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Summary

A magnetic tunnel junction (MTJ) is a spintronic device commercially used in highly
sensitive hard disk drive reading heads. Since 2007 it has helped to sustain the exponential
increase in the magnetic storage density. Moreover, it also became the building block
of the fast, durable, power-efficient, and non-volatile magnetic random-access memory
(MRAM). Just like reading heads, this new type of solid-state memory uses MTJs based on
crystalline magnesium oxide (MgO) along with 3d metallic magnetic elements (Fe and Co).
Strong magnetic anisotropy in the direction perpendicular to the metal| MgO interface is
needed to provide long-term thermal memory stability as the device is downscaled. This
work will analyze the magnetocrystalline anisotropy (MCA) of body-centered cubic Fe,
Co, and Ni on MgO using ab initio simulations. Numerical code will be developed to
calculate the shape anisotropy, crucial to consider in addition to MCA because together
they add up to the effective anisotropy. Finally, a calculation of MCA based on the
second-order perturbation theory will be implemented. This will enable us to link the
observed anisotropic properties directly to the system’s electronic structure (the band
structure and density of states).

Abstrakt

Magneticky tunelovy spoj (MTJ) je spintronické soucastka komeréné pouzivana ve vyso-
ce citlivych ¢tecich hlavach pevnych diskt. Poc¢inaje rokem 2007 prispéla k udrzeni expo-
nencialniho nariastu hustoty magnetického zapisu. Kromé toho se také stala stavebnim
kamenem rychlé, odolné, tisporné a nevolatilni magnetické paméti s pifimym pristupem
(MRAM). Tento novy typ polovodi¢ové paméti, stejné jako je tomu u ¢tecich hlav dis-
ki, vyuziva tunelové spoje zaloZené na krystalickém oxidu horeénatém (MgO) spolu s 3d
kovovymi magnetickymi prvky (Fe a Co). Pro zmenseni MTJ a soucasné udrzeni dlouho-
dobé stability paméti proti tepelnym fluktuacim je zapotiebi silna magneticka anizotropie
ve sméru kolmém na rozhrani kov|MgO. V této préci proto nejdiive provedeme analyzu
magnetokrystalické anizotropie (MCA) kubického prostorové centrovaného Fe, Co a Ni na
MgO pomoci ab initio simulaci. Dale bude vyvinut program pro vypocet tvarové anizot-
ropie, kterd je kromé MCA velmi podstatnd, nebot v souc¢tu davaji efektivni anizotropii.
Na zavér implementujeme program pro vypocet MCA na zakladé poruchové teorie dru-
hého tadu. To ndm umozni dat pozorované anizotropni vlastnosti do souvislosti primo
s elektronickou strukturou systému (pasovou strukturou a hustotou stavi).
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Introduction

A spintronic device called the magnetic tunnel junction (MTJ) [1, 2] consists of two
magnetic layers separated by an insulating barrier [Fig. 1(a)]. It exhibits the tunneling
magnetoresistance effect (TMR) [3, 4], which means there is a large change of resistance
when one of the magnetic layers is switched. MTJs are used for several cutting edge
applications [5, 6]: reading heads in hard disk drives (HDDs) [7], memory bits in the
magnetoresistive random-access memory (MRAM) [8], and highly sensitive magnetic sen-
sors. Besides, there are emerging applications of MTJs as artificial neurons [9], random
number generators [10], microwave generators [11], and processing elements in stochastic
computing [12]. In this introduction, we take a deeper look at the impact of MTJs on
data storage.

The famous Moore’s law [13], postulated for semiconductor chips, also holds for the
most widely used computer storage medium, which is the magnetic hard disk drive
(HDD) [14]. The sustained exponential growth of HDD storage density in the past decades
is clear from Fig. 1(c).

Increasing the storage density required shrinking and improving the essential compo-
nents [Fig. 1(b)], and the success of HDDs would not be possible without developing more
sensitive reading heads. The latest generation of reading heads is based on MTJs, where
the magnetization orientation of the upper layer is usually fixed [Fig. 1(a)]. In contrast,
the bottom layer is free to rotate and respond to the magnetic information written on
the platter below. Note that the tunnel barrier in an MTJ is usually made of crystalline
magnesium oxide (MgO) because of its high TMR [15-17]. We are then talking about
MgO-based MTJs.
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Figure 1: (a) A magnetic tunnel junction used in the latest reading heads. It consists of
two ferromagnetic (FM) layers separated by a tunnel barrier. In MTJs serving as reading
heads, the magnetization lies horizontally (along the film plane), as shown in the figure.
(b) The main components of an HDD [18]. The reading head is of our main interest. (c)
Moore’s law for HDDs, demonstrating a seven-order increase of their storage density in
the past 60 years. After [19].
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Figure 2: (a) MTJs can also be used as memory bits in the MRAM memory. Here, the
magnetization is perpendicular to the film plane. After [20]. (b) Compared to other types
of memories, MRAM is fast and non-volatile, with moderate capacity, but very large
endurance. Hence, it is well suited to replace SRAM and DRAM memories as the work
memory in certain hierarchy levels displayed in Fig. 3. From [21].

MgO-based MTJ has another important application, besides reading the digital infor-
mation in HDDs: it can be used as a memory bit, to store the information as well. It
can store the binary information in its free ferromagnetic layer and then read it out by
the TMR effect. They form the aforementioned magnetoresistive random access memory
(MRAM), sketched in Fig. 2(a). In Fig. 2(b), MRAM is placed in context and compared
with other types of memories. Because it is fast, it is well suited as the work memory. We
should make a clear distinction between the storage memory and the work memory.

Storage memory is meant to preserve data in the long term. HDDs are used as
storage memory because they are cheap and have large data capacity, but they are also
quite slow [Fig. 2(b)]. An alternative to HDDs is the (NAND) Flash memory, widely used
in USB flash drives and solid-state drives (SSD). It is a few times faster and also more
reliable than HDDs because it does not contain moving parts. The trade-off is its higher
price. Also, the endurance of Flash memory is quite limited! [22] and its low speed does
not allow for its use as the work memory [Fig. 2(b)].

Work memory holds data that is actively processed by the central processing unit
(CPU). Processor registers are the fastest and therefore located directly inside the CPU
[Fig. 3(a)]. One level lower in the memory hierarchy, we find the processor cache, usually
represented by the static random-access memory (SRAM). Each bit in SRAM consists of
several transistors connected into a latch (flip-flop) circuit [23]. One level below, there is
the much slower main memory, usually represented by dynamic random-access memory
(DRAM). In DRAM, the bit is composed of one transistor and one capacitor. The capaci-

Lto about 10° write cycles/bit
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Figure 3: (a) The usual memory hierarchy. Higher level means faster, closer to the CPU,
but also lower data capacity. (b) Power dissipated in active and standby mode for the
different memory levels. (¢) A new hierarchy scheme for lower power dissipation. The
(non-volatile) MRAM is introduced as a work memory in levels where the standby power
consumption plays an important role. From [21].

tor is either charged or discharged, representing a one or a zero. Both SRAM and DRAM
require an external power source even in standby mode; otherwise, the data is lost: they
are volatile memories.

Both the lower-level cache and the main memory spend a lot of power on maintaining
its standby mode, as shown in Fig. 3(b) [21]. Therefore, replacing these memories with a
non-volatile memory such as MRAM [Fig. 3(c)], where the written information is perma-
nent and does not need to be maintained by an external power source, can considerably
reduce the energy consumption of electronics [21].

In 2018, a new generation of MRAM, the spin-transfer torque MRAM (STT-MRAM),
entered volume production [24]. In STT-MRAM, the effect of spin-transfer torque (STT)
is exploited: the magnetization of the free layer is switched by a spin-polarized electric
current. The current becomes spin-polarized by first passing through the fixed magnetic
layer [25, 26]. It is required that the MTJs used as memory bits in STT-MRAM have (1)
high tunneling magnetoresistance for good information read-out, (2) high spin-transfer
torque efficiency for good information writing, and (3) high magnetic anisotropy for good
thermal stability and therefore, memory retention [1, 27]. All these requirements are
satisfied in perpendicularly magnetized MgO-based MTJs with the ferromagnetic layers
composed of Fe and Co [28], which are therefore the main interest of this work.

In this work, we focus on increasing the perpendicular magnetic anisotropy (PMA) of
MgO-based magnetic tunnel junctions with bee Fe, Co, and Ni as the free magnetic layer.
By increasing PMA, the STT-MRAM memory bits can be made smaller?, while retaining
the same data stability against thermal fluctuations, as discussed in Sec. 1.6.

2possibly below 25 nm diameter
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The text is organized as follows. In Chapter 1, we introduce the importance of mag-
netic anisotropy for data storage, the anisotropy types, and physical origins. In Chapter 2,
we review the fundamentals of the density functional theory (DFT). This computational
method is the main tool used in this thesis. Chapter 3 presents our systematic calculations
of the magnetic anisotropy in body-centered cubic Fe(Co,Ni)/MgO thin magnetic films.
Exploiting the knowledge obtained, in Chapter 4 we propose a magnetic tunnel junction
with largely enhanced perpendicular magnetic anisotropy. As already mentioned, increas-
ing the PMA is crucial for the downsize-scaling of STT-MRAM memory bits. Finally,
in Chapter 5, we analyze the magnetic anisotropy of strained body-centered cubic (bcc)
cobalt in the framework of the second-order perturbation theory.



1. Magnetic anisotropy

In ferromagnetic materials, there is a spontaneous magnetization due to exchange inter-
action [29-31]. Generally, the direction of this magnetization is not arbitrary, and there
are preferential axes with respect to the crystalline structure and shape of the magnetic
body. This property is called magnetic anisotropy. There is a related quantity called
magnetic anisotropy enerqy Fya, which is the energy needed to turn the magnetization
from its preferential direction (the easy azis) to the least preferred direction (hard axis).
The energy is rather small, on the order of 1072 to 107% eV /atom, but it is important, as
it corresponds to magnetic fields typically used in experiments [32].

Controlling the magnetic anisotropy is of great importance in technological applica-
tions. Large anisotropy is beneficial in permanent magnets and magnetic memories, where
the magnetization is required to stay in a specified direction. The physical mechanisms
responsible for magnetic anisotropy are of relativistic nature. Its two fundamental origins
are the dipole-dipole interaction and the spin-orbit coupling. However, before discussing
the types of magnetic anisotropy and its microscopic mechanisms, we first approach the
problem phenomenologically, from symmetry arguments.

