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Summary
A magnetic tunnel junction (MTJ) is a spintronic device commercially used in highly
sensitive hard disk drive reading heads. Since 2007 it has helped to sustain the exponential
increase in the magnetic storage density. Moreover, it also became the building block
of the fast, durable, power-efficient, and non-volatile magnetic random-access memory
(MRAM). Just like reading heads, this new type of solid-state memory uses MTJs based on
crystalline magnesium oxide (MgO) along with 3d metallic magnetic elements (Fe and Co).
Strong magnetic anisotropy in the direction perpendicular to the metal|MgO interface is
needed to provide long-term thermal memory stability as the device is downscaled. This
work will analyze the magnetocrystalline anisotropy (MCA) of body-centered cubic Fe,
Co, and Ni on MgO using ab initio simulations. Numerical code will be developed to
calculate the shape anisotropy, crucial to consider in addition to MCA because together
they add up to the effective anisotropy. Finally, a calculation of MCA based on the
second-order perturbation theory will be implemented. This will enable us to link the
observed anisotropic properties directly to the system’s electronic structure (the band
structure and density of states).

Abstrakt
Magnetický tunelový spoj (MTJ) je spintronická součástka komerčně používaná ve vyso-
ce citlivých čtecích hlavách pevných disků. Počínaje rokem 2007 přispěla k udržení expo-
nenciálního nárůstu hustoty magnetického zápisu. Kromě toho se také stala stavebním
kamenem rychlé, odolné, úsporné a nevolatilní magnetické paměti s přímým přístupem
(MRAM). Tento nový typ polovodičové paměti, stejně jako je tomu u čtecích hlav dis-
ků, využívá tunelové spoje založené na krystalickém oxidu hořečnatém (MgO) spolu s 3d
kovovými magnetickými prvky (Fe a Co). Pro zmenšení MTJ a současné udržení dlouho-
dobé stability paměti proti tepelným fluktuacím je zapotřebí silná magnetická anizotropie
ve směru kolmém na rozhraní kov|MgO. V této práci proto nejdříve provedeme analýzu
magnetokrystalické anizotropie (MCA) kubického prostorově centrovaného Fe, Co a Ni na
MgO pomocí ab initio simulací. Dále bude vyvinut program pro výpočet tvarové anizot-
ropie, která je kromě MCA velmi podstatná, neboť v součtu dávají efektivní anizotropii.
Na závěr implementujeme program pro výpočet MCA na základě poruchové teorie dru-
hého řádu. To nám umožní dát pozorované anizotropní vlastnosti do souvislosti přímo
s elektronickou strukturou systému (pásovou strukturou a hustotou stavů).
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Introduction

A spintronic device called the magnetic tunnel junction (MTJ) [1, 2] consists of two
magnetic layers separated by an insulating barrier [Fig. 1(a)]. It exhibits the tunneling
magnetoresistance effect (TMR) [3, 4], which means there is a large change of resistance
when one of the magnetic layers is switched. MTJs are used for several cutting edge
applications [5, 6]: reading heads in hard disk drives (HDDs) [7], memory bits in the
magnetoresistive random-access memory (MRAM) [8], and highly sensitive magnetic sen-
sors. Besides, there are emerging applications of MTJs as artificial neurons [9], random
number generators [10], microwave generators [11], and processing elements in stochastic
computing [12]. In this introduction, we take a deeper look at the impact of MTJs on
data storage.

The famous Moore’s law [13], postulated for semiconductor chips, also holds for the
most widely used computer storage medium, which is the magnetic hard disk drive
(HDD) [14]. The sustained exponential growth of HDD storage density in the past decades
is clear from Fig. 1(c).

Increasing the storage density required shrinking and improving the essential compo-
nents [Fig. 1(b)], and the success of HDDs would not be possible without developing more
sensitive reading heads. The latest generation of reading heads is based on MTJs, where
the magnetization orientation of the upper layer is usually fixed [Fig. 1(a)]. In contrast,
the bottom layer is free to rotate and respond to the magnetic information written on
the platter below. Note that the tunnel barrier in an MTJ is usually made of crystalline
magnesium oxide (MgO) because of its high TMR [15–17]. We are then talking about
MgO-based MTJs.

(b)

Reading Head

(c)(a)

V

Ω
tunnel barrier

FM fixed

FM free

crystalline MgO

× 107 in 60 years

Figure 1: (a) A magnetic tunnel junction used in the latest reading heads. It consists of
two ferromagnetic (FM) layers separated by a tunnel barrier. In MTJs serving as reading
heads, the magnetization lies horizontally (along the film plane), as shown in the figure.
(b) The main components of an HDD [18]. The reading head is of our main interest. (c)
Moore’s law for HDDs, demonstrating a seven-order increase of their storage density in
the past 60 years. After [19].
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INTRODUCTION

(a) (b)

MRAM

Figure 2: (a) MTJs can also be used as memory bits in the MRAM memory. Here, the
magnetization is perpendicular to the film plane. After [20]. (b) Compared to other types
of memories, MRAM is fast and non-volatile, with moderate capacity, but very large
endurance. Hence, it is well suited to replace SRAM and DRAM memories as the work
memory in certain hierarchy levels displayed in Fig. 3. From [21].

MgO-based MTJ has another important application, besides reading the digital infor-
mation in HDDs: it can be used as a memory bit, to store the information as well. It
can store the binary information in its free ferromagnetic layer and then read it out by
the TMR effect. They form the aforementioned magnetoresistive random access memory
(MRAM), sketched in Fig. 2(a). In Fig. 2(b), MRAM is placed in context and compared
with other types of memories. Because it is fast, it is well suited as the work memory. We
should make a clear distinction between the storage memory and the work memory.

Storage memory is meant to preserve data in the long term. HDDs are used as
storage memory because they are cheap and have large data capacity, but they are also
quite slow [Fig. 2(b)]. An alternative to HDDs is the (NAND) Flash memory, widely used
in USB flash drives and solid-state drives (SSD). It is a few times faster and also more
reliable than HDDs because it does not contain moving parts. The trade-off is its higher
price. Also, the endurance of Flash memory is quite limited1 [22] and its low speed does
not allow for its use as the work memory [Fig. 2(b)].

Work memory holds data that is actively processed by the central processing unit
(CPU). Processor registers are the fastest and therefore located directly inside the CPU
[Fig. 3(a)]. One level lower in the memory hierarchy, we find the processor cache, usually
represented by the static random-access memory (SRAM). Each bit in SRAM consists of
several transistors connected into a latch (flip-flop) circuit [23]. One level below, there is
the much slower main memory, usually represented by dynamic random-access memory
(DRAM). In DRAM, the bit is composed of one transistor and one capacitor. The capaci-

1to about 105 write cycles/bit
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Figure 3: (a) The usual memory hierarchy. Higher level means faster, closer to the CPU,
but also lower data capacity. (b) Power dissipated in active and standby mode for the
different memory levels. (c) A new hierarchy scheme for lower power dissipation. The
(non-volatile) MRAM is introduced as a work memory in levels where the standby power
consumption plays an important role. From [21].

tor is either charged or discharged, representing a one or a zero. Both SRAM and DRAM
require an external power source even in standby mode; otherwise, the data is lost: they
are volatile memories.

Both the lower-level cache and the main memory spend a lot of power on maintaining
its standby mode, as shown in Fig. 3(b) [21]. Therefore, replacing these memories with a
non-volatile memory such as MRAM [Fig. 3(c)], where the written information is perma-
nent and does not need to be maintained by an external power source, can considerably
reduce the energy consumption of electronics [21].

In 2018, a new generation of MRAM, the spin-transfer torque MRAM (STT-MRAM),
entered volume production [24]. In STT-MRAM, the effect of spin-transfer torque (STT)
is exploited: the magnetization of the free layer is switched by a spin-polarized electric
current. The current becomes spin-polarized by first passing through the fixed magnetic
layer [25, 26]. It is required that the MTJs used as memory bits in STT-MRAM have (1)
high tunneling magnetoresistance for good information read-out, (2) high spin-transfer
torque efficiency for good information writing, and (3) high magnetic anisotropy for good
thermal stability and therefore, memory retention [1, 27]. All these requirements are
satisfied in perpendicularly magnetized MgO-based MTJs with the ferromagnetic layers
composed of Fe and Co [28], which are therefore the main interest of this work.

In this work, we focus on increasing the perpendicular magnetic anisotropy (PMA) of
MgO-based magnetic tunnel junctions with bcc Fe, Co, and Ni as the free magnetic layer.
By increasing PMA, the STT-MRAM memory bits can be made smaller2, while retaining
the same data stability against thermal fluctuations, as discussed in Sec. 1.6.

2possibly below 25 nm diameter

3



INTRODUCTION

The text is organized as follows. In Chapter 1, we introduce the importance of mag-
netic anisotropy for data storage, the anisotropy types, and physical origins. In Chapter 2,
we review the fundamentals of the density functional theory (DFT). This computational
method is the main tool used in this thesis. Chapter 3 presents our systematic calculations
of the magnetic anisotropy in body-centered cubic Fe(Co,Ni)/MgO thin magnetic films.
Exploiting the knowledge obtained, in Chapter 4 we propose a magnetic tunnel junction
with largely enhanced perpendicular magnetic anisotropy. As already mentioned, increas-
ing the PMA is crucial for the downsize-scaling of STT-MRAM memory bits. Finally,
in Chapter 5, we analyze the magnetic anisotropy of strained body-centered cubic (bcc)
cobalt in the framework of the second-order perturbation theory.

4



1. Magnetic anisotropy

In ferromagnetic materials, there is a spontaneous magnetization due to exchange inter-
action [29–31]. Generally, the direction of this magnetization is not arbitrary, and there
are preferential axes with respect to the crystalline structure and shape of the magnetic
body. This property is called magnetic anisotropy. There is a related quantity called
magnetic anisotropy energy EMA, which is the energy needed to turn the magnetization
from its preferential direction (the easy axis) to the least preferred direction (hard axis).
The energy is rather small, on the order of 10−3 to 10−6 eV/atom, but it is important, as
it corresponds to magnetic fields typically used in experiments [32].

Controlling the magnetic anisotropy is of great importance in technological applica-
tions. Large anisotropy is beneficial in permanent magnets and magnetic memories, where
the magnetization is required to stay in a specified direction. The physical mechanisms
responsible for magnetic anisotropy are of relativistic nature. Its two fundamental origins
are the dipole-dipole interaction and the spin-orbit coupling. However, before discussing
the types of magnetic anisotropy and its microscopic mechanisms, we first approach the
problem phenomenologically, from symmetry arguments.

1.1. Phenomenological expressions
The EMA is a function of the magnetization direction m = (mx,my,mz), where |m| = 1
(it is a unit vector). Just as any other function, EMA can be expanded in some basis, for
instance, in spherical harmonics, or more often in powers of mx,my, and mz [30, 32]:

EMA(mx,my,mz) = b0 +
∑

i,j∈{x,y,z}
bijmimj +

∑
i,j,k,l∈{x,y,z}

bijklmimjmkml + ... (1.1)

Note that due to time-reversal symmetry, only terms that are even in m are allowed (odd
terms are forbidden). The specific symmetry of a given problem usually excludes some
additional terms.

In systems suitable for permanent magnets and memory applications, there is a sin-
gle preferential anisotropy axis (easy axis). We are then talking about the uniaxial
anisotropy, which is usually well described by a single term from Eq. (1.1); choosing the
easy axis along z direction, it is the term bzzm

2
z, more often expressed as [30]

EMA,uniaxial = K1 sin2 θ , (1.2)

where θ is the angle between m and the easy axis, andK1 is the anisotropy constant (Fig. 1.1).
This expression is very important in the context of this work dealing with magnetic thin
films, where the uniaxial anisotropy is due to three origins: (a) the shape, (b) interfaces,
and (c) strain.

5



1. MAGNETIC ANISOTROPY

easy axis

𝐸𝐸MA 𝜃𝜃
𝐸𝐸MA 𝜃𝜃

easy plane

𝐾𝐾1 > 0 PMA
𝐾𝐾1 < 0 in-plane anisotropy

(b)(a)

𝜃𝜃

𝒎𝒎
𝐸𝐸MA(𝜃𝜃) = 𝐾𝐾1 sin2𝜃𝜃

easy axis

Figure 1.1: The spatial dependence of uniaxial anisotropy energy [Eq. (1.2)] for (a) K1 > 0,
signifying the perpendicular anisotropy (PMA), with a single preferential axis for the
magnetization called the easy axis; and for (b) K1 < 0, signifying an in-plane anisotropy,
where the magnetization prefers to lie in any direction along the easy plane.

𝐸𝐸MA,volume

𝐸𝐸MA,interface2

𝐸𝐸MA,interface1

Figure 1.2: A thin magnetic film with the anisotropy coming from the volume and two
interfaces [Eq. (1.3)]. Inspired by Dieny and Chshiev [1].

1.2. Volume vs. interface anisotropy

In thin films and nanostructures, the presence of a surface or an interface is a very im-
portant factor. An interface induces interfacial anisotropy, which is typically much larger
than the bulk anisotropy. Because an interface generally breaks the symmetry of a bulk
system, it induces uniaxial anisotropy [Eq. (1.2)] in systems, where it would otherwise be
forbidden, for instance, in cubic crystals.

The magnetic anisotropy energy can therefore be split into the interface plus volume
contribution multiplied by the thin film thickness t

EMA = EMA,interface + t · EMA,volume , (1.3)

see Fig. 1.2. Since we are investigating thin films, the units used here are the units of
surface energy, J/m2, or rather mJ/m2. For this reason, if there is a constant volume
contribution present, EMA should grow linearly with thickness.

