúmyslné přerušení svařování nebo výron kovu.
Studený spoj (401)	Nedostatečné spojení (nata- vení) mezi svarovým kovem a základním materiálem nebo mezi jednotlivými vrstvami svarového kovu.	Studený spoj ve svarovém spoji jako důsledek chybného směrování svazku nebo nedostatečná šířka svaru. Studený spoj ve svarovém spoji jako důsledek chybného směrování přídav- ného materiálu.

Tabulka 3.2: Nejčastěji se vyskytující vady u laserového svařování [9,13,14]

Tabulka 3.2: Nejčastěji se vyskytující vady u laserového svařování - pokračování [9,13,14]

Označení vady a	Označení a vysvětlení (podle	Možná příčina
referenční číslo	normy EN ISO 6520-1)	(Podle ČSN EN 1011-6)
vady podle		
EN ISO 6520-1		
Neprůvar (402)	Rozdíl mezi skutečným a	Nedostatečný výkon svazku.
	předepsaným průvarem	Nadměrná svařovací rychlost.
		Nevhodné nastavení ohniska.
		Špatné funkce zařízení.
Zápal	Zápal značné délky bez pře-	Zařízení se svislou osou svazku: spolu-
(5011, 5012)	rušení nebo	působení promíchávání tavné lázně
	zápal krátké délky vyskytují-	povrchového napětí a povrchové visko-
	cí se občasně podél svaru.	zity.
		Zařízení s vodorovnou osou svazku:
		spolupůsobení promíchávání tavné láz-
		ně gravitace a povrchové viskozity.
Nadměrné pře-	Příliš velké převýšení na	Jako důsledek příčného smrštění zvláště
výšení tupého	lícní straně tupého svaru.	u neúplně provařených svarů.
svaru (502)		Jako důsledek přemísťování materiálu
		proti směru svařování.
Nadměrný prů-	Příliš velké převýšení na	Důsledek příčného smrštění a vlivů gra-
var (504)	kořenové straně tupého sva-	vitace.
	ru.	
Lineární přesa-	Přesazení mezi dvěma sva-	Neodpovídající stehování a/nebo upnu-
zení (507)	řovanými díly, jejichž povr-	tí.
	chové plochy jsou sice	Nesprávné obrábění.
	rovnoběžné, ale neleží ve	
	stejné požadované rovině.	
Proláklina	Sesutí svarového kovu způ-	Působení gravitace v poloze vodorovné
(509)	sobené zemskou přitažlivos-	shora.
	tí	
Neúplné vypl-	Podélný souvislý nebo pře-	Materiál je vymršťován jako důsledek
nění svaru	rušovaný žlábek na povrchu	kombinace gravitace, tlaku par ve sva-
(511)	svaru způsobený pokládá-	rové dutině a nadměrného výkonu
	ním nedostatečného množ-	svazku.
	ství přídavného materiálu.	
Hubený kořen	Mělká prohlubeň v kořeni	1
(515)	způsobená smrštěním sva-	
	rového kovu u tupého svaru.	

3.3 Hodnocení svarových spojů

Svary se hodnotí na základě provedených zkoušek. Tyto zkoušky se dělí podle porušení materiálu na nedestruktivní a destruktivní.

3.3.1 Destruktivní zkoušky (DT)

K provedení těchto zkoušek je, jak už z názvu vyplývá, potřeba porušení vyhotoveného svaru k posouzení jeho vlastností. Používají se zejména v předvýrobních operacích při kvalifikaci postupu svařování nebo kvalifikaci svařovacího personálu. Zkušební kus je po svaření rozdělen na části, u kterých jsou následně hodnoceny mechanické vlastnosti nebo struktura. Příklad rozdělení zkušebního kusu pro destruktivní zkoušky je na obr. 3. 3 [11]

Obr. 3.3: Oblasti pro zkušební vzorky plochého svaru. 1. a 3. Oblasti vzorků pro zkoušku tahem; 2. Oblast vzorku pro rázové zkoušky; 4. Oblast vzorku pro metalografické zkoušky a zkoušky tvrdosti; 5. Odpad; 6. Směr svařování [12]

 Metalografické zkoušky - Do tohoto odvětví zkoušek patří makroskopická a mikroskopická zkouška. Makroskopická zkouška se provádí pouhým okem nebo se zvětšením (menším než 50x). Mikroskopická kontrola se provádí s pomocí mikroskopu (zvětšení 50 až 500násobné). Tyto zkoušky slouží k vyhodnocení struktury svarového spoje a tepelně ovlivněné oblasti a k pozorování různých vad, které se mohou po svařování objevovat. Zkušební vzorky jsou zpravidla orientovány příčně k ose svaru a zobrazují tak svarový kov, tepelně ovlivněnou oblast po obou stranách svaru. Zkouška tvrdosti - Tato zkouška se používá k hodnocení pevnosti svarového spoje a tvrdosti v tepelně ovlivněné oblasti. Hodnocení se provádí na vzorku orientovaném příčně k ose svaru. Často se používá vzorek od metalografické zkoušky. Ze zkoušek tvrdosti je pro měření nejčastěji používána zkouška podle Vickerse, jejíž princip je zobrazen na obr. 3. 4. [17]

Obr. 3.4: Princip zkoušky dle Vickerse [18]

Princip zkoušky dle Vickerse spočívá ve vtlačování přesně definovaného tělesa (identoru) určitým zatížením do povrchu vzorku. Identor má tvar pravidelného čtyřbokého jehlanu o vrcholovém úhlu 136°. Po provedení vtisku se měří délka uhlopříček d₁ a d₂. Tvrdost dle Vickerse HV se stanovuje poměrem vtlačovací síly F_z a povrchem vtisku podle vzorce (3. 1) [17]

$$HV = 0,189 \cdot \frac{F_z}{d^2} \ [-] \tag{3.1}$$

Kde d je aritmetický průměr délek změřených úhlopříček d₁, d₂.

Zkouška tahem – Zkouška se řadí mezi tzv. statické zkoušky, u kterých je zkušební těleso zatěžováno statickou silou. Při zkoušení svarových spojů slouží zkouška k ověření zachování pevnostních vlastností materiálů po svaření. Podle orientace zkušebního tělesa k ose svaru se tahová zkouška dále dělí na zkoušku podélnou nebo příčnou. U podélné zkoušky tahem je zkušební těleso získáno obrobením svarové housenky do tvaru válečku, viz obr. 3. 5. U příčné zkoušky tahem je průřez zkušebního tělesa tvaru obdélníku, viz obr. 3. 6.

Obr. 3.5: Zkušební těleso podélné zkoušky tahem [19]

Obr. 3.6: Zkušební těleso příčné zkoušky tahem [20]

Tahová zkouška se provádí do přetržení zkušebního tělesa. Výstupem zkoušky je tzv. pracovní diagram, viz obr. 3. 7. Na ose x se v diagramu udává poměrné prodloužení a na ose y napětí. Určují se hlavně mez pevnosti R_m, mez kluzu R_e, tažnost A a kontrakce Z. Mez pevnosti a mez kluzu je možné odečíst přímo z pracovního diagramu.

Obr. 3.7: Pracovní diagram zkoušky tahem s výraznou mezí kluzu (vlevo), smluvní mezí kluzu (vpravo) [21]

Mez kluzu představuje minimální hodnotu napětí, kdy dochází k plastické deformaci. U houževnatých ocelí nelze s jistotou určit mez kluzu. V takovém případě se stanovuje smluvní mez kluzu Rp_{0,2}, která je určena jako velikost napětí způsobující trvalé prodloužení zkušební tyče o 0,2 % původní délky. Mez pevnosti je maximální napětí, které materiál snese bez porušení. Lze ji vypočítat pomocí vzorce (3. 2). [17]

$$R_m = \frac{F_m}{S_0} \left[MPa \right] \tag{3.2}$$

Tažnost a kontrakce vyjadřují schopnost materiálu přetvářet se bez porušení celistvosti. Tažnost je také základním kritériem pro materiálovou svařitelnost. Počítá se jako poměr prodloužení měřené zkušební tyče po přetržení k původní délce a počítá se podle vzorce 3. 3. Kontrakce vyjadřují změnu průřezu zkušební tyče před zkouškou a po zkoušce. Počítají se podle vzorce 3. 4.

$$A_{\chi} = \frac{L_u - L_0}{L_0} \cdot 100 = \frac{\Delta L_u}{L_0} \cdot 100 \, [\%]$$
(3.3)

Kde x udává délku zkušební tyče např. A₈₀

$$Z = \frac{S_0 - S_u}{S_0} \ [\%] \tag{3.4}$$

Zkouška lámavosti – Používá se k vyhodnocení tažnosti a spolehlivosti svarového spoje. Podstatou zkoušky je namáhání zkušebního tělesa statickým ohybem. Zkoušejí se zkušební tělesa ze strany kořene svaru a ze strany líce svaru. Průměr ohýbacího trnu musí být 4x tloušťka zkušebního tělesa a musí být dosaženo úhlu ohybu 180° pro základní materiál s tažností větší než A ≥ 20 %. V průběhu zkoušení nesmí dojít k zjištění samostatné vady 3 mm v jakémkoli směru. Na obr. 3. 8 je znázorněno schéma provedení této zkoušky. [17, 22]

Obr. 3.8: Zkouška lámavosti [22]

Zkouška rázem v ohybu – V praxi se používá Charpyho metoda. Princip zkoušky spočívá v přeražení zkušebního tělesa jedním rázem. K přeražení vzorku se používá Charpyho kladivo, viz obr. 3. 9. Zkušební těleso s vrubem je podepřeno na obou koncích. Vrub o předepsané geometrii se nachází uprostřed zkušebního tělesa na protilehlé straně od místa nárazu kladiva. Standardní zkušební těleso je dlouhé 55 mm s čtvercovým průřezem o délce strany 10 mm. Vrub je buď tvaru V, nebo U. V případech, kdy není možné z materiálu vytvořit standartní zkušební těleso, se vytvářejí náhradní zkušební tělesa o délce strany 7,5 mm, 5 mm nebo 2,5 mm. [17, 24]

Tato zkouška se podle namáhání řadí mezi zkoušky dynamické. Kladivo o dané hmotnosti upnuté na kyvadle v dané výšce padá po dané dráze směrem na zkušební těleso. Nárazem může být těleso zlomeno. Kladivo vykoná přerážením tělesa nárazovou práci, která je následně změřena na stupnici zařízení. Nárazová práce se stanovuje v joulech a je měřítkem odolnosti materiálu proti rázovému namáhání. [17, 24]

Obr. 3.9: Charpyho kladivo [23]

Zkouška rozlomením – Tato zkouška se provádí ke zjištění typů, rozměrů a rozmístění vnitřních vad ve svarovém spoji. Princip zkoušky spočívá v rozlomení svarového spoje, aby bylo možno pozorovat lomovou plochu. Rozlomení vzorku může být statické, nebo dynamické. [17]

3. 3. 2 Nedestruktivní zkoušky (NDT)

Nedestruktivní zkoušky se používají jak u předvýrobních operací, tak při kontrolách ve výrobě k posouzení správnosti provedení svaru. Lze je dále dělit podle toho, jestli je zjišťována vada na povrchu, nebo uvnitř materiálu.

K určování povrchových vad se používají zkoušky:

- Vizuální VT Nejběžnější zkouška používaná v průmyslu. Slouží k posouzení kvality a správného provedení svaru. Vizuální zkouška spočívá v pozorování povrchu a zjištění přítomnosti nespojitosti povrchu. VT zkoušení může být prováděno pouhým okem nebo s použitím pomůcek, např. lupy, zrcadla, endoskopu. Touto metodou je možné pozorovat praskliny, krápníky, zápaly, neprovařený kořen, vady v napojení, nadměrné převýšení svaru, korozi, přesazení svařovaných součástí. [17, 25]
- Kapilární (penetrační) PT Základním principem této zkoušky je průnik barevné látky velmi nízké viskozity, která je nanesena na povrch zkoušeného tělesa, do štěrbin v povrchu. Jakmile je přebytek penetrační látky odstraněn, je na povrch je

nanesena vývojka. Látka uzavřená v štěrbinách vzlíná na povrch vlivem kapilárních sil a je zvýrazněna vývojkou. Penetrační látka může být viditelná na okolním světle nebo může být fluorescentní. Fluorescentní penetrační látky jsou vidět pouze pomocí "černého" UV světla.

Při kapilární zkoušce je důležité, aby byl zkoušený povrch před nanesením penetrační látky očištěn od mastnot a dalších tekutin a cizích materiálů. Po nanesení penetrační látky se musí určitý čas čekat, aby se látka mohla na povrchu usadit a vyplnit štěrbiny. Při čištění přebytku se musí dbát na to, aby nebyla odstraněna i látka usazená ve štěrbinách. Dále se nanáší tenký film vývojky a následuje pozorování. [17, 25]

Magnetická prášková MT – Tato zkouška využívá jedno nebo více magnetických polí k nalezení vad na povrchu nebo v blízkosti povrchu u feromagnetických materiálů. Magnetická pole mohou být vytvořena permanentním magnetem nebo elektromagnetem. Když magnetické pole narazí na vadu, jeho siločáry jsou vychýleny. Princip zkoušky spočívá ve zviditelňování siločar použitím jemného feromagnetického prášku. Tento prášek, který může být samotný nebo rozptýlený v emulzi, se usazuje v místech pólů a místech vad. [17, 25]

K určování vnitřních vad se používají zkoušky:

- Radiografická metoda RT Průmyslová radiografie zahrnuje vystavení zkoušeného tělesa pronikajícímu záření. Radiace prochází zkoušeným tělesem, za kterým je z druhé strany záznamové médium. Záznamovým médiem jsou často průmyslové rentgenové filmy. Na filmu se následně zobrazí světlé oblasti jako plný materiál a tmavší oblasti zobrazující vadu v místech, kde bylo pohlceno méně záření. Pro tenké látky nebo látky s menší hustotou, jako je například hliník, se používá rentgenové záření. Pro látky s vyšší hustotou se používá záření gama. [17, 25]
- Ultrazvukem UT Tato metoda pracuje na stejném principu, jaký je použit u sonaru. Zkoušený materiál je vystaven zvuku s vysokou frekvencí kmitů. V homogenním prostředí se vlnění šíří přímočaře. Na rozhraní dvou prostředí s rozdílnými akustickými vlastnostmi, mezi homogenním a heterogenním (vadou) prostředím, se vlnění odráží nebo částečně pohlcuje. Tyto změny se projevují na obrazovce indikačního zařízení jako poruchové echo. [17, 25]
4 Vysokolegované korozivzdorné oceli

Tyto oceli jsou podle normy ČSN zařazeny do třídy ocelí 17. Podle směrnice ISO/TR 15608, sloužící pro zařazování materiálů do skupin pro účely svařování, se nacházejí ve skupinách 8, 9, 10 a musí obsahovat minimálně 10 % celkového obsahu legujících prvků. Mezi tyto oceli se řadí oceli korozivzdorné, žáruvzdorné a žárupevné. Největší skupinu těchto ocelí tvoří austenitické korozivzdorné oceli. [26]

Korozivzdorné oceli odolávají elektrochemické korozi v oxidačním prostředí, a to díky přítomnosti chromu, který vytváří ochranný (pasivační) film na hranicích zrn. Minimální obsah Cr v tuhém roztoku k zajištění pasivačních vlastností je 12 %.

Žáruvzdorné oceli odolávají chemické korozi při teplotách nad 600 °C. To je zajištěno především Cr, Si a Al, které tvoří při vyšších teplotách stabilní vrstvu oxidů Cr_2O_3 , SiO₂, Al₂O₃ odolnou proti opalu. [26]

Žárupevné oceli odolávají creepu za vyšších teplot. Tyto oceli si zachovávají mechanické vlastnosti za vyšších teplot, a to díky použití legur Cr, V, Mo, W, Nb, Ti, B a N. Tyto legury při vyšších teplotách precipitačně nebo substitučně vytvrzují tuhý roztok.

Hlavní legující prvky lze u vysokolegovaných ocelí rozdělit do dvou skupin:

- Austenitotvorné prvky rozšiřující v rovnovážném diagramu oblast γ (C, Ni, Cu, Mn, N).
- Feritotvorné prvky zužující v rovnovážném diagramu oblast γ (Cr, Mo, Si, Al, W, V, Ti, Nb).