1.1. Phenomenological expressions

The Ey\a is a function of the magnetization direction m = (my, m,, m.), where |m| =1
(it is a unit vector). Just as any other function, Fya can be expanded in some basis, for
instance, in spherical harmonics, or more often in powers of m,, m,, and m, [30, 32

EMA(mr> my, mz) = bO + Z bijmimj + Z bijklmimjmkml + ... (1.1)
i,je{m,y,z} i,j,k,le{m,y,z}

Note that due to time-reversal symmetry, only terms that are even in m are allowed (odd
terms are forbidden). The specific symmetry of a given problem usually excludes some
additional terms.

In systems suitable for permanent magnets and memory applications, there is a sin-
gle preferential anisotropy axis (easy axis). We are then talking about the uniaxial
anisotropy, which is usually well described by a single term from Eq. (1.1); choosing the
easy axis along z direction, it is the term b,,m?, more often expressed as [30]

EMA,uniaxial = Kl Sin2 0 5 (12)

where 6 is the angle between m and the easy axis, and K is the anisotropy constant (Fig. 1.1).
This expression is very important in the context of this work dealing with magnetic thin
films, where the uniaxial anisotropy is due to three origins: (a) the shape, (b) interfaces,
and (c) strain.
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Figure 1.1: The spatial dependence of uniaxial anisotropy energy [Eq. (1.2)] for (a) K7 > 0,
signifying the perpendicular anisotropy (PMA), with a single preferential axis for the
magnetization called the easy azis; and for (b) K7 < 0, signifying an in-plane anisotropy,
where the magnetization prefers to lie in any direction along the easy plane.
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Figure 1.2: A thin magnetic film with the anisotropy coming from the volume and two
interfaces [Eq. (1.3)]. Inspired by Dieny and Chshiev [1].

1.2. Volume vs. interface anisotropy

In thin films and nanostructures, the presence of a surface or an interface is a very im-
portant factor. An interface induces interfacial anisotropy, which is typically much larger
than the bulk anisotropy. Because an interface generally breaks the symmetry of a bulk
system, it induces uniaxial anisotropy [Eq. (1.2)] in systems, where it would otherwise be
forbidden, for instance, in cubic crystals.

The magnetic anisotropy energy can therefore be split into the interface plus volume
contribution multiplied by the thin film thickness ¢

EMA = EMA,interface +t- EMA,VOlume 5 (13)

see Fig. 1.2. Since we are investigating thin films, the units used here are the units of
surface energy, J/m? or rather mJ/m? For this reason, if there is a constant volume
contribution present, Fya should grow linearly with thickness.

6



1.3. SHAPE, MAGNETOCRYSTALLINE, AND INDUCED ANISOTROPY

1.3. Shape, magnetocrystalline, and induced anisotropy

Based on its origin, magnetic anisotropy may be classified into three categories [30]:

o Shape anisotropy is related to the shape of the magnetic body or the magnetic
domains in that body. It is of dipolar (magnetostatic) origin [Sec. 1.4]. This mag-
netostatic energy is minimized when the magnetization lies along the longest side
of the magnetic body. In nanowires, the preferential direction is therefore along
the wire axis; in (infinite) thin films, it is in any direction in the plane of the film
(along the easy plane). In larger magnetic bodies, magnetization breaks into do-
mains, which have their own demagnetizing fields and influence each other by stray
fields.

In the mesoscopic length scales (~ 100-1000 nm), where the fields from individual
atoms are averaged and cannot be resolved, the shape anisotropy follows from the
requirement to minimize the demagnetizing energy [30]

Poomag = —%/Hd M & (1.4)
Q

where the integral is over the magnetic region 2 and the demagnetizing field Hy is
related to the magnetization M by

V-Hy=-V-M. (1.5)
For infinite thin magnetic films, the shape anisotropy energy is then [30]

Ejdemag7 thin-film = __,MOJ\4S2 ’ (16)

where o is the vaccum permeability and M is the saturation magnetization.

In this work, however, we deal with length-scales on the order of ~ 0.1 nm and
therefore calculate the demagnetizing energy also directly from the dipole-dipole
interaction of individual atomic moments [Eq. (1.7)]. The values will be compared
with the ones from the simple formula above [Eq. (1.6)] in Sec. 4.2.

« Magnetocrystalline anisotropy is intrinsic to the crystal structure. Its main
origin is the spin-orbit coupling (SOC) (Sec. 1.4) and partly the dipolar interaction
(Sec. 1.5).

e Induced anisotropy may appear due to annealing in external magnetic field, or
often due to strain [30]. In thin films, the strain is often caused by a lattice mismatch
between the epitaxial magnetic layer and the substrate.

1.4. Dipolar interaction effects

In Fe, Co, and Ni, which are 3d transition metals, the magnetization of the atoms is
distributed almost spherically and can safely be described by the dipolar term, ignoring
higher multipoles (quadrupoles, hexapoles, etc.) [32]. The dipole-dipole interaction energy
writes [32]



1. MAGNETIC ANISOTROPY

2

Edipolar — _BZ_B <ml.m3_3( 1] Z)g 1] .7)) , (17)
2% T Tij

with pup the Bohr magneton, m,; the magnetic moment of atom ¢, and 7;; the vector

pointing from atom ¢ to atom j.

The dipolar interaction contributes [32]:

(a) to the shape anisotropy: the energy drops proportionally to 1/ rfj, which is rather

slow. Magnetic moments in bulk are then significantly influenced by the moments
at the surface and, therefore, by the shape of the surface (shape of the magnetic
body). The shape anisotropy itself has the form of a volume anisotropy [Eq. (1.3)].

(b) to the magnetocrystalline anisotropy by a uniaxial term [Eq. (1.2)], relevant
for strained lattice or for interfaces. However, both for strained crystals and for
interfaces, the dipolar contribution is rather small compared to the one from spin-
orbit coupling [32].

1.5. Spin-orbit coupling effects

The spin-orbit coupling (SOC) is the key ingredient of volume and interface magnetocrys-
talline anisotropy, as well as strain-induced anisotropy [32]. Below, we illustrate this
relativistic effect by a semi-classical picture.

Spin-orbit interaction

The spin-orbit coupling links the electron’s orbital motion to its spin [30, 33]. It is
a relativistic effect and must be derived from the Dirac equation, but in a simplified
picture, it may be viewed as a Zeeman interaction. This is illustrated in Fig. 1.3. From
the reference frame of an electron orbiting a nucleus, the nucleus is orbiting the electron.
This positively charged orbiting nucleus creates a current loop, which induces a magnetic
field at its center by the Biot-Savart law. The interaction of this magnetic field with
the electron’s magnetic moment (its spin) provides an energy contribution due to the
magnetostatic (Zeeman) interaction.

Thereby, the electron’s orbital motion and its spin are coupled. Now, because the spin
is coupled to the orbital motion and the orbital motion is coupled to the lattice (by a
Coulomb interaction with the surrounding nuclei), the spin is coupled to the lattice. The
magnetization direction (spin) is therefore related to the crystal axis orientation (lattice).
This is the basic idea behind the magnetocrystalline anisotropy [32].

The SOC term is usually added to the Hamiltonian as [32, 34]

Hsoc =¢&L - S, (1.8)

where L and S are respectively the orbital angular momentum and spin angular momen-
tum of the particle, and the spin-orbit coupling constant & ~ 50-100 meV in 3d metals.
From Eq. (1.8), it is clear that the direction of L and S are coupled.

Besides being one of the two main sources of magnetic anisotropy, the spin-orbit
coupling is also important in many other areas of physics [35]; namely to explain the

8
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Figure 1.3: Spin-orbit coupling explained by an effective magnetic field (By,), which
comes from the orbiting motion of the nucleus around the electron (from the electron’s
point of view). From [29].

magnetic dichroism, Kerr and Faraday effects [36], in the recently discovered topological
insulators [37], when treating optical properties [38] and dealing with heavy elements, and
it is partially responsible for the fine structure of atoms [29, 39].

1.6. Magnetic anisotropy in data storage

Increasing the information storage density requires downsize scaling (shrinking) of the
memory bits. To do this, one must increase the magnetic anisotropy energy to retain the
same stability against thermal fluctuations [1]. Here, we explain this concept.

Changing the information written in a magnetic memory bit requires external switch-
ing of the magnetization from one stable state to the other (up to down or vice versa).
To switch, the magnetization must overcome an energy barrier

AE = Eya - S, (1.9)

where Fy4 is the anisotropy energy per unit area from Eq. (1.3) and S is the area of the
magnetic bit.

Thermal fluctuations may also switch the magnetization spontaneously, which results
in data loss. On average, this spontaneous switching happens every time interval 7. By
the Arrhenius law, the spontaneous switching happens more often (i.e., 7 is smaller) when

the temperature 7" is higher [1]
AFE
T = Tp€xp , (1.10)

kgT

where 79 is the characteristic attempt time (& 1 ns), and kp is the Boltzmann constant.
The typical requirement is for the information to stay stable for 7 = 10 years at room
temperature 7" = 300 K, which by Eq. (1.10) gives the condition [1]

It is hence clear that downscaling (decreasing the surface S of the memory bits)
requires increasing the perpendicular anisotropy.
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2. Density functional theory (DFT)

"The underlying physical laws necessary for the mathematical theory of a large part of
physics and the whole of chemistry are thus completely known, and the difficulty is only
that the exact application of these laws leads to equations much too complicated to be
soluble. It, therefore, becomes desirable that approximate practical methods of

applying quantum mechanics should be developed ...”
P.A.M. Dirac [40], 1929

Many properties of materials can be predicted without the need of their fabrication and
experimental measurements, plainly by designing their structure atom by atom and cal-
culating the ground-state of the electron density in the potential of the atomic nuclei
(Fig. 2.1). This is done by solving the Schrodinger or Dirac equation, usually within some
approximation. The most popular method to do this is the Density Functional Theory
(DFT), developed by Walter Kohn and colleagues and recognized by the Nobel Prize in
Chemistry in 1998 [41]. The number of publications concerning DFT doubles every 5-6
years [42]. The following chapter is an introduction to this outstanding method. Refer
to [37, 43-45] for other comprehensive introductions.