6



1.3. SHAPE, MAGNETOCRYSTALLINE, AND INDUCED ANISOTROPY

1.3. Shape, magnetocrystalline, and induced anisotropy
Based on its origin, magnetic anisotropy may be classified into three categories [30]:

• Shape anisotropy is related to the shape of the magnetic body or the magnetic
domains in that body. It is of dipolar (magnetostatic) origin [Sec. 1.4]. This mag-
netostatic energy is minimized when the magnetization lies along the longest side
of the magnetic body. In nanowires, the preferential direction is therefore along
the wire axis; in (infinite) thin films, it is in any direction in the plane of the film
(along the easy plane). In larger magnetic bodies, magnetization breaks into do-
mains, which have their own demagnetizing fields and influence each other by stray
fields.
In the mesoscopic length scales (∼ 100–1000 nm), where the fields from individual
atoms are averaged and cannot be resolved, the shape anisotropy follows from the
requirement to minimize the demagnetizing energy [30]

Edemag = −µ0

2

∫
Ω

Hd · M d3r , (1.4)

where the integral is over the magnetic region Ω and the demagnetizing field Hd is
related to the magnetization M by

∇ · Hd = −∇ · M . (1.5)

For infinite thin magnetic films, the shape anisotropy energy is then [30]

Edemag, thin-film = −1
2
µ0M

2
s , (1.6)

where µ0 is the vaccum permeability and Ms is the saturation magnetization.
In this work, however, we deal with length-scales on the order of ≈ 0.1 nm and
therefore calculate the demagnetizing energy also directly from the dipole-dipole
interaction of individual atomic moments [Eq. (1.7)]. The values will be compared
with the ones from the simple formula above [Eq. (1.6)] in Sec. 4.2.

• Magnetocrystalline anisotropy is intrinsic to the crystal structure. Its main
origin is the spin-orbit coupling (SOC) (Sec. 1.4) and partly the dipolar interaction
(Sec. 1.5).

• Induced anisotropy may appear due to annealing in external magnetic field, or
often due to strain [30]. In thin films, the strain is often caused by a lattice mismatch
between the epitaxial magnetic layer and the substrate.

1.4. Dipolar interaction effects
In Fe, Co, and Ni, which are 3d transition metals, the magnetization of the atoms is
distributed almost spherically and can safely be described by the dipolar term, ignoring
higher multipoles (quadrupoles, hexapoles, etc.) [32]. The dipole-dipole interaction energy
writes [32]

7



1. MAGNETIC ANISOTROPY

Edipolar = µ2
B

2
∑
i ̸=j

1
r3

ij

(
mi · mj − 3(rij · mi)(rij · mj)

r2
ij

)
, (1.7)

with µB the Bohr magneton, mi the magnetic moment of atom i, and rij the vector
pointing from atom i to atom j.

The dipolar interaction contributes [32]:

(a) to the shape anisotropy: the energy drops proportionally to 1/r3
ij, which is rather

slow. Magnetic moments in bulk are then significantly influenced by the moments
at the surface and, therefore, by the shape of the surface (shape of the magnetic
body). The shape anisotropy itself has the form of a volume anisotropy [Eq. (1.3)].

(b) to the magnetocrystalline anisotropy by a uniaxial term [Eq. (1.2)], relevant
for strained lattice or for interfaces. However, both for strained crystals and for
interfaces, the dipolar contribution is rather small compared to the one from spin-
orbit coupling [32].

1.5. Spin-orbit coupling effects
The spin-orbit coupling (SOC) is the key ingredient of volume and interface magnetocrys-
talline anisotropy, as well as strain-induced anisotropy [32]. Below, we illustrate this
relativistic effect by a semi-classical picture.

Spin-orbit interaction
The spin-orbit coupling links the electron’s orbital motion to its spin [30, 33]. It is
a relativistic effect and must be derived from the Dirac equation, but in a simplified
picture, it may be viewed as a Zeeman interaction. This is illustrated in Fig. 1.3. From
the reference frame of an electron orbiting a nucleus, the nucleus is orbiting the electron.
This positively charged orbiting nucleus creates a current loop, which induces a magnetic
field at its center by the Biot-Savart law. The interaction of this magnetic field with
the electron’s magnetic moment (its spin) provides an energy contribution due to the
magnetostatic (Zeeman) interaction.

Thereby, the electron’s orbital motion and its spin are coupled. Now, because the spin
is coupled to the orbital motion and the orbital motion is coupled to the lattice (by a
Coulomb interaction with the surrounding nuclei), the spin is coupled to the lattice. The
magnetization direction (spin) is therefore related to the crystal axis orientation (lattice).
This is the basic idea behind the magnetocrystalline anisotropy [32].

The SOC term is usually added to the Hamiltonian as [32, 34]

HSOC = ξL · S , (1.8)

where L and S are respectively the orbital angular momentum and spin angular momen-
tum of the particle, and the spin-orbit coupling constant ξ ≈ 50-100 meV in 3d metals.
From Eq. (1.8), it is clear that the direction of L and S are coupled.

Besides being one of the two main sources of magnetic anisotropy, the spin-orbit
coupling is also important in many other areas of physics [35]; namely to explain the
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1.6. MAGNETIC ANISOTROPY IN DATA STORAGE

67 3.1 Orbital and spin moments

only be integral. Bold symbols represent angular momentum vectors, which
have units of h̄.

Ze

Bso

Spin–orbit interaction from
the viewpoint of the
electron.

From the electron’s geocentric point of view, the nucleus revolves around it
with speed v. The motion is equivalent to a current loop In = Zev/2πr , which
creates a magnetic fieldµ0In/2r (2.7) at the centre. The spin–orbit interaction is
due to this magnetic field,Bso = µ0Zev/4πr

2, acting on the intrinsic magnetic
moment of the electron. The electron’s magnetic moments associated with �

and s are oppositely aligned. The interaction energy (2.73) εso = −µBBso can
be written approximately in terms of the Bohr2 magneton and the Bohr radius,
since r � a0/Z for an inner electron and r = na0 for an outer electron, and
mevr ≈ h̄. In the former case,

εso ≈ −µ0µ
2
BZ

4

4πa3
0

. (3.12)

The Z variation means that the spin–orbit interaction, while weak for light
elements becomes much more important for heavy elements and especially
for inner shells. The associated magnetic field is of order 10 T for boron
or carbon. The correct version of the spin–orbit interaction, resulting from a
relativistic calculation, is given in §3.3.3. The expression (3.12) is modified by
a factor 2. The interaction for a single electron is represented by the spin–orbit
Hamiltonian

Hso = λl̂ · ŝ, (3.13)

where λ is the spin–orbit coupling energy. l̂ and ŝ are dimensionless operators
– the h̄2 has been absorbed into λ, thus giving it dimensions of energy.

3.1.4 Quantum mechanics of angular momentum

The Bohr model is an oversimplification of the quantum theory of angular
momentum. In quantum mechanics, physical observables are represented by
differential operators or matrix operators, which we denote by bold symbols
with a hat. For example, momentum is represented by p̂ = −ih̄∇ and kinetic
energy by p̂2/2m = −h̄2∇2/2m. The allowed values of a physical observable
are given by the eigenvalues, λi , of the equation Ôψi = λiψi , where Ô is the
operator andψi are the eigenfunctions, which represent the possible observable
states of the system. The eigenvalues are determined by solving the equation
|Ô − λI | = 0 where |· · ·| denotes a determinant and I is the identity matrix.

The angular momentum operator is l̂ = r × p̂, with components

l̂ = −ih̄(y∂/∂z− z∂/∂y)ex − ih̄(z∂/∂x− x∂/∂z)ey − ih̄(x∂/∂y− y∂/∂x)ez.
(3.14)

2 We usually approximate the spin moment of the electron as 1 µB . Strictly, this equation should
be εso = −gµBmsBso.

Figure 1.3: Spin-orbit coupling explained by an effective magnetic field (Bso), which
comes from the orbiting motion of the nucleus around the electron (from the electron’s
point of view). From [29].

magnetic dichroism, Kerr and Faraday effects [36], in the recently discovered topological
insulators [37], when treating optical properties [38] and dealing with heavy elements, and
it is partially responsible for the fine structure of atoms [29, 39].

1.6. Magnetic anisotropy in data storage
Increasing the information storage density requires downsize scaling (shrinking) of the
memory bits. To do this, one must increase the magnetic anisotropy energy to retain the
same stability against thermal fluctuations [1]. Here, we explain this concept.

Changing the information written in a magnetic memory bit requires external switch-
ing of the magnetization from one stable state to the other (up to down or vice versa).
To switch, the magnetization must overcome an energy barrier

∆E = EMA · S , (1.9)

where EMA is the anisotropy energy per unit area from Eq. (1.3) and S is the area of the
magnetic bit.

Thermal fluctuations may also switch the magnetization spontaneously, which results
in data loss. On average, this spontaneous switching happens every time interval τ . By
the Arrhenius law, the spontaneous switching happens more often (i.e., τ is smaller) when
the temperature T is higher [1]

τ = τ0 exp
(

∆E
kBT

)
, (1.10)

where τ0 is the characteristic attempt time (≈ 1 ns), and kB is the Boltzmann constant.
The typical requirement is for the information to stay stable for τ = 10 years at room

temperature T = 300 K, which by Eq. (1.10) gives the condition [1]

∆E = EMA · S > 45kBT , (1.11)

It is hence clear that downscaling (decreasing the surface S of the memory bits)
requires increasing the perpendicular anisotropy.

9
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2. Density functional theory (DFT)

”The underlying physical laws necessary for the mathematical theory of a large part of
physics and the whole of chemistry are thus completely known, and the difficulty is only

that the exact application of these laws leads to equations much too complicated to be
soluble. It, therefore, becomes desirable that approximate practical methods of

applying quantum mechanics should be developed ...”
P.A.M. Dirac [40], 1929

Many properties of materials can be predicted without the need of their fabrication and
experimental measurements, plainly by designing their structure atom by atom and cal-
culating the ground-state of the electron density in the potential of the atomic nuclei
(Fig. 2.1). This is done by solving the Schrödinger or Dirac equation, usually within some
approximation. The most popular method to do this is the Density Functional Theory
(DFT), developed by Walter Kohn and colleagues and recognized by the Nobel Prize in
Chemistry in 1998 [41]. The number of publications concerning DFT doubles every 5-6
years [42]. The following chapter is an introduction to this outstanding method. Refer
to [37, 43–45] for other comprehensive introductions.

2.1. Many-body Schrödinger equation
To calculate the properties of matter, we start with the problem of solving the non-
relativistic time-independent Schrödinger equation [33, 37]

Ĥ |Ψ⟩ = E |Ψ⟩ , (2.1)
where |Ψ⟩ is the many-body wave function, and E is the total energy. The Hamiltonian
Ĥ for a system of electrons and nuclei consists of the electronic kinetic energy T̂e, the
nucleus-electron, electron-electron, and nucleus-nucleus Coulomb interactions V̂ext, V̂int,
and EII , respectively, and the nuclear kinetic energy T̂N [37]

Ĥ = − ~2

2me

∑
i

∇2
i︸ ︷︷ ︸

T̂e

− 1
4πε0

∑
i,I

Zie
2

|ri − RI |︸ ︷︷ ︸
V̂ext

+ 1
2

1
4πε0

∑
i ̸=j

e2

|ri − rj|︸ ︷︷ ︸
V̂int

+ 1
2

1
4πε0

∑
I ̸=J

ZIZJe
2

|RI − RJ |︸ ︷︷ ︸
EII

−

−
∑

I

~2

2MI

∇2
I︸ ︷︷ ︸

T̂N≈0

,

(2.2)
with ~ the Planck constant, me the electron mass, ∇2

i the Laplace operator acting on
electron i, ε0 the vacuum permittivity, ZI the charge of nucleus I, e the elementary
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2. DENSITY FUNCTIONAL THEORY (DFT)

bcc Fe

(a) spin-densitycharge density (b)

(c) (d)DOS

spin-downspin-up

Fermi surface

Figure 2.1: (a) The electron (charge) and the magnetization (spin) density of bcc Fe [46].
(b) The Fermi surface in the Brillouin zone of bcc Fe [47]. (c) Band structure and Density
of States (DOS) of bcc Fe [48]. (d) The many-body vs. the density approach [49].

charge, ri the position of electron i, RI the position of nucleus I, MI the mass of nucleus
I, and ∇2

I the Laplace operator acting on nucleus I. The equation disregards the small
relativistic effects such as spin-orbit coupling (Sec. 1.5).

Atomic units
Except for Eq. (2.2), which we have kept in SI units, in the rest of the text we use the
Hartree atomic units [50], where by definition ~ = e = a0 = me = 1, where a0 is the
Bohr radius. It also follows1 that 1/4πε0 = 1. Using the atomic units, the kinetic energy
operator and the electron Coulomb potential simplify as

T̂e = − ~2

2me

∇2 → −1
2

∇2 ,

VCoulomb = − e

4πε0r
→ −1

r
.

