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Abstract 
W i t h the growing popular i ty of deep neural networks, the lack of transparency caused by 
their black box representation is raising demand for their interpretability. The goal of this 
thesis is to gain new insights into deep neural networks in speech processing tasks. Specifi­
cally, gender classification task on A u d i o M N I S T dataset and speaker classification task on 
filterbanks from VoxCeleb dataset using convolutional and residual neural network. Layer-
wise relevance propagation was used for the interpretation of these neural networks. This 
method produced heatmaps highlighting features that contributed positively and negatively 
to the correct classification. A s results of interpretation show, classifications were mainly 
based on lower frequencies i n t ime. In the case of gender classification, I managed to find 
the model's high dependency on a smal l number of features. Us ing obtained information, I 
created an augmented t ra ining set that increased the model's robustness. 

Abstrakt 
S r a s t ú c o u popular i tou h l b o k ý c h n e u r ó n o v ý c h sietí , nedostatok transparentnosti spôsobene j 
ich funkciou čiernej skrinky, zvyšuje dopyt po ich in t e rp re t ác i i . Cieľom tejto p r á c e je získať 
nový pohľad na h lboké neu rónové siete v ú lohách spracovania reči . K o n k r é t n e klasifiká­
cia pohlavia z A u d i o M N I S T datasetu a klasifikácia r ečn íka z filter b á n k VoxCeleb datasetu 
s p o u ž i t í m konvolučnej a rez iduá lne j neurónovej siete. N a i n t e r p r e t á c i u t ý c h t o n e u r ó n o v ý c h 
sietí bola p o u ž i t á m e t ó d a p ropagác i e relevanci í cez vrstvy. T á t o m e t ó d a vy tvo r í t e p e l n ú 
mapu, k t o r á vyznač í p r íznaky , k t o r é prispeli k u sp rávne j klasifikácii poz i t í vne a k to ré 
n e g a t í v n e . A k o výs ledky i n t e rp re t ác i e ukazu jú , klasifikácie bol i za ložené n a j m ä na nižších 
frekvenciách v reči a čase . V p r í p a d e klasifikácie pohlavia sa m i podari lo nájsť vysokú závis­
losť modelu na veľmi malom p o č t e p r í znakov . Pomocou z ískaných informáci í som vy tvor i l 
rozš í rený t r énovac í set, k t o r ý zvýšil r obus tnosť modelu. 
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Rozšírený abstrakt 
V dnešne j dobe sú h lboké neu rónové siete veľmi rozš í rené a použ ívané v rôznych oblastiach 
aj mimo in fo rmačných technológi í ako sú n a p r í k l a d z d r a v o t n í c t v o alebo doprava. Avšak 
s tá le pre n á s p r e d s t a v u j ú akús i č ie rnu skr inku, do ktorej vchádza jú vstupy v podobe d á t 
napr. o b r á z o k a v y c h á d z a j ú iné d á t a ako napr. čo je na o b r á z k u . Tento nedostatok trans­
parentnosti vyvoláva o t á z k y ohľadom spoľahl ivost i či d ô v e r y h o d n o s t i t ý c h t o n e u r ó n o v ý c h 
sietí alebo ich odolnosti voči ú t o k o m . Z t ý c h t o dôvodov je v poslednej dobe zvýšený dopyt 
po in t e rp re t ác i í h l b o k ý c h n e u r ó n o v ý c h siet í s cieľom viac porozumieť ich sp rávan iu a odhal iť 
na zák l ade a k ý c h vstupov robia svoje rozhodnutia. 

P r e t o ž e pre ľudí je jeden z naj lepš ích a na j j ednoduchš í ch spôsobov ako niečo vysvetl iť 
v izual izácia , p r áve m e t ó d y , k t o r é i n t e r p r e t u j ú rozhodnutia n e u r ó n o v ý c h siet í pomocou 
vizual izácie sú zat iaľ na j lepš ia možnosť . Toto je ľahšie real izovateľné pr i modeloch neu­
rónových siet í v y t v o r e n ý c h a použ ívaných pre spracovanie obrazu oproti modelom pre spra­
covanie reči . Tieto m e t ó d y d o k á ž u odhal iť nedostatky alebo chyby n e u r ó n o v ý c h sietí , k to r é 
vzn ik l i n a p r í k l a d pr i t r énovan í modelu a m ô ž u byť s p ô s o b e n é artefaktmi n a c h á d z a j ú c i m i 
sa v t rénovac ích d á t a c h . V minulost i bo l i o d h a l e n é modely pre klasifikáciu z obrazu, k to ré 
vykazovali vysokú presnosť klasifikácie na p ř e d p ř i p r a v e n ý c h t rénovac ích a tes tovac ích dá­
tach, avšak s p r á v n a klasifikácia bola za ložená p ráve na artefaktoch alebo p r í znakoch špeci­
fických pre d a n é d á t a a nie pre klasifikovaný objekt. Také to modely sa nazýva jú "Clever 
Hans predictors". P r í k l a d t ý c h t o modelov je klasifikácia k o ň a na o b r á z k u na zák l ade vodoz­
naku alebo rozlíšenie medzi psom huskym a v lkom na zák lade p r í t o m n o s t i snehu. 

Jedna z m e t ó d pre i n t e r p r e t á c i u neu rónových siet í a m e t ó d a p o u ž i t á v tejto p rác i je 
p r o p a g á c i a relevanci í cez vrs tvy neurónovej siete (angl. Layer-wise Relevance propagation), 
k t o r á vy tvo r í t e p e l n ú mapu d á t , v s tupu júc i ch do neurónove j siete, zvý razňu júcu p r í z n a k y 
alebo čas t i vs tupu k t o r é sú dôleži té pre splnenie danej úlohy. Ú v o d do n e u r ó n o v ý c h si­
et í a hlavne rôzne m e t ó d y pre ich i n t e r p r e t á c i u so z a m e r a n í m p ráve na Layer-wise Rele­
vance propagation je p o p í s a n ý v teoretickej čas t i na z a č i a t k u tejto p ráce . V nas ledujúc ich 
kap i to l ách sú podrobne j š i e p o p í s a n é p o u ž i t é d á t o v é sady, a r c h i t e k t ú r y neu rónových siet í a 
i m p l e m e n t á c i a p ropagác i e relevanci í cez vrs tvy t ý c h t o n e u r o n o v ý c h siet í . D á t o v á sada A u -
d i o M N I S T sk l ada júca sa z n a h r á v o k 60 ľudí spolu s konvo lučnou n e u r ó n o v o u sieťou k t o r á 
m á AlexNe t a r c h i t e k t ú r u sú p o u ž i t é pre klasifikáciu pohlavia z n a h r á v k y . Pre klasifikáciu 
rečn íka je p o u ž i t á VoxCeleb d á t o v á sada a r ez iduá lna neu rónová sieť. 

N a t r é n o v á n í m AlexNe t modelu sa m i podari lo dos iahnuť s p r á v n u klasifikáciu pohlavia 
s 97.83% presnosťou . I n t e r p r e t á c i o u tohto modelu bolo z is tené , že model klasifikuje na 
zák lade n ízkych frekvencií a, v tomto p r í p a d e , len na zák lade m a l é h o m n o ž s t v a pr íz­
nakov indikujúc ich n ízku robus tnosť modelu. P r i n a s t a v e n í 0.5% najdôleži te jš ích časovo-
frekvenčných r ámcov , vzhľadom na v y t v o r e n é t epe lné mapy, na 0, presnosť modelu klesla 
na 10.8%. N a zák lade z í skaných informáci í a t epe lných m á p som rozšíri l p ô v o d n ú t r éno -
vaciu sadu a znova n a t r é n o v a l model . Takto n a t r é n o v a n ý model ma l v p r í p a d e r o v n a k é h o 
nastavenia 0.5% najdôleži te jš ích časovo-frekvenčných r á m c o v na 0, presnosť 28.67%. P r i 
klasifikácii r ečn íka v y t v o r e n é t epe lné mapy naznaču jú , že klasifikácia je r o b e n á opäť na 
zák lade nižších frekvencií, t e n t o k r á t je však dôleži tý aj výsky t p r í znakov v čase . Tie to 
heatmapy sa da jú považovať do istej miery d ô v e r y h o d n é vzhľadom na ich vyhodnotenie 
m e t ó d o u "pixel-fi ipping", kde presnosť siete klesne rýchlejšie, ak sa na 0 n a s t a v u j ú na jdô­
ležitejšie r á m c e vzhľadom na v y t v o r e n é t epe lné mapy. 
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Chapter 1 

Introduction 

Deep neural networks are, nowadays, heavily used as state-of-the-art solutions to problems 
like image, audio processing, or natural language understanding. Yet , they s t i l l represent a 
black box where input comes into the neural network and predict ion comes out, but inner 
decision-making remains hidden. B y analyzing some high-performing models trained for 
image classification, discoveries showed that predictions were dependant on artifacts such 
as image watermark[19] or background[31]. Even though these models have high accuracy 
of predict ing ground t ru th on t ra in or test datasets, the reasons for these predictions are 
considered wrong. Such problems of the models are hard to uncover on l imi ted datasets 
and end up revealed after a while, i f at a l l . A s demand for explainable neural networks 
is rising, more discoveries and experiments are made. Because the easiest way to explain 
and understand something is through visualizat ion, interpretation of image classification 
models can be easily understood. 

