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Abstract – The Boolean factor analysis is an established method for
analysis and preprocessing of Boolean data. In the basic setting, this method
is designed for finding factors, new variables, which may explain or describe
the original input data. Many real-world data sets are more complex than
a simple data table. For example almost every web database is composed
from many data tables and relations between them. In this thesis, a new
approach to the Boolean factor analysis, which is tailored for multi-relational
data, is presented. Sometimes, Boolean data can be limiting. Especially
the relation between input matrices is not necessarily of a Boolean nature.
Usually this relation represents linkages to some degree, e.g. how much
a user likes or dislikes a movie. Using Boolean method for such data—
data must be somehow binarized first—leads to a loss of information. We
reformulate decomposition problem for multi-relational data with ordinal
relations. Then we propose a new algorithm for such data along with an
experimental evaluation.
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Preface

This thesis focuses to explore the problem of finding hidden variables, i.e.
factors in multi-relational data. The thesis is based on three papers listed
below:

• Krmelova M., Trnecka M.: Boolean Factor Analysis of Multi-relational
Data. In: Ojeda-Aciego M., Outrata J. (Eds.): CLA 2013: Proceedings
of the 10th International Conference on Concept Lattices and Their
Applications, 2013, pp. 187–198, La Rochelle, France, October 2013.

• Trnecka M., Trneckova M.: An Algorithm for the Multi-Relational
Boolean Factor Analysis based on Essential Elements. In: K. Bertet,
S. Rudolph (Eds.): CLA 2014: Proceedings of the 11th International
Conference on Concept Lattices and Their Applications, 2014, pp. 107–
118.

• Trnecka M., Trneckova M.: Decomposition of Boolean Multi-Relational
Data with Graded Relations. In Proceedings of the 8th IEEE Inter-
national Conference on Intelligent Systems (IEEE IS’16), 2016, pp.
221–226.

The full list of my publications can be found on my personal web page
www.marketa-trneckova.cz.

This thesis consists of five chapters. The first chapter includes a brief
introduction and an overview of related works. Second chapter contains a
notation used in the thesis, a short introduction to BMF, and a background
of the thesis are presented. Next chapter proceed with the main part of this
thesis. In Chapter 3 we outline a problem setting, basic idea of our algorithm
for a new kind of multi-relational data and algorithm itself. The algorithm
is experimentally evaluated in Chapter 4. The thesis is closed by Chapter 5
containing a summary of the work.
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Chapter 1

Introduction

The Boolean matrix factorization (or decomposition), also known as the
Boolean factor analysis, has gained interest in the data mining community.
Methods for decomposition of multi-relational data, i.e. complex data com-
posed from many data tables interconnected via relations between objects or
attributes of these data tables, were intensively studied, especially in the past
few years. Multi-relational data is a more truthful and therefore often also
more powerful representation of reality. An example of this kind of data can
be an arbitrary relational database. In this work we start with the subset of
multi-relational data, more precisely with the multi-relational Boolean data,
where data tables and relations between them contain only 0s and 1s. Then
we proceed towards more general case, where connection between data tables
could have non boolean character.

It is important to say that many real-word data sets are more complex
than one simple data table. Relations between this tables are crucial, be-
cause they carry additional information about the relationship between data
and this information is important for understanding data as a whole. For
this reason methods which can analyze multi-relational data usually take
into account relations between data tables unlike classical Boolean matrix
factorization methods which can handle only one data table.

The Multi-Relational Boolean matrix factorization (MBMF) is used for
many data mining purposes. The basic task is to find new variables hidden
in data, called multi-relational factors, which explain or describe the original
input data. There exist several ways how to represent multi-relational factors.
We represent multi-relational factor as an ordered set of classic factors from
data tables, always one factor from each data table. The fact, that classic
factors are connected into multi-relational factor is matter of semantic of
relation between data tables.

The main problem is how to connect classic factors into one multi-relational.

3
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The main aim of this work is to present the Boolean factor analysis of
multi-relational data, which takes into account relations between data tables
and extract more detailed information from this complex data and propose
a new algorithm which utilize so-called essential elements from the theory
of Boolean matrices. The essential elements provide information about fac-
tors which cover a particular part of data tables. This information can be
used for a better connection of classic factors into one multi-relational fac-
tor. Moreover, in this paper we present a new decomposition method for
multi-relational data composed from Boolean data tables interconnected via
relation with values from ordered set L bounded by 0 and 1, such as the
five-element scale L = {0, 1

4
, 1
2
, 3
4
, 1}. For forming multi-relational factors we

use a calculus over Fuzzy logic.

1.1 Related Work

The Boolean matrix factorization (or decomposition), also known as the
Boolean factor analysis, has gained interest in the data mining community
during the past few years.

In the literature, we can find a wide range of theoretical and application
papers about the Boolean factor analysis. The overview of the Boolean ma-
trix theory can be found in [10]. A good overview from the BMF viewpoint
is in e.g. [14]. For our work is the most important [3], where were first used
formal concepts as factors.

Several heuristic algorithms for the BMF were proposed. Overview of
BMF methods can be found in [2, 12].

From wide range of applications papers let us mentioned only [15] and
[16], where the BMF is used for solving the Role mining problem.

In the literature, there can be found several methods for the latent factor
analysis of ordinal data and also of multi-relational data [11], but using these
methods for Boolean data has proved to be inconvenient many times.

The BMF of multi-relational data is not directly mentioned in any pre-
vious work. Indirectly, it is mentioned, in a very specific form, in [13] as
Joint Subspace Matrix Factorization, where there are two Boolean matrices,
which both share the same rows (or columns). The main aim is to find a
set of shared factors (factors common for both matrices) and a set of specific
factors (factors which are either in first or second matrix, not in both). This
can be viewed as particular, very limited setting of our work.

From our point of view are also relevant works [6, 9]. These introduce the
Relational formal concept analysis (RCA), i.e. the Formal concept analysis
on multi-relational data. Our approach is different from the RCA. In our
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approach, we extract factors from each data table and connect these factors
into more general factors. In RCA, they iteratively merge data tables into
one in the following way: in each step they computed all formal concepts
of one data table and these concepts are used as additional attributes for
the merged data table. After obtaining a final merged data table, all formal
concepts are extracted. Let us mention that our approach delivers more
informative results than a simple use of BMF on merged data table from
RCA, moreover getting merged data table is computationally hard.
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Chapter 2

Preliminaries and basic notions

2.1 Boolean Matrix Factorization

We assume familiarity with the basic notions of FCA [4]. In this work, we use
the binary matrix terminology, because it is more convenient from our point
of view. Consider an n×m object-attribute matrix C with entries Cij ∈ {0, 1}
expressing whether an object i has an attribute j or not, i.e. C can be
understood as a binary relation between objects and attributes. Because
there is no danger of confusion we can consider this matrix as a formal
context 〈X, Y,C〉, where X represents a set of n objects and Y represents a
set of m attributes.

