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Summary 
A magnetic tunnel junction ( M T J ) is a spintronic device commercially used in highly 
sensitive hard disk drive reading heads. Since 2007 it has helped to sustain the exponential 
increase in the magnetic storage density. Moreover, it also became the building block 
of the fast, durable, power-efficient, and non-volatile magnetic random-access memory 
( M R A M ) . Just like reading heads, this new type of solid-state memory uses M T J s based on 
crystalline magnesium oxide (MgO) along wi th 3d metallic magnetic elements (Fe and Co). 
Strong magnetic anisotropy in the direction perpendicular to the metal | M g O interface is 
needed to provide long-term thermal memory stability as the device is downscaled. This 
work wi l l analyze the magnetocrystalline anisotropy ( M C A ) of body-centered cubic Fe, 
Co, and N i on M g O using ab initio simulations. Numerical code wi l l be developed to 
calculate the shape anisotropy, crucial to consider in addition to M C A because together 
they add up to the effective anisotropy. Finally, a calculation of M C A based on the 
second-order perturbation theory wi l l be implemented. This wi l l enable us to link the 
observed anisotropic properties directly to the system's electronic structure (the band 
structure and density of states). 

Abstrakt 
Magnet ický tunelový spoj ( M T J ) je spintronická součás tka komerčně používaná ve vyso
ce citlivých čtecích hlavách pevných disků. Počínaje rokem 2007 přispěla k udržení expo
nenciálního n á r ů s t u hustoty magnet ického zápisu. Kromě toho se t aké stala s tavebním 
kamenem rychlé, odolné, úsporné a nevolat i lní magnet ické pamě t i s p ř í m ý m p ř í s t upem 
( M R A M ) . Tento nový typ polovodičové pamět i , s tejně jako je tomu u čtecích hlav dis
ků, využívá tunelové spoje založené na krystal ickém oxidu ho rečna t ém (MgO) spolu s 3d 
kovovými magne t ickými prvky (Fe a Co). Pro zmenšení M T J a současné udržení dlouho
dobé stability pamě t i proti t epe lným fluktuacím je zapo t řeb í silná magne t ická anizotropie 
ve směru kolmém na rozhran í kov |MgO. V t é to práci proto nejdříve provedeme analýzu 
magnetokrys ta l ické anizotropie ( M C A ) kubického prostorově centrovaného Fe, Co a N i na 
M g O pomocí ab initio simulací. Dále bude vyvinut program pro výpočet tvarové anizot
ropie, k t e rá je k romě M C A velmi p o d s t a t n á , neboť v součtu dávají efektivní anizotropii. 
N a závěr implementujeme program pro výpočet M C A na základě poruchové teorie dru
hého řádu . To n á m umožní dá t pozorované anizot ropní vlastnosti do souvislosti p ř ímo 
s elektronickou strukturou sys tému (pásovou strukturou a hustotou s tavů) . 

Keywords 
perpendicular magnetic anisotropy, enhancement, bcc Co, MgO-based magnetic tunnel 
junctions, M T J , S T T - M R A M , downscaling, thin films, spintronics 
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Introduction 

A spintronic device called the magnetic tunnel junction ( M T J ) [1, 2] consists of two 
magnetic layers separated by an insulating barrier [Fig. 1(a)]. It exhibits the tunneling 
magnetoresistance effect ( T M R ) [3, 4], which means there is a large change of resistance 
when one of the magnetic layers is switched. M T J s are used for several cutting edge 
applications [5, 6]: reading heads in hard disk drives (HDDs) [7], memory bits in the 
magnetoresistive random-access memory ( M R A M ) [8], and highly sensitive magnetic sen
sors. Besides, there are emerging applications of M T J s as artificial neurons [9], random 
number generators [10], microwave generators [11], and processing elements in stochastic 
computing [12]. In this introduction, we take a deeper look at the impact of M T J s on 
data storage. 

The famous Moore's law [13], postulated for semiconductor chips, also holds for the 
most widely used computer storage medium, which is the magnetic hard disk drive 
(HDD) [14]. The sustained exponential growth of H D D storage density in the past decades 
is clear from Fig . 1(c). 

Increasing the storage density required shrinking and improving the essential compo
nents [Fig. 1(b)], and the success of H D D s would not be possible without developing more 
sensitive reading heads. The latest generation of reading heads is based on M T J s , where 
the magnetization orientation of the upper layer is usually fixed [Fig. 1(a)]. In contrast, 
the bottom layer is free to rotate and respond to the magnetic information written on 
the platter below. Note that the tunnel barrier in an M T J is usually made of crystalline 
magnesium oxide (MgO) because of its high T M R [15-17]. We are then talking about 
MgO-based M T J s . 

Figure 1: (a) A magnetic tunnel junction used in the latest reading heads. It consists of 
two ferromagnetic ( F M ) layers separated by a tunnel barrier. In M T J s serving as reading 
heads, the magnetization lies horizontally (along the film plane), as shown in the figure, 
(b) The main components of an H D D [18]. The reading head is of our main interest, (c) 
Moore's law for H D D s , demonstrating a seven-order increase of their storage density in 
the past 60 years. After [19]. 
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I N T R O D U C T I O N 

Figure 2: (a) M T J s can also be used as memory bits in the M R A M memory. Here, the 
magnetization is perpendicular to the film plane. After [20]. (b) Compared to other types 
of memories, M R A M is fast and non-volatile, wi th moderate capacity, but very large 
endurance. Hence, it is well suited to replace S R A M and D R A M memories as the work 
memory in certain hierarchy levels displayed in F ig . 3. From [21]. 

MgO-based M T J has another important application, besides reading the digital infor
mation in H D D s : it can be used as a memory bit, to store the information as well. It 
can store the binary information in its free ferromagnetic layer and then read it out by 
the T M R effect. They form the aforementioned magnetoresistive random access memory 
( M R A M ) , sketched in F ig . 2(a). In F ig . 2(b), M R A M is placed in context and compared 
wi th other types of memories. Because it is fast, it is well suited as the work memory. We 
should make a clear distinction between the storage memory and the work memory. 

Storage memory is meant to preserve data in the long term. H D D s are used as 
storage memory because they are cheap and have large data capacity, but they are also 
quite slow [Fig. 2(b)]. A n alternative to H D D s is the ( N A N D ) Flash memory, widely used 
in U S B flash drives and solid-state drives (SSD). It is a few times faster and also more 
reliable than H D D s because it does not contain moving parts. The trade-off is its higher 
price. Also, the endurance of Flash memory is quite l imi ted 1 [22] and its low speed does 
not allow for its use as the work memory [Fig. 2(b)]. 

Work memory holds data that is actively processed by the central processing unit 
( C P U ) . Processor registers are the fastest and therefore located directly inside the C P U 
[Fig. 3(a)]. One level lower in the memory hierarchy, we find the processor cache, usually 
represented by the static random-access memory ( S R A M ) . Each bit in S R A M consists of 
several transistors connected into a latch (flip-flop) circuit [23]. One level below, there is 
the much slower main memory, usually represented by dynamic random-access memory 
( D R A M ) . In D R A M , the bit is composed of one transistor and one capacitor. The capaci-

1to about 10 5 wri te cyc les /b i t 
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Storage 
memory L HDD/NAND FLASH 

Standby 
Power 

HDD/NAND FLASH 

Volatile Non-volatile 

(a) (b) (c) 

Figure 3: (a) The usual memory hierarchy. Higher level means faster, closer to the C P U , 
but also lower data capacity, (b) Power dissipated in active and standby mode for the 
different memory levels, (c) A new hierarchy scheme for lower power dissipation. The 
(non-volatile) M R A M is introduced as a work memory in levels where the standby power 
consumption plays an important role. From [21]. 

tor is either charged or discharged, representing a one or a zero. Bo th S R A M and D R A M 
require an external power source even in standby mode; otherwise, the data is lost: they 
are volatile memories. 

Both the lower-level cache and the main memory spend a lot of power on maintaining 
its standby mode, as shown in F ig . 3(b) [21]. Therefore, replacing these memories wi th a 
non-volatile memory such as M R A M [Fig. 3(c)], where the written information is perma
nent and does not need to be maintained by an external power source, can considerably 
reduce the energy consumption of electronics [21]. 

In 2018, a new generation of M R A M , the spin-transfer torque M R A M ( S T T - M R A M ) , 
entered volume production [24]. In S T T - M R A M , the effect of spin-transfer torque (STT) 
is exploited: the magnetization of the free layer is switched by a spin-polarized electric 
current. The current becomes spin-polarized by first passing through the fixed magnetic 
layer [25, 26]. It is required that the M T J s used as memory bits in S T T - M R A M have (1) 
high tunneling magnetoresistance for good information read-out, (2) high spin-transfer 
torque efficiency for good information writing, and (3) high magnetic anisotropy for good 
thermal stability and therefore, memory retention [1, 27]. A l l these requirements are 
satisfied in perpendicularly magnetized MgO-based M T J s wi th the ferromagnetic layers 
composed of Fe and Co [28], which are therefore the main interest of this work. 

In this work, we focus on increasing the perpendicular magnetic anisotropy ( P M A ) of 
MgO-based magnetic tunnel junctions wi th bcc Fe, Co, and N i as the free magnetic layer. 
B y increasing P M A , the S T T - M R A M memory bits can be made smaller 2 , while retaining 
the same data stability against thermal fluctuations, as discussed in Sec. 1.6. 

2 p o s s i b l y below 25 n m diameter 
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I N T R O D U C T I O N 

The text is organized as follows. In Chapter 1, we introduce the importance of mag
netic anisotropy for data storage, the anisotropy types, and physical origins. In Chapter 2, 
we review the fundamentals of the density functional theory ( D F T ) . This computational 
method is the main tool used in this thesis. Chapter 3 presents our systematic calculations 
of the magnetic anisotropy in body-centered cubic F e ( C o , N i ) / M g O thin magnetic films. 
Exploi t ing the knowledge obtained, in Chapter 4 we propose a magnetic tunnel junction 
wi th largely enhanced perpendicular magnetic anisotropy. A s already mentioned, increas
ing the P M A is crucial for the downsize-scaling of S T T - M R A M memory bits. Finally, 
in Chapter 5, we analyze the magnetic anisotropy of strained body-centered cubic (bcc) 
cobalt in the framework of the second-order perturbation theory. 

4 



1. Magnetic anisotropy 

In ferromagnetic materials, there is a spontaneous magnetization due to exchange inter
action [29-31]. Generally, the direction of this magnetization is not arbitrary, and there 
are preferential axes wi th respect to the crystalline structure and shape of the magnetic 
body. This property is called magnetic anisotropy. There is a related quantity called 
magnetic anisotropy energy EUA, which is the energy needed to turn the magnetization 
from its preferential direction (the easy axis) to the least preferred direction (hard axis). 
The energy is rather small, on the order of 10~ 3 to 10~ 6 eV/a tom, but it is important, as 
it corresponds to magnetic fields typically used in experiments [32]. 

Controlling the magnetic anisotropy is of great importance in technological applica
tions. Large anisotropy is beneficial in permanent magnets and magnetic memories, where 
the magnetization is required to stay in a specified direction. The physical mechanisms 
responsible for magnetic anisotropy are of relativistic nature. Its two fundamental origins 
are the dipole-dipole interaction and the spin-orbit coupling. However, before discussing 
the types of magnetic anisotropy and its microscopic mechanisms, we first approach the 
problem phenomenologically, from symmetry arguments. 

1.1. Phenomenological expressions 

The EUA is a function of the magnetization direction m = (mx,my,mz), where \m\ = 1 
(it is a unit vector). Just as any other function, EUA can be expanded in some basis, for 
instance, in spherical harmonics, or more often in powers of mx,my, and mz [30, 32]: 

EuA(mx,my,mz) = b0+ ^ 6 ^ 7 « ^ + ^ bijkimimjmkmi +... (1.1) 
i,j£{x,y,z} i,j,k,la{x,y,z} 

Note that due to time-reversal symmetry, only terms that are even in m are allowed (odd 
terms are forbidden). The specific symmetry of a given problem usually excludes some 
additional terms. 

In systems suitable for permanent magnets and memory applications, there is a sin
gle preferential anisotropy axis (easy axis). We are then talking about the uniaxial 
anisotropy, which is usually well described by a single term from E q . (1.1); choosing the 
easy axis along z direction, it is the term bzzm2

z, more often expressed as [30] 

^ M A , u n i a x i a l = K1 S U 1 2 0 , (1.2) 

where 9 is the angle between m and the easy axis, and K\ is the anisotropy constant (Fig. 1.1). 
This expression is very important in the context of this work dealing with magnetic th in 
films, where the uniaxial anisotropy is due to three origins: (a) the shape, (b) interfaces, 
and (c) strain. 