(2.3)

2.2. Born-Oppenheimer approximation
The first step of tackling problem Eq. (2.1)-Eq. (2.2) is to use the excellent Born-Oppenheimer
(adiabatic) approximation [51], which says that the wave functions of electrons and nuclei
can be treated separately. Since nuclei are much heavier than electrons (MI ≈ 2000me),
the electrons can react very fast and hence are always in their instantaneous ground state,

1from the expression for Bohr radius, a0 = 4πε0~2/mee2
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2.3. HARTREE-FOCK APPROXIMATION

regardless of the (slow) nuclear motion. Then |Ψ⟩ in Eq. (2.1) represents only the (many-
body) electronic wave function; for the nuclear wave function, there is a separate equation,
which can be used, for instance, for calculations of phonons [37]. Since 1/MI is small, the
nuclear kinetic energy T̂N from Eq. (2.2) is neglected (≈ 0). The Coulomb nucleus-nucleus
interaction EII is simply an additive constant to the total energy.

2.3. Hartree-Fock approximation
Even after separating the motion of electrons and nuclei, it is impossible to solve Eq. (2.2)
analytically, since the large number of electrons2 interact with each other via the Coulomb
interaction V̂int. This makes the task a Many Body Problem [52].

The problem was first tackled numerically by Hartree in 1927 [50] and extended by
Fock [53] and Slater [54]. The Hartree-Fock approximation assumes that the many-electron
wave function can be replaced by a linear combination of single-electron (non-interacting)
wave functions. Working with non-interacting electrons greatly simplifies the problem,
and the reason why this approach is physically sensible is the electron screening [55]. We
return to this point right below when discussing the exchange-correlation hole.

The Hartree-Fock approach also replaces the problematic electron-electron interaction
V̂int by a much simpler term, which suggests that the electron wave functions interact
with each other in the same way as the total electron charge density interacts with itself
via the Coulomb interaction3. This term is called the Hartree energy

EH = 1
2

∫
d3r d3r′ n(r)n(r′)

|r − r′|
, (2.4)

where the electron density
n(r) = |Ψ(r)|2 . (2.5)

When integrated over, n(r) must add up to the total number of electrons N

N =
∫

d3r n(r) . (2.6)

Note, however, that by approximating V̂int with EH, we neglect4 two important many-
electron effects: exchange and correlation.

2.4. Exchange-correlation hole
Imagine first what happens if we bring an electron with charge q = −e in vacuum close
to a conductive plane [Fig. 2.2(b)].

The electrons at the conductive surface are repelled, and there is a net positive charge,
which has the same electrostatic field as if the electron had a mirror image with opposite
charge −q = e below the surface. (This is the electrostatic method of images [57].)

Decreasing the separation x [Fig. 2.2(b)], the electron and its positive mirror image
approach each other, until at x ≈ 1-2 Å, the electron wave function starts to overlap with

2typically 1023 electrons/cm3 in a solid
3the 1/4πϵ0 prefactor is dropped since we are using atomic units,
4The exchange, originally missing in the Hartree method, was added by Fock [53]. Correlation is

added in post-Hartree-Fock methods [56].
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2. DENSITY FUNCTIONAL THEORY (DFT)

Figure 2.2: (a) The negative electron density nxc surrounding an electron is called an
exchange-correlation hole [55]. (b) Illustration of the origin of nxc: bringing an electron
close to a conductive plane creates a positively charged mirror hole. At x = 0, the hole
surrounds the electron [55].

the electron wave functions at the surface [55]. The system energy then deviates from the
expected classical E ∝ − 1

x
(it does not diverge to minus infinity) and once the electron

enters the conductor, the positive mirror point charge surrounds the electron, forming an
exchange-correlation hole [Fig. 2.2(a)].

An exchange-correlation hole nxc(r) is a negative electron density (therefore a hole)
surrounding an electron. It consists of the exchange and correlation part

nxc = nx + nc , (2.7)

and the two are distinct in their nature.

1. The exchange hole nx(r) accounts for two facts. Firstly, electrons of the same spin
in the same quantum state cannot be at the same time at the same place, obeying
the Pauli exclusion principle. Thereby, nx affects electrons with the same spin.
Second, nx corrects for the wrong notion entrenched in the Hartree energy expression
[Eq. (2.15)] that an electron interacts with itself. For example, in a hydrogen atom,
where there is only one electron, nx completely cancels the density of the one present
electron to avoid this self-interaction [37, Sec. 3.7]. Hence, in hydrogen, the exchange
hole represents minus one electron. In fact, it is a general feature of the exchange
hole that its integral is exactly minus one electron [58]∫

nx(r) d3r = −1 . (2.8)

2. On the other hand, integral over the correlation hole nc(r) is zero∫
nc(r) d3r = 0 , (2.9)

so it only serves to redistribute the hole’s density. The correlation hole nc corrects
for the fact that interacting electrons are not independent – their joint density
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2.5. THOMAS-FERMI METHOD

is correlated5. Unlike exchange, correlation is also important for interactions of
electrons with opposite spins.

Later, we will introduce the exchange-correlation energy Exc, very important in density
functional theory. It can be viewed as an attractive Coulomb interaction between the
electron density n and the exchange-correlation hole nxc.

2.5. Thomas-Fermi method
The original density functional theory was proposed separately by Thomas [59] and
Fermi [60] in 1927. They approximated both the electron-electron interaction and the
kinetic energy of electrons as a functional of the electron density n. A functional, is a rule
for mapping a function to a number, just as a function is a rule for mapping a number to
a different number [43]. A quantity Q, which is the functional of another quantity n is
denoted Q[n].

Hence, all terms in the Thomas-Fermi total energy ETF[n] depend on the density;
they are integrals of the density. The expressions are based on analytic formulae for the
homogeneous free electron gas (see Eq. (6.1) in Ref. [37] for details.). The correct density
n(r) is the one which minimizes ETF[n], subject to the constraint that the total number
of electrons N is correct [Eq. (2.6)].

Just as Hartree and Fock, Thomas and Fermi also neglected the exchange and corre-
lation between electrons6.

The argument to create an approximation based on electron density instead of electron
wave functions is straightforward. The many-body electron wave function for N electrons
depends on 3N variables (3 spatial coordinates x, y, and z for each electron). On the other
hand, the electron density n(r) is a function of only three spatial coordinates. And in fact,
as shown in the next Sec. 2.6, all the properties of a system can, indeed, be determined
purely from its ground-state electron density.

Although significant, the Thomas-Fermi model is too crude to be widely used in prac-
tice [63] and a more sophisticated approach was needed. An approach, which is formally
exact but leaves a lot of space for effective approximations.

2.6. Hohenberg-Kohn theorems
The modern formulation of density functional theory started with two important theorems
proved by Pierre Hohenberg and Walter Kohn in 1964. They provide a reformulation of
the many-body problem Eq. (2.1)-Eq. (2.2) in terms of functionals of the electron density.

5In mathematical terms, the joint density n(r, σ; r′, σ′) of finding one electron with spin σ at point
r and a different electron of spin σ′ at point r′ is the sum of two terms: (1) the simple, uncorrelated,
product of the independent densities of the two electrons and (2) the exchange correlation hole [37]

n(r, σ; r′, σ′) = n(r, σ) n(r′, σ′) + nxc(r, σ; r′, σ′) , (2.10)

6An extension by Dirac added the local approximation for exchange interaction [61], still in use today
and discussed in Sec. 2.9. The correlation between electrons is neglected altogether. Correction for the
kinetic energy in nonhomogeneous systems taking into account also the gradient of the density, not just
the density itself, was proposed by Weizsacker [62].
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2. DENSITY FUNCTIONAL THEORY (DFT)122 Density functional theory: foundations

Vext(r)    ⇐               
n0(r)

⇓ ⇑
�i ({r}) ⇒ �0({r})

Figure 6.1. Schematic representation of Hohenberg–Kohn theorem. The smaller arrows denote the

usual solution of the Schrödinger equation where the potential Vext(r) determines all states of the

system �i ({r}), including the ground state �0({r}) and ground state density n0(r). The long arrow

labeled “HK” denotes the Hohenberg–Kohn theorem, which completes the circle.

in an external potential Vext(r), including any problem of electrons and fixed nuclei, where

the hamiltonian can be written2

Ĥ = −
-h2

2me

∑

i

∇2
i +

∑

i

Vext(ri ) + 1

2

∑

i 	= j

e2

|ri − r j | . (6.6)

Density functional theory is based upon two theorems first proved by Hohenberg and Kohn

[308]. Here we first present the theorems and the proofs along with discussion of the

consequences; Sec. 6.3 contains the alternative formulation of Levy and Lieb, which is more

general and gives a more intuitive definition of the functional. The relations established by

Hohenberg and Kohn are illustrated in Fig. 6.1 and can be started as follows:

� Theorem I: For any system of interacting particles in an external potential Vext(r), the

potential Vext(r) is determined uniquely, except for a constant, by the ground state particle

density n0(r).

Corollary I: Since the hamiltonian is thus fully determined, except for a constant shift of

the energy, it follows that the many-body wavefunctions for all states (ground and excited)

are determined. Therefore all properties of the system are completely determined given
only the ground state density n0(r).

� Theorem II: A universal functional for the energy E[n] in terms of the density n(r) can

be defined, valid for any external potential Vext(r). For any particular Vext(r), the exact

ground state energy of the system is the global minimum value of this functional, and the

density n(r) that minimizes the functional is the exact ground state density n0(r).

Corollary II: The functional E[n] alone is sufficient to determine the exact ground state

energy and density. In general, excited states of the electrons must be determined by

other means. Nevertheless, the work of Mermin (Sec. 6.4) shows that thermal equilibrium

properties such as specific heat are determined directly by the free-energy functional of

the density.

These assertions are so encompassing and the proofs are so simple, that it is crucial for

any practitioner in the field to understand the basis of the theorems and the limits of the

logical consequences.

2 The nuclei–nuclei interaction can be added later; it is irrelevant, except that care is need to treat Coulomb

interactions in extended systems (Sec. 3.2). Special considerations are required to include magnetic fields and

there are subtle issues for electric fields in extended systems, see Sec. 6.4.

HK

Figure 2.3: The ground-state density n0 of interacting electrons in an external potential
can be considered as the “basic variable”. As proved by Hohenberg and Kohn, from n0
we can get the external potential Vext(r) which produced it. From Vext(r), we can in
principle calculate the eigenstates Ψi({r}), including the groundstate Ψ0({r}). Hence,
all properties of a system are unique functionals of its ground-state density. Adapted
from [37].

The Hohenberg-Kohn (HK) theorems state that [64]:

1. All the properties of an interacting system of electrons are determined
from its ground-state density n0.
In fact, the theorem states that from the ground-state density n0 one can uniquely7

determine the external potential Vext(r) (which generated this ground-state den-
sity)8. From Vext(r), one can then in principle calculate the electron many-body
wave function Ψ({r}), both ground-state and excited, and hence calculate all the
system’s properties.
The theorem goes from the solution (n0) back to the problem (Vext(r)) back to
the solution (Ψ0({r})). This is shown schematically in Fig. 2.3. However, this
information by itself is not very useful. It does not answer how to get Ψi({r}) from
Vext, which is the ultimate problem.

2. The correct ground-state density n0 is obtained by minimizing the sys-
tem’s total energy E[n], which can be prescribed as a functional of n universally,
independent of the external potential Vext(r).

To make full use of the HK theorems, the Kohn-Sham scheme is often used and will
be presented in the next Section 2.7.

Note that Levy and Lieb [65–67] later established an alternative formulation to Hohenberg-
Kohn theorems. Their Constrained Search Formulation of DFT is more general and in
many cases more instructive [37].

HK theorems can be generalized [37] to include:

I. the electron spin [68], by treating separately the densities for spin-up and spin-down
electrons (spin density functional theory). To account for the effects of magnetic
field on the orbital motion of the electrons, not only on their spin, it is needed to
consider also the electronic current, not only charge [69]. This makes the problem
relativistic.

7except for an (unimportant) additive constant
8In DFT, the external potential Vext(r) is usually equivalent to the Coulomb potential from the nuclei,

see Eq. (2.2).
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2.7. KOHN-SHAM EQUATIONS
7.1 Replacing one problem with another 137

Vext(r)     ⇐=            
n0(r) KS⇐⇒

n0(r)
HK0=⇒ VKS(r)

⇓ ⇑ ⇑ ⇓
�i ({r}) ⇒ �0({r}) ψi=1,Ne (r) ⇐ ψi (r)

Figure 7.1. Schematic representation of Kohn–Sham ansatz. (Compare to Fig. 6.1.) The notation

HK0 denotes the Hohenberg–Kohn theorem applied to the non-interacting problem. The arrow

labeled KS provides the connection in both directions between the many-body and

independent-particle systems, so that the arrows connect any point to any other point. Therefore, in

principle, solution of the independent-particle Kohn–Sham problem determines all properties of the

full many-body system.

The actual calculations are performed on the auxiliary independent-particle system

defined by the auxiliary hamiltonian (using Hartree atomic units -h = me = e = 4π/ε0 = 1)

Ĥ σ
aux = −1

2
∇2 + V σ (r). (7.1)

At this point the form of V σ (r) is not specified and the expressions must apply for all

V σ (r) in some range, in order to define functionals for a range of densities. For a system of

N = N↑ + N↓ independent electrons obeying this hamiltonian, the ground state has one

electron in each of the Nσ orbitals ψσ
i (r) with the lowest eigenvalues εσ

i of the hamiltonian

(7.1). The density of the auxiliary system is given by sums of squares of the orbitals for

each spin

n(r) =
∑

σ

n(r, σ ) =
∑

σ

N σ∑

i=1

|ψσ
i (r)|2, (7.2)

the independent-particle kinetic energy Ts is given by

Ts = −1

2

∑

σ

N σ∑

i=1

〈ψσ
i |∇2|ψσ

i 〉 = 1

2

∑

σ

Nσ∑

i=1

∫

d3r |∇ψσ
i (r)|2, (7.3)

and we define the classical Coulomb interaction energy of the electron density n(r) inter-

acting with itself (the Hartree energy defined in (3.15))

EHartree[n] = 1

2

∫

d3rd3r ′ n(r)n(r′)
|r − r′| . (7.4)

The Kohn–Sham approach to the full interacting many-body problem is to rewrite the

Hohenberg–Kohn expression for the ground state energy functional (6.12) in the form

EKS = Ts[n] +
∫

drVext(r)n(r) + EHartree[n] + EI I + Exc[n]. (7.5)

Here Vext(r) is the external potential due to the nuclei and any other external fields (assumed

to be independent of spin) and EI I is the interaction between the nuclei (see (3.2)). Thus

the sum of the terms involving Vext, EHartree, and EI I forms a neutral grouping that is

HK

Figure 2.4: The KS mapping of the real problem onto one-electron problem. The left half
corresponds to Fig. 2.3. Adapted from [37].

