
Czech University of Life Sciences

Faculty of Economics and Management

Department of Information Engineering

Bachelor thesis

Multi-threaded programming

Author: Oleksii Lahushchenko

Supervisor: Ing. Petr Hanzlík, Ph.D.

© 2021 CULS Prague

CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE
Faculty of Economics and Management

BACHELOR THESIS ASSIGNMENT
Oleksii Lahushchenko

Systems Engineering and InformaƟcs
InformaƟcs

Thesis Ɵtle

MulƟ-threaded programming

ObjecƟves of thesis
The objecƟve of this thesis is to find the use cases when code wriƩen to be executed by mulƟple threads
will improve the performance of an applicaƟon, and hence may replace the classic code that is wriƩen
for single-threaded execuƟon. The supplementary goal is to research what are the disadvantages of mulƟ-
threaded programming, and when this approach should be avoided.

Methodology

The methodology of the thesis is based on analysis of technical and scienƟfic sources focusing on mulƟ-
threaded and single-threaded programming. Based on the synthesis of the gained knowledge, a series of
experimental programs will be wriƩen in C# and the differences between the single-threaded and mulƟ-
threaded implementaƟon described and measured in terms of performance.

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha - Suchdol

The proposed extent of the thesis
40-50 pages

Keywords
MulƟ-threaded programming, C#,

Recommended informaƟon sources
ALBAHARI, Joseph and Ben ALBAHARI, 2017. C# 7.0 in a Nutshell: The DefiniƟve Reference. O’Reilly

Media. ISBN 9781491987650.
DEITEL, Paul J. and Harvey DEITEL, 2016. C# 6 for Programmers. 6th EdiƟon. PrenƟce Hall. ISBN

9780134596327.

Expected date of thesis defence
2020/21 SS – FEM

The Bachelor Thesis Supervisor
Ing. Petr Hanzlík, Ph.D.

Supervising department
Department of InformaƟon Engineering

Electronic approval: 19. 11. 2020

Ing. MarƟn Pelikán, Ph.D.
Head of department

Electronic approval: 19. 11. 2020

Ing. MarƟn Pelikán, Ph.D.
Dean

Prague on 10. 03. 2021

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha - Suchdol

Declaration

I declare that I have worked on my bachelor thesis titled "Multi-threaded Programming"

by myself and I have used only the sources mentioned at the end of the thesis. As the author of the

bachelor thesis, I declare that the thesis does not break copyrights of any their person.

In Prague on date of submission ___________________________

Acknowledgement

I would like to thank Petr Hanzlík, for their advice and support during my work on this

thesis.

7

Multi-threaded programming

Abstract

This thesis describes different multithreading techniques and how they are realized in modern

environment, specifically C# and .NET. The goal of this thesis is to research how a modern

application could run on multiple threads, what are the tools that are necessary for creating a

multithreaded application and what are the benefits that threading can provide. These principles

are demonstrated on a C# application, which provides a benchmark for selected implementation

scenarios on a set of complex tasks.

Keywords: Threading, C#, .NET, Asynchronous programming, Parallel programming, CPU,

Multi-core processor, async, await, Task.

8

Vicevlaknové programování.

Abstrakt

Tato bakalářská práce popisují různé techniky vícevláknoveho programováni a jejich použití v

moderním aplikačním prostředí, konkrétně v C# i. NET. Cílem práce je prozkoumat fungování

moderních vícevláknových aplikací, jaké nástroje jsou nezbytné pro vývoj takových aplikací, a

popis výhod, která poskytují vicevlaknové programování. Tyto principy jsou demonstrovány na

aplikaci, která srovnává vybrané implementace pomocí množiny komplexních úloh.

Klíčová slova: Vlákno, C#, .NET, Asynchronné programování, Souběžné programování, CPU,

Vícejádrový procesor, async, await, Task.

9

Table of contents
List of figures .. 10

Introduction ... 11

Objectives and Methodology ... 12

Objectives .. 12

Methodology .. 12

Part 1 – Theoretical background .. 13

1.1. Introduction to CPU organization ... 13

1.2. CPU cores ... 14

1.3. Principle of operation of the cores. Hyper-Threading. ... 14

Part 2 – Implementation of multithreading in C# .. 16

2.1 Introduction to concurrency .. 16

2.2 Threading .. 16

2.2.1 Creating a new thread .. 16

2.2.2 Threads management ... 18

2.2.3 Sharing data between threads. Threads safety ... 20

2.2.4 Classification of threads .. 22

2.2.5 Threads synchronization .. 23

2.2.6 Thread pool .. 25

2.3 Asynchronous programming ... 26

2.3.1 Introduction to asynchronous programming.. 26

2.3.2 Task class ... 27

2.3.3 Asynchronous functions .. 30

2.3.4 Parallelism ... 31

2.3.5 Cancellation ... 32

2.3.6 Progress reporting .. 33

2.3.7 Task combinators ... 34

2.4 Parallel programming ... 35

10

2.4.1 Introduction to parallel programming.. 35

2.4.2 Overview of the Parallel framework ... 36

2.4.3 Parallel class ... 37

2.4.4 Parallel functions overloads... 39

2.4.5 Task parallelism ... 41

2.4.6 Continuations ... 42

2.4.7 Concurrent collections ... 46

Part 3 – Practical part. Threading benchmark application... 49

3.1 Application description. MVVM design pattern. ... 49

3.2 Application execution modes .. 52

3.3 Benchmark tests .. 55

3.4 Results and discussion .. 59

Conclusion ... 62

Bibliography .. 63

List of figures

1. Parallel framework components .. 36

2. Different forms of continuation ... 46

3. UI of the threading benchmark application ... 49

4. Total results chart .. 60

5. Benchmark execution in Asynchronous (sequential) mode .. 60

6. Benchmark execution in Parallel + Asynchronous mode .. 60

11

Introduction

Nowadays the term programming has a lot of meanings. To know how to program does not mean

only to have the knowledge of programming language and its syntax, but also the ability to use a

lot of other important tools, such as frameworks, software, hardware, etc. Among such tools are

the different program execution methods. Apart from the “classical” line-after-line code execution,

there exist another way to execute the code – multithreaded execution.

The objective of this thesis is to determine what is multithreaded programming and where it is

appropriate to use it. It is generally assumed, especially among less experienced developers, that

creating multithreaded application is an extremely challenging task which requires thorough

knowledge of the programming language and frameworks which are used for threading. By writing

this thesis I want to investigate how threading is implemented in a modern .NET framework. Also,

I want to research if there are cases when code written to be executed by multiple threads will

improve the performance and user experience of the application, and hence may replace the classic

code that is written for a single threaded execution.

The first part of the thesis consists of theoretical background of multithreaded programming. Such

terms as CPU threads, implementation of multithreaded programming in C# and .NET framework

is described in this part. The second part consists of practical showcase of the application, designed

to complete same tasks using different execution methods, and compare the results of the

execution.

12

Objectives and Methodology

Objectives

The objective of this thesis is to explore different multithreading techniques and how they affect

an application. In this thesis I want to discuss how multithreading is implemented in modern

development environments and frameworks, what are the benefits of running application on

multiple threads and is there any practical benefits and advantages of multithreaded application

over the single threaded application.

Methodology

This thesis is focused on implementation of threading in C# programming language and .NET

framework. I used multiple books and Microsoft documentation website in order to research how

threading is implemented in .NET and to describe it in multiple sections in theoretical part of the

thesis.

Practical part of the thesis is focused on how the theoretical concepts of threading could be

implemented in a real-world application and how exactly they affect the application. For practical

part I created a WPF application using Visual Studio 2019 along with .NET framework for

implementing multithreading in the application.

The application consists of 4 execution modes – Synchronous execution, Asynchronous execution,

Parallel execution and Asynchronous + Parallel execution. When a user clicks the respective to

the execution mode button, the application starts its execution in the selected execution mode. and

create multiple web requests. During each cycle of execution, the application is performing 3

different tests which are designed to load CPU and create multiple web requests. Additionally, the

application allows to cancel current execution cycle and display the results of all executions.

13

Part 1 – Theoretical background

1.1. Introduction to CPU organization

Before getting to multithreaded programming, it is important to establish an understanding of what

is going on “behind the scenes”. Taking a closer look at hardware implementation of threads would

help us later to understand how the multithreading actually works, when taking a look at the

multithreaded programming itself.

CPU (Central processing unit) is a “brain” of computer. It is responsible for performing

computational work, which basically means that CPU runs the programs, performs calculations,

reads instructions and data from memory, communicates with other parts of hardware using system

bus and gives commands to other hardware parts of the computer. CPU itself consists of multiple

sub-components which are:

• ALU (Arithmetic Logic Unit) – this component is responsible for all mathematical, logical

and decisional processes within the CPU. Inside the CPU there is also an FPU (Floating

Point Unit) which is not exactly a standalone unit since the purpose of this unit is to support

ALU and perform tasks with floating point.

• Registers – these are the storage components inside of the CPU. Registers store small

amounts of data that is used in processes that are currently being executed. Since CPU

needs to constantly perform tasks with this data, it is necessarily that the data is being

delivered to ALU at the maximum speed possible, that is why registers are needed.

• Control unit – this is the unit that gives commands to all other units. Instructions first come

to the control unit, and then it distributes the tasks between all other components.

• Cache – apart from registers, modern CPUs also have another unit to store data, and that is

cache. Cache stores data fetched from the operating memory, in order to be accessed as

fast as possible by other components of CPU. Only the most necessary data about the

upcoming processes are stored inside of cache, since even the modern processors have only

about 15 megabytes of cache memory.

• Front-side-bus – as was already mentioned before, CPU receives data and instructions

from operating memory (RAM) where this data is being stored during the current session.

Front-side bus is responsible for transferring the data from RAM and processed results

into RAM. [1]

1 Das, D. (2018, January 1). COMPONENTS OF CPU AND THEIR FUNCTIONS | DIAGRAM.

14

1.2. CPU cores

Aside from the basic components described in the previous section, CPU also contains cores. They

play vital role in the multi-threaded execution of the programs - basically multi-threading is

possible only because there are multi-core processors. The first thing that needs to be established

is what exactly the core is.

Core consists of components mentioned earlier – ALU, FPU, Registers, Control unit and lower-

level cache. All those components combined form a core. So why is it even needed to combine

components and make cores?

Now it all comes back to the Moore’s law, according to which the number of transistors in a dense

integrated circuit doubles about every two years. Consequently, it means that the size of transistors

becomes smaller, larger amounts of transistors could be put on the circuit and hence the

performance of the CPU is increased. However, the increase in number of transistors comes with

its drawbacks - mainly overheating, also single CPU unit consumes large amounts of power and

is bad at multitasking. When CPU manufacturers faced this problem in early 2000s, they had 2

options – either place multiple CPUs on motherboard or pack a set of basic CPU components into

single core and put multiple cores inside of the CPU. [2]

Multiple CPUs method proved to be inefficient, since in this case the overall speed of the system

would be limited by the speed of the front-side-bus, that is why the majority of modern

motherboards, apart from certain server-grade models, supports only one CPU, but each CPU

nowadays have at least 4 cores or more. [3]

1.3. Principle of operation of the cores. Hyper-Threading.

As was described in the previous section, CPU cores quickly became an important part of any CPU

and an industry standard. What is important for this thesis, is that with multiple cores it became

possible to truly execute multiple tasks and applications at the same time. To understand how

multiple cores are executing tasks in multiple threads, let’s first take a look at how multiple cores

actually work together. In the beginning, all instructions are stored in the operating memory. When

CPU needs to execute an instruction, it starts the instruction execution cycle. This cycle can be

separated into 6 steps: [4]

1. The memory address where the first instruction is located is copied to the program counter.

2 Hope, C. (2019, July 10). Computer processor history.
3 White, A. (2019, August 19). What is Core in Computer? Here is What it Does.
4 Plantz, R. G. Introduction to Computer Organization.