A formal concept of 〈X, Y,C〉 is any pair 〈E,F 〉 consisting of E ⊆ X (so-
called extent) and F ⊆ Y (so-called intent) satisfying E↑ = F and F ↓ = E
where E↑ = {y ∈ Y | for each x ∈ E : 〈x, y〉 ∈ C}, and F ↓ = {x ∈ X | for
each y ∈ F : 〈x, y〉 ∈ C}.

The goal of the BMF (the idea from [1, 8]) is to find decomposition

C = A ◦B (2.1)

of I into a product of an n×k object-factor matrix A over {0, 1}, a k×m ma-
trix B over {0, 1}, revealing thus k factors, i.e. new, possibly more fundamen-
tal attributes (or variables), which explain original m attributes. We want
k < m and, in fact, k as small as possible in order to achieve parsimony: The
n objects described by m attributes via C may then be described by k factors
via A, with B representing a relationship between the original attributes and
the factors. This relation can be interpreted in the following way: an object
i has an attribute j if and only if there exists a factor l such that i has l (or,
l applies to i) and j is one of the particular manifestations of l.

7
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The product ◦ in (2.1) is a Boolean matrix product, defined by

(A ◦B)ij =
∨k

l=1Ail ·Blj, (2.2)

where
∨

denotes maximum (truth function of logical disjunction) and · is
the usual product (truth function of logical conjunction). For example the
following matrix can be decomposed into two Boolean matrices with k < m.1 1 0

1 1 1
1 0 1

 =

0 1
1 1
1 0

 ◦ (1 0 1
1 1 0

)

The least k for which an exact decomposition C = A ◦ B exists is in the
Boolean matrix theory called the Boolean rank (or Schein rank).

An optimal decomposition of the Boolean matrix can be found via Formal
concept analysis. In this approach, the factors are represented by formal
concepts, see [3]. The aim is to decompose the matrix C into a product
AF ◦ BF of Boolean matrices constructed from a set F of formal concepts
associated to C. Let

F = {〈A1, B1〉 , . . . , 〈Ak, Bk〉} ⊆ B(X, Y,C),

where B(X, Y,C) represents set of all formal concepts of context 〈X, Y,C〉.
Denote by AF and BF the n× k and k ×m binary matrices defined by

(AF)il =

{
1 if i ∈ Al

0 if i /∈ Al
(BF)lj =

{
1 if j ∈ Bl

0 if j /∈ Bl

for l = 1, . . . , k. In other words, AF is composed from characteristic vectors
Al. Similarly for BF . The set of factors is a set F of formal concepts of
〈X, Y,C〉, for which holds C = AF ◦ BF . For every C such a set always
exists. For details see [3].

Interpretation factors as a formal concepts is very convenient for users
and we follow this point of view in our work. Because a factor can be seen
as a formal concept, we can consider the intent part (denoted by intent(F ))
and the extent part (denoted by extent(F )) of the factor F .

2.2 Scales of Degrees and Truth Functions ⊗
and →

In Section 3.3 we will go beyond the Boolean case, where relations in multi-
relational data can be seen as matrices with entries from some ordinal scale.
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Grades of ordinal scales are conveniently represented by numbers, such as
{1, . . . , 5}. These numbers could be normalized and taken from the unit
interval [0, 1].

Technically, we assume that the grades are taken from a certain class of
partially ordered bounded scales L. In particular, we assume that L conforms
to the structure of a complete residuated lattice used in Fuzzy logic.

Complete residuated lattice L = 〈L,∧,∨,⊗,→, 0, 1〉, where L is partially
ordered set bounded by 0 and 1 in which arbitrary infima

∧
and suprema∨

exist. Operation ⊗ is comutative, associative and has 1. Operation →
residuum a → b = max{c ∈ L |a ⊗ c ≤ b}. Let us note that ⊗ and →
represent a true function of many-valued conjunction and implication. For
more details see [5, 7].

In our experiments we mainly use finite scales with the the Gödel struc-
ture: a ⊗ b = min(a, b) and a → b = 1 if a ≤ b and a → b = b otherwise.
Many other definitions of ⊗ and → exist [5].

Fuzzy logic can be utilized for modeling a relationship “being compatible”
(“satisfying relation”) between factors in multi-relational factor.

We consider the formulas ϕ(i) saying “factor Fi is compatible with re-
lation R” and ψ(j) saying “factor Fj is compatible with relation R”, and
consider a the truth degree of ϕ(i) and b the truth degree of ψ(j), i.e.

||ϕ(i)|| = a and ||ψ(j)|| = b. (2.3)

Now, according to fuzzy logic, the truth degree of the formula ϕ(i)&ψ(j)
saying “factor Fi is compatible with relation R and factor Fj is compatible
with relation R” is computed by

||ϕ(i)&ψ(j)|| = ||ϕ(i)|| ⊗ ||ψ(j)|| (2.4)

where ⊗ : L× L→ L is a truth function of many-valued conjunction &.
We consider the formula ϑ(l) saying “object l is compatible with relation

R” and consider cl the truth degree of ϑ(l), i.e. ||ϑ(l)|| = cl, where l is from
some index set J . Then truth degree of formula (∀l)(ϑ(l)) which says “all
objects from index set J are compatible with relation R ”, is computed by

||(∀l)(ϑ(l))|| =
∧

l∈J ||ϑ(l)||, (2.5)

where
∧

denotes the infimum.
We consider the formulas ϕ(i, j) meaning “object i belongs to factor Fj”

and ψ(i, l) saying “object i has attribute l in relation R”, and consider a the
truth degree of ϕ(i, j) and b the truth degree of ψ(i, l). Now, according to
fuzzy logic, the truth degree of the formula “if ϕ(i, j) then ψ(i, l)” which says
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“if object i belongs to factor Fj then object i has attribute l in relation R”
is computed by

||ϕ(i, j)⇒ ψ(i, l)|| = ||ϕ(i, j)|| → ||ψ(i, l)|| (2.6)

where →: L× L→ L is a truth function of many valued implication.



Chapter 3

Multi-relational factor analysis

3.1 Problem definition

In this section we describe our basic problem setting. We have two Boolean
data tables C1 and C2, which are interconnected with relation RC1C2 . This
relation is over the objects of first data table C1 and the attributes of second
data table C2, i.e. it is an objects-attributes relation. In general, we can also
define an objects-objects relation or an attributes-attributes relation. Our
goal is to find factors, which explain the original data and which take into
account the relation RC1C2 between data tables.

Definition 1. Relation factor (pair factor) on data tables C1 and C2 is a
pair

〈
FC1
i , FC2

j

〉
, where FC1

i ∈ FC1 and FC2
j ∈ FC2 (FCi

denotes the set of
factors of data table Ci) and satisfying relation RC1C2.

There are several ways how to define the meaning of “satisfying relation”
from Definition 1. We will define the following three approaches (this defi-
nition holds for an object-attribute relation, other types of relations can be
defined in similar way):

• FC1
i and FC2

j form pair factor 〈FC1
i , FC2

j 〉 if holds:

⋂
k∈extent(FC1

i )

Rk 6= ∅ and
⋂

k∈extent(FC1
i )

Rk ⊆ intent(FC2
j ),

where Rk is a set of attributes, which are in relation with an object k.
This approach we called narrow (it is analogy of the narrow operator
in [9]).