2.1. Many-body Schrodinger equation

To calculate the properties of matter, we start with the problem of solving the non-
relativistic time-independent Schrédinger equation [33, 37]

H|U) = E|T) | (2.1)

where |¥) is the many-body wave function, and FE is the total energy. The Hamiltonian
H for a system of electrons and nuclei consists of the electronic kinetic energy 1., the
nucleus-electron, electron-electron, and nucleus-nucleus Coulomb interactions Vext, V}m
and E;;, respectively, and the nuclear kinetic energy Ty [37]

~ hz Z€ 2 1 1 ZIZJ€2
=g YV =Y > -
2m, < 4n50i |r; — Ry 24n50 Z lr; — 7] 24n50]¢J|R1 R,|
Te ‘Zaxt ‘7int EII
h2
_ \V&:
————
TNzO
(2.2)

with % the Planck constant, m. the electron mass, V? the Laplace operator acting on
electron i, g9 the vacuum permittivity, Z; the charge of nucleus I, e the elementary

11



2. DENSITY FUNCTIONAL THEORY (DFT)

bce Fe

09 %

(a) charge density spin-density

7T

electron
> density

n Many-body DFT
@ con/vem perspective perspective

r ; H N r P HIP N *
(c) Wave Vector DOS (d)

Figure 2.1: (a) The electron (charge) and the magnetization (spin) density of bee Fe [46].
(b) The Fermi surface in the Brillouin zone of bee Fe [47]. (¢) Band structure and Density
of States (DOS) of bee Fe [48]. (d) The many-body vs. the density approach [49].

charge, r; the position of electron ¢, R; the position of nucleus I, M; the mass of nucleus
I, and V? the Laplace operator acting on nucleus I. The equation disregards the small
relativistic effects such as spin-orbit coupling (Sec. 1.5).

Atomic units

Except for Eq. (2.2), which we have kept in SI units, in the rest of the text we use the
Hartree atomic units [50], where by definition A = e = ap = m. = 1, where ay is the
Bohr radius. It also follows! that 1/4ney = 1. Using the atomic units, the kinetic energy
operator and the electron Coulomb potential simplify as

2
~ 1
fi——1" v o L2,
2me 2
' . (2.3)
1% oulomb — - ——.
Coulomb 4regr T

2.2. Born-Oppenheimer approximation

The first step of tackling problem Eq. (2.1)-Eq. (2.2) is to use the excellent Born-Oppenheimer

(adiabatic) approximation [51], which says that the wave functions of electrons and nuclei
can be treated separately. Since nuclei are much heavier than electrons (M; ~ 2000 m.),
the electrons can react very fast and hence are always in their instantaneous ground state,

from the expression for Bohr radius, ag = 4neoh?/mee?

12



2.3. HARTREE-FOCK APPROXIMATION

regardless of the (slow) nuclear motion. Then |¥) in Eq. (2.1) represents only the (many-
body) electronic wave function; for the nuclear wave function, there is a separate equation,
which can be used, for instance, for calculations of phonons [37]. Since 1/M; is small, the
nuclear kinetic energy Ty from Eq. (2.2) is neglected (= 0). The Coulomb nucleus-nucleus
interaction E;; is simply an additive constant to the total energy.

2.3. Hartree-Fock approximation

Even after separating the motion of electrons and nuclei, it is impossible to solve Eq. (2.2)
analytically, since the large number of electrons? interact with each other via the Coulomb
interaction Vi. This makes the task a Many Body Problem [52].

The problem was first tackled numerically by Hartree in 1927 [50] and extended by
Fock [53] and Slater [54]. The Hartree-Fock approzimation assumes that the many-electron
wave function can be replaced by a linear combination of single-electron (non-interacting)
wave functions. Working with non-interacting electrons greatly simplifies the problem,
and the reason why this approach is physically sensible is the electron screening [55]. We
return to this point right below when discussing the exchange-correlation hole.

The Hartree-Fock approach also replaces the problematic electron-electron interaction
Vi by a much simpler term, which suggests that the electron wave functions interact
with each other in the same way as the total electron charge density interacts with itself
via the Coulomb interaction®. This term is called the Hartree energy

1 n(r)n(r’)
By = [t S0 24
H=g d°rd’r e (2.4)
where the electron density
n(r) = |¥(r))?. (2.5)

When integrated over, n(r) must add up to the total number of electrons N
N= / &r n(r). (2.6)

Note, however, that by approximating Vine With Ey, we neglect* two important many-
electron effects: exchange and correlation.

2.4. Exchange-correlation hole

Imagine first what happens if we bring an electron with charge ¢ = —e in vacuum close
to a conductive plane [Fig. 2.2(b)].

The electrons at the conductive surface are repelled, and there is a net positive charge,
which has the same electrostatic field as if the electron had a mirror image with opposite
charge —q = e below the surface. (This is the electrostatic method of images [57].)

Decreasing the separation z [Fig. 2.2(b)], the electron and its positive mirror image
approach each other, until at z ~ 1-2 A, the electron wave function starts to overlap with

Ztypically 10%® electrons/cm? in a solid

3the 1/4neq prefactor is dropped since we are using atomic units,

4The exchange, originally missing in the Hartree method, was added by Fock [53]. Correlation is
added in post-Hartree-Fock methods [56].

13
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Figure 2.2: (a) The negative electron density ny. surrounding an electron is called an
ezchange-correlation hole [55]. (b) Hlustration of the origin of ny.: bringing an electron
close to a conductive plane creates a positively charged mirror hole. At x = 0, the hole
surrounds the electron [55].

the electron wave functions at the surface [55]. The system energy then deviates from the
expected classical F —% (it does not diverge to minus infinity) and once the electron
enters the conductor, the positive mirror point charge surrounds the electron, forming an
exzchange-correlation hole [Fig. 2.2(a)].

An exchange-correlation hole ny.(7) is a negative electron density (therefore a hole)
surrounding an electron. It consists of the exchange and correlation part

Nye = Ny + N (2.7)

and the two are distinct in their nature.

1. The exchange hole n,(r) accounts for two facts. Firstly, electrons of the same spin
in the same quantum state cannot be at the same time at the same place, obeying
the Pauli exclusion principle. Thereby, n, affects electrons with the same spin.

Second, ny corrects for the wrong notion entrenched in the Hartree energy expression
[Eq. (2.15)] that an electron interacts with itself. For example, in a hydrogen atom,
where there is only one electron, n, completely cancels the density of the one present
electron to avoid this self-interaction [37, Sec. 3.7]. Hence, in hydrogen, the exchange
hole represents minus one electron. In fact, it is a general feature of the exchange
hole that its integral is exactly minus one electron [58]

/nx(r) &= —1. (2.8)
2. On the other hand, integral over the correlation hole n.(r) is zero

/nc(r) d*r =0, (2.9)

so it only serves to redistribute the hole’s density. The correlation hole n. corrects
for the fact that interacting electrons are not independent — their joint density

14



2.5. THOMAS-FERMI METHOD

is correlated®. Unlike exchange, correlation is also important for interactions of
electrons with opposite spins.

Later, we will introduce the exchange-correlation energy FE.., very important in density
functional theory. It can be viewed as an attractive Coulomb interaction between the
electron density n and the exchange-correlation hole n..

2.5. Thomas-Fermi method

The original density functional theory was proposed separately by Thomas [59] and
Fermi [60] in 1927. They approximated both the electron-electron interaction and the
kinetic energy of electrons as a functional of the electron density n. A functional, is a rule
for mapping a function to a number, just as a function is a rule for mapping a number to
a different number [43]. A quantity @, which is the functional of another quantity n is
denoted Q[n].

Hence, all terms in the Thomas-Fermi total energy Erg[n] depend on the density;
they are integrals of the density. The expressions are based on analytic formulae for the
homogeneous free electron gas (see Eq. (6.1) in Ref. [37] for details.). The correct density
n(r) is the one which minimizes Erp[n], subject to the constraint that the total number
of electrons N is correct [Eq. (2.6)].

Just as Hartree and Fock, Thomas and Fermi also neglected the exchange and corre-
lation between electrons®.

The argument to create an approximation based on electron density instead of electron
wave functions is straightforward. The many-body electron wave function for N electrons
depends on 3N variables (3 spatial coordinates x, y, and z for each electron). On the other
hand, the electron density n(r) is a function of only three spatial coordinates. And in fact,
as shown in the next Sec. 2.6, all the properties of a system can, indeed, be determined
purely from its ground-state electron density:.

Although significant, the Thomas-Fermi model is too crude to be widely used in prac-
tice [63] and a more sophisticated approach was needed. An approach, which is formally
exact but leaves a lot of space for effective approximations.

2.6. Hohenberg-Kohn theorems

The modern formulation of density functional theory started with two important theorems
proved by Pierre Hohenberg and Walter Kohn in 1964. They provide a reformulation of
the many-body problem Eq. (2.1)-Eq. (2.2) in terms of functionals of the electron density.

°In mathematical terms, the joint density n(r,o;7’,0’) of finding one electron with spin ¢ at point
r and a different electron of spin ¢’ at point 7’ is the sum of two terms: (1) the simple, uncorrelated,
product of the independent densities of the two electrons and (2) the exchange correlation hole [37]

n(r,o;r’,0') =n(r,o)n(r’, o) + ng(r,o;r’,0'), (2.10)
6An extension by Dirac added the local approximation for exchange interaction [61], still in use today
and discussed in Sec. 2.9. The correlation between electrons is neglected altogether. Correction for the

kinetic energy in nonhomogeneous systems taking into account also the gradient of the density, not just
the density itself, was proposed by Weizsacker [62].
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2. DENSITY FUNCTIONAL THEORY (DFT)

HK
Veulr) <= no(r)

Y f
vi({r) = Wo({r)

Figure 2.3: The ground-state density ng of interacting electrons in an external potential
can be considered as the “basic variable”. As proved by Hohenberg and Kohn, from ny
we can get the external potential Vi (r) which produced it. From Vi (r), we can in
principle calculate the eigenstates U;({r}), including the groundstate ¥o({r}). Hence,
all properties of a system are unique functionals of its ground-state density. Adapted
from [37].

The Hohenberg-Kohn (HK) theorems state that [64]:

1. All the properties of an interacting system of electrons are determined
from its ground-state density ny.

In fact, the theorem states that from the ground-state density ny one can uniquely’
determine the external potential Vi (r) (which generated this ground-state den-
sity)®. From Vi (), one can then in principle calculate the electron many-body
wave function W({r}), both ground-state and excited, and hence calculate all the
system’s properties.

The theorem goes from the solution (ng) back to the problem (Vi (r)) back to
the solution (¥o({r})). This is shown schematically in Fig. 2.3. However, this
information by itself is not very useful. It does not answer how to get ¥;({r}) from
Vext, which is the ultimate problem.