Podle obsahu legur a dosažené mikrostruktury se oceli dělí na:

- feritické chromové oceli,
- martenzitické chromové oceli,
- austenitické Cr-Ni a Cr-Ni-Mo oceli,
- duplexní oceli (feriticko-austenitické, martenziticko-austenitické, martenzitickoferitické).

Mezi austenitické oceli jsou zařazeny také Cr-Mn nebo Cr-Ni-Mn oceli, kde je nikl částečně nahrazen levnějším Mn. [26]

4. 1 Struktura vysokolegovaných korozivzdorných ocelí

Struktura těchto ocelí závisí na jejich chemickém složení. Základní informaci o možných strukturách chromových ocelí udává rovnovážný diagram železo–chrom, viz obr. 4. 1 [26]

Obr. 4. 1: Rovnovážný diagram železo-chrom [26]

Dolegováním Ni do Cr ocelí je dosaženo vyšší korozní odolnosti a větší houževnatosti. To je způsobeno austenitickou strukturou Cr-Ni ocelí. Jejich struktura je ovlivněna hlavně feritotvornými a austenitotvornými prvky. Vliv těchto prvků je dán tzv. ekvivalentem chromu Cr_E a ekvivalentem niklu Ni_E. Na jejich základě byly zkonstruovány konstituční diagramy, které jsou používány k odhadům výsledné struktury Cr-Ni, popř. Cr-Ni-Mo austenitických ocelí. Jedná se o Schaefflerův diagram, De Longův diagram a diagram WRC. Podle těchto diagramů lze navrhnout vhodný přídavný materiál k zajištění požadovaných vlastností svarového spoje.

Schaefflerův diagram

Tento diagram je možné použít k odhadu výsledné mikrostruktury Cr-Ni austenitických ocelí s nízkým obsahem dusíku. Chromový ekvivalent je počítán podle vzorce (4. 1), kde je daným feritotvorným prvkům stanovena určitá váha. Niklový ekvivalent je počítán podle vzorce (4. 2), kde je daným austenitotvorným prvkům dána určitá váha. [26, 27]

$$Cr_E = Cr + Mo + 1,5 \cdot Si + 0,5 \cdot Nb$$
 (4.1)

$$Ni_E = Ni + 30 \cdot C + 0.5 \cdot Mn \tag{4.2}$$

Obr. 4. 2: Schaefflerův diagram [27]

Ze Schaefflerova diagramu vychází také Seferianův vzorec (4. 3) pro určení obsahu δ feritu v oceli.

$$\delta F [\%] = 3(Cr_E - 0.93 \cdot Ni_E - 6.7) \tag{4.3}$$

De Longův Diagram

Diagram na obr. 4.3 vychází z Schaefflerova diagramu. Je možné ho využít pro odhad mikrostruktury u Cr-Ni ocelí s vyšším obsahem dusíku. Naopak použití diagramu není možné u austenitických ocelí s obsahem δ feritu vyšším jak 15%. Pro zvýšení přesnosti se v diagramu objevuje tzv. Feritové číslo FN. Obsah feritu se stanovuje procentuálně plošnou metodou (metalograficky), zatímco feritové číslo se stanovuje objemovou metodou (magnetometricky). Obsah feritu se cca do 10% ve struktuře shoduje s FN. Při vyšším obsahu se ale množství feritu zjištěného plošnou metodou oproti realitě snižuje. Z tohoto důvodu je dána přednost feritovému číslu FN a metodě objemové. [26,28]

Obr. 4. 3: De Longův diagram [27]

Ve vzorci pro výpočet Ni_E bere v potaz N jako významný austenitotvorný prvek. Chromový ekvivalent Cr_E se počítá podle stejného vzorce jako u Schaefflerova diagramu. Niklový ekvivalent se počítá podle vzorce (4.4).

$$Ni_E = Ni + 30 \cdot C + 30 \cdot N + 0.5 \cdot Mn \tag{4.4}$$

WRC-1992 diagram

Diagram zobrazený na obr. 4. 4 lze použít pro austenitické oceli v rozsahu od 0 do 100 FN. Nahrazuje diagram vydaný Welding Research Council z roku 1988 (WRC-1988), protože počítá s vlivem mědi Cu při výpočtu Ni_E. Od Schaefflerova a De Longova diagramu se odlišuje zejména změnou výpočtu Cr_E podle vzorce (4.5) a Ni_E podle vzorce (4.6). [26, 28]

$$Cr_E = Cr + Mo + 0.7 \cdot Nb \tag{4.5}$$

$$Ni_E = Ni + 35 \cdot C + 20 \cdot N + 0,25 \cdot Cu \tag{4.6}$$

Diagram dále vyjadřuje náchylnost na vznik krystalizačních trhlin za tepla. Oblasti austenitu a austenitu s feritem se vyznačují primární austenitickou krystalizací a může docházet k výskytu trhlin z tepla. [26, 28]

Obr. 4. 4: WRC-1992 diagram [28]

4.2 Svařování korozivzdorných ocelí

Svařování těchto ocelí je složité, protože mají oproti nízkolegovaným ocelím větší tepelnou roztažnost, vyšší elektrický odpor a nižší tepelnou vodivost.

Martenzitické oceli

Tyto oceli mají tetragonální prostorově středěnou mřížku, vznikající při vysokém obsahu chromu (od 12 do 18 %) i při malých ochlazovacích rychlostech. Svařují se v popuštěném, žíhaném nebo tvrdém stavu. Podle chemického složení se doporučuje používat teplotu předehřevu v rozmezí od 250 do 400 °C. Po svaření by mělo následovat žíhání na teplotu 750 °C ke snížení tvrdosti a pevnosti. Ke svařování těchto ocelí se používají austenitické a feritické přídavné materiály. Pokud není možné zajistit tepelné zpracování po svaření, používají se austenitické přídavné materiály. Tyto oceli jsou náchylné ke vzniku intermetalické fáze σ , kdy v oceli dojde k vytvrzení a zkřehnutí. Dále jsou náchylné také k mezikrystalové korozi MKK. [30]

Feritické oceli

Tyto oceli s obsahem Cr kolem 17 % mají dobrou korozní i žárovou odolnost. Oproti tomu mají nízkou houževnatost a jsou citlivé na vruby. Svařují se s předehřevem na teplotu, která závisí na chemickém složení. Tyto oceli jsou stejně jako martenzitické náchylné ke vzniku fáze σ a ke vzniku MKK. Ke svařování se používají austenitické přídavné materiály nebo materiály stejného složení. [30]

Austenitické Cr-Ni, Cr-Ni-Mo oceli

Tyto oceli se vyznačují vysokou houževnatostí i při nízkých teplotách, a to díky struktuře austenitu (kubická plošně středěná mřížka). Mají větší korozní odolnost než martenzitické a feritické oceli. Při teplotách v rozmezí 425 až 815 °C dochází k vylučování karbidu chromu Cr₂₃C₆, který zvyšuje náchylnost k MKK. Proto je u těchto ocelí snížen obsah uhlíku pod 0,03 % C, nebo jsou stabilizovány přísadou Ti, Nb, Ta. [29]

Při svařování austenitických ocelí hrozí nebezpečí vzniku MKK, zkřehnutí vlivem vzniku fáze σ a k tvorbě trhlin za tepla. Náchylnost k tvorbě trhlin za tepla je možno snížit malým obsahem δ feritu ve struktuře austenitu, protože δ ferit rozpouští fosfor, který jinak tvoří nízkotavitelná eutektika s Fe nebo s Ni. Pro stanovení optimálního obsahu delta feritu v závislosti na chemickém složení se používají Schaefflerův, De Longův nebo WRC-1992 diagramy. [30]

Austenitické Mn oceli

Tzv. Hadfieldova ocel. Tyto oceli mají, vlivem mechanického zpracování, povrch velmi odolný vůči abrazi při zachování houževnatého jádra. Svařují se bez předehřevu s minimálním tepelným příkonem, k zamezení vyžíhání tepelně ovlivněné oblasti. Před svařováním by měla být obrobena zpevněná vrstva z důvodu její náchylnosti k praskavosti. [30]

5 Experimentální část

Celý experiment probíhal v areálu firmy Bombardier Transportation Czech Republic, a. s. Samotný experiment lze rozdělit na dvě části. První část spočívá v určení vlivu hlavních parametrů laserového svařování na hloubku průvaru. Za hlavní parametry byly považovány rychlost svařování a výkon laseru. Ve druhé části byly posléze na základě provedeného experimentu vybrány parametry pro svařování zkušebních kusů pro vytvoření kvalifikace postupu svařování WPQR.

5. 1 Popis pracoviště

Pracoviště bylo navrženo a vytvořeno firmou TTM Laser. Samotné laserové pracoviště tvoří pouze část pracovního prostoru laseru a je schematicky ukázáno na obrázku 5. 1. Dále je pracoviště tvořeno laserovým zdrojem, ovládacím panelem a dopravním a manipulačním příslušenstvím. Pracovní prostor laseru je tvořen podélným vedením, ve kterém se pohybuje nosná konstrukce pro robot, na kterém je upevněna laserová hlava. Robot může podle aplikace operativně měnit laserové hlavy ze zásobníku umístěného v jeho dosahu na nosné konstrukci. V zásobníku se nachází celkem čtyři laserové hlavy, jedna na řezání, dvě svařovací hlavy s přídavným materiálem a jedna hlava pro Laser-hybrid svařování. Pracovní prostor laseru je při práci z bezpečnostních důvodů uzavřen ochrannou kabinou. Robot lze při práci pozorovat na obrazovce umístěné mimo pracovní prostor. Laserový zdroj se nachází mimo kabinu a paprsek je do pracovního prostoru veden pomocí optických kabelů.

Obr. 5. 1: Pracovní prostor laseru s kabinou

5. 2 Popis použitého zařízení

V této kapitole budou velmi stručně popsány hlavní části laserového pracoviště použité pro realizaci vlastního experimentu. Dále zde budou popsány zařízení použitá k metalografickému vyhodnocení natavených oblastí a následnému geometrickému vyhodnocení.

Vláknový laser IPG YLS-5000-S4

Tento laser byl vyroben společností IPG Photonics. Laser je umístěn mimo pracovní prostor a je zobrazen na obr. 5. 2. Mimo operace svařování je laser také vhodný k žíhání, pájení, řezání, vrtání a tepelnému zpracování. V tabulce tab. 5. 1 jsou uvedeny základní parametry tohoto vláknového laseru.

Obr. 5. 2 Laser IPG YLS-5000-S4

Výkon maximální	P= 5000 [W]
Režim svařování	CW, QCW
Vlnová délka	λ = 1070±10 [nm]
Počet výstupů paprsku	4 výstupy
Řídící software	LaserNet

Tabulka 5. 1: Parametry vláknového laseru

Počet výstupů paprsku z laseru znamená možnost paprsek vést k jinému zařízení bez nutnosti přepojování optických vláken. V tomto případě jsou všechny výstupy vedeny na jedno pracoviště ke svařovacím hlavám v zásobníku.

Laserová hlava Precitec YW52

Tato laserová hlava slouží ke svařování laserem s možností použití přídavného materiálu (cold wire) viz obr. 5. 3. Hlava s fokusační optikou a chlazením je osazena kamerou ke sledování průběhu svařování, podavačem drátu a ofukovací tryskou. Dále je na ní upevněn senzor MEL, který slouží k přesnému umístění paprsku do místa svaru za chodu zařízení a snímače rychlosti podávání přídavného materiálu.

Obr. 5. 3: Laserová hlava s příslušenstvím

Robot IRB 6620

Šesti-osý robot vyrobený společností ABB je osazen spojkou k možnosti automatické výměny laserové hlavy viz obr. 5. 4. Základní parametry tohoto robota jsou uvedeny v tabulce 5. 2.

Obr. 5. 4: Robot IRB 6620

Tab. 5. 2: Parametry robotu

Dosah	2,2 [m]
Hmotnost	900 [kg]
Manipulační nosnost	150 [kg]
Počet os	6
Dodatečná nosnost na ramenou	50 kg na horní a 100 kg na spodní
robotu	základně
Opakovatelná polohovatelnost	0,03 [mm]

Struers Discotom-100

Universální metalografická kotoučová pila je zobrazena na obr. 5. 5. Rychlost otáčení řezného kotouče lze měnit od 1500 do 3000 otáček za minutu v závislosti na tvrdosti materiálu a aplikaci. U zařízení lze za chodu měnit rychlost posuvu a do jeho paměti lze uložit až 20 různých řezných metod pro různé materiály. Dále disponuje automatickým stolem ovládaným pomocí joysticku. K přesnému ustavení obrobku oproti řeznému kotouči slouží laserové pravítko.

Obr. 5. 5: Metalografická pila Discotom-100

Struers CitoPress-20

Dvoukomorový lis sloužící k zalisování metalografických vzorků je zobrazen vlevo na obr. 5.6. Vyznačuje se automatickým plněním pryskyřice k minimalizaci plýtvání pryskyřice a velmi krátkou dobou zapékání vzorků, která se pohybuje od 5 do 9 minut a to včetně chlazení. Na za řízení lze vyrobit dva vzorky průměru 40 a 50 mm najednou.

Struers Tegramin-30

Metalografická bruska a leštička s automatickým řízením provozu a s plynulou změnou otáček je zobrazena vpravo na obr. 5. 6. Brusné disky a leštící plátna jsou upevněny na kotouč magneticky. V zařízení lze pomocí speciálních držáků připravit najednou šest vzor-ků.

Obr. 5. 6: Lis k přípravě vzorků CitoPress-20 (vlevo); Metalografická bruska a leštička Tegramin-30 (vpravo)

Zeiss Axio Observer.Z1m

Optický mikroskop je zobrazen na obr. 5. 7. Mikroskop je vybaven motorizovaným stolem s možností posuvu ve třech osách. Mikroskop je propojen s počítačem a přes program AxioVision. Program funguje jako grafický editor snímků v reálném čase. V programu lze okamžitě vidět zkoumanou oblast a lze pořizovat normální i panoramatický snímek složený z více snímků.

Obr. 5. 7: Optický mikroskop Zeiss Axio Observer.Z1m

5.3 Použitý materiál

Materiálem použitým v první části experimentu byla vysokolegovaná korozivzdorná ocel. Podle evropského značení jde od ocel X2CrNi18-9. Obsah legur je uveden v tab. 5. 3, podle které byly následně určeny chromové a niklové ekvivalenty pro Schaefflerův a De Longův diagram. Inspekční certifikát je uveden v příloze A.

Tabulka 5. 3: Chemické složení tavby základního materiálu použitého v první části experimentu

%С	%Mn	%Si	%P	%S	%Cr	%Ni	%Mo	%N	%Cu
0,03	1,76	0,330	0,027	0,001	18,17	8,06	0,26	0,062	0,23

Podle obr. 5. 8 a obr 5. 9 lze usoudit, že struktura materiálu je austenitická s přibližně 9 procenty feritu. Dále se ve struktuře může objevovat malé procento martenzitu.

Obr. 5. 8: Odhad struktury materiálu podle Schaefflerova diagramu

Obr. 5. 9: Odhad struktury podle De Longova diagramu

Ve druhé části experimentu byl použit materiál velmi podobného složení, viz tabulka 5. 4. Podle složení byly opět vypočítány ekvivalenty a byl učiněn odhad struktury, viz obr. 5. 8 a obr. 5. 9. Inspekční certifikát tohoto materiálu je uveden v příloze B.

Tabulka 5. 4: Chemické složení tavby základního materiálu použitého při kvalifikaci postupu svařování

%С	%Mn	%Si	%P	%S	%Cr	%Ni	%Mo	%N	%Cu
0,028	1,77	0,380	0,025	0,001	18,06	8,04	0,250	0,063	0,20

Obr. 5. 10: Odhad struktury podle Schaefflerova Diagramu

Obr. 5. 11: Odhad struktury podle De Longova diagramu

Podle inspekčního certifikátu materiálu se jedná opět o austenitickou korozivzdornou ocel X2CrNi18-9. Podle Schaefflerova a DeLongova diagramu lze usoudit, že se ve struktuře může objevit malé procento martenzitu a feritu. K zamezení vzniku martenzitické struktury byl zvolen přídavný materiál, drát OK AUTROD 308LSi o průměru 1 mm. Jako ochranný plyn byl použit plyn N₂ pro jeho austenitotvorný vliv na kov. Určité množství feritu ve

struktuře je příznivé, kvůli snížení možnosti vzniku trhlin za tepla. Chemické složení přídavného materiálu je uvedeno v tab. 5. 5. Inspekční certifikát je uveden v příloze C.

