
 

 

Czech University of Life Sciences Prague 

Faculty of Economics and Management 

Department of Information Engineering 

 
 
 

 
 
 

 
 

Master's Thesis 

NSE stock market prediction using Deep Recurrent 
Neural Network and Comparison with ARIMA 

 
 

Adithyan Chettiyattil Pankajakshan 
 
 
 

© 2022 CZU Prague 
 

  



 
 
 
 

CZECH UNIVERSITY OF LIFE SCIENCES 
PRAGUE 

Faculty of Economics and Management 
 

DIPLOMA THESIS ASSIGNMENT 

ADITHYAN CHETTIYATTIL PANKAJAKSHAN 
 

Systems Engineering and Informatics 
 

Thesis title 

NSE STOCK MARKET PREDICTION USING DEEP RECURRENT NEURAL NETWORK 

AND COMPARISON WITH ARIMA 

Objectives of thesis 
Understand the deep recurrent neural network model in Time Series index forecasting. 
 
Creating Deep RNN Predictive algorithm and testing the accuracy of of Deep RNN in the field of stock 
market index prediction. Creating ARIMA statistical model of index forecasting and comparison of 
accuracy with Deep RNN model. 
 
Reviewing feasibility of transition from classical statistical forecasting methods to Deep RNN forecasting 
in the field of Stock Market Index. 

Methodology 

NSE Stock market index data of a selected company to be collected from online brokerage firm ZerodhaKite 
application with API call.  Deep Recurrent neural network model to be made in Google collab notebook. 
Keras module of tensorflow to be used to program the deep RNN model. NSE stock market indices will be 
collected and input parameters will be decided and output parameter will be stock market Index. The dataset 
will be split into two training set and test set. The model will be tested to estimate the accuracy of the Deep 
RNN model. Machine learning model of ARIMA will be created and run the same dataset to find out the 
accuracy of the ARIMA model. Comparison of both accuracy to be done to reach the feasibility of using 
Deep RNN in stock market forecasting. 

 

 

 

 

 

 



Deep learning, RNN, prediction, ARIMA 

Recommended information sources 
GÉRON, A. Hands-on machine learning with Scikit-Learn and TensorFlow : concepts, tools, and techniques to 
build intelligent systems. Beijing ; Boston ; Farnham ; Sevastopol ; Tokyo: O’Reilly, 2019. ISBN 
978-1-492-03264-9. 
 

 

 

 

 
The proposed extent of the thesis 
60 pages 

 

Keywords 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Expected date of thesis defence 
2022/23 WS – FEM 

 

The Diploma Thesis Supervisor 
doc. Ing. Arnošt Veselý, CSc. 

 

Supervising department 
Department of Information Engineering 

 
 
 

Electronic approval: 4. 11. 2022 
 

 

Ing. Martin Pelikán, Ph.D. 

Head of department 

Electronic approval: 28. 11. 2022 
 

 

Ing. Martin Pelikán, Ph.D. 

Dean 

 

 



1 
 

Declaration 

I declare that I have worked on my master's thesis titled "NSE Stock market prediction using Deep 

RNN and comparison with ARIMA" by myself and I have used only the sources mentioned at 

the end of the thesis. As the author of the master's thesis, I declare that the thesis does not break 

any copyrights. 

 

 
In Prague on 30/03/2023 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Acknowledgement 

I would like to thank for the super vision of the thesis by doc. Ing. Arnošt Veselý. I also express 

gratitude to my brother Arjun, parents, Navya and friends for their support to complete this. 

 
 



2 
 

 NSE stock market prediction using Deep Recurrent Neural 
Network and Comparison with ARIMA 

 
 
 

Abstract 
 
The National Stock Exchange (NSE) stock index is a crucial indicator of the performance of the 

Indian stock market and is used by investors and financial institutions to make informed decisions. 

Accurately predicting the future values of the NSE stock index is a challenging task and requires 

a combination of sound technical and financial analysis. In this study, we compare the performance 

of two popular methods for predicting the NSE stock index: deep Recurrent Neural Networks 

(RNNs) and Autoregressive Integrated Moving Average (ARIMA) models. 

 

The results of our study show that the deep RNN model outperforms the ARIMA model in terms 

of prediction accuracy, with RNN having lesser RMSE value than ARIMA model. 

 

This study provides insights into the relative strengths and weaknesses of deep RNNs and ARIMA 

models for predicting the NSE stock index and highlights the potential for deep learning techniques 

to improve the accuracy of stock market predictions. The results of this study could be useful for 

investors, financial institutions, and researchers interested in stock market predictions and financial 

time-series analysis. 
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Předpovídání indického akciového trhu NSE pomocí hlubokých 
rekurentních neuronových sítí a srovnání s ARIMA. 

 
 
 
 
Abstrakt 
 
Národní burzovní index (NSE) je klíčovým ukazatelem vývoje indického akciového trhu a slouží 
investorům a finančním institucím k informovanému rozhodování. Přesné předpovídání budoucích 
hodnot NSE indexu je náročný úkol a vyžaduje kombinaci zvukové technické a finanční analýzy. 
V této studii porovnáváme výkon dvou populárních metod pro předpovídání NSE indexu: hluboké 
rekurentní neuronové sítě (RNN) a autoregresivní integrovaný pohyblivý průměr (ARIMA) 
modely. 
 