11
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• FC1
i and FC2

j form pair factor 〈FC1
i , FC2

j 〉 if holds:
 ⋂

k∈extent(FC1
i )

Rk

 ∩ intent(FC2
j )

 6= ∅.
We called this approach wide (it is analogy of the wide operator in [9]).

• for any α ∈ [0, 1], F i
1 and FC2

j form pair factor 〈FC1
i , FC2

j 〉 if holds:∣∣∣(⋂k∈extent(FC1
i )

Rk

)
∩ intent(FC2

j )
∣∣∣∣∣∣⋂k∈extent(FC1

i )
Rk

∣∣∣ ≥ α.

We called it an α-approach.

Remark 1. It is obvious, that for α = 0 and replacing ≥ by >, we obtain
the wide approach and for α = 1, we obtain the narrow one.

Lemma 1. For α1 > α2 holds, that a set of relation factors counted by α1 is
a subset of a set of relation factors obtained with α2.

We demonstrate our approach to factorisation of mutli-relational Boolean
data by a small illustrative example.

Example 1. Let us have two data tables CW (Table 3.1) and CM (Table 3.2).
CW represents women and their characteristics and CM represents men and
their characteristics.

Table 3.1: CW

a
th
le
te

u
n
d
er
gr
a
d
u
a
te

w
a
n
ts

ki
d
s

is
a
tt
ra
ct
iv
e

Abby × × ×
Becky × ×
Claire × ×
Daphne × × × ×

Table 3.2: CM

a
th
le
te

u
n
d
er
gr
a
d
u
a
te

w
a
n
ts

ki
d
s

is
a
tt
ra
ct
iv
e

Adam × ×
Ben × ×
Carl × × ×
Dave × ×

Table 3.3: RCWCM

a
th
le
te

u
n
d
er
gr
a
d
u
a
te

w
a
n
ts

ki
d
s

is
a
tt
ra
ct
iv
e

Abby × ×
Becky × ×
Claire × × ×
Daphne × × × ×

Moreover, we consider relation RCWCM
(Table 3.3) between the objects

of first the data table and the attributes of the second data table. In this
case, it could be a relation with meaning “woman looking for a man with the
characteristics”.
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Remark 2. Generally, nothing precludes the object-object relation (whose
meaning might be “woman likes a man”) and the attribute-attribute relation
(whose meaning might be “the characteristics of women are compatible with
the characteristics of men in the second data table”).

Factors of data table CW are:

• FCW
1 = 〈{Abby, Daphne}, {undergraduate, wants kids, is attractive}〉

• FCW
2 = 〈{Becky, Daphne}, {athlete, wants kids}〉

• FCW
3 = 〈{Abby, Claire, Daphne}, {undergraduate, is attractive}〉

Factors of data table CM are:

• FCM
1 = 〈{Ben, Carl}, {undergraduate, wants kids}〉

• FCM
2 = 〈{Adam}, {athlete, is attractive}〉

• FCM
3 = 〈{Adam, Carl}, {athlete}〉

• FCM
4 = 〈{Dave}, {wants kids, is attractive}〉

These factors were obtained via GreConD algorithm from [3]. We have
two sets of factors (formal concepts), first set FCW

= {FCW
1 , FCW

2 , FCW
3 }

factorising data table CW and FCM
= {FCM

1 , FCM
2 , FCM

3 } factorising data
table CM .

Now we use so far unused relation RCWCM
, between CW and CM to join

factors of CW with factors of CM into relational factors. For the above defined
approaches we get results which are shown below. We write it as binary
relations, i.e FCW

i and FCM
j belongs to relational factor 〈FCW

i , FCM
j 〉 iff FCW

i

and FCM
j are in relation:

Narrow approach

FCM
1 FCM

2 FCM
3 FCM

4

FCW
1 ×

FCW
2

FCW
3 ×

Wide approach

FCM
1 FCM

2 FCM
3 FCM

4

FCW
1 × ×

FCW
2 × × × ×

FCW
3 ×

0.6-approach

FCM
1 FCM

2 FCM
3 FCM

4

FCW
1 ×

FCW
2 ×

FCW
3 ×

0.5-approach

FCM
1 FCM

2 FCM
3 FCM

4

FCW
1 × ×

FCW
2 ×

FCW
3 ×

The relational factor in form 〈FCW
i , FCM

j 〉 can be interpreted in the fol-
lowing ways:
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• Women, who belong to extent of FCW
i like men who belong to extent of

FCM
j . Specifically in this example, we can interpret factor 〈FCW

1 , FCM
1 〉,

that Abby and Daphne should like Ben and Carl.

• Women, who belong to extent of FCW
i like men with characteristic in

intent of FCM
j . Specifically in this example, we can interpret factor

〈FCW
1 , FCM

1 〉, that Abby and Daphne should like undergraduate men,
who want kids.

• Women, with characteristic from intent FCW
i like men who belong to ex-

tent FCM
j . Specifically in this example, we can interpret factor

〈FCW
1 , FCM

1 〉, that undergraduate, attractive women, who want kids
should like Ben and Carl.

• Women, with characteristic from intent FCW
i like men with character-

istic in intent of FCM
j . Specifically in this example, we can interpret

factor 〈FCW
1 , FCM

1 〉, that undergraduate, attractive women, who want
kids should like undergraduate men, who want kids.

Interpretation of the relation between FCW
i and FCM

j is driven by the

approach used. If we obtain factor 〈FCW
i , FCM

j 〉 by narrow approach, we

can interpret the relation between FCW
i and FCM

j : “women who belong to

FCW
i , like men from FCM

j completely”. For example factor 〈FCW
1 , FCM

1 〉 can
be interpreted: “All undergraduate attractive women, who want kids, wants
undergraduate men, who want kids.”

If we obtain factor 〈FCW
i , FCM

j 〉 by wide approach, we can interpret the

relation between FCW
i and FCM

j : “women who belong to FCW
i , like something

about the men from FCM
j ”. For example 〈FCW

2 , FCM
1 〉 can be interpreted:

“All athlete woman, who want kids, like undergraduate men or man, who
want kids.”

If we get 〈FCW
i , FCM

j 〉 by α-approach with value α, we interpret the re-

lation between FCW
i and FCM

j as: “women from FCW
i , like men from FCM

j

enough”, where α determines measurement of tolerance.

Remark 3. Not all factors from data tables CW or CM must be present
in any relational factor. It depends on the used relation. For example in
Example 1 in narrow approach, the factors FCM

2 , FCM
3 , FCM

4 are not involved.
In this case, we can add these simple factors to the set of relational factors
and consider two types of factors. This factors are not pair factors, but
classical factors from CW or CM . Of course this depends on a particular
application.
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Remark 4. For one factor FC1
i from the data table C1, two factors from the

data table C2 (for example FC2
j1

and FC2
j2

) can satisfy the relation. In this

case we can add factor 〈FC1
i , FC2

j1
&FC2

j2
〉, where FC2

j1
&FC2

j2
means

extent(FC2
j1

&FC2
j2

) = extent(FC2
j1

) ∪ extent(FC2
j2

)

and
intent(FC2

j1
&FC2

j2
) = intent(FC2

j1
) ∩ intent(FC2

j2
),

instead of 〈FC1
i , FC2

j1
〉 and 〈FC1

i , FC2
j2
〉 to the relation factor set (in the case,

that we consider an object-attribute relation). For example, by using 0.5-
approach in Example 1, we get relational factors〈

〈{Abby,Daphne}, {undergraduate,wants kids, is attractive}〉,
〈{Ben,Carl}, {undergraduate,wants kids}〉

〉
and 〈

〈{Abby,Daphne}, {undergraduate,wants kids, is attractive}〉,
〈{Dave}, {wants kids, is attractive}〉

〉
.

