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Faculty of Science

Mathematical modelling of the population

dynamics of hemiparasitic plants

Bachelor thesis

Mgr. Petra Světlíková
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1 Introduction

1.1 Parasitic plants

Parasitism is an extraordinary life strategy, where one species, the parasite, exploits another

species, the host. Parasites usually refer to animal species as helminths or nematodes or to

tiny organisms as bacteria or viruses. However, parasitic species can be also found in plant

kingdom. More than 4000 of flowering plants are parasitic, acquiring some (hemiparasites)

or all (holoparasites) resources from other plant species (Heide-Jørgensen, 2013). The vast

majority of plant parasites are hemiparasites, green plants which obtain a significant portion

of their resources heterotrophically (Heide-Jørgensen, 2013). Water, diluted mineral nutrients,

and heterotrophic carbon are among essential resources that hemiparasites acquire from their

host species through specialized organs (Press, 1989; Irving and Cameron, 2009; Těšitel et al.,

2010). These organs called haustoria are attached to host stems by stem-hemiparasites, and to

host roots by root-hemiparasites.

Root-hemiparasites are recognized as an important functional group of hemiparasites, affecting

key ecosystem processes such as nutrient cycling (Press, 1998; Quested et al., 2005; Bardgett

et al., 2006; Demey et al., 2014), competition among resident plants (Gibson and Watkinson,

1991; Pywell et al., 2004), and ecosystem biodiversity and productivity (Davies et al., 1997;

Joshi et al., 2000; Ameloot et al., 2005; Mudrák and Lepš, 2010). Several genera of root-

hemiparasites from the Orobanchaceae family commonly occur throughout Europe in natural

and seminatural habitats. Although they are generalists, exploiting many co-occurring host

species at the same time, some host species can be preferred and some avoided (Cameron

et al., 2006; Rümer et al., 2007; Thorogood and Hiscock, 2010). Hemiparasites can even

parasitise on other hemiparasites (Prati et al., 1997). In order to survive, hemiparasites have

to find host plants and attach to them as soon as possible after their germination (Press and

Phoenix, 2005). However, many hemiparasites can survive an initial seedling stage without

any host plant (Press, 1989; Press and Phoenix, 2005).

1



1.2 Mathematical models

A mathematical model is a simplified and purposeful mathematical representation of a real

system that we are interested in. The real system described in such a way, e.g. by means of

differential equations, can be subsequently examined and thus better understood. Mathemati-

cal models are very useful tools in many scientific disciplines. In biology, they are used mostly

for the following purposes. They help to explain system functioning, examine interactions and

relationships between system components, find patterns that are not apparent from the data,

predict system behaviour under specific conditions, test hypotheses that cannot be tested exper-

imentally, verify existing theories, and establish new ones. If the biological system is modelled

by means of differential equations, the solution of which can be found either analytically or by

adequate numerical methods, that solution then determines system behaviour over time.

1.3 Modelling of the hemiparasite-host interaction

The hemiparasite-host interaction is rather complex, functioning mainly as resource parasitism

belowground and as competition for light aboveground (Fibich et al., 2010). Both the hemi-

parasite and host species are able to uptake resources from soil, but this source is utilized

almost exclusively by the host. The hemiparasite acquires most of its resources by exploiting

the host (Cameron and Seel, 2007; Westwood, 2013). Since hemiparasites are generally weak

competitors (Atsatt and Strong, 1970; De Hullu, 1984), the aboveground interaction tends to

be asymmetric. According to Smith (2000), deficits in parasite competitive abilities may be

overcome by resource parasitism.

The hemiparasite-host interaction is shaped by abiotic factors, e.g. productivity of the environ-

ment (Cameron et al., 2005). It is well known that the aboveground competition becomes more

important when nutrient availability is increased (Grime, 1979; Keddy et al., 1997; Wilson and

Tilman, 1991). Taking into account poor competitive abilities of hemiparasites, it is not sur-

prising that hemiparasites preferably occur in low-productivity habitats. In high-productivity

environments, strong shading by the host species cannot be further compensated by resource

parasitism (Yeo, 1964; Van Hulst et al., 1987; Fürst, 1931).

There are only a few studies modelling the hemiparasite-host relationship. A simple model of

resource-based competition was proposed by Smith (2000). That model considered only the
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belowground interaction and a single resource limiting the plant populations. It also assumed

that the hemiparasite could complete its life cycle without any host, become more abundant

with increasing productivity, and outcompete the host. Cameron et al. (2009) suggested a spa-

tial model examining the interaction between a parasite and two host plant types (forbs and

grasses) under two nutrient levels. They parameterized the model with the data from a pair-

wise interaction experiment where the hemiparasite was grown with three different grass and

forb species. The model exhibited highly unstable dynamics under the high nutrient level, but

stable dynamics under the low nutrient level. The most recent model of the hemiparasite-host

interaction was developed by Fibich et al. (2010). It involved both above- and belowground

interactions and removed the assumptions made by Smith (2000) which were not consistent

with field observations. The model behaviour was examined on a productivity gradient corre-

sponding to the host carrying capacity. The model showed that both plant types can coexist

only at intermediate productivities, otherwise only the host species survives. At very low

productivities, there are not enough hosts to sustain the hemiparasitic species. At the other

extreme, hemiparasites are shaded by hosts and thus excluded from highly productive sites.

Fibich et al. (2010) emphasized that the addition of light competition component to the model

was a key step in order to explain field observations. Important role of light competition in the

hemiparasite-host relationship was previously suggested also by Matthies (1995).