5 



1. M A G N E T I C A N I S O T R O P Y 

W 0 ) = ffi s i n 2 0 

easy axis 

m 
easy axis 

^ > 0 ! P M A 
Kt < 0 in-plane anisotropy 

£MA(0) ^ ^ ^ ^ 
^ - • ^ H 

/ e a s y p l a n e 

(a) ; (b) 

Figure 1.1: The spatial dependence of uniaxial anisotropy energy [Eq. (1.2)] for (a) K\ > 0. 
signifying the perpendicular anisotropy ( P M A ) , wi th a single preferential axis for the 
magnetization called the easy axis; and for (b) K\ < 0, signifying an in-plane anisotropy 
where the magnetization prefers to lie in any direction along the easy plane. 

iMA.interfacel " { ^ ^ ^ ^ ^ ^ ^ 

^MAvolume 

o o o o o o 

- o o o o o o 
£"MA,interface2 

Figure 1.2: A thin magnetic film wi th the anisotropy coming from the volume and two 
interfaces [Eq. (1.3)]. Inspired by Dieny and Chshiev [1]. 

1.2. Volume vs. interface anisotropy 

In thin films and nanostructures, the presence of a surface or an interface is a very im
portant factor. A n interface induces interfacial anisotropy, which is typically much larger 
than the bulk anisotropy. Because an interface generally breaks the symmetry of a bulk 
system, it induces uniaxial anisotropy [Eq. (1.2)] in systems, where it would otherwise be 
forbidden, for instance, in cubic crystals. 

The magnetic anisotropy energy can therefore be split into the interface plus volume 
contribution multiplied by the thin film thickness t 

EMA — £"MA, in te r face + t • £ - M A , v o l u m e 5 (1-3) 

see F ig . 1.2. Since we are investigating thin films, the units used here are the units of 
surface energy, J / m 2 , or rather m J / m 2 . For this reason, if there is a constant volume 
contribution present, EUA should grow linearly wi th thickness. 

6 



1.3. S H A P E , M A G N E T O C R Y S T A L L I N E , A N D I N D U C E D A N I S O T R O P Y 

1.3. Shape, magneto crystalline, and induced anisotropy 

Based on its origin, magnetic anisotropy may be classified into three categories [30]: 

• Shape anisotropy is related to the shape of the magnetic body or the magnetic 
domains in that body. It is of dipolar (magnetostatic) origin [Sec. 1.4]. This mag-
netostatic energy is minimized when the magnetization lies along the longest side 
of the magnetic body. In nanowires, the preferential direction is therefore along 
the wire axis; in (infinite) th in films, it is in any direction in the plane of the film 
(along the easy plane). In larger magnetic bodies, magnetization breaks into do
mains, which have their own demagnetizing fields and influence each other by stray 
fields. 

In the mesoscopic length scales (~ 100-1000 nm), where the fields from individual 
atoms are averaged and cannot be resolved, the shape anisotropy follows from the 
requirement to minimize the demagnetizing energy [30] 

£ d e m a g = - y JHd-Md3r, (1.4) 
n 

where the integral is over the magnetic region Q and the demagnetizing field Hd is 
related to the magnetization M by 

V - f f d = - V - M . (1.5) 

For infinite th in magnetic films, the shape anisotropy energy is then [30] 

-E-demag, thin-f i lm = —^O^s i (1-6) 

where HQ is the vaccum permeability and M S is the saturation magnetization. 

In this work, however, we deal wi th length-scales on the order of ~ 0.1 nm and 
therefore calculate the demagnetizing energy also directly from the dipole-dipole 
interaction of individual atomic moments [Eq. (1.7)]. The values wi l l be compared 
wi th the ones from the simple formula above [Eq. (1.6)] in Sec. 4.2. 

• Magneto crystalline anisotropy is intrinsic to the crystal structure. Its main 
origin is the spin-orbit coupling (SOC) (Sec. 1.4) and partly the dipolar interaction 
(Sec. 1.5). 

• Induced anisotropy may appear due to annealing in external magnetic field, or 
often due to strain [30]. In thin films, the strain is often caused by a lattice mismatch 
between the epitaxial magnetic layer and the substrate. 

1.4. Dipolar interaction effects 

In Fe, Co, and N i , which are 3d transition metals, the magnetization of the atoms is 
distributed almost spherically and can safely be described by the dipolar term, ignoring 
higher multipoles (quadrupoles, hexapoles, etc.) [32]. The dipole-dipole interaction energy 
writes [32] 
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1. M A G N E T I C A N I S O T R O P Y 

lar —r I rn, • rn 
(Tij • mi)(Tij • mj) 

) (1.7) 

wi th /xs the Bohr magneton, the magnetic moment of atom i, and the vector 
pointing from atom % to atom j . 

The dipolar interaction contributes [32]: 

(a) to the shape anisotropy: the energy drops proportionally to l/rfj, which is rather 
slow. Magnetic moments in bulk are then significantly influenced by the moments 
at the surface and, therefore, by the shape of the surface (shape of the magnetic 
body). The shape anisotropy itself has the form of a volume anisotropy [Eq. (1.3)]. 

(b) to the magneto crystalline anisotropy by a uniaxial term [Eq. (1.2)], relevant 
for strained lattice or for interfaces. However, both for strained crystals and for 
interfaces, the dipolar contribution is rather small compared to the one from spin-
orbit coupling [32]. 

1.5. Spin-orbit coupling effects 

The spin-orbit coupling (SOC) is the key ingredient of volume and interface magnetocrys-
talline anisotropy, as well as strain-induced anisotropy [32]. Below, we illustrate this 
relativistic effect by a semi-classical picture. 

Spin-orbit interaction 
The spin-orbit coupling links the electron's orbital motion to its spin [30, 33]. It is 
a relativistic effect and must be derived from the Dirac equation, but in a simplified 
picture, it may be viewed as a Zeeman interaction. This is illustrated in F ig . 1.3. From 
the reference frame of an electron orbiting a nucleus, the nucleus is orbiting the electron. 
This positively charged orbiting nucleus creates a current loop, which induces a magnetic 
field at its center by the Biot-Savart law. The interaction of this magnetic field wi th 
the electron's magnetic moment (its spin) provides an energy contribution due to the 
magneto static (Zeeman) interaction. 

Thereby, the electron's orbital motion and its spin are coupled. Now, because the spin 
is coupled to the orbital motion and the orbital motion is coupled to the lattice (by a 
Coulomb interaction wi th the surrounding nuclei), the spin is coupled to the lattice. The 
magnetization direction (spin) is therefore related to the crystal axis orientation (lattice). 
This is the basic idea behind the magnetocrystalline anisotropy [32]. 

The S O C term is usually added to the Hamiltonian as [32, 34] 

where L and S are respectively the orbital angular momentum and spin angular momen
tum of the particle, and the spin-orbit coupling constant £ ~ 50-100 meV in 3d metals. 
From E q . (1.8), it is clear that the direction of L and S are coupled. 

Besides being one of the two main sources of magnetic anisotropy, the spin-orbit 
coupling is also important in many other areas of physics [35]; namely to explain the 

Hsoc — t,L • S, 
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1.6. M A G N E T I C A N I S O T R O P Y I N D A T A S T O R A G E 

m 

B 

-e 

so 

Ze 

Figure 1.3: Spin-orbit coupling explained by an effective magnetic field (-B s o ) , which 
comes from the orbiting motion of the nucleus around the electron (from the electron's 
point of view). From [29]. 

magnetic dichroism, Ker r and Faraday effects [36], in the recently discovered topological 
insulators [37], when treating optical properties [38] and dealing wi th heavy elements, and 
it is partially responsible for the fine structure of atoms [29, 39]. 

1.6. Magnetic anisotropy in data storage 

Increasing the information storage density requires downsize scaling (shrinking) of the 
memory bits. To do this, one must increase the magnetic anisotropy energy to retain the 
same stability against thermal fluctuations [1]. Here, we explain this concept. 

Changing the information written in a magnetic memory bit requires external switch
ing of the magnetization from one stable state to the other (up to down or vice versa). 
To switch, the magnetization must overcome an energy barrier 

where EUA is the anisotropy energy per unit area from E q . (1.3) and S is the area of the 
magnetic bit. 

Thermal fluctuations may also switch the magnetization spontaneously, which results 
in data loss. O n average, this spontaneous switching happens every time interval r . B y 
the Arrhenius law, the spontaneous switching happens more often (i.e., r is smaller) when 
the temperature T is higher [1] 

where TQ is the characteristic attempt time (~ 1 ns), and ks is the Bol tzmann constant. 
The typical requirement is for the information to stay stable for r = 10 years at room 

temperature T = 300 K , which by E q . (1.10) gives the condition [1] 

It is hence clear that downscaling (decreasing the surface S of the memory bits) 
requires increasing the perpendicular anisotropy. 

AE = E M A • S 

AE = EMA • S > 45kBT 

9 
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2. Density functional theory (DFT) 

"The underlying physical laws necessary for the mathematical theory of a large part of 
physics and the whole of chemistry are thus completely known, and the difficulty is only 

that the exact application of these laws leads to equations much too complicated to be 
soluble. It, therefore, becomes desirable that approximate practical methods of 

applying quantum mechanics should be developed ..." 
P . A . M . Dirac [40], 1929 

Many properties of materials can be predicted without the need of their fabrication and 
experimental measurements, plainly by designing their structure atom by atom and cal
culating the ground-state of the electron density in the potential of the atomic nuclei 
(Fig. 2.1). This is done by solving the Schrodinger or Dirac equation, usually within some 
approximation. The most popular method to do this is the Density Functional Theory 
( D F T ) , developed by Walter K o h n and colleagues and recognized by the Nobel Prize in 
Chemistry in 1998 [41]. The number of publications concerning D F T doubles every 5-6 
years [42]. The following chapter is an introduction to this outstanding method. Refer 
to [37, 43-45] for other comprehensive introductions. 

2.1. Many-body Schrodinger equation 

To calculate the properties of matter, we start with the problem of solving the non-
relativistic time-independent Schrodinger equation [33, 37] 

H\V) = E\V) , (2.1) 

where |\&) is the many-body wave function, and E is the total energy. The Hamiltonian 
H for a system of electrons and nuclei consists of the electronic kinetic energy T e , the 
nucleus-electron, electron-electron, and nucleus-nucleus Coulomb interactions V^xtj Mnt, 
and EJJ, respectively, and the nuclear kinetic energy T N [37] 

2—1 i A t t ^ - 2—1 I« T> O A^r<~- 2—1 \ „ „ I O /lTrr_ 2—1 2me *f 1 4TI£0 XI Vi - Ri\ 24ne 0 \rt -r,\ 24TI£ 0 f±3 \Ri ~ RJ 

Kext Vint E " 
h2 

- Y — vj 
Y 2 M / 1 

(2.2) 
wi th h the Planck constant, me the electron mass, V f the Laplace operator acting on 
electron i, EQ the vacuum permittivity, Zi the charge of nucleus J , e the elementary 
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2. D E N S I T Y F U N C T I O N A L T H E O R Y ( D F T ) 

b c c F e 

Figure 2.1: (a) The electron (charge) and the magnetization (spin) density of bcc Fe [46]. 
(b) The Fermi surface in the Br i l lou in zone of bcc Fe [47]. (c) Band structure and Density 
of States (DOS) of bcc Fe [48]. (d) The many-body vs. the density approach [49]. 

charge, rt the position of electron i, Rj the position of nucleus J , Mj the mass of nucleus 
/ , and V f the Laplace operator acting on nucleus I. The equation disregards the small 
relativistic effects such as spin-orbit coupling (Sec. 1.5). 

Atomic units 
Except for E q . (2.2), which we have kept in SI units, in the rest of the text we use the 
Hartree atomic units [50], where by definition h — e — a0 — me — 1, where a 0 is the 
Bohr radius. It also follows 1 that 1/4TC£0 — 1- Using the atomic units, the kinetic energy 
operator and the electron Coulomb potential simplify as 

~ h2 „ 2 l 2 

T e = V 2 ->• - - V 2 

2me 2 
e 1 

^Coulomb — —-, - > • 
ATie0r r 

(2.3) 

2.2. Born-Oppenheimer approximation 

The first step of tackling problem E q . (2.1)-Eq. (2.2) is to use the excellent Born-Oppenheimer 
(adiabatic) approximation [51], which says that the wave functions of electrons and nuclei 
can be treated separately. Since nuclei are much heavier than electrons (Mj pa 2000 me), 
the electrons can react very fast and hence are always in their instantaneous ground state, 

1 f r o m the expression for B o h r radius, arj = Aneoh2/mee2 
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2.3. H A R T R E E - F O C K A P P R O X I M A T I O N 

regardless of the (slow) nuclear motion. Then |\&) in E q . (2.1) represents only the (many-
body) electronic wave function; for the nuclear wave function, there is a separate equation, 
which can be used, for instance, for calculations of phonons [37]. Since 1/Mj is small, the 
nuclear kinetic energy T N from E q . (2.2) is neglected (ft* 0). The Coulomb nucleus-nucleus 
interaction E n is simply an additive constant to the total energy. 

2.3. Hartree-Fock approximation 

Even after separating the motion of electrons and nuclei, it is impossible to solve E q . (2.2) 
analytically, since the large number of electrons 2 interact with each other via the Coulomb 
interaction Vint. This makes the task a Many Body Problem [52]. 