II. thermal equilibrium properties, such as specific heat or entropy, as shown by Mer-
min [70]. The Mermin functional is not widely used, though, because it is difficult to
formulate. It must include electron properties beyond the ones of Hohenberg-Kohn’s
functional [37].

III. time-dependent problems, as shown by Runge and Gross [71].

IV. external electric fields and electric polarization [72].

2.7. Kohn-Sham equations
The HK theorems say that all you need is electron density. But there are many difficulties
when leaving out the wave function and working purely with the density9. For instance,
there is no known way to get the kinetic energy directly from the density [37]. Also, it is
hard to tell if a system is ionic or neutral, looking only at the density [73].

The Kohn-Sham approach [74] returns the wave function back into play, side-by-side
with the density.

The assumption of Kohn and Sham is that the real ground-state density n0 can be
written as a sum over the densities of a certain number of non-interacting (free) electrons
(Fig. 2.4). Each free electron i has some spin σ ∈ {↑, ↓} and some wave function ψσ

i (r).
If Nσ is the number of electrons for spin σ, the ground-state density

n0(r) = n↑
0(r) + n↓

0(r) =
N↑∑
i=1

|ψ↑
i (r)|2 +

N↓∑
i=1

|ψ↓
i (r)|2 . (2.11)

So the electrons are treated a priori as non-interacting, and the electron-electron in-
teraction is represented by the Hartree energy [Eq. (2.15)] and a small energy term Exc[n],
which encompasses all the electron-electron interaction effects, which Hartree energy ne-
glects.

The Kohn-Sham energy, which needs to be minimized, then writes

EKS[n] = Ts[n] + Eext[n] + EHartree[n] + Exc[n] + EII , (2.12)

9the squared modulus of the wave function
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          many-body  .….…………….  〈𝑯𝑯�〉              𝑬𝑬𝐊𝐊𝐊𝐊  ………………  Kohn-Sham                   

electronic kinetic energy 〈𝑇𝑇�e〉 𝑇𝑇s 
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energy 
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interaction 〈𝑉𝑉�ext〉 𝐸𝐸ext 
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Figure 2.5: Comparing the expectation value of the original many-body Hamiltonian
[Eq. (2.2)] and the Kohn-Sham energy [Eq. (2.12)]. The part of the original electronic
kinetic energy and electron-electron Coulomb interaction, which comes from the com-
plicated many-body effects is encompassed in the exchange-correlation energy, following
Eq. (2.16). Different line styles are used only for clarity.

where the single-electron kinetic energy

Ts = −1
2
∑

σ

Nσ∑
i=1

⟨ψσ
i |∇2|ψσ

i ⟩ , (2.13)

the energy due to the external potential (the Coulomb potential of the nuclei)

Eext[n] =
∫

d3r Vext(r)n(r) , (2.14)

the electron-electron Hartree energy

EHartree[n] = 1
2

∫
d3r d3r′ n(r)n(r′)

|r − r′|
, (2.15)

the exchange-correlation energy Exc corrects for the fact that the true kinetic energy ⟨T̂e⟩
is different from the sum of the single-electron kinetic energies Ts[n] (due to correlation
effects) and the electron-electron interaction energy V̂int is different from the mean-field
Hartree energy EHartree[n] (due to exchange and correlation effects)

Exc[n] =

∆Tcorrelation︷ ︸︸ ︷
⟨T̂e⟩ − Ts[n] +

∆Vexchange-correlation︷ ︸︸ ︷
⟨V̂int⟩ − EHartree[n] . (2.16)

See Eq. (2.2) for definitions of the electron kinetic energy operator T̂e and the electron-
electron interaction energy V̂int.

Finally, the constant nucleus-nucleus Coulomb interaction EII must be added for com-
pleteness.

Note that Eq. (2.12) is in principle exact. For a given distribution of nuclei (exter-
nal potential Vext(r)) and a given density n, all terms except Exc are well-known and
straightforward to calculate. The unknown part, Exc[n], constitutes only a small energy
contribution. How to express Exc[n] with powerful approximations is explained in Sec. 2.9.
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2.8. SELF-CONSISTENT CYCLE

In Fig. 2.5, we compare the Kohn-Sham energy [Eq. (2.12)] and the expectation value
of the original many-body Hamiltonian [Eq. (2.2)].

Applying the variational principle to EKS with respect to the wave functions, one
arrives at the Kohn-Sham Schrödinger-like equation [37]

HKS ψi(r) = εi ψi(r) , (2.17)

with the Kohn-Sham effective Hamiltonian

HKS = −1
2

∇2 + Veff(r) , (2.18)

where instead of the energies E from Eq. (2.12) we now have their respective potentials
V ≡ δE

δn(r)

Veff(r) = Vext(r) + VHartree(r) + Vxc(r) . (2.19)

For a given arrangement of nuclei (given external potential Vext(r)), we solve the Kohn-
Sham problem Eq. (2.17)-Eq. (2.19), thereby obtaining the Kohn-Sham wavefunctions
ψi(r), which give us the ground-state density n0 via Eq. (2.11). From n0 we get the
system’s total energy via Eq. (2.12) and, in principle (Sec. 2.6), also any other property
of the system.

Let us take a closer look at how to solve the Kohn-Sham problem Eq. (2.17)-Eq. (2.19).

2.8. Self-consistent cycle
Since the Kohn-Sham Hamiltonian HKS depends on the density, which actually follows
from that Hamiltonian in the first place, the Kohn-Sham equation needs to be solved in a
self-consistent iterative manner. The algorithm is depicted in Fig. 2.6. With the electron
density from some initial guess, the effective potential Veff [Eq. (2.19)] is calculated. From
the KS equation [Eq. (2.17)], we then get the KS wave functions ψσ

i (r). From the KS
wave functions, we calculate the density n and iterate until the self-consistent cycle output
density nout and input density nin are not close enough. The criterion is usually that the
change in the total energy in the subsequent iterative steps is below certain threshold10

Ediff
Ei+1

KS − Ei
KS < Ediff . (2.20)

Mixing
For the self-consistent cycle [Fig. 2.6] to converge, and converge fast, one cannot simply
use ni

out as the input for the next cycle ni+1
in [75]. Most often, a linear combination of the

new and the original density is used [37]

ni+1
in = αni

out + (1 − α)ni
in , (2.21)

where generally 0 < α ≤ 1, but in fact, to ensure convergence, the upper limit for α is
usually much more strict [76]. This linear mixing works well for insulators. For metals,

10Ediff ∼ 10−7 eV
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2. DENSITY FUNCTIONAL THEORY (DFT)

7.3 Solution of the Self-Consistent Coupled Kohn–Sham Equations 151

Self-consistent Kohn–Sham equations

Output quantities
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∣∣ψσ
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− 1
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eff(r)

]
ψσ
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Calculate effective potential
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Figure 7.2. Schematic representation of the self-consistent loop for solution of the Kohn–Sham
equations. In a spin-polarized system there are two such loops that must be iterated simultaneously,
with the potential for each spin V σ

eff[nσ,nσ ] a functional of the density of both spins. In the
generalized Kohn–Sham approach the form of the loop is the same even though the potential is a
nonlocal orbital-dependent operator as described in Chapter 9.

solution of the Kohn–Sham equations but behave differently away from the minimum.
In particular, it is not essential to regard the density as the independent variable in the
equations; different functionals can be found by a Legendre transformation to change
the independent and dependent variables, as is familiar in thermodynamics. In terms of
the Kohn–Sham equations, this means the behavior is a functional of the difference of input
and output quantities �V = V out − V in and �n = nout − nin, where nout is the resulting

nin

nout

Figure 2.6: The self-consistent cycle algorithm for solving the Kohn-Sham equations
Eq. (2.17). Often used for the initial guess is simply the sum of electron densities from
all the atoms in the system, as if they were isolated. From [37].
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2.9. EXCHANGE-CORRELATION FUNCTIONALS

however, values as low as α ≈ 0.01 may be necessary for convergence [75], making the
convergence slow and the number of necessary cycles large. Therefore, more sophisticated
mixing schemes have been developed, such as the Broyden method [77], where α is not
constant but updated dynamically at each iterative step. See Ref. [78] for other advanced
mixing methods.

2.9. Exchange-correlation functionals
Density functional theory owes its success to the fact that the difficult term in Eq. (2.12)
– the exchange-correlation energy Exc – can be approximated remarkably well using sur-
prisingly simple expressions. In this Section, we introduce the two simplest: the local
(LDA) and the semilocal (GGA) approximation.

Local density approximation (LDA) functional
The first step towards expressing Exc was already taken by Kohn and Sham themselves in
their seminal paper [74]. Their local density approximation (LDA) assumes that each point
in space contributes to Exc like a little amount of free electron gas of the same density n.
The exchange-correlation energy ϵhom

xc (n) for a free electron gas of given density n is
known11. Hence, [37, 74]

ELDA
xc [n] =

∫
d3r n(r) ϵhom

xc (n(r)) . (2.22)

Because the functional does not consider any interaction between the neighboring free-
electron-like infinitesimal regions, the approximation is called local and is naturally best
for slowly varying densities. Surprisingly, even for extremely inhomogeneous cases like
the hydrogen atom, it gives binding energy with the accuracy of ≈ 7% [37].

The functional is simple yet successful because it preserves the sum rules [Eq. (2.8)
and Eq. (2.9)], which must always hold for the exchange-interaction hole [81], and because
the precise shape of the exchange-correlation hole is, in fact, not crucial, only its spherical
average [82].

Still, LDA is limited in many senses. Its general shortcoming is that it predicts too
large bonding energies and too short bond lengths [83].

Generalized gradient approximation (GGA) functional
Improved results compared to LDA are obtained by also including the gradient of the
density ∇n, not only the density itself [35]

EGGA
xc [n] =

∫
d3r n(r) ϵhom

xc (n(r))Fxc(n(r), |∇n(r)|) , (2.23)

where Fxc is an enhancement factor encompassing the density gradient; the functional is
therefore semilocal.

11The exchange-correlation energy can be divided into its exchange and correlation part [74] ϵhom
xc (n) =

= ϵhom
x (n) + ϵhom

c (n). The exchange energy for a homogeneous electron gas ϵhom
x is given analyti-

cally [61], while the correlation ϵhom
c has been calculated very precisely by Monte Carlo methods [79]

and parametrized by Perdew and Zunger [80].
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2. DENSITY FUNCTIONAL THEORY (DFT)

Including ∇n corrects the bonding energy, although it may somewhat overcorrect the
bond lengths [83]. There are three widely utilized GGA functionals [84–86]. In this work,
we use the one by Perdew, Burke, and Ernzerhof (PBE) [87].

Advanced functionals
While GGA improves some deficiencies of LDA, it does not account, e.g., for van der
Waals interactions [37]. There are many advanced functionals beyond GGA, which might
depend not only on the density but also on the wave functions, involve the kinetic energy
density, or be able to treat localized d and f orbitals with strong interactions [37, 88].

2.10. Plane-wave basis and PAW method
In practice, the density and wave functions must be represented in a certain basis. In
Density Functional Theory, three bases are often used [37]:

1. Plane wave basis and discrete grids. Plane waves [39] have many advantages:
they arise naturally in quantum mechanics; they naturally obey the Bloch theorem
of solid-state physics; they are independent of the positions of nuclei; forces on
atoms are numerically exact derivatives of the total energy, and the basis can be
systematically improved by including waves with ever-higher spatial frequency [37,
89].
In addition, a transition from the plane-wave basis (the reciprocal space) to the
discrete grid basis [90] (the real space) can be made very efficiently via the Fast
Fourier Transform. This is very useful since some calculations are easily done in
the real space12, while others in the reciprocal space13. We can also exploit the
combination of the two bases, as done in the Projector Augmented Wave (PAW)
method [91] described below, where part of the space is treated with plane waves
and the other part with discrete grids.

2. Localized orbitals. Functions resembling atomic orbitals and centered at the
nuclei are used [92]. This basis is more suitable for computational chemistry to
describe localized individual molecules, in contrast with solid-state physics, where
we usually deal with periodic systems.

3. Atomic sphere methods. The idea here is to divide the space into regions near
the nuclei (atomic spheres), inside which the wave function oscillates quite rapidly,
and the interatomic region, where it oscillates much more slowly. Smooth functions
are used as a basis in the interatomic region and they are augmented in the atomic
spheres. These are the Linearized Augmented Plane Wave (LAPW) method [93,
94], Korringa-Kohn-Rostoker (KKR) method14 [95, 96] and Linearized Muffin-tin
Orbitals (LMTO) method [97].