This thesis aims to br ing more insight into how are deep neural network models making 
their predictions i n selected audio signal classification tasks. The first task is a gender 
classification from speech recording processed as a spectrogram using a convolution neural 
network wi th A lexNe t architecture, following previous work on this topic presented by 
S. Becker et a l . [4], and Samek et a l . [33]. The second is speaker ID classification extending 
previously done experiments for a more complex audio classification task using a residual 
neural network model. 

The method chosen for interpretation for selected tasks is Layer-wise relevance propa­
gation. This method creates heatmaps highlighting relevant features in data that have a 
positive and negative contr ibution to the correct predict ion of the model . Th is method was 
chosen because of its efficiency in computing such heatmaps and good human interpretabil-
i ty of these heatmaps. 

Chapter 2 describes artificial neural networks ( A N N ) , their t ra ining process, and more 
complex deep neural networks, specifically convolutional neural networks because it is the 
main type of A N N used i n this thesis. Chapter 3 is an introduct ion to the interpretation of 
neural networks and provides information about different methods used for interpretation. 
It describes Layer-wise relevance propagation ( L R P ) in more depth because it is a method 
used for neural network interpretation i n this thesis. Chapter 4 describes used datasets 
and neural network architectures. Chapter 5 provides some insight into machine learning 
libraries and the implementat ion of crucial parts of L R P computat ion. Chapter 6 describes 
experiments w i th different models, produced heatmaps, and performed experiments. 
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Chapter 2 

Artificial Neural Networks 

Art i f i c i a l Neura l Networks ( A N N s ) are getting more popular in last few decades, especially 
wi th increasing computer power. In recent years A N N s have been highly used in a variety of 
tasks that are simple for humans but difficult for computers, such as image or voice recog­
nit ion, translation, processing a large amount of data, etc. Th is chapter briefly describes 
the concepts of deep feed-forward neural networks used in this thesis. 

2.1 Art if icial representation of a biological neuron 

Art i f i c i a l Neura l Networks represent a group of algorithms inspired by the structure of 
a biological bra in which consists of neurons and connections between them. Biological 
neurons are cells connected wi th dendrites used as input (electrical signal) receivers and 
axons, used for propagation of output to other neurons. Inputs are processed inside of the 
neuron's cell body and sent further to other neurons through the axon [39]. 

A l though artif icial networks are a significantly simplified version of how a brain works 
and information is processed, the principle remains similar. Ar t i f i c i a l neurons are connected 
through weights representing dendrites [39]. Input data are scaled by weights and summed 
wi th bias creating act ivation energy of a neuron as depicted i n Figure 2.1. 

In 1958 F . Rosenblatt[32] described Perceptron — a neural network model using only 
one artificial neuron as described above. If the sum of input values scaled by weights is 
larger than a selected threshold, the output is one, otherwise zero. Therefore it can only 
solve binary linear classification problems. 

Act iva t ion functions i n neural networks simulate responses to input i n a biological neu­
ron [9]. For a neural network to perform non-linear tasks, an activation function needs to 
be used i n a neuron. There are several activation functions used for different tasks prof­
i t ing from their advantages. Rectified linear unit ( R e L U ) is one of the most widely used 
activation functions in neural networks, used mainly i n hidden layers [15]. 

To make a neural network model the desired function, we perform tra ining first, i.e., up­
dating weights of neurons w.r.t . input data and model output. M o d e l t ra ining is performed 
on a dataset (collection of input data) using a backpropagation algori thm (Section 2.3). 

Depending on network architecture there are two ma in types of how a neural network 
can learn, based on the provided data [15]. Supervised learning is based on t ra ining the 
model w i th data samples pre-labeled wi th the correct class. This type of learning is mainly 
used for regression and classification tasks, where a model is supposed to map inputs to a 
labeled output. Unsupervised learning, on the other hand, is performed wi th previously 
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INPUT NODES 

Figure 2.1: Ar t i f i c i a l representation of biological neuron. Image taken from [1]. 

unlabeled data. A goal of such model learning is to identify information and patterns in 
provided data. This method can sometimes achieve better results than supervised learning 
in the same tasks [35] [38]. In this thesis, a l l models are trained wi th supervised learning, 
specifically for classification problems. 

2.1.1 D e e p N e u r a l N e t w o r k s 

Information presented i n this subsection is obtained from [21, 13, 11]. Deep neural networks 
are structured as a chain of several different connected functions. These functions represent 
layers of the network and are composed as follows: input layer, hidden layers, and output 
layer. The number of hidden layers determines the depth of the neural network. U t i l i z ing 
hidden layers that perform non-linear operations on inputs allows to better approximate 
desired function / . There are different types of deep neural networks based on the infor­
mat ion flow or type of used layers. Neura l networks where the information flows from the 
input layer to the output layer are called Feed-forward neural networks. Neura l networks 
extended wi th connections that feed the model's output to itself are called Recurrent Neura l 
Networks. 

The goal of Feed-Forward neural network is to approximate some function / , i.e., map 
one vector space onto another y = f(x; 9) by learning parameters 9. Specific types of Feed­
forward neural networks are Convolut ional neural networks or Res idual neural networks. 
B o t h convolutional and residual neural networks are used i n this thesis. The residual neural 
networks contain shortcut connections that perform identity mapping and skips some layers. 
These shortcuts are a solution to the saturation followed by the degradation of accuracy 
during t ra ining of deep neural networks. 

2.2 Activation functions 

Act iva t ion functions in neural networks define the "ac t iv i ty" of a neuron, i.e., the output 
of the neuron and thus the output of a network. Neura l networks (NNs) without activation 
functions produce their output only as a linear function. A l so , a multi-layer neural network 
that uses only linear act ivat ion functions behaves just like a single-layer network and can 
be simplified into one. B o t h models, N N s without act ivat ion functions and Mul t i - layer N N s 
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only w i t h linear activation, represent linear models such as logistic regression and have their 
l imitat ions. Descr ipt ion of activation functions i n this chapter is based on information from 
[9] [36] [10]. 

A l though linear models are simple, they perform wel l only on data that can be sepa­
rated l inearly and do not benefit from a multi-layer architecture as non-linear models do. 
The simplest example of an activation function is the B ina ry Step Funct ion (2.1). It is 
a threshold-based activation function, where the threshold value determines i f a neuron is 
activated (its output is used as input to neurons i n the next layer) or not. This significantly 
narrows B i n a r y Step Funct ion usage to only binary classification. A l so , the gradient of this 
function is zero. Therefore, such a network cannot be trained using back-propagation. 

„ , , Í 1 i f x > 0 . . 
fbin(x) = l ~ 2.1 

[0 i f x < 0 

One of the most common and widely used non-linear act ivat ion functions is the Sigmoid 
function. Sigmoid produces output values i n the range (0,1) and is defined as follows 

fsigmoid(%) = ^ i (2-2) 

where the de r ivá te can be easily computed as 

fsigmoids) 7^ _|_ g—x^2 ' (2-3) 

which results i n its broad usage i n shallow neural networks w i t h some significant disad­
vantage— Vanishing Gradient problem [43] [10]. Th is problem is caused by saturation 
during the t ra ining process, specifically in regions where f(x) approaches 0 or 1, where 
the gradient approaches zero. Th is results in minor to none output signal transmitted, 
therefore weights of first layers are ineffectively updated. 