%С	%Mn	%Si	%P	%S	%Cr	%Ni	%Mo	%N	%Cu	%Co
0,016	2,00	0,750	0,023	0,015	20,00	9,90	0,13	0,056	0,18	0,14

Tab. 5. 5: Chemické složení tavby přídavného materiálu použitého v experimentu

5. 4 Návrh a realizace experimentu

Cílem experimentální části bylo zkoušet vliv výkonu laseru a rychlosti svařování na hloubku průvaru (penetraci) při laserovém svařování austenitických ocelí, tak aby výsledky mohly být použity k optimalizaci procesu svařování tohoto materiálu a k vytvoření WPQR. K tomuto účelu bylo použito několik plechů z oceli X2CrNi18-9 velikosti 300x150 mm a tloušťky 5 mm. Plechy (obr. 5. 12) byly podle rozvržení (obr. 5. 13) orýsovány přímkami pomocí wolframové jehly. Vzdálenost mezi přímkami byla volena s ohledem na tepelně ovlivněnou oblast a zároveň byla dostatečně malá, aby bylo možné při následné přípravě pro metalografii umístit více natavených oblastí do jednoho metalografického tělíska. Narýsované přímky následně sloužily k ustavení plechu vůči robotu s laserovou hlavou. Jelikož byl daný plech nemagnetický, musel být pro rychlé ustavení upevněn na magnetickém stole pomocí magnetického materiálu, který byl přes něj přeložen. Robot byl naprogramován z bodu do bodu s automatickým nastavením ohniskové vzdálenosti, která byla pro všechny zkoušené parametry konstantní.

Ustavený a připevněný plech byl vystavován působení paprsku laseru určitého výkonu při dané rychlosti svařování. Ohřevem se materiál roztavil a podle zvoleného výkonu laserového zdroje a rychlosti svařování došlo buď k částečnému, nebo úplnému protavení materiálu. Přibližná délka jedné housenky byla 60 mm. V tabulce 5.6 je uveden návrh procesních parametrů laseru pro experimentální část.

Obr. 5. 12: Orýsovaný plech

Obr. 5. 13: Rozvržení orýsování plechu a značení jednotlivých housenek

	Rychlost [mm/min]	500	1000	1500	2000	3000	3500	
Výkon [W]	vzorek X _Y	Ау	Вү	Су	Dy	Ey	Fy	
500	X1	Х	Х	Х	-	-	-	
1000	X 2	Х	Х	Х	Х	Х	-	
2000	X 3	Х	Х	Х	Х	Х	Х	
3000	X4	Х	Х	Х	Х	Х	Х	
4000	X 5	-	Х	Х	Х	Х	Х	
5000	X 6	-	Х	Х	Х	Х	Х	
Ostatní pa	rametry, kt	eré byly pr	o všechny v	zorky kons	tantní:			
Ohnisková	vzdálenost:	100 [mm]						
Průměr oh	Průměr ohniska: 1,2 [mm]							
Druh plynu	Druh plynu: Dusík N ₂							
Průtok plyn	nu: 20 [l/mir	1]						

Tabulka 5. 6: Zkoušené parametry laseru

Experimenty nebyly prováděny se svařovací rychlostí 2500 mm/min , z důvodu rezonance mezi podélným posuvem a pohybem robotu. Tato rezonance způsobovala nesouvislý pohyb zařízení, který měl velmi negativní vliv na vytvářenou housenku. Jednotlivé housenky byly pro snadnou identifikaci značeny písmeny od A do F, charakterizujícími danou rychlost svařování, s doplňkovými čísly od 1 do 6, která příslušela určitému výkonu. Například housenka B₄ byla vytvořena svařovací rychlostí 1000 mm/min při výkonu 3000 W. Takto bylo vytvořeno celkem 30 housenek, které byly následně označovány jako vzorky, viz obr. 5. 14 vlevo.

Obr. 5. 14: Vytvořené housenky (vlevo); nařezaný a očištěný plech s housenkami (vpravo)

Poté byly plechy rozděleny podle obr. 5. 13 na celkem 10 kusů, na kterých se v laboratoři následně zjišťovaly hloubky průvarů. Z připravených kusů byly následně vyřezány na metalografické pile Discotom-100 proužky přibližně 48 mm široké. Pro metalografické zhodnocení se proužky odebíraly přibližně v polovině housenek, viz obr. 5. 13, kde se již jednalo o ustálené teplotní pole. Po vyříznutí byly proužky zbaveny případných nedodělků a poté byly z důvodu identifikace označeny. Obrobené a označené proužky byly následně zality do pryskyřice na lisu CitoPress-20. V lisu trvalo vytvoření jednoho metalografického tělíska 8,5 minuty, z čehož po dobu 5,5 minuty probíhalo vyhřívání formy za teploty T=180°C a tlaku p=250 barů. Zbylé 3 minuty byla forma chlazena. Po vyjmutí z lisu bylo tělísko broušeno na metalografické brusce a leštičce Tegramin-30.

Obr. 5.13: Vyřezávání proužků k metalografii

Po přebroušení a vyleštění se vzorky naleptávaly potíráním k zobrazení struktury. Pro naleptání makrostruktury nerezové oceli bylo použito leptadlo Adler + 1% Nital. Na vzorcích byly po naleptání průvary velmi těžko viditelné a pro lepší přesnost měření byla po opětovném přebroušení a přeleštění tělíska leptána leptadlem na mikrostrukturu. Leptadlo na mikrostrukturu tvořil roztok glycerinu (C₃H₈O₃), kyseliny fluorovodíkové (HF) a kyseliny dusičné (HNO₃) v poměru 10:10:10. Roztok byl namíchán a následně používán k leptání v laminárním boxu za použití ochranných pomůcek, jelikož je kyselina fluorovodíková za normální teploty vysoce toxický a žíravý plyn. Po naleptání namíchaným roztokem došlo ke zřetelnému zobrazení mikrostruktury a průvary byly velmi jasně viditelné.

Poté byly na optickém mikroskopu Zeiss Axio Observer.Z1m měřeny hloubky průvarů u jednotlivých vzorků. Ke každému vzorku byl pořízen makrosnímek se zaznamenanou hloubkou průvaru. Ty byly seřazeny do tabulky, ze které byly následně vytvořeny závislosti vlivu rychlosti svařování na hloubku průvaru a závislosti vlivu výkonu na hloubku průvaru (viz kapitola 5.5.).

Druhá část experimentů následovala po kompletním vyhodnocení první části (kapitola 5.5), a byla věnována optimalizaci procesu svařování s jeho následným využitím ve výrobě. Na základě zhotovených grafů 5.1 a 5.2 (kapitola 5.5), byly vybrány parametry pro vytvoření předběžné specifikace postupu svařování pWPS. Do předem připraveného dokumentu pWPS podle normy EN ISO 15609-4, stanovující kvalifikaci postupu svařování kovových materiálů pro laserové svařování, byly zapsány všechny parametry použité při svařování. Při volbě parametrů se také vycházelo ze zkušeností z předchozí výroby. Pro svařování byla zvolena metoda laserového svařování s přídavným materiálem Cold-Wire, a to kvůli vyšší přemostitelnosti svarové mezery, která zejména u dlouhých svarů nemusí být konstantní. Parametr výkonu byl navýšen o 1000 W z důvodu absorpce části výkonu přídavným materiálem. Zkušební kusy měly rozměry 400x150x1,5 mm. Materiál plechů byla opět austenitická ocel X2CrNi18-9. Pro kvalifikaci WPOR byly vytvořeny 3 svary na třech zkušebních kusech s různými mezerami, aby bylo možné simulovat skutečnost, kdy při svařování dílců nebudou vždy dodržovány přesné rozměry. Před upnutím byly u zkušebních kusů sraženy hrany, aby bylo možné pro senzor přesně navádět robot s laserovou hlavou do místa svaru. Poté byly zkušební kusy upnuty do přípravku pomocí upínek, viz obr. 5.14. Následně byly svařeny podle parametrů předepsaných v pWPS. Dokument pWPS byl uveden v příloze D.

Obr. 5.14: Upnutí zkušebního kusu do přípravku pomocí upínek

Svařené plechy byly označeny podle čísla WPQR a podle pořadového čísla (5010_1). Po svaření byly kusy zkontrolovány zkouškami předepsanými normou EN ISO 15614-11 [12] a poté byly hodnoceny podle normy EN ISO 13919-1 [13], stupně přípustnosti B. Z nedestruktivního zkoušení byly předepsány vizuální, penetrační a rentgenové zkoušky. Pro zkoušky destruktivní byly předepsány dvě příčné zkoušky tahem, dvě zkoušky lámavosti ze strany líce svaru a dvě ze strany kořene svaru. U zkoušky tahem bylo cílem zjistit mechanické vlastnosti jako mez pevnosti, mez kluzu a tažnost, které byly následně porovnány se základním materiálem. U zkoušek ohybem byl požadavek ohnutí zkušebního tělíska v místě svaru o 180° bez porušení tělíska. Pak bylo možné považovat zkoušku za úspěšnou. Dále bylo předepsáno metalografické hodnocení, které sloužilo k případnému nalezení vad a určení mikrostruktury.

Za účelem provedení destruktivních zkoušek byly ze svařených zkušebních kusů vypáleny a následně obrobeny zkušební tělíska, viz obr. 5.15.

Obr. 5.15: Vypálená zkušební tělíska

Splněním daných zkoušek a následné vytvoření WPQR potvrdilo správnost zvolených parametrů svařování. Protokoly z DT a NDT zkoušek byly pro vzorek 5010_1 uvedeny v příloze E, pro vzorek 5010_2 v příloze F a pro vzorek 5010_3 v příloze G.

5.5 Vyhodnocení experimentu

Výsledkem první části experimentu byly makrosnímky se zakótovanými hloubkami penetrací, které jsou v jednotlivých řadách podle použitých rychlostí svařování zobrazeny na obr. 5.16 až obr. 5.21.

Obr. 5.16: Vzorky vytvořené rychlostí 500 [mm/min] při zvyšujících se výkonech

Obr. 5.17: Vzorky vytvořené rychlostí 1000 [mm/min] při zvyšujících se výkonech

Obr. 5.18: Vzorky vytvořené rychlostí 1500 [mm/min] při zvyšujících se výkonech

Obr. 5. 19: Vzorky vytvořené rychlostí 2000 [mm/min] při zvyšujících se výkonech

Obr. 5. 20: Vzorky vytvořené rychlostí 3000 [mm/min] při zvyšujících se výkonech

Ze vzorků pro výkon 500 W nebylo možné nalézt vytvořenou housenku a makrosnímky nebylo možné vytvořit. Lze se tedy domnívat, že výkon nebyl dostatečně velký k natavení materiálu do hloubky a docházelo pouze k natavení povrchové vrstvy. U ostatních vzorků byly hloubky průvaru jasně viditelné.

Naměřené hloubky průvaru byly následně zaznamenány do tabulky 5. 7, podle které byly vytvořeny grafy závislosti rychlosti svařování na hloubce průvaru (graf 5. 1) a závislosti výkonu na hloubce průvaru (graf 5. 2). Z celkem 30 měřených vzorků nebylo u tří možné změřit hloubku průvaru a u šesti vzorků bylo dosaženo plného průvaru.

	Rychlost [mm/min]	500	1000	1500	2000	3000	3500
Výkon [W]	vzorek X _Y	Ау	By	Су	DY	Ey	Fy
500	X1	0	0	0	Neměřeno	Neměřeno	Neměřeno
1000	X2	0,99	0,75	0,55	0,49	0,37	Neměřeno
2000	X3	2,96	2,3	1,91	1,12	0,66	0,64
3000	X4	Plný pr.	4,17	3,36	2,77	1,68	0,99
4000	X 5	Neměřeno	Plný pr.	Plný pr.	4	2,49	2,13
5000	X6	Neměřeno	Plný pr.	Plný pr.	Plný pr.	3,16	3

Tabulka 5. 7: Naměřené hloubky penetrací

V obou grafech jsou v rámečcích příslušné barvy uvedeny pro jednotlivé křivky výkonů příslušné rovnice a hodnoty spolehlivosti R.

Závislost hloubky průvaru na svařovací rychlosti

Graf 5. 1: Závislost hloubky průvaru na svařovací rychlosti

Závislost hloubky průvaru na výkonu

Graf 5. 2: Závislost hloubky průvaru na výkonu

Podle grafů je jednoznačné, že s rostoucím výkonem a klesající rychlostí svařování hloubka průvaru klesá. Na základě výsledků první experimentální části byly zvoleny optimalizované procesní parametry. Ty sloužily k vytvoření pWPS a k následné druhé experimentální části zaměřené na vytvoření kvalifikovaného postupu svařování WPQR. Tyto experimenty byly podrobeny mechanickým a DT a NDT zkouškám. Dále je uvedeno vyhodnocení druhé experimentální fáze.

Zkušební kus č. 5010_1

Parametry svařování podle pWPS jsou uvedené v tabulce 5. 8. Zkušební kusy byly ustaveny a upevněny vůči sobě na vzdálenost blízkou nule.

Rychlost podávání drátu	Výkon	Pracovní vzdálenost	Rychlost svařování	Mezera	Stehováno před sva- řováním	Ochranný plyn	Průtok plynu
[mm/min]	[kW]	[mm]	[mm/min]	[mm]	Tovanni		[l/min]
400	3400	100	2100	0	ANO	N ₂	22

Tabulka 5. 8: Parametry svařování zkušebního kusu 5010_1

Na obr. 5.22 jsou zobrazeny makrosnímky líce svarového spoje. Vytvořená svarová housenka byla široká přibližně 2 mm. Z obrázku je patrné, že šířka byla kolísavá. To mohlo být způsobeno nepravidelným dávkováním přídavného materiálu nebo nedostatečným výkonem laseru.

Obr. 5. 22: Snímky líce svarového spoje

Vizuální kontrola svaru odhalila vadu, neúplné vyplnění svaru (511). Penetrační zkouška neodhalila žádné vnější vady. Rentgenovou zkouškou nebyly odhaleny žádné vnitřní vady. Z makroskopického snímku je na vzorku vidět lineární přesazení velikosti 0,14 mm. To mohlo být způsobeno pnutím v materiálu při svařování. Tato vada byla ale přípustná, protože její hodnota byla menší, než mezní hodnota přípustnosti dané vady ($h \le 0,15 \times tl = 0,15$ mm). Na obrázku 5.23 makroskopické kontroly zkušebního kusu 5010_1 lze vpravo nahoře vidět označení. Toto označení je laboratorní označení vzorku, podle kterého je vystaven protokol.

Obr. 5. 23: Makroskopická kontrola zkušebního kusu 5010_1

Obr. 5. 24: Mikrostruktura základního materiálu (vlevo), tepelně ovlivněné oblasti (uprostřed) a svarového kovu (vpravo)

Podle obr. 5.24 byla struktura základního materiálu austenitická. U tepelně ovlivněné oblasti se vyskytuje austenitická struktura s karbidickou precipitací po hranicích zrn. Ojediněle se také uvnitř zrn vyskytují karbidy. Ve svarovém kovu se objevuje austeniticko-δferitická struktura

Následovaly zkoušky destruktivní. Výsledky příčné zkoušky tahem jsou uvedeny v tabulce 5. 9. Výsledky zkoušek ohybem jsou uvedeny v tabulce 5. 10.

Číslo vzorku	Č. svar. spoje	R _m [MPa]	Místo destrukce	Výsledek				
1	5010_1	646	Základní materiál	Vyhovující				
2	2 5010_1 664 Svarový kov Vyhovující							
R _m zákla	R _m základního materiálu z inspekčního certifikátu: R _{m1} =650 [MPa], R _{m2} =647 [MPa]							

Tabulka 5. 9: Zkouška tahem ČSN EN ISO 4136

Jeden vzorek tahové zkoušky byl přetržen ve svarovém kovu. Výsledek je ale vyhovující, protože mez pevnosti byla vyšší než základního materiálu.