The problem was first tackled numerically by Hartree in 1927 [50] and extended by 
Fock [53] and Slater [54]. The Hartree-Fock approximation assumes that the many-electron 
wave function can be replaced by a linear combination of single-electron (non-interacting) 
wave functions. Working with non-interacting electrons greatly simplifies the problem, 
and the reason why this approach is physically sensible is the electron screening [55]. We 
return to this point right below when discussing the exchange-correlation hole. 

The Hartree-Fock approach also replaces the problematic electron-electron interaction 
Vi nt by a much simpler term, which suggests that the electron wave functions interact 
wi th each other in the same way as the total electron charge density interacts wi th itself 
via the Coulomb interaction 3 . This term is called the Hartree energy 

E H = - / d 3 r d V n , ( r ) n ( r ; ) , (2.4) 
2 J \r-r'\ y 1 

where the electron density 

n(r) = | # ( r ) | 2 . (2.5) 

When integrated over, n(r) must add up to the total number of electrons TV 

N = f d 3 r n(r). (2.6) 

Note, however, that by approximating Vint wi th E^, we neglect 4 two important many-
electron effects: exchange and correlation. 

2.4. Exchange-correlation hole 

Imagine first what happens if we bring an electron wi th charge q = — e in vacuum close 
to a conductive plane [Fig. 2.2(b)]. 

The electrons at the conductive surface are repelled, and there is a net positive charge, 
which has the same electrostatic field as if the electron had a mirror image wi th opposite 
charge — q = e below the surface. (This is the electrostatic method of images [57].) 

Decreasing the separation x [Fig. 2.2(b)], the electron and its positive mirror image 
approach each other, unt i l at x ~ 1-2 A , the electron wave function starts to overlap wi th 

2 t y p i c a l l y 1 0 2 3 e l ec t rons / cm 3 i n a solid 
3 t h e l/Aizeo prefactor is dropped since we are using a tomic units , 
4 T h e exchange, or ig ina l ly miss ing i n the Hartree method , was added by Fock [53]. Cor re la t ion is 

added i n post-Hartree-Fock methods [56]. 
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2. D E N S I T Y F U N C T I O N A L T H E O R Y ( D F T ) 

Figure 2.2: (a) The negative electron density n x c surrounding an electron is called an 
exchange-correlation hole [55]. (b) Illustration of the origin of n x c : bringing an electron 
close to a conductive plane creates a positively charged mirror hole. A t x — 0, the hole 
surrounds the electron [55]. 

the electron wave functions at the surface [55]. The system energy then deviates from the 
expected classical E oc — - (it does not diverge to minus infinity) and once the electron 
enters the conductor, the positive mirror point charge surrounds the electron, forming an 
exchange-correlation hole [Fig. 2.2(a)]. 

A n exchange-correlation hole nxc(r) is a negative electron density (therefore a hole) 
surrounding an electron. It consists of the exchange and correlation part 

nxc = nx + nc, (2.7) 

and the two are distinct in their nature. 

1. The exchange hole nx(r) accounts for two facts. Firstly, electrons of the same spin 
in the same quantum state cannot be at the same time at the same place, obeying 
the Paul i exclusion principle. Thereby, nx affects electrons wi th the same spin. 

Second, nx corrects for the wrong notion entrenched in the Hartree energy expression 
[Eq. (2.15)] that an electron interacts wi th itself. For example, in a hydrogen atom, 
where there is only one electron, nx completely cancels the density of the one present 
electron to avoid this self-interaction [37, Sec. 3.7]. Hence, in hydrogen, the exchange 
hole represents minus one electron. In fact, it is a general feature of the exchange 
hole that its integral is exactly minus one electron [58] 

Jnx(r)d3r = - 1 . (2.8) 

2. O n the other hand, integral over the correlation hole n c (r) is zero 

J nc{r) d 3 r = 0 , (2.9) 

so it only serves to redistribute the hole's density. The correlation hole n c corrects 
for the fact that interacting electrons are not independent - their joint density 
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2.5. T H O M A S - F E R M I M E T H O D 

is correlated 5. Unlike exchange, correlation is also important for interactions of 
electrons wi th opposite spins. 

Later, we wi l l introduce the exchange-correlation energy Exc, very important in density 
functional theory. It can be viewed as an attractive Coulomb interaction between the 
electron density n and the exchange-correlation hole n x c . 

2.5. Thomas-Fermi method 

The original density functional theory was proposed separately by Thomas [59] and 
Fermi [60] in 1927. They approximated both the electron-electron interaction and the 
kinetic energy of electrons as a functional of the electron density n. A functional, is a rule 
for mapping a function to a number, just as a function is a rule for mapping a number to 
a different number [43]. A quantity Q, which is the functional of another quantity n is 
denoted Q[n]. 

Hence, all terms in the Thomas-Fermi total energy ETFI/I] depend on the density; 
they are integrals of the density. The expressions are based on analytic formulae for the 
homogeneous free electron gas (see E q . (6.1) in Ref. [37] for details.). The correct density 
n(r) is the one which minimizes £JTFMi subject to the constraint that the total number 
of electrons TV is correct [Eq. (2.6)]. 

Just as Hartree and Fock, Thomas and Fermi also neglected the exchange and corre
lation between electrons 6. 

The argument to create an approximation based on electron density instead of electron 
wave functions is straightforward. The many-body electron wave function for TV electrons 
depends on 3N variables (3 spatial coordinates x, y, and z for each electron). O n the other 
hand, the electron density n(r) is a function of only three spatial coordinates. A n d in fact, 
as shown in the next Sec. 2.6, all the properties of a system can, indeed, be determined 
purely from its ground-state electron density. 

Al though significant, the Thomas-Fermi model is too crude to be widely used in prac
tice [63] and a more sophisticated approach was needed. A n approach, which is formally 
exact but leaves a lot of space for effective approximations. 

2.6. Hohenberg-Kohn theorems 

The modern formulation of density functional theory started with two important theorems 
proved by Pierre Hohenberg and Walter K o h n in 1964. They provide a reformulation of 
the many-body problem E q . (2.1)-Eq. (2.2) in terms of functionals of the electron density. 

5 I n mathemat ica l terms, the jo int density n(r,a;r',a') of finding one electron w i t h spin a at point 
r and a different electron of spin a' at point r' is the sum of two terms: (1) the s imple, uncorrelated, 
product of the independent densities of the two electrons and (2) the exchange correlat ion hole [37] 

n(r, a; r', a') = n(r, a) n(r', a') + n x c ( r , a; r', a'), (2.10) 

6 A n extension by D i r a c added the loca l approx imat ion for exchange interact ion [61], s t i l l i n use today 
and discussed i n Sec. 2.9. T h e correlat ion between electrons is neglected altogether. Cor rec t ion for the 
kinet ic energy i n nonhomogeneous systems tak ing into account also the gradient of the density, not just 
the density itself, was proposed by Weizsäcker [62]. 
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2. D E N S I T Y F U N C T I O N A L T H E O R Y ( D F T ) 

H K 
Vext(r) «o(r) 

f 

^o({r}) 
4 

Figure 2.3: The ground-state density no of interacting electrons in an external potential 
can be considered as the "basic variable". A s proved by Hohenberg and Kohn , from no 
we can get the external potential Vext(r) which produced it. From Vext(r), we can in 
principle calculate the eigenstates \J/j({r}), including the groundstate \ l / 0 ( { r } ) - Hence, 
all properties of a system are unique functionals of its ground-state density. Adapted 
from [37]. 

The Hohenberg-Kohn ( H K ) theorems state that [64]: 

1. A l l the properties of an interacting system of electrons are determined 
from its ground-state density no-

In fact, the theorem states that from the ground-state density n 0 one can uniquely7 

determine the external potential Vext(r) (which generated this ground-state den
si ty) 8 . From Vext(r), one can then in principle calculate the electron many-body 
wave function \T/({r}), both ground-state and excited, and hence calculate all the 
system's properties. 

The theorem goes from the solution (no) back to the problem (yext(r)) back to 
the solution (\I/o({t}))- This is shown schematically in F ig . 2.3. However, this 
information by itself is not very useful. It does not answer how to get \l/j({r}) from 
Vext, which is the ultimate problem. 

2. The correct ground-state density n 0 is obtained by minimizing the sys
tem's total energy -E/[n], which can be prescribed as a functional of n universally, 
independent of the external potential Vext(r). 

To make full use of the H K theorems, the Kohn-Sham scheme is often used and wi l l 
be presented in the next Section 2.7. 

Note that Levy and Lieb [65-67] later established an alternative formulation to Hohenberg-
K o h n theorems. Their Constrained Search Formulation of D F T is more general and in 
many cases more instructive [37]. 

H K theorems can be generalized [37] to include: 

I. the electron spin [68], by treating separately the densities for spin-up and spin-down 
electrons (spin density functional theory). To account for the effects of magnetic 
field on the orbital motion of the electrons, not only on their spin, it is needed to 
consider also the electronic current, not only charge [69]. This makes the problem 
relativistic. 

7 except for an (unimportant) addi t ive constant 
8 I n D F T , the external potent ia l Ve^t(r) is usual ly equivalent to the C o u l o m b potent ia l from the nuclei , 

see E q . (2.2). 
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2.7. K O H N - S H A M E Q U A T I O N S 

HK 
KS " o ( r ) 

HKo 
VK S(r) VW(r) «o(r) KS " o ( r ) VK S(r) 

^ ft 

*«({r}) => *o({r}) fi=i,Ne(r) 

Figure 2.4: The K S mapping of the real problem onto one-electron problem. The left half 
corresponds to F ig . 2.3. Adapted from [37]. 

II. thermal equilibrium properties, such as specific heat or entropy, as shown by Mer-
min [70]. The Mermin functional is not widely used, though, because it is difficult to 
formulate. It must include electron properties beyond the ones of Hohenberg-Kohn's 
functional [37]. 

III. time-dependent problems, as shown by Runge and Gross [71]. 

IV . external electric fields and electric polarization [72]. 

2.7. Kohn-Sham equations 

The H K theorems say that all you need is electron density. But there are many difficulties 
when leaving out the wave function and working purely wi th the density 9 . For instance, 
there is no known way to get the kinetic energy directly from the density [37]. Also, it is 
hard to tell if a system is ionic or neutral, looking only at the density [73]. 

The Kohn-Sham approach [74] returns the wave function back into play, side-by-side 
wi th the density. 

The assumption of K o h n and Sham is that the real ground-state density UQ can be 
written as a sum over the densities of a certain number of non-interacting (free) electrons 
(Fig. 2.4). Each free electron % has some spin a G a n d some wave function ipf(r). 
If N A is the number of electrons for spin a, the ground-state density 

Art Ni 
no(r) = nl(r) + n i ( r ) = £ | ^ ( r ) | 2 + £ | ^ ( r ) | 2 . (2.11) 

i = l i = l 

So the electrons are treated a priori as non-interacting, and the electron-electron in
teraction is represented by the Hartree energy [Eq. (2.15)] and a small energy term i? x c [n], 
which encompasses all the electron-electron interaction effects, which Hartree energy ne
glects. 

The Kohn-Sham energy, which needs to be minimized, then writes 

n — T 
— -1 s 

n + Eext n -̂ Hartree n + Exc n + En (2.12) 

3 the squared modulus of the wave function 
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many-body (H) EKS Kohn-Sham 

electronic kinetic energy (fe> — • r s 

single-electron kinetic 
energy 

nucleus-electron Coulomb 
interaction <Fext> " " V s • ^ext 

energy due to the external 
potential 

electron-electron Coulomb 
interaction < î„t> "v^ ^Hartree 

electron-electron Hartree 
energy 

nucleus-nucleus Coulomb 77 — n * exchange-correlation 
interaction 

c x c energy 

nuclear kinetic energy A C 
Born-Oppenheimer 

+ E„ 
nucleus-nucleus Coulomb 

interaction 

Figure 2.5: Comparing the expectation value of the original many-body Hamiltonian 
[Eq. (2.2)] and the Kohn-Sham energy [Eq. (2.12)]. The part of the original electronic 
kinetic energy and electron-electron Coulomb interaction, which comes from the com
plicated many-body effects is encompassed in the exchange-correlation energy, following 
Eq . (2.16). Different line styles are used only for clarity. 

where the single-electron kinetic energy 

-i V C T 

r s = - ^ E E ( C | V 2 | C ) , (2-13) 
Z cr j = l 

the energy due to the external potential (the Coulomb potential of the nuclei) 

Eext[n] = J d 3 r Vext(r)n(r), (2.14) 

the electron-electron Hartree energy 

W e e N = \ jd3r d V n . ( r ) n ( ^ , (2.15) 
2 J \r — r'\ 

the exchange-correlation energy Exc corrects for the fact that the true kinetic energy (Te) 
is different from the sum of the single-electron kinetic energies TB[n] (due to correlation 
effects) and the electron-electron interaction energy Vint is different from the mean-field 
Hartree energy ^Hartree [n] (due to exchange and correlation effects) 

^̂ correlation ^̂ exchange-correlation 
, , , * , 

Exc[n] = (f e) - T s[n] + (\>int) - EHartree[n] . (2.16) 

See E q . (2.2) for definitions of the electron kinetic energy operator T e and the electron-
electron interaction energy Vint. 