Výsledky naší studie ukazují, že hluboký RNN model překonává ARIMA model v přesnosti 
předpovědi, přičemž RNN má menší hodnotu RMSE než ARIMA model. 
 
Tato studie poskytuje informace o relativních silných a slabých stránkách hlubokých RNN a 
ARIMA modelů pro předpovídání NSE indexu a poukazuje na potenciál technik hlubokého učení 
pro zlepšení přesnosti předpovědí na akciových trzích. Výsledky této studie by mohly být užitečné 
pro investory, finanční instituce a výzkumníky zabývající se předpověďmi na akciových trzích a 
finanční analýzou časových řad.  
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1. Introduction 

Time series forecasting, especially stock price prediction has always been a great concern. It is a 

challenging and crucial problem to tackle not only by economists but also researchers [30]. Stock 

price forecasting is challenging because the stock data is affected by many factors which make it 

unstable and volatile. It is also difficult to forecast due to sudden shock, uncertainty, historical data 

that may not capture all the pattern, or even the noise and irrelevant information that lies in the 

data itself. Although it is challenging, the need for accurate prediction of stock prices plays an 

increasingly crucial role in the stock market [30]. Investor and companies rely on accurate stock 

price forecasting to make the critical business decisions for their success. 

Stock data is part of time series data. Many researchers have used classical time series models such 

as ARIMA, GARCH, VAR, and so on. However, this method is sometimes limited to some 

assumptions such as stationarity and linearity [27]. At the same time, the development of artificial 

intelligence makes more researchers choose to use machine learning and deep learning models for 

prediction instead. Latest methods such as Neural Network, RNN, LSTM have been widely used 

[12]. Even so, there are many research gaps about it. Some research might find ARIMA still works 

best, but another research stated that the complexity of Neural Networks outperform the classical 

model [15]. 

Therefore, this study aims to explore the various methods and techniques used in stock price 

forecasting, including classical methods of ARIMA and more recent approaches such as RNN. 

Additionally, this study will compare the models based on appropriate evaluation metrics. 
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2. Objective and methodology 
 

2.1 Objective 

The purpose of this study is to develop a granular and robust stock prediction or forecasting 

framework using classical model and deep learning model to compare the performance of each 

models.  

The proposed models are ARIMA and RNN. With that being said, three main goals are taken into 

consideration. First, to obtain the optimal model for each framework. Second, to conduct side by 

side comparison of the selected model for each framework and determine which one is best for 

forecasting the stock price. Third, to perform deeper analysis and make recommendations about 

what is the best model for prediction. 

 

2.2 Methodology 

The rest of the study is structured as follows. In section 2, a clear statement of the scope and 

objective of study is presented. In section 3, literature review and prior research are provided. In 

section 4, detailed discussion and analysis results are explained. And, in section 5, the conclusion 

and recommendation of study is drawn.   

As mentioned above, the methodology of study involves brief explanation of the statistical models 

and deep learning models for time series. This approach will result in a better understanding about 

the current state of time series forecasting. It also involves reviewing all the research gaps to see 

the finding patterns in the finance domain. It will also give a big picture about the tendency for 

each short term and long-term prediction. 

Next, the main task is to predict the stock price using ARIMA and RNN models using available 

historical dataset. The historical data is made into a dataset. This dataset is cleansed and 

transformed into an excel file. The data is further analyzed and modified for optimal time series 

features. 

This data is then split into train, validation and test data. Train : Test split is in the ratio of 80:20. 

Validation data is 36% of the train data. Model is trained and optimal architecture is found for both 

the Models for a given look back period of time.  Then the model is trained, validated and tested 

and metrics are evaluated. 
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Another crucial step is to find the best evaluation metric for the model performance comparison. 

RSME will be the metric  taken into account to evaluate the model prediction accuracy. All models 

will be developed in Python version 3.10 with the help of open source software such as Keras, 

Tensorflow, Pandas, Seaborn, Numpy, StatsModel, and so on. The dataset is collected from 

nseindia.com, the website of stock market index of National stock exchange. 

The result of each model will later be compared and evaluated. Finally, deeper analysis and 

recommendation will be drawn from the analysis findings. 

     

  



8 
 

3. Literature review 

3.1 Terminology 

3.1.1 Time Series Model 

Time series is a set of observations which the variable takes at different times or listed in the order 

of time. In other words, the type of data that is collected at a regular time interval, such as daily, 

weekly, monthly, quarterly, or even annually[13]. Time series models can be divided into 

descriptive modeling which is sometimes called time series analysis and predictive modeling 

which is known as time series forecasting. Kotu, [20] also added that time series forecasting can 

be differentiated into several approaches, time series forecasting based on decomposition, 

smoothing technique, regression based, and machine learning based. Decomposition approach is 

a method that deconstructs time series models into components of trend, seasonality, and noise. 

Next, the smoothing approach is a method that smooths past observation and then projects it to the 

future. The regression approach is similar to the concept of regression but differs in the 

independent variable which is now time [20]. Furthermore, a more sophisticated approach than 

regression based is a model that fosters the concept of autocorrelation, which is the phenomenon 

that data are correlated in time series. The most popular method among this approach is ARIMA 

[26]. In addition, machine learning approaches can also be used based on supervised learning 

concepts with the target or label and its features. In this approach, the features are derived from 

window technique, transforming time series dataset by using lagged data [20].  