Číslo vzorku	Č. svar. spoje	Úhel ohybu	Trn [mm]	Výsledek
TFBB/1	5010_1	180	4	Vyhovující
TFBB/2	5010_1	180	4	Vyhovující
TRBB/1	5010_1	180	4	Vyhovující
TRBB/2	5010_1	180	4	Vyhovující

Tabulka 5. 10: Zkouška ohybem ČSN EN ISO 5173

Výsledky nedestruktivních a destruktivních zkoušek prokázaly, že zkušební kus 5010_1 mohl být použit pro kvalifikaci postupu svařování.

Zkušební kus č. 5010_2

Parametry svařování podle pWPS jsou uvedené v tabulce 5. 11. Zkušební kusy byly ustaveny a upevněny tak, aby svařovací mezera byla velká přibližně 0,3 mm.

Tabulka 5. 11: Parametry svařování zkušebního kusu 10

Rychlost	Výkon	Pracovní	Rychlost	Mezera	Stehováno	Ochranný	Průtok
podávání		vzdálenost	svařování		před sva-	plyn	plynu
drátu					řováním		
[mm/min]	[kW]	[mm]	[mm/min]	[mm]			[l/min]
1500	3400	100	2100	0,3	ANO	N_2	22

Na obr. 5. 25 jsou zobrazeny makrosnímky líce svarového spoje. Vytvořená svarová housenka byla široká přibližně 2 mm. Šířka housenky byla rovnoměrná v celé délce svaru.

Obr. 5. 25: Snímky líce svarového spoje

Vizuální a penetrační zkoušení neodhalilo žádné vady na povrchu. Rentgenová zkouška neodhalila žádné vnitřní vady. Makroskopická kontrola neodhalila žádné vady. Na obr. 5. 26 je zobrazen makrosnímek vytvořený v laboratoři.

Obr. 5. 26: Makroskopická kontrola zkušebního kusu 5010_2

Obr. 5. 27: Mikrostruktura základního materiálu (vlevo), tepelně ovlivněné oblasti (uprostřed) a svarového kovu (vpravo)

Zobrazená mikrostruktura na obr. 5. 27 je stejná jako u vzorku č. 5010_1. Vliv mezery neměl žádný vliv na strukturu.

Následovaly zkoušky destruktivní. Výsledky příčné zkoušky tahem jsou uvedeny v tabulce 5. 12. Výsledky zkoušek ohybem jsou uvedeny v tabulce 5. 13.

Číslo vzorku	Č. svar. spoje	R _m [MPa]	Místo destrukce	Výsledek		
1	5010_2	674	Základní materiál	Vyhovující		
2	2 5010_2 662 Základní materiál Vyhovující					
R _m zákla	idního materiálu z	inspekčního cert	ifikátu: R _{m1} =650 [MPa],	, R _{m2} =647 [MPa]		

Tabulka 5. 12: Zkouška tahem ČSN EN ISO 4136

Tabulka 5. 13: Zkouška ohybem ČSN EN ISO 5173

Číslo vzorku	Č. svar. spoje	Úhel ohybu	Trn [mm]	Výsledek
TFBB/1	5010_1	180	4	Vyhovující
TFBB/2	5010_1	180	4	Vyhovující
TRBB/1	5010_1	180	4	Vyhovující
TRBB/2	5010_1	180	4	Vyhovující

Výsledky nedestruktivních a destruktivních zkoušek prokázaly, že zkušební kus 5010_2 mohl být použit pro kvalifikaci postupu svařování.

Zkušební kus č. 5010_3

Parametry svařování podle pWPS jsou uvedené v tabulce 5. 14. Zkušební kusy byly ustaveny a upevněny tak, aby svařovací mezera byla velká přibližně 0,5 mm.

Rychlost podávání drátu	Výkon	Pracovní vzdálenost	Rychlost svařování	Mezera	Stehováno před sva- řováním	Ochranný plyn	Průtok plynu
[mm/min]	[W]	[mm]	[mm/min]	[mm]			[l/min]
2500	3500	100	2100	0,5	ANO	N_2	22

Tabulka 5.14: Parametry svařování zkušebního kusu

Na obr. 5. 28 jsou zobrazeny makrosnímky líce svarového spoje. Vytvořená svarová housenka byla široká přibližně 2,1 mm. Šířka housenky byla rovnoměrná v celé délce svaru.

Obr. 5. 28: Snímky líce svarového spoje

Vizuální a penetrační zkoušení neodhalilo žádné vnější vady. Rentgenová zkouška neodhalila žádné vnitřní vady.

Obr. 5. 29: Makroskopická kontrola zkušebního kusu 5010_2

Obr. 5. 30: Mikrostruktura základního materiálu (vlevo), tepelně ovlivněné oblasti (uprostřed) a svarového kovu (vpravo)

Zobrazená mikrostruktura na obr. 5. 27 je stejná jako u vzorku č. 5010_1. Vliv mezery neměl žádný vliv na strukturu.

Následovaly zkoušky destruktivní. Výsledky příčné zkoušky tahem jsou uvedeny v tabulce 5. 15. Výsledky zkoušek ohybem jsou uvedeny v tabulce 5. 16.

Číslo vzorku	Č. svar. spoje	R _m [MPa]	Místo destrukce	Výsledek	
1	5010_3	682	Svarový kov	Vyhovující	
2	5010_3	689	Svarový kov	Vyhovující	
R _m základního materiálu z inspekčního certifikátu: R _{m1} =650 [MPa], R _{m2} =647 [MPa]					

Tabulka 5. 15: Zkouška tahem ČSN EN ISO 4136

Oba vzorky tahové zkoušky byly přetrženy ve svarovém kovu. Příčinou přetržení tělíska vzorku v místě svarového kovu mohlo být zapříčiněno housenkou svaru, která je považována za vrub. Výsledek je ale vyhovující, protože mez pevnosti byla vyšší než základního materiálu.

Číslo vzorku	Č. svar. spoje	Úhel ohybu	Trn [mm]	Výsledek
TFBB/1	5010_3	180	4	Vyhovující
TFBB/2	5010_3	180	4	Vyhovující
TRBB/1	5010_3	180	4	Vyhovující
TRBB/2	5010_3	180	4	Vyhovující

Tabulka 5. 16: Zkouška ohybem ČSN EN ISO 5173

Výsledky nedestruktivních a destruktivních zkoušek prokázaly, že zkušební kus 5010_3 mohl být použit pro kvalifikaci postupu svařování.

6 Závěr

Tato práce byla vytvořena ve spolupráci s firmou Bombardier Transportation Czech Republic, a.s., v České Lípě. Na základě jednání s konzultantem a vedoucím práce byl stanoven cíl práce. Tím bylo vypracování kvalifikace postupu svařování austenitických ocelí pomocí laserového svařování.

V prvotní části experimentu byl posouzen vliv rychlosti svařování a výkonu na velikost hloubky průvaru. Bylo vytvořeno celkem třicet natavení. Ty byly vytvářeny za konstantních rychlostí svařování a postupně se zvyšujících výkonů. Následně byly vytvořeny metalografické vzorky ke změření hloubky průvaru jednotlivých natavení. Tyto hodnoty byly zapsány do tabulky a byl vytvořen graf závislosti vlivu rychlosti svařování na velikost hloubky průvaru a graf závislosti velikosti výkonu na velikosti hloubky průvaru. Z grafů lze jednoznačně říci, že s rostoucím výkonem a klesající rychlostí svařování roste hloubka průvaru.

Podle grafů byly následně zvoleny optimalizované parametry pro předběžnou specifikaci postupu svařování, která sloužila k výrobě zkušebních kusů. Tyto kusy byly dále podrobeny zkouškám, předepsaných normou pro vypracování kvalifikace postupu svařování kovových materiálů EN ISO 15614-11, částí platnou pro elektronové a laserové svařování. Z nedestruktivních zkoušek byly provedeny vizuální, penetrační a rentgenové zkoušky. Poté byly z plechů vytvořeny zkušební tělíska, na kterých byly provedeny příčné zkoušky tahem, zkoušky lámavosti ze stran líce svaru i kořene svaru a metalografické hodnocení. Splněním těchto zkoušek bylo možné kvalifikovat postup svařování k následnému použití ve výrobě. Zároveň byla ověřena správnost volby parametrů, určených experimentem.

Výsledkem práce bylo vytvoření předběžné kvalifikace svařování pWPS pro vysokolegované austenitické materiály X2CrNi18-9 s následným získáním kvalifikace postupu svařování WPQR akreditovaným orgánem. Ta bohužel nemohla být do DP přiložena, z důvodu termínu odevzdání této práce. V příloze D je proto připojena pouze pWPS sloužící jako podklad pro WPQR.

Použitá literatura

- UNITEK MIYACHI CORPORATION. Nd:YAG Laser Welding Guide [online]. [cit. 2014-09-02]. Dostupné z:http://www.miyachiamerica.com/EducationalResources Fundamentals
- [2] WESCHLER, Matthew. How Lasers Work. *HowStuffWorks.com* [online]. 1.4.2000
 [cit. 2015-04-09]. Dostupné z: http://science.howstuffworks.com/laser8.htm
- [3] KOŘÁN, Pavel. Seriál na téma lasery: Základní princip laserů a jejich dělení. [online]. [cit. 2014-09-02]. Dostupné z: http://www.lao.cz/lao-info-49/
- [4] MORRIS, Tim. TRUMPF. *The Basics of Lasers and Laser Welding & Cutting* [online].
 [cit. 2014-09-02]. Dostupné z:http://www.wpsamerica.com/library/
- [5] CHMELÍČKOVÁ, Hana. Laserové technologie v praxi 1. [online]. [cit. 2014-09-02].
 Dostupné z: http://fyzika.upol.cz/cs/predmety-kef-slo/
- [6] KUSALA, Jaroslav. Lasery kolem nás. [online]. [cit. 2014-09-02]. Dostupné z: http://www.cez.cz/edee/content/microsites/laser/laser.htm
- [7] COHERENT INC. Welding with High Power Diode Lasers [online]. [cit. 2014-09-02].
 Dostupné z: https://www.coherent.com/
- [8] MORAVEC, J.: *Teorie svařování a pájení II, Speciální metody svařování*, TUL Liberec, 2009
- [9] ČSN EN 1011-6. Svařování Doporučení pro svařování kovových materiálů Část 6:
 Laserové svařování. Praha: Český normalizační institut, 2006.
- [10] SHANNON, Geoff. Laser beam delivery and focusing optics. In: Amada Miyachi [online].
 © 2015 [cit. 2015-04-10]. Dostupné z:http://www.amadamiyachi.com/educationalresources/articles
- [11] ČSN EN ISO 15607. Stanovení a kvalifikace postupů svařování kovových materiálů –
 Všeobecná pravidla. Praha: Český normalizační institut, 2004.
- [12] ČSN EN ISO 15614-11. Stanovení a kvalifikace postupů svařování kovových materiálů – Zkouška postupu svařování – Část 11: Elektronové a laserové svařování. Praha: Český normalizační institut, 2003.
- [13] ČSN EN ISO 13919-1. Svařování Svarové spoje zhotovené elektronovým a laserovým svařováním - Směrnice pro určování stupňů jakosti - Část 1: Ocel. Praha: Český Normalizační Institut, 1997.
- [14] ČSN EN ISO 6520-1. Svařování a příbuzné procesy Klasifikace geometrických vad kovových materiálů – Část 1: Tavné svařování. Praha: Český normalizační institut, 2008.

- [15] KALISKY, Yehoshua a Ofra KALISKY. High-power lasers and their applications on the battlefield. *SPIE Newsroom* [online]. 2011-02-17, s. - [cit. 2015-03-24]. DOI: 10.1117/2.1201101.003470. Dostupné z:http://www.spie.org/x44469.xml
- [16] MELINDA, Rose. Fiber vs. Disk: Which Laser Will Make the Cut?. *Photonics Spectra* [online]. Pittsfield: The Optical Publishing Co, roč. 2011, č. 7 [cit. 2015-03-24].
 24]. Dostupné z: http://www.photonics.com/Article.aspx?PID=5&VID=83&IID=551&Tag=Featur es&AID=47616
- [17] Hodnocení svarových spojů. Svět svaru: Časopis o moderních trendech ve svařování a řezání kovů [online]. Ostrava: Hadyna - International, 2009 [cit. 2015-03-26]. Dostupné z: http://www.hadyna.cz/svetsvaru/
- [18] ČSN EN ISO 6507-1. Kovové materiály Zkouška tvrdosti podle Vickerse Část 1: Zkušební metoda. Praha: Český normalizační institut, 2006.
- [19] ČSN EN ISO 5178. Destruktivní zkoušky svarů kovových materiálů Podélná zkouška tahem svarového kovu tavných svarových spojů. Praha: Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, 2011.
- [20] ČSN EN ISO 4136. Destruktivní zkoušky svarů kovových materiálů Příčná zkouška tahem. Praha: Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, 2011.
- [21] Category:Stress-strain curves. Wikimedea commons [online]. 2004, 2013 [cit. 2015-04-07]. Dostupné z: http://commons.wikimedia.org/wiki/Category:Stressstrain_curves
- [22]ESAB KNOWLEDGE CENTER: Destructive Testing of Welds. ESAB [online]. 2014[cit.2015-04-07].Dostupnéhttp://www.esabna.com/us/en/education/blog/destructive-testing-of-welds.cfm
- [23] Strojírenská technologie 1. ročník Vlastnosti materiálů pružnost, pevnost. *Strojírenství Engineering* [online]. 2005-2007 [cit. 2015-04-07]. Dostupné z: http://www.strojirenstvi.wz.cz/stt/rocnik1/06a_pruznost_pevnost.php
- [24] ČSN ISO 148-1. Kovové materiály Zkouška rázem v ohybu metodou Charpy Část 1: Zkušební metoda. Praha: Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, 2010.
- [25] About: Introduction to Nondestructive Testing. *The American Society for nonde-structive testing* [online]. © 2012 [cit. 2015-03-26]. Dostupné z: https://www.asnt.org
- [26] Svařování vysokolegovaných ocelí: 1. část. Svět svaru: Časopis o moderních trendech ve svařování a řezání kovů [online]. Ostrava: Hadyna International, 2007, č. 2 [cit. 2015-03-27]. Dostupné z: http://www.hadyna.cz/svetsvaru/

- [27] The Schaeffler and Delong diagrams for predicting ferrite levels in austenitic stainless steel welds. *British Stainless Steel Association* [online]. © 2015 [cit. 2015-04-13]. Dostupné z: http://www.bssa.org.uk/topics.php?article=121
- [28] WRC-1992 Constitution Diagram for Stainless Steel Weld Metals: A Modification of the WRC-1988 Diagram [online]. 1992[cit. 2015-03-27]. Dostupné z: https://app.aws.org/wj/supplement/S-1992.html
- [29] The Ferrite Content of Austenitic Stainless Steel Weld Metal [online]. 1973[cit. 2015-03-27]. Dostupné z: https://app.aws.org/wj/supplement/S-1973.html
- [30] Korozivzdorné materiály: Základní typy ocelí a doporučení pro jejich svařitelnost. *Svět svaru: Časopis o moderních trendech ve svařování a řezání kovů* [online].
 Ostrava: Hadyna - International, 2007, č. 2 [cit. 2015-03-30]. Dostupné z: http://www.hadyna.cz/svetsvaru

A Inspekční certifikát základního materiálu použitého v první části experimentu

B Inspekční certifikát základního materiálu použitého ke kvalifikaci postupu svařování

C Inspekční certifikát přídavného materiálu použitého ke kvalifikaci WPQR

00	_	c)dběratel/Cu	stome	er: ARTIFE	X s.r.o.			
					Lipová 8	324			
HAL LOSKOT			473 01		Nový Bo	or			
ING ENGINEER	Cobj.č./Your	order No: 66	624		Zakázka	č./Our ref	.: 12/2015	BOM	
Číslo výrobku Art no	Značka výr Description	obku			Množství Quantity	Jedn. Unit	LOT PV506473	OT V5064731481	
1612109820	OK AUTRO	DD 308LSi 1	.0 MIG WIR	E	1680	Kg			
Analýza/Analysis									
	С	Si	Mn	P	S		Cr	Nî	
	0,016	0,750	2,000	0,0	023 0	,015	20,000	9,90	
Drát	Мо	V	Cu	N	C	0			
Wire	0,130	0,080	0,180	0,	056 0	,140			
Zkouška tahem/Tens	sile test				6				
Svarový kov Weld metal	Temp °C	Rp 0,2 N/mm 2 N/mm 2		2	Rm N/mm 2		A5 %		
	+20	399			5	71	47		
							_		
							_		
Vrubová zkouška/lm	pact test				Terre	1			
	°C		J		°C		1		
Svarový kov	-20	89	89 87	,					
Weld metal								ana a califi Arasoni	
								in and the last field from	
							. Hereard		
Doplňující data/Addit	tional data								
SFA/AWS A5.9 ER EN ISO 14343-A C Ferrite FN : 11,0 WF	308LSI 3 19 9 L Si RC-92								
Vamberk 24.2.	2015 ESA	B CZ, s.r.o., čle Smatenovo náby	on koncernu oži 334						
QC department	1	1C 024006	iditk 26 34						
Adresa/Postal	address	IČ	O		Tele	fon/Phone	e	Telefax	
ESAB CZ, s.r.o., čle	n koncernu	2400	0626		+420 4	494 501 2	02 +420	494 50	
Smetanovo náb	reži 334	Zapsaná v o	obchodním reis	tříku ve	deném Krajsk	ým soudem	v Hradci Král	ové, odd	