This factors can be replaced with factor〈
〈{Abby,Daphne}, {undergraduate,wants kids, is attractive}〉,

〈{Ben,Carl,Dave}, {wants kids}〉
〉
.

Remark 5. Another, simpler approach to multi-relational data factorization
is such, that we do factorization of the relation RC1C2. This is correct because
we can imagine the relation between data tables C1 and C2 as another data
table. For each factor, we take the extent of this factor and compute concept
in C1, which contains this extent. Similarly for intents of factors and concepts
in C2. For example one of the factors of RCWCM

from Example 1 is:

〈{Becky, Daphne}, {athlete, wants kids}〉.

Relational factor computed from this factor will be〈
〈{Becky, Daphne}, {athlete, wants kids}〉,

〈{Carl}, {athlete, undergraduate, wants kids}〉
〉
.

This approach seems to be better in terms of that we get pair of concepts
for every factors, but we do not get an exact decomposition of data tables C1
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and C2. Moreover this approach can not be extended to n-ary relations.

3.1.1 n-tuple relational factors, n-ary relations

Above approaches can be generalized for more than two data tables. In this
generalization, we do not get factor pairs, but generally factor n-tuples. Now
we extend Definition 1 to general definition of relational factor.

Definition 2. Relation factor on data tables C1, C2, . . . Cn is a n-tuple〈
FC1
i1
, FC2

i2
, . . . FCn

in

〉
, where F

Cj

ij
∈ FCj

where j ∈ {1, . . . , n} (FCj
denotes

set of factors of data table Cj) and satisfying relations RClCl+1
or RCl+1Cl

for
l ∈ {1, . . . , n− 1}.

We considered only binary relations between data tables, for which holds,
that there exists only one relation interconnecting data tables Ci and Ci+1

for i ∈ {1, . . . , n − 1}. We left more general relations into the Section 3.3.
Let us mentioned, that this generalization of our approach is possible in the
opposite of Remark 5. We show n-tuple relational factors on example.

Example 2. Let data table CP (Table 3.4) represents people and their char-
acteristic, CR (Table 3.5) represents restaurants and their characteristics and
CC (Table 3.6) represents which ingredients are included in national cuisines.

Table 3.4: CP

E
u
ro
pe
a
n

A
si
a
n

A
m
er
ic
a
n

m
a
le

fe
m
a
le

Adam × ×
Ben × ×
Carol × ×
Dale × ×
Emily ×
Frank ×
Gabby × ×

Table 3.5: CR

lu
xu

ry

o
rd
in
a
ry

ex
pe
n
si
ve

ch
ea
p

Restaurant 1 × ×
Restaurant 2 × ×
Restaurant 3 × ×
Restaurant 4 × ×
Restaurant 5 × ×

Relation RCPCC
(Table 3.7) represents relationship “person likes ingre-

dients” and relation RCRCC
(Table 3.8) represents relationship “restaurant

cooks national cuisine”. In Tables 3.9, 3.10, 3.11, we can see factors of data
tables CP , CR and CC, respectively.

One of the relational factors, which we get by 0.5-approach, is
〈FCP

1 , FCC
11 , F

CR
3 〉 and could be interpreted as “men would enjoy eating in lux-

ury restaurants where the meals are cheap”. Another factor is 〈FCP
3 , FCC

2 , FCR
1 〉
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Table 3.6: CC

ve
ge

ta
bl

e

fr
u

it

fi
sh

se
a

fo
od

le
gu

m
es

m
u

tt
o

n

la
m

b

o
li

ve

vi
n

e

h
er

bs

ch
ee

se

m
u

sh
ro

o
m

h
o

t
sp

ic
e

ri
ce

be
ef

po
rk

po
u

lt
ry

ba
m

bo
o

sh
oo

t

n
u

t

la
rd

ra
bb

it

ve
n

is
o

n

in
n

a
rd

s

co
rn

pa
st

a
/

n
oo

d
le

po
ta

to

pa
st

ry

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

Greek × × × × × × × × × × × ×
Chinese × × × × × × × × × × × × × ×
French × × × × × × × × × × × × × × ×
Indian × × × × × × × × ×
Czech × × × × × × × × × × × × × ×
Spanish × × × × × × × × × × ×
Mexican × × × × × × × × × × ×
Italian × × × × × × × × × × × ×
American × × × × × × × × ×
Japanese × × × ×
German × × × × × × × ×

Table 3.7: RCPCC

ve
ge

ta
bl

e

fr
u

it

fi
sh

se
a

fo
od

le
gu

m
es

m
u

tt
o

n

la
m

b

o
li

ve

vi
n

e

h
er

bs

ch
ee

se

m
u

sh
ro

o
m

h
o

t
sp

ic
e

ri
ce

be
ef

po
rk

po
u

lt
ry

ba
m

bo
o

sh
oo

t

n
u

t

la
rd

ra
bb

it

ve
n

is
o

n

in
n

a
rd

s

co
rn

pa
st

a
/

n
oo

d
le

po
ta

to

pa
st

ry

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

Adam × × × × × ×
Ben × × × × × × ×
Carol × × × × × × × × × ×
Dale × × × × × × × × ×
Emily × × × × × × ×
Frank × × × × ×
Gabby × × × × ×

and could be interpreted as “women enjoy eating in ordinary cheap restau-
rants”.
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Table 3.8: RCRCC

G
re
ek

C
h
in
es
e

F
re
n
ch

In
d
ia
n

C
ze
ch

S
pa
n
is
h

M
ex
ic
a
n

It
a
li
a
n

A
m
er
ic
a
n

J
a
pa
n
es
e

G
er
m
a
n

Restaurant 1 × × × × ×
Restaurant 2 × × × × × ×
Restaurant 3 × × × ×
Restaurant 4 × × × ×
Restaurant 5 × × × ×