3.1.2 Stationarity in Time Series 

In the time series concept, the collection of random variables ordered in time is well known as the 

stochastic process [13]. Part of this concept that received big attention is stationary stochastic. The 

stationarity in the stochastic process is achieved when mean and variance are constant over time 

and the value of covariate between two periods depends only on its lag. In short, stationarity in 

time series refers to the concept that the value of time series is not dependent on time [20]. Without 

the stationarity, the interpretation of the time series forecasting’s result would be problematic 

(Manuca, 1996). When the stationary concept is violated, the data can be called a nonstationary 

time series. One example of it is the random walk model. Nonstationary time series data will have 
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time varied mean, time varied variance, or even both [13]. Even so, there is a way to tackle this 

violation. Non-stationary time series can be changed into stationary ones with the differencing 

method, which is the change between consecutive data in time series [20]. The formula is 

calculated as follow: 

𝑦′! =	 	𝑦!- 𝑦!"# 

where, 

y’t = difference value of yt 

yt  = current value at time t 

yt-1 =  past value 

In several cases, there might be a situation where data is still non stationary even if  the differencing 

is conducted. In such a case, second order differencing after first order differenced time series will 

be needed [13]).  

3.1.3 Detecting Stationarity 

There are several approaches to detect whether the data is stationary or not, which are graphical 

test, correlogram, and unit root test. The most well known unit root test for detecting stationarity 

is Augmented Dickey Fuller (ADF) test (Gujati) This statistic test works by augmenting the 

equations by adding lagged values of dependent variable of 𝛥Yt. ADF formula is written below. 

𝛥𝑌! =	𝛽# 	+ 	𝛽$𝑡	 + 	𝛿𝑌!"# ++
%

&'#

𝛼&𝛥𝑌!"& + 𝜀! 

where, 

𝜀t = white noise term 

𝛥Yt-1 = Yt-1 - Yt-2 

The null hypothesis of ADF is to check whether the 𝛿 = 0.  The ADF test follows the same 

asymptotic distribution as the Dickey Fuller test. Therefore, the same critical values can be used 

in hypothesis testing [13]). 

3.1.4 ARIMA  

According to Gujarati [13], the autoregressive integrated moving average (ARIMA), or popularly 

known as the Box–Jenkins model is a time series forecasting technique that was proposed in 1976 



10 
 

by George Box and Gwilym Jenkins. The basic difference between ARIMA and regression models 

is, unlike the regression models, ARIMA model allows the dependent or target variable (Yt) to be 

explained by past or lagged values, Y itself and stochastic error terms. It is best suited for short 

term time series forecasting for 12 months or less [9]. The ARIMA model is basically derived by 

modification of the autoregressive moving average (ARMA) model and written as ARIMA (p,d,q). 

With that being said, the model has three components, which are p that denote the autoregressive 

(AR), q that depicts moving average (MA), and d that denotes the integrated (I) part [26]. The 

integrated component depicts the level of integration of variables which can be stationary with 

differentiation and all of p,d,q are nonnegative integers [17]. 

3.1.4.1 Autoregressive Component (AR) 

AR component attempts to learn the pattern between current period and previous period [9]. AR 

will forecast future value by using linear combination of past data value and a white noise term 

which are random variables with mean of zero and constant variance [22]. According to Box and 

Jenkins (1976), in general, AR can be formulated described as follow: 

 

(𝑌! − 𝛿) 	= 	𝛼#(𝑌!"# − 𝛿) + 𝛼$(𝑌!"$ − 𝛿)	+	. . . . +	𝛼((𝑌!"( − 𝛿) + 𝑢! 

where, 

Yt = the value or variable that wants to be predicted,  

δ  = the mean of Y  

ut = uncorrelated random error term with zero mean and constant variance of 𝝈2 

The component of ut is also called as white noise. This formula depicts that the forecast value of 

Y at time t is simply a sum of proportion (denote by 𝛼) of previous value plus the random shock 

or disturbance at time t. The value of Yt is expressed as deviation from the mean value and depends 

on its previous p time periods value and the white noise. In other words, Yt is a pth-order 

autoregressive or AR(p) model. 

3.1.4.2 Moving Average Component (MA) 

MA component attempts to measure the adaptation of the new forecast to previous forecast error 

[9]. The general form of MA is: 
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𝑌! 	= 	 𝜇	 + 𝛽)(𝑢!) + 𝛽#(𝑢!"#) 	+ 𝛽$(𝑢!"$)	+	. . . +𝛽*(𝑢!"*)	 

where, 

𝜇 = constant 

ut = white noise stochastic error term 

Basically, a moving average component  is a linear combination of white noise error terms. In 

other words, Yt is a qth-order moving average or MA(q)model. 