Another activation function similar to the sigmoid is the Hyperbol ic Tangent function 
also called the Tanh function. Unl ike the sigmoid, tanh is symmetric around the origin and 
produces a value i n the range of (—1, 1) and is defined as follows 

ftanh{x~) — 2 J'sigmoidféx^ 1 , (2-4) 

where fsigmoid is from Equa t ion 2.2. Tanh is preferred over sigmoid because it has a steeper 
gradient that converges faster and has lower classification error. However, computing the 
derivative is more difficult for the Tanh function than for Sigmoid and Tanh also suffers 
from the vanishing gradient. 

However, the most popular act ivat ion function i n deep neural networks is the R e L U 
function and its optimizations. R e L U stands for Rectified Linear Un i t and is defined as 

{ x if x ^ 0 

0 if x < 0 

R e L U solves the vanishing gradient problem because the derivative is constant 1 for numbers 
greater than zero, the derivative function is defined as 

,. , , Í 1 i f x > 0 , . 
frelu(x) = \ n . , - (2-6) 

0 if x < 0 
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The absence of exponential functions during computat ion makes the usage of R e L U more 
efficient and cheaper compared to Sigmoid or Tanh. Another improvement achieved by 
using the R e L U function is that not a l l of the neurons are activated at once. Unl ike models 
u t i l iz ing Sigmoid or Tanh functions where a l l neurons are activated at the same time, w i th 
R e L U artificial networks can function a bit more like the biological neural network i n the 
brain, where only a smal l fraction of neurons are activated simultaneously. Th is boosts the 
efficiency i n learning by allowing the model to acquire sparse activations in case of input 
being lower than zero. O n the other hand, when input is > 0, the model can obtain a large 
number of features from data provided during t ra ining [10]. 

The main downside of the basic R e L U function is its left side saturation since the 
derivate constant is zero when x < 0, causing some neurons to become permanently deac­
tivated. Weights of the dead neurons w i l l no longer be updated during the training, which 
has a negative effect on a whole deep neural network. In order to eliminate the dying R e L U 
problem a modified version of R e L U called Leaky R e L U ( L R e L U ) is used, comparison shown 
in Figure 2.2. The solution lies i n a smal l constant such as 0.01 that determines the slope 
of the function for negative values. Leaky R e L U gradient for inputs < 0 is a smal l constant 
and not zero, thus no neuron can be permanently deactivated, potential ly creating a dead 
part of the deep neural network [10] [43]. 

3 

o 

4 --

2 -

0 -

- 2 -

- 4 --

Figure 2.2: Compar ison of ReLU(lef t ) and L R e L U ( r i g h t ) act ivat ion function wi th slope 
coefficient of 0.01 

Another variat ion of R e L U is Parametr ic Rectified Linear Un i t ( P R e L U ) . In this case, 
the parameter for the left side of the function for inputs < 0 is learned during t raining 
unlike in L R e L U where the parameter is a constant given in advance. 

2.3 Neural network training process 

Training a neural network, also called learning of the neural network, is a process that 
aims to make the neural network model the desired function, i.e. to minimize the error 
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between the neural network output and dataset targets, by updat ing the values of the 
model parameters. Th is process is performed i n two phases, forward and backward. 

In the forward phase, input data from a t ra ining dataset are fed into a neural network 
creating a computat ional graph across the network as the data flows from an input layer 
towards an output layer (assuming the Feed-forward neural network architecture), using 
current weight values. The output of the neural network from the forward phase is used 
to compute an error of network w.r.t. observed target from a dataset. In the backward 
phase, the gradient of the error function is computed and weights are updated (e.g. using 
stochastic gradient descent). The most used a lgor i thm to compute gradient i n the backward 
pass is the back-propagation. Pa i red wi th a learning algori thm such as gradient descent, 
it allows more simple and efficient learning in comparison to finding the best weights by 
brute force. Especial ly i n multi-layer models, the error of a model is not a simple function 
of its weights [11] [29]. 

Loss funct ion 

One of the opt imizat ion steps i n neural network training is evaluating how far the prediction 
is from the correct value presented i n a dataset, i.e., error of the set of weights i n a model. 
The model is evaluated wi th a function called the objective function. Usually, i n neural 
network models, the a i m is to minimize the function. In that case, the objective function 
is called the loss function, also referred to as the cost function. The product of the loss 
function, evaluating how far off the prediction of the network is, is called "loss" or "cost". 
Loss functions can be divided into two groups, for regression and classification problems, 
based on the type of task a neural network is designed for [1] [6]. 

In regression problems, neural networks a i m to approximate a mapping function wi th 
numerical or continuous output. For regression problems, some of the basic loss functions 
are the mean absolute error ( M A E ) , or the most used, mean squared error ( M S E ) 

1 N 

n ' 
n=l 

where tn is the true value, yn is the predicted value, and N is the number of data points. 
However, mean or least squared type errors can lead to a solution highly dependent on a 
small number of edge points. These points are also called outliers and have a lot higher 
values than the rest. Such errors are prone to incorrectly labeled data and can be solved 
by using more robust loss functions [41] [6]. 

Classification problems on the other hand a im to approximate mapping function wi th 
discrete output usually as positive integers representing different classes or labels. However, 
the output can be a continuous value when predict ing a probabili ty. Th is probabil i ty is 
often interpreted as the l ikel ihood that given input belongs i n the predicted class. Mos t ly 
used loss function for classification problems is the cross-entropy [5] 

N K 

L(w) = - ^2 t k n l n ^ ( x « ' w ) ' (2-8) 
n=l k=l 

because it computes the error between probabil i ty distributions [7] [6]. In this case, a t rain­
ing set is composed of a set of input vectors {xn}, where n = 1 , . . . , N and a set of cor­
responding target vectors G {0,1}. K represents the number of classes and yt is the 
output of a network, where w is a learnable parameter. 

7 



B a c k - p r o p a g a t i o n 

The back-propagation algori thm can perform an inexpensive computat ion of the gradient. 
Th is computat ion is performed from the output layer to the input layer during the backward 
phase of the model t raining. The loss function is, i n this phase, used to compute the gradient 
w.r.t . network weights using the chain rule of differential calculus.[1] [11]. 

This a lgori thm assumes that a neural network has a set of hidden layer inputs hi, h2---hk, 
followed by output o, loss function L, and the weights between two layers hr and hr+i are 
w(hr,hr+1)- If o m y o n e pa th from h i to o exists, the gradient can be computed as follows: 

dL 

dw (he-i,hr) 

dL 
do 

do j-j dhi+i 

dhk 1 dhi 

dhr 

dw 
V r € l...k 

(he-i,hr) 
(2.9) 

In a multi-layer neural network, the number of these paths grows exponentially. So many 
paths can seem to be difficult and computat ional ly demanding to solve. However, the 
computat ional graph of a neural network is acyclic, and the chain rule can be computed 
recursively from the layer closest to the output o using dynamic programming. Therefore, 
the expression for computing gradient for a set of paths P is generalized equat ionl described 
as: 

dL 

dw (he-i,hr) 

dL 
do 

..fcfc.oleP 

do j4 dhi+i 

dhk dhi 
dhr 

dw (he-i,hr) 
(2.10) 

The previous information about computing the gradient using the chain rule and respective 
equations were acquired and are described in more detai l in [1]. 

2.4 Convolutional Neural Networks 

Convolut ional Neura l Network or C N N is a special type of Feed-forward model w i th state-
of-the-art performance i n tasks focusing on pattern recognition such as image or voice 
recognition. To process more complex data such as image data and lower the computat ional 
complexity C N N s uti l ize convolutional and pool ing layers. A big improvement over classic 
neural networks lies in the reduced number of learnable parameters using convolutional 
layers, which results i n an efficiency boost when computing an output or t ra ining the model. 
Another advantage is the presence of Equivariance and Invariance to the translat ion of input 
features [11]. Equivariance means that output changes as input changes, al lowing detecting 
edges and shapes i n different places through the image, or in time-series data showing 
where features are present i n t ime. This is achieved using shared weights i n convolution. 
Invariance, on the other hand, reduces the importance of the precise location of features, 
when it does not matter whether a detected object is on the left or right side of an image. 
Pool ing layers allow the C N N to be invariant to some translations of the input. 