2. The correct ground-state density ny is obtained by minimizing the sys-
tem’s total energy E[n], which can be prescribed as a functional of n universally,
independent of the external potential Vi (7).

To make full use of the HK theorems, the Kohn-Sham scheme is often used and will
be presented in the next Section 2.7.

Note that Levy and Lieb [65-67] later established an alternative formulation to Hohenberg-
Kohn theorems. Their Constrained Search Formulation of DFT is more general and in
many cases more instructive [37].

HK theorems can be generalized [37] to include:

I. the electron spin [68], by treating separately the densities for spin-up and spin-down
electrons (spin density functional theory). To account for the effects of magnetic
field on the orbital motion of the electrons, not only on their spin, it is needed to
consider also the electronic current, not only charge [69]. This makes the problem
relativistic.

Texcept for an (unimportant) additive constant

8In DFT, the external potential Vey(r) is usually equivalent to the Coulomb potential from the nuclei,
see Eq. (2.2).
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2.7. KOHN-SHAM EQUATIONS

HK HKy
Ve(X) = 1no(T) KS no(r) —  Vks(r)

U RS u
vi(fr}) = Wo({r} Vizin(r) <& Yi(r)

Figure 2.4: The KS mapping of the real problem onto one-electron problem. The left half
corresponds to Fig. 2.3. Adapted from [37].

I1. thermal equilibrium properties, such as specific heat or entropy, as shown by Mer-
min [70]. The Mermin functional is not widely used, though, because it is difficult to
formulate. It must include electron properties beyond the ones of Hohenberg-Kohn’s
functional [37].

III. time-dependent problems, as shown by Runge and Gross [71].

IV. external electric fields and electric polarization [72].

2.7. Kohn-Sham equations

The HK theorems say that all you need is electron density. But there are many difficulties
when leaving out the wave function and working purely with the density’. For instance,
there is no known way to get the kinetic energy directly from the density [37]. Also, it is
hard to tell if a system is ionic or neutral, looking only at the density [73].

The Kohn-Sham approach [74] returns the wave function back into play, side-by-side
with the density.

The assumption of Kohn and Sham is that the real ground-state density ng can be
written as a sum over the densities of a certain number of non-interacting (free) electrons
(Fig. 2.4). Each free electron i has some spin o € {1,]} and some wave function ¥ (7).
If N7 is the number of electrons for spin o, the ground-state density

na(r) = nj(r) +nj(r) = Y- [0 (r) 2+ X2 o ). (211)

So the electrons are treated a priori as non-interacting, and the electron-electron in-
teraction is represented by the Hartree energy [Eq. (2.15)] and a small energy term FE,.[n],
which encompasses all the electron-electron interaction effects, which Hartree energy ne-
glects.

The Kohn-Sham energy, which needs to be minimized, then writes

EKS[n] = Ts [n] + Eext [n] + EHartree [n] + Exc [n] + EII ; (212)

9the squared modulus of the wave function
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electronic kinetic energy (Te) ST > T energy
nucleus-electron Coulomb v N > E energy due to the external
interaction (Vext) . ©ext potential
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Figure 2.5: Comparing the expectation value of the original many-body Hamiltonian
[Eq. (2.2)] and the Kohn-Sham energy [Eq. (2.12)]. The part of the original electronic
kinetic energy and electron-electron Coulomb interaction, which comes from the com-
plicated many-body effects is encompassed in the exchange-correlation energy, following
Eq. (2.16). Different line styles are used only for clarity.

where the single-electron kinetic energy

1 N°
T -5 T3 W) (213)
the energy due to the external potential (the Coulomb potential of the nuclei)

Eoln] = / & Ve (r)n(r) (2.14)

the electron-electron Hartree energy

1 /
Flartree[n] = 3 /dgr d*r’ M, (2.15)

r— 7/

the exchange-correlation energy E,. corrects for the fact that the true kinetic energy (T )
is different from the sum of the single-electron kinetic energies Ti[n] (due to correlation
effects) and the electron-electron interaction energy f/mt is different from the mean-field
Hartree energy Fuartree|n] (due to exchange and correlation effects)

ATcorrelation A‘/exchange—correlation
EXC[n] = <Te> - Ts[n] + <‘7int> - EHartree[n] . (216)

See Eq. (2.2) for definitions of the electron kinetic energy operator 7., and the electron-
electron interaction energy Vit

Finally, the constant nucleus-nucleus Coulomb interaction E;; must be added for com-
pleteness.

Note that Eq. (2.12) is in principle exact. For a given distribution of nuclei (exter-
nal potential V (7)) and a given density n, all terms except E,. are well-known and
straightforward to calculate. The unknown part, Ey.[n], constitutes only a small energy
contribution. How to express Ey.[n| with powerful approximations is explained in Sec. 2.9.
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2.8. SELF-CONSISTENT CYCLE

In Fig. 2.5, we compare the Kohn-Sham energy [Eq. (2.12)] and the expectation value
of the original many-body Hamiltonian [Eq. (2.2)].

Applying the variational principle to Ekxg with respect to the wave functions, one
arrives at the Kohn-Sham Schrédinger-like equation [37]

Hgs i(r) = ei¢i(r) |, (2.17)
with the Kohn-Sham effective Hamiltonian
1

Hys = 5V + V(). (2.18)

where instead of the energies £ from Eq. (2.12) we now have their respective potentials
V=SB
on(r)

Verr(1) = Vext () 4 Vitartree (1) + Vae(7) - (2.19)

For a given arrangement of nuclei (given external potential Vi (7)), we solve the Kohn-
Sham problem Eq. (2.17)-Eq. (2.19), thereby obtaining the Kohn-Sham wavefunctions
¥;(7), which give us the ground-state density ny via Eq. (2.11). From ny we get the
system’s total energy via Eq. (2.12) and, in principle (Sec. 2.6), also any other property
of the system.

Let us take a closer look at how to solve the Kohn-Sham problem Eq. (2.17)-Eq. (2.19).

2.8. Self-consistent cycle

Since the Kohn-Sham Hamiltonian Hks depends on the density, which actually follows
from that Hamiltonian in the first place, the Kohn-Sham equation needs to be solved in a
self-consistent iterative manner. The algorithm is depicted in Fig. 2.6. With the electron
density from some initial guess, the effective potential Vg [Eq. (2.19)] is calculated. From
the KS equation [Eq. (2.17)], we then get the KS wave functions ¢7(r). From the KS
wave functions, we calculate the density n and iterate until the self-consistent cycle output
density noy and input density ny, are not close enough. The criterion is usually that the
change in the total energy in the subsequent iterative steps is below certain threshold!’
Eqig

EE — Fig < Eag . (2.20)

Mixing
For the self-consistent cycle [Fig. 2.6] to converge, and converge fast, one cannot simply
use n¢ . as the input for the next cycle ni* [75]. Most often, a linear combination of the

in

new and the original density is used [37]

nitt =an’  + (1 —a)n! (2.21)

in »

where generally 0 < a < 1, but in fact, to ensure convergence, the upper limit for « is
usually much more strict [76]. This linear mixing works well for insulators. For metals,

OBz ~ 1077 eV
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Self-consistent Kohn—-Sham equations
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Figure 2.6: The self-consistent cycle algorithm for solving the Kohn-Sham equations
Eq. (2.17). Often used for the initial guess is simply the sum of electron densities from
all the atoms in the system, as if they were isolated. From [37].
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2.9. EXCHANGE-CORRELATION FUNCTIONALS

however, values as low as o &~ 0.01 may be necessary for convergence [75], making the
convergence slow and the number of necessary cycles large. Therefore, more sophisticated
mixing schemes have been developed, such as the Broyden method [77], where « is not
constant but updated dynamically at each iterative step. See Ref. [78] for other advanced
mixing methods.

2.9. Exchange-correlation functionals

Density functional theory owes its success to the fact that the difficult term in Eq. (2.12)
— the exchange-correlation energy F,. — can be approximated remarkably well using sur-
prisingly simple expressions. In this Section, we introduce the two simplest: the local
(LDA) and the semilocal (GGA) approximation.

Local density approximation (LDA) functional

The first step towards expressing F,. was already taken by Kohn and Sham themselves in
their seminal paper [74]. Their local density approximation (LDA) assumes that each point
in space contributes to F,. like a little amount of free electron gas of the same density n.
The exchange-correlation energy e™(n) for a free electron gas of given density n is
known'!. Hence, [37, 74]

ELPA[) = / & n(r) o (n(r)). (2.22)

Because the functional does not consider any interaction between the neighboring free-
electron-like infinitesimal regions, the approximation is called local and is naturally best
for slowly varying densities. Surprisingly, even for extremely inhomogeneous cases like
the hydrogen atom, it gives binding energy with the accuracy of ~ 7% [37].

The functional is simple yet successful because it preserves the sum rules [Eq. (2.8)
and Eq. (2.9)], which must always hold for the exchange-interaction hole [81], and because
the precise shape of the exchange-correlation hole is, in fact, not crucial, only its spherical
average [82].

Still, LDA is limited in many senses. Its general shortcoming is that it predicts too
large bonding energies and too short bond lengths [83].

Generalized gradient approximation (GGA) functional

Improved results compared to LDA are obtained by also including the gradient of the
density Vn, not only the density itself [35]

E&GA[TL] = /dgr n(r) 27 (n(r)) Fx(n(r), [Vn(r)]), (2.23)

XC

where Fl. is an enhancement factor encompassing the density gradient; the functional is
therefore semilocal.

" The exchange-correlation energy can be divided into its exchange and correlation part [74] €19™(n) =
= ebom(p) 4 elom(p). The exchange energy for a homogeneous electron gas €l°™ is given analyti-
cally [61], while the correlation €2°™ has been calculated very precisely by Monte Carlo methods [79]

and parametrized by Perdew and Zunger [80].
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Including Vn corrects the bonding energy, although it may somewhat overcorrect the
bond lengths [83]. There are three widely utilized GGA functionals [84-86]. In this work,
we use the one by Perdew, Burke, and Ernzerhof (PBE) [87].

Advanced functionals

While GGA improves some deficiencies of LDA, it does not account, e.g., for van der
Waals interactions [37]. There are many advanced functionals beyond GGA, which might
depend not only on the density but also on the wave functions, involve the kinetic energy
density, or be able to treat localized d and f orbitals with strong interactions [37, 88].