In addition, there are linear scaling methods [98], which are suitable for large systems
(e.g., a fragment of an RNA molecule with ≈ 1000 atoms [98]). Using them, the com-
putation time then scales linearly with the number of atoms N , while in the previous

12e.g., calculating the density from the wave functions
13the kinetic energy calculation
14also called Green’s function method or multiple-scattering theory (MST)
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2.10. PLANE-WAVE BASIS AND PAW METHOD

(a) (b)

exact

pseudo (nodeless)
plane waves

pseudo-onsite
radial grids

exact onsite
radial grids

interstitial region

augmentation region

Figure 2.7: (a) Inside a sphere of a cutoff radius rc from the given nucleus, a pseudopo-
tential Vpseudo replaces the real Coulomb potential V to suppress rapid oscillations in the
wavefunction Ψ. Above rc, the exact and pseudized potentials and wavefunctions are
equal. The region r < rc is called the augmentation region. The region r > rc is called
the interstitial region. From [101]. (b) The exact Kohn-Sham wave functions in the PAW
method consist of three terms. A combination of plane-wave basis and radial grids is
exploited. The wavefunction and its derivative is assured to be continous at the sphere
boundaries [35]. Adapted from [102].

three cases, it scales as N2 or N3 [37]. On the other hand, care must be taken to ensure
accurate results.

Pseudopotentials

Near a nucleus, the Coulomb potential V ∝ −1
r

is strong and it forces the wave functions
to oscillate rapidly [37], see Fig. 2.7(a). When using the plane-wave basis, high spatial
frequencies must be included to describe these rapid oscillations. On the other hand, this
strong Coulomb potential near the nucleus influences mainly the core electrons, which do
not respond significantly to the neighboring atoms15 and hence are often approximated
as non-changing: the so-called frozen core approximation [99].

A pseudopotential replaces the strong Coulomb potential near a nucleus with a poten-
tial that is much weaker, to suppress rapid oscillations in the wave function [55, 100]. Fur-
ther away from the nucleus, the pseudopotential has its value equal to the true Coulomb
potential, see Fig. 2.7(a). The new wave function is called a pseudo wave function, which
has the correct form far from the nucleus but does not oscillate rapidly close to the nu-
cleus. Thereby, high-frequency plane waves are not needed, and the required size of the
plane-wave basis is smaller.

15do not take part in chemical bonds

23



2. DENSITY FUNCTIONAL THEORY (DFT)

Projector augmented waves (PAW)
The Projector Augmented Wave (PAW) method [91] is a modern method, which efficiently
treats the behavior of wave functions both near the nucleus and between the atoms. The
unit cell [top part of Fig. 2.7(b)] is divided into two regions:

I. Augmentation spheres, which are centered on atomic nuclei, with a cut-off radius
ra

c for a given atom a. In this region, the Coulomb potential is strong, and the wave
functions, which oscillate rapidly, are represented by localized orbitals.

II. Interstitial region in-between the spheres. In this region, the Coulomb potential
is already weak, and the wave functions, which oscillate slowly, are expanded into
plane waves.

The exact wave functions (as well as the densities and energies) then consist of three
parts [35, 37], see the bottom part of Fig. 2.7(b): the pseudo wavefunction evaluated with
plane waves minus the same pseudo wavefunction inside the augmentation sphere evalu-
ated with radial grids plus the exact wavefunction in the augmentation sphere evaluated
with radial grids.

2.11. Spin-dependent Kohn-Sham equation
To explicitly include magnetization into DFT, the wave function is decomposed into
its spin-up and spin-down parts [68, 103], together forming a spinor16 ψ and a spin-
density s [46]

ψ(r) =
(
ψ↑(r)
ψ↓(r)

)
; s(r) = ⟨ψ(r)|σ|ψ(r)⟩ , (2.24)

where σ = (σx, σy, σz) is the vector of Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.25)

The density is treated as a matrix containing both particle and spin density [46]

n(r) =
(
ψ∗

↑(r)ψ↑(r) ψ∗
↑(r)ψ↓(r)

ψ∗
↓(r)ψ↑(r) ψ∗

↓(r)ψ↓(r)

)
= 1

2

(
n(r) + sz(r) sx(r) − isy(r)
sx(r) + isy(r) n(r) − sz(r)

)
. (2.26)

The spin-polarized Kohn-Sham equation is then [46]

[(
−1

2
∇2 + Vext(r) + VHartree(r)

)
I + V xc(r) − σ · B(r)

] (
ψ↑

i (r)
ψ↓

i (r)

)
= εi

(
ψ↑

i (r)
ψ↓

i (r)

)
, (2.27)

where the unit matrix I =
(

1 0
0 1

)
, the exchange correlation matrix V xc = ∂Exc

∂n(r) , and B

is the external magnetic field.
16a two-component vector
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2.12. MAGNETOCRYSTALLINE ANISOTROPY CALCULATION

2.12. Magnetocrystalline anisotropy calculation

Because the Hamiltonian in Eq. (2.27) does not depend on the spin, the magnetic mo-
ments have no preferential direction–they have no anisotropy [46]. To observe magnetic
anisotropy, it is necessary to include relativistic effects, namely the spin-orbit coupling,
illustrated by a semi-classical model in Sec. 1.5.

Within the density functional theory, magnetocrystalline anisotropy energy EMCA can
be calculated by three methods [35]: full relativistic total energy calculation [104], force
theorem [105, 106], or the torque method [107].

The force theorem method is used in this work. By the argument that ESOC is small
(≈ 1 meV) compared with the crystal field energy (≈ 1 eV) [32], the spin-orbit coupling
is treated as a perturbation. The EMCA calculation consists of two steps:

1. A spin-polarized calculation is performed to obtain the ground-state density self-
consistently.

2. With the spin-orbit coupling included and keeping the electron density from the
previous step, the total energy for different magnetization directions is calculated.

Since EMCA is so small, special care must be taken that the total energies are calculated
precisely, namely that a sufficient number of k-points and sufficiently high plane-wave
cutoff energy is used.

2.13. Vienna Ab Initio Simulation Package (VASP)

The Vienna Ab Initio Simulation Package (VASP) [108–110] is a complex commercial
package for ab initio simulations. It is written in Fortran 90 and uses MPI [111, 112]
to enable massively parallel computing on clusters. The PAW method is employed for
accurate calculations with a small enough basis. It has good scalability for large systems
(calculations for up to ∼ 4000 valence electrons), and there are routines that automatically
calculate the symmetry of the problem, to simplify the computation. Throughout this
work, VASP version 5.4.4. is used for self-consistent collinear calculations and version
5.4.1. for noncollinear non-selfconsistent calculations.

In the following, the general inputs and outputs of a VASP calculation are outlined.
They are logically grouped into several text files.

Input files
Four input files are always needed in a VASP calculation:

1. POSCAR

In the POSCAR text file, we define the size and shape of the unit cell, along with the
positions and types of atoms it contains. Periodic boundary conditions are usually applied
in all directions, so the unit cell virtually repeats and fills the whole space.
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2. DENSITY FUNCTIONAL THEORY (DFT)

2. INCAR

The INCAR text file contains most of the calculation settings, namely the type of cal-
culation and the specific algorithms used, the size of plane-wave basis and precision of
convergence criteria, whether magnetism should be included, and what are the starting
magnetic moments for each atom, and so on. We can also define how to parallelize the
computation and how strongly the symmetry conditions should be enforced. Most param-
eters have reasonable default values and do not have to be modified, depending on the
requirements.

3. KPOINTS

The periodic boundary conditions make VASP ideal for solid-state materials calculations,
where the Bloch theorem and notion of the Brillouin zone play a central role [39]. The
electronic ground state should be calculated for all the (infinite number of) k-points inside
the Brillouin zone and then integrated. In practice, the Brillouin zone is sampled by some
limited number of k-points and then summed. The type of sampling and the number of
k-points (density of the k-point mesh) is specified in the KPOINTS file.

4. POTCAR

POTCAR contains the pseudopotentials for each atomic element used in POSCAR. The
pseudopotentials are created by the developers and copy-pasted into POTCAR, depending
on which ones are currently needed.

Output files
The output of the calculation is naturally the ground-state density, given in the CHGCAR
file, along with the wave functions given in WAVECAR. However, most of the relevant
parameters are given in OUTCAR.

OUTCAR

OUTCAR contains information about the calculation progress and a plethora of important
output parameters. These are the symmetry of the problem, total energy, the energy
eigenvalues at all sampled k-points, relaxed atomic positions (if atomic relaxation was
performed), forces on atoms, magnetic moments (including the orbital moments), and far
more.

PROCAR

In PROCAR, for each particular band at each particular k-point, the character of this
band is provided as a set of complex numbers for all the nuclei, orbitals, and spins, where
the complex number is the projection coefficient of the particular wavefunction with a
given spin onto a given spherical harmonic (orbital type) centered at the given nucleus.

DOSCAR

DOSCAR contains the density of states (DOS) resolved in spin, orbital type, and nucleus
site.
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3. Magnetic anisotropy of bcc Fe, Co,
and Ni/MgO ultrathin films

The manyfold cutting edge applications of MgO-based magnetic tunnel junctions have
been described in the Introduction. In this thesis, we focus on their applications in the
spin-transfer torque magnetic random access memory (STT-MRAM). Specifically, we aim
to increase their perpendicular magnetic anisotropy (PMA) to enable further downsize
scaling of STT-MRAM memory bits (Sec. 1.6). The ferromagnetic layers in MgO-based
MTJs are usually composed of the 3d transition elements Fe and Co in their body-centered
cubic (bcc) crystal structure. In this chapter, we start by investigating the PMA of
ultrathin films of bcc Fe, Co, and Ni on MgO by ab initio calculations.

3.1. Magnetocrystalline anisotropy calculation proce-
dure

The density functional theory (DFT) calculations of magnetocrystalline anisotropy are
performed using the Vienna Ab initio Simulation Package (VASP) [109, 110] (Sec. 2.13).

The Generalized gradient approximation (GGA) exchange-correlation functional [113]
(Sec. 2.9) is used as implemented by Perdew, Burke, and Ernzerhof [87]. The k-point
mesh of 25 x 25 x 1 points and a plane wave cut-off energy of 520 eV (ENCUT = 520) has
proven to give sufficient accuracy, as discussed in Sec. 3.2. We follow the force-theorem
method [105, 106], already introduced in Sec. 2.12.

The whole calculation procedure is described in detail in Ref. [114, 115] and it consists
of four steps:

1. Relaxation. First, the unit cell shape, volume, and atomic positions are adjusted
to minimize the interatomic forces1 below 0.001 eV/Å (EDIFFG = -0.001).

2. A self-consistent optimization of the ground-state electronic structure is per-
formed, until the total energy variation drops below 10−7 eV (EDIFF = 1e-7).

3. Spin-orbit interaction is included (LSOC=.TRUE.) and the total energy of the
system is calculated non-self-consistently, with the electronic charge density from
the previous step (ICHARG=11); the magnetization is out-of-plane (SAXIS = 0 0 1).

4. Same as step 3, but with magnetization in-plane (SAXIS = 1 0 0).

1obtained from the Hellmann-Feynman theorem [116, 117]
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3. MAGNETIC ANISOTROPY OF BCC FE, CO, AND NI/MGO ULTRATHIN FILMS

The magnetocrystalline energy EMCA is then defined as the total energy difference for
magnetization in-plane m|| = (1, 0, 0) and out-of-plane m⊥ = (0, 0, 1)

EMCA = E(m||) − E(m⊥) . (3.1)

3.2. Convergence tests
As mentioned in Sec. 2.12, EMCA is a very small energy difference (∼ 1 meV), compared
with the total energy (∼ 100 eV). In our case, it makes up for a tiny ∼ 0.001% of the
total energy, and special care must be taken to perform calculations that are sufficiently
accurate. Therefore, we first carry out several convergence tests.

The k-point mesh
The k-point mesh determines how densely the Brillouin zone should be sampled. In
Fig. 3.1(b), a two-dimensional Brillouin zone with 4x4 k-point mesh is sketched2. Denser
mesh means higher precision but longer computation time. Before any calculation, it
is hence important to determine the minimal k-point mesh density, which still ensures
the required precision. We perform a k-point convergence test on a structure with a
5-monolayer (ML) film of bcc Ni sandwiched between 5 MLs of MgO.

In Fig. 3.1(a), we plot EMCA vs. nk,lateral, where the k-point mesh is nk,lateral×nk,lateral×3
k-points. The data is fitted by an exponential to obtain the asymptotic value. For most of
the calculations, though, 1 k-point in the z direction is enough and a mesh of 25 × 25 × 1
k-points has proven to give a reasonable trade-off between accuracy and computation
time.
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Figure 3.1: (a) K-points convergence test performed on bcc Ni(5ML)/MgO(5ML) and a
nk,lateral ×nk,lateral × 3 k-point mesh. (b) A 2D Brillouin zone with a small, illustrative 4x4
kpoint mesh. Only 3 out of the 16 points are unique. The irreducible Brillouin zone thus
covers only 1/8 of the whole Brillouin zone. From [118].

2Note that due to symmetry, only 3 k-points are unique, forming the much smaller irreducible Brillouin
zone. This reduction of k-points by symmetry considerations greatly simplifies the calculation in steps 1
and 2 in Sec. 3.1. However, for Steps 3 and 4, where the spin-orbit coupling is included, the symmetry is
broken and should be switched off (ISYM = -1).
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3.3. BODY-CENTERED CUBIC (BCC) LATTICE OF CO AND NI

The plane-wave energy cut-off
To make the plane-wave basis finite, one needs to set the highest spatial frequency, which
still needs to be included in the plane-wave basis to accurately describe the charge density
oscillations with sufficient resolution. In VASP, instead of the spatial frequency cut-off
Gcut, we set the wave’s corresponding cut-off kinetic energy

Ecut = ~2

2me

G2
cut (3.2)

defined by the ENCUT parameter in INCAR. Default values are available in VASP for each
element. We use Ecut = 520 eV. The change in EMCA following the change in Ecut from
500 eV to 550 eV is3 only 2−4 meV.