Here, I generalize the light availability function for the hemiparasite used by Fibich et al.

(2010) and examine the hemiparasite-host coexistence along the productivity gradient. This

generalization enables the hemiparasite to assure some light also at high host densities and the

hemiparasite response to changing host density may vary from gradual to abrupt. The resulting

model is mathematically analysed applying the isoclines analysis, the analysis of equilibrium

points and the bifurcation analysis.

The thesis is divided into several sections. Relevant mathematical concepts and theorems,

and the original and modified models of the hemiparasite-host interaction are presented in

Sections 2 and 3, respectively. The generalized model is mathematically analysed in Section

4. The model results are discussed and compared with similar models in Section 5, where the

model limitations are also specified and possible improvements of the model are suggested. In

Section 6, I summarize the main results of the thesis.
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2 Relevant mathematical concepts and theorems

I start with definitions of the nonlinear systems of autonomous ordinary differential equations

and a solution of these systems, followed by theorems and definitions regarding the existence

and stability of the solutions of these differential equations, equilibrium points, and bifurca-

tions.

Definition 1. (Nonlinear systems of autonomous ordinary differential equations, Perko (2001),

p. 65) Let E be an open subset of Rn and f : E → Rn. Then systems of autonomous ordinary

differential equations of the first order and resolved with respect to the derivative are systems

of equations of the form

ẋ = f(x). (1)

From here on, I will speak of the systems (1) simply as of differential equations.

Definition 2. (Solution of differential equation, Perko (2001), p. 71) Suppose that f ∈ C(E)

where E is an open subset of Rn. Then x(t) is a solution of the differential equation

ẋ = f(x) (2)

on an interval I if x(t) is differentiable on I and if for all t ∈ I , x(t) ∈ E and

x′(t) = f(x(t)).

And given x0 ∈ E, x(t) is a solution of the initial value problem

ẋ = f(x)

x(0) = x0

on an interval I if 0 ∈ I , x(0) = x0 and x(t) is a solution of the differential equation (2) on

the interval I .

Theorem 2. (The fundamental existence-uniqueness theorem, Perko (2001), p. 74) Let E be

an open subset of Rn containing x0 and assume that f ∈ C1(E). Then there exists an a > 0

such that the initial value problem

ẋ = f(x)

x(0) = x0
(3)
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has a unique solution x(t) on the interval [−a, a].

Theorem 3. (Perko (2001), p. 89) Let E be an open subset of Rn and assume that f ∈ C1(E).

Then for each point x0 ∈ E, there is a maximal interval J on which the initial value problem

(3) has a unique solution, x(t); i.e., if the initial value problem has a solution y(t) on the

interval I then I ⊂ J and y(t) = x(t) for all t ∈ I . Furthermore, the maximal interval J is

open; i.e., J = (α, β).

Definition 3. (Perko (2001), p. 90) The interval (α, β) in Theorem 3 is called the maximal

interval of existence of the solution x(t) of the initial value problem (3) or simply the maximal

interval of existence of the initial value problem (3).

A standard way to start analyzing a nonlinear system of differential equations ẋ = f(x) is to

determine its equilibrium points and describe its behaviour near these equilibrium points.

Definition 4. (Perko (2001), p. 102) A point x0 ∈ Rn is called an equilibrium point of (1) if

f(x0) = 0. An equilibrium point x0 is called a hyperbolic equilibrium of (1) if none of the

eigenvalues of the matrix Df(x0) have zero real part.

Here the matrix Df(x0) is the Jacobian matrix defined as

Df(x0) = J(x0) =


∂f1
∂x1

. . . ∂f1
∂xn

... . . . ...
∂fn
∂x1

. . . ∂fn
∂xn


where f = (f1, . . . , fn) and fi for i = 1, ..., n are functions of x = (x1, ..., xn).

Definition 5. (Perko (2001), p. 102) An equilibrium point x0 of (1) is called a sink if all of

the eigenvalues of the matrix Df(x0) have negative real part; it is called a source if all of the

eigenvalues of Df(x0) have positive real part; and it is called a saddle if it is a hyperbolic

equilibrium point and Df(x0) has at least one eigenvalue with a positive real part and at

least one eigenvalue with a negative real part. The linear system ẋ = Ax with the matrix

A = Df(x0) is called the linearization of (1) at x0.
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Theorem 4. (The Hartman-Grobman theorem, Mathematical analysis IV, Lecture notes) As-

sume a nonlinear system of differential equations in the form

ẋ = Ax+ g(x)

where g(0) = 0 and g is a continuous function for which

lim
‖x‖→0

‖g(x)‖
‖x‖

→ 0.

Then the zero solution of (1) is locally asymptotically stable if all of the eigenvalues of the

matrix A have negative real part, and unstable if at least one eigenvalue has a positive real part.

Combining Definition 4, Definition 5 and Theorem 4, the following theorem shows that near

a hyperbolic equilibrium point x0, the nonlinear system ẋ = f(x) has the same qualitative

structure as its linearization ẋ = Ax with A = Df(x0).

Theorem 5. (Perko (2001), p. 129) Let x0 be a hyperbolic equilibrium point and Re(λj) de-

note the real part of the eigenvalue λj of the matrix Df(x0), j = 1, ..., n. Then the hyperbolic

equilibrium point x0 is asymptotically stable if Re(λj) < 0 for all j = 1, ..., n, thus if x0 is

a sink. And the hyperbolic equilibrium point x0 is unstable if Re(λj) > 0 for at least one

j ∈ 1, ..., n, thus if x0 is a source or a saddle.