2.10. Plane-wave basis and PAW method

In practice, the density and wave functions must be represented in a certain basis. In
Density Functional Theory, three bases are often used [37]:

1. Plane wave basis and discrete grids. Plane waves [39] have many advantages:

they arise naturally in quantum mechanics; they naturally obey the Bloch theorem
of solid-state physics; they are independent of the positions of nuclei; forces on
atoms are numerically exact derivatives of the total energy, and the basis can be
systematically improved by including waves with ever-higher spatial frequency [37,
89].
In addition, a transition from the plane-wave basis (the reciprocal space) to the
discrete grid basis [90] (the real space) can be made very efficiently via the Fast
Fourier Transform. This is very useful since some calculations are easily done in
the real space!?, while others in the reciprocal space'®. We can also exploit the
combination of the two bases, as done in the Projector Augmented Wave (PAW)
method [91] described below, where part of the space is treated with plane waves
and the other part with discrete grids.

2. Localized orbitals. Functions resembling atomic orbitals and centered at the
nuclei are used [92]. This basis is more suitable for computational chemistry to
describe localized individual molecules, in contrast with solid-state physics, where
we usually deal with periodic systems.

3. Atomic sphere methods. The idea here is to divide the space into regions near
the nuclei (atomic spheres), inside which the wave function oscillates quite rapidly,
and the interatomic region, where it oscillates much more slowly. Smooth functions
are used as a basis in the interatomic region and they are augmented in the atomic
spheres. These are the Linearized Augmented Plane Wave (LAPW) method [93,
94], Korringa-Kohn-Rostoker (KKR) method'* [95, 96] and Linearized Muffin-tin
Orbitals (LMTO) method [97].

In addition, there are linear scaling methods [98], which are suitable for large systems
(e.g., a fragment of an RNA molecule with ~ 1000 atoms [98]). Using them, the com-
putation time then scales linearly with the number of atoms N, while in the previous

126 g., calculating the density from the wave functions
Bthe kinetic energy calculation
4also called Green’s function method or multiple-scattering theory (MST)
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Figure 2.7: (a) Inside a sphere of a cutoff radius r. from the given nucleus, a pseudopo-
tential Viseudo replaces the real Coulomb potential V' to suppress rapid oscillations in the
wavefunction W. Above r., the exact and pseudized potentials and wavefunctions are
equal. The region r < r. is called the augmentation region. The region r > r. is called
the interstitial region. From [101]. (b) The exact Kohn-Sham wave functions in the PAW
method consist of three terms. A combination of plane-wave basis and radial grids is
exploited. The wavefunction and its derivative is assured to be continous at the sphere
boundaries [35]. Adapted from [102].

three cases, it scales as N2 or N3 [37]. On the other hand, care must be taken to ensure
accurate results.

Pseudopotentials

Near a nucleus, the Coulomb potential V' —% is strong and it forces the wave functions
to oscillate rapidly [37], see Fig. 2.7(a). When using the plane-wave basis, high spatial
frequencies must be included to describe these rapid oscillations. On the other hand, this
strong Coulomb potential near the nucleus influences mainly the core electrons, which do
not respond significantly to the neighboring atoms'® and hence are often approximated
as non-changing: the so-called frozen core approximation [99].

A pseudopotential replaces the strong Coulomb potential near a nucleus with a poten-
tial that is much weaker, to suppress rapid oscillations in the wave function [55, 100]. Fur-
ther away from the nucleus, the pseudopotential has its value equal to the true Coulomb
potential, see Fig. 2.7(a). The new wave function is called a pseudo wave function, which
has the correct form far from the nucleus but does not oscillate rapidly close to the nu-
cleus. Thereby, high-frequency plane waves are not needed, and the required size of the
plane-wave basis is smaller.

5do not take part in chemical bonds
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2. DENSITY FUNCTIONAL THEORY (DFT)

Projector augmented waves (PAW)

The Projector Augmented Wave (PAW) method [91] is a modern method, which efficiently
treats the behavior of wave functions both near the nucleus and between the atoms. The
unit cell [top part of Fig. 2.7(b)] is divided into two regions:

[. Augmentation spheres, which are centered on atomic nuclei, with a cut-off radius
r? for a given atom a. In this region, the Coulomb potential is strong, and the wave
functions, which oscillate rapidly, are represented by localized orbitals.

I1. Interstitial region in-between the spheres. In this region, the Coulomb potential
is already weak, and the wave functions, which oscillate slowly, are expanded into
plane waves.

The exact wave functions (as well as the densities and energies) then consist of three
parts [35, 37|, see the bottom part of Fig. 2.7(b): the pseudo wavefunction evaluated with
plane waves minus the same pseudo wavefunction inside the augmentation sphere evalu-
ated with radial grids plus the exact wavefunction in the augmentation sphere evaluated
with radial grids.

2.11. Spin-dependent Kohn-Sham equation

To explicitly include magnetization into DFT, the wave function is decomposed into
its spin-up and spin-down parts [68, 103], together forming a spinor'® ¢ and a spin-
density s [46]

_ (), _
ot = ()5 str) = lalut) (221)

where o = (0,, 0y, 0,) is the vector of Pauli matrices

01 0 —1 1 0

The density is treated as a matrix containing both particle and spin density [46]

Wi (1) by () w(r)w)) 1<n<r>+82<r> Sz<r>—i$y<r>). (2.26)
2

nlr) = <¢I(r)%(r) Vi) Yy(r)) — 2\salr) +isy(r)  n(r) —s.(r)

The spin-polarized Kohn-Sham equation is then [46]

1 ) _ (vl
(57 Vo) Vi) L ) - 801 (100) = (1107 - 220
10
0 1
is the external magnetic field.

where the unit matrix I =

), the exchange correlation matrix V. = gf(’;f), and B

165, two-component vector
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2.12. MAGNETOCRYSTALLINE ANISOTROPY CALCULATION

2.12. Magnetocrystalline anisotropy calculation

Because the Hamiltonian in Eq. (2.27) does not depend on the spin, the magnetic mo-
ments have no preferential direction—-they have no anisotropy [46]. To observe magnetic
anisotropy, it is necessary to include relativistic effects, namely the spin-orbit coupling,
illustrated by a semi-classical model in Sec. 1.5.

Within the density functional theory, magnetocrystalline anisotropy energy Fyica can
be calculated by three methods [35]: full relativistic total energy calculation [104], force
theorem [105, 106], or the torque method [107].

The force theorem method is used in this work. By the argument that Fsoc is small
(~ 1 meV) compared with the crystal field energy (=~ 1 V) [32], the spin-orbit coupling
is treated as a perturbation. The F\ica calculation consists of two steps:

1. A spin-polarized calculation is performed to obtain the ground-state density self-
consistently.

2. With the spin-orbit coupling included and keeping the electron density from the
previous step, the total energy for different magnetization directions is calculated.

Since Fyica is so small, special care must be taken that the total energies are calculated
precisely, namely that a sufficient number of k-points and sufficiently high plane-wave
cutoff energy is used.

2.13. Vienna Ab Initio Simulation Package (VASP)

The Vienna Ab Initio Simulation Package (VASP) [108-110] is a complex commercial
package for ab initio simulations. It is written in Fortran 90 and uses MPI [111, 112]
to enable massively parallel computing on clusters. The PAW method is employed for
accurate calculations with a small enough basis. It has good scalability for large systems
(calculations for up to ~ 4000 valence electrons), and there are routines that automatically
calculate the symmetry of the problem, to simplify the computation. Throughout this
work, VASP version 5.4.4. is used for self-consistent collinear calculations and version
5.4.1. for noncollinear non-selfconsistent calculations.

In the following, the general inputs and outputs of a VASP calculation are outlined.
They are logically grouped into several text files.

Input files

Four input files are always needed in a VASP calculation:

1. POSCAR

In the POSCAR text file, we define the size and shape of the unit cell, along with the
positions and types of atoms it contains. Periodic boundary conditions are usually applied
in all directions, so the unit cell virtually repeats and fills the whole space.
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2. DENSITY FUNCTIONAL THEORY (DFT)

2. INCAR

The INCAR text file contains most of the calculation settings, namely the type of cal-
culation and the specific algorithms used, the size of plane-wave basis and precision of
convergence criteria, whether magnetism should be included, and what are the starting
magnetic moments for each atom, and so on. We can also define how to parallelize the
computation and how strongly the symmetry conditions should be enforced. Most param-
eters have reasonable default values and do not have to be modified, depending on the
requirements.

3. KPOINTS

The periodic boundary conditions make VASP ideal for solid-state materials calculations,
where the Bloch theorem and notion of the Brillouin zone play a central role [39]. The
electronic ground state should be calculated for all the (infinite number of) k-points inside
the Brillouin zone and then integrated. In practice, the Brillouin zone is sampled by some
limited number of k-points and then summed. The type of sampling and the number of
k-points (density of the k-point mesh) is specified in the KPOINTS file.

4. POTCAR

POTCAR contains the pseudopotentials for each atomic element used in POSCAR. The
pseudopotentials are created by the developers and copy-pasted into POTCAR, depending
on which ones are currently needed.

Output files

The output of the calculation is naturally the ground-state density, given in the CHGCAR
file, along with the wave functions given in WAVECAR. However, most of the relevant
parameters are given in OUTCAR.

OUTCAR

OUTCAR contains information about the calculation progress and a plethora of important
output parameters. These are the symmetry of the problem, total energy, the energy
eigenvalues at all sampled k-points, relaxed atomic positions (if atomic relaxation was
performed), forces on atoms, magnetic moments (including the orbital moments), and far
more.

PROCAR

In PROCAR, for each particular band at each particular k-point, the character of this
band is provided as a set of complex numbers for all the nuclei, orbitals, and spins, where
the complex number is the projection coefficient of the particular wavefunction with a
given spin onto a given spherical harmonic (orbital type) centered at the given nucleus.

DOSCAR

DOSCAR contains the density of states (DOS) resolved in spin, orbital type, and nucleus
site.
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3. Magnetic anisotropy of bcc Fe, Co,
and Ni/MgO ultrathin films

The manyfold cutting edge applications of MgO-based magnetic tunnel junctions have
been described in the Introduction. In this thesis, we focus on their applications in the
spin-transfer torque magnetic random access memory (STT-MRAM). Specifically, we aim
to increase their perpendicular magnetic anisotropy (PMA) to enable further downsize
scaling of STT-MRAM memory bits (Sec. 1.6). The ferromagnetic layers in MgO-based
MTJs are usually composed of the 3d transition elements Fe and Co in their body-centered
cubic (bcc) crystal structure. In this chapter, we start by investigating the PMA of
ultrathin films of bee Fe, Co, and Ni on MgO by ab initio calculations.