The architecture of a Convolut ional neural network usually consists of an input layer, 
convolutional layers alternating wi th pool ing layers implementing, for example, the max-
pooling method shown i n Figure 2.3. The neural network is completed by fully connected 
layers producing scores for classification. The convolutional layer produces activations that 
are used as inputs to the non-linear activation function, such as R e L U . Subsequently pooling 
layer performs down-sampling of the output of act ivat ion functions. 
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Figure 2.3: Convolut ion Neura l Network basic architecture. Taken from [12]. 

C o n v o l u t i o n a l layer 

The convolution layer plays a significant role in how the Convolut ional neural networks 
work and their success in solving tasks wi th grid-like data topology. Convolut ion can be 
defined as an operation of two functions producing a th i rd function and it is given as 

s(t) = J x(a)w(t - a) da , (2.11) 

denoted wi th an asterisk 
s(t) = (x*w)(t) , (2.12) 

where x is an input function and w is a weighting function called the kernel. Because data 
in the computer are processed as discrete and convolution is usually used over more than a 
single dimension, it can be defined as discrete convolution wi th two-dimensional input and 
kernel as follows 

5 ( z , j ) = ( ^ * 7 ) ( z , j ) = ^ ^ 7 ( z - m , j - n ) ^ ( m , n ) . (2.13) 
m n 

This form of the equation is achieved because of commutative property, by fl ipping the ker­
nel relatively to the input . In C N N s convolution is often implemented as cross-correlation 
achieving the same results without the need of flipping the kernel 

S(i,j) = (K*I)(i,j) = J ^ J ( z + m , j + n)K{m,n). (2.14) 
m n 

Convolut ional Networks trained using convolution would learn the same values of parame­
ters, but they would be flipped [11]. 

Unl ike the classic A N N s , where the relation between each input and output unit is de­
termined by a specific parameter, i n C N N s , kernels allow detecting features more effectively 
and significantly reduce the number of stored parameters. Th is is called sparse connectiv­
ity because a single input unit does not connect to a l l output units but only to a few based 
on the kernel size and vice versa the output is not affected by a l l input units. For example, 
a neural network layer for processing an R G B - c o l o r e d image of size 64x64x3 would have 
12288 parameters, whereas using a kernel of size 6x6x3 produces only 108 parameters. [28] 
In the convolutional layer, kernels convolve along the input producing activation maps, and 
thus each weight value of kernel is used on every input unit . This is referred to as weight 
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sharing, and it is another characteristic present in the convolutional layer that increases 
the effectivity of C N N s over A N N s . Th is is based on the hypothesis that one set of learned 
features can be present i n mult iple regions i n the input, and therefore it is redundant to 
learn the set of features more than once. 

P o o l i n g layer 

The purpose of the pool ing layer is to downsample the output of the convolutional layer. 
The reduction i n spatial dimensions is achieved by replacing the input w i th a statistic of 
neighboring input units in a part icular region. In this thesis, the max-pool ing function, 
shown in Figure 2.4, w i l l be used. It downsamples the input by taking only the max value 
in the neighborhood of a part icular size. The size of the max-pool kernel should not be 
larger than 3 due to the destructive effect of the max-pool ing layer [28]. 

7 3 5 2 

8 7 1 6 

4 9 3 9 

0 8 4 5 

Figure 2.4: M a x - p o o l function wi th kernel size 2 and stride 2 

There are other popular pooling functions such as an average of a neighborhood or a 
weighted average of a neighborhood, where weights are based on the distance of the input 
unit from the center of the kernel. In addi t ion to decreasing the number of the parameters, 
the pool ing layer allows the network to be invariant to some translations made in small 
regions [11]. 

max-pooling 8 6 

9 9 
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Chapter 3 

Understanding Neural Networks 
decision making 

Art i f i c i a l neural networks ( A N N s ) as part of Ar t i f i c i a l Intelligence (A.I.) is state-of-the-art 
technology wi th broad use i n various industries such as information technology, engineering, 
e.g. self-driving cars, medicine and others. It increases the product iv i ty and capabil i ty of 
these industries to produce discoveries, technologies, or products that otherwise would 
either not have been discovered or they would have taken significantly more time. A N N s 
(mentioned i n Chapter 2) are capable of performing tasks difficult if not impossible to solve 
wi th other programming approaches. Tasks such as image or voice recognition, natural 
language understanding, or creating something new. This chapter describes what are the 
A N N s learning, what they "see", or what has a significant impact on their functioning, as 
well as methods for obtaining this information, i.e. interpreting the A N N s . 

3.1 Interpret able and explainable deep neural networks 

Even though A N N s are nowadays heavily used, they are s t i l l a black box i n behavior and 
decision-making. Lack of transparency of the neural networks' decision-making process and 
learned patterns may lead to a problem, where i f something goes wrong it is hard to say what 
exactly. Another vulnerabi l i ty is adversarial attacks against neural networks i n speech and 
image recognition and /or classification. Besides, the lack of transparency of these models 
increases distrust in neural networks' decisions and their accuracy. The lack of trust, in this 
case, is legitimate as, for example, deep neural network models' decisions and performance 
in image classification are extremely good on t ra in and validat ion datasets, but they may 
fail i n real-life applications. Some neural networks, for example, i n image recognition, may 
perform very well on validat ion datasets predict ing correct outputs but, their predictions 
are based on artifacts i n images such as background or a copyright watermark. Such 
neural networks are called Clever Hans predictors, and an example of such predictions 
could be a classification of a horse[19] or garbage truck[33], shown in Figure 3.1, based on 
the watermark present i n the image. Another example presented in the [31] shows that a 
logistic regression classifier distinguished husky and wolf based on snow in the background. 
These flaws could remain, as in the horse classification, unnoticed for a very long time. 
Because of the mentioned cases, sometimes it is hard to verify deep neural network models' 
credibil i ty outside prepared datasets. Methods for explaining these models are researched 
and developed to provide information about models and their potential flaws. 
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Figure 3.1: Image (right) and its heatmap of pixels relevant to the model prediction. 
This heatmap uncovers a Clever Hans predictor, because as can be seen, the logo is high­
lighted. (Taken from [33]) 

According to the [33], at first, there were attempts to explain predictions of machine 
learning models on a global scale by verifying that the output function of a model produces 
high values only for correct targets. These approaches d id not shed any light on what 
features are important for the prediction. Therefore, methods based on the idea of P i x e l -
wise decomposition[20] become popular. These methods a im to produce an output that 
determines how relevant to the model is each pixel . Methods producing heatmaps, which 
show the contr ibution of each pixel , are described and compared i n this chapter. 

Exp la in ing deep neural networks comes wi th three main difficulties as the models are 
more complex [33]. The complexity comes from the number of layers that perform linear 
and non-linear transformations on the input . In such networks of layers some neurons are 
activated by the smal l fraction of data points, whereas other neurons are activated more 
globally. Thus the output of the neural networks is affected by global as well as local effects 
in the input . The second difficulty comes from the presence of a shattered gradient[3] effect 
in R e L U neural networks wi th higher depth, where the gradient becomes more noisy. This 
can cause problems i n explanation methods that depend on the usage of the model's gradient 
such as sensitivity analysis or simple Taylor decomposition [24]. The last difficulty is finding 
a reference point as the base of the explanation. The reference point is some root point, 
which is not present in actual data, that some methods use to compute an explanation. 
For example, the output can change rapidly based on the reference point, but the reference 
point itself does not carry any significant information for further interpretation. 

In terpre ta t ion of speech classif ication 

A p p l y i n g different explanation methods i n image classification revealed new information 
about neural network models, for example, uncovering Clever Hans predictors. W i t h the 
success of these methods, they are gradually start ing to be used i n other domains. Here we 
give an example of speech classification, specifically, predicting gender from audio record-
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ings. Because one of the best ways, how to interpret neural networks is through visual­
ization, interpretation of audio signals can be more challenging than image interpretation. 
To gain new insight into speech classification, several experiments were proposed in [4] and 
[33]. The experiments were done on raw waveforms and audio spectrograms. Layer-wise 
relevance propagation (Section 3.2) was chosen as an explanation method for used C N N 
models. In both cases, raw waveforms and audio spectrograms, L R P highlighted features 
based on their contr ibution to the prediction. Blue features have negative relevance on the 
prediction, whereas red features have positive relevance towards correct prediction. 