3.1.4.3 Autoregressive Integrated Moving Average (ARIMA) 

In time series, it is quite likely that Yt has both components of AR and MA. Thus, they will form 

a new model ARMA [13]. ARMA(p,q) model contains p autoregressive and q moving average. It 

can be formulated as follow: 

𝑌! 	= 𝜃 +	𝛼#𝑌!"#+. . . +𝛼(𝑌!"( − 𝛿) + 𝛽)(𝑢!)+. . . +𝛽*(𝑢!"*) 

where, 

𝜃 = constant term 

The ARMA model has the underlying assumption of stationarity, which requires the mean to be 

constant and covariance to be time invariant [24]. However, in the real world, many economic 

time series are non stationary or integrated. Therefore, one needs to difference the time series of d 

times to make it to be stationare and apply ARMA (p,q) after that. This is how ARIMA(p,d,q) was 

formed, with d denoting the number of times the series needs to be differenced [13].  

3.1.4.4 Box Jenkins Methodology 

The Box-Jenkins methodology comes in handy when building the ARIMA model [13]. It contains 

four consecutive steps, which are identification, estimation, diagnostic checking and forecasting. 
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The Box-Jenkins Methodology 

Source: Gujarati (2008) 

First, the identification process. The purpose of this step is to determine the optimal value of p, d, 

and q in the ARIMA model. The most common tools for p,d,q detection are the autocorrelation 

function (ACF) and the partial autocorrelation function (PACF) with their respective correlograms 

and AIC criteria. These are simply the plots of ACF and PACF against the lag length [13]. Even 

so, sometimes model identification for ARIMA is done by an auto procedure, which iteratively 

fits all possible model structures and then uses the goodness of fit statistic to select the best ARIMA 

model [10]. 

 
Figure 1.ACF and PACF Plots Example of Monthly Boston Robberies  

Source: Machine Learning Mastery 
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Second, the model estimation. After identifying the optimal value of p,d, and q, the coefficients of 

ARIMA models are estimated. The calculation and the sum of residual squared is minimized by 

using least squares method. But, sometimes one will have to foster the non linear (in parameter) 

estimation method [13]. 

Third, the diagnostic checking. The purpose of this step is to check whether the estimated model 

fits the data reasonably well. The important element of the step is to make sure that the residuals 

estimated from the models are white noise, random, and normally distributed [10]. Another 

element is to check whether the parameters used are statistically significant. The fitting process 

usually follows the parsimony principle [13].  

The fourth step is forecasting or predicting the desired period of time series. In many cases, the 

forecast obtained by ARIMA is  more reliable than traditional econometric modeling, let alone for 

short term forecasts [13].  

3.1.4.5 Limitation of ARIMA 

Aside from its popularity and its success in catching linear time series patterns, the ARIMA model 

also has its own limitations [32]. ARIMA model is not heavily used in complex and dynamic 

domains because of its incapability of capturing non-linear patterns in time series data.  However, 

this phenomenon should be investigated further [1].  

3.1.5 Machine Learning 

Machine learning can be defined as a subclass of artificial intelligence (AI) that uses statistical 

learning algorithms to assimilate data and provides the learned solution or response (sharma). In 

short, ML is the science of computers that can learn from data [12]. ML algorithms can be 

classified depending on the amount and type of supervision that need to be obtained during the 

training process.   

1. Supervised Learning 

ML model that has target or output labels. Can be divided into regression and classification 

tasks. 

2. Unsupervised Learning 

ML model that has no labels or targets. Usually used in feature reduction, clustering, and 

so on. 
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3. Reinforcement Learning 

ML that contains agents that can observe the environment, select actions and get reward in 

return.  

 
Figure 2. Reinforcement Learning 

Source: Machine Learning and Deep Learning Applications-A Vision 

3.1.6 Deep Learning 

Deep learning is a specific subcategory of machine learning. The deep in deep learning tells the 

idea of successive layers representation. It is basically a network model with neurons and features. 

DL provides an automatic learning process and makes it more robust than the ML model. That is 

the reason why DL is suitable for dealing with large datasets and complex algorithms.  
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Figure 3. Deep learning model 

Source: Deep Learning with Python, 2nd Edition 

3.1.7 Artificial Neural Network 

Neural Network (NN), which is also known as artificial neural network defined as a form of 

artificial intelligence (AI) or deep learning that tries to mimic how the human brain works [4]. 

ANN consists of units of neurons. [5]. Each ANN will contain input, hidden, and output layers. 

ANN might consist of one hidden layer, many hidden layers, or even no hidden layer [5]. A layer 

refers to a collection of one or more nodes which each node connects to other nodes in the next 

layer [8]. When each ANN contains multiple hidden layers, it can be called a deep neural network 

(DNN). Graph below depicts the example structure of ANN with three input features, one hidden 

layer with four nodes, and one output. 
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Figure 4. ANN Architecture 

Source: Neural Network with Keras Cookbook 

 

The number of nodes in output depends on what output that is trying to be predicted [8]. The 

neuron has the input of a set of features, which is noted as (x). These input features will affect the 

output. Next, these inputs are multiplied by weight given to each input feature (w1, w2,. .., wn). 