To assess the stability of equilibrium points, we need not calculate exact eigenvalues of the

corresponding Jacobian matrix. The knowledge of their signs suffices. The Routh-Hurwitz

criterion gives necessary and sufficient conditions for local asymptotic stability of an equilib-

rium, i.e. for real parts of all of the eigenvalues of the corresponding Jacobian matrix to be

negative. For two-dimensional systems of differential equations, this criterion is as follows:

det(Df(x0)) > 0 and trace(Df(x0)) < 0 (4)

In the analysis of our generalized hemiparasite-host population model, we will commonly en-

counter two types of bifurcations, a fold (or saddle-node) bifurcation and a supercritical Hopf

bifurcation. To help understand the fold (saddle-node) bifurcation, consider an autonomous

system of ordinary differential equations (Kuznetsov, 2010)

ẋ = f(x, α), x ∈ R1, α ∈ R1 (5)
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with a smooth function f , which has at α = 0 the equilibrium x = 0 with λ = fx(0, 0) = 0.

Let for α < 0 the system have two equilibria (one stable and one unstable). Also, while

α crosses zero from negative to positive values, let the two equilibria collide and disappear,

forming at α = 0 an equilibrium with λ = 0 (Fig. 1). This behaviour of the system (5) is called

a fold or saddle-node bifurcation (Kuznetsov, 2010). The point at which α = 0 and simple

equilibrium λ = 0 exists is commonly referred to as a limit point.

Figure 1: Fold (saddle-node) bifurcation). Reprinted from Kuznetsov (2010).

Figure 2: Supercritical Hopf bifurcation. Reprinted from Kuznetsov (2010).

To help understand the supercritical Hopf bifurcation, consider an autonomous system of or-
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dinary differential equations (Kuznetsov, 2010)

ẋ = f(x, α), x = (x1, x2)
T ∈ R2, α ∈ R1 (6)

with a smooth function f , which has at α = 0 the equilibrium x = 0 with eigenvalues

λ1,2 = ±iω0, ω0 > 0. Let this equilibrium be linearly stable if α < 0 and unstable for

α > 0, surrounded by a stable limit cycle (Fig. 2). This behaviour of the system (6) is called a

supercritical Hopf bifurcation (Kuznetsov, 2010). The point at which α = 0 and λ1,2 = ±iω0,

ω0 > 0 is referred to as a Hopf point.
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3 Methods

A mathematical model describing the hemiparasite-host interaction was developed by Fibich

et al. (2010) from the Rosenzweig-MacArthur predator-prey model. The Rosenzweig-MacArthur

predator-prey model consists of the logistic growth of prey and the type II functional and nu-

merical responses of predators (Rosenzweig and MacArthur, 1963; Kot, 2001):

dx

dt
= rx

(
1− x

K

)
− f(x)y

dy

dt
= −my + ef(x)y

(7)

In this original model, x and y represent prey and predator densities, respectively, r is the

intristic prey growth rate in the absence of predation, K is the carrying capacity of prey in the

absence of predation, m is the per capita mortality rate of predators in the absence of prey, and

e is the efficiency of converting consumed prey into new predators. Finally, f(x) is the type II

functional response:

f(x) =
ax

x+ b

where a denotes the maximum per capita predation rate and b the host density necessary to

achieve one-half of this maximum rate.

The model by Fibich et al. (2010) considers host plants as prey and hemiparasitic plants as

predators. The predator mortality ratem is defined as a decrease of hemiparasite biomass. The

host biomass is proportional to the amount of host resources (water and nutrients), which can

be taken up by the hemiparasite. The host biomass decreases when these resources are acquired

by the hemiparasite. The efficiency of the hemiparasite to uptake resources and convert them

into its own biomass is denoted as e.

Fibich et al. (2010) included competition for light and parasitism among hemiparasites into

the original predator-prey model as follows:

dx

dt
= rx

(
1− x+ cy

K

)
− f(x)y

dy

dt
= −(m+m1y)y + ef(x)yg(x)

(8)
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Here c expresses the competitive ability of hemiparasites for light relative to their hosts, m1

refers to negative interactions among hemiparasites comprising intra-specific parasitism and

competition for light, and g(x) refers to a function scaling light availability and accounting for

competitive ability of hosts for light relative to their hemiparasites (light is less available for

hemiparasites with increased host biomass). They assumed the following sigmoidally decreas-

ing form of g(x) ranging from 1 to 0:

g(x) = 1− x2

x2 + d2
=

d2

x2 + d2
(9)

where d refers to the host biomass necessary to achieve g(x) = 1/2. Hence, hemiparasites

cannot survive in highly dense vegetation where their light availability declines to zero.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4
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0.6

0.7

0.8

0.9

1

x

g
(x

)

Figure 3: Light availability function g(x) describing the decreasing light availability to hemi-
parasites with increasing host biomass x. Solid and dashed lines indicate the function where
g∞ = 0 and g∞ = 0.3, respectively. Black colour corresponds to z = 2, while grey colour
corresponds to z = 3.

Here, I assume a more general form of the light availability function g(x):

g(x) = 1− (1− g∞)
xz

xz + dz
=
g∞x

z + dz

xz + dz
(10)

For this function, g(x) decreases to g∞ in the limit x→∞, which may be 0 ≤ g∞ ≤ 1. Since

g′(d) = −(1 − g∞) z
4d

, the parameter z scales the rate at which the function g(x) “falls” from
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1 to g∞. Note that the original function (9) is a special form of the new one (10) when we set

g∞ = 0 and z = 2. Several forms of the light availability function (10) are plotted in Fig. 3.