Note that increasing the MgO thickness from 5ML to 7ML has only a small effect on
EMCA, below 0.01 meV.

3.3. Body-centered cubic (bcc) lattice of Co and Ni
The natural lattice-type for bulk Fe is indeed the body-centered cubic (bcc), but for Co,
it is hexagonal close-packed (hcp), and for Ni, it is face-centered cubic (fcc). That is why,
with no MgO present, thin slabs of Co and Ni prefer the fcc structure over bcc: if we
impose the bcc structure on a few-monolayer-thick Co or Ni slab interfaced with vacuum
and let it relax, the lattice expands vertically by a factor of

√
2, as shown in Fig. 3.2. This

corresponds to a bcc→fcc transformation; the fcc lattice is clearly apparent if the relaxed
structure is rotated by 45◦ (see Fig. 3.2). The Fe slabs always stay in the bcc form.

Figure 3.2: A Co or Ni slab (thin film interfaced with vacuum) relaxes from the initial
bcc form to fcc by a vertical expansion. In Fe, whose natural bulk lattice type is bcc, we
do not observe this transformation.

3for the Ni/MgO test system and 25×25×3 k-points

29



3. MAGNETIC ANISOTROPY OF BCC FE, CO, AND NI/MGO ULTRATHIN FILMS

On the contrary, if the slabs are interfaced with MgO, the relaxation compresses the
lattice slightly in the vertical direction, making the lattice strained. Hence, (a strained)
bcc lattice of Co and Ni is stabilized by the MgO barrier.

3.4. Test calculations: reproducing published results
To check that the calculation as described above is set up correctly, we try to reproduce
some well-known published results.

First, the results of hybridization between the Fe d orbitals and the O pz orbital at
the Fe/MgO interface are studied. This hybridization plays a central role in the large
out-of-plane interfacial anisotropy in Fe/MgO MTJs4. Hence, we follow the work of Yang
et al. [114] and plot the energy levels of the interfacial Fe d-orbitals and the interfacial O
pz orbital in Fe(5ML)/MgO(5ML). Our results are shown in Fig. 3.3, side by side with
the results from Yang et al. [114]. The energy level positions correspond well, and the
hybridization of the O pz orbital with Fe dz2 orbital is apparent, as explained in the
caption of Fig. 3.3.

Second, we perform the EMCA calculation for Fe/MgO with Fe thickness from 5 to
15 MLs. For all the films, we determine the contribution from each of the layers and
compare with Ref. [119]. As shown in Fig. 3.4, our results again coincide very well with
the published ones.

Figure 3.3: The energy levels of the five d-orbitals (xy, xz, yz, z2, and x2-y2) at the
interfacial Fe and the pz orbital of the interfacial O (O_pz) in Fe/MgO are shown for
three cases: without spin-orbit coupling (middle column of energy levels), with SOC plus
magnetization out-of-plane (⊥; left column), with SOC plus magnetization in-plane (//;
right column). With SOC included (left and right column), additional energy levels appear
in the oxygen pz orbital, corresponding to certain Fe dz2 . This signifies the presence of
hybridization between the two orbitals, which is the main cause of interfacial PMA in
Fe/MgO [114].

4The interfacial anisotropy between Fe and O makes it possible to fabricate perpendicular MgO-based
MTJs, very important for MRAM applications [1].
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Figure 3.4: Layer-resolved EMCA for Fe/MgO of different Fe thicknesses. The grey empty
circles (calculated in this work) correspond well to the literature results (the colored
symbols, calculated in Ref. [119]).

3.5. Varying the metal thickness

After validating the accuracy of the calculation procedure, we continue with a series of
calculations for bcc (001) Fe, Co, and Ni on MgO as a function of metal thickness. In
Fig. 3.5, we plot their EMCA, the in-plane lattice parameter a, and the average atomic
magnetic moment µ.

Magnetocrystalline anisotropy

From Fig. 3.5(a), it is clear that for Fe, the EMCA stays almost constant with thickness.
This is well known [119]. For Co, on the other hand, there is a steady increase. For Ni,
the behavior seems oscillating.

According to Eq. (1.3), constant variance with thickness points to interfacial anisotropy,
while linear increase points to bulk anisotropy [also indicated in the inset of Fig. 3.5(a)].
We confirm the origin of these distinct trends by plotting the contribution to EMCA from
each of the metallic layers separately in Fig. 3.5(b).

For Fe, the main contribution to EMCA comes from the first two layers at the MgO
interface [114, 119, 120]. Increasing the thickness does not affect the electronic properties
of the interfacial layers in a significant way [119] (see Fig. A.1 in Appendix A). The
contribution of the bulk layers is almost zero. When increasing the Fe thickness, only
bulk-like layers are added. Hence the EMCA does not change with thickness.

Interestingly, for Co, all the bulk layers seem to contribute with a significant positive
value [120], evident from Fig. 3.5(b). This is why the EMCA in Fig. 3.5(a) grows mono-
tonically: by increasing the thickness, more bulk-like layers are added and each of them
gives a contribution of about 0.5 mJ/m2.

In Ni, the influence of the interface manifests itself as deep as 6 ML [120]. The
two interfacial layers contribute negatively to EMCA. This is the reason for the in-plane
anisotropy in the 5-ML structure in Fig. 3.5(a). Although the deeper bulk layers con-
tribute positively, the EMCA does not grow monotonically, as one could expect, because
the interfacial contributions in Ni do change upon thickness increase, unlike in Fe or Co
(Fig. A.1 in Appendix A).
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Figure 3.5: (a) The magnetocrystalline anisotropy for structures comprising bcc Fe, Co,
and Ni on MgO as a function of metal thickness. Constant variance for Fe signifies
presence of interfacial anisotropy; linear increase for Co signifies bulk anisotropy. This is
confirmed by the layer-resolved values in metal(15ML)|MgO structures in part (b). (c)
In-plane lattice parameter. With increasing metal thickness, it relaxes from the MgO bulk
value towards the smaller Fe, Co, and Ni bulk values. The decrease is least prominent for
Ni, which mainly relaxes via vertical lattice parameter c: its c/a ratio in part (d) deviates
most from the equilibrium c/a = 1. (The c/a ratio in bulk layers of Fe, Co, and Ni is 0.94,
0.89, and 0.85, respectively.) The layer-resolved c/a values plotted for the 15ML-thick
structure in part (d) are very similar across all thicknesses, see Fig. A.2 in Appendix A.
(e) The average atomic magnetic moment is almost constant for Co and Ni, but decreases
for Fe. (f) Only in Fe are the interfacial magnetic moments enhanced.
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3.6. STRAINED BULK BCC FE, CO, AND NI

Lattice parameter and strain
In Fig. 3.5(c), the lattice parameter for the thinnest metal thicknesses is very close to that
of bulk MgO: aMgO = 2.98 Å [121]. The 5ML-thick MgO imposes this lattice parameter
upon the thin metals. For thicker metal layers, the a parameter starts to decrease (it
relaxes) towards the bulk values of the respective bcc metals: aFe = 2.86 Å [122], aCo =
= 2.81 Å [123], aNi = 2.79 Å [this work].

The a relaxation is most prominent for Fe, less so for Co, and even less for Ni. This
might seem surprising: from the lattice parameters given above, the lattice mismatch
is biggest for Ni, lower for Co, and lowest for Fe. We would hence expect the steepest
decrease of a in Fig. 3.5(c) for Ni. However, Ni relaxes mainly via the vertical lattice
parameter c.

In other words, the c/a lattice parameter ratio for Ni most deviates from the equillib-
rium value c/a = 1. This is clear from Fig. 3.5(d): the typical relaxed c/a ratios we found
within the bulk-like layers of Fe, Co, and Ni on MgO are 0.94, 0.89, and 0.85, respectively.
(We devote the next Sec. 3.6 to the effect of strain on the EMCA in purely bulk bcc Fe,
Co, and Ni.)

Atomic magnetic moment
The average magnetic moment per atom [Fig. 3.5(e)] stays almost constant for the larger
thicknesses of Co and Ni. (For the thinnest Co, there are strong variances due to the
extreme strains in these ultrathin structures.) For Fe, however, the average atomic mag-
netic moment decreases with thickness. This has been observed both theoretically and
experimentally [124, 125]. Also, there is an interfacial magnetic moment enhancement in
Fe/MgO, see Fig. 3.5(f). Its consequences for magnetic tunnel junctions were discussed
in Ref. [126].

3.6. Strained bulk bcc Fe, Co, and Ni
In order to understand what is the cause of the large bulk PMA in bcc Co in Fig. 3.5(b),
based on Fig. 3.5(d), we make a hypothesis that this large PMA is strain-induced.

To determine the effect of strain on bulk bcc Fe, Co, and Ni, we perform a series of
anisotropy energy calculations of a simple bcc unit cell of Fe, Co, and Ni with different
c/a ratios [Fig. 3.6(a)]. A k-point mesh of 19×19×19 points has proven to provide EMCA
with sufficient accuracy of 0.01 meV. The typical bulk strains from Fig. 3.5(d) are plotted
as vertical lines. At its typical c/a ratio (0.89), there is indeed a strain-induced anisotropy
of about 0.5 mJ/m2 for bulk bcc Co in Fig. 3.6(b). This is the same value as in the bulk
layers of Fe on MgO in Fig. 3.5(b).

Thereby, the hypothesis of significant strain-induced PMA in Co/MgO is supported.
We have performed some additional tests, notably making the structure artificially un-
strained (c/a = 1) and omitting the relaxation step in the calculation. The result was
that the PMA in Co disappeared, as expected.

The EMCA in strained bulk bcc Fe, Co, and Ni has been calculated before [127, 128],
but only in the range c/a > 1, whereas our region of interest is c/a < 1 (the typical
strains of metal/MgO structures). Our results correspond well to the published values for
c/a > 1, see Fig. A.3 in Appendix A.
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Figure 3.6: (a) A simple bcc unit cell with the vertical lattice parameter c and the latteral
lattice parameter a. It serves as a model structure for evaluating the impact of strain on
the PMA of Fe, Co, and Ni on MgO. (b) The EMCA was calculated for different c/a ratios.
Vertical lines signify the typical c/a values in bulk-like layers of bcc Fe, Co, and Ni on
MgO. At the typical c/a for Co (0.89), the EMCA is indeed about 0.5 mJ/m2, same value
as in Fig. 3.5(b). This supports the hypothesis that the PMA in bcc Co in Fig. 3.5(b) is
strain-induced. Note that the values for c/a > 1 correspond reasonably well to published
results [127, 128] (see Fig. A.3 in Appendix A). © 2021 American Physical Society [120].
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4. Giant anisotropy enhancement in
Fe/Co/Fe|MgO magnetic tunnel junc-
tion

In this Chapter, we exploit the results of the previous Chapter 3, namely that there is a
large PMA arising at the Fe/MgO interface and a large PMA contribution coming from
the Co/MgO bulk.

4.1. PMA enhancement due to EMCA

We propose to enhance the PMA of a conventional Fe/MgO MTJ by replacing a few of the
bulk Fe layers with Co [120]. In Fig. 4.1, this concept is demonstrated. A conventional
MTJ is shown, consisting of a fixed magnetic layer, the MgO barrier, and a magnetic
storage layer composed of a Fe(3 ML)/Co(10 ML)/Fe(3 ML) trilayer. The Co atoms in
the middle of the structure enhance the PMA, compared with a structure with pure Fe.
Following the arguments of Sec. 3.5 and Sec. 3.6, the large PMA in the bulk Co layers is
induced by the epitaxial strain caused by MgO.

In Fig. 4.2(a), we plot EMCA for structures with the general form Fe(n)/Co(m)/Fe(n)|MgO
for different Fe and Co thicknesses n and m, respectively. The enhancement mechanism
is persistent for all the cases. Note, however, how the first Co layer at the Fe/Co inter-
face loses its positive PMA. Especially from the ”n = 4, m = 4” case in Fig. 4.2(a) it

Figure 4.1: The concept of PMA enhancement in a conventional Fe/MgO MTJ by replac-
ing a few of the bulk layers by Co. The bulk Co atoms (blue) provide large contribution
to EMCA. Also, they reduce the negative demagnetizing energy, as discussed in the text.
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4. GIANT ANISOTROPY ENHANCEMENT IN FE/CO/FE|MGO MAGNETIC
TUNNEL JUNCTION
is apparent that a Co thickness of m < 4 monolayers might lose the enhancing property
altogether.

Indeed, we find that the condition for the enhancement to work is to have at least
two Fe monolayers (n ≥ 2) and at least three Co monolayers (m ≥ 3). In Fig. 4.2(b), we
plot the layer-resolvedEMCA for this ”minimal structure” Fe(2ML)/Co(3ML)/Fe(2ML)|MgO,
as well as for several structures defying the n ≥ 2, m ≥ 3 rule, which is clearly detri-
mental for the PMA.

WhileEMCA shows very promising enhancement in our presented Fe(n)/Co(m)/Fe(n)|MgO
magnetic tunnel junction design, so far we have not considered the important contribution
of shape anisotropy.