15

2. CPU sends the instruction address that is stored in the program counter to the operating

memory via the bus.

3. Memory responds by sending the state of bits at the requested memory location back to

CPU, which then copies it into its own registers and cache.

4. The instruction pointer that is stored inside the program counter is incremented, in order to

get new instructions from memory in the next cycle.

5. CPU executes the instructions that came from RAM and send the results back to RAM or

gives instructions to other hardware parts.

6. Return to the step 2 with the incremented program counter.

Each core functions as a separate CPU, so every one of them could perform execution cycle

described above. This approach provides many benefits, the most obvious of which is that there is

no longer need for a single CPU to execute all instructions one by one. Instead, now there are

multiple cores, the instructions could be distributed between the cores which would not only speed

up the execution process, but also provide us with the opportunity to execute multiple instructions

simultaneously.

In addition to just adding more cores in order to speed up the system there’s also a technology that

is called Hyper-Threading, that allows us to increase the computational capabilities of the system

even further. Hyper-Threading is a technology that was first introduced by Intel back in 2002 when

they released their Pentium 4 HT. The Pentium 4 at that time featured only a single core, so as was

mentioned before, it suffered from the drawbacks of a single core CPU. However, Intel

implemented a technology that would allow the single core to be registered as multiple logical

cores by the operating system. Technically it’s "cheating", since the processor only pretends to

have multiple cores, while in reality CPU uses its own logic to distribute the tasks between the

logical cores in order to speed up the execution. This approach is obviously nowhere near as good

as having true multiple cores, but it is still used in modern processors as a nice bonus. For example,

AMD’s Ryzen 7 3700 features 8 physical cores that are represented as 16 logical cores via AMD’s

analog of hyper-threading, called Simultaneous multithreading. [5]

5 Hoffman, C. (2018, October 12). CPU Basics: Multiple CPUs, Cores, and Hyper-Threading Explained.

16

Part 2 – Implementation of multithreading in C#

2.1 Introduction to concurrency

Concurrency is a very important aspect of the modern applications. It is a concept of executing

multiple tasks at the same time. It is extremely beneficial to use concurrency in any kinds of

applications. End-user applications may execute some calculations or any other time-consuming

work, while still being able to maintain the UI of the application and respond to the user. Server

applications use concurrency to respond to one request while finishing another request.

Concurrency itself is not a tool that allows computer to execute multiple tasks simultaneously. It

is rather a set of concepts which should be implemented to achieve a structure that could potentially

benefit from parallelism. Parallelism is a term that means doing multiple things at the same time,

while concurrency is about dealing with multiple things at once.

There are multiple tools in C# that developers could use in order to write a concurrent application,

for example multithreading, parallel processing, asynchronous programming, reactive

programming. These concepts will be revealed in detail in further sections.

As was mentioned earlier, the main goal of concurrency is to build a proper structure, that means

the implementation of concurrent programming techniques. When done correctly such

applications may benefit from parallelism. For example, an application that would implement

multithreading and asynchronous programming and would be executed on a computer with

multiple cores, would most likely perform better than an application where tasks are being

executed one by one. However, if such application would run on a machine with only 1 core, the

benefits of concurrency would be less significant, since it is physically not possible to do multiple

tasks simultaneously with only 1 core. [6]

2.2 Threading

2.2.1 Creating a new thread

A thread is an execution pass that can proceed independently of others. Each thread runs within

the operating system, which provides an isolated environment for the thread within the program

where it runs. A process is called single-threaded if it has only one execution thread. In such case

computer executes all instructions one by one. With a multithreaded program, multiple threads run

in the same process and share the same execution environment (memory).

6 Cleary, S. (2019). Concurrency in C# Cookbook (Second ed.).

17

In C# each program starts as a single-threaded application with the “main” thread. New threads

could be created as follows:

using System;

//In order to create new threads it is necessary import the following

namespace

using System.Threading;

namespace test

{

 class Program

 {

 static void Main()

 {

 //Initializing a new thread

 Thread t = new Thread(WriteInConsole);

 //Starting the execution of the new thread

 t.Start();

 //While the new thread is running, do some work in the main

thread

 for (int i = 0; i < 10; i++)

 Console.Write("1");

 }

 static void WriteInConsole()

 {

 for (int i = 0; i < 10; i++)

 Console.Write("0");

 }

 }

}

The typical output of such program would be: 11000110000011110011.

The main thread creates a new thread by creating a new Thread object, and assigns it to the

variable t. The Thread class constructor can take either of two delegates, depending on whether

the method that would be executed by the thread can take the arguments or not. [7]

• If the method that is being executed in the new thread takes no arguments, just like in the

example above, ThreadStart delegate should be passed to the constructor of the

Thread. It has the following signature:

public delegate void ThreadStart()

• If the method takes an argument, ParameterizedThreadStart delegate that has the

following signature should be passed:

public delegate void ParameterizedThreadStart(object obj)

7 Microsoft Corporation. (2020). Thread Class Documentation.

18

Using ParameterizedThreadStart delegate an argument could be passed to the method

before executing it on a new thread, for example:

static void Main()

 {

 Thread t = new Thread(WriteInConsole);

 t.Start(2); //pass the argument to

the method

...

static void WriteInConsole(object amtOfIterations)

 {

 for (int i = 0; i < (int)amtOfIterations; i++)

 Console.Write("0");

 }

In this case 0 would be printed out twice and the output would be: 111111100111

Another technique to pass the argument to the method is lambda expression:

Thread t = new Thread(() => WriteInConsole(0,10)); //Lambda expression to

pass mutiple arguments to the method

t.Start();

...

static void WriteInConsole(int a, int b)

 {

 for (int i = a; i < b; i++)

 Console.Write("0");

 Console.Write(";");

 }

Passing arguments via lambda expression is generally a better option, since it allows to pass

unlimited number of arguments to the method, while Start method accepts only 1 argument.

After the thread is started its IsAlive property returns true, until the point at which the thread

ends. A thread ends when the delegate that was passed to the constructor of the thread finishes its

execution. In case of the example above, the new thread ended when the method

WriteInConsole was executed. After the thread is ended, it cannot restart. [8]

2.2.2 Threads management

The example above shows the first issue with threading. Without a proper management threads

may start to behave unexpectedly. For example, the following expressions are the results of

8 Albahari, J., & Johannsen, E. (2020). C# 8.0 in a Nutshell: The Definitive Reference

19

executing the example program several times: 00000000001111111111;

11111111110000000000; 11111000000000011111.

This behavior is caused by the fact that both threads are writing the output to the console

simultaneously. The thread is said to be "preempted" at the points at which the execution of the

thread interferes with another thread. This term often appears in explaining why something gone

wrong with a multithreaded application.

In order to eliminate the unexpected behavior of the application, multiple threads managing

techniques can be applied.

Join and Sleep methods could be used to control and synchronize the threads. Join blocks the

thread that called this method until the thread represented by the instance finishes its execution or

the specified time period elapses.

The following code will always output the same data:

static void Main()

 {

 Thread t = new Thread(WriteInConsole);

 t.Start();

 t.Join(); //Blocking the main thread until thread t ends

 for (int i = 0; i < 10; i++)

 Console.Write("1");

 Console.Write(";");

 }

 static void WriteInConsole()

 {

 for (int i = 0; i < 10; i++)

 Console.Write("0");

 Console.Write(";");

 }

The output is: 0000000000;1111111111;

While joining the threads, caution should be exercised. It is possible to lock the application forever.

For example, calling Thread.CurrentThread.Join(); in the main thread would block

the main thread which would freeze the whole application.

Sleep suspends the thread for a specified amount of time. Calling Thread.Sleep(1000);

In the WriteInConsole method would lock the t thread for 1 second.

20

When thread is sleeping or waiting for other thread to end via Join, it voluntarily yields its time-

slice back to the CPU. Time slice is the amount of time the thread is allowed to use the CPU before

operating system suspend the CPU usage and hands the resources over to another thread or process.

ThreadState property can output the following values depending on the state of the thread:

• Unstarted – the execution of the thread is not started yet,

• Running – thread is currently running,

• WaitSleepJoin – thread is sleeping or waiting for other thread,

• Stopped – thread has ended.

ThreadState property is useful for diagnostics but it is unreliable for synchronization of the

threads since the state of the thread might change between testing ThreadState and acting on that

information. [9]

2.2.3 Sharing data between threads. Threads safety

The CLR (Common Language Runtime) allocates each thread its own memory stack, so that local

variables are stored separately. For example, if there is a method with a local value and that method

is called from 2 different threads, each thread would have its own copy of the local value.

Threads may share the data if they are both referencing the same object instance:

class Program

 {

 bool done = false;

 static void Main()

 {

 Program p = new Program(); //Creating an instance of the Program

class in order to use it as an object reference

 Thread t = new Thread(p.WriteInConsole);

 p.WriteInConsole();

 }

 void WriteInConsole() //This is an instance method, not a static one

 {

 if (!done)

 { done = true; Console.WriteLine("Done"); }

 }

 }

In this case the value done is shared between the threads, so "Done" is printed out only once.

Another way to share data between threads are static values:

9 Albahari, J., & Johannsen, E. (2020). C# 8.0 in a Nutshell: The Definitive Reference

21

class Program

 {

 static bool done = false;

 static void Main()

 {

 Thread t = new Thread(WriteInConsole);

 WriteInConsole();

 }

 static void WriteInConsole()

 {

 if (!done)

 { done = true; Console.WriteLine("Done"); }

 }

 }

Though it is unlikely, it is possible that "Done" could be printed out twice. However, just by

switching the order of the statements in the if statement,

{ Console.WriteLine("Done"); done = true; }

the chances of printing out "Done" two times rise dramatically, since one thread could be

evaluating the if statement exactly at the same time as the other thread is writing into console,

before it had a chance to set the value of done to true. In order to prevent preemption of threads,

threads safety principles should be exercised.

One of such principles are threads locking. C# provides specific statement for this called lock.

Following is the example of lock statement usage:

class Program

 {

 static bool done = false;

 static readonly object threadLock = new object(); //Creating a new

object to use it later in the lock statement

 static void Main()

 {

 Thread t = new Thread(WriteInConsole);

 WriteInConsole();

 }

 static void WriteInConsole()

 {

 lock (threadLock) //Setting up a lock for threads

 {

 if (!done)

 { done = true; Console.WriteLine("Done"); }

 }

 }

 }

When a thread executes the lock statement, any other threads that would try to access the code

within the lock are going to be blocked. When the thread that activated the lock finishes the

22

execution of the code within the statement, the lock is unlocked and another thread is able to access

the code. This ensures that "Done" is printed out only once. The code that is protected in such

manner from indeterminacy in multithreaded context is called thread-safe code.