D Předběžná specifikace postupu svařování pWPS

	Stehový svar	Sv. spára : 0,0 mm	Sv. spára : 0,3 mm	Sv. spára : 0,5 mm	
Technologie svařování:	laser	laser + cold wire	laser + cold wire	laser + cold wire	
Ohnisková vzdálenost f [mm]:	300	300	300	300	
Pracovní vzdálenost [mm]:	100	100	100	100	
Průměr paprsku d [mm]:	1	1	1	1	
Kontinuální výkon svazku P [W]:	2000	3400	3400	3500	
Detaily změny výkonu -					
Náběh [mm]:	-	4 (80% P, 80% v _d)	4 (80% P, 80% v _d)	4 (80% P, 80% v _d)	
Překrytí [mm]:		0	0	0	
Snižování [mm]:	-	4 (80% P, 80% v _d)	4 (80% P, 80% v _d)	4 (80% P, 80% v _d)	
Profil změny:		lineární	lineární	lineární	
Úhel vychylování svazku-					
Podélný [deg]:	0	0	0	0	
Příčný [deg]:	0	0	0	0	
Poloha:	vystředěna	vystředěna	vystředěna	vystředěna	
Rychlost pohybu v sv [mm/min]:	2100	2100	2100	2100	
Rychlost podávání drátu v d [mm/min]:	0	400	1500	2500	
Plyn k odstranění plazmy					
Klasifikace a typ:	-	-	-	-	
Průtok [l/min]:	-	-	-	-	
Ochranný plyn -					
Klasifikace a typ:	N ₂	N ₂	N ₂	N ₂	
Průtok [l/min]:	22 ± 3	22 ± 3	22 ± 3	22 ± 3	
Tryska ochranného plynu -					
Poloha [mm]:	20 mm, za paprskem	20 mm, za paprskem	20 mm, za paprskem	20 mm, za paprskem	
Průměr [mm]:	8	8	8	8	
Orientace[deg]:	30° ± 3°	30° ± 3°	30° ± 3°	30° ± 3°	

Poznámky:				2					
			NFO						
Index revize:	A	В	c	D	Zpracoval:				
Schválil:	M. Loskot				V. Novák				
Datum: Podpis:	, 19.3.2015				- NordE				
Číslo protokolu: 15-0322-VT-176	s.'		VI	ſ		BOMB	BOMBARDIER		
---	---	--	---------------------------------------	---	--------------------------------------	--	-------------------	--	--
List 1/1	PI	ROTOKOL	_ Viz	uální zko	ušky	the evol	ution of mobility		
Bombardier Transpo Svatoplu 470 01	^{Výrobce:} Ortation Ca ka Čecha Česká Líp	zech Republic 1205 pa	a. s.	1	Název a ic WI Rozměr plec J	lentifikace svařence: * QR 5010_1 hu 400 mm x 300mr fL.1,5mm	n		
Číslo nebo dat Základní materiál: X2CrNi18-9	um vystavení z Z OŘJ	zakázky: kušební předpis: -019-Osm / 00867	76	Bombardio	er Transp Svatoplu 470 01	Zákazník: ortation Czech F ika Čecha 1205 Česká Lípa	Republic a. s.		
Přídavný materiál: Tepelné zpracování: OK 308 LSi ø 1mm NE Rozsah zkoušky: 100% svaru + TOZ Okraje 25mm nehodnoceny Stav povrchu: Metoda svařování: 521 LASER Měrka: obroušen Měrka tupých svarů Specifikace zákazníka:				Potřebné dokumenty: Výkres: Norma: ČSN EN ISO 17637 ČSN EN ISO 6520-1; ČSN EN ISO 13919-1; St.jakosti B ČSN EN ISO 17635 ČSN EN ISO 17635 ČSN EN ISO 15614-1 Plán zkoušek:					
Specifikace zákazníka: Zdroj světla 🖾 umělé 🗌 přírodn	í Foton	Popis : netr (Luxmetr): 1 11/2	zkušeb LX - 10 2015	ní metody :)3	Použité po	mocné prostředky: Lupa 3x, ocelové měří	tko		
Zkušební technika: ⊠ přímá kontrola ☐ nepřímá kontrola	Namě	řená hodnota osv 920 áznam provec	/ětlení:)Lx dené '	VT kontroly	sváru:				
ČSN EN ISO I 2553 (mm) p 11,5 350 2015-I	WPS č. 1,5-L88-000	Pozice vady/ x= 345mm dl	délka	ČSN EN I	SO13919-1	ČSN EN ISO 6520-1 511	NOK / OK		
*Mezní hodnota h ≤ 0,1t	Hodnocená o 400 m	Jun		300 mm		tl. 1,5 mm			
Používané symboly, dle ČSN EN ISO 13919 a- nominální rozměr koutového svánu b- šiřka svarového převýšení d- průměr pôru h- výška (hloubka) imperfekce t- tioutřka stěny sebo plecha 1- délka svánu				⊠ Vyhovují	Výsledel	k zkoušky D Nevyhov	ující		
Datum: 29.4. 2015 Zkoušel: Datu Vyh Tankovský Kosta Podpis : Podp Certifikát: 101-02095 pod Certifikát: 2015 Certifikát	m: 29.4, 2015 odnotil: covský Kosta is : fikát: 101-020	295	Datum Přezko Podpis Certifil	: umal EWE: : kát:		Datum : Přezkoumání zákazi Podpis :	iíkem -		

E Protokoly NDT a DT pro vzorek č. 5010_1

Archivní označeni: QC – 9108 – 03/ V001 VT-WPQR 5010_1.doc

Číslo protokolu: Compte rendu N° 15-0322-PT-176 List 1/2

PROTOCOLE de l'essai de pénetration

koušky BOM

BOMBARDIER

the evolution of mobilit

Výrobce /Producteur Název a identifikace svařence/ Bombardier Transportation Czech Republic a. s. Titre et identification des assemblages soudés : WPQR 5010 1 Svatopluka Čecha 1205 Rozměr plechu 400 mm x 300mm 470 01 Česká Lípa Tl.1,5mm Zákazník/ Client: Číslo nebo datum vystavení zakázky/ Nº ou date d l' établissement de l'ordre: Bombardier Transportation Czech Republic a. s. Svatopluka Čecha 1205 470 01 Česká Lípa Zkušební předpis Règlement d'essah STC LASER PT R2N rev. Ø Potřebné dokumenty/ Documents nécessaires: Základní materiál/ Matériel de base X2CrNi18-9 Specifikace Výkres/Dessin STC Nº 000-2-04-38 rev. A Metoda svařování: 521 LASER ČSN EN ISO 3452-1 Norma/ Norme: **ČSN EN ISO 23277** Přídavný materiál/ Tepelné zpracování: ČSN EN ISO 13919-1; St.jakosti B Produits d'apport: NE OK 308 LSi ø 1mm ČSN EN ISO 17635 Rozsah zkoušky/Étendu e l'essas: 100% svaru + TOZ Stav povrchu/ Qualité de surface: Povrch + kořen okraje 25mm Plán zkoušek: /Plan des essais: Otryskán/ Grenaillé nehodnoceny Obroušen/ Meulė Měrka: éprouvette de référence: Okartáčován/ Brossé Plastový panel Runchek Metoda/ Méthode: Penetrační zkouška vodotěsnosti / contrôle par ressuage (Contrôle d'étanchéité) Metoda/ Méthode: Barevné penetrační zkoušení / contrôle par ressuage en pénétrant coloré Zdroj světla/ Source de lumière: Fotometr (Luxmetr)/ LX -103 Doporučená hodnota osvětlení / Éclairement recommandé: přírodní/ naturel min 500 Lx max. 40 Lx min UV zaření 10W/m² Luxmètre). umělé/ synthétique Kalibrace do/ Calibrage dans: 11/2015 900lx Zdroj UV-A záření/ UV-A Source: Naměřená intenzita osvětlení: UV lampa/ UV lampe bilé světlo/ humière blanche mière mesurée. ir de lu Naměřená intenzita osvětlení/UV světla: rage valeur UV-A irradiati Kalibrace do/ Calibrage dans: Měřič intenzity UV-A záření: Kalibrace do/ Calibrage dans Způsob prohlížení / moyens de Thermometr: Voltcraft IR 800-20D Kalibrace do/ Calibrage dans: 01/2016 visualisati Penetrant / pénétrant: Babbco DP-55 Cistič Inettoyeurs : Babbco DR-60 Vývojka/ révélatuer : Babbco D-100 pouhým okem / oeil mu pomocí lupy / à l'aide d'une loupe Šarže / charge: 11111 Šarže / charge: 12014 Sarže / charge: 10012 Datum expirace/Date disponibilité; 07/2016 Datum expirace/Date disponibilité: Datum expirace/Date disponibilité: 09/2018 08/2016 Označení použitého penetračního systemu/ IICd Odchylky od zkušebního předpisu/ Écarts par rapport au code de test (Désignation de pénétrer dans le syste Čištění: Inettoyage avant ress ; Teplota zkušebního povrchu/ la Sušení / séchage : Penetrační čas/ durée de pénétration : Temeráture de la surface d'essa 20°C Ano Ne Ne Ano Ne Sušení / séchage 15min. 🛛 Ano Vyvíjecí časl dureé de révélation Konečné čištění/ nettoyage aprés examen : Mezičištění/ inter-nettoyage 15min. 🖾 Ano 🗆 Ne 🖾 Ano 🗆 Ne Ano Ne Datum/ Date: 29.4. 2015 Vyhodnotil/ Evalue par. Datum/ Date: 29.4. 2015 Zkoušel/ Testé par: BOMBARDHER Tankovský Kosta Tankovský Kosta Podpis/ Signature: Podpis/ Signature: ion Czech Republic a.s. Certifikát/ Certifical; rtation Czech Republic a. Certifikát/ Certificat. 101-02095 101-02095

Číslo protokolu: Compte rendu N° 15-0322-PT-176 List 2/2

РТ

the evolution of mobility

PROTOKOL Penetrační zkoušky PROTOCOLE de l'essai de pénetration

Archivní označení: QC – 9108 – 03/ P001 PT-WPQR 5010_1.doc

Či 1	slo p 5 – 2	rotoka 15 - 5'	olu: 70	1]	RJ	G			BO	MBAF	DIER
	Lis	t 1/1		1	PR	оток	OL	Rer	tgenov	vé zkoušk	y		the evolutio	n of mobility
		Bon C: Sy 47	ibard zech F vatopl	Výrol ier Ti tepul luka Česk	bee: ranspo blic a. s Čecha á Lípa	ortation s. 1205				Náz Rozmě	ev a iden WPQ r plechu TL	tifikace sval R 5010_1 1 400 mm x .1,5mm	fence: 300mm	
		Číslo	nebo da	atum v	ystavení	zakázky:				Bomb	Zá pardier	^{kazník:} Transpo	rtation	
	Zákla X2C	dní mate rNi 18	eriál: 8-9+2]	B	OŘ.	Zkušební př J-019-Osm	edpis: / 0086	76		Cze Sva 470	ch Rep topluk	ublic a. s a Čecha eská Lípa	1205	
	Přídav 3	ný mate 08 LSi	eriál: i		Т	epelné zpra Ne	cování:				Potřebné	dokumenty	<i>r</i> :	
EN	Rozs	ah zkou 100% Měrka: 2-1 13	šky: Fe El	N		Stav povrch otryskár obrouše: okartáčo	nu: n ován		Výkres: Norma ČSN EN ČSN EN ČSN EN ČSN EJ Plán zko	N ISO 15614 - N ISO 17636; N ISO 13919-1 N ISO 6520 mšek:	11 St.jak. l	в;		
Metoo	la sváře ob prořa	ní: zování:	ČSN E	N ISO	17636	čl.6.1.2								
							Popis	zkuš	ební meto	dy:				
Radic třída:	ČSN	EN 1	ika a 7636		Použité Smart	200/4,5			Fólie:]	PB		Film:	R5	
Zdroj Rei	záření ntgenl	: ca			Typ a ro 1,6 x	ozměry ohr 1,6 mm	niska:		Minimá	lní zčernání fi 2,3	lmu:	Filmová	klasifikace C 4	:
WPQ	R:	5010	- 1						Způsob	zpracování: S	trojní			
Čevi					1	Záznan	n prove	déné	RTG kont	troly svárů:				
EN ISO 2553	číslo sváru	číslo filmu	f (mm)	b (mm)	t (mm)	napětí rentgenky (kV)	prou rentge (mA	nky)	Expozični doba (min)	Požadovaná jakost W	Zjištěna jakost W	á Zčernání	EN ISO 13919-1 level B	OK/NOK
1 1,5 x 400			700	1	1,5	110	4,5		0'40''	W 18	W 19	3,3	504,515	ок
_			Or	roti po	žadavků	m normy Č	SN EN	ISO	17636 (ta	bulka 2) byl po	užit film	třídy C4.		
Použivan f – Vzdál b – Vzdá t – Jmeno	é zkratky: enost zdroj lenost obješ witá tloušť	e zařízení ct – film ca materiálů							Vył	Výsl Nící	edek	zkoušky Ne	/	jící
Datun Zkouš Podpi: Certifi	n: 30.4.2 el: Lací s : kát:101	2015 k Pa 40 0682		tum: 3 oušel: pis : ričika	0.4.2015 Lacik Pa	avel 82		Datu Přez Podj Cert	ım: koumal EV pis : ifikát:	VE:		Datum: Přezkoumár Podpis :	ní zákazníke	m

Archivní označení: QC – 9108 – 03/ R001 RTG Laser 1,5 009 2015.doc VŠ.doc

Zkušební laboratoř BT CZ Bombardier Transportation Czech Republic a.s.