4.2. Shape anisotropy (Edd) calculation
We implement a Python code to calculate the shape anisotropy. The code first loads the
(relaxed) positions and dipolar magnetic moments of all the atoms calculated by VASP.
The total dipolar energy Edipolar [Eq. (1.7)] is then obtained for magnetization in-plane
m|| = (1, 0, 0) and out-of-plane m⊥ = (0, 0, 1). The shape anisotropy energy (dipolar
demagnetizing energy) is defined as [129, 130]

Edd = Edipolar(m||) − Edipolar(m⊥) , (4.1)

similar to the definition of EMCA [Eq. (3.1)].
Note that the unit cell in VASP is small, but due to the periodic boundary conditions,

it effectively forms an infinite thin film, which is exactly the geometry we are interested
in. Now, the dipole-dipole interactions should also be summed up to infinity in the two x
and y in-plane directions1. In practice, the code performs a sum up to some finite cut-off
radius rcut [see the inset in Fig. 4.3(a)] for a few selected values of rcut (∼100 unit cells).
Then we interpolate Edd(rcut) with the formula

Edd(rcut) = a r−b
cut + c . (4.2)

This expression is justified by the fact that the dipole-dipole energy ∝ 1/r3
cut and the

number of atoms of the thin infinite film ∝ r2
cut (the surface area), so overall Edd ∝ 1/rcut

[see Fig. 4.3(a)]. Hence, we expect b ≈ 1, which is also what we observe in fits similar to
that in Fig. 4.3(a). The desired asymptotic value is clearly the c coefficient

Edd(rcut → ∞) = c . (4.3)

After testing the code, we arrive at the following conclusions.

1. Quite a low cut-off radius of only several tens of unit cells is enough for a precise
extrapolation by Eq. (4.2). Namely in our test case, we compare the results of extrap-
olating Edd(rcut → ∞) from rcut ∈ {10, 30, 50} and from rcut ∈ {500, 1000, 2000}.
The difference is only 0.3% and the computation time for the first case is orders
of magnitude shorter. Using this low cut-off radius, we reproduce the results from
Ref. [129] with good precision (≈ 1%).

1Note that in VASP, the periodic boundary condition is also in the z direction, perpendicular to the
film. This effectively makes the structure an infinite number of parallel thin double-barrier magnetic
tunnel junctions. Since the magnetic layers are separated by MgO, this is of no concern in the DFT
calculation, but for the Edd, implying the periodic boundary condition in z would be meaningless.
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Figure 4.2: (a) Layer-resolved EMCA in structures of the form Fe(n)/Co(m)/Fe(n)|MgO.
Gold circles represent Fe layers and blue circles represent Co layers. The enhancement of
EMCA compared to a pure Fe|MgO structure is provided by the bulk Co layers, similar
to Fig. 4.1 [120]. The Fe/Co interface is detrimental to the bulk Co PMA of the Co
layer closest to Fe. (b) We find that at least 2 Fe layers and 3 Co layers are needed for
the enhancement. This ”minimal” structure is on the very left. The other structures
defying this condition do not exhibit the large enhancement. © 2021 American Physical
Society [120].
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Figure 4.3: (a) The dipolar demagnetizing energy Edd for a Fe(7ML)/MgO finite thin
rectangular film with a diameter of 2rcut unit cells. The scaling is close to Edd ∝ 1/rcut,
i.e., Edd(rcut) = a r−b

cut + c with b ≈ 1. (b) The dipolar demagnetizing energy as a function
of the magnetization angle θ from the perpendicular direction. The Edd(θ) has the form
of uniaxial anisotropy [Eq. (1.2)]. Tested on Fe(7ML)/MgO.

2. The calculation values are very similar to the simple formula Eq. (1.6) for thin
magnetic films [30]

Edemag, thin-film = −µ0

2
M2

s , (4.4)

where Ms is the average magnetization over the whole unit cell. Indeed, Eq. (4.4)
underestimates the shape anisotropy only by a few percent, as shown in Tab. 4.1.

3. The angular dependence of Edd is uniaxial [Eq. (1.2)], which is apparent from
Fig. 4.3(b).

Table 4.1: Comparing Edd calculated by the average demagnetizing field [Eq. (4.4)] and
the dipole sum [Eq. (1.7)] in a few selected structures. The underestimate of Edemag, thin-film
compared to Edd is also given.

Edemag, thin-film Edd
underestimate (%)(MJ/m3) (MJ/m3)

Fe(5ML)|MgO -2.02 -2.09 3.4
Fe(7ML)|MgO -2.17 -2.19 1.1
Fe(15ML)|MgO -2.11 -2.15 1.5
Fe(2ML)Co(3ML)Fe(2ML)|MgO -1.72 -1.78 3.1

4.3. PMA enhancement due to EMCA and Edd

We have thus two major contributions to the effective perpendicular anisotropy

PMA = EMCA + Edd . (4.5)

By replacing the bulk-like layers in Fe/MgO, we obtained large enhancement due to EMCA
[Fig. 4.1]. In addition, there is enhancement also due to Edd. This is clear from the
following argument, which we make for the simplified expression Eq. (4.4), but it can be
made very similarly for the more accurate Eq. (1.7) [along with Eq. (4.1)]: since Edd is

38



4.4. DECREASE OF PMA WITH FE/CO INTERDIFFUSION

d
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dd
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Figure 4.4: (a) Effective PMA (EMCA+Edd) in MgO|Fe(n)Co(m)Fe(n)|MgO as a function
of number of monolayers n, m. There is no perpendicular to in-plane magnetic anisotropy
switching compared to pure MgO|Fe|MgO (grey diamonds; its thickness is m+4 ML, the
same as the overall thickness for n=2) [120]. (b) EMCA, Edd, and the effective PMA
(EMCA+Edd) for n=2. The effective PMA increases with the Co thickness [120]. (c)
Supercell of the MgO|Fe(2)Co(3)Fe(2)|MgO with periodic boundary conditions applied
in all directions [120]. Produced by VESTA [131]. © 2021 American Physical Society [120].

negative, the (positive) perpendicular anisotropy energy is increased when the magnitude
of Edd is decreased. Since the magnetic moment of Co [≈ 1.73µB] is lower than that
of Fe [≈ 2.5µB; Fig. 3.5(e)], Edd is weaker and the effective perpendicular anisotropy is
enhanced even stronger.

In Fig. 4.4(a), we plot the effective PMA = EMCA + Edd as a function of Fe and
Co thicknesses n and m. Usually, above certain film thickness, the demagnetizing energy
dominates, making the effective anisotropy negative (in-plane). This is clear from the pure
Fe|MgO case (grey line). In contrast, the effective PMA in our Fe(n)/Co(m)/Fe(n)|MgO
does not become negative; due to the two enhancement mechanisms, it grows steadily,
just as in the pure Co/MgO case [Fig. 3.5(a)]. The variation of EMCA and Edd separately
(for n = 2) is shown in Fig. 4.4(b). The storage layer design with enhanced anisotropy is
depicted in Fig. 4.4(c).

4.4. Decrease of PMA with Fe/Co interdiffusion
In the real-life fabricated structures, there will be some interdiffusion between the neigh-
boring layers. The sharpness of the Fe/Co interface is, therefore, an important factor to
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consider [120]. From the simulations, it follows that any interdiffusion is fatal for the
PMA when the Fe or Co thickness is less than 2 ML or 3 ML, respectively [n<2 or m<3;
Fig. 4.2(b)]. Robustness can be achieved at larger Fe and Co thicknesses. In Fig. 4.5, one
may see the effective PMA in the Fe(2)Co(3)Fe(2) and Fe(3)Co(4)Fe(3) structures with
0.5-ML (50%) interdiffusion and a 1-ML interdiffusion (the interface layers are completely
swapped). The drop in the effective PMA in Fe(3)Co(4)Fe(3) is only 22% at 0.5-ML in-
terdiffusion, compared to a drop of 73% for Fe(2)Co(3)Fe(2). This robustness against
surface roughness is to be expected in the thicker structures in general [120].

Larger Co thickness is favorable as it increases the PMA [Fig. 4.4(a)], but thicker bcc
Co will probably be harder to fabricate [132].

On the other hand, larger Fe thickness provides robustness against interdiffusion and
might stabilize the bcc Co2, but the PMA decreases [Fig. 4.4(a)].

The goal is therefore to maximize the Co thickness as long as its structure stays
stable and to minimize the Fe thickness as long as the robustness against interdiffusion
is sufficient. Looking at Fig. 4.4(a) and considering all the aforementioned aspects, the
MgO|Fe(3ML)Co(4ML)Fe(3ML)|MgO seems like a promising candidate as a storage layer
for STT-MRAM cells with highly improved thermal stability compared to conventional
STT-MRAM [120].

Indeed, when the storage layer is sandwiched between two MgO layers, the anisotropy
per unit area is of the order of 2 mJ/m2 from the interfacial contribution minus approx-
imately 1.2 mJ/m2 from demagnetizing energy (dependent on the chosen storage layer
thickness), yielding a net effective PMA per unit area approximately 0.8 mJ/m2 [120, 133].
In comparison, the net anisotropy per unit area in the proposed structure is approximately
2.2 mJ/m2, being almost 3 times larger. This means that for the same thermal stability
factor [Sec. 1.6], the cell area could be reduced by a factor of 3 compared to conventional
MRAM [1, 120, 134].

4.5. Fabrication of the metastable bcc Co
Although the natural form of Co is hcp, the metastable bcc Co phase can be grown
at room temperature [120, 135–137]. It has been successfully grown on top of Fe with
thickness up to 15 ML [138], with well-defined interfaces and no visible interdiffusion.
The observed strain of 10% in bcc Co|MgO is considerable but still within the limit
of what is experimentally realizable [139]. Indeed, Yuasa et al. [132] fabricated bcc
Co(4ML)|MgO(10ML)|Co(4ML) MTJ and measured a record-holding TMR of 410% at
room temperature. As shown in Sec. 3.3, from our structural relaxation simulations, it
follows that the bcc Co is preserved on top of MgO while it transforms into the fcc phase
when surrounded by vacuum. Therefore, the bcc phase will probably be most stable if
the device is used as a double-barrier MTJ. This also provides higher PMA from the
interfacial Fe, due to the presence of two interfaces [120].

4.6. Tunneling magnetoresistance
Since we are interested in implementing this proposed storage layer in a full MTJ stack, we
investigate its expected TMR amplitude [120]. A large TMR of 410% at room temperature

2it is generally easier to grow bcc Co on Fe than on MgO
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Figure 4.5: The effect of interdiffusion on the effective PMA in two selected structures.
For the (minimal) Fe(2)Co(3)Fe(2) structure, there is a significant PMA decrease of 73%
at 0.5-ML atomic intermixing. For the thicker Fe(3)Co(4)Fe(3), the PMA is reduced
only by 22%, demonstrating the robustness against interfacial roughness. We expect this
robustness in the thicker structures in general. © 2021 American Physical Society [120].

has been observed previously in pure bcc Co|MgO|Co MTJs [132]. In addition, Co in
combination with Fe is often used for its record-holding TMR values. Therefore, we
expect the high TMR to be present also in the proposed Fe|MgO MTJs with the inserted
Co bulk layer. We estimate the TMR from the Julliere formula [3]

TMR = GAP −GP

GAP
= 2P 2

1 − P 2 , (4.6)

where GAP and GP are the device conductivity with the two magnetization layers antipar-
allel and parallel, respectively, and the spin polarization

P = D↑(EF) − D↓(EF)
D↑(EF) + D↓(EF)

, (4.7)

where Dσ(EF) is the density of states for spin σ ∈ {↑, ↓} at the Fermi energy EF. Note that
only the ∆1 orbitals (s, pz, and dz2) contribute to the tunneling in crystalline MgO [15].
Therefore, we account only for these states in D. Also, it is best to take D of the interfacial
oxygen [140]. The estimated values are very high, around 300%.
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5. Second order perturbation theory
calculations of EMCA

The magnetocrystalline anisotropy arises due to spin-orbit coupling, as discussed in Chap-
ter 1. The strength of the SOC is proportional to the magnitude of the spin-orbit coupling
constant ξ from Eq. (1.8), which is in the order of several 10 meV [32]. This is much
smaller than the width of the 3d band, relevant for Fe, Co, and Ni. Hence, because ξ
is small, the SOC can be considered as a perturbation. EMCA is then calculated within
the second-order perturbation theory (PT2) framework, directly from (A) the density of
states or (B) the band structure. Both the DOS and the band structure are obtained by
a DFT calculation without SOC. This treatment then allows us to link the changes in
EMCA directly to changes in the electronic structure [120].

5.1. Bruno’s theory
The PT2 approach to EMCA has been developed by Bruno in 1989 [141]. The resulting
formulas are complicated, as elaborated further below, but he arrived at a simple, elegant
conclusion1: the magnetocrystalline anisotropy energy is proportional to the anisotropy
of the orbital magnetic moment [1]

EMCA = ξ
∆µ
4µB

, (5.1)

where ξ is the spin-orbit coupling constant and ∆µ = µ⊥ −µ|| is the difference between the
orbital magnetic moment µ with magnetization out-of-plane and in-plane. If the orbital
magnetic moment prefers to lie out-of-plane, the spin magnetic moment will follow, as
implied by Eq. (1.8). This creates a preference direction (anisotropy) for the spin, hence
also for the magnetization2, to lie out-of-plane.

The relatively good validity of the model, especially for bcc Fe and bcc Co on MgO,
is demonstrated in Fig. 5.1.