In general, the model (8) decribes the whole hemiparasite-host interaction using light as the

aboveground limiting resource and water and nutrients as the belowground limiting resources.

Without hemiparasites, host plants will grow logistically till they reach the carrying capacity

of the environment K, which is determined by both groups of limiting resources. The carrying

capacity of the host thus depends on the productivity of the environment.

The model (8) can be simplified by the transformation of some parameters and an appropriate

scaling of time:

t = rt;m = m/r;m1 = m1/r; a = a/r

Bars dropped, the final system has the following form:

dx

dt
= x

(
1− x+ cy

K

)
− ax

x+ b
y (11)

dy

dt
= −(m+m1y)y + e

ax

x+ b
y
g∞x

z + dz

xz + dz

I analyze the model (11) in the next chapter.
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4 Results

In this section, I analyze the model (11) and primarily focus on the effect of the host carrying

capacity K. Some results are calculated numerically using Matlab (The MathWorks, Inc.)

with Matcont package for bifurcation analysis (Dhooge et al., 2003) and Pplane package for

visualization of isoclines and system dynamics (Polking and Arnold, 1999). I begin with the

calculation of equilibrium points. Equilibrium points are located at the intersection of the host

and hemiparasite isoclines.

4.1 Isocline analysis

The zero-growth isoclines are obtained by setting the right-hand sides of equations (11) to zero.

There are two isoclines both for the host and the hemiparasite. One isocline for each species is

trivial: x = 0 (the hemiparasite axis) and y = 0 (the host axis). The other, non-trivial isoclines

are

y =
(x+ b)(K − x)
xc+ bc+ aK

=: h(x,K) (12)

for the host, and

y =
1

m1

(
(g∞x

z + dz)eax

(x+ b)(xz + dz)
−m

)
=: p(x) (13)

for the hemiparasite. I keep the parameter K as an argument of function h(x,K) to emphasize

that I will explore the model primarily with respect to it. Figures 4 and 5 show several specific

forms of these isoclines.

The non-trivial host isocline (12) intersects the x (host) axis at x = K and x = −b and the y

(hemiparasite) axis at

y =
bK

bc+ aK
=: h(0, K) > 0

The first derivative of the non-trivial host isocline (12) is

h′(x,K) =
−cx2 − 2xbc− 2xaK − cb2 − baK + aK2

(xc+ bc+ aK)2
(14)
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Figure 4: The host non-trivial isoclines (black) displayed for two different values of the host
carrying capacity K (K = 20 and 2, solid and dashed, respectively) and the hemiparasite non-
trivial isoclines (grey) displayed for two different values of parameter g∞ (g∞ = 0.3 and 0,
solid and dashed, respectively). The rest of parameters was set as follows: e = 1, a = 0.63,
b = 6, d = 8, m = 0.1, m1 = 0.01, c = 0.1 and z = 2.

By putting x = 0, I analyze the behavior of the host isocline in its intersection with the y

(hemiparasite) axis:

h′(0, K) =
−cb2 − baK + aK2

(xc+ bc+ aK)2

The host isocline intersects the y axis as an increasing function when its first derivative is

positive, i.e. when

K ∈

(
−∞, b

2

(
1−

√
1 +

4c

a

))
∪

(
b

2

(
1 +

√
1 +

4c

a

)
,∞

)
(15)

On the contrary, the host isocline intersects the y axis as a decreasing function when its first

derivative is negative, i.e. when

K ∈

(
b

2

(
1−

√
1 +

4c

a

)
,
b

2

(
1 +

√
1 +

4c

a

))
(16)

Notice that the left range in (15) and the lower bound of (16) are negative, which is biologically

irrelevant. Therefore, the ranges at which the first derivative h′(0, K) is either positive or
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negative can be respectively simplified to

K ∈

(
b

2

(
1 +

√
1 +

4c

a

)
,∞

)
and

K ∈

(
0,
b

2

(
1 +

√
1 +

4c

a

))

By putting the first derivative (14) to zero, extremes can be found:

h′(x,K) = 0⇔ −cx2 − 2xbc− 2xaK − cb2 − baK + aK2 = 0

which solves to

x1,2 = −b−
aK

c
± 2

c

√
aK(bc+ aK + cK)

To determine the types of these extremes, the second derivative has to be calculated:

h′′(x,K) = −2 abcK + aK2 + acK2

(xc+ bc+ aK)3

From here

h′′(x1, K) < 0

h′′(x2, K) > 0

Thus, the non-trivial host isocline reaches its maximum in x1 and the minimum in x2. How-

ever, note that x2 < 0; since h(0, K) > 0 we have h(x,K) > 0 for x ∈ [0, K) and h(x,K) < 0

for x > K. In addition, h′′(x,K) < 0 for x ≥ 0. Hence, altogether, the host isocline (12)

starts at h(0, K) > 0, is concave in [0,∞), intersects the x (host) axis at x = K, and becomes

negative for x > K.