This weight can be modified by a correction scalar or sometimes denoted as bias (b). The usual 

bias used in ANN is 1. After that, this input vector will pass through an activation function (f)  that 

will produce the output. There are many options when it comes to activation functions, one can 

use ReLu, softmax, tanH or so forth. Finally, this output can either be the input to the neuron in 

subsequent or hidden layers or just be the final output [4].  
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Figure 5. Network Structure 

Source: Neural Network with Keras Cookbook 

 

Suppose that a is one of the units in hidden layers. This a will be formulated as: 

𝑎	 = 	𝑓 8+
+

&')

𝑤&𝑥& + 𝑏< 

 
Figure 6. Activation Function in ANN 

Source: Activation in ANN Systematic Overview 
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The number of input, hidden, output layers, and the activation function will define the topology or 

network architecture of the ANN [4]. According to Casas [4], there are three type of network 

architecture of ANN: 

1. Single layer network 

2. Multilayer network 

3. Recurrent network 

In the high level, ANN process follow these basic steps (neural n): 

1. Get the dataset and separate them into training and testing set 

2. Encode and transform the data. 

3. Identify and build network architecture. 

4. Train the network until it converges on the training set. 

5. Test and evaluate the network on the testing set. 

3.1.8 Recurrent Neural Network 

Recurrent neural network is a type of ANN architecture that can address sequence-base problems 

in deep learning. It was first proposed with the invention of Hopfield Network in the 1980s. It 

utilizes sequential data, which is an ANN that unfolded through time [22]. Differ from standard 

feedforward networks, RNN uses an additional memory state, known as cyclical hidden states 

[19].  Therefore, it will make each step dependent on the previous one.  
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After one input is received at time step, hidden state will incorporate the data from input of 

previous sequence by combining both current input ( xt) and the previous hidden state (ht-1 ) [22]. 

The process can be drawn as 

 
Figure 7. Unfolded RNN with One Hidden Layer 

Source: Recurrent Neural Network with Python Quick Start Guide 

Graph above depicts how RNN works and the combination if xt-1 + RNN + y’t-1 shows the process 

at each t-1 time step. At this step: 

1. RNN conducts forward-propagation and computes the prediction error to obtain the loss 

on training and testing dataset. 

ℎ!	 = 	𝑊𝑔(ℎ!"#	) 	+	𝑈𝑥!	 

𝑎!	 = 	𝑔(ℎ!	) 

𝑧!	 = 	𝑉. 𝑎!	𝑦!	 = 	𝑔(𝑧!	) 

 

2. Next, RNN will calculate the gradient descent at each layer and conduct the error back-

propagation, across t-1 time step. After that, RNN will update the weights. Furthermore, it 

will loop around to another forward-propagation.  [22] 
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Figure 8. Training RNN 

Source: Recurrent Neural Network with Python Quick Start Guide 

3.1.9 Limitation of RNN 

RNN performs significantly better and less expensive when working on complex tasks with large 

amounts of data, especially sequence-based problems such as time series [19]. However, it also 

has drawbacks such as the difficulty to build the right architecture on specific problems. Also, 

RNN does not yield the best result when data is small [19]. 

3.1.10 Long Short-Term Memory 

According to Bengio [3], even though RNN exhibits good performance when dealing with 

sequential data, it will suffer from gradient descent and the error criterion may be inadequate to 

train the model in the long run. One solution that addresses the vanishing error problem is the 

gradient-based method, known as long short-term memory (LSTM) [3]. 
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In contrast to RNN, the LSTM cell adds long-term memory. It makes small modifications to 

relevant information through gates that control information  flow for each time step. The model 

then can selectively ignore the irrelevant information that is learnt through back propagation [22]. 

Figure below describes how LSTM works when there are two weights coming in from the past 

cell, (c and a  at time t-1), and once transformed another two weights are going (c and a at the time 

t).  

 
Figure 9. LSTM Cell 

Source: Advanced Forecasting with Python 

3.2 Current State Overview 

This section contains prior research about stock market forecasting using ARIMA and RNN. 

3.2.1 Stock Price Prediction Using ARIMA, Neural Network and LSTM Models 

The first research is the stock price prediction using ARIMA, NN and LSTM models [14]. The 

dataset that is used in this paper is historical trading data from 2 January 2020  to 19 January 2021 

from Bursa Malaysia closing price. The reason behind this period is, the number of COVID-19 

cases increased dramatically in Malaysia, which also triggered a shock and anomaly movement of 

stock prices in 2020. To compare and evaluate the forecasting models, data is divided into two 

parts, 70 percent training set (data from 2 January 2020 to 28 September 2020), and the rest of 30 

percent (29 September 2020 to 19 January 2021) held as a testing set. The forecasting models that 
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applied to the research are ARIMA, NN, and LSTM. To choose the best model, MAPE and RMSE 

are chosen as evaluation metrics.  

MAPE is the mean absolute percentage error. It is the mean absolute percentage deviation of 

each value with actual value.  

 
 
At is the actual value and Ft is the predicted values. n is the number of observations. 
 

 

 
Figure 10. Stock prediction with LSTM 

Based on research findings, compared to ARIMA and NN, the LSTM model has the best 

performance in Bursa Malaysia stock price prediction because it has the smallest MAPE and 

RMSE values. It is not only able to generate more than 90% of accuracy but also able to explain 

unpredictable movement of stock prices during this pandemic period. 

3.2.2 ARIMA vs LSTM on NASDAQ Stock Exchange Data 

The next research is the ARIMA vs LSTM on NASDAQ stock exchange data [17]. Nine of the 

most popular NASDAQ sectors are chosen, which are IT, automotive, financial, logistics and 
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transport, clothing, food, energy, healthcare, and entertainment along with media. Both ARIMA 

and LSTM models are used to predict daily or monthly average prices from 2008 to 2021 of the 

chosen companies. MSE and MAPE were selected as evaluation metrics. 