R a w waveform explanation is presented i n Figure 3.2, showing that the model's predic­
t ion was based on the outer hull[33][4]. However, this information is hard to interpret for 
an observer. 

audionet | gender | vp47 | digit 0 | rep. 16 | prediction 1 

Os 0.5s 

Figure 3.2: Exp lana t ion of audio signal based on raw waveform acquired by L R P . Taken 
from [33] 

To raise interpretabili ty for people observing the results, the same method ( L R P ) was 
used for a second model that was trained and explained on spectrograms. Spectrograms 
provided more information about the model and revealed that gender predictions depended 
mainly on the lowest fundamental frequencies and immediate harmonics[42] (fig. 3.3). 

3.2 Layer-wise relevance propagation 

Layer-wise relevance propagation ( L R P ) belongs to a group of backward propagation tech­
niques for explaining deep neural networks u t i l iz ing their layered structure. These tech­
niques scale better when used on complex deep neural networks than simple gradient-based 
methods [24]. Considering a deep neural network as a series of connected layers as in [33]: 

f(x) = fLo...ofl(x) , (3.1) 

where x is the input of the network and fi if the function performed by Zth layer i n the 
network. L R P computes activation scores in forward pass and subsequently propagates the 
output score f(x) i n backward direction towards the input layer using propagation rules [24] 
(subsection 3.2.1) as shown in Figure 3.4. 

The propagation process is conservative analogous to Kirchhoff 's current law i n electrical 
circuits [34]. In neural networks, this means that a l l activation energy or relevance (in 
backward propagation) flowing into the neuron has to flow out of the neuron, i.e. be 
redistributed into the lower layer. Conservation property for neuron k is described in [24] 
as: 

Y,Rj^k = Rk, (3.2) 
j 
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female sample male sample 
gender | v p l 2 | digit 0 I rep. 14 | prediction 1 gender | vp2 | digit 0 I rep. 13 I prediction 0 

0.5s Is OS 0.5s Is 

gender | vp56 I digit 0 I rep. 11 | prediction 0 gender | vp25 I digit 0 I rep. 0 I prediction 1 

Figure 3.3: Exp lana t ion heatmaps of audio signal based on spectrogram acquired by L R P . 
Taken from [33]. 

where j and k are indices for neurons of two successive layers and Rk is the relevance 
of a neuron k at the upper layer. Rj^k represents redistributed share of relevance Rk into 
the neuron j i n the lower layer. Similar ly, the relevance of neuron j in the lower layer is 
the sum of the relevance propagated from an upper layer: 

Rj — Rj^k (3.3) 

These relevance values, which are propagated up to the input layer, make the final heatmap. 
Heatmap represents data points w i t h positive and negative contributions to a model pre­
diction. 

3.2.1 Different L R P p r o p a g a t i o n rules 

The information i n this subsection is obtained from [34] [16] [17]. The simplest basic L R P 
propagation rule denoted as L R P - 0 redistributes relevances of the upper layer in proport ion 
to inputs of given layer 

\ ^ djWjk 
R j 

k E , - aJwJk 
Rk , (3.4) 

where Rj is relevance of given layer j and Rk is relevance propagated from previous layer 
k. Input of the neuron in given layer j is aj and Wjk is weight connecting layer j w i th 
layer k. A l though this rule satisfies properties such as (aj = 0) V (wj: = 0) =4> Rj = 0, 
applying only this rule on the whole network produces a s imilar result as explaining v ia 
Gradient x Input. The gradient i n deep neural networks can be noisy, therefore, more robust 
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Figure 3.4: I l lustrat ion of how each neuron redistributes a l l relevance (or activation energy) 
flowing into it from the lower layer into the upper layer. Image taken from [33]. 

rules are a better option for explaining such networks. In addi t ion to L R P - 0 , enhanced rules 
were proposed to increase the explainabil i ty of deep neural networks. 

The first improvement from basic L R P - 0 consists of constant value e added to the 
denominator. Th is improvement is denoted as LRP-e[17]: 

E djWjk 

Eo,i "./'''.//•• + (• *'.'/"( >^i,; "./''> •Rk (3.5) 

The addi t ion of e causes smal l or contradictory relevances of neuron k to be absorbed. 
On ly the most significant features are propagated as the value of e grows. Exp lana t ion 
ut i l iz ing this rule tends to be less noisy wi th fewer input features presented in a heatmap 
than explanation made by uniform usage of L R P - 0 . 

Another possible improvement from L R P - 0 is a rule denoted as L R P - 7 (equation 3.6) 
is achieved by disproportionately favoring the positive contr ibution of relevances. 

R; E Oj • (wjk + 7 w + ) 
Rk • (3.6) 

The value of 7 determines how much are positive relevances favored over negative ones. B y 
l imi t ing the growth of negative and positive relevances, L R P - 7 explanation becomes more 
stable, smooth, and less noisy. A l t h o u g h the LRP-o»/3 rule [20] was originally proposed 
as a method for treating positive and negative relevances i n a disproport ion fashion, the 
equivalent result can be achieved by choosing gamma i n L R P - 7 . 

Even though the above rules provide an enhancement i n some way over L R P - 0 , using 
any of them uniformly results i n subopt imal results. Accord ing to [23], every rule has a 
negative effect i n terms of faithfulness and understanding of interpretation when used uni­
formly. L R P - 0 produces a noisy heatmap by highlighting many local artifacts, resulting 
i n unfaithful and inexplicable explanation. L R P - e produces a faithful heatmap by high­
lighting relevant features, but they are too sparse to be easily interpretable. L R P - 7 , on 

15 



Input 

< 

LRP-0 

Uniform L R P 

LRP-e LRP-7 

Composite L R P 

3 
(g) 

3 
@ 

CO 
CM 

CO 

CO X CO 
CO X CO 

<§) CO X CO 
® CO X CO 

LRP-7 LRP-e LRP-0 

Figure 3.5: Pixel-wise explanation of castle in the image using different L R P rules w i th 
parameters 7 = 0.25, e = 0.25. Taken from [23] 

the other hand, highlights features more densely than L R P - e but picks unrelated features 
as relevant, making this method to be considered unfaithful. The best explanation was 
achieved by combining a l l three rules i n one network using different rules for different parts 
of the network as shown in the Figure 3.5. 

3.2.2 H o w to i m p l e m e n t L R P rules for different n e u r a l ne twork layers 

Efficiency plays a great role in computing and can save a lot of t ime. The rules presented 
i n the Subsection 3.2.1 can be generalized into one Equa t ion 3.7, al lowing them to be 
implemented efficiently [23]. 

R; y 
Ve + E j ajp(wjk) 

Rk • (3.7) 

Rho represents a copy of a given neural network layer to whose weights and biases was 
applied a mapping function 9 1—> p{9) and e is smal l increment. The propagation of 
relevance is made in four steps [23]: The first s tep(l) is a forward pass through a copy of 
a given layer. The second(2) and fourth(4) steps are divis ion and product, respectively, 
element-wise operations. The third(3) step is a backward pass of relevance, which can be 
also computed gradient [23]. 

1: Vfc Zk = e + J2j ajp{wjk) 
2: Vfc Sk = Rk/zk 

3: CJ = T,kP(Wjk) • Sk 
1: v f c 

Rj = djCj 

The information below, about relevance propagation through different neural network 
layers is obtained from the thesis by Lapuschkin [17]. Relevance propagation implementa-
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tions mentioned below are only for layers present i n the model architectures used i n this 
thesis. The backpropagation implementations below assume that, in general, the mapping 
of from neurons Xj at one layer to neuron Xj at the other layer is computed as an equation 

XiWij + bj , (3.8) 

where Xi is the input neuron of layer i, Wij is the value of weight connecting neuron xi w i th 
neuron Xj, and bj is bias. 