Intersection of the non-trivial hemiparasite isocline (13) with the x (host) axis cannot be deter-

mined analytically. According to the numerical calculations, there is at least one intersection

point, which will be further denoted as point A. If the non-trivial hemiparasite isocline inter-

sects the x axis twice, the second (larger) point will be denoted as B (A < B). The non-trivial

hemiparasite isocline (13) intersects the y (hemiparasite) axis at

y = − m

m1

< 0
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Figure 5: The host (black) and hemiparasite (grey) isoclines along an increasing productivity
gradient and their intersections corresponding to the coexistence equilibria. The productivity
gradient is implied by parameterK, the host carrying capacity. Parameters were set as follows:
e = 1, a = 0.63, b = 6, d = 8, m = 0.1, m1 = 0.01, c = 0.1, z = 3, g∞ = 0.2, and K = 1
(a), K = 10 (b), K = 20 (c) and K = 24 (d).

The first derivative of the non-trivial hemiparasite isocline (13) is

p′(x) =
ea[(g∞x

z + dz + xzzg∞)(x+ b)(xz + dz)− x(xzg∞ + dz)(xz + dz + (x+ b)zxz−1)]

m1(x+ b)2(xz + dz)2

By putting x = 0, I analyze the behavior of the hemiparasite isocline at its intersection with

the y (hemiparasite) axis:

p′(0) =
ea

m1b
(17)
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Taking into account that all model parameters are positive, the right-hand side of the equa-

tion (17) is always positive and the hemiparasite isocline always intersects the y axis as an

increasing function.

Unfortunately, the extremes of (13) cannot be found analytically. According to the numerical

calculations, the hemiparasite isocline has only one extreme, a maximum. In addition,

lim
x→∞

p(x) =
eag∞ −m

m1

=: p∞

It is obvious that p∞ increases with increasing g∞, and

p∞ > 0⇔ g∞ >
m

ea
(18)

p∞ < 0⇔ g∞ <
m

ea
(19)

4.2 Trivial system equilibria

Trivial system equilibria are the equilibria where one or both species become extinct. The

model (11) has two trivial equilibria, [0, 0] and [K, 0], which always exist. The stability prop-

erties of the trivial equilibria are derived from the Jacobian matrix of the model (11):

J [x, y] =

(
a11 a12
a21 a22

)
where

a11 = 1− x+ cy

K
+ x

(
ay

(x+ b)2
− 1

K

)
− ay

x+ b

a12 = −x
(
c

K
+

a

x+ b

)
a21 = −eayxz g∞z + g∞ + 2z + 1

(x+ b)(xz + dz)

a22 = −2ym1 + eax
g∞x

z + dz

(x+ b)(xz + dz)
−m

The determinant of the Jacobian matrix evaluated at the extinction equilibrium [0, 0],

det (J [0, 0]) = −m
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is always negative. Therefore, the equilibrium [0, 0] is unstable (saddle point) according to the

Routh-Hurwitz criterion (4).

The determinant and trace of the Jacobian matrix evaluated at the trivial equilibrium [K, 0]

when the hemiparasite is missing is

det (J [K, 0]) = m− eaK g∞K
z + dz

(K + b)(Kz + dz)

trace (J [K, 0]) = −1−m+ eaK
g∞K

z + dz

(K + b)(Kz + dz)

which, using the hemiparasite isocline, can be expressed as

det (J [K, 0]) = −p(K)m1 (20)

trace (J [K, 0]) = p(K)m1 − 1 (21)

This implies that if p(K) < 0, det (J [K, 0]) > 0 and trace (J [K, 0]) < 0 and the equilibrium

[K, 0] is locally asymptotically stable. On the contrary, if p(K) > 0, [K, 0] is unstable.

If p∞ < 0 and the carrying capacity K is between A and B, the points for which p(A) =

p(B) = 0, p(x) is positive for any x ∈ (A,B). Hence, the determinant of the Jacobian matrix

(20) is negative and [K, 0] is an unstable equilibrium for K ∈ (A,B). However, if p∞ < 0 and

K lies outside the range (A,B), p(x) is negative, the determinant of the Jacobian matrix (20)

is positive and the trace (21) is negative. This indicates that [K, 0] is a stable equilibrium for

K outsite the range (A,B).

If p∞ > 0 and K > A, p(x) is positive for any x > A. Thus, the determinant of the Jacobian

matrix (20) is negative and [K, 0] is an unstable equilibrium for any K > A. Otherwise, if

p∞ > 0 and K < A, p(x) is negative and [K, 0] is a stable equilibrium for any K < A.

4.3 Non-trivial system equilibria

Non-trivial system equilibria are the equilibria at which both species coexist. These equilibria

were determined using numerical methods, because the model (11) is too complex to do it
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analytically. The model (11) was examined under similar parameter values as the original,

simpler model of Fibich et al. (2010) (8) to enable their comparison. The parameters were set

as follows: e = 1, a = 0.63, b = 5 or 6, d = 8, m = 0.1, m1 = 0.01, and c = 0.1. The

parameters g∞ and z of the light availability function g(x) and the host carrying capacity K

were varied.

IfK < A, there are no non-trivial equilibria, but only the unstable trivial equilibrium [0, 0] and

the stable trivial equilibrium [K, 0]. Therefore, only the host plant survives under low values

of K and the host biomass grows to K. The host carrying capacity is too low to keep the

hemiparasite alive.

The second intersection of the hemiparasite isocline (13) with the x axis, the point B exists

only under low values of g∞ (when g∞ < m
ea
≈ 0.15 for the adopted parameter values, 19).

If K lies inside the range (A,B), the host-only equilibrium [K, 0] is unstable and there is

either one or three coexistence equilibria depending on the host carrying capacity K and the

coefficient z. If there is only one coexistence equilibrium, it is stable or unstable. If there

are three coexistence equilibria, the first one (corresponding to the lowest host biomass) can

be stable or unstable, the second one with the intermediate host biomass is always unstable

(saddle point), and the third one (corresponding to the highest host biomass) is always stable.