 

Once you have the absolute percent error for each data entry, you can calculate the MAPE. Add 

all the absolute percent errors together and divide the sum by the number of errors. For example, 

if your dataset included 12 entries, you would divide the sum by 12. The final result is the MAPE. 

 

 

 
Figure 11. ARIMA Predictions chart 

The analysis result showed that ARIMA model performs better than LSTM when it is univariate 

models, only one feature used. The p and q on the ARIMA model were ranged from 0 to 2. For 

the LSTM, adam optimizer and tanh activation function were used.  When forecasting the stock 

price for 30 days, ARIMA is about 3.4 times better than LSTM. When predicting an average of 3 

months, ARIMA was about 1.8 times better than LSTM. Also, when forecasting the average stock 

price for next 9 months, ARIMA was about 2.1 times better than LSTM. 

3.2.3 A Comparison Between Econometric Modeling and Long- Short Term Memory  
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Another prior research is a comparison between econometric modeling and LSTM [8]. The paper 

proposed the study to predict the price of stock return within the main index of Romanian stock 

market. The goal was to explore the possibility of adapting a ML model for the Romanian market. 

The data is collected from daily returns of BRD stocks that were listed on the Romanian stock 

market in 2001. The time period was from 16 January 2001 to 4 November 2016. The sample size 

was 3,809 data points. This sample covered a 15 year stock return that allowed capturing the effect 

of the financial crisis that began in 2007.  

 

 

The result of this research concluded that the best activation-optimization to use was the  Softsign 

ADAM combination. However, although the NN model outperformed the classical model of 

TARCH, the author believed that was due to the low number of features given as input parameters. 

Based on this consideration, they proposed to build and analyze how a neural network can be 

trained to learn the dynamics of an entire market, not just the evolution of one stock price.  

 

 

 

3.2.4 Stock Price Prediction with ARIMA and Deep Learning Models 

The next prior paper that takes into consideration is stock price prediction with ARIMA and deep 

learning models [11]. Data used in the study is close price movement for 30 listed stocks from the 

Dow Jones Industrial Average (DIJA). Data was obtained from yahoo finance. For the ARIMA 

model, the input was a dataset from January 2016 to December 2017. For deep learning models, 

the training set was taken from January 2006 to December 2015. And, the rest of January 2016 to 

December 2017 was used as a testing set. The Seq2Seq model algorithm is expressed as below 

graph. 
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Figure 12. LSTM Architecure in stock prediction using ARIMA and deep learning models 

 

The study concluded that LSTM was proven to be more reliable than vanilla ANN and RNN. Built 

upon the LSTM model, Seq2Seq models proposed in the study was an excellent predictor for stock 

prices of several days in the future with even lower mean squared error. In addition, the study also 

stated that the increase in the complexity of NN will generate better performance.   

  

3.2.5 RMSE  

 The Root Mean Squared Error (RMSE) is one of the main performance indicators for a neural 
network regression model. It measures the average difference between values predicted by a 
model and the actual values. It provides an estimation of how well the model is able to predict 
the dependent variable. 

The lower the rmse value the better the model is; infact a perfect model will have RMSE value 
equal to 0. 
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wi: weight of the observation, ui : error of observation ,N: number of observation,W: Total weight 

3.2.6 Comparison of ARIMA, ANN and LSTM for Stock Price Prediction  

Another interesting research that will be taken into account is a study of comparison of ARIMA, 

ANN, and LSTM for stock prediction [22]. This research tried to forecast DELL's stock price 

around 2010. The model choices for the study were ARIMA (1,0,0) and ANN (10,17,1).    

    

 
Figure 13. ARIMA ,ANN Predicted plot from comparative study 

The conclusion that can be drawn from the study is that the ANN model generated better 

performance than that of the ARIMA model. Next, the performance of the LSTM model may be 

more due to the ANN. Last, the ARIMA-GARCH model actually can further improve the accuracy 

of the ARIMA model by improving the white noise sequence. 
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4. Model Implementation 

4.1 DEEP RNN Implementation 

Previous research sheds the light for the research to go forward using the historical data points. 

The new research will take the historical data points in batches and predict the index based on it. 

The research will try to have similar inputs to both the models in order to compare their 

performance. Since both are predictive models and predicted value are real numbers loss function 

can be the best measure of model performance. 

4.1.1 Dataset 

The dataset for the research was taken from nseindia.com, the national stock exchange of India. 

The daily index of the stock is called NSE index and the NSE index daily view data is downloaded 

for the purpose of the research. The start date of the NSE index is 04/01/2010 and the end date is 

01/01/2021. 
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Figure 14. NSE Data first 20 values 
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4.1.2 Attributes  

The two attributes of the dataset are date and NSE index.  

Date  

Format: Datetime 

NSE Index 

Format: decimal 

4.1.3 Data Pre-Processing 

Data pre-processing refers to a series of operations performed on raw data to prepare it for analysis, 

modeling, and decision-making. It is an important step in the data science process as the quality 

and structure of the data can significantly impact the accuracy and usefulness of the results. 

Common steps involved in data pre-processing are data cleaning, data transformation, data 

integration, data reduction. 