Table 3.9: Factors of data table CP

FCP
i Extent Intent

FCP
1 {Adam,Ben,Dale,Frank} {male}

FCP
2 {Adam,Emily,Frank} {American}

FCP
3 {Carol,Emily,Gabby} {female}

FCP
4 {Ben,Carol} {European}

FCP
5 {Dale,Gabby} {Asian}

Table 3.10: Factors of data table CR

FCR
i Extent Intent

FCR
1 {Restaurant 4,Restaurant 5} {ordinary, cheap}

FCR
2 {Restaurant 1,Restaurant 2} {luxury, expensive}

FCR
3 {Restaurant 3} {luxury, cheap}

Table 3.11: Factors of data table CC

FCC
i Extent Intent

FCC
1 {Chinese,French,Spanish,Mexican,American,German} {1, 3, 15, 16, 17}

FCC
2 {Greek,Spanish, Italian} {1, 2, 3, 4, 8, 9, 10}

FCC
3 {French,Czech} {1, 10, 11, 12, 15, 16, 17, 21, 22, 23}

FCC
4 {Chinese, Indian,Spanish,Mexican, Italian, Japanese} {1, 3, 4, 14}

FCC
5 {Greek,French, Indian} {1, 3, 4, 6, 7}

FCC
6 {Chinese} {1, 3, 4, 5, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25}

FCC
7 {Italian,American} {1, 3, 4, 11, 27}

FCC
8 {Greek,Czech,Mexican} {1, 2, 5}

FCC
9 {Indian,Mexican} {1, 2, 3, 4, 13, 14, 17}

FCC
10 {Czech, Itelian,German} {1, 2, 12}

FCC
11 {Czech, ,American} {1, 15, 16, 17, 26}

FCC
12 {Greek} {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 19}

FCC
13 {Greek,French, Spanish, Italian} {1, 3, 4, 9, 10}

FCC
14 {Chinese,Czech} {1, 5, 12, 15, 16, 17, 20}

FCC
15 {French,Czech,German} {1, 12, 15, 16, 17, 22}

FCC
16 {Mexican} {1, 2, 3, 4, 5, 13, 14, 15, 16, 17, 24}

FCC
17 {Chinese, Itelian} {1, 3, 4, 12, 14, 25}
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3.1.2 Representation of connection between factors

We can represent the relational factors via graph (n-partite). See Figure 3.1,
which presents the results from the previous example. Each group of nodes
(FCP

i , FCC
i , FCR

i ) represents factors of a specific data table. Between two
nodes, there is an edge iff factors representing nodes satisfy the input relation.
Relational factor is path between nodes, which include at most one node from
each group. For example,

〈
FCP
2 , FCC

3 , FCR
1

〉
is a relational factor because

there is an edge between nodes FCP
2 and FCC

3 and between FCC
3 and FCR

1 .

F
CP
1

F
CP
2

F
CP
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F
CP
4

F
CP
5
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1
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Figure 3.1: Representation factors connections via graph.

3.2 Algorithm for MBMF

Before we present the algorithm for the MBMF we show on a simple example
basic ideas that are behind the algorithm. For this purpose we take the same
data as in Example 1 (with different labelling).

As we mentioned above if we take tables C1, C2 and relation RC1C2 , we
obtain with the narrow approach two connections between factors, i.e. two
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Table 3.12: C1

a b c d
1 × × ×
2 × ×
3 × ×
4 × × × ×

Table 3.13: C2

e f g h
5 × ×
6 × ×
7 × × ×
8 × ×

Table 3.14: RC1C2

e f g h
1 × ×
2 × ×
3 × × ×
4 × × × ×

multi-relational factors. These factors explain only 60 percent of data. There
usually exist more factorizations of Boolean data table. Factors in our ex-
ample were obtained with using GreConD algorithm from [3]. GreConD
algorithm select in each iteration a factor which covers the biggest part of
still uncovered data. Now we are in the situation, where we want to obtain
a different set of factors, with more connections between them. For this pur-
pose we can use essential elements. Firstly we compute essential parts of C1

(denoted Ess(C1)) and C2 (denoted Ess(C1)). With the essential part of
data table we mean all essential elements (tables 3.18 and 3.19).

Table 3.15: Ess(C1)

a b c d
1 ×
2 ×
3 × ×
4

Table 3.16: Ess(C2)

e f g h
5 × ×
6 ×
7 ×
8 × ×

Each essential element in Ess(C1) is defined via interval in concept lattice
of C1 (Fig. 3.2a) and similarly for essential elements in Ess(C2) (Fig 3.2b).
In Fig. 3.2a is highlighted interval I1c corresponding to essential element
(C1)1c. In Fig. 3.2b is highlighted interval corresponding to essential ele-
ment (C2)8g. Let us note that concept lattices here are only for illustration
purpose. For computing Ess(C1) and Ess(C2) is not necessary to construct
concept lattices at all. Now, if we use the fact that we can take an arbitrary
concept (factor) from each interval to obtain a complete factorization of data
table, we have several options which concepts can be connect into one. More
precisely we can take two intervals and try to connect each concept from
the first interval with concepts from the second one. Again, we obtain full
factorization of input data tables, but now we can select factors with regard
to a relation between them.

For example, if we take highlighted intervals, we obtain possibly four con-
nections. First highlighted interval contains two concepts c1 = 〈{1, 2, 4}, {c}〉
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c
3

b, d

2
a 1

4

(a)

h e g

5 8
f
6

7

(b)

Figure 3.2: Concept lattices of C1 (a) and C2 (b)

and c2 = 〈{1, 4}, {b, c, d}〉. Second consist of concepts d1 = 〈{6, 7, 8}, {g}〉
and d2 = 〈{8}, {g, h}〉. Only two connections (c1 with d1 and c1 with d2)
satisfy relation RC1C2 , i.e. can be connected.

For two intervals it is not necessary to try all combination of factors. If we
are not able to connect concept 〈A,B〉 from the first interval with concept
〈C,D〉 from the second interval, we are not able connect 〈A,B〉 with any
concept 〈E,F 〉 from the second interval, where 〈C,D〉 ⊆ 〈E,F 〉. Also if we
are not able to connect concept 〈A,B〉 from the first interval with concept
〈E,F 〉 from the second interval, we are not able connect any concept 〈C,D〉
from the first interval, where 〈C,D〉 ⊆ 〈A,B〉, with concept 〈E,F 〉. Let us
note that ⊆ is classical subconcept-superconcept ordering.

Even if we take this search space reduction into account, search in this
intervals is still time consuming. We propose an heuristic approach which
takes attribute concepts in intervals of the second data table, i.e. the bottom
elements in each interval. In intervals of the first data table we take greatest
concepts which can be connected via relation, i.e. set of common attributes
in relation is non-empty. The idea behind this heuristic is that a bigger set
of objects possibly have a smaller set of common attributes in a relation and
this leads to bigger probability to connect this factor with some factor from
the second data table, moreover, if we take factor which contains the biggest
set of attributes in intervals of the second data table.

Because we do not want to construct the whole concept lattice and search
in it, we compute candidates for greatest element directly from relation
RC1C2 . We take all objects belonging to the top element of interval Iij from
the first data table and compute how many of them belong to each attribute
in the relation. We take into account only attributes belonging to object i.
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Table 3.17: Connections between factors

FC2
1 FC2

2 FC2
3 FC2

4

FC1
1 ×
FC1
2 × ×
FC1
3 × × ×

We take as candidate the greatest set of objects belonging to some attribute
in a relation, which satisfies that if we compute a closure of this set in the
first data table, resulting set of objects do not have empty set of common
attributes in a relation.