Linear layers that perform a linear transformation on the input using weights, such 
as fully connected layers and convolutional layers. Relevance propagation i n backward pass 
through these layers is implemented as 

= . M'+D . (3.9) 

Equat ion 3.8 can be adapted to implement relevance propagation through pooling layers, 
specifically to this thesis, average- and max-pooling. Average pooling layers can be 
implemented as convolutional layers, where a l l weights have the value of w = ^ , where n is 
the number of input neurons. M a x pooling layers implement function 

Xj = max(xj) , (3.10) 
i 

where the output neuron Xj is assigned to a single max ima l value from a l l of its input 
neurons X j . Therefore, i n backward propagation, the incoming relevance value R^+1^ is 
propagated to the single neuron Xi w i t h max ima l act ivat ion value as follows: 

R ^ = \ 0 else • ( 3 - 1 1 } 

Backward pass through R e L U act ivat ion functions uses the identity rule[14], B.V = r \ 1 + 1 \ 

Batch normalization layers implementing function 

- X " i ^ 7 + / ? , (3.12) 

where 7 and (3 are parameters learned during a model t raining, fig is the mini-batch mean 
value, and o~\ is the mini-batch variance, bo th values are fixed after the training, e is a 
small constant preventing divis ion by zero. The batch normalizat ion, in a forward pass, 
can be computed as a sequence of equations: 

x ' = x — hb (3.13) 

x " = x ' • s (3.14) 

Z = x" + I3 (3.15) 

1 where s is a subst i tut ion from the equation, 5 = 7- (aB + e) 2. The backward pass of 
relevance through equations 3.13 to 3.15 creates an equation [17] 

R i l ) _ x o . 0 «<'+•> _ l m 

where 0 is element-wise mul t ip l ica t ion. 
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3.3 Other methods for neural network interpretation 

Beside Layer-wise relevance propagation and its use of the structure of neural networks, 
methods based on other principles were proposed to gain new insights into neural networks. 
These methods do not use layers as such but rely on different aspects of neural networks. 
They a im to explain models using approaches such as gradients in combination wi th input 
data, various analyses of model sensitivity to certain input features, and their perturbations. 
In this section, some of these methods are mentioned, and later i n section 3.4 described 
their advantages and disadvantages. 

3.3.1 O c c l u s i o n 

Another method available to explain neural networks is Occlusion analysis [33] [2]. It is a 
specific type of perturbation analysis, where during neural network analysis, input features 
or whole patches are being occluded. For example, when explaining models trained for 
image classification, square regions of the input image are replaced wi th grey or zero values. 
The relevance is obtained by measuring the effect of occluded regions on the prediction and 
accuracy of the explained model . However, the relevance can be computed in two ways, 
based on the problem the neural network is used for. In terms of prediction, the heatmap 
is buil t from scores computed as the difference between functions. 

Regions or features that caused the biggest decrease in prediction accuracy are highlighted 
i n such heatmap, this type of occlusion is also referred to as Occlusion j^^if f • In terms 
of explaining classification, it is computed as the difference between probabilit ies x and 
perturbed x\x.=0: 

and referred to as Occlusionp-diff- Because visual artifacts can occur in heatmaps pro­
duced by occlusion of input images, there were proposed enhancements such as inpaint ing 
the patches instead of setting them to grey [33]. 

3.3.2 G r a d i e n t based explanat ions 

Integrated Gradients is one of the methods for explaining deep neural networks based on 
their gradients. Another variant is, for example, SmoothGrad[33]. The Integrated Gradient 
method utilizes sensitivity of backpropagation methods and implementat ion invariance of 
gradients[3]. O n the other hand, it suffers from the shattered gradient problem. This 
problem can be minimized by averaging relevance scores of mult iple integrations paths as 
proposed i n the experiments by W . Samek and G . Montavon[33]. Let / : Rn —>• [0,1] be 
a function representing some deep neural network, x £ Rn networks input, and x' 6 Rn 

networks baseline input, for example, a black image i n computer vision. The Integrated 
Gradient defines relevance scores of features, where these scores are produced by integrating 
gradients along a straight path from x1 to x. Integrated Gradient along ith dimension [3] is 
defined as: 

This method satisfies completeness because the sum of the attr ibutions is equal to the differ­
ence between function / w i th input x and baseline x'. The baseline for most networks can 
be chosen as f(x') « 0 therefore the attr ibutions are propagated among input features[3]. 

(3.17) 

(3.18) 

(3.19) 
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3.4 Requirement for neural network explainability methods 

Methods described i n Sections 3.2 and 3.3 implement different approaches towards neural 
network explainabili ty. Therefore, every one of them produces slightly distinct relevance 
scores and heatmaps. In computer vision, for example, L R P tends to highlight features 
mostly i n favor of positive relevances. The occlusion method highlights important regions 
in the image. A n d the integrated gradient highlights relevant pixels but shows more negative 
relevance in heatmap than L R P , Figure 3.6. 

Figure 3.6: Preview of heatmaps obtained by Occlusion, Integrated Gradient and Layer-wise 
relevance propagation (top to bottom) i n correct classified images of 'space bar', 'beacon/-
lighthouse', 'snow mobile ' , 'viaduct ' , 'greater swiss mountain dog' (left to right). Figure 
taken from Transparent Deep Neural Networks and Beyond [33]. 

Neura l networks are, in general, evaluated by how reliable their predictions are, i.e. how 
high is the probabi l i ty that their predictions w i l l be correct. To determine the usefulness 
of neural networks explanation is more complicated because there is no ground t ru th in 
such explanations. Several aspects were proposed to help evaluate i f and how big an im­
pact explanation methods have on neural network's performance. Information about the 
following requirements for explanation methods is obtained from W i l l i a m Swartout and Jo­
hanna Moore 's conference paper [40] and Transparent Deep Neura l Networks and Beyond 
article [33]. 
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Faithfulness 

Faithfulness as a property of methods for neural network explanation is associated wi th 
how the explanation is created. A n incorrect or confusing explanation of a neural network 
model is not useful and can provide misleading information about the model, possibly 
causing more problems than an unexplained model . Explanat ions must be based on the 
same knowledge as is the model 's decision-making to accurately and faithfully represent 
its decision structure. Pixel-flipping is a method for determining the faithfulness of the 
explained model . The Pixel-flipping method is based on removing the most relevant pixels 
from an input image and evaluating changes i n the model's output. A s relevant pixels or 
features begin to disappear from the input, the model accuracy, i.e. probabi l i ty of correct 
prediction, should be decreasing, Figure 3.7. 

VGG-16 Occlusion Res Net 

Figure 3.7: Exper iment for determining faithfulness of different explanation approaches on 
image classification model. A s we can observe Integrated Gradient methodihottova picture 
of a dog) found pixels on which model depends the most. A l though the input image nearly 
does not change for the human eye, the prediction accuracy drops drast ically [33]. 

Even though faithfulness determines if the explanation highlights relevant and compre­
hensive features of the model, it does not ensure an easily interpretable explanation for a 
human observer. 

Interpretabi l i ty 

The intention for research and use of interpretation methods is to gain, to some extent, 
insight and t ry to understand the black box that neural networks are. For this to be 
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successful, explanations produced by these methods need to be interpretable to humans. 
Accord ing to M i l l e r [22], "most of the research and practice in this area seems to use the 
researchers' intuitions of what constitutes a 'good' explanation". It is hard to define what a 
good explanation is because different people may interpret the same explanation differently, 
based on their knowledge and capabilities. M i l l e r [22] also highlights findings important for 
explainable A I . Some of these findings are that: 

• referring to causes is, for people, more important than referring to probabilit ies, or 

• people are more l ikely to ask "why event P happened instead of some event Q"[22] 
than why event P happened 

In [33], the interpretabili ty of different explanation methods for image classification models 
is measured based on the produced explanation's file size. Th is comparison shows that 
occlusion produced the smallest file size, roughly showing where important features are 
located, therefore, it should be the best for interpretation. 

A p p l i c a b i l i t y 

Other important characteristics of explanation methods are appl icabi l i ty and runtime. A p ­
pl icabi l i ty determines if a method can be applied to a variety of neural network models, 
including those which are the subject of research, and how easy the implementat ion of 
the method is. Runt ime determines computing efficiency, how many resources and time 
the method needs to produce the explanations. Accord ing to the results of the comparison 
between Occlusion analysis, L R P , and Integrated gradients method presented i n [33], Occlu­
sion analysis is the easiest to implement and can be obtained for every network. However, it 
is the slowest among the three. L R P , on the other hand, is the fastest method but assumes 
that a model has the structure of a neural network consisting of a sequence of layers. 
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Chapter 4 

Used datasets and deep neural 
network architectures 

The usage of L R P for interpretation requires access to the internal structure of a neural 
network. It is crucial to understand the input data to accurately interpret neural network 
decisions. Th is chapter describes datasets used for interpretation of two speech classification 
models for gender classification using spectrograms ( A u d i o M N I S T dataset) and speaker I D 
classification using audio filter banks (VoxCeleb dataset). Another part of the chapter 
describes deep neural network models used wi th these datasets. The AlexNe t model is 
used w i t h A u d i o M N I S T and ResNet w i th Voxceleb dataset, showing their architecture and 
produced outputs. 