3.1. Magnetocrystalline anisotropy calculation proce-
dure

The density functional theory (DFT) calculations of magnetocrystalline anisotropy are
performed using the Vienna Ab initio Simulation Package (VASP) [109, 110] (Sec. 2.13).

The Generalized gradient approximation (GGA) exchange-correlation functional [113]
(Sec. 2.9) is used as implemented by Perdew, Burke, and Ernzerhof [87]. The k-point
mesh of 25 x 25 x 1 points and a plane wave cut-off energy of 520 eV (ENCUT = 520) has
proven to give sufficient accuracy, as discussed in Sec. 3.2. We follow the force-theorem
method [105, 106], already introduced in Sec. 2.12.

The whole calculation procedure is described in detail in Ref. [114, 115] and it consists
of four steps:

1. Relaxation. First, the unit cell shape, volume, and atomic positions are adjusted
to minimize the interatomic forces' below 0.001 eV /A (EDIFFG = -0.001).

2. A self-consistent optimization of the ground-state electronic structure is per-
formed, until the total energy variation drops below 10~7 eV (EDIFF = 1e-7).

3. Spin-orbit interaction is included (LSOC=.TRUE.) and the total energy of the
system is calculated non-self-consistently, with the electronic charge density from
the previous step (ICHARG=11); the magnetization is out-of-plane (SAXIS = 0 0 1).

4. Same as step 3, but with magnetization in-plane (SAXIS = 1 0 0).

Lobtained from the Hellmann-Feynman theorem [116, 117]
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3. MAGNETIC ANISOTROPY OF BCC FE, CO, AND NI/MGO ULTRATHIN FILMS

The magnetocrystalline energy Fyica is then defined as the total energy difference for
magnetization in-plane my = (1,0,0) and out-of-plane m, = (0,0,1)

3.2. Convergence tests

As mentioned in Sec. 2.12, Fyca is a very small energy difference (~ 1 meV), compared
with the total energy (~ 100 eV). In our case, it makes up for a tiny ~ 0.001% of the
total energy, and special care must be taken to perform calculations that are sufficiently
accurate. Therefore, we first carry out several convergence tests.

The k-point mesh

The k-point mesh determines how densely the Brillouin zone should be sampled. In
Fig. 3.1(b), a two-dimensional Brillouin zone with 4x4 k-point mesh is sketched?. Denser
mesh means higher precision but longer computation time. Before any calculation, it
is hence important to determine the minimal k-point mesh density, which still ensures
the required precision. We perform a k-point convergence test on a structure with a
5-monolayer (ML) film of bee Ni sandwiched between 5 MLs of MgO.

In Fig. 3.1(a), we plot Enica VS. T lateral, Where the k-point mesh is ny jateral X 1k Jateral X 3
k-points. The data is fitted by an exponential to obtain the asymptotic value. For most of
the calculations, though, 1 k-point in the z direction is enough and a mesh of 25 x 25 x 1
k-points has proven to give a reasonable trade-off between accuracy and computation
time.

-0.36 - - 52
asymptote = -0.369 meV/atom A
-0.37 - u
n
-
g -0.38 E k1
LS| . / k
% -0.39 ) ° ° ° A@/ 2
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Brillouin zone
21 283 25 27 31 35 39 43

(a) nk,lateral (b)

Figure 3.1: (a) K-points convergence test performed on bee Ni(5ML)/MgO(5ML) and a
T lateral X Mk lateral X 3 k-point mesh. (b) A 2D Brillouin zone with a small, illustrative 4x4
kpoint mesh. Only 3 out of the 16 points are unique. The irreducible Brillouin zone thus
covers only 1/8 of the whole Brillouin zone. From [118].

2Note that due to symmetry, only 3 k-points are unique, forming the much smaller irreducible Brillouin
zone. This reduction of k-points by symmetry considerations greatly simplifies the calculation in steps 1
and 2 in Sec. 3.1. However, for Steps 3 and 4, where the spin-orbit coupling is included, the symmetry is
broken and should be switched off (ISYM = -1).
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3.3. BODY-CENTERED CUBIC (BCC) LATTICE OF CO AND NI

The plane-wave energy cut-off

To make the plane-wave basis finite, one needs to set the highest spatial frequency, which
still needs to be included in the plane-wave basis to accurately describe the charge density
oscillations with sufficient resolution. In VASP, instead of the spatial frequency cut-off
Geut, We set the wave’s corresponding cut-off kinetic energy
h2
Eew = G?

2me cut

(3.2)

defined by the ENCUT parameter in INCAR. Default values are available in VASP for each
element. We use F., = 520 eV. The change in F\ica following the change in E.,; from
500 eV to 550 eV is® only 27% meV.

Note that increasing the MgO thickness from S5ML to 7ML has only a small effect on
FEnica, below 0.01 meV.

3.3. Body-centered cubic (bcc) lattice of Co and Ni

The natural lattice-type for bulk Fe is indeed the body-centered cubic (bcc), but for Co,
it is hexagonal close-packed (hcp), and for Ni, it is face-centered cubic (fcc). That is why,
with no MgO present, thin slabs of Co and Ni prefer the fcc structure over bec: if we
impose the bce structure on a few-monolayer-thick Co or Ni slab interfaced with vacuum
and let it relax, the lattice expands vertically by a factor of v/2, as shown in Fig. 3.2. This
corresponds to a bec—fee transformation; the fec lattice is clearly apparent if the relaxed
structure is rotated by 45° (see Fig. 3.2). The Fe slabs always stay in the bce form.

fcc
bec ml
%%
M
45°
relaxation
o V2] '
° a 2a (-]
-] ° ’
° A P
W e
a —r d—h'
a V2a

Figure 3.2: A Co or Ni slab (thin film interfaced with vacuum) relaxes from the initial
bee form to fce by a vertical expansion. In Fe, whose natural bulk lattice type is bce, we
do not observe this transformation.

3for the Ni/MgO test system and 25x25x 3 k-points
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3. MAGNETIC ANISOTROPY OF BCC FE, CO, AND NI/MGO ULTRATHIN FILMS

On the contrary, if the slabs are interfaced with MgO, the relaxation compresses the
lattice slightly in the vertical direction, making the lattice strained. Hence, (a strained)
bee lattice of Co and Ni is stabilized by the MgO barrier.

3.4. Test calculations: reproducing published results

To check that the calculation as described above is set up correctly, we try to reproduce
some well-known published results.

First, the results of hybridization between the Fe d orbitals and the O p, orbital at
the Fe/MgO interface are studied. This hybridization plays a central role in the large
out-of-plane interfacial anisotropy in Fe/MgO MTJs*. Hence, we follow the work of Yang
et al. [114] and plot the energy levels of the interfacial Fe d-orbitals and the interfacial O
p, orbital in Fe(bML)/MgO(5ML). Our results are shown in Fig. 3.3, side by side with
the results from Yang et al. [114]. The energy level positions correspond well, and the
hybridization of the O p, orbital with Fe d,» orbital is apparent, as explained in the
caption of Fig. 3.3.

Second, we perform the Fjyca calculation for Fe/MgO with Fe thickness from 5 to
15 MLs. For all the films, we determine the contribution from each of the layers and
compare with Ref. [119]. As shown in Fig. 3.4, our results again coincide very well with
the published ones.

Fe/MgO
AT A ] Yang, Chshiev 2011
o L w1l gl L miL §
—_— — 9693 ' 99 9897, .
— T FY NPT —
- Je— 1 p— f— T
_— ' ( 4 44 4
: ; ) ) " -
05 1t
XZ,YZ -y inz [ xy XZ,VZ Z' _'1-\1 0 P,

¢ ppBEn:

Figure 3.3: The energy levels of the five d-orbitals (xy, xz, yz, z?, and x3-y?) at the

interfacial Fe and the p, orbital of the interfacial O (O_pz) in Fe/MgO are shown for
three cases: without spin-orbit coupling (middle column of energy levels), with SOC plus
magnetization out-of-plane (L; left column), with SOC plus magnetization in-plane (//;
right column). With SOC included (left and right column), additional energy levels appear
in the oxygen p, orbital, corresponding to certain Fe d,». This signifies the presence of
hybridization between the two orbitals, which is the main cause of interfacial PMA in
Fe/MgO [114].

L; .300:* »

X

4The interfacial anisotropy between Fe and O makes it possible to fabricate perpendicular MgO-based
MTJs, very important for MRAM applications [1].
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3.5. VARYING THE METAL THICKNESS
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Figure 3.4: Layer-resolved Eyca for Fe/MgO of different Fe thicknesses. The grey empty
circles (calculated in this work) correspond well to the literature results (the colored
symbols, calculated in Ref. [119]).

3.5. Varying the metal thickness

After validating the accuracy of the calculation procedure, we continue with a series of
calculations for bee (001) Fe, Co, and Ni on MgO as a function of metal thickness. In
Fig. 3.5, we plot their Fyca, the in-plane lattice parameter a, and the average atomic
magnetic moment .

Magnetocrystalline anisotropy

From Fig. 3.5(a), it is clear that for Fe, the Eyca stays almost constant with thickness.
This is well known [119]. For Co, on the other hand, there is a steady increase. For Ni,
the behavior seems oscillating.

According to Eq. (1.3), constant variance with thickness points to interfacial anisotropy,
while linear increase points to bulk anisotropy [also indicated in the inset of Fig. 3.5(a)].
We confirm the origin of these distinct trends by plotting the contribution to Eyica from
each of the metallic layers separately in Fig. 3.5(b).

For Fe, the main contribution to Fyjca comes from the first two layers at the MgO
interface [114, 119, 120]. Increasing the thickness does not affect the electronic properties
of the interfacial layers in a significant way [119] (see Fig. A.1 in Appendix A). The
contribution of the bulk layers is almost zero. When increasing the Fe thickness, only
bulk-like layers are added. Hence the Eyica does not change with thickness.

Interestingly, for Co, all the bulk layers seem to contribute with a significant positive
value [120], evident from Fig. 3.5(b). This is why the Eyca in Fig. 3.5(a) grows mono-
tonically: by increasing the thickness, more bulk-like layers are added and each of them
gives a contribution of about 0.5 mJ/m?.