Finally, the constant nucleus-nucleus Coulomb interaction En must be added for com
pleteness. 

Note that E q . (2.12) is in principle exact. For a given distribution of nuclei (exter
nal potential Vext(rj) and a given density n, all terms except Exc are well-known and 
straightforward to calculate. The unknown part, Exc[n], constitutes only a small energy 
contribution. How to express -E x c[n] wi th powerful approximations is explained in Sec. 2.9. 
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2.8. S E L F - C O N S I S T E N T C Y C L E 

In F ig . 2.5, we compare the Kohn-Sham energy [Eq. (2.12)] and the expectation value 
of the original many-body Hamiltonian [Eq. (2.2)]. 

Apply ing the variational principle to E K S wi th respect to the wave functions, one 
arrives at the Kohn-Sham Schrodinger-like equation [37] 

HKSil>i(r) = £ i V i ( r ) , (2.17) 

wi th the Kohn-Sham effective Hamiltonian 

# K S = ~ V 2 + K f f W , (2.18) 

where instead of the energies E from E q . (2.12) we now have their respective potentials 
V = 

8n(r) 

VeS(r) = Vext(r) + VHartree(r) + Vxc(r). (2.19) 

For a given arrangement of nuclei (given external potential Vext(r)), we solve the Kohn-
Sham problem Eq . (2.17)-Eq. (2.19), thereby obtaining the Kohn-Sham wavefunctions 
ipi(r), which give us the ground-state density n 0 v ia E q . (2.11). From n 0 we get the 
system's total energy via E q . (2.12) and, in principle (Sec. 2.6), also any other property 
of the system. 

Let us take a closer look at how to solve the Kohn-Sham problem E q . (2.17)-Eq. (2.19). 

2.8. Self-consistent cycle 

Since the Kohn-Sham Hamiltonian f/xs depends on the density, which actually follows 
from that Hamiltonian in the first place, the Kohn-Sham equation needs to be solved in a 
self-consistent iterative manner. The algorithm is depicted in F ig . 2.6. W i t h the electron 
density from some init ial guess, the effective potential Kff [Eq. (2.19)] is calculated. From 
the K S equation [Eq. (2.17)], we then get the K S wave functions ipf(r). From the K S 
wave functions, we calculate the density n and iterate unti l the self-consistent cycle output 
density n o u t and input density n-m are not close enough. The criterion is usually that the 
change in the total energy in the subsequent iterative steps is below certain threshold 1 0 

^ K + s 1 - ^ K S < ^ d i f f . (2.20) 

M i x i n g 
For the self-consistent cycle [Fig. 2.6] to converge, and converge fast, one cannot simply 
use n * u t as the input for the next cycle n - ^ 1 [75]. Most often, a linear combination of the 
new and the original density is used [37] 

< l = « < u t + (1 - o ) < , (2.21) 

where generally 0 < a < 1, but in fact, to ensure convergence, the upper limit for a is 
usually much more strict [76]. This linear mixing works well for insulators. For metals, 

10EdiS ~ 1 C T 7 eV 
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Self-consistent Kohn-Sham equations 

Initial guess 

«f (r),n^(r) 

Calculate effective potential 

VUr) = V e xt(r) + VHaniee[n] + V°c[n^ M] 

Solve KS equation 

4 v 2 + ^ f f ( r ) 

Calculate electron density 

nout 

Output quantities 

Energy, forces, stresses, eigenvalues, ... 

Figure 2.6: The self-consistent cycle algorithm for solving the Kohn-Sham equations 
Eq . (2.17). Often used for the init ial guess is simply the sum of electron densities from 
all the atoms in the system, as if they were isolated. From [37]. 
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2.9. E X C H A N G E - C O R R E L A T I O N F U N C T I O N A L S 

however, values as low as a ~ 0.01 may be necessary for convergence [75], making the 
convergence slow and the number of necessary cycles large. Therefore, more sophisticated 
mixing schemes have been developed, such as the Broyden method [77], where a is not 
constant but updated dynamically at each iterative step. See Ref. [78] for other advanced 
mixing methods. 

2.9. Exchange-correlation functionals 

Density functional theory owes its success to the fact that the difficult term in E q . (2.12) 
- the exchange-correlation energy Exc - can be approximated remarkably well using sur
prisingly simple expressions. In this Section, we introduce the two simplest: the local 
( L D A ) and the semilocal ( G G A ) approximation. 

Local density approximation ( L D A ) functional 

The first step towards expressing Exc was already taken by K o h n and Sham themselves in 
their seminal paper [74]. Their local density approximation ( L D A ) assumes that each point 
in space contributes to Exc like a little amount of free electron gas of the same density n. 
The exchange-correlation energy e^° m (n) for a free electron gas of given density n is 
known 1 1 . Hence, [37, 74] 

Because the functional does not consider any interaction between the neighboring free-
electron-like infinitesimal regions, the approximation is called local and is naturally best 
for slowly varying densities. Surprisingly, even for extremely inhomogeneous cases like 
the hydrogen atom, it gives binding energy wi th the accuracy of ~ 7% [37]. 

The functional is simple yet successful because it preserves the sum rules [Eq. (2.8) 
and Eq . (2.9)], which must always hold for the exchange-interaction hole [81], and because 
the precise shape of the exchange-correlation hole is, in fact, not crucial, only its spherical 
average [82]. 

St i l l , L D A is l imited in many senses. Its general shortcoming is that it predicts too 
large bonding energies and too short bond lengths [83]. 

Generalized gradient approximation ( G G A ) functional 

Improved results compared to L D A are obtained by also including the gradient of the 
density V n , not only the density itself [35] 

where Fxc is an enhancement factor encompassing the density gradient; the functional is 
therefore semilocal. 

u T h e exchange-correlation energy can be d iv ided into its exchange and correlat ion part [74] e ^ ° m ( n ) = 
= e ^ o m ( n ) + eJ? o m (n) . T h e exchange energy for a homogeneous electron gas e^om is given ana ly t i 
cal ly [61], while the correlat ion e^ola has been calculated very precisely by M o n t e C a r l o methods [79] 
and parametr ized by Perdew and Zunger [80]. 

(2.22) 

(2.23) 

21 



2. D E N S I T Y F U N C T I O N A L T H E O R Y ( D F T ) 

Including V n corrects the bonding energy, although it may somewhat overcorrect the 
bond lengths [83]. There are three widely utilized G G A functionals [84-86]. In this work, 
we use the one by Perdew, Burke, and Ernzerhof ( P B E ) [87]. 

Advanced functionals 
While G G A improves some deficiencies of L D A , it does not account, e.g., for van der 
Waals interactions [37]. There are many advanced functionals beyond G G A , which might 
depend not only on the density but also on the wave functions, involve the kinetic energy 
density, or be able to treat localized d and / orbitals wi th strong interactions [37, 88]. 

2.10. Plane-wave basis and P A W method 

In practice, the density and wave functions must be represented in a certain basis. In 
Density Functional Theory, three bases are often used [37]: 

1. Plane wave basis and discrete grids. Plane waves [39] have many advantages: 
they arise naturally in quantum mechanics; they naturally obey the Bloch theorem 
of solid-state physics; they are independent of the positions of nuclei; forces on 
atoms are numerically exact derivatives of the total energy, and the basis can be 
systematically improved by including waves with ever-higher spatial frequency [37, 
89]. 

In addition, a transition from the plane-wave basis (the reciprocal space) to the 
discrete grid basis [90] (the real space) can be made very efficiently v ia the Fast 
Fourier Transform. This is very useful since some calculations are easily done in 
the real space 1 2 , while others in the reciprocal space 1 3 . We can also exploit the 
combination of the two bases, as done in the Projector Augmented Wave (PAW) 
method [91] described below, where part of the space is treated wi th plane waves 
and the other part wi th discrete grids. 

2. Localized orbitals. Functions resembling atomic orbitals and centered at the 
nuclei are used [92]. This basis is more suitable for computational chemistry to 
describe localized individual molecules, in contrast wi th solid-state physics, where 
we usually deal wi th periodic systems. 

3. Atomic sphere methods. The idea here is to divide the space into regions near 
the nuclei (atomic spheres), inside which the wave function oscillates quite rapidly, 
and the interatomic region, where it oscillates much more slowly. Smooth functions 
are used as a basis in the interatomic region and they are augmented in the atomic 
spheres. These are the Linearized Augmented Plane Wave ( L A P W ) method [93, 
94], Korringa-Kohn-Rostoker ( K K R ) method 1 4 [95, 96] and Linearized Muffin-tin 
Orbitals ( L M T O ) method [97]. 

In addition, there are linear scaling methods [98], which are suitable for large systems 
(e.g., a fragment of an R N A molecule wi th pa 1000 atoms [98]). Using them, the com
putation time then scales linearly wi th the number of atoms N, while in the previous 

12e.g., ca lcula t ing the density from the wave functions 
1 3 t h e kinet ic energy ca lcula t ion 
1 4 a l s o cal led Green 's function me thod or mult iple-scat ter ing theory ( M S T ) 
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2.10. P L A N E - W A V E B A S I S A N D P A W M E T H O D 

i pseudo (nodeless) pseudo-ons i te exact onsite 
plane waves radial grids radial grids 

(a) (b) 

Figure 2.7: (a) Inside a sphere of a cutoff radius r c from the given nucleus, a pseudopo-
tential VpS e udo replaces the real Coulomb potential V to suppress rapid oscillations in the 
wavefunction Above r c , the exact and pseudized potentials and wavefunctions are 
equal. The region r < r c is called the augmentation region. The region r > r c is called 
the interstitial region. From [101]. (b) The exact Kohn-Sham wave functions in the P A W 
method consist of three terms. A combination of plane-wave basis and radial grids is 
exploited. The wavefunction and its derivative is assured to be continous at the sphere 
boundaries [35]. Adapted from [102]. 

three cases, it scales as TV2 or N 3 [37]. O n the other hand, care must be taken to ensure 
accurate results. 

Pseudopotentials 

Near a nucleus, the Coulomb potential V oc — - is strong and it forces the wave functions 
to oscillate rapidly [37], see F ig . 2.7(a). When using the plane-wave basis, high spatial 
frequencies must be included to describe these rapid oscillations. O n the other hand, this 
strong Coulomb potential near the nucleus influences mainly the core electrons, which do 
not respond significantly to the neighboring atoms 1 5 and hence are often approximated 
as non-changing: the so-called frozen core approximation [99]. 

A pseudopotential replaces the strong Coulomb potential near a nucleus wi th a poten
t ia l that is much weaker, to suppress rapid oscillations in the wave function [55, 100]. Fur
ther away from the nucleus, the pseudopotential has its value equal to the true Coulomb 
potential, see F ig . 2.7(a). The new wave function is called a pseudo wave function, which 
has the correct form far from the nucleus but does not oscillate rapidly close to the nu
cleus. Thereby, high-frequency plane waves are not needed, and the required size of the 
plane-wave basis is smaller. 

do not take part i n chemical bonds 
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2. D E N S I T Y F U N C T I O N A L T H E O R Y ( D F T ) 

Projector augmented waves (PAW) 

The Projector Augmented Wave (PAW) method [91] is a modern method, which efficiently 
treats the behavior of wave functions both near the nucleus and between the atoms. The 
unit cell [top part of F ig . 2.7(b)] is divided into two regions: 

I. Augmentation spheres, which are centered on atomic nuclei, wi th a cut-off radius 
for a given atom a. In this region, the Coulomb potential is strong, and the wave 

functions, which oscillate rapidly, are represented by localized orbitals. 

II. Interstitial region in-between the spheres. In this region, the Coulomb potential 
is already weak, and the wave functions, which oscillate slowly, are expanded into 
plane waves. 

The exact wave functions (as well as the densities and energies) then consist of three 
parts [35, 37], see the bottom part of F ig . 2.7(b): the pseudo wavefunction evaluated wi th 
plane waves minus the same pseudo wavefunction inside the augmentation sphere evalu
ated with radial grids plus the exact wavefunction in the augmentation sphere evaluated 
wi th radial grids. 

2.11. Spin-dependent Kohn-Sham equation 

To explicitly include magnetization into D F T , the wave function is decomposed into 
its spin-up and spin-down parts [68, 103], together forming a spinor16 ip and a spin-
density s [46] 

1>(r) = s(r) = (^r)\^(r)) , (2.24) 

where cr = (ax, ay, q_z) is the vector of Paul i matrices 

< f e = ( J J ) ' £ k = ( ° o j ' Z i = [ o - J - ( 2 - 2 5 ) 

The density is treated as a matrix containing both particle and spin density [46] 

n(r 
U*{r)^{r) ^ ( r ) ^ ( r ) \ l f n ( r ) + sz(r) sx(r) - isy(r)\ ^ 2 Q 

yPl(r)^(r) ipl{r)ip±(r)J 2\sx(r)+isy(r) n(r) - sz(r) J ' 

The spin-polarized Kohn-Sham equation is then [46] 

~ V 2 + Vext(r) + Vkartree(r) ) I + \l:Jr) * • B(r) M r ) ~ e *U(r )» - ( - ' ) 

where the unit matrix J = ^ , the exchange correlation matrix V_XC = §^pj, and B 

is the external magnetic field. 