4.1 A u d i o M N I S T audio dataset 

To replicate and extend experiments proposed by S. Becker et al. [4] the same dataset and 
model are used. Th is dataset was originally used for the interpretation of both digit and 
gender speech classification models. It consists of audio recordings (spoken digits 0 — 9) of 
60 different speakers of various nationalities and age, where 12 speakers are females and 48 
males. Each speaker has 500 recordings, where every digit (0 — 9) is repeated ten times, 
producing a to ta l of 30000 audio recordings. 

The raw audio samples were recorded wi th a 48kHz sampling frequency, stored as a 
.wav file. These samples were preprocessed into spectrograms (Figure 4.1) w i th python 
script included in the A u d i o M N I S T repository. A t first, the recordings were downsampled 
to 8kHz and zero-padded into 8000-dimensional vectors. Then, spectrograms were created 
using Short-t ime Fourier transform wi th H a n n window, 455 samples per segment, and 
overlapping segments wi th the size of 420 samples per segment. Produced spectrograms of 
audio recordings had size of 228 x 230 {frequency x time). The highest frequency b in and 
last three t ime segments were cropped, creating spectrograms wi th the size of 227 x 227. 
The ampli tude was converted into decibels using d = 201og i n—^—, where d is result in 
decibels, a is spectrogram ampli tude and aref is reference ampli tude (aref = max(a)) . 

The preprocessed data were reduced to 24 speakers (12 female and 12 male chosen 
randomly) and split into three disjoint splits: t raining, validation, and test split containing 
6000, 3000, and 3000 recordings, respectively. 
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seconds seconds 

Figure 4.1: Spectrograms of A u d i o M N I S T recordings, female(left) and male(right) speaker. 

4.2 VoxCeleb audio dataset 

Features from VoxCeleb[25][26][8] audio dataset were used to extend interpretation exper­
iments to a different task such as speaker classification. This dataset was chosen because 
I obtained a neural network model pre-trained on features from this dataset for a speaker 
classification task. In particular, the data were from the VoxCeleb2 dev dataset containing 

seconds 

Figure 4.2: Spectrograms of VoxCeleb features augmented wi th music(top) and 
noise(bottom). 
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speech recordings of 5994 ind iv idua l speakers and its augmentations wi th music and noise 
from the M U S A N [ 3 7 ] dataset. Features used for model t ra ining and interpretation exper­
iments are 64-dimensional filterbanks showed in Figure 4.2. In every dimension, the mean 
value is normalized to 0, and each frame represents 25ms of speech w i t h a 15ms overlap. 
Each file w i th 64 x 200 features corresponds to a two-second segment of the recording. 

4.3 AlexNet architecture 

For the gender classification task, a convolutional neural network model was used, as pro­
posed i n the article by S.Becker et al.[4]. The model has A l e x N e t architecture w i th adapted 
parameters for classification from spectrograms (section 4.1). It consists of two main parts: 
feature extraction block and classification block. The feature extraction block is composed 
of five convolutional layers, R e L U activation functions, and max-pool ing layers. The input 
data has a size of 227 x 227 and a single channel as described i n the Section 4.1. The 
five convolutional layers w i th kernel sizes 11, 5, and 3 respectively, and max-pool ing layers 
down-sample the input (2.4). R e L U activation function (2.2) is very popular and crucial for 
interpretation wi th the L R P method. Adapt ive average pool ing is applied to ensure that 
size of the feature tensor is 6x6. The output of the average pool ing layer is flattened and 
fed into a classification block. The classification block is composed of three dense layers 
feeding the output of size (1,2) into sigmoid activation function. Dur ing an evaluation of 
the model, the prediction is obtained as y g e n der = argmax(out), where out is output tensor 
of the model and value of y g e n der represents gender as follows: 

4.3.1 T r a i n i n g of the m o d e l 

AlexNet model was trained for 200 epochs on the 6000 recordings t ra ining set described in 
Section 4.3 w i th a batch size of 50 recordings, where recordings i n each batch were chosen 
randomly. The learning rate was set to le-4 and momentum to 0.9. B ina ry Cross En t ropy 
was used as a loss function to evaluate the model dur ing t raining. Stochastic gradient 
descent was used as an optimizer function for updat ing the model's weights. After 200 
epochs model achieved a gender prediction accuracy of 97.83% on both val idat ion and test 
sets (described in Section 4.3). 

4.4 Speaker ID classification model 

Another neural network model chosen for interpretation is trained to classify speakers from 
an audio recording. Th is model is a more robust and complex deep neural network than 
previously used AlexNe t . It is based on ResNet34 architecture w i th some changes to perform 
well on a designated task. Pretra ined model was provided by P h o n e x i a / V U T F I T , w i th a 
classification accuracy of 96% on both t ra ining and validat ion datasets. Input data into this 
network are filterbank features of size 64 x 200 and a single channel described i n Section 4.2. 

This architecture is using mainly a combination of 2D convolutional layers (Conv2d) 
and 2D batch-normalization (BatchNorm2d) layers. Star t ing w i t h one convolutional and 
one batch-norm layer, followed by four main parts composed of mult iple blocks of Conv2d, 
Ba tchNorm2d layers, and a residual connection. The main hidden layers consist of 3, 4, 

male if argmax (out) = 0 
female if argmax(out) = 1 
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6, and 3 blocks. Each main layer downsamples the input in half by setting stride = 2 in 
the first convolutional layer of the first block. The blocks consist of two Conv2d and two 
Ba tchNorm2d layers, as shown in Figure 4.3 on the right. In addit ion, the first block in 
each main layer has a residual connection composed of Conv2d and Ba tchNorm2d layers, 
shown i n Figure 4.3 on the left. Ac t iva t ion functions used in this architecture were R e L U . 
Followed by mean and standard deviat ion pooling, which summarizes the whole utterance 
into one vector. The network ends wi th a dense layer for speaker embeddings extraction 
wi th (N, 256) output features tensor followed by an I D batch-normalizat ion layer and a 
dense layer producing output speaker I D tensor of size (N, 5994), where N represents batch 
size. The prediction of the model is obtained as y = argmax(logits), where logits represent 
the value of each speaker. 

input input 

Convolutional layer 

BatchNorm layer Convolutional layer 

Convolutional layer BatchNorm layer 
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Figure 4.3: Th is figure shows the architecture of one block i n the ResNet model . The 
first block in the main layer has a convolutional and batch normalizat ion layer i n its resid­
ual connection(left). Other blocks i n the m a i n layer have a residual connection without 
addi t ional layers i n it (right). 
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Figure 4.4: A lexNe t architecture scheme showing its layers(left) and dimensions of their 
tensors (right). The Fi rs t and last size is the dimensions of input and output tensors, 
respectively. Others are dimensions of the output tensor of the respective layer. B in 
represents a batch size of a given tensor. 
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Chapter 5 

Solution design and 
implementation 

The Layer-wise relevance propagation can be implemented i n different ways depending 
on neural network architecture and chosen library. Th is chapter gives a brief overview 
of different libraries for machine learning, existing L R P implementations, and finally, my 
implementation used for experiments in this thesis. 

5.1 Machine learning libraries 

Machine learning libraries described i n this section were in i t ia l ly released i n 2015 (Keras and 
Tensorflow) and 2016 (PyTorch) . Since then, they have gained on popular i ty i n research, 
development, real-life applications, and others. They allow easy creation, t raining, and 
evaluation of a broad spectrum of machine learning models while also providing some pre-
trained models. These are not the only libraries for machine learning but are the most 
popular. 