Svatopluka Čecha 1205, 470 01 Česká Lípa Tel: +420 487 802 169 (161)

PROTOKOL O ZKOUŠCE č.: 15C0070C1

Zákazník:	Bc. Václav Novák, BT CZ				
(jméno a adresa) Popis, identifikace a	Svarový spoj				
podmínky zkoušení:					
Základní materiál (A): "	X2CrNi18-9, t = 1,5 mm	Základní materiál (B): "	X2CrNi18-	9, t = 1,5 mm	
Datum přijetí vzorků:	5. 5. 2015	Účel zkoušky:	Pracovní z příloha č.	kouška dle OŘJ- 7	138-PPr,
Poznámka:	-				
# Údaj uvedený zákaznikem					
Tepelné zpracování:	300 00	tepelné zpracování proveden	o (kým):	laboratož 🗌 záka	7mft []
Vzorky odebral:	laboratoř zákazník		o (synt).		
Přípravu vzorků provedl:					
	laborator 🖂 zakaznik				
Použité zkušební metody	<i>r</i> :				
Identifikace zkušební m	etody	Hodnotící	critérium "	Vyhodnocení	Strana
Makroskopická a mikros LP-01 (ČSN EN ISO 17639	kopická kontrola svarů;))	ČSN E 13919	N ISO 1 (B)	ANO	2÷4
Vyhodnocení (výsledků zkoušky): A	NO – je požadováno, NE – není poža	dováno (je požadována pouze identifi	kace vad nebo	l uvedení naměřených h	odnot bez
ht H Údaj uvedený zákazníkem	odnocení (přípustné x nepřípustně))				
Pozn.: -					
Interpretace výsledků zk	oušek: -				
Protokol schválil: Bc. Rad	lek Kreisinger / IMS SP LAB	Engineer			
Datum: 15. 5. 2015		Podpis:	An	ising	
			Bc. Bade	k Kreisinger	
	7kušební la	horator BT CZ			
	ZKUSEDIII Ia	DOI ator DI Cocké Lína			
	Svatopluka Cecha 1	200, 470 01 005ka Lipa			
	Tel.:+420 487 802 16	9(161),+420 775 403 052			
	E-mail: laborator@cz	.transport.bombardier.com			
	Second of the second				

	Protokol je platný pouze s razitkem a podpisem pracovníka laboratoře.
	Dosažené výsledky se týkají pouze zkoušeného předmětu. Bez písemného souhlasu ZL nesmí být protokol rozmnožován jinak než-li celý.
-	

Označení formuláře: FL-08 Vydání: 11 Strana: 1/4 Τ

Zkušební laboratoř BT CZ Bombardier Transportation Czech Republic a.s. Svatopluka Čecha 1205, 470 01 Česká Lípa Tel: +420 487 802 169 (161)

Makroskopická a mikroskopická kontrola svarů

Druh svaru:	#	11,5	Datum zko	ušky:	5. 5. 2015
Metoda svařování:	Ħ	521	Předmět zkoušky:		Svarový kov, základní materiál, TOO
Poloha svařování:	н	PA	Leptadlo: makrostruktury (metoda) mikrostruktury		Adler + Nital 1% (potíráním)
Přídavný materiál:	11	OK 308 LSi, ø= 1 mm			C ₃ H ₈ O ₃ +HF+HNO ₃ (potíráním)
Jméno svářeče:	н	-	Použité zařízení (mikroskop):		ZEISS Axio Observer.Z1m
Číslo pWPS / WPQR: '	H	590-I1,5-L88-000 / WPQR 5010	Označení v	zorku:	15S0070S1 (WPQR_5010_1_M)
Poznámka:		Na základě požadavk	u zákazníka l	oyla provedena pou	ze identifikace mikrostruktury.
# Údaj uvedený zákazníkem					2
Umístění a orientace		Makrovýbrus byl přin	raven z příčr	ného řezu svarem p	odle ČSN EN ISO 17639. čl. 7 cca 1 cm

 Umístění a orientace zkoušeného povrchu a vzorku:
 Makrovýbrus byl připraven z příčného řezu svarem podle CSN EN ISO 17639, čl, 7 cca 1 cm

Makroskopická kontrola:

Vzorek č.:	Popis vady / Výsledek zkoušky	Hodnocení
155007051	Bez vady	přípustné

Označení protokolu:	15C0070C1	Vydání:	11	Strana:	2/4

Bombardier Transportation Czech Republic a.s. Svatopluka Čecha 1205, 470 01 Česká Lípa Tel: +420 487 802 169 (161)

Identifikace mikrostruktury:

Označení protokolu:	15C0070C1	Vydáni:	11	Strana:	3/4

Zkušební laboratoř BT CZ Bombardier Transportation Czech Republic a.s.

Svatopluka Čecha 1205, 470 01 Česká Lípa Tel: +420 487 802 169 (161)

Označení protokolu:	15C0070C1	Vydání:	11	Strana:	4/4

TEDIKO, s.r.o.

TECHNICKÁ DIAGNOSTIKA KOMPONENT 430 01 CHOMUTOV, Pražská 5487, tel. a fax 474652138

PROTOKOL č.: 15C0450-01/0258-7/1735N

o zkoušce postupu svařování nebo svářeče – inspekční certifikát 3.2 dle ČSN EN 10204

Objednatel:	Bombardier Transportation CR a.s. Sv.Čecha 1205. Česká Lípa	Plán odběru vzorků:	-		
Číslo spoje:	5010_1	Program KSS č.	-		
Zakázka číslo:	15C0450	Pracovní příkaz č.	-		
WPS číslo:	-	Vizuální kontrola:	-		
Jméno svářeče:	-	Penetrační zkouška:	-		
Metoda svařování:	521	Zkouška prozářením:	-		
Typ spoje:	laser spoj (cold wire) 1,51	Zkouška ultrazvukem:			
Základní materiál:	plech tl.1,5 mm, X2CrNi18-9	Tloušťka materiálu:	1,5mm/1,5 mm		
	plech tl.1,5 mm, X2CrNi18-9	Vnější průměr:	-		
Přídavný materiál:	OK 308 Lsi, Ø1,0 mm	Poloha svařování:	PA		
Zkušební předpis:	ČSN EN ISO 15614-11 (ČSN E)	N ISO 4136, ČSN EN ISO 517	3)		

Zkouška tvrdosti: ČSN EN ISO 6507-1 - HV10

linie	A				linie	В				linie	С				linie	D			
ZM	TOZ	SV	TOZ	ZM	ZM	TOZ	SV	TOZ	ZM	ZM	TOZ	SV	TOZ	ZM	ZM	TOZ	SV	TOZ	ZM
-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-		-		-	~	-	-	-	-	-
-	-	-	-	-	-														

Zkouška tahem: ČSN EN ISO 4136

číslo vzorku	č.svar.spoje	rozměr (mm)	Rm (MPa)	místo destrukce	výsledek
1	5010 1	1,44x25,80	646	základní materiál	vyhovující
2	5010_1	1,42x25,88	664	svarový kov	vyhovující
Zkouška ohybe	em: ČSN EN IS	0 5173			
číslo vzorku	č.svar.spoje	rozměr (mm)	úhel ohybu	trn (mm)	výsledek
TFBB/1	5010_1	1,41x15,86	180°	4	vyhovující
TFBB/2	- " -	1,42x15,85	- " -	, -	vyhovující
TRBB/1	- " -	1,39x15,73	- " -	- " -	vyhovující
TRBB/2	- " -	1,40x15,78			vyhovující

Zkouška rázem v ohybu: ČSN EN ISO 9016

vzorek č.	rozměry (mm)	KV (J)	Ø KV (J)	vzorek č.	rozměry (mm)	KV (J)	ØKV(J)
-		-		-	-	-	
-		-	-	-	-	-	-
-	-	-		-	-	-	
Poznámka:							

Zkouška makrostruktury: -

Zkouška mikrostruktury: -

Výsledky zkoušek:

Svarový spoj č. 5010_1, plech 1,5 mm/1,5 mm, materiálů X2CrNi18-9/ X2CrNi18-9 je vyhovující.

Poznámka: -

TEDIKO, s.r.o Pražská 5487 430 01 CHOM

Zkušební orgán nebo zkušební organizace

Ing. Poduška Karel 21.05.2015 Jméno, datum, podpis

Číslo protokolu: 15-0322-VT-177	PR	V	T Zizuální zkou	škv	BOMBA the evolution	RDIER				
List 1/1	Výrobce:	ash Panublia a		Název a identifikace svařence: WPQR 5010_2						
Svatoplu 470 01	ika Čecha 1 Česká Lípa	205 a	R	ozměr plechu TL.	400 mm x 300mm 1,5mm					
Číslo nebo da	tum vystavení za	akázky:	Zákazník: Bombardier Transportation Czech Republic a. s. Svatopluka Čecha 1205							
Zakladni material: X2CrNi18-9	OŘJ-	019-Osm / 008676	470 01 Česká Lípa							
Přídavný materiál: OK 308 LSi ø 1mm	Тер	elné zpracování: NE	Potřebné dokumenty:							
Metoda svařování: 521 LASE Rozsah zkoušky: 100% svaru + TOZ Okraje 25mm nehodnoceny Měrka: Měrka tupých svarů	str	av povrchu:] otryskán] obroušen] okartáčován	vykres. Norma: Plán zkoušek:	7637 520-1; 3919-1; Stjakosti B 7635 5614-1						
Specifikace zákazníka:										
Zdroj světla	ní Fotom	Popis zku tetr (Luxmetr): LX 11/201	ašební metody : (- 103 5	Použité pomo	ocné prostředky: .upa 3x, ocelové měřítk	:0				
Zkušební technika: ⊠ přímá kontrola □ nepřímá kontrola	Naměi	řená hodnota osvětl 920Lx	lení:							
ČSN EN ISO 1 2553 (mm)	pWPS č.	áznam-proveder Pozice vady/dél	né VT kontroly ka ČSN EN IS	sváru: s013919-1	ČSN EN ISO 6520-1	NOK / OK				
I 1,5 350 2015-	11,5-L88-000					OK				
x	Hodnocená ob	last 350mm	300 mm		tl. 1,5 mm					
	400 m	im								
Používané symboly dle ČSN EN ISO 13919 a- nominální rozměr koutového sváru b- šířka svarového převýšení de převěstelo převýšení				Výsledek	zkoušky					
h- výška (hloubka) imperfekce t- tlouší ka stěny nebo plechu 1 – délka sváru			⊠ Vyhovujíc	2í	Nevyhov	ující				
Datum: 29.4, 2015 Da Da Zkoušel: Podpis : Certifikát: 101-02095 Tra Ce	tum: 29.4. 2015 hodnotil: dpis : rtifikát: 101-020	095 Problic a.s.	atum : fezkoumal EWE: odpis : ertifikát:		Datum : Přezkoumání zákazn Podpis :	ikem				

F Protokoly NDT a DT pro vzorek č. 5010_2

Archivní označení: QC – 9108 – 03/ V001 VT-WPQR 5010_2.doc

Číslo protokolu: Compte rendu N° 15-0322-PT-177 List 1/2

PROTOCOLE de l'essai de pénetration

BOMBARDIER

the evolution of mobili

Název a identifikace svařence/ Výrobce /Producteur Titre et identification des assemblages soudés : WPQR 5010_2 Bombardier Transportation Czech Republic a. s. Svatopluka Čecha 1205 Rozměr plechu 400 mm x 300mm 470 01 Česká Lípa Tl.1,5mm Zákazník/ Client: Číslo nebo datum vystavení zakázky/ N° ou date d l'établissement de l'ordre Bombardier Transportation Czech Republic a. s. Svatopluka Čecha 1205 470 01 Česká Lípa Zkušební předpis Règlement d'essai STC LASER PT R2N rev. Ø Potřebné dokumenty/ Documents nécessaires: Základní materiál/ Matériel de base X2CrNi18-9 Specifikace Výkres/Dessin: STC Nº 000-2-04-38 rev. A Metoda svařování: 521 LASER ČSN EN ISO 3452-1 Norma/ Norme: **ČSN EN ISO 23277** Přídavný materiál/ Stádium výroby/ Stade production Po rovnání / après dressage ČSN EN ISO 13919-1; St.jakosti B Produits d'apport: OK 308 LSi ø 1mm Ano/oui Ne/non ČSN EN ISO 17635 Rozsah zkoušky/*Étendu e l'essas:* 100% svaru + TOZ Povrch + kořen okraje 25mm Stav povrchu/ Qualité de surface: Plán zkoušek: /Plan des essais: Otryskán/ Grenaillé nehodnoceny Obroušen/ Meulé Měrka: éprouvette de référence: Plastový panel Runchek Okartáčován/ Brossé Metoda/ Méthode: Penetrační zkouška vodotěsnosti / contrôle par ressuage (Contrôle d'étanchétie) Metoda/ Méthode: Barevné penetrační zkoušení / contrôle par ressuage en pénétrant coloré Doporučená hodnota osvětlení / Éclairement recommandé: Zdroj světla/ Source de lumière: Fotometr (Luxmetr)/ LX -103 🖾 min 500 Lx 🗌 max. 40 Lx přírodní/ naturel
umělé/ synthétique Luxmètre): Kalibrace do/ Calibrage dans: 11/2015 min UV záření 10W/m2 Naměřená intenzita osvětlení: 900lx Zdroj UV-A záření/ UV-A Source; UV lampa/ UV lampe Valeur de lumière mesurée: bilé světlo/ lumière blanche Naměřená intenzita osvětlení/UV světla: Kalibrace do/ Calibrage de e valeur UV-A irradiatio Měřič intenzity UV-A záření: Kalibrace do/ Calibrage dans Způsob prohlížení / moyens de Kalibrace do/ Calibrage dans: 01/2016 Thermometr: Voltcraft IR 800-20D Penetrant / pénétrant: Babbco DP-55 Čistič Inettoyeurs : Babbco DR-60 Vývojka/ révélatuer : Babbco D-100 pouhým okem / oeil nu pomocí lupy / à l'aide d'une loupe Šarže / charge: 12014 Sarže / charge: 10012 Šarže / charge: 11111 Datum expirace/Date disponibilité; Datum expirace/Date disponibilité: Datum expirace/Date disponibilité: 07/2016 08/2016 09/2018 Odchylky od zkušebního předpisu/ Označení použitého penetračního systému/ IICd (Désignation de pénétrer dans le syste Écarts par rapport au code de test Penetrační čas/ durée de pénétration : Teplota zkušebního povrchu/ la Cištění: Inettovage avant ress Sušení / séchape : Temeráture de la surface d' 2850 20°C Ano Ne Sušení / séchage Ano 🖾 Ne 15min. 🖂 Ano Vyvíjecí čas/ dureé de révélation : Konečné čištění/ nettoyage aprés examen : Mezičištění/ inter-nettoyage. 15min. □ Ne Ano Ano 🖾 Ano 🗌 Ne Ano Ano 🖾 Ne Datum/ Date: 29.4, 2015 Vyhodnotil/ Evalue par: Datum/ Date: 29.4. 2015 Zkoušel/ Testé paromBARDIER Tankovský Kosta Tankovský Kosta Podpis/ Signature: Podpis/ Signature/a Certifikat/ Certificat: 101-02095 ech Rep Certifikat/ Certifican Idler 101-02095 tion Ca

Archivní označení: QC – 9108 – 03/ P001 PT-WPQR 5010_2.doc

Číslo protokolu: Compte rendu Nº 15-0322-PT-177

List 2/2

PT PROTOKOL Penetrační zkoušky

BOMBARDIER

the evolution of mobility

PROTOCOLE de l'essai de pénetration

Archivní označení: QC – 9108 – 03/ P001 PT-WPQR 5010_2.doc

220

Čí 1	Číslo protokolu: 15 – 215 - 571 PROTOKOL R											BO	MBAF	DIER		
	Lis	t 1/1			PR	оток	OL	Ren	tgenov	é zkoušk	y		the evolutio	n or mobili		
		Bon C: Si 47	ibardi zech F vatopl	Výrot ier Tr tepub uka Č Česka	ee: anspo lic a. s cecha á Lípa	rtation s. 1205			Název a identifikace svařence: WPQR 5010_2 Rozměr plechu 400 mm x 300mm TL.1,5mm							
		Číslo	nebo da	atum vy	vstavení	zakázky:			Zákazník: Bombardier Transportation							
	Základ X2C	ini mate rNi 18	eriál: 8-9+21	3	OŘ.	Zkušební př J-019-Osm	edpis: / 0086	76	Czech Republic a. s. Svatopluka Čecha 1205 470 01 Česká Lípa							
	Přídav 3	ný mate 08 LSi	eriál: I		Т	epelné zpra Ne	cování:		Vélmon		Potřebno	dokumenty	:			
EN	Rozsah zkoušky: Vykres: 100% Stav povrchu: Měrka: otryskán EN 19 232-1 13 Fe EN Øbroušen okartáčován															
Metod Způso	la sváře b prořa	ní: zování:	ČSN El	N ISO	17636	čl.6.1.2										
Radio třída:	grafick ČSN	á techr EN 1'	ika a 7636	1	Použité Smart	zařízení: 200/4,5	Popis	zkuš	ební metod Fólie: I	iy: PB		Film:]	R5			
Zdroj Rei	záření ntgenl	: (A		1	Гураго 1,6 х	ozměry ohr 1,6 mm	iska:		Minimál	lní zčernání fi 2,3	lmu:	Filmová	klasifikace C 4			
WPQ	R: 5	6010 -	2						Způsob :	zpracování: S	trojní					
ČEM						Záznar	n prove	déné	RTG kont	roly svárů:						
EN ISO 2553	číslo sváru	číslo filmu	f (mm)	b (mm)	t (mm)	napětí rentgenky (kV)	prou rentger (mA	d nky .)	Expoziční doba (min)	Požadovaná jakost W	Zjištěn jakost W	á Zčernání	EN ISO 13919-1 level B	OK/NOK		
1,5 x 400			700	1	1,5	110	4,5		0'40''	W 18	W 19	3,3	504	ок		
				25												
			Op	roti po	žadavků	im normy Č	SN EN	ISO	17636 (ta	bulka 2) byl po	užit film	třídy C4.				
- Vzdále	zkratky; most zdroje	zařizeni								Výsl	edek	zkoušky	/			
- Jmeno	vitá tloušťů	a materiálů							Vył	⊠ novující		Ne	U vyhovu	jící		
Datum Zkouš Podpis Certifi	a: 30.4.2 el: Lací s: kát:10	A Pavel	Da Zko Poc Cer	tum: 30 oušel: 1 dpis : rtifikát: Lae	0.4.2015 Lacík Pa (101 06	avel 82		Datu Přezl Podp Certi	m: koumal EW vis : ifikát:	VE:		Datum: Přezkoumár Podpis :	ní zákazníke	m		