1 6 a two-component vector 
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2.12. Magneto crystalline anisotropy calculation 

Because the Hamiltonian in E q . ( 2 . 2 7 ) does not depend on the spin, the magnetic mo
ments have no preferential direction-they have no anisotropy [46]. To observe magnetic 
anisotropy, it is necessary to include relativistic effects, namely the spin-orbit coupling, 
illustrated by a semi-classical model in Sec. 1.5. 

W i t h i n the density functional theory, magnetocrystalline anisotropy energy EUCA can 
be calculated by three methods [35]: full relativistic total energy calculation [104], force 
theorem [105, 106] , or the torque method [107]. 

The force theorem method is used in this work. B y the argument that i^soc is small 
1 meV) compared wi th the crystal field 1 eV) [32], the spin-orbit coupling 

is treated as a perturbation. The - E M C A calculation consists of two steps: 

1. A spin-polarized calculation is performed to obtain the ground-state density self-
consistently. 

2. W i t h the spin-orbit coupling included and keeping the electron density from the 
previous step, the total energy for different magnetization directions is calculated. 

Since EUCA is so small, special care must be taken that the total energies are calculated 
precisely, namely that a sufficient number of k-points and sufficiently high plane-wave 
cutoff energy is used. 

2.13. Vienna A b I n i t i o Simulation Package (VASP) 

The Vienna Ab Initio Simulation Package ( V A S P ) [ 1 0 8 - 1 1 0 ] is a complex commercial 
package for ab initio simulations. It is written in Fortran 9 0 and uses M P I [111, 112] 
to enable massively parallel computing on clusters. The P A W method is employed for 
accurate calculations wi th a small enough basis. It has good scalability for large systems 
(calculations for up to ~ 4 0 0 0 valence electrons), and there are routines that automatically 
calculate the symmetry of the problem, to simplify the computation. Throughout this 
work, V A S P version 5 .4 .4 . is used for self-consistent collinear calculations and version 
5 . 4 . 1 . for noncollinear non-selfconsistent calculations. 

In the following, the general inputs and outputs of a V A S P calculation are outlined. 
They are logically grouped into several text files. 

Input files 

Four input files are always needed in a V A S P calculation: 

1. P O S C A R 

In the P O S C A R text file, we define the size and shape of the unit cell, along wi th the 
positions and types of atoms it contains. Periodic boundary conditions are usually applied 
in a l l directions, so the unit cell vir tually repeats and fills the whole space. 
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2. D E N S I T Y F U N C T I O N A L T H E O R Y ( D F T ) 

2. I N C A R 

The I N C A R text file contains most of the calculation settings, namely the type of cal
culation and the specific algorithms used, the size of plane-wave basis and precision of 
convergence criteria, whether magnetism should be included, and what are the starting 
magnetic moments for each atom, and so on. We can also define how to parallelize the 
computation and how strongly the symmetry conditions should be enforced. Most param
eters have reasonable default values and do not have to be modified, depending on the 
requirements. 

3. K P O I N T S 

The periodic boundary conditions make V A S P ideal for solid-state materials calculations, 
where the Bloch theorem and notion of the Br i l louin zone play a central role [39]. The 
electronic ground state should be calculated for all the (infinite number of) k-points inside 
the Br i l lou in zone and then integrated. In practice, the Br i l louin zone is sampled by some 
limited number of k-points and then summed. The type of sampling and the number of 
k-points (density of the k-point mesh) is specified in the K P O I N T S file. 

4. P O T C A R 

P O T C A R contains the pseudopotentials for each atomic element used in P O S C A R . The 
pseudopotentials are created by the developers and copy-pasted into P O T C A R , depending 
on which ones are currently needed. 

Output files 
The output of the calculation is naturally the ground-state density, given in the C H G C A R 
file, along wi th the wave functions given in W A V E C A R . However, most of the relevant 
parameters are given in O U T C A R . 

O U T C A R 

O U T C A R contains information about the calculation progress and a plethora of important 
output parameters. These are the symmetry of the problem, total energy, the energy 
eigenvalues at all sampled k-points, relaxed atomic positions (if atomic relaxation was 
performed), forces on atoms, magnetic moments (including the orbital moments), and far 
more. 

P R O C A R 

In P R O C A R , for each particular band at each particular k-point, the character of this 
band is provided as a set of complex numbers for all the nuclei, orbitals, and spins, where 
the complex number is the projection coefficient of the particular wavefunction wi th a 
given spin onto a given spherical harmonic (orbital type) centered at the given nucleus. 

D O S C A R 

D O S C A R contains the density of states (DOS) resolved in spin, orbital type, and nucleus 
site. 
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3. Magnetic anisotropy of bcc Fe, Co, 
and N i / M g O ultrathin films 

The manyfold cutting edge applications of MgO-based magnetic tunnel junctions have 
been described in the Introduction. In this thesis, we focus on their applications in the 
spin-transfer torque magnetic random access memory ( S T T - M R A M ) . Specifically, we aim 
to increase their perpendicular magnetic anisotropy ( P M A ) to enable further downsize 
scaling of S T T - M R A M memory bits (Sec. 1.6). The ferromagnetic layers in MgO-based 
M T J s are usually composed of the 3c? transition elements Fe and Co in their body-centered 
cubic (bcc) crystal structure. In this chapter, we start by investigating the P M A of 
ultrathin films of bcc Fe, Co, and N i on M g O by ab initio calculations. 

3.1. Magneto crystalline anisotropy calculation proce
dure 

The density functional theory ( D F T ) calculations of magnetocrystalline anisotropy are 
performed using the Vienna Ab initio Simulation Package ( V A S P ) [109, 110] (Sec. 2.13). 

The Generalized gradient approximation ( G G A ) exchange-correlation functional [113] 
(Sec. 2.9) is used as implemented by Perdew, Burke, and Ernzerhof [87]. The k-point 
mesh of 25 x 25 x 1 points and a plane wave cut-off energy of 520 eV (ENCUT = 520) has 
proven to give sufficient accuracy, as discussed in Sec. 3.2. We follow the force-theorem 
method [105, 106], already introduced in Sec. 2.12. 

The whole calculation procedure is described in detail in Ref. [114, 115] and it consists 
of four steps: 

1. Relaxation. First , the unit cell shape, volume, and atomic positions are adjusted 
to minimize the interatomic forces1 below 0.001 e V / A (EDIFFG = -0 .001) . 

2. A self-consistent optimization of the ground-state electronic structure is per
formed, unti l the total energy variation drops below 10~ 7 eV (EDIFF = le - 7 ) . 

3. Spin-orbit interaction is included (LS0C=. TRUE.) and the total energy of the 
system is calculated non-self-consistently, wi th the electronic charge density from 
the previous step (ICHARG=11); the magnetization is out-of-plane (SAXIS = 0 0 1). 

4. Same as step 3, but wi th magnetization in-plane (SAXIS = 1 0 0). 

1 o b t a i n e d from the He l lmann-Feynman theorem [116, 117] 
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The magneto-crystalline energy EUCA is then defined as the total energy difference for 
magnetization in-plane m\\ = (1, 0, 0) and out-of-plane m± = (0, 0,1) 

EUCA = E(m\\) - E{m±). (3.1) 

3.2. Convergence tests 

A s mentioned in Sec. 2.12, EUCA is a very small energy difference (~ 1 meV), compared 
wi th the total energy (~ 100 eV). In our case, it makes up for a tiny ~ 0.001% of the 
total energy, and special care must be taken to perform calculations that are sufficiently 
accurate. Therefore, we first carry out several convergence tests. 

The k-point mesh 
The k-point mesh determines how densely the Br i l louin zone should be sampled. In 
Fig . 3.1(b), a two-dimensional Br i l louin zone wi th 4x4 k-point mesh is sketched 2. Denser 
mesh means higher precision but longer computation time. Before any calculation, it 
is hence important to determine the minimal k-point mesh density, which still ensures 
the required precision. We perform a k-point convergence test on a structure wi th a 
5-monolayer ( M L ) film of bcc N i sandwiched between 5 M L s of M g O . 

In F ig . 3.1(a), we plot EUCA v s . n k , i a t e r a i , where the k-point mesh is n k , i a t e r a i x n k , i a t e r a i x 3 
k-points. The data is fitted by an exponential to obtain the asymptotic value. For most of 
the calculations, though, 1 k-point in the z direction is enough and a mesh of 25 x 25 x 1 
k-points has proven to give a reasonable trade-off between accuracy and computation 
time. 

35 39 

irreducible 
Brillouin zone 

Brillouin zone 

k,lateral (b) 

Figure 3.1: (a) K-points convergence test performed on bcc N i ( 5 M L ) / M g O ( 5 M L ) and a 
^ k , i a t e r a i x n k j i a t e r a i x 3 k-point mesh, (b) A 2D Bri l louin zone wi th a small, illustrative 4x4 
kpoint mesh. Only 3 out of the 16 points are unique. The irreducible Brillouin zone thus 
covers only 1/8 of the whole Br i l louin zone. From [118]. 

2 N o t e that due to symmetry, only 3 k-points are unique, forming the much smaller irreducible B r i l l o u i n 
zone. T h i s reduct ion of k-points by symmet ry considerations greatly simplifies the ca lcula t ion i n steps 1 
and 2 i n Sec. 3.1. However, for Steps 3 and 4, where the spin-orbit coupl ing is inc luded, the symmet ry is 
broken and should be switched off (ISYM = -1). 
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3.3. B O D Y - C E N T E R E D C U B I C ( B C C ) L A T T I C E O F C O A N D NI 

The plane-wave energy cut-off 
To make the plane-wave basis finite, one needs to set the highest spatial frequency, which 
still needs to be included in the plane-wave basis to accurately describe the charge density 
oscillations wi th sufficient resolution. In V A S P , instead of the spatial frequency cut-off 
C c u t , we set the wave's corresponding cut-off kinetic energy 

h2 

E c u t = 2^;°^ ( 3 - 2 ) 

defined by the ENCUT parameter in INCAR. Default values are available in V A S P for each 
element. We use ECNT = 520 eV. The change in EMCA following the change in ECNT from 
500 eV to 550 eV i s 3 only 2 " 4 meV. 

Note that increasing the M g O thickness from 5 M L to 7 M L has only a small effect on 
EMCA, below 0.01 meV. 

3.3. Body-centered cubic (bcc) lattice of Co and N i 

The natural lattice-type for bulk Fe is indeed the body-centered cubic (bcc), but for Co, 
it is hexagonal close-packed (hep), and for N i , it is face-centered cubic (fee). That is why, 
wi th no M g O present, th in slabs of Co and N i prefer the fee structure over bcc: if we 
impose the bcc structure on a few-monolayer-thick Co or N i slab interfaced with vacuum 
and let it relax, the lattice expands vertically by a factor of v 2 , as shown in F ig . 3.2. This 
corresponds to a bcc—>Lcc transformation; the fee lattice is clearly apparent if the relaxed 
structure is rotated by 45° (see F ig . 3.2). The Fe slabs always stay in the bcc form. 

fee 
bcc 

relaxation 

45° 

t o o 
n 

o if o 
(I 

O if o 

0 42a 

Figure 3.2: A Co or N i slab (thin film interfaced wi th vacuum) relaxes from the init ial 
bcc form to fee by a vertical expansion. In Fe, whose natural bulk lattice type is bcc, we 
do not observe this transformation. 

3for the N i / M g O test system and 2 5 x 2 5 x 3 k-points 
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O n the contrary, if the slabs are interfaced with M g O , the relaxation compresses the 
lattice slightly in the vertical direction, making the lattice strained. Hence, (a strained) 
bcc lattice of Co and N i is stabilized by the MgO barrier. 

3.4. Test calculations: reproducing published results 

To check that the calculation as described above is set up correctly, we try to reproduce 
some well-known published results. 

First , the results of hybridization between the Fe d orbitals and the O pz orbital at 
the F e / M g O interface are studied. This hybridization plays a central role in the large 
out-of-plane interfacial anisotropy in F e / M g O M T J s 4 . Hence, we follow the work of Yang 
et al. [114] and plot the energy levels of the interfacial Fe d-orbitals and the interfacial O 
pz orbital in F e ( 5 M L ) / M g O ( 5 M L ) . Our results are shown in F ig . 3.3, side by side wi th 
the results from Yang et al. [114]. The energy level positions correspond well, and the 
hybridization of the O pz orbital with Fe dz2 orbital is apparent, as explained in the 
caption of F ig . 3.3. 

Second, we perform the - E M C A calculation for F e / M g O with Fe thickness from 5 to 
15 M L s . For all the films, we determine the contribution from each of the layers and 
compare wi th Ref. [119]. A s shown in F ig . 3.4, our results again coincide very well wi th 
the published ones. 
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Figure 3.3: The energy levels of the five <i-orbitals (xy, xz, yz, z 2 , and x 2 - y 2 ) at the 
interfacial Fe and the pz orbital of the interfacial O (O pz) in F e / M g O are shown for 
three cases: without spin-orbit coupling (middle column of energy levels), wi th S O C plus 
magnetization out-of-plane (_L; left column), wi th S O C plus magnetization in-plane (// ; 
right column). W i t h S O C included (left and right column), additional energy levels appear 
in the oxygen pz orbital, corresponding to certain Fe dz2. This signifies the presence of 
hybridization between the two orbitals, which is the main cause of interfacial P M A in 
F e / M g O [114]. 