In Ni, the influence of the interface manifests itself as deep as 6 ML [120]. The
two interfacial layers contribute negatively to Eyica. This is the reason for the in-plane
anisotropy in the 5-ML structure in Fig. 3.5(a). Although the deeper bulk layers con-
tribute positively, the Eyica does not grow monotonically, as one could expect, because
the interfacial contributions in Ni do change upon thickness increase, unlike in Fe or Co
(Fig. A.1 in Appendix A).
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3. MAGNETIC ANISOTROPY OF BCC FE, CO, AND NI/MGO ULTRATHIN FILMS
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Figure 3.5: (a) The magnetocrystalline anisotropy for structures comprising bee Fe, Co,
and Ni on MgO as a function of metal thickness. Constant variance for Fe signifies
presence of interfacial anisotropy; linear increase for Co signifies bulk anisotropy. This is
confirmed by the layer-resolved values in metal(15ML)|MgO structures in part (b). (c)
In-plane lattice parameter. With increasing metal thickness, it relaxes from the MgO bulk
value towards the smaller Fe, Co, and Ni bulk values. The decrease is least prominent for
Ni, which mainly relaxes via vertical lattice parameter c: its ¢/a ratio in part (d) deviates
most from the equilibrium ¢/a = 1. (The ¢/a ratio in bulk layers of Fe, Co, and Ni is 0.94,
0.89, and 0.85, respectively.) The layer-resolved c/a values plotted for the 15ML-thick
structure in part (d) are very similar across all thicknesses, see Fig. A.2 in Appendix A.
(e) The average atomic magnetic moment is almost constant for Co and Ni, but decreases
for Fe. (f) Only in Fe are the interfacial magnetic moments enhanced.
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3.6. STRAINED BULK BCC FE, CO, AND NI

Lattice parameter and strain

In Fig. 3.5(c), the lattice parameter for the thinnest metal thicknesses is very close to that
of bulk MgO: ango = 2.98 A [121]. The 5ML-thick MgO imposes this lattice parameter
upon the thin metals. For thicker metal layers, the a parameter starts to decrease (it
relazes) towards the bulk values of the respective bee metals: ap, = 2.86 A [122], aco =
=2.81 A [123], ax; = 2.79 A [this work].

The a relaxation is most prominent for Fe, less so for Co, and even less for Ni. This
might seem surprising: from the lattice parameters given above, the lattice mismatch
is biggest for Ni, lower for Co, and lowest for Fe. We would hence expect the steepest
decrease of a in Fig. 3.5(c) for Ni. However, Ni relaxes mainly via the vertical lattice
parameter c.

In other words, the ¢/a lattice parameter ratio for Ni most deviates from the equillib-
rium value ¢/a = 1. This is clear from Fig. 3.5(d): the typical relaxed ¢/a ratios we found
within the bulk-like layers of Fe, Co, and Ni on MgO are 0.94, 0.89, and 0.85, respectively.
(We devote the next Sec. 3.6 to the effect of strain on the Eyca in purely bulk bee Fe,
Co, and Ni.)

Atomic magnetic moment

The average magnetic moment per atom [Fig. 3.5(e)] stays almost constant for the larger
thicknesses of Co and Ni. (For the thinnest Co, there are strong variances due to the
extreme strains in these ultrathin structures.) For Fe, however, the average atomic mag-
netic moment decreases with thickness. This has been observed both theoretically and
experimentally [124, 125]. Also, there is an interfacial magnetic moment enhancement in
Fe/MgO, see Fig. 3.5(f). Its consequences for magnetic tunnel junctions were discussed
in Ref. [126].

3.6. Strained bulk bcc Fe, Co, and Ni

In order to understand what is the cause of the large bulk PMA in bee Co in Fig. 3.5(b),
based on Fig. 3.5(d), we make a hypothesis that this large PMA is strain-induced.

To determine the effect of strain on bulk bce Fe, Co, and Ni, we perform a series of
anisotropy energy calculations of a simple bce unit cell of Fe, Co, and Ni with different
c/a ratios [Fig. 3.6(a)]. A k-point mesh of 19x19x 19 points has proven to provide Fyica
with sufficient accuracy of 0.01 meV. The typical bulk strains from Fig. 3.5(d) are plotted
as vertical lines. At its typical ¢/a ratio (0.89), there is indeed a strain-induced anisotropy
of about 0.5 mJ/m? for bulk bee Co in Fig. 3.6(b). This is the same value as in the bulk
layers of Fe on MgO in Fig. 3.5(b).

Thereby, the hypothesis of significant strain-induced PMA in Co/MgO is supported.
We have performed some additional tests, notably making the structure artificially un-
strained (¢/a = 1) and omitting the relaxation step in the calculation. The result was
that the PMA in Co disappeared, as expected.

The Eyca in strained bulk bee Fe, Co, and Ni has been calculated before [127, 128],
but only in the range ¢/a > 1, whereas our region of interest is ¢/a < 1 (the typical
strains of metal/MgO structures). Our results correspond well to the published values for
c/a > 1, see Fig. A.3 in Appendix A.
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3. MAGNETIC ANISOTROPY OF BCC FE, CO, AND NI/MGO ULTRATHIN FILMS
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Figure 3.6: (a) A simple bee unit cell with the vertical lattice parameter ¢ and the latteral
lattice parameter a. It serves as a model structure for evaluating the impact of strain on
the PMA of Fe, Co, and Ni on MgO. (b) The Eyca was calculated for different ¢/a ratios.
Vertical lines signify the typical ¢/a values in bulk-like layers of bee Fe, Co, and Ni on
MgO. At the typical ¢/a for Co (0.89), the Fjyca is indeed about 0.5 mJ/m?, same value
as in Fig. 3.5(b). This supports the hypothesis that the PMA in bee Co in Fig. 3.5(b) is
strain-induced. Note that the values for ¢/a > 1 correspond reasonably well to published
results [127, 128] (see Fig. A.3 in Appendix A). © 2021 American Physical Society [120].

34



4. Giant anisotropy enhancement in
Fe/Co/Fe|MgO magnetic tunnel junc-
tion

In this Chapter, we exploit the results of the previous Chapter 3, namely that there is a
large PMA arising at the Fe/MgO interface and a large PMA contribution coming from
the Co/MgO bulk.

4.1. PMA enhancement due to Eyca

We propose to enhance the PMA of a conventional Fe/MgO MTJ by replacing a few of the
bulk Fe layers with Co [120]. In Fig. 4.1, this concept is demonstrated. A conventional
MTJ is shown, consisting of a fixed magnetic layer, the MgO barrier, and a magnetic
storage layer composed of a Fe(3 ML)/Co(10 ML)/Fe(3 ML) trilayer. The Co atoms in
the middle of the structure enhance the PMA, compared with a structure with pure Fe.
Following the arguments of Sec. 3.5 and Sec. 3.6, the large PMA in the bulk Co layers is
induced by the epitaxial strain caused by MgO.

In Fig. 4.2(a), we plot E)\jca for structures with the general form Fe(n)/Co(m)/Fe(n)|MgO
for different Fe and Co thicknesses n and m, respectively. The enhancement mechanism
is persistent for all the cases. Note, however, how the first Co layer at the Fe/Co inter-
face loses its positive PMA. Especially from the "n = 4, m = 4” case in Fig. 4.2(a) it

" —s—Fe3Co10Fe3 |MgO
8 - - Fe16 IMgO

. N
_ %st\up

3 5 7 9111315

Fixed MgO| FeCoFe Layer number
layer

Figure 4.1: The concept of PMA enhancement in a conventional Fe/MgO MTJ by replac-
ing a few of the bulk layers by Co. The bulk Co atoms (blue) provide large contribution
to Fyoa. Also, they reduce the negative demagnetizing energy, as discussed in the text.
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4. GIANT ANISOTROPY ENHANCEMENT IN FE/CO/FEMGO MAGNETIC
TUNNEL JUNCTION

is apparent that a Co thickness of m < 4 monolayers might lose the enhancing property
altogether.

Indeed, we find that the condition for the enhancement to work is to have at least
two Fe monolayers (n > 2) and at least three Co monolayers (m > 3). In Fig. 4.2(b), we
plot the layer-resolved Eyjca for this “minimal structure” Fe(2ML) /Co(3ML)/Fe(2ML)|MgO,
as well as for several structures defying the n > 2, m > 3 rule, which is clearly detri-
mental for the PMA.

While Eyca shows very promising enhancement in our presented Fe(n)/Co(m)/Fe(n)|MgO
magnetic tunnel junction design, so far we have not considered the important contribution
of shape anisotropy.

4.2. Shape anisotropy (Fg4q) calculation

We implement a Python code to calculate the shape anisotropy. The code first loads the
(relaxed) positions and dipolar magnetic moments of all the atoms calculated by VASP.
The total dipolar energy Faipolar [Eq. (1.7)] is then obtained for magnetization in-plane
my = (1,0,0) and out-of-plane m, = (0,0,1). The shape anisotropy energy (dipolar
demagnetizing energy) is defined as [129, 130)]

Edd = Edipolar(mH) - Edipolar(ml) 5 (41)

similar to the definition of Eyica [Eq. (3.1)].

Note that the unit cell in VASP is small, but due to the periodic boundary conditions,
it effectively forms an infinite thin film, which is exactly the geometry we are interested
in. Now, the dipole-dipole interactions should also be summed up to infinity in the two z
and y in-plane directions'. In practice, the code performs a sum up to some finite cut-off
radius ey [see the inset in Fig. 4.3(a)] for a few selected values of 7y (~100 unit cells).
Then we interpolate Fqyq(7ey) with the formula

Edd(rcut) = ar;lbt +c. (42)

This expression is justified by the fact that the dipole-dipole energy oc 1/r2 . and the
number of atoms of the thin infinite film o r2 , (the surface area), so overall Egq o¢ 1/7 ey
[see Fig. 4.3(a)]. Hence, we expect b~ 1, which is also what we observe in fits similar to

that in Fig. 4.3(a). The desired asymptotic value is clearly the ¢ coefficient
Edd(rcut — OO) =cC. (43)
After testing the code, we arrive at the following conclusions.

1. Quite a low cut-off radius of only several tens of unit cells is enough for a precise
extrapolation by Eq. (4.2). Namely in our test case, we compare the results of extrap-
olating Fad(reut — 00) from ey € {10,30,50} and from rq, € {500, 1000,2000}.
The difference is only 0.3% and the computation time for the first case is orders
of magnitude shorter. Using this low cut-off radius, we reproduce the results from
Ref. [129] with good precision (= 1%).