Archivní označení: QC – 9108 – 03/ R001 RTG Laser 1,5 010 2015.doc VŠ.doc

Bombardier Transportation Czech Republic a.s. Svatopluka Čecha 1205, 470 01 Česká Lípa Tel: +420 487 802 169 (161)

PROTOKOL O ZKOUŠCE č.: 15C0071C1

Zákazník:	Bc. Václav Novák, BT CZ					
(jméno a adresa)	Suprová spoj					
podmínky zkoušení:	Svarovy spoj					
Základní materiál (A): "	X2CrNi18-9, t = 1,5 mm	Základní mate	riál (B): "	X2CrNi18-	9. t = 1.5 mm	100
Datum přijetí vzorků:	5. 5. 2015	Účel zkoušky:	н	Pracovní z příloha č.	kouška dle OŘJ- 7	138-PPr,
Poznámka:	-					
# Údaj uvedený zákaznikem						
Tepelné zpracování:	ano 🗌 ne	tepelné zprac	ování provedenc	o (kým):	laboratoř 🗌 záka	zník 🗌
Vzorky odebral:	laboratoř Zákazník					
Přípravu vzorků provedl:	laboratoř 🔀 zákazník					
Použité zkušební metody	<i>r</i> :					
Identifikace zkušební m	etody		Hodnotici k	ritérium "	Vyhodnocení	Strana
Makroskopická a mikros	kopická kontrola svarů;		ČSN EI	N ISO	ANO	2÷4
LP-01 (CSN EN ISO 1763)	Э)		13919-	·1 (B)		
Pozn.: - Interpretace výsledků zk	oušek: -					
Protokol schválil: Bc. Rad	dek Kreisinger / IMS SP LAB	Engineer				
Datum: 15. 5. 2015			Podpis:	Huis	mp	
				Bc. Rade	k Kreisinger	
X						
•	Zkušební Svatopluka Čeci	laboratoi	BT CZ	1		
	Tel :+420 497 00	na 1205, 470 01	Ceská Lípa			
	E-mail: laborator@	@cz.transport.bor	775 403 092 nbardier.com			
	Protokol la slatný serves s	avitkom a nodojec	vacounite lakes	atožo		
	Protokol je platny pouze s n	azitkem a poopisem j	acovnika iabor	atore.		

Dosažené výsledk	y se týkají pouze zkouše	ného předmětu. Bez píser	nného souhlasu ZL nesm	í být protokol rozmnožován	jinak než-li celý.
Označení formuláře:	FL-08	Vydání:	11	Strana:	1/4

Bombardier Transportation Czech Republic a.s. Svatopluka Čecha 1205, 470 01 Česká Lípa Tel: +420 487 802 169 (161)

Makroskopická a mikroskopická kontrola svarů

Druh svaru:	н	11,5	Datum zkoušky:		5. 5. 2015
Metoda svařování:		521	Předmět zkoušky:		Svarový kov, základní materiál, TOO
Poloha svařování:	н	PA	Leptadlo: makrostruktury // (metoda) mikrostruktury 0 Použité zařízení (mikroskop): 2		Adler + Nital 1% (potíráním)
Přídavný materiál:	=	OK 308 LSi, Ø= 1 mm			C ₃ H ₈ O ₃ +HF+HNO ₃ (potíráním)
Jméno svářeče:	н	-			ZEISS Axio Observer.Z1m
Číslo pWPS / WPQR:	H	590-I1,5-L88-000 / WPQR 5010	Označení v	zorku:	15S0071S1 (WPQR_5010_2_M)
Poznámka:		Na základě požadavk	u zákazníka l	byla provedena pou	ze identifikace mikrostruktury.
¥ Údaj uvedený zákazníkem					
Umístăni a orientace		Makrowibrus bul přip	ravan z nělá	ného žozu svorom n	odio ČEN EN 160 17630 XI 7 cm 1 cm

Umístění a orientace	Makrovýbrus byl připraven z příčného řezu svarem podle ČSN	EN	ISO 1	7639,	čl.	7 cca 1 cm
zkoušeného povrchu a	od okraje vzorku dodaného zákazníkem.					
vzorku:						

Makroskopická kontrola:

Vzorek č.:	Popis vady / Výsledek zkoušky	Hodnocení
15S0071S1	Bez vady	přípustné

Označení protokolu:	15C0071C1	Vydání:	11	Strana	2/4

Bombardier Transportation Czech Republic a.s. Svatopluka Čecha 1205, 470 01 Česká Lípa Tel: +420 487 802 169 (161)

Identifikace mikrostruktury:

Označení protokolu:	15C0071C1	Vydání:	11	Strana:	3/4
Ciznacem protokolu.	150007101	y yuanı.	11	Su ana.	57.4

Zkušební laboratoř BT CZ Bombardier Transportation Czech Republic a.s.

Svatopluka Čecha 1205, 470 01 Česká Lípa Tel: +420 487 802 169 (161)

15S0071S1 TOO_L 15S0071S1 TOO_P manthe Fr 10 µm 10 µm + 1 pozice 3 pozice 4 N 15S0071S1 0 µm pozice 5 PROTOKOL ZKONTROLOVÁN

Označení protokolu: 15C0071C1 Vydání: 11 Strana: 4/4

TEDIKO, s.r.o.

TECHNICKÁ DIAGNOSTIKA KOMPONENT 430 01 CHOMUTOV, Pražská 5487, tel. a fax 474652138

-										-									
			P	R	01	0	K	OI	Ľ č	.: 15	C04	450-	02/0	258-	7/17	36N			
		(o zko	ušce	pos	tupu	sva	řová	ní ne	bo sv	áře	če –	insp	ekčn	i cer	tifika	át		
			_					3.2	dle ČS	NEN 1	0204	ļ							
Ob	jedna	tel:		B	ombarc	lier Tra a 1205,	nspor Česka	tation (á Lípa	CR a.s.	Plán	odb	ěru v	vzork	ů:	-				
Čís	lo spo	oje:		50	010_2					Prog	gram	KSS	Sč.		-				
Zal	kázka	čísl	0:	1.	5C045	0				Prac	ovni	í příl	az č.		-				
WI	PS čís	lo:		-						Vizu	ální	kont	rola:		-				
Jm	éno s	vářei	če:	-						Pene	etrač	ní zk	oušk	a:	-				15
Me	toda	svař	ování:	52	21					Zko	uška	proz	tářen	ím:	-				
Ty	o spoj	e:		la	ser spo	oj (cole	d wire	e) 1,51		Zko	uška	ultra	azvuk	cem:				_	
Zál	kladn	í ma	teriál	: pl	ech tl.1	,5 mm,	X2C	Nil8-	9	Tlou	šťka	amat	teriál	u:	1.51	nm/1.5	mm		
				pl	ech tl.1	,5 mm,	X2C	Nil8-	9	Vněi	ší di	růmě	r:		-				
Pří	davny	í ma	teriál	: 0	K 308	Lsi, Ø	1.0 n	m		Polo	ha s	vařov	vání:		PA				
Zku	ušebn	í pře	edpis:	Č	SN EN	ISO	15614	4-11 (0	ČSN E	N ISO 4	1136.	ČSN	EN IS	0 517	3)				
Zko	ouška	tyrde	osti: Č	SN E	N ISO	6507-	1 - H	V10							-/				
linie	A				linie	В				linie	С				linie	D			_
ZM	TOZ	SV	TOZ	ZM	ZM	TOZ	SV	TOZ	ZM	ZM	TOZ	SV	TOZ	ZM	ZM	TOZ	SV	TOZ	ZM
-	-	-	-	-	-	-		-	· ·		-	-	-	· ·	-	-	-	-	
-	-	-		-	-	-	-	-					-		-		-	-	-
Zko	ouška	taher	m: ČS	NEN	ISO 4	136									-				
čísl	lo vzor	ku	Č.SV	ar.spc	je	гоz	měr (mm)	F	Rm (MP	a)	m	ísto de	estrukce	e		výsle	dek	
		1	5	010_2		1,	41x25	5,72		674		zá	kladní	materia	ál	v	yhow	ující	
		2	5	010_2		1,	44x25	6,69		662		zál	kladní	materia	ál	v	yhow	ující	
Zko	ouška	ohyb	em: Ć	SN E	N ISO	5173													
čísl	o vzor	ku	Č.SV8	ar.spoj	e	rozma	ěr (m	m)	úhel	ohybu		1	trn (m	m)		1	výsle	dek	
	TFB	B/1	50	10_2	-	1,42	x15,9		1	80°			4			v	yhov	ující	
	TFB	B/2	-	»» =	_	1,40	x15,9	3	-	** -	-		- ,, .		_	v	yhov	ující	
	TRB	B/1	-	»» =		1,41	x15,9	7	-	" -	-	_	- ,, .		_	v	yhov	ující	
71	TRB	B/2	-	» T	0.011	1,43	x15,92	2	-	»			- **	÷		v	yhov	ující	
ZKO	uska	x	n v oh	ybu: (SNE	NISC	901	0	11/T	1	1. 7			1		11 (7)		~	(1)
v	ZOFEK	с.	rozi	nery (mm)	KV	(J)	ØK	rv (1)	VZOI	ek ć.	r	ozmér	y (mm)) K	V (J)		ØKV	(J)
	-			-						-	-	-			-	-	-		
				Contract Contractor												-		-	

Poznámka: Zkouška makrostruktu

Zkouška makrostruktury: -Zkouška mikrostruktury: -

Výsledky zkoušek:

Svarový spoj č. 5010_2, plech 1,5 mm/1,5 mm, materiálů X2CrNi18-9/ X2CrNi18-9 je vyhovující.

Poznámka: -

TEDIKO, S. Pražská 5487 430 01 CHOM

Zkušební orgán nebo zkušební organizace

Ing. Poduška Karel 21.05.2015

Jméno, datum, podpis

Číslo protokolu: 15-0322-VT-178 List 1/1	PRO	V TOKOL VI	F zuální zko	ušky	BOMBA the evolu					
Bombardier Transp Svatopl 470 0	Výrobce: portation Czech uka Čecha 120: l Česká Lípa	Republic a. s. 5	Název a identifikace svařence: WPQR 5010_3 Rozměr plechu 400 mm x 300mm TL.1,5mm							
Číslo nebo d	atum vystavení zakáz	ky:	Zákazník: Bombardier Transportation Czech Republic a. s.							
Základní materiál: X2CrNi18-9	Zkušeb OŘJ-019-	oní předpis: Osm / 008676	470 01 Česká Lípa Potřebné dokumenty:							
OK 308 LSi ø 1mm	Tepelné	zpracování: NE	Výkres:							
Rozsah zkoušky: 100% svaru + TOZ Okraje 25mm nehodnoce Metoda svařování: 521 LAS Měrka: Měrka tupých svarů	IY Stav p ER □ otr □ obr ⊠ oka	ovrchu: yskán voušen urtáčován	Plán zkoušek:	ČSN EN ISO ČSN EN ISO ČSN EN ISO ČSN EN ISO ČSN EN ISO	17637 6520-1; 13919-1; St.jakostř I 17635 15614-1	3				
Specifikace zákazníka:										
Zdroj světla	Fotometr (Popis zkuše (Luxmetr): LX - 11/2015	ební metody : 103	Použité pom	ocné prostředky: Lupa 3x, ocelové měřít	ko				
Zkušební technika: ⊠ přímá kontrola □ nepřímá kontrola	Naměřená	hodnota osvětlen 920Lx								
ČSN EN ISO 1 2553 (mm)	pWPS č.	am provedené Pozice vady/délka	ČSN EN ISO13919-1 ČSN EN ISO 6520-1 NOK /							
I 1,5 350 2015	-I 1,5-L88-000					ОК				
	Hodnocená oblast	350mm	300 mm		tl. 1,5 mm					
	400 mm									
Používané symboly, dla ČSN EN ISO 139 a- mominální rozměr koutového sván b- šířka svarového pěvýšení d- průměr pôru h- vyška (hloubka) imperfekce t- thouříka stěny nebo plechu 1- délka sváru	9 1		⊠ Vyhovuj	Výsledek ící	zkoušky	ující				
Datum: 29.4. 2015 Datum: 29.4. 2015 Datum: 29.4. 2015 Datum: 29.4. 2015 Datum:	tum: 29.4. 2015 hodnotil: dpis : rtifikat: 101-02095	Pode Pode -12-	im : koumal EWE: pis : ifikát:		Datum : Přezkoumání zákazi Podpis :	nikem				

G Protokoly NDT a DT pro vzorek č. 5010_3

Archivní označení: QC – 9108 – 03/ V001 VT-WPQR 5010_3.doc

Číslo protokolu: Compte rendu N° 15-0322-PT-178 List 1/2

РТ

BOMBARDIER the evolution of mobility

PROTOKOL Penetrační zkoušky PROTOCOLE de l'essai de pénetration

Výrobce Bombardier Transport Svatopluk 470 01 Č	/Producteur : ation Czech Republic a. s. a Čecha 1205 eská Lípa	Název a identifikace svařence/ Titre et identification des assemblages soudés : WPQR 5010_3 Rozměr plechu 400 mm x 300mm Tl.1,5mm						
Číslo nebo datun Nº ou date d l' éta	n vystavení zakázky/ blissement de l'ordre:	Bombar	Zákaz dier Transpol Svatopluk 470 01	znik/ Client: rtation Czech Republic a. s. ca Čecha 1205 Česká Lípa				
Základní materiál/ Matériel de base: X2CrNi18-9 Metoda svařování: 521 LASER Přídavný materiál/	Zkušební předpis Reglement d'essats STC LASER PT R2N rev. Ø Specifikace STC Nº 000-2-04-38 rev. A Stádium výroby/ Stade production	Výkres/Dessin: Norma/Norme:	Potřebné dokumenty/ <i>Documents nécessaires:</i> ČSN EN ISO 3452-1					
Produits d'apport: OK 308 LSi ø 1mm Rozsah zkoušky/ <i>Étendu e l'essas:</i> 100% svaru + TOZ Povrch + kofen okraje 25mm nehodnoceny Měrka: éprouvette de référence: Plastový panel Runchek	Po rovnání / après dressage Anoloui Nelnon Stav povrchu/ Qualité de surface: Otryskán/ Grenaillé Obroušen/ Meulé Okartáčován/ Brossé	Plán zkoušek: /Pla	ČSN EN I ČSN EN I an des essais:	SO 13919-1; St.jakosti B SO 17635				
Metoda/ Méthode: Penetračni Metoda/ Méthode: Barevné p Zdroj světla/ Source de lumière:	zkouška vodotěsnosti / contrôle par re enetrační zkoušení / contrôle par ressua Fotometr (Luxmetre): Kolibrace dol Calibrace don	essuage (Contrôle d'a ige en pénétrant colo C-103	tianchčtite) Ne Doporučená hod ⊠ min 500 Lx]]]] max. 40 Lx [10W/m ²				
 ↓ UV lampa/ UV lampe ↓ bílé světlo// lumière blanche 	Zdroj UV-A záření/ 147-4 So Kalibrace dol Calibrage dans	airee:	Naměřená inten Valeur de lumière i Naměřená inten mesurage valeur U	zita osvětlení: 9001x mesurée: zita osvětlení/UV světla: V-A irradiation				
Zpûsob prohlížení / moyens de visualisation: pouhým okem / oeil nu pomocí lupy / à l'aide d'une l	Pretric Intenzity UY-A zařen Thermometr: Voltcraft IR Penetrant / pénétrvant: Babbeo I oupe Sarže / charge: 10012 Datum expirace/Date disponibit 07/2016	Raibrace d 800-20D Kalibrace d DP-55 Čistič /nettoyeurs : Babbeo DR Šarže / charge: 11111 Datum expirace/Date disponibio 08/2016		or Canbrage dans: o/ Calibrage dans: 01/2016 -60 Vývojka/ révélatuer : Babbco D-100 Šarže / charge: 12014 lité: Datum expirace/Date disponibilité: 09/2018				
Označení použitého penetrač (Désignation de pénétrer dans le sy	niho systému/ IICd stéme):	Odchylky od zl Écarts par rappor	cušebního předpis 1 au code de test :	u/				
Teplota zkušebního povrchu/ Temeráture de la surface d'essai : 20°C Mezičištění/ inter-nettoyage:	ta Čištění: Inettoyage avant ress :	Sušení / séchage : Ano ⊠ Ne Vyvíjecí čas/ dureć de révélation : 15min.		Penetrační časť durée de pénétration : 15min. Konečné čištění/ nettoyage aprés examen :				
Datum/ Date: 29.4. 2015 Zkoušel/ Testé par: Tankovský Kosta Podpis/ Signature: Borabar Certifikát/ Certificat: 9101-92	Control Value Viele Viel	tum/ Date: 29.4. 201 hodnotil/ Evalué pa hkovský Kosta dpis/ Signature: rtifikát/ Certificat: &.	5 BUN ar: 101-02095 Bality Co	BARDIER				