4 T h e interfacial anisotropy between Fe and O makes it possible to fabricate perpendicular MgO-based 
M T J s , very important for M R A M applications [1]. 
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3.5. V A R Y I N G T H E M E T A L T H I C K N E S S 

-O this work 

1 2 3 4 5 6 7 

Interface Layer number Bulk 

Figure 3.4: Layer-resolved EUCA for F e / M g O of different Fe thicknesses. The grey empty 
circles (calculated in this work) correspond well to the literature results (the colored 
symbols, calculated in Ref. [119]). 

3.5. Varying the metal thickness 

After validating the accuracy of the calculation procedure, we continue wi th a series of 
calculations for bcc (001) Fe, Co, and N i on M g O as a function of metal thickness. In 
Fig . 3.5, we plot their E M C \ , the in-plane lattice parameter a, and the average atomic 
magnetic moment \i. 

Magnetocrystalline anisotropy 

From F ig . 3.5(a), it is clear that for Fe, the i ? M C A stays almost constant wi th thickness. 
This is well known [119]. For Co, on the other hand, there is a steady increase. For N i , 
the behavior seems oscillating. 

According to E q . (1.3), constant variance with thickness points to interfacial anisotropy, 
while linear increase points to bulk anisotropy [also indicated in the inset of F ig . 3.5(a)]. 
We confirm the origin of these distinct trends by plotting the contribution to EUCA from 
each of the metallic layers separately in F ig . 3.5(b). 

For Fe, the main contribution to EUCA comes from the first two layers at the M g O 
interface [114, 119, 120]. Increasing the thickness does not affect the electronic properties 
of the interfacial layers in a significant way [119] (see F ig . A . l in Appendix A ) . The 
contribution of the bulk layers is almost zero. When increasing the Fe thickness, only 
bulk-like layers are added. Hence the EUCA does not change wi th thickness. 

Interestingly, for Co, all the bulk layers seem to contribute wi th a significant positive 
value [120], evident from F ig . 3.5(b). This is why the EUCA in F ig . 3.5(a) grows mono-
tonically: by increasing the thickness, more bulk-like layers are added and each of them 
gives a contribution of about 0.5 m J / m 2 . 

In N i , the influence of the interface manifests itself as deep as 6 M L [120]. The 
two interfacial layers contribute negatively to EMCA- This is the reason for the in-plane 
anisotropy in the 5 - M L structure in F ig . 3.5(a). Al though the deeper bulk layers con
tribute positively, the E M C \ does not grow monotonically, as one could expect, because 
the interfacial contributions in N i do change upon thickness increase, unlike in Fe or Co 
(Fig. A . l in Appendix A ) . 
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Figure 3.5: (a) The magnetocrystalline anisotropy for structures comprising bcc Fe, Co, 
and N i on M g O as a function of metal thickness. Constant variance for Fe signifies 
presence of interfacial anisotropy; linear increase for Co signifies bulk anisotropy. This is 
confirmed by the layer-resolved values in meta l (15ML) |MgO structures in part (b). (c) 
In-plane lattice parameter. W i t h increasing metal thickness, it relaxes from the M g O bulk 
value towards the smaller Fe, Co, and N i bulk values. The decrease is least prominent for 
N i , which mainly relaxes v ia vertical lattice parameter c: its c/a ratio in part (d) deviates 
most from the equilibrium c/a = 1. (The c/a ratio in bulk layers of Fe, Co, and N i is 0.94, 
0.89, and 0.85, respectively.) The layer-resolved c/a values plotted for the 15ML-thick 
structure in part (d) are very similar across all thicknesses, see F ig . A . 2 in Appendix A . 
(e) The average atomic magnetic moment is almost constant for Co and N i , but decreases 
for Fe. (f) Only in Fe are the interfacial magnetic moments enhanced. 
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Lattice parameter and strain 
In F ig . 3.5(c), the lattice parameter for the thinnest metal thicknesses is very close to that 
of bulk M g O : aM g o — 2.98 A [121]. The 5ML- th ick M g O imposes this lattice parameter 
upon the thin metals. For thicker metal layers, the a parameter starts to decrease (it 
relaxes) towards the bulk values of the respective bcc metals: aF e = 2.86 A [122], ac0 = 
= 2.81 A [123], am = 2.79 A [this work]. 

The a relaxation is most prominent for Fe, less so for Co, and even less for N i . This 
might seem surprising: from the lattice parameters given above, the lattice mismatch 
is biggest for N i , lower for Co, and lowest for Fe. We would hence expect the steepest 
decrease of a in F ig . 3.5(c) for N i . However, N i relaxes mainly v ia the vertical lattice 
parameter c. 

In other words, the c/a lattice parameter ratio for N i most deviates from the equi l ib
r ium value c/a = 1. This is clear from Fig . 3.5(d): the typical relaxed c/a ratios we found 
within the bulk-like layers of Fe, Co, and N i on M g O are 0.94, 0.89, and 0.85, respectively. 
(We devote the next Sec. 3.6 to the effect of strain on the - E M C A in purely bulk bcc Fe, 
Co, and Ni.) 

Atomic magnetic moment 
The average magnetic moment per atom [Fig. 3.5(e)] stays almost constant for the larger 
thicknesses of Co and N i . (For the thinnest Co, there are strong variances due to the 
extreme strains in these ultrathin structures.) For Fe, however, the average atomic mag
netic moment decreases wi th thickness. This has been observed both theoretically and 
experimentally [124, 125]. Also, there is an interfacial magnetic moment enhancement in 
F e / M g O , see F ig . 3.5(f). Its consequences for magnetic tunnel junctions were discussed 
in Ref. [126]. 

3.6. Strained bulk bcc Fe, Co, and N i 

In order to understand what is the cause of the large bulk P M A in bcc Co in F ig . 3.5(b), 
based on F ig . 3.5(d), we make a hypothesis that this large P M A is strain-induced. 

To determine the effect of strain on bulk bcc Fe, Co, and N i , we perform a series of 
anisotropy energy calculations of a simple bcc unit cell of Fe, Co, and N i wi th different 
c/a ratios [Fig. 3.6(a)]. A k-point mesh of 19x19x19 points has proven to provide - E M C A 
wi th sufficient accuracy of 0.01 meV. The typical bulk strains from Fig . 3.5(d) are plotted 
as vertical lines. A t its typical c/a ratio (0.89), there is indeed a strain-induced anisotropy 
of about 0.5 m J / m 2 for bulk bcc Co in F ig . 3.6(b). This is the same value as in the bulk 
layers of Fe on M g O in F ig . 3.5(b). 

Thereby, the hypothesis of significant strain-induced P M A in C o / M g O is supported. 
We have performed some additional tests, notably making the structure artificially un
strained (c/a = 1) and omitt ing the relaxation step in the calculation. The result was 
that the P M A in Co disappeared, as expected. 

The - E M C A in strained bulk bcc Fe, Co, and N i has been calculated before [127, 128], 
but only in the range c/a > 1, whereas our region of interest is c/a < 1 (the typical 
strains of m e t a l / M g O structures). Our results correspond well to the published values for 
c/a > 1, see F ig . A . 3 in Appendix A . 
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Figure 3.6: (a) A simple bcc unit cell wi th the vertical lattice parameter c and the latteral 
lattice parameter a. It serves as a model structure for evaluating the impact of strain on 
the P M A of Fe, Co, and N i on M g O . (b) The EUCA was calculated for different c/a ratios. 
Vertical lines signify the typical c/a values in bulk-like layers of bcc Fe, Co, and N i on 
M g O . A t the typical c/a for Co (0.89), the E M C \ is indeed about 0.5 m J / m 2 , same value 
as in F ig . 3.5(b). This supports the hypothesis that the P M A in bcc Co in F ig . 3.5(b) is 
strain-induced. Note that the values for c/a > 1 correspond reasonably well to published 
results [127, 128] (see F ig . A . 3 in Appendix A ) . © 2021 American Physical Society [120]. 
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4. Giant anisotropy enhancement in 
Fe /Co/Fe |MgO magnetic tunnel junc
tion 

In this Chapter, we exploit the results of the previous Chapter 3, namely that there is a 
large P M A arising at the F e / M g O interface and a large P M A contribution coming from 
the C o / M g O bulk. 

4.1. P M A enhancement due to £ ^ m c a 

We propose to enhance the P M A of a conventional F e / M g O M T J by replacing a few of the 
bulk Fe layers wi th Co [120]. In F ig . 4.1, this concept is demonstrated. A conventional 
M T J is shown, consisting of a fixed magnetic layer, the M g O barrier, and a magnetic 
storage layer composed of a Fe(3 M L ) / C o ( 1 0 M L ) / F e ( 3 M L ) trilayer. The Co atoms in 
the middle of the structure enhance the P M A , compared wi th a structure wi th pure Fe. 
Following the arguments of Sec. 3.5 and Sec. 3.6, the large P M A in the bulk Co layers is 
induced by the epitaxial strain caused by M g O . 

In F ig . 4.2(a), we plot EMC\ for structures with the general form Fe(n) /Co(m)/Fe(n) | M g O 
for different Fe and Co thicknesses n and m, respectively. The enhancement mechanism 
is persistent for a l l the cases. Note, however, how the first Co layer at the F e / C o inter
face loses its positive P M A . Especially from the "n = 4, m = 4" case in F ig . 4.2(a) it 
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•fvi % % % 

^ 1.2 
E 
^5 0.8 
E 

X 0.4 

0.0 
UJ 

Fixed 
layer 

M g O | F e C o F e 

— • — F e 3 C o 1 0 F e 3 | M g O 
• - • - F e 1 6 | M g O 

\ 1 
3 5 7 9 11 13 1 5 

Layer number 

Figure 4.1: The concept of P M A enhancement in a conventional F e / M g O M T J by replac
ing a few of the bulk layers by Co. The bulk Co atoms (blue) provide large contribution 
to - E M C A - Also, they reduce the negative demagnetizing energy, as discussed in the text. 
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is apparent that a Co thickness of m < 4 monolayers might lose the enhancing property 
altogether. 

Indeed, we find that the condition for the enhancement to work is to have at least 
two Fe monolayers (n > 2) and at least three Co monolayers (m > 3). In F ig . 4.2(b), we 
plot the layer-resolved E M C A for this "minimal structure" F e ( 2 M L ) / C o ( 3 M L ) / F e ( 2 M L ) | M g O , 
as well as for several structures defying the n > 2, m > 3 rule, which is clearly detri
mental for the P M A . 

Whi le EUCA shows very promising enhancement in our presented Fe(n) /Co(m)/Fe(n) | M g O 
magnetic tunnel junction design, so far we have not considered the important contribution 
of shape anisotropy. 

4.2. Shape anisotropy (E^d) calculation 

We implement a Python code to calculate the shape anisotropy. The code first loads the 
(relaxed) positions and dipolar magnetic moments of all the atoms calculated by V A S P . 
The total dipolar energy -Edipoiar [Eq. (1.7)] is then obtained for magnetization in-plane 
m\\ = (1,0,0) and out-of-plane m± = (0,0,1). The shape anisotropy energy (dipolar 
demagnetizing energy) is defined as [129, 130] 

E D D = ^dipolar (m||) - -Edipolar(m_L) , (4.1) 

similar to the definition of EMCA [Eq. (3.1)]. 
Note that the unit cell in V A S P is small, but due to the periodic boundary conditions, 

it effectively forms an infinite thin film, which is exactly the geometry we are interested 
in. Now, the dipole-dipole interactions should also be summed up to infinity in the two x 
and y in-plane directions 1 . In practice, the code performs a sum up to some finite cut-off 
radius r c u t [see the inset in F ig . 4.3(a)] for a few selected values of r c u t (~100 unit cells). 
Then we interpolate Edd(rcut) wi th the formula 

EDD ( r c u t ) = a r c - 6

t + c. (4.2) 

This expression is justified by the fact that the dipole-dipole energy oc 1 /V 3

u t and the 
number of atoms of the thin infinite film oc r f u t (the surface area), so overall E D D oc l / r c u t 

[see F ig . 4.3(a)]. Hence, we expect b ~ 1, which is also what we observe in fits similar to 
that in F ig . 4.3(a). The desired asymptotic value is clearly the c coefficient 

E d d ( r c u t o o ) = c. (4.3) 

After testing the code, we arrive at the following conclusions. 

1. Quite a low cut-off radius of only several tens of unit cells is enough for a precise 
extrapolation by E q . (4.2). Namely in our test case, we compare the results of extrap
olating Edd(rcut oo) from r c u t G {10,30,50} and from r c u t G {500,1000,2000}. 
The difference is only 0.3% and the computation time for the first case is orders 
of magnitude shorter. Using this low cut-off radius, we reproduce the results from 
Ref. [129] wi th good precision 1%). 