The downside of this approach is easily determined – it is possible to forget to put the locks in all

necessary places, especially in a program with multiple thousands of lines of code, since there

would be no compile-time errors thrown about the absence of the lock. [10]

2.2.4 Classification of threads

Threads are classified into two groups: foreground and background threads. By default, all new

threads are of foreground type. The difference between foreground and background threads is that

foreground threads keep the application alive while at least 1 of them is running (for example the

"main" thread), while background threads do not. If all foreground threads finish their execution,

the application would be shut down and abruptly terminate all background threads.

static void Main(string[] args)

 {

 Thread t = new Thread(() => Console.ReadLine());

 if (args.Length > 0)

 t.IsBackground = true;

 Console.WriteLine("Main thread is running");

 }

In the example above thread t assumes foreground status, it would keep the application running

and waiting for the user input, even if main thread has finished its execution. However, if there are

arguments passed to the Main method, the application would exit after the main thread is ended,

and thread t would be terminated.

While using background threads it is important to specify the timeout for such threads, since if

there are background threads that for some reason refuse to finish, the application would not close

without having the user to close it manually using Task Manager or kill command in Linux.

Foreground threads do not require such treatment. However, it is important to avoid bugs that may

cause foreground threads to not end. Application would fail to exit properly if there is a presence

of active foreground threads.

Threads also have Priority property, which determine how much of execution time is allocated

for the specified thread relative to other threads. The priority is specified on the following scale:

Lowest, BelowNormal, Normal, AboveNormal, Highest. Assigning priority to threads is relevant

when there are multiple threads active. Priority increase works well for threads that execute non-

10 Albahari, J., & Johannsen, E. (2020). C# 8.0 in a Nutshell: The Definitive Reference

23

UI processes that require minimal computational work and high latency (ability to quickly

respond) in the work they do. However, assigning high priority to a thread that execute processes

that require a lot of computational work, such as the UI updating, may starve the other threads and

lead to the decrease in performance of the whole computer. [11]

2.2.5 Threads synchronization

During the development of an application that implements multithreading, it is likely that there

would be a need for threads synchronization. There are multiple techniques that are used to

synchronize threads. Two of such techniques – joining and locking the threads were described in

previous sections. Those methods are reliable but have their downsides, mainly threads are not

really communicating with each other, they rather wait for the other thread to catch up. In order to

resolve this issue C# provides multiple constructs that allow one thread to send a notification to

another. It is called signaling. One of the simplest signaling construct is ManualResetEvent.

The following is the usage example of this event: [12]

11 Albahari, J., & Johannsen, E. (2020). C# 8.0 in a Nutshell: The Definitive Reference
12 Microsoft Corporation. (2020). ManualResetEvent Class.

24

class Program

 {

 //Creating an instance of ManualResetEvent class and passing false

 //to the consturctor to initially disable the signal

 static ManualResetEvent signal = new ManualResetEvent(false);

 static void Main(string[] args)

 {

 for (int i = 0; i <= 2; i++)

 {

 Thread t = new Thread(() =>

 {

 string name = Thread.CurrentThread.Name;

 Console.WriteLine("{0} has started", name);

 //Current thread locks

 //and awaits the signal

 signal.WaitOne();

 Console.WriteLine("{0} has ended", name);

 });

 t.Name = "Thread " + i;

 t.Start();

 }

 Thread.Sleep(500); //Awaiting the initialization of all threads

 Console.WriteLine("all threads have started");

 signal.Set(); //Activating the signal and unlocking all threads

 //Awaiting for all threads

 //to finish their execution

 Thread.Sleep(500);

 Console.WriteLine("all threads have ended");

 }

 }

The typical output of this program is:

Thread 0 has started

Thread 1 has started

Thread 2 has started

All threads have started

Thread 2 has ended

Thread 0 has ended

Thread 1 has ended

All threads have ended

25

Another simple event that is used for signaling is AutoResetEvent. While the signal from

ManualResetEvent stays active until the developer disables it, AutoResetEvent

automatically disable the signal after it unlocks a single thread. [13]

2.2.6 Thread pool

When a thread is starting it takes a few hundreds of milliseconds to initialize the thread, allocate

space for local variables stack etc. While it may not be an issue for a thread that is planned to run

for considerable amount of time, it is possible to overwhelm small operations which run on short-

life threads with the overhead from initialization of those threads. It means that the performance

of these small operations would suffer from the overhead of each thread initialization. Thread pool

allows to prevent such performance issues. It is a pool of pre-created recyclable worker threads

that doesn't require as much time for initialization. Thread pool is essential in applications that aim

for the best performance and the finest concurrency.

There are a few rules that apply to threads in thread pool:

• It is not possible to set the Name property of a thread from the pool, which makes it difficult

to debug the application.

• Threads from the pool are always background threads.

• Locking threads from the pool could degrade performance of the application.

In order to run a method on a thread from the pool the following construct could be used:

//Access the thread pool via ThredPool class and assign a free worker thread

ThreadPool.QueueUserWorkItem(_ => Console.WriteLine("Hello"));

Another way of accessing thread pool is the Task class which is the core of asynchronous

programming.

Thread pool serves another vital function for modern application– it ensures that temporary excess

in compute-bound operations does not cause CPU oversubscription. Oversubscription is the

condition of there being more active threads than CPU cores. This would force operating system

to time-slice threads (assign to each thread only a short period of time when it is allowed to run).

Time-slicing causes severe degrade in performance, since it requires expensive context switching

and could invalidate the CPU caches that are essential in delivering performance to modern

processors.

13 Albahari, J., & Johannsen, E. (2020). C# 8.0 in a Nutshell: The Definitive Reference

26

The CLR avoids oversubscription by queueing tasks to worker threads in the thread pool and then

throttling their startup. CLR then tunes the level of concurrency via hill-climbing algorithm,

continually adjusting the workload in particular direction. If throughput improves, the direction

stays the same, otherwise it reverses. This ensures that it always tracks the most optimal

performance curve and preventing further oversubscription. This is why locking the thread from

the pool could lead to performance issues – it gives the CLR the false idea that it is loading up the

CPU. CLR can compensate the locked threads by injecting new threads in the pool, however, it

could introduce latency because the CLR throttles the rate at which it injects new threads.

Maintaining hygiene in the thread pool (ensuring that threads are not locked explicitly or by the

bug) is particularly relevant for the applications that fully utilize the CPU. [14]

2.3 Asynchronous programming

2.3.1 Introduction to asynchronous programming

Concepts and principles that are described in previous sections are the low level of threading. It is

important to understand what is going on "behind the scenes", but modern applications almost

never have manual initialization of threads in their source code. The main reason for that is the

complexity of manual thread usage – it is necessary to always keep track of threads, lock them,

signal to other threads, maintain threads security. And while it is relatively easy to do in simple

programs, as program grows, so does its thread usage and when there are hundreds or even

thousands of threads running simultaneously, it becomes very hard to manually manage them.

Fortunately, there are multiple programming concepts that simplify and automate threads

initialization and management, making the code cleaner and much easier to maintain. One of such

concepts is asynchronous programming. The main difference between a synchronous and an

asynchronous operation is that the synchronous operation does its work before returning to the

caller, while the asynchronous operation can do most of its work after returning to the caller.

Majority of operation are synchronous. Examples of synchronous operations are the following

functions: List<T>.Add; Console.WriteLine; Thread.Sleep; Asynchronous

operations are less common and initiate concurrency because work continiues in parallel to the

caller. An example of asyncronous operatin is Thread.Start; function.

Asyncronous programming provides the same benefits as the manual threading – for end-user GUI

applications it provides the ability to run calculations and other operations in background, while

still being responsive to the user. And for the server-side programs asynchronous programming

14 Albahari, J., & Johannsen, E. (2020). C# 8.0 in a Nutshell: The Definitive Reference

27

enables scalability. However, in contrast to the manual multithreading, asynchronous programing

is a higher level of abstruction and thus provides access to multiple keywords and functions that

simplify multithreading.

2.3.2 Task class

The Task class represents a concurrent operation that might be backed by thread. Tasks are

usually executed asynchronously and are one of the fundamental components of the task-based

asynchronous pattern. Tasks are compositional – they could be chained together through the use

of continuations. They can also use thread pool to lessen startup latency.

The easiest way to start a task is to call a static method Task.Run(); This method creates a

new Task backed by a thread and accepts an Action delegate as follows:

Task.Run (() => Console.WriteLine ("Hello World!"));

Task.Run(); returns a Task object that could be used for tracking the execution of the task via

its Status property.

Tasks are created as background threads by default. It means that if the application terminates its

execution before all tasks are completed, all background threads are abruptly terminated.

Sometimes it is necessary to wait for some or for all background threads before application is

allowed to terminate. It is possible to synchronize thread that called the task with the asynchronous

threads by using the Task.Wait(); method. If no arguments to the method is passed, it will

wait unconditionally until a task completes. There are multiple ways to specify the conditions to

stop waiting. The first way is to pass the Int32 or TimeSpan value to the Task.Wait(); In

this case Wait method will block the calling thread until the task finishes or the timeout interval

elapses, whichever comes first. Alternative option to interrupt the Wait method is to pass

CancellationToken, it acts as a boolean flag and if tokens IsCancellationRequested

property changes to true the method throws OperationCanceledException. It is also

possible to wait for series of executing tasks to complete by using Task.WaitAll(); method,

or for only one task by using Task.WaitAny(); method. [15]

Task also has a generic subclass called Task<TResult> which allows task to return a value.

To obtain a return value it is necessary to run a Task with a Func<TResult> delegate. The

obtained result could later be accessed by the Result property. If the Task hasn't yet finished,

15 Microsoft Corporation. (2020). Task Class.

28

accessing this property will block the current thread until the task finishes. The following is the

example of obtaining the result from the task:

//Start a task that returns a value

Task<int> task = Task.Run(() =>

{

 Console.WriteLine("Task is running");

 return 1;

});

//Block the current thread if task is not yet finished

int result = task.Result;

Console.WriteLine(result);

Another important feature of Tasks is continuation. A continuation is a command to the task to

do some other operations when the original operation is completed.

//Create a new task

Task<int[]> arrayTask = Task.Run(() =>

{

 int[] array = new int[10];

 for (int i = 0; i < 10; i++)

 {

 array[i] = i;

 }

 return array;

});

//Create a new awaiter object whose OnCompleted method tells

//the task to execute the new delegate once it is finishes the current

operation.

var awaiter = arrayTask.GetAwaiter();

awaiter.OnCompleted(() =>

{

 foreach (var i in awaiter.GetResult())

 {

 Console.WriteLine(i);

 }

});

The GetAwaiter(); function returns the awaiter object of the task which is then used to track

the progress of the task and give it the new delegate. It is also possible to attach continuation to a

task which already completed its work. In this case, continuation will be scheduled to execute right

away.

Another way to create continuation is to create a new Task and use original, also called

"antecedent" tasks values in the delegate of the new task.

29

Task continuationTask = arrayTask.ContinueWith(antecedent =>

{

 int[] result = antecedent.Result;

 foreach (var i in result)

 {

 Console.WriteLine(i);

 }

});

The advantage of using ContinueWith(); method is that it returns a task, which means it is

possible to chain multiple continuations one after another.