Archivní označení: QC – 9108 – 03/ P001 PT-WPQR 5010_3.doc

Číslo protokolu: Compte rendu N° 15-0322-PT-178 List 2/2

PT PROTOKOL Penetrační zkoušky

the evolution of mobility

PROTOCOLE de l'essai de pénetration

Archivní označení: QC – 9108 – 03/ P001 PT-WPQR 5010_3.doc

PRO

	íslo pi 15 – 2	rotok 15 - 5	olu: 69		DP	OTOL	R	TG			BOMBARDIER the evolution of mobili						
	Lis	t 1/1			PR	OTOK	OL R	entgenov	é zkouši	cy		the evolution					
		Bon C S 4'	nbard zech l vatop 70 01	Výro ier T Repul luka Česk	bce: ranspo blic a. s Čecha tá Lípa	ortation s. 1205			Název a identifikace svařence: WPQR 5010_3 Rozměr plechu 400 mm x 300mm TL.1,5mm								
Číslo nebo datum vystavení zakázky:									Zákazník:								
	Zákla X2C	dní mat rNi 13	eriál: 8-9+2	в	Z OŘ.	Zkušební pi J-019-Osm	fedpis: 1 / 008676	Bombardier Transportation Czech Republic a. s. Svatopluka Čecha 1205 470 01 Čecká Láza									
	Přídav 3	ný mat	eriál:		Т	epelné zpra	cování:			Potřebné	dokumenty	r:					
308 LSI Rozsah zkoušky: 100% Měrka: EN 19 232-1 13 Fe EN						Stav povrch otryskár obrouše okartáčo	e Výkres: Norma ČSN EN ISO 15614 - 11 ČSN EN ISO 17636; ČSN EN ISO 13919-1 St.jak. ČSN EN ISO 6520			11 St.jak. B	3;						
Metod Způse	la sváře ob prořa	ní: zování:	ČSN E	N ISO	17636	čl.6.1.2											
Ded		A + 1	alles -		Dec XIII	X/ /	Popis z	kušební meto	dy:								
Radio třída:	ČSN	EN 1	11ka a 7636		Smart	200/4,5		Fólie:]	Fólie: PB								
Zdroj Rei	záření ntgenl	: ca			Typ a ro 1,6 x	ozměry ohr 1,6 mm	niska:	Minimá	lní zčernání fi 2,3	lmu:	Filmová klasifikace: C 4						
WPQ	R:	5010	- 3					Způsob	zpracování: S	trojní							
ČSN						Záznar	n provedo	Expoziční	roly svárů:			EN ISO					
EN ISO 2553	cislo sváru	filmu	f (mm)	b (mm)	t (mm)	rentgenky (kV)	rentgenky (mA)	y doba (min)	Požadovaná jakost W	Zjištěná jakost W	Zčernání	13919-1 level B	OK/NC				
I 1,5 x 400			700	1	1,5	110	4,5	0'40''	W 18	W 19	3,2	FF	ок				
								_									
								_									
			Or	roti po	žadavků	m normv Č	SN EN IS	SO 17636 (tal	pulka 2) byl po	užit film t	řídy C4						
Používané f – Vzdále	é zkratky: enost zdroje	zařizeni					Г		Výsl	edek z	koušky	1					
b – Vzdálo t – Jmenov	enost objek vitá tloušťk	t – film a materiálů						Vył	⊠ novující		Ne	U vyhovu	jící				
Datum Zkouše Podpis	a: 30.4.2 el: Lacíl	015 k Pavel		tum: 3 oušel: d pis :	0.4.2015 Lacík Pa	vel C	D P P	Datum: řezkoumal EW odpis :	/E:	L P P	Datum: řezkoumár odpis :	ní zákazníke	m				
apis	kát-101	0682	ColCe	Pus	101 06	82	C	artifikát:		r i	oulus :						

93

Bombardier Transportation Czech Republic a.s. Svatopluka Čecha 1205, 470 01 Česká Lípa Tel: +420 487 802 169 (161)

PROTOKOL O ZKOUŠCE č.: 15C0072C1

Bc. Václav Novák, BT CZ											
Svarový spoj											
X2CrNi18-9, t = 1,5 mm	Základní materiál (B):	X2CrNi18	9, t = 1,5 mm								
5. 5. 2015	Účel zkoušky:	Pracovní z příloha č.	kouška dle OŘJ- 7	138-PPr,							
-											
ano 🗌 ne	tepelné zpracování proveder	no (kým):	laboratoř záka	zník							
laboratoř Zákazník											
laborato? Z zákaznik											
<i>r</i> :											
etody	Hodnotici	kritérium [#]	Vyhodnocení	Strana							
kopická kontrola svarů;))	ČSN E 13915	N ISO 9-1 (B)	ANO	2÷4							
NO – je požadováno, NE – není poža odnocení (přípustné x nepřipustné))	idováno (je požadovína pouze identil	likace vad nebo	uvedení naměřených h	odnot bez							
oušek: -											
lek Kreisinger / IMS SP LAB	Engineer										
	Podpis	Bc. Rade	ning_ ek Kreisinger								
	and the second										
Zkušební la	boratoř BT CZ										
Svatopluka Cecha 1	200, 470 01 00014 2.04										
	Bc. Václav Novák, BT CZ Svarový spoj X2CrNi18-9, t = 1,5 mm 5. 5. 2015 - ano □ ne laborato? □ zákazník laborato? ⊠ zákazník stody kopická kontrola svarů;)) NO – je požadováno, NE – není poža idnocení (přípustné x nepřipustné)) pušek: - lek Kreisinger / IMS SP LAB	Bc. Václav Novák, BT CZ Svarový spoj X2CrNi18-9, t = 1,5 mm 5. 5. 2015 Účel zkoušky: ano ne iboratoř zákazník iaboratoř zákazník iaboratoř zákazník Hodnotící kopická kontrola svarů;) NO – je požadováno, NE – není požadováno (je poľadována pouze identif ndnocení (přípustné x nepřipustné)) Dušek: - lek Kreisinger / IMS SP LAB Engineer Podpis Zkušební laboratoř BT CZ	Bc. Václav Novák, BT CZ Svarový spoj X2CrNi18-9, t = 1,5 mm 5. 5. 2015 Účel zkoušky: " Pracovní z příloha č. - ano ne ⊠ tepelné zpracování provedeno (kým): laboratoľ zákazník ⊠ laboratoľ zákazník ⊡ tetody Hodnotící kritérium " kopická kontrola svarů;) NO -je požadováno, NE - není požadováno (je požadována pouze identifikace vad nebo idnocení (přípustné x nepřípustné)) DUŠek: - lek Kreisinger / IMS SP LAB Engineer Podpis:	Bc. Václav Novák, BT CZ Svarový spoj X2CrNi18-9, t = 1,5 mm Základní materiál (B): "X2CrNi18-9, t = 1,5 mm 5. 5. 2015 Účel zkoušky: "Pracovní zkouška dle OŘU- příloha č. 7 - ano ne ∑ tepelné zpracování provedeno (kým): laboratoř zákazník laboratoř zákazník laboratoř zákazník iaboratoř zákazník Kopická kontrola svarů; ČSN EN ISO ANO NO -je požadováno, NE - není požadováno (je požadováno pouze identifikace vad nebo uvedení naměřených t dnocení (přípustné x nepřípustné)) NO -je požadováno, NE - není požadováno (je požadováno pouze identifikace vad nebo uvedení naměřených t dnocení (přípustné x nepřípustné)) DV - je požadováno, NE - není požadováno (je požadováno pouze identifikace vad nebo uvedení naměřených t dnocení (přípustné x nepřípustné)) DV - je požadováno, NE - není požadováno (je požadováno pouze identifikace vad nebo uvedení naměřených t dnocení (přípustné x nepřípustné)) DV - je požadováno (je požadováno pouze identifikace vad nebo uvedení naměřených t dnocení (přípustné x nepřípustné)) DV - je požadováno (je požadováno pouze identifikace vad nebo uvedení naměřených t dnocení (přípustné x nepřípustné)) DV - je požadováno (je požadováno pouze identifikace vad nebo uvedení naměřených t dnocení (přípustné x nepřípustné)) DV - je požadováno (je požadováno pouze identifikace vad nebo uvedení naměřených t dnocení (přípustné x nepřípustné))							

Protokol je platný pouze s razítkem a podpisem pracovníka laboratoře.

Dosažené výsledky se týkají pouze zkoušeného předmětu. Bez písemného souhlasu ZL nesmí být protokol rozmnožován jinak než-li celý.											
Označení formuláře:	FL-08	Vydání:	11	Strana:	1/4						

Zkušební laboratoř BT CZ Bombardier Transportation Czech Republic a.s. Svatopluka Čecha 1205, 470 01 Česká Lípa Tel: +420 487 802 169 (161)

Makroskopická a mikroskopická kontrola svarů

Druh svaru:		I 1,5	Datum zko	ušky:	5. 5. 2015				
Metoda svařování:	H	521	Předmět zl	oušky:	Svarový kov, základní materiál, TOO				
Poloha svařování:	8	PA	Leptadlo: makrostruktury		Adler + Nital 1% (potíráním)				
Přídavný materiál:	1	OK 308 LSi, ø= 1 mm	(metoda)	mikrostruktury	C ₃ H ₈ O ₃ +HF+HNO ₃ (potíráním)				
Jméno svářeče:	1	-	Použité zař	ízení (mikroskop):	ZEISS Axio Observer.Z1m 15S0072S1 (WPQR_5010_3_M)				
Číslo pWPS / WPQR:	Ħ	590-11,5-L88-000 / WPQR 5010	Označení v	zorku:					
Poznámka:		Na základě požadavk	u zákazníka l	byla provedena pou	ze identifikace mikrostruktury.				
¥ Údaj uvedený zákazníkem			_						
Umístăní a orientace		Makrowibrus byl přin	raven z nříči	ného řezu svarem n	odle ČSN EN ISO 17639 čl. 7 cca 1 cm				

Umístění a orientace	Makrovýbrus byl připraven z příčného řezu svarem podle ČSN EN ISO 17639, čl. 7 cca 1 cm
zkoušeného povrchu a	od okraje vzorku dodaného zákazníkem.
vzorku:	

Makroskopická kontrola:

Vzorek č.:	Popis vady / Výsledek zkoušky		Hodnocení
15S0072S1	Bez vady		přípustné

Označení protokolu:	15C0072C1	Vydání:	11	Strana:	2/4

Bombardier Transportation Czech Republic a.s. Svatopluka Čecha 1205, 470 01 Česká Lípa Tel: +420 487 802 169 (161)

Identifikace mikrostruktury:

Označení protokolu:	15C0072C1	Vydáni:	11	Strana:	3/4

Zkušební laboratoř BT CZ Bombardier Transportation Czech Republic a.s.

Svatopluka Čecha 1205, 470 01 Česká Lípa Tel: +420 487 802 169 (161)

\$6.54

Označení protokolu:	15C0072C1	Vydání:	11	Strana:	4/4

TEDIKO, s.r.o.

TECHNICKÁ DIAGNOSTIKA KOMPONENT 430 01 CHOMUTOV, Pražská 5487, tel. a fax 474652138

PROTOKOL č.: 15C0450-03/0258-7/1737N

o zkoušce postupu svařování nebo svářeče - inspekční certifikát 3.2 dle ČSN EN 10204

Objednatel:	Bombardier Transportation CR a.s. Sv.Čecha 1205, Česká Lípa	Plán odběru vzorků:	-		
Číslo spoje:	5010_3	Program KSS č.	-		
Zakázka číslo:	15C0450	Pracovní příkaz č.	-		
WPS číslo:	-	Vizuální kontrola:	-		
Jméno svářeče:	-	Penetrační zkouška:	-		
Metoda svařování:	521	Zkouška prozářením:	-		
Typ spoje:	laser spoj (cold wire) 1,5I	Zkouška ultrazvukem:			
Základní materiál:	plech tl.1,5 mm, X2CrNi18-9	Tloušťka materiálu:	1,5mm/1,5 mm		
	plech tl.1,5 mm, X2CrNi18-9	Vnější průměr:	-		
Přídavný materiál:	OK 308 Lsi, Ø1,0 mm	Poloha svařování:	PA		
Zkušební předpis:	ČSN EN ISO 15614-11 (ČSN EN	N ISO 4136, ČSN EN ISO 517	3)		

Zkušební předpis: CSN EN ISO 15614-11 (Zkouška tvrdosti: ČSN EN ISO 6507-1 - HV10

linie	A	2			linie	B				linie	С				linie	D			
ZM	TOZ	SV	TOZ	ZM	ZM	TOZ	SV	TOZ	ZM	ZM	TOZ	SV	TOZ	ZM	ZM	TOZ	SV	TOZ	ZM
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	- 1		-		-											

Zkouška tahem: ČSN EN ISO 4136

číslo vzorku	č.svar.spoje	rozměr (mm)	Rm (MPa)	místo destrukce	výsledek	
1	5010_3	1,39x25,73	682	svarový kov	vyhovující	
2	5010 3	1,41x25,83	678	svarový kovl	vyhovující	

číslo vzorku	č.svar.spoje	rozměr (mm)	úhel ohybu	trn (mm)	výsledek
TFBB/1	5010 3	1,39x15,87	180°	4	vyhovující
TFBB/2		1,41x15,86			vyhovující
TRBB/1	- ,, -	1,40x15,81			vyhovující
TRBB/2		1,41x15.85			vyhovující

Zkouška rázem v ohvbu: ČSN EN ISO 9016

vzorek č.	rozměry (mm)	KV (J)	Ø KV (J)	vzorek č.	rozměry (mm)	KV (J)	ØKV(J)
-		-		-	-	-	
1000 C		-	-	-	-	-	-
-	-	-		-		-	

Poznámka:

Zkouška makrostruktury: -

Zkouška mikrostruktury: -

Výsledky zkoušek:

Svarový spoj č. 5010_3, plech 1,5 mm/1,5 mm, materiálů X2CrNi18-9/ X2CrNi18-9 je vyhovující.

Poznámka: -

TEDIKO, S.J. Pražská 5487 430 01 CHOM Ul 3 ······

Zkušební orgán nebo zkušební organizace

.

Ing. Poduška Karel 21.05,2015 Jméno, datum, podpis

H Obsah přiloženého CD

Diplomová_práce_2015_Václav_Novák

- 1_Diplomová_práce_titulní_strany.pdf
- 2_Diplomová_práce_kopie_zadání_diplomové_práce.pdf
- 3_ Diplomová_práce_Poděkování_a_abstrakt.doc
- 4_ Diplomová_práce_zpráva.doc
- 5_ Diplomová_práce_přílohy.doc
- Diplomová_práce_2015_Václav_Novák.pdf

Fotografie a makrosnímky – (fotografie pracoviště, makrosnímky pořízené při měření hloubky průvaru)

- Experiment_penetrace_makrosnímky
- Fotografie_pracoviště
- WPQR_5010_1
- WPQR_5010_2
- WPQR_5010_3

Video – Video průběhu laserového svařování pořízeného infrakamerou integrovanou do laserové hlavy