1 N o t e that i n V A S P , the periodic boundary condi t ion is also i n the z d i rect ion, perpendicular to the 
f i lm. T h i s effectively makes the structure an infinite number of para l le l t h i n double-barrier magnetic 
tunne l junct ions . Since the magnetic layers are separated by M g O , this is of no concern i n the D F T 
calcula t ion, but for the E^d, i m p l y i n g the per iodic boundary condi t ion i n z would be meaningless. 
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Figure 4.2: (a) Layer-resolved E M C \ in structures of the form Fe(n ) /Co(m) /Fe (n ) |MgO. 
Gold circles represent Fe layers and blue circles represent Co layers. The enhancement of 
EMCA compared to a pure Fe |MgO structure is provided by the bulk Co layers, similar 
to F ig . 4.1 [120]. The F e / C o interface is detrimental to the bulk Co P M A of the Co 
layer closest to Fe. (b) We find that at least 2 Fe layers and 3 Co layers are needed for 
the enhancement. This "minimal" structure is on the very left. The other structures 
defying this condition do not exhibit the large enhancement. © 2021 American Physical 
Society [120]. 
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Figure 4.3: (a) The dipolar demagnetizing energy Edd for a F e ( 7 M L ) / M g O finite th in 
rectangular film wi th a diameter of 2 r c u t unit cells. The scaling is close to Edd oc l / r c u t , 
i.e., -Edd(Vcut) = ar~ut + c wi th b ~ 1. (b) The dipolar demagnetizing energy as a function 
of the magnetization angle 9 from the perpendicular direction. The Edd(9) has the form 
of uniaxial anisotropy [Eq. (1.2)]. Tested on F e ( 7 M L ) / M g O . 

2. The calculation values are very similar to the simple formula E q . (1.6) for th in 
magnetic films [30] 

-E-demag, thin-film = ~^M^ , (4.4) 

where Ms is the average magnetization over the whole unit cell. Indeed, E q . (4.4) 
underestimates the shape anisotropy only by a few percent, as shown in Tab. 4.1. 

3. The angular dependence of Edd is uniaxial [Eq. (1.2)], which is apparent from 
Fig . 4.3(b). 

Table 4.1: Comparing Edd calculated by the average demagnetizing field [Eq. (4.4)] and 
the dipole sum [Eq. (1.7)] in a few selected structures. The underestimate of -Edemag, thm-fiim 
compared to Edd is also given. 

-̂ demag, thin-film -^dd 
( M J / m 3 ) ( M J / m 3 ) underestimate (%) 

F e ( 5 M L ) | M g O -2.02 -2.09 3.4 
F e ( 7 M L ) | M g O -2.17 -2.19 1.1 
F e ( 1 5 M L ) | M g O -2.11 -2.15 1.5 
F e ( 2 M L ) C o ( 3 M L ) F e ( 2 M L ) | M g O -1.72 -1.78 3.1 

4.3. P M A enhancement due to ^ M C A and I ^ d 

We have thus two major contributions to the effective perpendicular anisotropy 

P M A = £ M C A + £dd • (4.5) 

B y replacing the bulk-like layers in F e / M g O , we obtained large enhancement due to - E M C A 
[Fig. 4.1]. In addition, there is e n h a n c e m e n t a lso due t o -Edd- This is clear from the 
following argument, which we make for the simplified expression E q . (4.4), but it can be 
made very similarly for the more accurate E q . (1.7) [along with E q . (4.1)]: since Edd is 
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2 4 6 8 10 12 
171 

Figure 4 .4 : (a) Effective P M A (EMCA+Edd) in MgO|Fe(n)Co(m)Fe(n) |MgO as a function 
of number of monolayers n, m. There is no perpendicular to in-plane magnetic anisotropy 
switching compared to pure M g O | F e | M g O (grey diamonds; its thickness is m + 4 M L , the 
same as the overall thickness for n=2) [120]. (b) EUCA, Edd, and the effective P M A 
(EucA+Edd) for n=2. The effective P M A increases with the Co thickness [120]. (c) 
Supercell of the MgO|Fe(2)Co(3)Fe(2) |MgO with periodic boundary conditions applied 
in all directions [120]. Produced by V E S T A [131]. © 2021 American Physical Society [120]. 

negative, the (positive) perpendicular anisotropy energy is increased when the magnitude 
of Edd is decreased. Since the magnetic moment of Co [~ 1.73/XB] is lower than that 
of Fe [~ 2.5/xs; F ig . 3.5(e)], Edd is weaker and the effective perpendicular anisotropy is 
enhanced even stronger. 

In F ig . 4.4(a), we plot the effective P M A = -E-MCA + Edd as a function of Fe and 
Co thicknesses n and m. Usually, above certain film thickness, the demagnetizing energy 
dominates, making the effective anisotropy negative (in-plane). This is clear from the pure 
Fe |MgO case (grey line). In contrast, the effective P M A in our Fe (n ) /Co(m) /Fe (n ) |MgO 
does not become negative; due to the two enhancement mechanisms, it grows steadily, 
just as in the pure C o / M g O case [Fig. 3.5(a)]. The variation of -E-MCA and Edd separately 
(for n = 2) is shown in F ig . 4.4(b). The storage layer design with enhanced anisotropy is 
depicted in F ig . 4.4(c). 

4.4. Decrease of P M A with F e / C o interdiffusion 

In the real-life fabricated structures, there wi l l be some interdiffusion between the neigh
boring layers. The sharpness of the F e / C o interface is, therefore, an important factor to 
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consider [120]. From the simulations, it follows that any interdiffusion is fatal for the 
P M A when the Fe or Co thickness is less than 2 M L or 3 M L , respectively [n<2 or m<3; 
F ig . 4.2(b)]. Robustness can be achieved at larger Fe and Co thicknesses. In F ig . 4.5, one 
may see the effective P M A in the Fe(2)Co(3)Fe(2) and Fe(3)Co(4)Fe(3) structures wi th 
0 .5-ML (50%) interdiffusion and a 1-ML interdiffusion (the interface layers are completely 
swapped). The drop in the effective P M A in Fe(3)Co(4)Fe(3) is only 22% at 0 .5-ML in
terdiffusion, compared to a drop of 73% for Fe(2)Co(3)Fe(2). This robustness against 
surface roughness is to be expected in the thicker structures in general [120]. 

Larger Co thickness is favorable as it increases the P M A [Fig. 4.4(a)], but thicker bcc 
Co wi l l probably be harder to fabricate [132]. 

O n the other hand, larger Fe thickness provides robustness against interdiffusion and 
might stabilize the bcc C o 2 , but the P M A decreases [Fig. 4.4(a)]. 

The goal is therefore to maximize the Co thickness as long as its structure stays 
stable and to minimize the Fe thickness as long as the robustness against interdiffusion 
is sufficient. Looking at F ig . 4.4(a) and considering all the aforementioned aspects, the 
M g O | F e ( 3 M L ) C o ( 4 M L ) F e ( 3 M L ) | M g O seems like a promising candidate as a storage layer 
for S T T - M R A M cells wi th highly improved thermal stability compared to conventional 
S T T - M R A M [120]. 

Indeed, when the storage layer is sandwiched between two M g O layers, the anisotropy 
per unit area is of the order of 2 m J / m 2 from the interfacial contribution minus approx
imately 1.2 m J / m 2 from demagnetizing energy (dependent on the chosen storage layer 
thickness), yielding a net effective P M A per unit area approximately 0.8 m J / m 2 [120, 133]. 
In comparison, the net anisotropy per unit area in the proposed structure is approximately 
2.2 m J / m 2 , being almost 3 times larger. This means that for the same thermal stability 
factor [Sec. 1.6], the cell area could be reduced by a factor of 3 compared to conventional 
M R A M [1, 120, 134]. 

4.5. Fabrication of the metastable bcc Co 

Although the natural form of Co is hep, the metastable bcc Co phase can be grown 
at room temperature [120, 135-137]. It has been successfully grown on top of Fe wi th 
thickness up to 15 M L [138], wi th well-defined interfaces and no visible interdiffusion. 
The observed strain of 10% in bcc C o | M g O is considerable but still wi thin the limit 
of what is experimentally realizable [139]. Indeed, Yuasa et al. [132] fabricated bcc 
C o ( 4 M L ) | M g O ( 1 0 M L ) | C o ( 4 M L ) M T J and measured a record-holding T M R of 410% at 
room temperature. A s shown in Sec. 3.3, from our structural relaxation simulations, it 
follows that the bcc Co is preserved on top of M g O while it transforms into the fee phase 
when surrounded by vacuum. Therefore, the bcc phase wi l l probably be most stable if 
the device is used as a double-barrier M T J . This also provides higher P M A from the 
interfacial Fe, due to the presence of two interfaces [120]. 

4.6. Tunneling magnetoresistance 

Since we are interested in implementing this proposed storage layer in a full M T J stack, we 
investigate its expected T M R amplitude [120]. A large T M R of 410% at room temperature 

2 it is generally easier to grow bcc C o on Fe than on M g O 

40 



4.6. T U N N E L I N G M A G N E T O R E S I S T A N C E 

Interdiffusion (MLs) 

Figure 4.5: The effect of interdiffusion on the effective P M A in two selected structures. 
For the (minimal) Fe(2)Co(3)Fe(2) structure, there is a significant P M A decrease of 73% 
at 0 .5-ML atomic intermixing. For the thicker Fe(3)Co(4)Fe(3), the P M A is reduced 
only by 22%, demonstrating the robustness against interfacial roughness. We expect this 
robustness in the thicker structures in general. © 2021 American Physical Society [120]. 

has been observed previously in pure bcc C o | M g O | C o M T J s [132]. In addition, Co in 
combination wi th Fe is often used for its record-holding T M R values. Therefore, we 
expect the high T M R to be present also in the proposed Fe |MgO M T J s with the inserted 
Co bulk layer. We estimate the T M R from the Julliere formula [3] 

where G A P and GF are the device conductivity with the two magnetization layers antipar-
allel and parallel, respectively, and the spin polarization 

Vt{EF)-VKEF) 
Tft(EF)+V±{EF) ' 1 1 

where Va(EF) is the density of states for spin a G {f, 4 } at the Fermi energy EF. Note that 
only the A1 orbitals (s, pz, and dz2) contribute to the tunneling in crystalline M g O [15]. 
Therefore, we account only for these states in T>. Also, it is best to take T> of the interfacial 
oxygen [140]. The estimated values are very high, around 300%. 
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5. Second order perturbation theory 
calculations of £ M C A 

The magneto-crystalline anisotropy arises due to spin-orbit coupling, as discussed in Chap
ter 1. The strength of the S O C is proportional to the magnitude of the spin-orbit coupling 
constant £ from E q . (1.8), which is in the order of several 10 meV [32]. This is much 
smaller than the width of the 3c? band, relevant for Fe, Co, and N i . Hence, because £ 
is small, the S O C can be considered as a perturbation. EMQA is then calculated within 
the second-order perturbation theory (PT2) framework, directly from (A) the density of 
states or (B) the band structure. Bo th the D O S and the band structure are obtained by 
a D F T calculation without S O C . This treatment then allows us to link the changes in 
EMCA directly to changes in the electronic structure [120]. 

5.1. Bruno's theory 

The P T 2 approach to - E M C A has been developed by Bruno in 1989 [141]. The resulting 
formulas are complicated, as elaborated further below, but he arrived at a simple, elegant 
conclusion 1: the magnetocrystalline anisotropy energy is proportional to the anisotropy 
of the orbital magnetic moment [1] 

E M C A = ^ , (5.1) 

where £ is the spin-orbit coupling constant and A/x = (j,± — (j,\\ is the difference between the 
orbital magnetic moment \x wi th magnetization out-of-plane and in-plane. If the orbital 
magnetic moment prefers to lie out-of-plane, the spin magnetic moment wi l l follow, as 
implied by E q . (1.8). This creates a preference direction (anisotropy) for the spin, hence 
also for the magnetization 2 , to lie out-of-plane. 

The relatively good validity of the model, especially for bcc Fe and bcc Co on M g O , 
is demonstrated in F ig . 5.1. 