Data pre-processing is a crucial step in the data science process, as it can significantly affect the 

results of the analysis and the performance of machine learning models. By pre-processing the 

data, you can ensure that the data is of high quality and that the results of your analysis are reliable 

and accurate. 

The libraries used for data pre-processing are described below. 

Pandas: Pandas is a powerful and flexible open-source library for data analysis and manipulation 

in Python. It provides easy-to-use data structures and data analysis tools for handling and 

manipulating numerical tables and time-series data. The two primary data structures in Pandas are 

the Series and DataFrame. 

Numpy: NumPy is a powerful and popular library for scientific computing in Python. It provides 

support for arrays and matrices, which are essential for numerical and scientific computing. The 

primary data structure in NumPy is the ndarray, which stands for N-dimensional array. 
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4.1.4 Code 

Google colab was selected as the IDE environment. It has majority of the python libraries pre 

installed and is one of the best environment to run neural network models. It works with cloud 

GPU and computer processor.  Google colab is also integrated with google drive and it has an 

auto save feature that lets us save the work real time in the google drive. Google colab also lets 

us download the files as ipynb notebooks or .py files. 

The required libraries need to be imported initially to the colab environment we are working. 

 

# Loading all necessary libraries 
 
from keras.models import Sequential 
from keras.layers import Dense 
from keras.layers import SimpleRNN 
from keras.layers import LSTM 
from keras.layers import Dropout 
from keras.optimizers import Adam 
from sklearn.preprocessing import MinMaxScaler 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
 

Pandas library was imported as pd. 

Numpy was imported as np. The graphical library matplotlib was imported as plt. 

Keras is an open-source software library that provides a Python interface for ANNs (Artificial 

Neural Networks). It acts as an interface for the TensorFlow library. It was developed to enable 

fast experimentation with deep learning models. 

Keras has a user-friendly API that makes it easy to create and train neural networks. It supports 

convolutional networks (for image classification), recurrent networks (for sequence processing), 

and combinations of the two. 

Keras provides several high-level libraries for building recurrent neural networks (RNNs), 

including simpleRNN, LSTM, and GRU. 
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The Dataset excel file named NSE.xlsx is first imported to the google colab. Then the excel file 

is loaded as a dataframe using Pandas function shown below. 

 

# Loading data set 
data = pd.read_csv('NSE.csv') 
data['Date'] = pd.to_datetime(data['Date']) 
 

The date column is set to datetime format from object format. 

The head of the data with 20 values is inspected with the code. 
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As we could see the dataset contains date in one column named “Date” and NSE index in the 

other column named “NSE”.Total number rows are counted using the len(data) and printed using 

the print() function. 
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print('Total number of rows in data are: ', len(data)) 
 

Then a function drop_outlier_IQR is defined and is used to detect outliers that are below 1.5 times 

interquartile range and above 1.5 times the interquartile range. 

 

def drop_outliers_IQR(df): 
    q1=df.quantile(0.25) 
    q3=df.quantile(0.75) 
    IQR=q3-q1 
    not_outliers = df[~((df<(q1-1.5*IQR)) | (df>(q3+1.5*IQR)))] 
    outliers_dropped = not_outliers.dropna().reset_index() 
    return outliers_dropped['NSE'] 
 
data['NSE'] = drop_outliers_IQR(data['NSE']) 
 

Total number of rows removed are zero and total number of rows after outlier was found to be 

2977. 

The training set values need to be transformed. Sklearn.preprocessing library is used to transform. 

This training set is then scaled using minmax scaler. The value is transformed between 0 and 1.  

 

# Reshaping the data in order to perform scaling 
 
training_set = data['NSE'].values.reshape(-1,1) 
sc = MinMaxScaler() 
training_set_scaled = sc.fit_transform(training_set) 
 

The next step is to change the dataset into train , validatin and test data. Train set is split to train 

the model. Training set is made and is 64% of the total set. Validation set is taken at 16% of the 

total data and Test data is about 20% of the whole data. 

 

# Generating fraction for train-validation-test split 
 
train_frac = int(len(training_set_scaled)*64/100) 
train_test_threshold = int(len(training_set_scaled)*80/100) 
train_data = training_set_scaled[0:train_frac] 
validation_data = training_set_scaled[train_frac:train_test_threshold] 
test_data = training_set_scaled[train_test_threshold:] 
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The model is trained using 5 past values and the next value is predicted. In order to get this two np 

array are created and the X_train has 5 past values and y_train has the next value. 

 

 
 

This array is then reshaped to feed into the RNN layer.  

 
 

The DF Dataframe is plotted below. There are 5 X values and Y value. 
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4.1.5 Model Building 

 

The Model architecture of the Deep RNN model is shows below. The First layer A wih 7 RNN 

layers, second layer B with 7 RNN layers and the final dense layer with Relu as activation function 

to provide the output. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Model RNN Architecture 
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The Recurrent neural network model is built in the above code. Model is a sequential model with 

3 layers. First layer comprises of Simple RNN layer with 7 neurons. Input shape (5,1) is passed 

into the SimpleRNN and the sequence is returned. 

The next layer is again similar layer of 7 SimpleRNN neurons and the last year is a dense layer 

with activation function relu.  

The model optimizer is set as adam and the learning rate is at 0.0001.  loss is measured as Mean 

squared error (MSE). 