If K lies outside the range (A,B), the host-only equilibrium [K, 0] is stable and there can

be two coexistence equilibria (Fig. 6). The first equilibrium E1 can be stable or unstable

with a stable limit cycle around it and the second equilibrium E2 is always unstable (saddle

point) (Fig. 6). No coexistence equilibrium exists for low values of g∞ under high enough

environmental productivity K.

If the pointB does not exist (for g∞ > m
ea

, 18), the host-only equilibrium [K, 0] is unstable and

the host isocline intersects the hemiparasite isocline at one or three equilibrium points (Fig. 7).

If they intersect only once, the coexistence equilibrium is stable or unstable under lowK, but it

is always stable under highK. If the isoclines intersect three times, the stability of equilibria is

similar to the situation with three coexistence equilibria in the case ofK ∈ (A,B): the first one

(corresponding to the lowest host biomass) can be stable or unstable, the second one with the

intermediate host biomass is always unstable (saddle point), and the third one (corresponding

to the highest host biomass) is always stable (Fig. 7).
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Figure 6: Phase plane of two stability cases for an equilibrium point E1. The host and hemi-
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trajectories of the model (11). The equilibrium [K, 0] is always stable, E1 is stable (a) or un-
stable with a stable limit cycle around it (b), and the equlibrium E2 is always unstable. The
parameters were set as follows: e = 1, a = 0.63, b = 6, d = 8, m = 0.1, m1 = 0.01, c = 0.1,
z = 4, g∞ = 0.1, and for K = 18 (a) and K = 20.3 (b).
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trajectories of the model (11). The equilibrium [K, 0] and E2 is always unstable, E1 is stable
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g∞ = 0.3, and for K = 20 (a) and K = 22 (b).

4.4 System dependence on parameters

At first I investigated the dependence of the model (11) dynamics on the parameters involved

in the original Rosenzweig-MacArthur predator-prey model (7). Then I examined the effect
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of additional parameters introduced by Fibich et al. (2010). Finally, the parameters from the

modified light availibility function g(x) (10) and the host carrying capacity K were investi-

gated.

An increase in parameter a, the maximum hemiparasite per capita “predation rate”, causes

a shift of the hemiparasite and host isoclines along the y axis up and down, respectively.

Therefore, it extends the coexistence range where non-trivial equilibria exist. The same effect

on the hemiparasite isocline has an increase in e, the efficiency of converting the host biomass

into the hemiparasite biomass. Parameter b, the host biomass necessary to achieve one-half of

the maximum rate a, has an opposite effect on the isoclines than parameter a. It shortens the

coexistence range where non-trivial equilibria exist. Parameter m, the per capita mortality rate

of predators in the absence of prey, determines the position of the hemiparasite isocline along

the y axis, having an effect on the range of the coexistence equlibria.

Parameters added to the model by Fibich et al. (2010) also significantly affect its behaviour.

An increase in parameter d, the host biomass necessary to achieve g(x) = 1/2, leads to the

extension of the coexistence range by shifting the hemiparasite isocline up along both axes. Pa-

rameter c, the competitive ability of hemiparasites for light relative to their hosts, is negatively

correlated with the carrying capacity of the host plant K in the presence of hemiparasites. Its

increase causes a decrease of K. An increase in m1 comprising intra-specific parasitism and

competition for light moves the hemiparasite isocline maximum up along the hemiparasite axis

causing the extend of the coexistence range.

Eventually, an increase in parameter g∞ moves the maximum of the hemiparasite isocline

along both axes up and thus it extends the coexistence range. It also changes the isocline shape

for higher x when the second intersection with x axis, the point B, disappears and the isocline

becomes positive. Parameter z influences the shape of the hemiparasite isocline as well. Its

increase leads to a higher maximum of the hemiparasite isocline and faster decrease of the

right (declining) side of the isocline. Therefore, it leads to the decrease of the coexistence

range by moving the point B down along the x axis.
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Figure 8: Bifurcation curves for parameter d, the host biomass necessary to achieve 1/2 of
g(x), with respect to the host biomass x. Limit, Hopf and branching points are referred by
LP, H and BP, respectively. Signs denote signs of the real parts of the eigenvalues of the
corresponding Jacobian matrix. The parameters were set as follows: e = 1, a = 0.63, b = 5,
m = 0.1, m1 = 0.01, c = 0.1, z = 2, g∞ = 0 and for K = 3 (a), K = 10 (b), K = 16 (c),
K = 20 (d).

4.5 Bifurcation analysis

Bifurcation curves for parameter d with respect to the host biomass x show that the quantity

and stability of equilibria is changing with increasing the host carrying capacity K (Fig. 8).

While there is only one stable equilibrium under low K, one or two more equilibria exist

under higher K (Fig. 8). To determine the areas of varying quantity and stability of equilibria

more precisely, I displayed these bifurcation curves in a bifurcation diagram along the host

carrying capacity K (Fig. 9a). Similar bifurcation diagrams were made for different values of

parameters z and g∞ (Fig. 9b-d).