5.2. Density of states (DOS)-based E M C A calculation 

We can imagine that electrons get excited from filled to empty states and these excitations 
contribute to - E M C A , depending on the spin and orbital character of the filled and empty 
states in question. These excitations do not happen in reality; they are only a physical 

1 va l id w i t h i n the per turba t ion approach 
2 M a g n e t i z a t i o n i n 3d metals is ma in ly due to the spin magnetic moment, as the o rb i t a l angular 

momen tum is quenched [31]. 
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-•— E, M C A Aju-%4 

-8 -6 -4 -2 0 2 4 6 8 -8 -6 -4 -2 0 2 4 6 8 -8 -6 -4 -2 0 2 4 6 8 
Layer number Layer number Layer number 

Figure 5.1: Layer-resolved . E M C A and A / x for the metal(16 M L ) | M g O . For Fe and Co, 
the - E M C A and A / x are very well proportional, supporting the validity of Bruno's model 
[Eq. (5.1)]. However, the spin-orbit coupling constants used here for E q . (5.1) are ^Fe = 
= 133 meV, £co = 60 meV, £m = 10 meV. They are somewhat different from the values 
from Ref. [142] £ F e = 68 meV, £ C o = 84 meV, £ N i = 109 meV. 

picture of the equations resulting from P T 2 . Therefore, they are called virtual excitations. 
There are vir tual excitations where the spin is conserved (t=^t and |=^|) and there are 
spin-flip excitations ( t = ^ 4 and |=^t)- The - E M C A can be written as the sum of these four 
terms [143] 

E M C A = A E ^ ^ + A - E ^ — A - E ^ — A E ^ - j - , (5.2) 

where each AEa^ai is calculated by integrating over all the filled states with spin a G {f, 4 } 

and all empty states wi th spin a' G {f, 4 } as [144] 

A £ _ , = £ £ J V / d, / . (5.3) 
W ' —oo Ep 

Depending on the orbital character /x and /x' of the filled and empty states, respectively, 
the given virtual excitation has a contribution to - E M C A wi th a prefactor E ) ^ ' , given in 
Tab. 5.1. Hence, in E q . (5.3), there is a double summation over all filled and unfilled 
orbitals /x and /x', respectively, some of which contribute by a nonzero value according to 
Pfifi'- The integrand is also proportional to the local orbital-resolved density of occupied 
and unoccupied states (f^(e) and g°,(e'), respectively. From the denominator e' — e, it 
follows that the strongest contribution must come from the states around the Fermi level, 
where the occupied energy levels e and unoccupied energy levels e' are close to each other. 

We apply E q . (5.2)-Eq. (5.3) to the D O S of bulk bcc Co, in an attempt to reproduce 
the results of F ig . 3.6 3 . In F ig . 5.2, we show the resulting four terms of E q . (5.2), their 

3 N o t e that a D O S calculated from the self-consistent ca lcula t ion [step 2 i n Sec. 3.1] is used. Thereby, 
we do not need to perform the most expensive steps 3 and 4 (the calculat ions w i t h S O C ) . 
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Table 5.1: Components of the P^ matrix from E q . (5.3) for d orbitals. (The vir tual excita
tions involving s and p electrons are almost irrelevant, as only the <i-orbitals are responsible 
for magnetism in 3<i-elements.) The matrix is defined as P^i = | ( /x |L z | /x ' ) | 2 — \ {[i\Lx\ii')\2, 
where Lz and Lx are the orbital momentum operators in the z and x direction, respec
tively. 

dxy dyz dz2 dxz dx2 

dxy 0 0 0 -1 4 

dyz 0 0 -3 1 -1 
dz2 0 -3 0 0 0 
dxz -1 1 0 0 0 
dx2 4 -1 0 0 0 

sum ("£MCA")> a n d the curve for bcc C o from F ig . 3.6 that we try to reproduce ( " D F T " ) . 
The EUCA curve does not reproduce the D F T curve well, so the model of E q . (5.3) 
must be an oversimplification, and a more precise treatment based on the band structure 
wi l l be needed. Despite that, from F ig . 5.2(a), we can already draw several qualitative 
conclusions. 

1. The minority-to-minority excitation contribution A E j = ^ (the only term taken into 
account in the original Bruno approach [141]) on its own can reproduce the increase 
of - E M C A for c/a < 1 observed in the D F T curve. Therefore, in F ig . 5.2(b), we 
analyze AE±=^± in more detail and show all its excitation contributions separately. 
We see that the increase is caused by excitations from dyz to dz2 minority orbitals 
and vice versa (dyz -H- dz2). 

This behavior is linked to the strain-induced changes in the L D O S : for c/a < 1 
[Fig. 5.2(e)], the dz2 peak in the empty minority states is shifted further above the 
Fermi level. Because of the e' — e denominator in Eq . (5.3), this weakens all the 
contributions involving dz2 minority empty states, namely the negative dyz —> dz2 
contribution (the contribution with the largest negative prefactor of -3, see Tab. 5.1). 
The weakening of this negative contribution then increases the overall - E M C A -

The increase is counteracted by a decrease in the positive dxy -H- dx2_y2 excitation. 
This decrease is due to the strain-induced shift of the minority empty dx2_y2 peak, 
located immediately above EF for c/a = 1. 

2. The two contributions that come from excitations to majority-spin states, AE^^ 
and —A-E|_=^, are small. The reason is that there are almost no empty majority-spin 
states, especially near the Fermi level, as we see in F ig . 5.2(d)-Fig. 5.2(f). Moreover, 
A-Ef^-t- and — A E | = ^ tend to cancel each other. Hence they can often be neglected 
[144]. 

Note that including the p-orbital excitations gives only a minor correction of approxi
mately 1%. 
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Figure 5.2: (a) Based on the orbital-resolved local density of states, the four contributions 
to the bcc Co - E M C A ( c / ° ) calculated from the second-order perturbation theory [143] are 
shown separately and in total. The values extracted from the D F T calculation with spin-
orbit coupling included ["DFT"; see F ig . 3.6] are shown for comparison. The classical 
Bruno term AE±=^± on its own reproduces the D F T curve for c/a < 1 to a certain extent, 
(b) The Bruno AE^^ term from (a) divided into contributions from individual vir tual 
excitations. The excitation from dyz to dz2 states and vice versa (dyz -H- dz2 ; red circles) 
is the one that causes the overall increase for c/a < 1. (c) Same as (a) but calculated 
from the orbital-projected band structure, where additional aspects are taken into account 
(see text for details). The correspondence wi th the D F T curve is hence much better, (d) 
The orbital-resolved D O S for bcc Co wi th c/a = 1. There is a peak in the dz2 and 
dx2_y2 minority states right above the Fermi level, (e) The orbital-resolved D O S for bcc 
Co wi th c/a = 0.90. The strain causes the overall spreading of the D O S . Bo th the dz2 
and the dx2_y2 peaks are pushed further above Ep. (f) The most bulklike Co from the 
Fe(3)Co(12)Fe(3) structure. Its features are very similar to the bcc Co wi th c/a = 0.90 
in (e), supporting the applicability of the results of the P T 2 approach to the proposed 
structures of Chapter 4. © 2021 American Physical Society [120]. 
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5.3. Band structure-based ^ M C A calculation 

To redeem the inaccuracy of the DOS-based model, the next step is to calculate EUCA 

directly from the (orbital-resolved) band structure. This approach takes into account 
many aspects that were neglected in the calculation from L D O S . The equations are given 
in Ref. [143, Eqs. (4)-(6)]. The orbital-resolved P R O C A R file (Sec. 2.13) is needed as 
an input. One also needs to set L0RBIT=12 in the I N C A R , to obtain both the real and 
imaginary parts of the projection coefficients c in P R O C A R . The c coefficients are used 
to calculate the joint local density of states G [Eq. 4 in Ref. [143])]. Taking the real 
part of G and performing summation over several variables, one finally obtains the four 
contributions to EUCA from E q . (5.2). 

The difference compared to the DOS-based approach boils down to three important 
points: 

1. the projection coefficient of a Bloch state onto a particular d orbital is considered 
properly as a complex number, not just as its magnitude; 

2. vir tual excitations also happen in between atoms at different sites, not only on-site; 
and 

3. the mechanism of a vir tual excitation generally includes four orbitals, not only two 
(see F ig . 1 in Ref. [145]). 

A l l these three features have proven to be essential for the model to be more accurate. 
The band structure calculation results are plotted in F ig . 5.2(c). We use £co = 84 

meV [142]. The model is much better than the one in F ig . 5.2(a), while the main features 
are retained, namely that the AE±=^± term governs the overall trend. 

The —AE^i term serves to refine the shape, but in addition, causes an excessive 
overall decrease. The EMC\(c/a = 1) is not zero in the EMCA curve, as it should be 
by symmetry arguments and as it is in the D F T curve. Despite that, the difference 
EMCA(C/CI = 0.90) — EMC\(c/a = 1.00) in the EUCA curve and D F T curves correspond 
well to each other. Analyz ing the contributions to AE±=^± from individual excitations, we 
confirm the results of Sec. 5.2, namely that the main positive change in EUCA for c/a < 1 
is due to the dyz —> dz2 vir tual excitation, and the main negative change is due to the 
dT2_,.2 —y cL„ excitation. 
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Conclusion 

To conclude, we introduced the importance of MgO-based magnetic tunnel junctions 
( M T J ) both for the traditional hard drives and the emerging spin-transfer torque magnetic 
random-access memory ( S T T - M R A M ) . S T T - M R A M has already entered volume produc
tion and has a strong potential for applications, notably to replace S R A M and D R A M in 
certain memory hierarchy levels to make electronic devices more power-efficient (Fig. 3). 

The different types of magnetic anisotropy were given, along wi th their fundamental 
physical origins. We showed how the magnetic anisotropy is crucial for magnetic memory 
stability, especially when downscaling the memory bits. 

We then developed the fundamentals of density functional theory, the main method 
used in this work to perform ab initio calculations. The basic inputs and outputs of the 
Vienna ab initio simulation package ( V A S P ) were outlined. 

Next, we proceeded to our results of the systematic study of perpendicular mag
netic anisotropy ( P M A ) in MgO-based M T J s wi th bcc Fe, Co, and N i as a storage 
layer (Fig. 3.5). We do observe the well-known interfacial P M A of F e / M g O (Fig. 3.4) and 
confirm its origin, which is the hybridization between the interfacial Fe and O (Fig. 3.3). 
Interestingly, we found a large bulk P M A within bcc C o / M g O and explain it in terms of 
the MgO-induced strain. We confirmed the effect quantitatively by calculating the P M A 
in a simple strained bcc Co unit cell (Fig. 3.6). 

We exploited these findings and proposed an M T J wi th a simple design and strongly 
enhanced P M A in the form F e / C o / F e | M g O (Fig. 4.1). Replacing the bulk-like Fe layers 
wi th bcc Co indeed provides a large strain-induced contribution [Fig. 4.2(a)]. We imple
mented an atomistic calculation of the demagnetizing energy (Fig. 4.3) and showed that 
there is a second benefit of the F e / C o / F e | M g O design, which comes from reducing the 
negative demagnetizing energy. The overall result is a strongly enhanced P M A , increasing 
wi th the Co thickness (Fig. 4.4). We discussed the decrease of P M A upon F e / C o inter-
diffusion, the limitations of fabricating metastable bcc Co, and estimated the tunneling 
magnetoresistance of the M T J s , which is large. 

Finally, encouraged by the good applicability of Bruno's model to the studied sys
tems (Fig. 5.1), we implemented a code based on the second-order perturbation theory to 
calculate P M A directly from the density of states or band structure. This gave us further 
insight into the behavior of P M A in response to the changes in the electronic structure. 
Namely, we reproduced well the c/a dependence of P M A in strained bcc Co (Fig. 5.2) 
and attributed its large strain-induced value to the changes in the dyz and dz2 minority 
states. 
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List of abbreviations 

bcc body-centered cubic 

C P U central processing unit 

D F T density functional theory 

D O S density of states 

D R A M dynamic random-access memory 

fee face-centered cubic 

G G A generalized gradient approximation 

H D D hard disk drive 

H K Hohenberg-Kohn 

K S Kohn-Sham 

L D A local density approximation 

L D O S local density of states 

M L monolayer 

M R A M magnetoresistive random-access memory 

M T J magnetic tunnel junction 

P A W projector augmented wave 

P B E Perdew-Burke-Ernzerhof 

P M A perpendicular magnetic anisotropy 

P T 2 second order perturbation theory 

S O C spin-orbit coupling 

S R A M static random-access memory 

SSD solid-state drive 

S T T - M R A M spin-transfer torque magnetic random-access 

T M R tunneling magnetoresistance effect 

V A S P Vienna A b initio Simulation Package 





A . Supporting ab initio results 

In F ig . A . l , we plot the layer-resolved contributions to E M C \ in bcc m e t a l / M g O for a 
whole range of metal thicknesses (5 M L to 15 M L ) . (In F ig . 3.5(b), only the 15 M L case 
was shown.) It is clear that the interfacial contributions remain almost unchanged across 
different thicknesses for Fe and Co, but in case of N i , they change substantially. 

In F ig . A . 2 , we provide the layer-resolved c/a ratios for the me ta l /MgO structures 
wi th different thicknesses. 

F ig . A . 3 compares the strain-dependent EUCA from F ig . 3.6 with the values from 
Ref. [127]. 
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Figure A . l : Layer-resolved E M C \ for different thicknesses of (a) Fe, (b) Co , and (Ni) on 
M g O . © 2021 American Physical Society [120]. 
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A . S U P P O R T I N G A B INITIO R E S U L T S 
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Figure A . 2 : Layer-resolved c/a ratios for different thicknesses of (a) Fe, (b) Co, and (Ni) 
on M g O . Across all the thicknesses for a given metal, the strain in the bulk-like layers 
(around layer 0) is similar. 
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Figure A . 3 : Comparing the - E M C A VS. thickness plots from Sec. 3 .6 with those of Burkert 
et al. [127], where they calculated only the region c/a > 1. The results agree reasonably 
well. 
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