!'Note that in VASP, the periodic boundary condition is also in the z direction, perpendicular to the
film. This effectively makes the structure an infinite number of parallel thin double-barrier magnetic
tunnel junctions. Since the magnetic layers are separated by MgO, this is of no concern in the DFT
calculation, but for the Eqq, implying the periodic boundary condition in z would be meaningless.
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\m 4 8 12
n
__ 15 [ ®
e 1.2 o b ? * ?
2 06 oo oo
< 03 o000 0o 00% o000
g O ® °
W 0.0 e o ° ° ™ °
-0.3 |
15
[aV]
e 1.2 ° g ° ° © °
= 09
3 \E/ 0.6 o0
S 03 ® 1 o 0%g% o o 0%9490,0%
S - e o ° ° ° °
ur 0.0
03 e e | ® ° e ®
__ 15
A
= 1.2 o o ® ® ® ®
E 0.9
4 = 0.6 [ _J ® o ® o0 ()
go_s ® ® ® 0,0 O ® .o. .o. PS
ur 0.0 «®® 9 o % o% %
-0.3
1357 91113151719 1 3 5 7 91113151719 1 3 5 7 91113151719
(a) Layer number Layer number Layer number
Fe(2)Co(3)Fe(2) Fe(2)CoFeCoFe(2) Fe(3)Co(2)Fe(2) FeCo(4)Fe(2)
1.
5o o ® ° o
— 10 ° °
—EJ 0.5 e .
£ ' 0 g0 40 ° ) ® °® e )
S 0.0 ® ® ®
= P L
w .05 ° °
)
-1.0
123 4567 1 234567123 45¢6 712345467
(b) Layer number Layer number Layer number Layer number

Figure 4.2: (a) Layer-resolved Eyjca in structures of the form Fe(n)/Co(m)/Fe(n)|MgO.
Gold circles represent Fe layers and blue circles represent Co layers. The enhancement of
Eyica compared to a pure Fe|MgO structure is provided by the bulk Co layers, similar
to Fig. 4.1 [120]. The Fe/Co interface is detrimental to the bulk Co PMA of the Co
layer closest to Fe. (b) We find that at least 2 Fe layers and 3 Co layers are needed for
the enhancement. This "minimal” structure is on the very left. The other structures
defying this condition do not exhibit the large enhancement. © 2021 American Physical
Society [120].
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Figure 4.3: (a) The dipolar demagnetizing energy FEqq for a Fe(7ML)/MgO finite thin
rectangular film with a diameter of 2r¢, unit cells. The scaling is close to Faq o 1/rcyt,
ie., Ega(reut) = arc_ul; + c with b ~ 1. (b) The dipolar demagnetizing energy as a function
of the magnetization angle # from the perpendicular direction. The FEy44(f) has the form
of uniaxial anisotropy [Eq. (1.2)]. Tested on Fe(7ML)/MgO.

2. The calculation values are very similar to the simple formula Eq. (1.6) for thin
magnetic films [30]

Ejdemag7 thin-film — _%Msz ’ (44)

where Mj is the average magnetization over the whole unit cell. Indeed, Eq. (4.4)
underestimates the shape anisotropy only by a few percent, as shown in Tab. 4.1.

3. The angular dependence of Fg4q is uniaxial [Eq. (1.2)], which is apparent from
Fig. 4.3(b).

Table 4.1: Comparing Eg4q calculated by the average demagnetizing field [Eq. (4.4)] and
the dipole sum [Eq. (1.7)] in a few selected structures. The underestimate of Edemag, thin-film
compared to Eyq is also given.

Ejdemag7 thin-film Edd

(MJ /m?) (MJ/m?) underestimate (%)
Fe(5ML)[MgO -2.02 -2.09 3.4
Fe(7ML)[MgO 217 2.19 1.1
Fe(15ML)|MgO 211 215 1.5
Fe(2ML)Co(3ML)Fe(2ML)|MgO 1,72 1178 3.1

4.3. PMA enhancement due to Fyca and Fgg

We have thus two major contributions to the effective perpendicular anisotropy
PMA = Enica + Eaq - (4.5)

By replacing the bulk-like layers in Fe/MgO, we obtained large enhancement due to Eyca
[Fig. 4.1]. In addition, there is enhancement also due to Egq. This is clear from the
following argument, which we make for the simplified expression Eq. (4.4), but it can be
made very similarly for the more accurate Eq. (1.7) [along with Eq. (4.1)]: since Egq is
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4.4. DECREASE OF PMA WITH FE/CO INTERDIFFUSION
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Figure 4.4: (a) Effective PMA (Eyoa+Faq) in MgO|Fe(n)Co(m)Fe(n)|MgO as a function
of number of monolayers n, m. There is no perpendicular to in-plane magnetic anisotropy
switching compared to pure MgO|Fe|MgO (grey diamonds; its thickness is m+4 ML, the
same as the overall thickness for n=2) [120]. (b) Emca, Fada, and the effective PMA
(Evica+FEaq) for n=2. The effective PMA increases with the Co thickness [120]. (c)
Supercell of the MgO|Fe(2)Co(3)Fe(2)|MgO with periodic boundary conditions applied
in all directions [120]. Produced by VESTA [131]. © 2021 American Physical Society [120].

negative, the (positive) perpendicular anisotropy energy is increased when the magnitude
of F4q is decreased. Since the magnetic moment of Co [~ 1.73up| is lower than that
of Fe [~ 2.5up; Fig. 3.5(¢e)], Eaq is weaker and the effective perpendicular anisotropy is
enhanced even stronger.

In Fig. 4.4(a), we plot the effective PMA = Eyca + Eqq as a function of Fe and
Co thicknesses n and m. Usually, above certain film thickness, the demagnetizing energy
dominates, making the effective anisotropy negative (in-plane). This is clear from the pure
Fe|MgO case (grey line). In contrast, the effective PMA in our Fe(n)/Co(m)/Fe(n)|MgO
does not become negative; due to the two enhancement mechanisms, it grows steadily,
just as in the pure Co/MgO case [Fig. 3.5(a)]. The variation of Eyica and Eqq separately
(for n = 2) is shown in Fig. 4.4(b). The storage layer design with enhanced anisotropy is
depicted in Fig. 4.4(c).

4.4. Decrease of PMA with Fe/Co interdiffusion

In the real-life fabricated structures, there will be some interdiffusion between the neigh-
boring layers. The sharpness of the Fe/Co interface is, therefore, an important factor to
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consider [120]. From the simulations, it follows that any interdiffusion is fatal for the
PMA when the Fe or Co thickness is less than 2 ML or 3 ML, respectively [n<2 or m<3;
Fig. 4.2(b)]. Robustness can be achieved at larger Fe and Co thicknesses. In Fig. 4.5, one
may see the effective PMA in the Fe(2)Co(3)Fe(2) and Fe(3)Co(4)Fe(3) structures with
0.5-ML (50%) interdiffusion and a 1-ML interdiffusion (the interface layers are completely
swapped). The drop in the effective PMA in Fe(3)Co(4)Fe(3) is only 22% at 0.5-ML in-
terdiffusion, compared to a drop of 73% for Fe(2)Co(3)Fe(2). This robustness against
surface roughness is to be expected in the thicker structures in general [120].

Larger Co thickness is favorable as it increases the PMA [Fig. 4.4(a)], but thicker bec
Co will probably be harder to fabricate [132].

On the other hand, larger Fe thickness provides robustness against interdiffusion and
might stabilize the beec Co?, but the PMA decreases [Fig. 4.4(a)].

The goal is therefore to maximize the Co thickness as long as its structure stays
stable and to minimize the Fe thickness as long as the robustness against interdiffusion
is sufficient. Looking at Fig. 4.4(a) and considering all the aforementioned aspects, the
MgO|Fe(3ML)Co(4ML)Fe(3ML)|MgO seems like a promising candidate as a storage layer
for STT-MRAM cells with highly improved thermal stability compared to conventional
STT-MRAM [120].

Indeed, when the storage layer is sandwiched between two MgO layers, the anisotropy
per unit area is of the order of 2 mJ/m? from the interfacial contribution minus approx-
imately 1.2 mJ/m? from demagnetizing energy (dependent on the chosen storage layer
thickness), yielding a net effective PMA per unit area approximately 0.8 mJ/m? [120, 133].
In comparison, the net anisotropy per unit area in the proposed structure is approximately
2.2 mJ/m? being almost 3 times larger. This means that for the same thermal stability
factor [Sec. 1.6], the cell area could be reduced by a factor of 3 compared to conventional
MRAM [1, 120, 134].

4.5. Fabrication of the metastable bcec Co

Although the natural form of Co is hcp, the metastable bcc Co phase can be grown
at room temperature [120, 135-137]. It has been successfully grown on top of Fe with
thickness up to 15 ML [138], with well-defined interfaces and no visible interdiffusion.
The observed strain of 10% in bee Co|MgO is considerable but still within the limit
of what is experimentally realizable [139]. Indeed, Yuasa et al. [132] fabricated bcc
Co(4ML)|MgO(10ML)|Co(4ML) MTJ and measured a record-holding TMR of 410% at
room temperature. As shown in Sec. 3.3, from our structural relaxation simulations, it
follows that the bee Co is preserved on top of MgO while it transforms into the fcc phase
when surrounded by vacuum. Therefore, the bee phase will probably be most stable if
the device is used as a double-barrier MTJ. This also provides higher PMA from the
interfacial Fe, due to the presence of two interfaces [120].

4.6. Tunneling magnetoresistance

Since we are interested in implementing this proposed storage layer in a full M'TJ stack, we
investigate its expected TMR amplitude [120]. A large TMR of 410% at room temperature

%it is generally easier to grow bce Co on Fe than on MgO
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Figure 4.5: The effect of interdiffusion on the effective PMA in two selected structures.
For the (minimal) Fe(2)Co(3)Fe(2) structure, there is a significant PMA decrease of 73%
at 0.5-ML atomic intermixing. For the thicker Fe(3)Co(4)Fe(3), the PMA is reduced
only by 22%, demonstrating the robustness against interfacial roughness. We expect this
robustness in the thicker structures in general. © 2021 American Physical Society [120].

has been observed previously in pure bee Co|MgO|Co MTJs [132]. In addition, Co in
combination with Fe is often used for its record-holding TMR values. Therefore, we
expect the high TMR to be present also in the proposed Fe|MgO MTJs with the inserted
Co bulk layer. We estimate the TMR from the Julliere formula [3]

Gap—Gp _ 2P?
Gap  1—-P2’

(4.6)
where Gap and Gp are the device conductivity with the two magnetizati