Applying this heuristic on data from the example, we obtain three factors
in the first data table, FC1

1 = 〈{2, 4}, {a, c}〉, FC1
2 = 〈{1, 3, 4}, {c, d}〉, FC1

3 =
〈{1, 2, 4}, {c}〉 and four factors FC2

1 = 〈{5}, {e, h}〉, FC2
2 = 〈{6, 7}, {f, g}〉,

FC2
3 = 〈{7}, {e, f, g}〉, FC2

4 = 〈{8}, {g, h}〉 from the second one. Between this
factors, there are six connections satisfying the relation. These connections
are shown in table 3.17.

We form multi-relational factors in a greedy manner. In each step we
connect factors, which cover the biggest part of still uncovered part of data
tables C1 and C2. Firstly, we obtain multi-relational factor 〈FC1

2 , FC2
2 〉 which

covers 50 percent of the data. Then we obtain factor 〈FC1
3 , FC2

4 〉 which covers
together with first factor 75 percent of the data and last we obtain factor
〈FC1

1 , FC2
3 〉. All these factors cover 90 percent of the data. By adding other

factors we do not obtain better coverage of input data. These three factors
cover the same part of input data as six connections from table 3.17.

Remark 6. As we mentioned above and what we can see in the example,
multi-relational factors are not always able to explain the whole data. This is
due to nature of data. Simply there is no information how to connect some
classic factors, e.g. in the example no set of objects from C1 has in RC1C2

a set of common attributes equal to {e, h} (or only {e} or only {h}). From
this reason we are not able to connect any factor from C1 with factor FC2

1 .

Remark 7. In previous part we explain the idea of the algorithm on a object-
attribute relation between data tables. It is also possible consider different
kind of relation, e.g. object-object, attribute-object or attribute-attribute rela-
tion. Without loss of generality we present the algorithm only for the object-
attribute relation. Modification to a different kind of relation is very simple.

Now we are going to describe the pseudo-code (Algorithm 1) of our al-
gorithm for MBMF. Input to this algorithm are two Boolean data tables C1

and C2, binary relation RC1C2 between them and a number p ∈ [0, 1] which



CHAPTER 3. MULTI-RELATIONAL FACTOR ANALYSIS 23

represent how large part of C1 and C2 we want to cover by multi-relational
factors, e.g. value 0.9 mean that we want to cover 90 percent of entries in
input data tables. Output of this algorithm is a set M of multi-relational
factors that covers the prescribed portion of input data (if it is possible to
obtain prescribed coverage). The first computed factor covers the biggest
part of data.

First, in lines 1–2 we compute essential part of C1 and C2. In lines 2–
4 we initialize variables UC1 and UC2 . These variables are used for storing
information about still uncovered part of input data. We repeat the main
loop (lines 5–18) until we obtain a required coverage or until it is possible
to add new multi-relational factors which cover still uncovered part (lines
12–14).

In the main loop for each essential element we select the best candidate
from interval Iij from the first data table in the greedy manner described in
the algorithm idea, i.e. we take the greatest concept which can be connected
via relation. Than we try to connect this candidate with factors from the
second data table. We compute cover function and we add to M the multi-
relational factor maximizing this coverage.

In lines 16–17 we remove from UC1 and UC2 entries which are covered by
actually added multi-relational factor.

Our implementation of the algorithm follows the pseudo-code conceptu-
ally, but not in details. For example we speed up the algorithm by precomput-
ing candidates or instead computing candidates for each essential elements,
we compute candidates for essential areas, i.e. essential elements which are
covered by one formal concept.

Remark 8. The input of our algorithm are two Boolean data tables and
one relation between them. In general we can have more data tables and
relations. Generalization of our algorithm for such input is possible. Due to
lack of space we mentioned only an idea of this generalization. For the input
data tables C1, C2, . . . , Cn and relations RCiCi+1

, i ∈ {1, 2, . . . , n−1} we firstly
compute multi-relational factors for Cn−1 and Cn. Then iteratively compute
multi-relational factors for Cn−2 and Cn−1. From this pairs we construct
n-tuple multi-relational factor.

We do not make a detail analysis of the time complexity of the algorithm.
Even our slow implementation in MATLAB is fast enough for factorization
usually large datasets in a few minutes.
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Algorithm 1: Algorithm for the multi-relational BFA

Input: Boolean matrices C1, C2 and relation RC1C2 between them and
p ∈ [0, 1]

Output: set M of multi-relational factors

1 EC1 ← Ess(C1)
2 EC2 ← Ess(C2)
3 UC1 ← C1

4 UC2 ← C2

5 while (|UC1|+ |UC2|)/(|C1|+ |C2|) ≥ p do
6 foreach essential element (EC1)ij do
7 compute the best candidate 〈a, b〉 from interval Iij
8 end
9 〈A,B〉 ← select candidate which maximizes the cover of C1

10 select non-empty row i in EC2 for which is A
↑RC1C2 ⊆ (C2)

↓↑C2
i and

which maximize cover of C1 and C2

11 〈C,D〉 ← 〈(C2)
↑↓C2
i , (C2)

↑C2

i 〉
12 if value of cover function for C1 and C2 is equal to zero then
13 break
14 end

15 add 〈〈A,B〉, 〈C,D〉〉 toM
16 set (UC1)ij = 0 where i ∈ A and j ∈ B
17 set (UC1)ij = 0 where i ∈ C and j ∈ D
18 end
19 return F

3.3 Multi-relational factor analysis of data over

graded relation

3.3.1 Problem Settings

Our goal—similarly as in MBFA—is to compute a set of the most important
multi-relational factors for two input Boolean matrices C1 and C2 and rela-
tion RC1C2 (with grades from some scale L) between them. The multi-relation
factor on C1 and C2 is an ordered triple

〈
FC1
i , FC2

j , d
〉
, where FC1

i ∈ FC1 ,

FC2
j ∈ FC2 (FC1 and FC2 represent sets of factors from C1 and C2 respec-

tively) and both are compatible with the relation RC1C2 (satisfy relation
RC1C2) in degree d ∈ L.
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3.3.2 Idea of the Algorithm

The main issue is how to understand that “factors FC1
i ∈ FC1 and FC2

j ∈
FC2 are compatible in a relation RC1C2 in degree d”. Intuitively—in case
of object-attribute relation—we want all objects from FC1

i to be compatible
with relation RC1C2 and also all attributes from FC2

j to be compatible with
this relation. Proposition that “object x is compatible with relation” means:
if object x is in FC1

i then x has all attributes from FC2
j in relation RC1C2 .

Similarly proposition that “attribute y is compatible with relation” means:
if attribute y is in FC2

j then y applies to all objects from FC1
i in relation

RC1C2 . This leads—using formulas from 2.2—to a single formula. Degree d
of satisfaction of this formula is computed in a following way:

d =

(∧
x∈A

(
x→

∧
y∈D

RC1C2(x, y)

))
⊗(∧

y∈D

(
y →

∧
x∈A

RC1C2(x, y)

))
. (3.1)

Let us note that the previous formula is valid in case of object-attribute
relation, i.e. relation RC1C2 is between object of C1 and attributes of C2.
It could be generalized to any type of relation (object-object, attribute-
attribute, attribute-object relation). Moreover, it is not needed to be re-
stricted to only two data tables and one relation between them. We can
easily generalize our approach to more data tables and relations between
them.