Apart from manually creating tasks and running them, there is also another way to create tasks

with TaskCompletionSource. It provides an option to create a task out of any operation that

starts and finishes sometime later. TaskCompletionSource provides a "slave" task which

then could be used to determine when the operation finishes or faults. This is ideal for Input/Output

bound work: TaskCompletionSource provides all benefits of tasks without the necessity of

blocking a thread for the duration of operation. The following is the example of usage of

TaskCompletionSource:

//Create an instance of TaskCompletionSource class

TaskCompletionSource<int> tcs = new TaskCompletionSource<int>();

new Thread(() => { Thread.Sleep(1000); tcs.SetResult(25); }).Start();

//Simulate some I/O work while thread is running

Console.ReadLine();

//Get access to the "slave" task created by TaskCompletionSource

Task<int> task = tcs.Task;

Console.WriteLine(task.Result);

First it is necessary to create an instance of TaskCompletionSource class. Then by using

SetResult, SetException or SetCancelled method the thread that executes the work

signals to the slave task and puts it into a completed, faulted or canceled state. Only one of these

methods is supposed to be called, calling any of those methods again will throw an exception.

The true power of TaskCompletionSource is that it can create and run tasks without even

creating a new thread:

Task<int> TaskWithoutThread()

{

 var tcs = new TaskCompletionSource<int>();

 //create a new timer to simulate work

 var timer = new System.Timers.Timer(1000) { AutoReset = false };

 timer.Elapsed += delegate { timer.Dispose(); tcs.SetResult(20); };

 timer.Start();

 return tcs.Task;

}

30

var awaiter = TaskWithoutThread().GetAwaiter();

awaiter.OnCompleted(() => Console.WriteLine(awaiter.GetResult()));

//Simulate some I/O work while task is running

Console.ReadLine();

In preceding example, the task is running in background without creating nor blocking any threads.

This means that main thread is engaged only when the task launches and 1 second later when the

task continuation starts. All the work in task within this 1 second is running on the background

threads, while main thread can handle the I/O bound operations. [16]

2.3.3 Asynchronous functions

To create asynchronous programs modern .NET applications use two keywords: async and

await. These keywords are used to create asynchronous functions. async is added to the

function declaration and serves double purpose: it enables the use of await keyword within the

function and also signals the compiler to generate a state machine for this method. The state

machine is used when the execution encounters the await keyword, in this case it normally

returns to the caller, similarly to yield return in an iterator. But before returning, the runtime

attaches a continuation on the awaited task, ensuring that when it is finished, execution jumps back

to the method and continues where it left off. An async method may return Task if it doesn't

return a value, Task<TResult> if it returns a value and also IAsyncEnumerable<T> or

IAsyncEnumerator<T> if it returns multiple values in an enumeration. The following is

example of an asynchronous function:

async Task DoSomethingAsync()

{

 int value = 13;

 // Asynchronously wait 1 second.

 await Task.Delay(TimeSpan.FromSeconds(1));

 value *= 2;

 // Asynchronously wait 1 second.

 await Task.Delay(TimeSpan.FromSeconds(1));

 Console.WriteLine(value);

}

The async method begins executing synchronously. Within an async method, the await keyword

performs an asynchronous wait on its argument. First it checks whether the operation is already

completed. If it is, the execution continues synchronously, otherwise, it will pause the async

method and return an incomplete task. When that operation finishes some time later, the async

16 Albahari, J., & Johannsen, E. (2020). C# 8.0 in a Nutshell: The Definitive Reference

31

method will resume executing. This is where the main advantage of asynchronous programming

appears – when the operation is awaited the main thread remains responsive and can, for example,

update the UI, which means that the application does not appear "frozen" to the user while it

performs awaited tasks.

The other important feature of async functions is the ability to capture the current synchronization

context, which includes local variables, loop counters and the information about the thread which

started the awaited task. The task starts executing on a pooled thread and when it is finished, the

method will continue executing within the captured context. So, if the UI thread executes async

method, the synchronization context ensures that execution resumes on the same UI thread. This

behavior can be overridden by awaiting the result of the ConfigureAwait extension method

and passing "false" as a parameter, for example:

await Task.Delay(TimeSpan.FromSeconds(1)).ConfigureAwait(false)

This will ensure that after it is paused, the method will resume on a threadpool thread where the

task was running, instead of the UI thread. [17]

2.3.4 Parallelism

Parallelism is a concept of executing multiple tasks simultaneously. It could greatly improve the

performance of the application, especially if there are multiple independent tasks that are running

at the same time. In asynchronous programming it is possible to create parallelism by starting

multiple asynchronous methods without awaiting them, for example:

async Task DoSomethingParallelAsync()

{

 var tasks = new List<Task<int>>();

 //start multiple tasks, each task takes different time to finish

 tasks.Add(Task.Run(async () => { await Task.Delay(2000); return 1; }));

 tasks.Add(Task.Run(async () => { await Task.Delay(3000); return 2; }));

 tasks.Add(Task.Run(async () => { await Task.Delay(1000); return 3; }));

 //await until all tasks are finished and then report results

 var results = await Task.WhenAll(tasks);

 for (int i = 0; i < results.Length; i++)

 {

 Console.WriteLine(results[i]);

 }

}

17 Cleary, S. (2019). Concurrency in C# Cookbook (Second ed.).

32

In the preceding example, if each task were awaited individually, the whole execution would have

been taken approximately 6 seconds, but because all 3 tasks are executing simultaneously, it takes

only 3 seconds to complete all tasks (the time it takes to complete the longest task). [18]

2.3.5 Cancellation

Sometimes it is necessary to cancel a concurrent operation that is already started. For example, the

operation might take too long to execute, so the timeout must be thrown, or the user may want to

cancel the operation. For this purpose, the CLR provides CancellationTokenSource Class

and CancellationToken Struct. CancellationToken works similarly to the boolean

flag – when it is set, it will throw a OperationCanceledException. However, the token

lacks the Cancel method that is used to set its state. Instead, this method is exposed by the

CancellationTokenSource type. This separation is done for the security – a method that

has the token can only check the state of the token but not initiate the cancellation. The following

is the example of cancellation:

static void Main()

{

 //Create a new instance of CancellationTokenSource

 //The class constructor may take a specified amount of milliseconds

 //to initiate cancellation after a set period of time

 //which is useful for timeouts

 CancellationTokenSource cts = new CancellationTokenSource(3000);

 CancellationToken token = cts.Token;

 try

 {

 //Wait(); is used to not let the application terminate

 //this task before it is finised

 Task.Run(async () => { await DoSomethingAsync(token); }).Wait();

 }

 catch (OperationCanceledException)

 {

 Console.WriteLine("Operation was timed out");

 }

}

static async Task DoSomethingAsync(CancellationToken token)

{

 await Task.Run(async () =>

 {

 for (int i = 0; i < 10; i++)

 {

 Console.WriteLine(i);

 await Task.Delay(1000);

 //Check if token was set in cancelled state

 token.ThrowIfCancellationRequested();

 }

 });

}

18 Cleary, S. (2019). Concurrency in C# Cookbook

33

In the preceding example the CancellationTokenSource is set to initiate cancellation in 3

seconds after the class is instantiated.

Most asynchronous methods in the CLR support cancellation tokens by default, for example: [19]

Task.Delay(3000, cancellationToken);

Task.Run(() => { return 0; }, cancellationToken);

2.3.6 Progress reporting

Another feature that greatly improves the experience of the user and facilitate application

development and debugging is progress reporting. A simple example is a progress bar that shows

the user the progress of the running operation. The CLR provides IProgress<T> interface and

Progress<T> class to implement progress reporting. The following is the example of progress

reporting:

static void Main()

{

 //Create an instance of Progress class and pass a delegate to its

constructor

 Progress<int> progress = new Progress<int>(i =>

 { Console.WriteLine("The current progress is {0}%", i); });

 Task.Run(async () => { await DoSomethingAsync(progress); }).Wait();

}

static async Task DoSomethingAsync(IProgress<int> progress)

{

 await Task.Run(async () =>

 {

 for (int i = 0; i < 100; i++)

 {

 await Task.Delay(100);

 //Report the progress every 10%

 if (i % 10 == 0)

 progress.Report(i);

 }

 });

}

Upon istnantiating Progress<T> class captures the current synchronization context. Then its

constructor takes an Action<T> delegate, which is invoked through that context every time

IProgress interface calls Report method. Progress<T> also has a

19 Albahari, J., & Johannsen, E. (2020). C# 8.0 in a Nutshell: The Definitive Reference

34

ProgressChanged event that could be subscribed to instead of (or in addition to) passing the

action delegate to the constructor.

Since Progress<T> and IProgress<T> are both generic types they could take a more

sophisticated report structure instead of int. For example it is possible to create a class with

multiple report values and then pass this class as a parametrer to the generic types. [20]

2.3.7 Task combinators

Because there is a consistent protocol for asynchronous functions (they consistently return tasks),

it is possible to write and use task combinators – functions that combine multiple tasks, regardless

of what those tasks do. The CLR provides two task combinators: Task.WhenAny and

Task.WhenAll.

Task.WhenAny returns a task that completes when any one of a set of tasks complete, for

example:

static async Task QuickestTask()

{

 var tasks = new List<Task<string>>();

 //start multiple tasks, each task takes different time to finish

 tasks.Add(Task.Run(async () =>

 { await Task.Delay(2000); return "Task 1"; }));

 tasks.Add(Task.Run(async () =>

 { await Task.Delay(3000); return "Task 2"; }));

 tasks.Add(Task.Run(async () =>

 { await Task.Delay(1000); return "Task 3"; }));

 //await the task that finishes first

 var winner = await Task.WhenAny(tasks);

 Console.WriteLine("{0} finished first", winner.Result);

}

Because Task.WhenAny itself returns a task it is necessary to await it, after that it returns the

task that finished first. Then it is possible to access the Result property of this task, use

continuation, etc. The preceding example prints "Task 3 finished first".

Task.WhenAll completes when all tasks that are passed to it are completed. This is useful in

situations where one of the tasks throws an exception. In this case the remaining tasks are still

20 Albahari, J., & Johannsen, E. (2020). C# 8.0 in a Nutshell: The Definitive Reference

35

being executed even when there is a fault. The example in the 2.3.5 Cancellation sections utilizes

the Task.WhenAll combinator. [21]

2.4 Parallel programming

2.4.1 Introduction to parallel programming

Programming with a goal to utilize multiple cores is called parallel programming. It is a subset of

broader concept of multithreading that was discussed in previous sections. In section 2.3.7

Task.WhenAll was used in order to retrieve results in parallel. Parallel programming and

specifically the Parallel framework provide classes and libraries with tools to write code that is

executed in parallel.

Parallel programming should be used any time when there is a fair amount of computational work

that could be split in multiple chunks. The more independent those chunks are, the better is the

performance of the parallel framework functions. If pieces of work are dependent on each other or

have some shared state sometime during the execution, it is likely that one thread would have to

wait or synchronize with other and it would ultimately decrease the effectiveness of the parallel

framework functions. Parallel programming temporarily increases CPU usage, specifically it

increases load on multiple CPU cores to increase throughput. It is desirable on client systems (such

as personal computers) where some CPU cores are often idle. Servers usually have some parallel

code built-in, so generally it is not desirable to execute code that utilizes parallel programming on

the server, since it may work against built-in parallelism and would not provide real benefit.