5.2. Density of states (DOS)-based EMCA calculation
We can imagine that electrons get excited from filled to empty states and these excitations
contribute to EMCA, depending on the spin and orbital character of the filled and empty
states in question. These excitations do not happen in reality; they are only a physical

1valid within the perturbation approach
2Magnetization in 3d metals is mainly due to the spin magnetic moment, as the orbital angular

momentum is quenched [31].
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Figure 5.1: Layer-resolved EMCA and ∆µ for the metal(16 ML)|MgO. For Fe and Co,
the EMCA and ∆µ are very well proportional, supporting the validity of Bruno’s model
[Eq. (5.1)]. However, the spin-orbit coupling constants used here for Eq. (5.1) are ξFe =
= 133 meV, ξCo = 60 meV, ξNi = 10 meV. They are somewhat different from the values
from Ref. [142] ξFe = 68 meV, ξCo = 84 meV, ξNi = 109 meV.

picture of the equations resulting from PT2. Therefore, they are called virtual excitations.
There are virtual excitations where the spin is conserved (↑⇒↑ and ↓⇒↓) and there are
spin-flip excitations (↑⇒↓ and ↓⇒↑). The EMCA can be written as the sum of these four
terms [143]

EMCA = ∆E↓⇒↓ + ∆E↑⇒↑ − ∆E↑⇒↓ − ∆E↓⇒↑ , (5.2)

where each ∆Eσ⇒σ′ is calculated by integrating over all the filled states with spin σ ∈ {↑, ↓}
and all empty states with spin σ′ ∈ {↑, ↓} as [144]

∆Eσ⇒σ′ = ξ2

4
∑
µµ′

Pµµ′

EF∫
−∞

dε
∞∫

EF

dε′ϱ
σ
µ(ε)ϱσ′

µ′(ε′)
ε′ − ε

. (5.3)

Depending on the orbital character µ and µ′ of the filled and empty states, respectively,
the given virtual excitation has a contribution to EMCA with a prefactor Pµµ′ , given in
Tab. 5.1. Hence, in Eq. (5.3), there is a double summation over all filled and unfilled
orbitals µ and µ′, respectively, some of which contribute by a nonzero value according to
Pµµ′ . The integrand is also proportional to the local orbital-resolved density of occupied
and unoccupied states ϱσ

µ(ε) and ϱσ′
µ′(ε′), respectively. From the denominator ε′ − ε, it

follows that the strongest contribution must come from the states around the Fermi level,
where the occupied energy levels ε and unoccupied energy levels ε′ are close to each other.

We apply Eq. (5.2)-Eq. (5.3) to the DOS of bulk bcc Co, in an attempt to reproduce
the results of Fig. 3.6 3. In Fig. 5.2, we show the resulting four terms of Eq. (5.2), their

3Note that a DOS calculated from the self-consistent calculation [step 2 in Sec. 3.1] is used. Thereby,
we do not need to perform the most expensive steps 3 and 4 (the calculations with SOC).
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Table 5.1: Components of the Pµµ′ matrix from Eq. (5.3) for d orbitals. (The virtual excita-
tions involving s and p electrons are almost irrelevant, as only the d-orbitals are responsible
for magnetism in 3d-elements.) The matrix is defined as Pµµ′ = |⟨µ|Lz|µ′⟩|2 − |⟨µ|Lx|µ′⟩|2,
where Lz and Lx are the orbital momentum operators in the z and x direction, respec-
tively.

Pµµ′ dxy dyz dz2 dxz dx2

dxy 0 0 0 -1 4
dyz 0 0 -3 1 -1
dz2 0 -3 0 0 0
dxz -1 1 0 0 0
dx2 4 -1 0 0 0

sum (”EMCA”), and the curve for bcc Co from Fig. 3.6 that we try to reproduce (”DFT”).
The EMCA curve does not reproduce the DFT curve well, so the model of Eq. (5.3)
must be an oversimplification, and a more precise treatment based on the band structure
will be needed. Despite that, from Fig. 5.2(a), we can already draw several qualitative
conclusions.

1. The minority-to-minority excitation contribution ∆E↓⇒↓ (the only term taken into
account in the original Bruno approach [141]) on its own can reproduce the increase
of EMCA for c/a < 1 observed in the DFT curve. Therefore, in Fig. 5.2(b), we
analyze ∆E↓⇒↓ in more detail and show all its excitation contributions separately.
We see that the increase is caused by excitations from dyz to dz2 minority orbitals
and vice versa (dyz ↔ dz2).

This behavior is linked to the strain-induced changes in the LDOS: for c/a < 1
[Fig. 5.2(e)], the dz2 peak in the empty minority states is shifted further above the
Fermi level. Because of the ε′ − ε denominator in Eq. (5.3), this weakens all the
contributions involving dz2 minority empty states, namely the negative dyz → dz2

contribution (the contribution with the largest negative prefactor of -3, see Tab. 5.1).
The weakening of this negative contribution then increases the overall EMCA.

The increase is counteracted by a decrease in the positive dxy ↔ dx2−y2 excitation.
This decrease is due to the strain-induced shift of the minority empty dx2−y2 peak,
located immediately above EF for c/a = 1.

2. The two contributions that come from excitations to majority-spin states, ∆E↑⇒↑
and −∆E↓⇒↑, are small. The reason is that there are almost no empty majority-spin
states, especially near the Fermi level, as we see in Fig. 5.2(d)-Fig. 5.2(f). Moreover,
∆E↑⇒↑ and −∆E↓⇒↑ tend to cancel each other. Hence they can often be neglected
[144].

Note that including the p-orbital excitations gives only a minor correction of approxi-
mately 1%.
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Figure 5.2: (a) Based on the orbital-resolved local density of states, the four contributions
to the bcc Co EMCA(c/a) calculated from the second-order perturbation theory [143] are
shown separately and in total. The values extracted from the DFT calculation with spin-
orbit coupling included [”DFT”; see Fig. 3.6] are shown for comparison. The classical
Bruno term ∆E↓⇒↓ on its own reproduces the DFT curve for c/a < 1 to a certain extent.
(b) The Bruno ∆E↓⇒↓ term from (a) divided into contributions from individual virtual
excitations. The excitation from dyz to dz2 states and vice versa (dyz ↔ dz2 ; red circles)
is the one that causes the overall increase for c/a < 1. (c) Same as (a) but calculated
from the orbital-projected band structure, where additional aspects are taken into account
(see text for details). The correspondence with the DFT curve is hence much better. (d)
The orbital-resolved DOS for bcc Co with c/a = 1. There is a peak in the dz2 and
dx2−y2 minority states right above the Fermi level. (e) The orbital-resolved DOS for bcc
Co with c/a = 0.90. The strain causes the overall spreading of the DOS. Both the dz2

and the dx2−y2 peaks are pushed further above EF . (f) The most bulklike Co from the
Fe(3)Co(12)Fe(3) structure. Its features are very similar to the bcc Co with c/a = 0.90
in (e), supporting the applicability of the results of the PT2 approach to the proposed
structures of Chapter 4. © 2021 American Physical Society [120].
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5.3. Band structure-based EMCA calculation
To redeem the inaccuracy of the DOS-based model, the next step is to calculate EMCA
directly from the (orbital-resolved) band structure. This approach takes into account
many aspects that were neglected in the calculation from LDOS. The equations are given
in Ref. [143, Eqs. (4)–(6)]. The orbital-resolved PROCAR file (Sec. 2.13) is needed as
an input. One also needs to set LORBIT=12 in the INCAR, to obtain both the real and
imaginary parts of the projection coefficients c in PROCAR. The c coefficients are used
to calculate the joint local density of states G [Eq. 4 in Ref. [143])]. Taking the real
part of G and performing summation over several variables, one finally obtains the four
contributions to EMCA from Eq. (5.2).

The difference compared to the DOS-based approach boils down to three important
points:

1. the projection coefficient of a Bloch state onto a particular d orbital is considered
properly as a complex number, not just as its magnitude;

2. virtual excitations also happen in between atoms at different sites, not only on-site;
and

3. the mechanism of a virtual excitation generally includes four orbitals, not only two
(see Fig. 1 in Ref. [145]).

All these three features have proven to be essential for the model to be more accurate.
The band structure calculation results are plotted in Fig. 5.2(c). We use ξCo = 84

meV [142]. The model is much better than the one in Fig. 5.2(a), while the main features
are retained, namely that the ∆E↓⇒↓ term governs the overall trend.

The −∆E↑⇒↓ term serves to refine the shape, but in addition, causes an excessive
overall decrease. The EMCA(c/a = 1) is not zero in the EMCA curve, as it should be
by symmetry arguments and as it is in the DFT curve. Despite that, the difference
EMCA(c/a = 0.90) − EMCA(c/a = 1.00) in the EMCA curve and DFT curves correspond
well to each other. Analyzing the contributions to ∆E↓⇒↓ from individual excitations, we
confirm the results of Sec. 5.2, namely that the main positive change in EMCA for c/a < 1
is due to the dyz → dz2 virtual excitation, and the main negative change is due to the
dx2−y2 → dxy excitation.
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Conclusion

To conclude, we introduced the importance of MgO-based magnetic tunnel junctions
(MTJ) both for the traditional hard drives and the emerging spin-transfer torque magnetic
random-access memory (STT-MRAM). STT-MRAM has already entered volume produc-
tion and has a strong potential for applications, notably to replace SRAM and DRAM in
certain memory hierarchy levels to make electronic devices more power-efficient (Fig. 3).

The different types of magnetic anisotropy were given, along with their fundamental
physical origins. We showed how the magnetic anisotropy is crucial for magnetic memory
stability, especially when downscaling the memory bits.

We then developed the fundamentals of density functional theory, the main method
used in this work to perform ab initio calculations. The basic inputs and outputs of the
Vienna ab initio simulation package (VASP) were outlined.

Next, we proceeded to our results of the systematic study of perpendicular mag-
netic anisotropy (PMA) in MgO-based MTJs with bcc Fe, Co, and Ni as a storage
layer (Fig. 3.5). We do observe the well-known interfacial PMA of Fe/MgO (Fig. 3.4) and
confirm its origin, which is the hybridization between the interfacial Fe and O (Fig. 3.3).
Interestingly, we found a large bulk PMA within bcc Co/MgO and explain it in terms of
the MgO-induced strain. We confirmed the effect quantitatively by calculating the PMA
in a simple strained bcc Co unit cell (Fig. 3.6).

We exploited these findings and proposed an MTJ with a simple design and strongly
enhanced PMA in the form Fe/Co/Fe|MgO (Fig. 4.1). Replacing the bulk-like Fe layers
with bcc Co indeed provides a large strain-induced contribution [Fig. 4.2(a)]. We imple-
mented an atomistic calculation of the demagnetizing energy (Fig. 4.3) and showed that
there is a second benefit of the Fe/Co/Fe|MgO design, which comes from reducing the
negative demagnetizing energy. The overall result is a strongly enhanced PMA, increasing
with the Co thickness (Fig. 4.4). We discussed the decrease of PMA upon Fe/Co inter-
diffusion, the limitations of fabricating metastable bcc Co, and estimated the tunneling
magnetoresistance of the MTJs, which is large.

Finally, encouraged by the good applicability of Bruno’s model to the studied sys-
tems (Fig. 5.1), we implemented a code based on the second-order perturbation theory to
calculate PMA directly from the density of states or band structure. This gave us further
insight into the behavior of PMA in response to the changes in the electronic structure.
Namely, we reproduced well the c/a dependence of PMA in strained bcc Co (Fig. 5.2)
and attributed its large strain-induced value to the changes in the dyz and dz2 minority
states.
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List of abbreviations

bcc body-centered cubic

CPU central processing unit

DFT density functional theory

DOS density of states

DRAM dynamic random-access memory

fcc face-centered cubic

GGA generalized gradient approximation

HDD hard disk drive

HK Hohenberg-Kohn

KS Kohn-Sham

LDA local density approximation

LDOS local density of states

ML monolayer

MRAM magnetoresistive random-access memory

MTJ magnetic tunnel junction

PAW projector augmented wave

PBE Perdew-Burke-Ernzerhof

PMA perpendicular magnetic anisotropy

PT2 second order perturbation theory

SOC spin-orbit coupling

SRAM static random-access memory

SSD solid-state drive

STT-MRAM spin-transfer torque magnetic random-access memory

TMR tunneling magnetoresistance effect

VASP Vienna Ab initio Simulation Package
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A. Supporting ab initio results

In Fig. A.1, we plot the layer-resolved contributions to EMCA in bcc metal/MgO for a
whole range of metal thicknesses (5 ML to 15 ML). (In Fig. 3.5(b), only the 15 ML case
was shown.) It is clear that the interfacial contributions remain almost unchanged across
different thicknesses for Fe and Co, but in case of Ni, they change substantially.

In Fig. A.2, we provide the layer-resolved c/a ratios for the metal/MgO structures
with different thicknesses.

Fig. A.3 compares the strain-dependent EMCA from Fig. 3.6 with the values from
Ref. [127].
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Figure A.1: Layer-resolved EMCA for different thicknesses of (a) Fe, (b) Co, and (Ni) on
MgO. © 2021 American Physical Society [120].
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A. SUPPORTING AB INITIO RESULTS

Layer-resolved c/a in metal/MgO
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Figure A.2: Layer-resolved c/a ratios for different thicknesses of (a) Fe, (b) Co, and (Ni)
on MgO. Across all the thicknesses for a given metal, the strain in the bulk-like layers
(around layer 0) is similar.
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Figure A.3: Comparing the EMCA vs. thickness plots from Sec. 3.6 with those of Burkert
et al. [127], where they calculated only the region c/a > 1. The results agree reasonably
well.
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