When only g∞ is increased, the shape of the branching point curve (BP curve) significantly

changes and the limit point curve (LP curve) moves up along the x axis. This causes an
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Figure 9: Bifurcation analysis of the coexistence equilibria of the model (11) for parameter
d, the host biomass necessary to achieve 1/2 of g(x), along the host carrying capacity K.
Black and grey solid lines refer to the limit point and branching point curves, respectively.
Limit point curves delimit the areas where the equilibrium E2 exists. Branching point curves
are a set of points at which the biomass of the parasite becomes zero. Dashed lines are the
Hopf point curves. The Hopf point curves delimit the areas where the equilibrium E1 is un-
stable and surrounded by a stable limit cycle from the areas where E1 is stable. Cusp and
Bogdanov-Takens bifurcation points further describing system stability are displayed as CP
and BT, respectively. Numbers highlight the areas with various quantity and stability of equi-
libria. Area 1 denotes the area where the only coexistence equilibrium is stable equilibrium
E1. In area 2, only stable trivial equilibrium [K, 0] exists. In area 3, there is only an unstable
coexistence equilibrium E1 which is surrounded by a stable limit cycle. Area 4 denotes the
area where the trivial equilibrium [K, 0] is stable, the equlibriumE1 is an unstable coexistence
equilibrium, and E2 is an unstable saddle point. In area 5, E1 is an unstable coexistence equi-
librium, E2 is an unstable saddle point, and E3 is stable or unstable. In area 6, E1 is a stable
equilibrium and the stability of E2 and E3 is the same as in area 5. In area 7, stable equilibria
[K, 0] and E1, and an unstable saddle point E2 exist. The parameters were set as follows:
e = 1, a = 0.63, b = 5, m = 0.1, m1 = 0.01, c = 0.1, z = 2 (a, b) or z = 5 (c, d) and g∞ = 0
(a, c) or g∞ = 0.2 (b, d).

increase in area 1 where one stable equilibrium exists, and a decrease in the areas of multiple

equilibria (Fig. 9a, b). Although some areas (3, 5, and 6) of coexistence equilibria increase
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under higher g∞, some (4 and 7) entirely disappear (Fig. 9a, b).

An increase of parameter z moves LP curve down along the x axis and therefore increases

areas 4 and 7 inside the bifurcation fork where multiple equilibria exist (Fig. 9a, c). In these

areas, [K, 0] is a stable equilibrium, E1 is a stable or unstable equilibrium, and E2 is a saddle

point. In addition, LP curve and BP curve almost merge under increased z leading to the

disappearance of areas 5 and 6, the remaining areas of multiple equilibria (Fig. 9c).

The bifurcation diagram for which both parameters were increased combines the trends ob-

served under the increase of only one parameter. The shape of BP curve significantly changes

and the bifurcation fork moves down along the x axis slightly increasing the area of multiple

equilibria (Fig. 9). All areas of multiple equilibria exist (Fig. 9). An increase of both g∞ and z

causes the decrease of the only trivial equilibrium area, area 2 (Fig. 9).

Finally, a homoclinic bifurcation curve further distinguishing the areas of multiple equilibria

was detected during the bifurcation analysis (not shown). Once a stable limit cycle hits this

curve (or more precisely the corresponding homoclinic loop), the limit cycle ceases to exist.

However, since the issue of homoclinic bifurcation is above the level of knowledge of an

undergraduate student, I will not examine this type of system behaviour here.
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5 Discussion

The presented and analyzed model (11) is derived from the model of hemiparasite-host in-

teraction by Fibich et al. (2010)(8), an extension of the well-known Rosenzweig-MacArthur

predator-prey model (7) (Berryman, 1992; Kot, 2001; Pastor, 2008). Fibich et al. (2010)

showed that the addition of the light availability function (9), a function introducing shad-

ing of the parasite by the host, to the model made the model more realistic. Here, I modified

this function into a more general form (10) and similarly as Fibich et al. (2010) examined the

hemiparasite-host coexistence along a productivity gradient of the environment. The produc-

tivity of the environment corresponded to the carrying capacity of the environment for the host

species (K). The generalization involved the function exponent, parameter z, and the limit of

the function when host biomass approach the infinity, parameter g∞. Initial values of these

parameters were set to z = 2 and g∞ = 0, which resulted in the model of Fibich et al. (2010).

Isocline analysis provided various results depending on the value of parameter g∞, which de-

termined the shape of the hemiparasite isocline and existence (or not) of the second intersection

point, the point B. If the point B exists (g∞ < m
ea

, 19), all coexistence equilibria lie at the in-

termediate K suggesting the coexistence of both species only under intermediate productivity

of the environment. The species are not able to coexist under low and high environment pro-

ductivities resulting in the extinction of the hemiparasite due to insufficient host biomass and

strong light competition imposed by the host, respectively. This is consistent with the findings

of Fibich et al. (2010). However, if the point B does not exist (g∞ > m
ea

, 18), the behaviour

of the model especially for higher values of K is different. Whereas no coexistence equilibria

were observed for high K and low g∞, there is always a stable coexistence equilibrium for

high K and sufficiently high g∞. Fibich et al. (2010) observed similar behaviour regarding

the coexistence of both species under high productivity after the exclusion of the hemipara-

site shading by the host. However, this behaviour is not realistic when compared with field

observations reporting the absence of many hemiparasitic species from highly productive sites

(Hadač, 1969; Mudrák and Lepš, 2010; Hejcman et al., 2011). It is probably caused by un-

derestimating light competition imposed by the host vegetation and affecting the hemiparasite

biomass and its existence. Therefore, it rather corresponds to the behaviour of holoparasites,

which do not depend on light for their growth. In addition, parameter z also influences the
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shape of the hemiparasite isoclines and shortens the range (A,B) when B exists, but its effect

on the model behaviour is not so profound as in the case of g∞.