There are 2 forms of parallelism: data parallelism and task parallelism. When a set of tasks or

operations must be performed on many data values it is possible to split those tasks between

threads, hence the name – data parallelism. Task parallelism on the other hand is about splitting

the tasks between threads, so each thread executes specific task. In general, data parallelism is

easier to implement because it reduces or eliminates shared data so thread-safety and

synchronization issues are of no concern. Also, because there are usually more data values than

tasks the potential of parallel programming is higher while implementing data parallelism. Task

parallelism is harder to implement because tasks may start and finish at places scattered across the

program, making it harder to debug code and increasing possibility of errors to occur. [22]

21 Albahari, J., & Johannsen, E. (2020). C# 8.0 in a Nutshell: The Definitive Reference
22 Cleary, S. (2019). Concurrency in C# Cookbook (Second ed.)

36

2.4.2 Overview of the Parallel framework

In the past, parallelization required low level manipulations with threads and locks, which means

that it was difficult to create and maintain programs that utilized parallel execution. Modern .Net

and Visual Studio provide support for parallel programming by adding a runtime, class library

types, diagnostics tools. These tools together form the Parallel framework which simplifies the

development of parallelized applications. Parallel framework was introduced in .Net framework

4.

Parallel framework consists of 2 layers of functionality, which is shown on the figure below. The

higher level consists of structured data parallelism APIs: PLINQ and the Parallel class. The

lower level consists of the task parallelism classes and a set of additional constructs which helps

with parallel development.

1. Parallel framework components [23]

PLINQ offers the automatization of parallelization including partitioning of the work into tasks,

executing those tasks on thread pool threads, and combining results into a single output sequence.

It is called declarative parallelism because it is required to only declare the work that needs to be

parallelized, the rest is done by framework. In contrast, the other approaches (Parallel class

23 Albahari, J., & Johannsen, E. (2020). C# 8.0 in a Nutshell: The Definitive Reference

37

and Task parallelism) are imperative, which means that it is required to manually write code to

partition the work and combine the results. Because Parallel class is a part of structured data

parallelism, it is necessary to only combine the results. Task parallelism also requires manual

partition of the work.

Concurrent collections and spinning primitives that are featured on the figure above are also

important parts of the parallel framework. They help with managing lower-level parallel

programming activities. Parallel framework has been designed to support processors with multiple

cores, including future generations of CPUs which would contain 24-32 cores and more. To benefit

from a large number of cores it is necessary to divide the algorithm between them, otherwise if

ordinary locks are used to protect common resources, the resultant blocking can lead to the fact

that only a fraction of those cores are actually busy at once. Concurrent collections are tuned

specifically for maximizing concurrent access and minimizing potential blocking. PLINQ and

Parallel class rely on concurrent collections and spinning primitives for efficient management

of work.

This thesis covers only Task parallel library in detail (Parallel class and task parallelism) since

PLINQ is mostly rely on LINQ which is not related to this thesis. [24] [25]

2.4.3 Parallel class

Parallel class provides basic form of structured parallelism by 3 static methods:

• Parallel.Invoke – this method executes an array of delegates in parallel,

• Parallel.For – parallel equivalent of the regular For loop,

• Parallel.Foreach – parallel equivalent of the regular Foreach loop.

All these methods have a large number of overloads for different configurations of inputs. All 3

methods block the program execution until the work is complete. If an unhandled exception occurs

during the execution of parallel work all worker threads are stopped after their current iteration

and the exception (or multiple exceptions) are thrown back to the caller, wrapped in an

AggregateException object.

Parallel.Invoke executes an array of Action delegates in parallel, for example:

24 Albahari, J., & Johannsen, E. (2020). C# 8.0 in a Nutshell: The Definitive Reference
25 Microsoft Corporation. (2020). Parallel Programming in .NET.

38

static void Main()

{

 int[] arr = { 3, 2, 6, 7, 9, 10, 2, 1, 1, 0 };

 RaiseArraytoPow(arr, 2);

 foreach (int i in arr)

 Console.Write(i + ", ");

}

//This function raises all numbers in an array to the specified power

static int[] RaiseArraytoPow(int[] input, double pow)

{

 //Create 2 Action delegates and split the work in half to execute it in

parallel

 Parallel.Invoke(

 () =>

 {

 for (int i = 0; i < input.Length / 2; i++)

 input[i] = (int)Math.Pow(input[i], pow);

 },

 () =>

 {

 for (int i = input.Length / 2; i < input.Length; i++)

 input[i] = (int)Math.Pow(input[i], pow);

 }

);

 return input;

}

Parallel.Invoke and Parallel.Foreach work similarly to the regular loops. Apart

from slightly different syntax the main differenrce is that each iteration is being executed in parallel

instead of sequentially, for example:

static void Main()

{

 //Execute SomeFunction 10 times in parallel

 Parallel.For(0, 10, (i) => SomeFunction(i));

 //Print strings from array in parallel

 string[] arr = { "String 1", "String 2", "String 3", "String 4" };

 Parallel.ForEach(arr, (str) => Console.WriteLine(str));

}

All functions in Parallel class are optimized for compute-bound work, so they would work

efficiently even if an array of thousands of delegates is passed. This is because they partition large

number of elements into batches and then assign them to a several underlying tasks instead of

creating separate task for each delegate.

All functions in Parallel class are overloaded to accept ParallelOptions object. With

this object it is possible to override default task scheduler, limit the maximum concurrency and

pass a cancellation token.

39

With all Parallel class methods, it is necessary to manually implement collating of the results

in order to keep threads safety. The following code is thread-unsafe:

static void Main()

{

 List<string> list = new List<string>();

 Parallel.Invoke(

 ()=>list.Add("Hello"),

 ()=>list.Add("World!")

);

 foreach (string s in list)

 Console.Write(s + " ");

}

This code could lead to the unexpected output as was discussed in section 2.2.3. One possible

solution is to add locks around adding to the list but this could introduce performance bottlenecks

in case of large lists. Another solution is to use thread-safe collections which is a part of concurrent

collections. [26] [27]

2.4.4 Parallel functions overloads

Parallel For and Foreach loops have multiple overloads in order to provide extended

functionality. Both loops are overloaded to accept instance of ParallelLoopState class,

which exposes multiple functions and properties that provide extended control over the loops. For

example, in order to break out of a regular loop a simple break; statement is enough, however,

it is impossible to break out of parallel loop with this statement because the body of both For and

Foreach loops is a delegate. Instead, it is necessary to overload the parallel loop with

ParallelLoopState object, which then provides a break(); function, for example:

static void Main()

{

 int[] arr = { 0, 4, 9, 1, -3, 20 };

 //Overload loop with ParallelLoopState object

 Parallel.ForEach(arr, (i, loopState) =>

 {

 //Break out of the loop if the condition is met

 if (i < 0)

 loopState.Break();

 else

 {

 Console.Write(Math.Sqrt(i) + ", ");

 }

 });

26 Albahari, J., & Johannsen, E. (2020). C# 8.0 in a Nutshell: The Definitive Reference
27 Microsoft Corporation. (2020). Parallel Class.

40

}

Because all loop iterations in the previous example are being executed in parallel, the output is

usually unordered, for example the output might be 0, 2, 1, 4. Despite that, break function of

ParallelLoopState object always yields at least the results of iterations that were preceding

the break point, similarly to the regular loops. In this example at least first 4 elements of the array

are always processed and the results are printed.

ParallelLoopState class also provides the Stop(); function which works similarly to the

Break(); function with the main difference being that Stop(); forces all threads to finish

immediately after their current iteration. It means that in previous example only a subset of 0, 1,

2, 4 may be printed out if one of the threads is slow or lagging behind other threads (although it is

unlikely in this scenario because of its simplicity). Calling Stop(); is useful when something is

found and there is no need for further processing or something has gone wrong and the results are

irrelevant.

If the loop body is long and it is necessary to break out of the loop partway through

ShouldExitCurrentIteration property should be used. This property is a boolean flag

which is switched to true once Break(); or Stop(); function is called. It is meant to be used

together with another property of ParallelLoopState class which is called

LowestBreakIteration. This property indicates at what cycle the loop was broken by

Break(); function, or it returns null if Stop(); function was called. The following is the

example of usage of both these properties:

static void Main()

{

 int[] arr = { 0, 4, 9, 1, -3, 16, 25, 20 };

 //add loopIteration overload which indicates loop iteration index

 Parallel.ForEach(arr, (i, loopState, loopIteration) =>

 {

 if (i < 0)

 {

 loopState.Break();

 return;

 }

 //add small delay to ensure that

 //ShouldExitCurrentIteration is switched to true for all iterations

 Thread.Sleep(100);

 if (loopState.ShouldExitCurrentIteration)

 {

 if (loopIteration > loopState.LowestBreakIteration)

 return;

41

 }

 Console.Write(Math.Sqrt(i) + ", ");

 });

}

This example also showcases the usage of additional overload of the Foreach loop.

loopIteration allows to access loop iteration index and is used for comparison with

loopState.LowestBreakIteration in order to determine whether it is necessary to stop

current iteration execution or continue the execution. [28] [29]

2.4.5 Task parallelism

Task parallelism is the low-level approach of parallelization in parallel framework. There are

multiple classes in System.Threading.Tasks namespace that are used for creating task

parallelism:

• Task – for managing a unit of work,

• Task<Tresult> – for managing a unit of work and returning a value,

• TaskFactory – for creating new tasks,

• TaskFactory<Tresult> – for creating tasks and continuations with the same return

type,

• TaskScheduler – for managing the scheduling of tasks,

• TaskCompletitionSource – for manually controlling a task's workflow.

Task, Task<Tresult> and TaskCompletitionSource classes were already

mentioned in asynchronous programming chapters. Even though these classes are widely used in

asynchronous programming, originally, they were created for parallel programming.

TaskFactory object is created after calling Task.Factory property of Task. The purpose

of TaskFactory object is to create new tasks, specifically of these types: "ordinary" tasks,

continuations with multiple antecedents.

There are multiple ways to create new tasks. Task.Run and Task.Start create new tasks but

they are limited to creating only the "ordinary" tasks. The more advanced method of creating new

tasks is Task.Factory.StartNew method which provides multiple useful overloads that

28 Albahari, J., & Johannsen, E. (2020). C# 8.0 in a Nutshell: The Definitive Reference
29 Microsoft Corporation. (2020). ParallelLoopState Class.

42

allows to tune the creation of new tasks. In fact, Task.Run is a shortcut for creating

Task.Factory.StartNew with default overloads.

One of such overloads is TaskCreationOptions enum, which allows to modify tasks

execution. TaskCreationOptions has 3 combinable values: LongRunning,

PreferFairness and AttachedToParent. LongRunning suggest the scheduler to

dedicate a thread to a task. This is beneficial for long running tasks and for I/O bound tasks that

might otherwise force short running task to wait for an unreasonable amount of time before being

scheduled. PreferFairness suggest to scheduler to try to ensure that tasks are scheduled in

the same order in which they were started. If PreferFairness is not specified, scheduler will

internally optimize the scheduling of the tasks using local work-stealing queues – an optimization

that allows the creation of child tasks without creating the contention overhead that would

otherwise arise with a single work queue. A child task is created by specifying

AttachedToParent overload.