3.3.3 Algorithm

Now we are going to describe the pseudo-code of our algorithm (Algorithm 2)
for above described data.

The algorithm takes Boolean matrices C1 and C2 and object-attribute
relation (with grades over L) RC1C2 between them as an input. Output of
this algorithm is a set of multi-relational factors F . On lines 1–2, we compute
Boolean factors of C1 and C2 respectively. For this purpose we utilized
simple Boolean matrix factorization algorithm which uses a basic idea behind
BMF algorithm GreEss—so called essential elements—introduced in [2].
For computing exact decomposition of Boolean matrix it is sufficient to take
only one arbitrary concept from each essential interval bounded by object
and attribute concepts in concept lattice whose elements are B(X, Y, I). Due
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to some useful features we take object concepts as factors of C1 and attribute
concepts as factors of C2. On lines 3–4 we store yet uncovered part of C1 and
C2 in UC1 and UC2 respectively. Then for each factor (lines 5–7) from FC1 we
compute a set of candidates—factors from FC2—that could be connected (are
compatible in relation RC1C2 in degree d > 0 computed via formula (3.1)).
In main loop (lines 8–14) we select factor from FC1 and factor from related
set of candidates that cover the biggest part of UC1 and UC2 and we add it to
output set F (line 10). Then we remove all covered entries from sets UC1 and
UC2 (lines 11–12). We repeat the main loop until factors improving coverage
of UC1 and UC2 exist.

Algorithm 2: Computing multi-relational factors

Input: Boolean matrices C1, C2 and relation RC1C2 .
Output: Set F of multi-relational factors.

1 FC1 ← Boolean factors of C1 FC2 ← Boolean factors of C2 UC1 ← C1

UC2 ← C2

2 foreach 〈A,B〉 ∈ FC1 do
3 compute set of all candidates F〈A,B〉 ⊆ FC2 which

are compatible in RC1C2 with 〈A,B〉 in degree d > 0
4 end
5 while exist 〈A,B〉 and 〈C,D〉 ∈ F〈A,B〉 which can be connected and

improve coverage do
6 select 〈A,B〉 and corresponding 〈C,D〉 ∈ F〈A,B〉 that

cover the biggest parts of UC1 and UC2

7 add 〈〈A,B〉, 〈C,D〉, d〉 to F remove all entries in 〈A,B〉 from
UC1 remove all entries in 〈C,D〉 from UC2 remove 〈C,D〉 from
F〈A,B〉

8 end

Remarks

The select operation from line 9 guarantees that the first computed multi-
relational factors are the most important ones, i.e. describe the biggest por-
tion of data. Unfortunately we are not able to always explain (cover) the
whole input. This is due to the nature of data.

Algorithm 1 can be modified for computing multi-relational factors that
explain prescribed portion of data. This corresponds with AFP problem. For
more details see [2].
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3.3.4 Illustrative example

Let us have two data tables C1 (Table 3.18), where rows represent some
people and attributes are their characteristics and table C2 (Table 3.19),
which holds information about restaurants (rows) and cuisine they serve
(attributes). Object-attribute relation RC1C2 (Table 3.20), between C1 and
C2 can then have a meaning “person likes the cuisine”. Let us assume that
values in relation are from scale {0, 0.5, 1}. Where 0 represents - “person
does not like the cuisine”, 0.5 - “person likes the cuisine a little bit” and 1 -
“person likes the cuisine”.

Table 3.18: Data table C1

a b c d

1 × × ×
2 × ×
3 × ×
4 × × × ×

Table 3.19: Data table C2

e f g h

5 × ×
6 × ×
7 × × ×
8 × ×

Table 3.20: Relation RC1C2

e f g h

1 0 1 0.5 1
2 0.5 0 0.5 1
3 1 0 0 1
4 0.5 0.5 1 1

Firstly we compute factors of C1 and C2 via the above-mentioned BMF
method. The factors of the first data table C1 are:

FC1
1 = 〈{1, 4}, {b, c, d}〉,
FC1
2 = 〈{2, 4}, {a, c}〉,
FC1
3 = 〈{1, 3, 4}, {b, d}〉

and the factors of the second table C2 are:

FC2
1 = 〈{5, 7}, {e}〉,
FC2
2 = 〈{6, 7}, {f, g}〉,
FC2
3 = 〈{6, 7, 8}, {g}〉,
FC2
4 = 〈{5, 8}, {h}〉.

Using formula (3.1), we obtain degrees in which the factors of C1 and C2

are connected. Resulting degrees d are presented in the Table 3.21. We can
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for example see, that factor FC1
3 can form a multi-relational factor only with

factor FC2
4 in degree 1.

Table 3.21: degrees d

FC2
1 FC2

2 FC2
3 FC2

4

FC1
1 0 0.5 0.5 1

FC1
2 0.5 0 0.5 0.5

FC1
3 0 0 0 1

Nonzero entries in each row in Table 3.21 correspond to the set of candi-
dates in Algorithm 1.

From this we iteratively choose multi-relational factors, that cover max-
imal portion of yet uncovered part of data tables C1 and C2. So first we
obtain multi-relational factor

〈
FC1
1 , FC2

2 , 0.5
〉
, which covers 55% of data ta-

ble C1 and 44% of data table C2. Than we obtain a multi-relational factors〈
FC1
2 , FC2

1 , 0.5
〉
,
〈
FC1
3 , FC2

4 , 1
〉

and
〈
FC1
1 , FC2

3 , 0.5
〉
. In this case, we now have

covered the whole input data, so we do not need to add another multi-
relational factor.

Interpretation of
〈
FC1
3 , FC2

4 , 1
〉

could be: “All people with characteristics
b and d enjoy meal in restaurants 5 and 8—they like the cuisine which these
restaurants serve”.
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Experimental Evaluation

We used our algorithm from Section 3.3 in the evaluation on synthetic and
real data. We studied both the ability of the extracted factors to cover the
input data and the interpretation of factors.

4.1 Synthetic Data

The main factor for quality of overall decomposition is a density of relational
matrix. To demonstrate this fact, we used randomly generated data.

To eliminate influence of input matrices C1 and C2, we fixed them. C1

has a size 1000×500 and approximate density of ones 25% and C2 has a size
500× 1000 and the same density.

Relational matrix has a size 500 × 500. Grades of this matrix are from
the following scale

L = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}.

We wanted to demonstrate that the number of zeros in this relation plays a
crucial role. We used 10 different sets of relational matrices with different
distribution of grades. For example relations from Set 1 have a distribution
of zeros equal to 90

100
and distribution of the rest of grades is equal to 1

100
, i.e.

approximately 90% of entries is equal to 0. In other sets we decreased the
number of zeros and kept approximately the same distribution for the rest
of the grades.

Each set contains 1000 of such relations. Results and characteristic of
these sets are shown in Table 4.1. First column represents average percentage
of zeros in each set, second, third and fourth column holds information about
resulting coverage of C1 and C2 and total coverage respectively. All presented
results are averaged through all 1000 relations in each set.