Bifurcation analysis showed that the number of coexistence equilibria increases with increas-

ing the host carrying capacity K and their stability changes as well (Fig. 8). Both parameters

markedly affect the areas of different quantity and stability of equilibria within the bifurcation

diagrams (Fig. 9). Major effects induced by changing both parameters (g∞ and z) or either of

them are the modification of the areas of multiple equilibria and the decrease of the area where

only the trivial equilibrium exists (area 2, Fig. 9).

If the second intersection point of the hemiparasite isocline with the x axis exists, the model

results are in agreement with the results of two recent models examining the host-hemiparasite

interaction. The non-spatial model of Cameron et al. (2009) revealed stable dynamics under

low-nutrient levels, but unstable dynamics under high-nutrient levels suggesting the coexis-

tence of hemiparasites and hosts only under low-nutrient levels. The extinction of the hemi-

parasite under the high productivity of the environment was also confirmed by Fibich et al.

(2010). In contrast, if there is only one intersection point of the hemiparasite isocline with

the x axis, the model results indicating stable dynamics under the high productivity of the

environment are not in agreement with the results of both studies. Additionaly, another type

of bifurcation was revealed in the presented and analyzed model under the initial parameter

values set by Fibich et al. (2010): a homoclinic bifurcation. This is the bifurcation when a

stable limit cycle surrounding an unstable equilibrium collides with a saddle point.

The Rosenzweig-MacArthur model including a carrying capacity of the prey (7) generally

exhibits rather simple dynamics. However, certain extensions of the model can rapidly change

its behaviour leading to more complex dynamics, when global bifurcations emerge (Zhu et al.,

2002). A bifurcation describes a qualitative change of the model dynamics caused by a small

change in the model parameter (Kuznetsov, 2010). A complex dynamical behaviour was also

observed for the presented and analyzed model (11) comprising several forms of bifurcation

– a fold, cusp, Hopf, Bogdanov–Takens, and homoclinic bifurcations. Similarly complex

dynamics were recently found in other ecological models (e.g. Baer et al., 2006; Lade et al.,

2013; Aguirre et al., 2014; Přibylová and Berec, 2014). Fold and cusp bifurcations were

revealed in the model by Lade et al. (2013) regarding the human influence on regime-shifts
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of the populations. Even richer bifurcation structure was identified in a two-stage population

model (Baer et al., 2006), in a predator-prey model involving a strong Allee effect (Aguirre

et al., 2014), and in a predator-interference model (Přibylová and Berec, 2014).

A mathematical model tries to describe a real system that we are focused on in its simplified

form. This simplification is essential when we aim to understand and explain general patterns.

Even the presented and analyzed model was designed assuming many simplifications. One

of these simplifications concerns the characterization of host and hemiparasite populations

exclusively by their biomasses. Therefore, the biomass increase cannot be further interpreted,

e.g. as a new seedling emergence or the increase of the size of individual plant. Moreover, the

extent of competition and parasitism depending purely on biomass is another simplification,

which enables the model application only to short, herbaceous vegetation growing in the same

vegetation layer. Furthermore, the model neglects any seasonality regarding the amount of

biomass, rate of growth, competition, parasitism, and mortality. As these variables are species-

specific, the incorporation of seasonality to the model will result in the loss of model generality.

Under higher values of g∞, the presented and analyzed model (11) does not respond to field

observations and provides unrealistic results. There are other ways of making the original

model more realistic. As the light requirements of the hemiparasite differ according to its de-

velopmental stage (light competition is crutial especially in the seedling stage (Hejcman et al.,

2011; Petrů and Lepš, 2000)), it would be appropriate to structure the hemiparasite population

by age (seedlings vs. adult plants). In addition, water and mineral nutrients are usually con-

sidered as two different resources, which are taken up by plants. The separation of water and

nutrient resource pool to two distinctive resources seems to be crucial according to the findings

of Těšitel et al. (2014). They provided evidence about the interactive effect of mineral nutrients

and water availability on the fundamental parameters of the host-hemiparasite association and

highlighted the importance of experiments manipulating both of these resources. As hemipar-

asitic plants commonly grow in open habitats parasitizing many host species simultaneously

and co-occuring with other non-host species, the addition of more host or non-host autotrophic

plant species to the model is another way of improving the model.
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6 Conclusions

The presented and analyzed model examining the hemiparasite-host coexistence along a pro-

ductivity gradient showed a complex dynamical behaviour comprising several forms of bi-

furcation. The number of coexistence equilibria increased with increasing the host carrying

capacity K and their stability changed as well. Both generalized parameters of the light avail-

ability function (the parameters g∞ and z) markedly affected the areas of different quantity and

stability of equilibria. Especially, parameter g∞ was shown to significantly affect the model

behaviour. Under lower values of g∞ (g∞ < m
ea

), the behaviour of the model was consistent

with the original model and with field observations reporting the absence of many hemipara-

sitic species from highly productive sites. All coexistence equilibria lied at the intermediate

values ofK suggesting the coexistence of both species only under intermediate productivity of

the environment. However, the behaviour of the model was not in agreement with the original

model and field observations under higher values of g∞ (g∞ > m
ea

), when the model reached

stable dynamics even under the high productivity of the environment. Such an unrealistic

result was probably caused by an underestimation of light competition imposed by the host

vegetation and affecting the hemiparasite biomass and its existence.
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