Child tasks could be created as follows:

static void Main()

{

 Task parent = Task.Factory.StartNew(() =>

 {

 Console.WriteLine("I am a parent");

 Task.Factory.StartNew(() =>

 { Console.WriteLine("I am an independent task"); });

 Task.Factory.StartNew(() =>

 { Console.WriteLine("I am a child"); },

 TaskCreationOptions.AttachedToParent);

 });

 parent.Wait();

}

Child tasks are special in that when the parent task is awaited, it waits for any child tasks to

complete. This can be particularly useful for propagating exceptions and for task continuations.

[30]

2.4.6 Continuations

Continuations were mentioned in asynchronous programming chapters, essentially a continuation

is another task that starts when previous task (also called antecedent) completes, fails or is being

30 Albahari, J., & Johannsen, E. (2020). C# 8.0 in a Nutshell: The Definitive Reference

43

cancelled. This chapter will expand the concepts of continuation. Here is a simple example of the

continuation:

static void Main()

{

 Task task1 = Task.Factory.StartNew(() => { Console.Write("Hello, "); });

 Task task2 = task1.ContinueWith(ant => { Console.WriteLine("World!");

});

 task2.Wait();

 Task<float> task3 = Task.Factory.StartNew(() => { return MathF.Pow(4,

2); });

 Task task4 = task3.ContinueWith(ant => { Console.WriteLine(ant.Result);

});

 task4.Wait();

}

This code snippet includes 2 examples of task continuation. First example with task1 and task2

is a regular continuation. Once task1 finished its execution, task2 starts to execute its own

delegate. It is important to notice the ant object, which is a reference to the antecedent task

(task1 in this case). Second example with task3 and task4 demonstrates how the result of

the antecedent task, which is accessed by the ant object, could be used in the continuation task.

Another powerful feature of continuations is exceptions handling. Continuation task can know

whether the antecedent task has faulted by querying antecedent task's Exception property or by

specifying TaskContinuationOptions. Combining this with the parent-child tasks relation

is an effective way of creating durable algorithms, for example:

static void Main()

{

 Task task1 = Task.Factory.StartNew(() =>

 {

 //Start multiple child tasks

 Task.Factory.StartNew(() =>

 { Console.WriteLine("Child 1 finished successfully!"); },

 TaskCreationOptions.AttachedToParent);

 //Start a task that throws exception

 Task.Factory.StartNew(() =>

 { throw null; },

 TaskCreationOptions.AttachedToParent);

 Task.Factory.StartNew(() =>

 { Console.WriteLine("Child 3 finished successfully!"); },

 TaskCreationOptions.AttachedToParent);

 });

 //Catch all exceptions thrown by antecedent

 Task CatchExceptions = task1.ContinueWith(ant =>

44

 {

 Console.WriteLine(ant.Exception);

 }, TaskContinuationOptions.OnlyOnFaulted);

 CatchExceptions.Wait();

}

In the previous example one of the tasks intentionally throws an exception, but the application

does not crash, instead the exception is handled (in this case the exception is written out in the

console).

By default, continuation is executed unconditionally, whether the antecedent completes, throws an

exception or is cancelled. This behavior could be modified with the set of flags included within

TaskContinuationOptions enum, as shown in previous example. These flags are

combinable (meaning it is possible to combine multiple flags), here are the core flags:

NotOnRunToCompletition (The continuation should start only if the antecedent task was

cancelled or threw an exception), NotOnFaulted (start continuation if the antecedent task did

not throw an exception), NotOnCanceled (start continuation if the antecedent task was not

cancelled). There are also multiple precombined flags:

• OnlyOnRunToCompletition = NotOnFaulted | NotOnCanceled,

• OnlyOnFaulted = NotOnRunToCompletition | NotOnCanceled,

• OnlyOnCanceled = NotOnRunToCompletition | NotOnFaulted.

Another important aspect of continuations with flags is that if they are not executed due to a flag,

they are not abandoned or forgotten, instead they are cancelled. This means that any continuations

on the continuation itself would still run, for example:

static void Main()

{

 Task task1 = Task.Factory.StartNew(() =>

 { Console.Write("Hello, "); });

 Task CatchExceptions = task1.ContinueWith(ant =>

 { Console.WriteLine("An error occured!"); },

 TaskContinuationOptions.OnlyOnFaulted);

 Task task2 = CatchExceptions.ContinueWith(ant =>

 { Console.WriteLine("World!"); });

 task2.Wait();

}

The output of the preceding example would be "Hello, World!", because even though task1

doesn't throw an error, CatchExceptions is simply cancelled, but the continuations on this

task (in this example task2) are still executed, since by default all continuations are executed

45

unconditionally. In order to prevent task2 from execution if CatchException is cancelled,

it is necessary to specify flag TaskContinuationOptions.NotOnCanceled during the

initialization of the task.

Task combinators such as WhenAll and WhenAny which were discussed in previous chapters

are also applicable to continuations, for example:

static void Main()

{

 Task task1 = Task.Factory.StartNew(() =>

 { Console.WriteLine("Task 1 finished."); });

 Task task2 = Task.Factory.StartNew(() =>

 { Console.WriteLine("Task 2 finished."); });

 Task continuantion = Task.WhenAll(task1, task2).ContinueWith(ant =>

 { Console.WriteLine("Done!"); });

 continuantion.Wait();

}

In this example task1 and task2 start their execution in parallel, continuation task waits

for both tasks to finish and then prints "Done!", this technique allows to create continuations on

multiple antecedents. It is also possible to start multiple continuations on a single antecedent, for

example:

static void Main()

{

 Task task1 = Task.Factory.StartNew(() =>

 { Console.WriteLine("Task 1 finished."); });

 Task continuation1 = task1.ContinueWith(ant =>

 { Console.WriteLine("Starting continuation 1"); });

 Task continuation2 = task1.ContinueWith(ant =>

 { Console.WriteLine("Starting continuation 2"); });

 Task.WaitAll(continuation1, continuation2);

}

In this example both continuation1 and continuation2 start to execute in parallel after

task1 is finished. It is also possible to modify continuations so that they start their execution

synchronously by specifying TaskContinuationOptions.ExecuteSynchronously

on both continuations. In this case both continuations would start on the same thread as their

antecedent (continiuation1 would always be executed first and continuation2 –

second).

46

Multiple forms of continuations are graphically represented on the following figure: [31]

2. Different forms of continuation [32]

2.4.7 Concurrent collections

It is not thread-safe to use regular collections in code which utilizes parallelization. Instead, .NET

offers several thread-safe concurrent collections: ConcurrentStack<T>,

ConcurrentQueue<T>, ConcurrentBag<T>, ConcurrentDictionary<TKey,

TValue>. These collections are optimized for highly concurrent scenarios and they also could be

used when there is a need for thread-safe collection (as an alternative to locking around a regular

collection). However, there are multiple downsides of concurrent collections that needs to be

mentioned:

• The regular collections outperform concurrent collections in all but highly concurrent

scenarios.

31 Albahari, J., & Johannsen, E. (2020). C# 8.0 in a Nutshell: The Definitive Reference
32 Albahari, J., & Johannsen, E. (2020). C# 8.0 in a Nutshell: The Definitive Reference

47

• A thread-safe collection does not mean that code that would use this collection is also

thread-safe.

• Enumerating over a concurrent collection while other thread is modifying it does not throw

an exception. It means that the result of enumeration might be a mixture of old and new

data.

• There is no concurrent version of List<T>.

• The concurrent stack, queue and bag classes are implemented internally with linked list. It

means that they are less memory-efficient then the regular stack and queue classes, but

better for concurrent access, since inserting into a linked list require only modification of

a few references, while inserting an element into a List<T> might cause the shifting of

thousands of elements.

A producer/consumer collection is one for which the two primary use cases are adding an

element (producing) and removing an element (consuming). The examples of this collection

are stack and queue. Producer/consumer collections are significant in parallel programming

because they have efficient lock-free implementations. Concurrent collections expose several

lock-free methods to perform test-and-act operations. Most of these methods are unified via

the IProducerConsumerCollection<T> interface, for example bool TryAdd (T

item); and TryTake (out T item); These methods test whether an add/remove

operation could be performed and if so, the perform the add/remove. The testing and acting

are atomically performed, which means it cannot be divided, thus eliminating the need to lock

around the collection.

The following classes implement IProducerConsumerCollection<T> interface:

ConcurrentStack<T>, ConcurrentQueue<T>, ConcurrentBag<T>. The

particular element that TryTake removes is defined by the class: with a stack TryTake

removes the most recently added element, with a queue TryTake removes the least recently

added element and with a bag TryTake removes whatever element it could modify most

efficiently.

ConcurrentBag<T> stores an unordered collection of objects with duplicates permitted.

Bag is suitable for situations when it doesn't matter which element is retrieved by Take or

TryTake. The benefit of the bag over a concurrent stack or queue is that a bag's Add method

suffers no contention when called by multiple threads at once. In contrast, calling Add in

parallel on a concurrent queue or stack causes some contention, although a lot less then locking

48

around regular collection. Bag is ideal when the concurrent operation on the collection consists

mostly of adding new elements to the collection. A concurrent bag would be a poor choice for

a producer/consumer queue because elements are added and removed by different threads. [33]

33 Albahari, J., & Johannsen, E. (2020). C# 8.0 in a Nutshell: The Definitive Reference

49

Part 3 – Practical part. Threading benchmark application

3.1 Application description. MVVM design pattern.

In order to showcase different threading techniques that were discussed in previous chapters I've

made a threading benchmark, which is an application that can execute a series of tasks in different

threading modes. The application is made with C# and WPF. Below is a figure which demonstrates

the UI of the application.

3. UI of the threading benchmark application

50

Model-View-ViewModel (MVVM) design pattern was used to implement the UI and functionality

of the application. Although it is not necessary to implement this pattern, it is a common practice

to develop a WPF application while utilizing this pattern. As the name of the pattern suggests, the

application is divided into 3 independent modules – Views, ViewModels and Models.

Views define how the application looks to the end user. To create views for the application I used

XAML – it is a markup language which is very similar to CSS. XAML only defines how the

application looks, it doesn’t define how the application behaves (except for some runtime style

changes, such as changes of button colors while they are pressed etc.). Below is a part of XAML

code which defines how Help and Exit buttons look and where they are located.

<!-- StackPanel for the bottom buttons-->
<StackPanel Orientation="Vertical" DockPanel.Dock="Bottom" VerticalAlignment="Bottom">

 <Separator Background="White" Margin="20,0" VerticalAlignment="Stretch"/>

 <Button Content="Help"
 Style="{StaticResource capitalBtnStyle}"
 Margin="0,10,0,0"
 Command="{Binding HelpCommand}"
 FontSize="20"
 Foreground="LightGreen"/>

 <Button Content="Exit"
 Style="{StaticResource capitalBtnStyle}"
 Command="{Binding ExitCommand}"
 FontSize="20"
 Foreground="Red"/>

</StackPanel>

Each element in XAML (such as <StackPanel>, <Separator>, <Button>) has

different properties which may contain different values, for example Margin="0,10,0,0" and

FontSize="20". Apart from assigning numerical values to properties it is also possible to bind

them to a property in the ViewModel, for example Command="{Binding HelpCommand}".