Now the model is complete and ready for inputs. 

 

The model is fitted into the train data first. For that mode.ft() function is used as assigned to a 

string called history. 

 

X_train and y_train are inputted into the model. Epoch size is first selected as 20 with batch size 

of 1. Epoch size is the number of time data is passed through the model. Validation data is also 

selected for the model with validation_data(X_valid,y_valid) function. 
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Figure 16. Fitting of RNN Model 

The model has now completed the 20 epoch runs of the model with the training data. 

 

 

We need the predicted values for validation data. The validation data predicted are in scaled format 

and need to do inverse transform to get the values in original scale.  

 

sc.inverse_transform() function is used to get the values in original scale. 
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Now the actual validation data and predicted validations data are concatenated to form a validation 

table. The validation table is given below. 

 
Figure 17. Validation predicted vs actual 

 

The root mean squared error (RSME) is calculated and found to be 74.40. The loss vs epoch graph 

is plotted. As we could see from the graph the two lines converges first at 17 epoch size. This is 

the optimal epoch size which we identified to get improved prediction of the model measured in 

rsme.  
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Figure 18. Epoch vs Loss diagram 

 

Now the model is fitted onto the optimal epoch value we found from the epoch vs loss plot which 

is 17. The model is again run on both Train set and it is tested with Test data with new epoch size 

of 17, keeping all other parameters constant. 
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In the next code the X_test values as passed as inputs into the code and the predictions are made 

on the model. 

 

The predicted scaled values and the actual scaled values are used to calculate RSME value and it 

was found to be 0.036  

 

 
 

These predictions are scaled and are to be transformed back to original scale. 
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Now the predicted values and original values are made into a dataframe. 

 
 

The actual and predicted values are compared using RSME. The RSME value was found to be 

269. The actual and predicted values are plotted on to graph using matplotlib in the next plot. 
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Figure 19. Actual vs Predicted RNN 

4.1.6 Method 2: Taking 10 past values as Inputs 

 

As a second method the look back period for the data was changed to 10. Now the input array 

contains 10 days past values, x and predicts the next days value y. 

 

RNN model results are given below for scaled values. The RMSE was found to be 0.0749 

 
 

RMSE for non-scaled values was found to be 802.46 
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4.2 ARIMA Implementation 

4.2.1 Data 

The data is viewed after the preprocessing stage. 

 

 
 

The Data is scaled between 0 and 1 using Minmax scaler. 

 

training_set = data['NSE'].values.reshape(-1,1) 
sc = MinMaxScaler() 
training_set_scaled = sc.fit_transform(training_set) 
 

The data is then split into train and test data. The train data is 80% of the total data. Test data is 

20% of the total data. 
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# Split data into train and test sets 
train_data = training_set_scaled[:int(0.8*len(data))] 
test_data = training_set_scaled[int(0.8*len(data)):] 
 
 

From statsmodel library ARIMA module is imported. This is the machine learning library by 

which ARIMA model will be built on the data. P is the number autoregressive lags , d is the degree 

of differencing and q is the number of moving average lags. 

 

In this research p,q and d were taken as 5. The model is fit on the data. 

 

 
 

 

The Train RMSE for scaled forecast was calculated and it was found to be 0.0077 
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The Forecasted values are inverse scaled to get values in original scale and then RMSE is found. 

Train RMSE is calculated and it was found to be 127.3  

 
  

Now the new unseen test data is put into the same model. The forecast is done for the test data and 

the values are stored as forecast. 

 
 

 

The forecasted test values and actual scaled test variables are used to calculate scaled RMSE.  

 

Scaled Test RMSE is found to be 0.047 
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The scaled values are inverse transformed to get values in original scale. 

Forecast values are plotted after inverse scaling. 

 

 
Figure 20. Forecasted values by ARIMA 

The test RMSE is calculated. It is found at 521.7  
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The result is plotted on the graph below. 

 

 
Figure 21. Actual vs Predicted values by ARIMA 

 

4.2.2 Method 2: Taking 10 past values as inputs 

 

The model was now changed to take 10 past values at once. That is p,q, and d values in ARIMA 

was changed to 10. Now the model will consider the 10 input values at once to predict the next 

value and so on. 

 

The RMSE for scaled values was calculated for test data and it was found to be 0.20 
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The RMSE for non-scaled values for test data was calculated and It was found to be 4734.6 
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5. Conclusion 
 

Prediction of NSE stock exchange value was conducted with both the models and both models 

performed relatively well. The Deep RNN model had better predictive performance than ARIMA 

model for the similar look back period of values considering the root mean square values. 

 

Deep RNN model had a scaled test RMSE value of 0.036 on test data while ARIMA gave 0.047 

for scaled test RMSE. 

Deep RNN model takes much larger processing time compared to ARIMA which is a lot quicker 

since it is a machine learning model. Both the models performed well considering how volatile the 

market index usually is from day to day.  

 

The ARIMA model was showing high RMSE error when the input time frame was taken as 10 

days. While Deep RNN showed a scaled test RMSE value of .07 ARIMA gave a scaled test RMSE 

value of 0.204. The ARIMA model significantly underperformed when input values were 

increased. 

 

Further research can be conducted on the performance of both models by adding exogenous 

variables, which could make the model complex but more accurate. 
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