29
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Table 4.1: Results for synthetic data

average average average average
percent coverage coverage total
of zeros of C1 of C2 coverage

Set 1 89% 65% 58% 62%
Set 2 81% 75% 69% 72%
Set 3 72% 85% 79% 82%
Set 4 61% 93% 90% 91%
Set 5 52% 95% 93% 94%
Set 6 39% 99% 98% 98%
Set 7 28% 99.8% 99.6% 99.7%
Set 8 20% 99.9% 99.9% 99.9%
Set 9 15% 99.9% 100% 99.9%
Set 10 10% 100% 100% 100%

In Table 4.1 we can see that Set 3 has approximately 72% of zero en-
tries. For this set, our algorithm returns multi-relational factors, that explain
(cover) 85% of entries of C1, 79% of C2. That represents 82% of whole data.

Number of different grades does not play role from the standpoint of
coverage. On the other hand, they play role in quality (degree d in which
individual factors satisfy relation) of factors. Therefore, we obtain analogous
results by using different L with the same distributions of zeros.

4.2 Real Data

MovieLens

For quality evaluation of factors obtained by algorithm introduced in 3.3.3
we used well known real dataset MovieLens1. MovieLens contains two data
tables and one relation between them. First one represents a set of users and
their attributes, e.g. gender, age, professions. Second one represents a set of
movies with their attributes, e.g. the year of production or film genre. Last
part of this dataset is a relation between data tables. This relation represents
movie ratings made by users. Ratings are made on a 5-star scale (values 1-5,
1 means that the user does not like the movie and 5 means that he likes the
movie).

We used 10M version of MovieLens dataset. We chose users that rate the

1http://grouplens.org/datasets/movielens/

http://grouplens.org/datasets/movielens/


CHAPTER 4. EXPERIMENTAL EVALUATION 31

most and films that are rated the most. Ratings were normalized to [0, 1]
interval. By our algorithm we obtained 46 multi-relational factors. These
factors cover 98 percent of input data tables. Figure 4.1 shows cumulative
coverage of User and Movie data tables.
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Figure 4.1: Cumulative coverage

On the x-axis there are numbers of factors and on the y-axis there is
corresponding coverage of input data tables. One mean that all input entries
are covered. We can see that 25 factors are sufficient for covering more than
80% of input data.

The most important factors obtained via our algorithm are:

• College female students rated action, sci-fi and thriller movies from
1980s with at least three stars.

• Females students of elementary school rated new comedy films with at
least three stars.

• College males students rated action, adventure and fantasy movies with
at least four stars.

• Middle aged males rated new drama films at with at least three stars.

• Late forties females working as academics or educators rated films from
1970s with five stars.

• Females in the age of 25–34 rated children, animated and comedy
movies with four stars.
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Arguably, all obtained factors seem to be reasonable.

MovieLens with binary relation

4.2.1 Experimental evaluation

Due to the fact that the binary case is a special case of ordinal scale, our
approach can be also used on data with binary relation.

We convert the ordinal relation in to binary one. We use three different
scaling. The first is that user rates a movie. The second is that a user does
not like a movie (he rates movie with 1–2 stars). The last one is that user
likes a movie (rates 4–5). This does not mean, that users do like (respective
do not like) some genre, it means, that movies from this genre are or are
not worth to see. We took the middle size version of the MovieLens dataset
and we made a restriction to 3000 users and movies that were rated by that
users. We take users, who rate movies the most, and we obtain dimension
of the first data table 3000×30 and dimension of the second data table is
3671×26. Let us just note that for obtaining object-attribute relation we
need to transpose Movies data table.

Relation “user rates a movie” make sense, because user rates a movie
if he has seen it. We can understand this relation as user has seen movie.
We get 29 multi-relational factors, that cover almost 100% of data (99.97%).
Values of coverage, i.e. how large part of input data is covered can be seen
in Figure 4.2. Graphs in Figure 4.3 show coverage of Users data table and
Movies data table separately.

We can also see that for explaining more than 90 percent of data are
sufficient 17 factors. This is significant reduction of input data.
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Figure 4.2: Cumulative coverage of input data
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(a) Coverage of Users data table
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(b) Coverage of Movies data table

Figure 4.3: Coverage of input data tables

The most important factors are:

• Males rate new movies (movies from 1991 to 2000).

• Young adult users (ages 25–34) rate drama movies.

• Females rate comedy movies.

• Youth users (18–24) rate action movies.

Another interesting factors are:

• Old users (from category 56+) rate movies from their childhood (movies
from 1941 to 1950).

• Users in age range 50–55 rate children’s movies. Users in this age
usually have grand children.

• K-12 students rate animation movies.

Due to lack of space, we skip details about factors in relation “user does
not like a movie” and relation “user does like a movie”. In the first relation
we get 30 factors, that covers 99.99% of data. In the second one, we get 29
factors, covering 99.96% of data. Compute all multi-relational factors on this
datasets take approximately 5 minutes.
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Remark 9. In case of MovieLens we are able to reconstruct input data tables
almost wholly for each three relations. Interesting question is what about the
relation, i.e. can we reconstruct the relation between data tables? Answer is
yes, we can. Multi-relational factors carry also information about the relation
between data tables. So we can reconstruct it, but with some error. This error
is a result of choosing the narrow approach.

Reconstruction error of relation is interesting information and can be min-
imize if we take this error into account in phase of computing coverage. In
other words we want maximal coverage with minimal relation reconstruction
error. This leads to more complicated algorithm because we need weights to
compute a value of utility function. We implement also this variant of algo-
rithm. Requirement of minimal reconstruction error and maximal coverage
seems to be contradictory, but this claim need more detailed study. Also it is
necessary to determine correct weight settings.
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Conclusions

In this thesis the new approach to BMF of multi-relational data, i.e. data
which are composed from many data tables and relations between them, has
been presented. This approach, as opposed from to BMF, takes into account
the relations and uses these relations to connect factors from individual data
tables into one complex factor, which delivers more information than the
simple factors.

The new algorithm for multi-relational Boolean matrix factorization, that
uses essential elements from binary matrices for constructing better multi-
relational factors, with regard to relations between each data table, has been
presented. We test the algorithm on, in data mining well known, dataset
MovieLens. From these experiments, we obtain interesting and easy inter-
pretable results, moreover, the number of obtained multi-relational factors
needed for explaining almost whole data is reasonable small. We extend
a problem of multi-relational Boolean matrix decomposition toward a more
general case. Our new approach is tailored for multi-relational data that con-
tains a relation with degrees from some scale. We used calculus over Fuzzy
logic to solve a problem how to connect factors into multi-relational factors.

We also present a new algorithm for this general case. Various experi-
ments on real and synthetic data show that our algorithm produces relevant
and interpretable results. Moreover—depending on the density of relation—
multi-relational factors produced by our algorithm tend to cover (explain) a
big portion of input data.

Let us mention, that the algorithm presented in this work can be also
used for even more general mutli-relation data such as data where all input
is over some scale—including data tables. We do not present this feature
mainly due to fact that such kind of data are not widely used yet.
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