Bindings are the essential part of the MVVM, because of them the property in a View could be

controlled from the ViewModel. Almost every property could be bound to a property in the

ViewModel.

Models are objects which define data structures of the application. They do not have a visual

representation and may not even be directly related to the application. An example of model is an

object which is passed from the function that executes the Image test to the MainWindow

ViewModel during the asynchronous test in order to update the UI. Below is the definition of the

Image Test Report Model.

51

/// <summary>

/// Data model which is used in progress reports for the Image test

/// </summary>

public class ImageTestReportModel

{

 public BitmapImage ReportImage { get; set; } = null;

 public int ProgressArcAngle { get; set; } = 0;

}

During the execution of the Image test an instance of the report data model is created, populated

with values and then passed to the ViewModel.

Finally, the ViewModels are objects which model the GUI (Graphical User Interface) of the

application, meaning they provide data to the Views and define their functionality. Each

ViewModel has to implement INotifyPropertyChanged interface as described below. [34]

public class BaseViewModel : INotifyPropertyChanged

{

 public event PropertyChangedEventHandler PropertyChanged;

 //Implementation of PropertyChanged event from Microsoft documentation

 protected void OnPropertyChanged([CallerMemberName] string name = null)

 {

 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(name));

 }

}

When a property of the ViewModel is updated, the PropertyChanged event is raised and the

property of the View, which is bounded to the property of the ViewModel is updated. Below is an

example of the ViewModel property which represents the text of the Image test timer.

private string _imageTestTimerText = "00:00:00";

public string ImageTestTimerText

{

 get { return _imageTestTimerText; }

 set

 {

 _imageTestTimerText = value;

 OnPropertyChanged();

 }

}

To summarize how the MVVM works:

1. From the View user starts a new execution of the benchmark,

2. ViewModel of this View calls the function which executes the benchmark and starts a

timer,

34 George, A. D. (2017, March 30). How to: Implement Property Change Notification.

52

3. Timer updates the value of the ImageTestTimerText string,

4. When the value of the string is updated the PropertyChanged event is raised,

5. View receives a notification from the event and updates the text which is displayed to the

user.

The same principle (with some minor changes) is applied to every property of the View which is

bounded to the ViewModel.

The main objective of the MVVM is to separate UI into several independent modules. This allows

to easily implement the application on different platforms. For example, if there would be a need

to implement the application for Linux or macOS, or even Android and iOS, it would be necessary

to create only a new version of the GUI elements (the Views) for the specific platform. After this,

the GUI elements could be bounded to the ViewModels and the application would work in the

same way it does on Windows.

3.2 Application execution modes

The application consists of 4 execution modes – Synchronous execution, Asynchronous execution,

Parallel execution and Asynchronous + Parallel execution. When the user clicks the respective to

the execution mode button, the application starts its execution in the selected execution mode.

Below is detailed description of each execution mode:

• Synchronous execution - in this mode benchmark is executed synchronously – no threading

techniques are applied. During synchronous execution UI is not updated, meaning that

application will appear "frozen" until all tests are finished.

• Asynchronous execution - in this mode benchmark is executed asynchronously. While all

tests are running application remains responsive and UI is being constantly updated.

• Parallel execution - similarly to synchronous execution UI is not updated while benchmark

is running in parallel mode, however, because all 3 tasks are executed in parallel (at the

same time), overall execution time is lower than during synchronous execution.

• Asynchronous + Parallel execution - this mode combines the best of parallel and

asynchronous executions. While all 3 tasks are executed at the same time, application

remains responsive like in asynchronous mode.

The MainWindow ViewModel contains the definitions of 4 functions, each representing the

respective execution mode. Following the MVVM algorithm which was described earlier, when

the user clicks a button to start the benchmark in a specific mode, ViewModel starts executing the

appropriate function. During the function execution multiple properties of the ViewModel are

53

changed. Because these properties are bounded to the elements in the View, user sees the updates

of the GUI. Below is the definition of the AsyncTest function, which is executed during the

asynchronous run.

private async void AsyncTest()

{

 //disable UI elements

 ResetUI();

 SyncBtnIsEnabled = AsyncBtnIsEnabled = ParallelBtnIsEnabled =

ParallelAsyncBtnIsEnabled = false;

 CancelBtnIsEnabled = true;

 AsyncBtnTag = "Clicked";

 DTime.Start();

 TotalTimeWatch.Start();

 //Initialize instances of Progress class that are later used to trigger

 //the events that update UI

 Progress<ImageTestReportModel> imageTestProgress = new

Progress<ImageTestReportModel>();

 imageTestProgress.ProgressChanged += ImageTestProgressEvent;

 Progress<PNumTestReportModel> pNumTestProgress = new

Progress<PNumTestReportModel>();

 pNumTestProgress.ProgressChanged += PNumTestProgressEvent;

 Progress<WebsitesTestReportModel> websitesTestProgress = new

Progress<WebsitesTestReportModel>();

 websitesTestProgress.ProgressChanged += WebsitesTestProgressEvent;

//Use try catch statement for cancellation Tokens

 try

 {

 ImageTestWatch.Start();

 await ImageTest.StartAsync(imageTestProgress, cts.Token);

 ImageTestWatch.Stop();

 ImageTestCheckmarkVisibility = Visibility.Visible;

 }

 catch (OperationCanceledException)

 {

 ImageTestProgressBarColour = new SolidColorBrush(Colors.Red);

 ImageTestCrossmarkVisibility = Visibility.Visible;

 CancelBtnTag = null;

 }

 try

 {

 PNumTestWatch.Start();

 await PrimeNumbersTest.StartAsync(pNumTestProgress, pNumRangeTest,

pNumNthTest, cts.Token);

 PNumTestWatch.Stop();

 PNumTestCheckmarkVisibility = Visibility.Visible;

 }

 catch (OperationCanceledException)

 {

 PNumTestProgressBarColour = new SolidColorBrush(Colors.Red);

 PNumTestCrossmarkVisibility = Visibility.Visible;

54

 CancelBtnTag = null;

 }

 try

 {

 WebsitesTestWatch.Start();

 await WebsitesTest.StartAsync(websitesTestProgress, cts.Token);

 WebsitesTestWatch.Stop();

 WebsitesTestCheckmarkVisibility = Visibility.Visible;

 }

 catch (Exception ex)

 {

 if (ex is OperationCanceledException || ex is WebException)

 {

 WebsitesTestProgressBarColour = new SolidColorBrush(Colors.Red);

 WebsitesTestCrossmarkVisibility = Visibility.Visible;

 CancelBtnTag = null;

 }

 }

 //enable UI elements

 AsyncBtnIsEnabled = ParallelAsyncBtnIsEnabled = ResetBtnIsEnabled =

true;

 CancelBtnIsEnabled = false;

 AsyncBtnTag = null;

 //Force update UI to enable disabled buttons

 CommandManager.InvalidateRequerySuggested();

 TotalTimeWatch.Stop();

 DTime.Stop();

 //Push the results of execution to the results manager

 ResultsDataManager.SetResults("Asynchronous", ImageTestTimerText,

PNumTestTimerText, WebsitesTestTimerText, TotalTimeText,

!cts.IsCancellationRequested);

}

Additionally, application also features multiple control buttons which allow to do the following:

• Cancel operation - allows to prematurely cancel current benchmark run. Cancellation is

available only in Asynchronous and Parallel + Asynchronous modes.

• Reset - used to reset tests and UI to their default state. It is necessary to manually reset UI

only before running application in Synchronous and Parallel modes, since Asynchronous

execution modes will reset UI automatically.

• Display results - used to display the results of all benchmark executions in a separate

window. Results window consists of a table which contains all results and line charts for

visual representation of results. Line charts display only the results of executions which

were successfully completed (e.g. not cancelled with "Cancel Operation" button).

55

3.3 Benchmark tests

During each cycle of execution, the application is performing 3 different tests which are designed

to load CPU and create multiple web requests. Each test exists in its own static class. When the

execution of the benchmark starts, the MainWindow ViewModel calls the respective function in

the test class. Each test function can communicate with the ViewModel to send the results of the

test execution, which are later displayed to the user. Below is detailed description of each test:

Test 1 "Image test" - during this test, the image that is originally desaturated gradually becomes

colorized. The aim of this test is to load CPU with a large amount of array operations. At first,

coordinate of every pixel of the colorized picture is assigned to a jagged array, then the array is

shuffled and finally the image is "restored" by replacing colors of resulting bitmap image, which

originally contains desaturated picture, with colors of colorized bitmap image, following the

pattern of the shuffled array. While running benchmark in asynchronous mode it is possible to

observe how picture gradually becomes colorized in a random pattern. Because GUI is not updated

during synchronous and parallel executions, picture becomes colorized at once, once the test is

finished.

Below are private fields used in the Test Image class

private static readonly Random rnd = new Random();

//Bitmaps to store colorized and desaturated versions of the Image

private static readonly Bitmap ColorizedImage = new

Bitmap(Properties.Resources.TestImageColorized);

private static readonly Bitmap BWImage = new

Bitmap(Properties.Resources.TestImageBW);

private static Bitmap ResultImg = new Bitmap(BWImage.Width, BWImage.Height);

//Array to reference the coordinates of pixels

private static readonly int[][] ColorCoordinates = new

int[ColorizedImage.Width * ColorizedImage.Height][];

//Set how frequently the report is sent to the UI

private static readonly int ProgressReportFrequency = 20;

Test Image class consists of 2 public functions – StartSync and StartAsync which are called

to start the execution of the test in the respective mode. Notably, Image Test class doesn’t

implement the execution in parallel mode. That is because functions and variables in the Image

test are highly dependent on each other, therefore no efficient ways were found to implement

parallel execution for this test. Also, Test Image class contains 2 private functions

SetCoordinates and ToWpfBitmap.

56

SetCoordinates function consists of 2 loops. The first loop iterates through all pixels in

ColorizedImage Bitmap and assigns the pixel coordinates to the ColorCoordinates

array. The second loop shuffles the ColorCoordinates array.

ToWpfBitmap is used to convert Bitmap to BitmapImage. Bitmap is a legacy type which

was used in Windows Forms, while BitmapImage is a new type which is used in WPF. Bitmap

is used because it allows to access and manipulate every pixel of the image. After performing the

image manipulations, the Bitmap is converted to the BitmapImage which is later displayed in

the View. Below is the implementation of the StartAsync function:

//Execute Image test in asynchronous mode

public static async Task StartAsync(IProgress<ImageTestReportModel>

progress, CancellationToken cancellationToken)

{

 cancellationToken.ThrowIfCancellationRequested();

 //Create an instance of the report model object which will be later sent

in progress report

 ImageTestReportModel report = new ImageTestReportModel();

 ResultImg = new Bitmap(Properties.Resources.TestImageBW);

 int reportIndex = 0;

 //Send initial progress report

 reportIndex++;

 report.ProgressArcAngle = (reportIndex * 360) / ProgressReportFrequency;

 progress.Report(report);

 await Task.Run(() => SetCooridnates());

 cancellationToken.ThrowIfCancellationRequested();

 await Task.Run(() =>

 {

 for (int i = 0; i < ColorCoordinates.Length; i++)

 {

 ResultImg.SetPixel(ColorCoordinates[i][0],

ColorCoordinates[i][1], ColorizedImage.GetPixel(ColorCoordinates[i][0],

ColorCoordinates[i][1]));

 //Send the report to the UI thread to update progress bar

 if (i % (ColorCoordinates.Length / ProgressReportFrequency) ==

0 && i > 0 || i == ColorCoordinates.Length - 1)

 {

 reportIndex++;

 report.ReportImage = ToWpfBitmap(ResultImg);

 //Adjust the value of progress bar angle (multiply by 343

instead of 360)

 //because the first report was already sent earlier

 report.ProgressArcAngle = (reportIndex * 343) /

ProgressReportFrequency;

 progress.Report(report);

 }

 if (cancellationToken.IsCancellationRequested)

 break;

57

 }

 });

 cancellationToken.ThrowIfCancellationRequested();

}

Test 2 "Prime numbers test" - the aim of this test is to give CPU a large number of arithmetic

operations. Test consists of 2 parts – in first part computer calculates how many prime numbers

there are in a given range (in this case from 2 to 3000000). In the second part computer calculates

what is the Nth prime number (in this case 200000th prime number).

Prime Number Test class doesn’t have any private fields and consists of 8 functions. 4 public

functions – StartSync, StartAsync, StartParallel and StartParallelAsync

are called by the ViewModel during the benchmark execution in the respective mode. 4 private

functions – PrimeNumbersRange, PrimeNumbersRangeAsync, NthPrimeNumber and

NthPrimeNumberAsync are used to calculate the prime numbers. The first two functions

calculate how many prime numbers there are in a given range. The last two functions calculate the

Nth prime number. There exists two version of each functions (regular and Async) both versions

perform identical calculations, while Async version can also send the progress reports.

Below is the implementation of the StartParallelAsync functions

//Execute Prime Numbers test in parallel async mode

public static async Task StartParallelAsync(IProgress<PNumTestReportModel>

progress, int range, int nthPos, CancellationToken cancellationToken)

{

 cancellationToken.ThrowIfCancellationRequested();

 //Create an instance of the report model object which will be later sent

in progress report

 PNumTestReportModel report = new PNumTestReportModel();

 //Start both tasks at the same time

 Task rangeTask = Task.Run(() => { return PrimeNumbersRangeAsync(range,

ref progress, ref report, ref cancellationToken); })

 .ContinueWith(ant=> { report.PNumberRangeResult = ant.Result; });

 Task nthTask = Task.Run(() => { return NthPrimeNumberAsync(nthPos, ref

progress, ref report, ref cancellationToken); })

 .ContinueWith(ant => { report.NthPNumberResult = ant.Result; });

 //Asynchronously wait for both task to complete

 await Task.WhenAll(rangeTask, nthTask);

 cancellationToken.ThrowIfCancellationRequested();

 report.ProgressArcAngle = 360;

 progress.Report(report);

}

58

Test 3 "Websites test" - in this test computer loads 10 websites in the background. The aim of this

test is to showcase how different threading techniques can improve application performance while

executing web requests. On the application GUI there are 10 desaturated icons, each representing

a website. Once corresponding website is downloaded, icon becomes colorized. Similarly to the

Image test, icons will become colorized all at once after synchronous and parallel execution, while

during asynchronous executions icons will become colorized gradually, once corresponding

website is downloaded.

Websites test class consists of 7 functions. Similarly to the Prime Numbers Test class, it has 4

public functions which are called by the MainWindow ViewModel. The last 3 private functions

are DownloadWebsite, DownloadWebsiteAsync and PrepareWebsites.

PrepareWebsites function creates a new list of 10 strings, where each string is a URL of a

website. The other two functions create a new instance of the WebClient class and then

download each website from the list which was prepared by PrepareWebsites function.

Below is the implementation of StartParallel function of the Websites Test class

//Execute Websites test in parallel mode

public static void StartParallel(IProgress<WebsitesTestReportModel>

progress)

{

 //Create an instance of the report model object which will be later sent

in progress report

 WebsitesTestReportModel report = new WebsitesTestReportModel();

 List<string> websites = PrepareWebsites();

 var temp = new object();

 Parallel.ForEach<string>(websites, (site) =>

 {

 //Cretae an instance of the website model which is later passed into

the report

 WebsiteDataModel result = new WebsiteDataModel();

 DownloadWebsite(site);

 result.URI = site;

 result.isLoaded = true;

 //lock around access to shared object for thread safity

 lock (temp)

 {

 report.LoadedWebsites.Add(result);

 }

 });

 //send the report to update the UI

 report.ProgressArcAngle = 360;

 progress.Report(report);

}

59

3.4 Results and discussion

In order to collect an accurate statistic of the application performance, every execution mode has

been run for 50 times each. Benchmark was executed on my personal computer. It has the

following technical specifications:

• Operating System: Windows 10

• CPU: AMD Ryzen 3 2200G 3.5 GHz

• Motherboard: ASUS ROG Strix B450-F

• GPU: AMD Vega 56

• RAM: G.Skill RipjawsV 8GB DDR4 3200 MHz

Because tests are designed to load the computer, it would take more time to execute the tests on a

lower-end machine (such as laptop), and oppositely, computer with better technical specifications

then my machine could execute the tests faster. While running the tests there was no processes

running in background, since additional processes may require resources from the computer and

thus may affect the results of the benchmark.

The time results of the executions are following:

• Synchronous execution: 14.75 seconds

• Asynchronous execution: 15.54 seconds

• Parallel execution: 5.13 seconds

• Parallel + Asynchronous execution: 6.66 seconds

Below is the chart that visually represents the results:

60

4. Total results chart

Both parallel execution modes greatly outperform sequential execution modes in terms of total

execution time, however, while application is running in parallel mode it requires more resources

from the CPU and slightly more operating memory, as shown on figures below.

5. Benchmark execution in Asynchronous (sequential) mode

6. Benchmark execution in Parallel + Asynchronous mode

As a result, while application takes much less time to complete all tasks, it appears "slow" or "less

responsive" for the user and thus is worse for the overall user experience. Another issue are the

61

potential failures during the execution of the tests. Because of high CPU load, application has a

higher chance to crash while performing tasks in parallel than sequential mode (although the

chance is still low).

Another trend which is observed from the total results is that the execution in asynchronous modes

takes on average more time to complete than non-asynchronous modes. It is expected since the

application also has to continuously update the GUI of the application and keep the application

responsive. However, when looking at the application from user experience perspective, the

advantages of asynchronous execution modes outweigh the increase of overall execution time by

approx. 1 second.

62

Conclusion

The main objectives of this thesis were to explore how multithreading is implemented in modern

programming languages and frameworks, and if there is any substantial impact of threading on

application performance and also is it practical to implement multithreading in modern

applications.

Theoretical part of the thesis covers in detail the implementation of multithreading in C# and .NET.

In order to gain the necessary information regarding the theoretical topics of the thesis I used

multiple books and websites (mainly Microsoft Documentation (https://docs.microsoft.com/en-

us/dotnet/csharp/) and Stackoverflow (https://stackoverflow.com/) websites). Despite the fact that

threading techniques have a slightly steep learning curve, and require in depth knowledge of the

framework to fully utilize them, modern frameworks are greatly optimized for multithreaded

development, making it easy to implement basic threading and already improve the application.

The practical part of the thesis has demonstrated the threading techniques and compared for

possible approaches to application development. In order to test the principles discussed in the

theoretical part of the thesis, mainly asynchronous and parallel execution of the application, I made

a benchmark which is used for testing of different threading techniques. Based on the results from

repeated test, it is possible to conclude…

Asynchronous programming significantly improves user experience at a slight performance cost

related to regular UI updates, meaning that asynchronous execution should be implemented for

any operation that is longer than a few seconds in order to not leave the user with an unresponsive

application. Parallel execution is also an extremely useful technique, which allows to dramatically

improve the application performance, especially in cases where there are multiple independent

tasks which could be executed simultaneously.

Although the application that is shown in the practical part is not nearly as large and complicated

as a "real-world" released application, it still demonstrates that threading is a very desired

technique for modern applications, especially for those that process large amounts of data, handle

multiple web requests and are used by regular people not related to the IT industry.

Finally, I choose this topic for my bachelor thesis because I wanted to challenge my programming

skills and gain new ones along the way. During the research and writing of this thesis I've learnt a

lot of new concepts and techniques related to different areas of programming, which would

definitely help in my future development as a software engineer and my professional career.

63

Bibliography

Albahari, J., & Johannsen, E. (2020). C# 8.0 in a Nutshell: The Definitive Reference (First ed.).

O'Reilly Media Copyright 2020, 978-1-492-05113-8.

Cleary, S. (2019). Concurrency in C# Cookbook (Second ed.). O'Reilly Media Copyright 2019

Stephen Cleary, 978-1-492-05450-4.

Das, D. (2018, January 1). COMPONENTS OF CPU AND THEIR FUNCTIONS | DIAGRAM.

Retrieved from csetutor.com: https://www.csetutor.com/components-of-cpu-and-their-

functions/

George, A. D. (2017, March 30). How to: Implement Property Change Notification. Retrieved

from Microsoft Documentation: https://docs.microsoft.com/en-

us/dotnet/desktop/wpf/data/how-to-implement-property-change-

notification?view=netframeworkdesktop-4.8

Hoffman, C. (2018, October 12). CPU Basics: Multiple CPUs, Cores, and Hyper-Threading

Explained. Retrieved from howtogeek.com: https://www.howtogeek.com/194756/cpu-

basics-multiple-cpus-cores-and-hyper-threading-explained/

Hope, C. (2019, July 10). Computer processor history. Retrieved from computerhope.com:

https://www.computerhope.com/history/processor.htm

Microsoft Corporation. (2020). ManualResetEvent Class. Retrieved from docs.microsoft.com:

https://docs.microsoft.com/en-

us/dotnet/api/system.threading.manualresetevent?view=netcore-3.1

Microsoft Corporation. (2020). Parallel Class. Retrieved from docs.microsoft.com:

https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.parallel?view=net-5.0

Microsoft Corporation. (2020). Parallel Programming in .NET. Retrieved from

docs.microsoft.com: https://docs.microsoft.com/en-us/dotnet/standard/parallel-

programming/

Microsoft Corporation. (2020). ParallelLoopState Class. Retrieved from docs.microsoft.com:

https://docs.microsoft.com/en-

us/dotnet/api/system.threading.tasks.parallelloopstate?view=net-5.0

64

Microsoft Corporation. (2020). Task Class. Retrieved from docs.microsoft.com:

https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task?view=netcore-

3.1

Microsoft Corporation. (2020). Thread Class Documentation. Retrieved from docs.microsoft.com:

https://docs.microsoft.com/en-us/dotnet/api/system.threading.thread?view=netcore-3.1

Plantz, R. G. (n.d.). Introduction to Computer Organization. Retrieved from bob.cs.sonoma.edu:

https://bob.cs.sonoma.edu/IntroCompOrg-RPi/sec-progexec.html

White, A. (2019, August 19). What is Core in Computer? Here is What it Does. Retrieved from

techgearoid.com: https://techgearoid.com/articles/what-is-core-in-computer/