5.1.1 Tensor F l o w a n d K e r a s 

TensorFlow is a free, open-source l ibrary for machine learning developed by Google writ­
ten i n Py thon , C + + , and C U D A . Code wri t ten i n TensorFlow can run on both C P U 
or G P U , allowing acceleration i n computation, especially w i t h high dimensional matrices 
called tensors which are pr imary data structures i n this l ibrary. The big difference between 
TensorFlow and P y T o r c h is the implementat ion of a computat ional graph. In TensorFlow, 
the computat ional graph is static, where the sequence of computat ion is defined beforehand, 
allowing the use of placeholders. Th is approach has great performance, but it is hard to 
debug. TensorFlow has great product ion and deployment options i n comparison to Py to rch 
and therefore is very popular among developers. 

Keras is an open-source high-level P y t h o n A P I later integrated into TensorFlow. Keras 
can be used independently of other libraries. However, since it handles only high-level 
computations, it is convenient to use Keras on top of the other machine learning l ibrary 
that functions as a backend. 
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5.1.2 P y T o r c h 

PyTorch[30] is also an open-source machine learning l ibrary in i t ia l ly released i n 2016 and 
developed by Facebook. It is based on the Torch l ibrary and wri t ten i n Py thon , C + + , and 
C U D A . Programs wri t ten i n P y T o r c h can also run on both C P U and G P U . P y T o r c h is 
highly popular i n the research field, mainly for its simplicity, flexibility, and it tends to be 
easier to use than TensorFlow when start ing wi th machine learning. It is a high-performance 
l ibrary that handles low-level computations, has efficient memory usage and great debugging 
options. It allows to easily bu i ld customized neural network models, debug them wi th , for 
example, forward and backward hooks, and convert P y T o r c h tensors into N u m p y mul t i ­
dimensional arrays. The big difference from TensorFlow is the dynamic computat ional 
graph. In PyTorch , the computat ional graph is buil t and can be changed during runtime. 
I chose P y T o r c h for its simplicity, debugging options, popular i ty i n research, and hooks. 

5.2 Exist ing solutions and proposed solution design 

There are existing solutions for interpreting neural networks implementing different meth­
ods, mentioned i n Chapter 3, to explain various models trained for different tasks. However, 
only a couple of these projects implement L R P . Each solution takes a different approach 
to implement explanation methods and models using different P y t h o n libraries, like P y ­
Torch, Keras , Caffe, or even N u m P y for L R P . In a lot of cases, L R P is implemented as 
either variations of P y t h o n classes w i th methods computing L R P rules. Or , in the case of 
P y T o r c h implementations, whole layers are implemented wi th a custom forward and back­
ward passes, and L R P is computed i n a backward function u t i l iz ing PyTorch ' s dynamic 
computat ional graph. These solutions have usually implemented L R P only for a couple of 
layers depending on the model used for interpretation.Also, a l l of these implementations 
were for image classification models. 

A s I chose P y T o r c h as a l ibrary for my thesis and both models used for the interpretation 
are also implemented in PyTorch , I decided to uti l ize easy-to-use forward hooks available 
in P y T o r c h i n combinat ion wi th classes computing L R P for each type of layer. I d id not 
want to implement whole layers w i t h forward pass function and backward pass functions as 
it is already well opt imized. In addi t ion to separate classification from L R P computat ion, 
I decided to create a class for each type of neural network layer used i n the models. Each 
class implements relevance propagation according to L R P rules and is callable outside the 
interpreted model . Th is separation is achieved by storing the weights, inputs, and outputs of 
layers during a forward pass through the model using registered forward hooks as described 
i n the following Section 5.3. 

5.3 Implementation of L R P for AlexNet and ResNet models 

The ma in function for computing L R P is composed of the definition of forward hooks, 
their registration, forward pass of the model, and loop for computing the L R P through the 
layers. F i r s t , forward hooks are implemented so that for each layer important for L R P (e.g. 
excluding R e L U ) a custom object representing that layer is created w i t h corresponding 
weights and stored into a list of custom layers ready for L R P as shown i n L i s t i ng 5.1. 

def f_hook(module, input, output): 
i f isinstance(module, nn.Conv2d): 
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# bias i s set to false i n ResNet 
layers.append(ConvLayer(input[0], output, type(module), 

module.weight.data, None, module.kernel_size, 
module.stride, module.padding, module.groups)) 

e l i f isinstance(module, nn.Linear): 
layers.append(LinearLayer(input [0 ], output, type(module), 

module.weight.data, module.bias.data)) 
Lis t ing 5.1: Par t of the forward hook function, where convolutional and dense layer are 
being added into the list for L R P computat ion i n the future. 

These hooks are registered before the forward pass of the model . After the forward pass 
of input data and the creation of custom layer objects, the registered forward hooks are 
deleted. The relevance tensor is ini t ia l ized from the model's output tensor and propagated 
backward through the layers from the output to the input layer as shown i n 5.2. 

with torch.no_grad(): 
layers.reverse() 
R = Rinit 
for layer i n layers: 

R = layer.lrp(R) 
i f verbose: 

print(f'Current relevance tensor shape: {R.shape]-') 
return R 

Lis t ing 5.2: Computa t ion of L R P through layers, where R i n i t is output of the model and 
R is relevance tensor newly propagated through given layer. 

Each type of neural network layer has a corresponding class implementing L R P com­
putat ion according to the rules and decomposition described i n the subsection 3.2.2. Each 
class has object variables, such as weights input and output tensors of representing layer, 
needed to compute L R P . L R P implementat ion of convolutional, linear, and max-pool ing 
layers was inspired by the solution presented i n the LRP-toolbox[18] repository but wri t ten 
in P y T o r c h and further adapted to the layers of A lexNe t and ResNet models. The adap­
tat ion mainly involves the addi t ion of padding, opt ional bias, and groups i n convolutional 
layers. Us ing the L R P method on ResNet architecture required the implementat ion of 
batch normalizat ion layers shown i n L i s t ing 5.3 and solving relevance propagation through 
residual connections (Lis t ing 5.4). 

def l r p ( s e l f , R): 

s = torch.true_divide(W_positive, 
torch.sqrt(self.run_std ** 2 + self.eps)) 

Rx = torch.true_divide(self.X * s [ . . . , na, na], self.Y) 
Rx = Rx * R 
return Rx 

Lis t ing 5.3: Implementation of basic L R P for batch normalizat ion layer. W_positive rep­
resents learned 7 parameter, self.run_std is mini-batch mean value, and self.eps represents 
e from Equa t ion 3.12. self.Y is output of the layer represented as z in Equa t ion 3.15 and 
R is relevance tensor propagated from the previous layer. 
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I implemented a BasicBlock class representing blocks of layers w i th residual connections 
in the used ResNet model, enabling to backpropagate relevance correctly through these 
connections. BasicBlock class has two lists of layer objects, one for layers of represented 
part of neural network and the other for layers used i n residual connection. W h e n a residual 
connection is present, relevance from the lower layer is propagated as i f there was a linear 
layer w i th two inputs and weights set to 1. T h e n the relevance is propagated further 
simultaneously, through usual neural network layers, and layers in residual connection. 
Sum of relevances produced by these two ways is propagated into the upper layers. 

# compute LRP for hidden layers 
for layer i n self.layers: 

self.R = l a y e r . l r p ( s e l f . R, rule, eps=eps, gamma=gamma) 

# compute LRP for residual connection 
for layer_short i n self.res_connection: 

self.R_residual = layer_short.lrp(self.R_residual, rule, 
eps=eps, gamma=gamma) 

return self.R + self.R_residual 
Lis t ing 5.4: Implementation of L R P computat ion through residual connection, where 
self.layers is list of hidden layers i n the block. Layers inside residual connection are in 
the self.res_connection list, eps and gamma are constants (e, 7) set for L R P rules. Rele­
vance tensor propagated from previous layer is divided in proport ion to output of hidden 
layers and residual connection into self.R (relevance that came from hidden layers) and 
self.R_residual (relevance that came from residual connection) 
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Chapter 6 

Proposed experiments for audio 
signal interpretation 

One of the goals of this thesis is to t ra in and interpret a gender classification model . W i t h 
the trained model and implemented interpretation method, I t ry to replicate results made 
by S. Becker et a l . [4]. Further goal is to extend these experiments further based on results 
and use information obtained by L R P to improve the model . In the second part of the 
experiments, the challenge is to interpret a more complex model, trained for a more complex 
task, such as the mentioned ResNet model. This model is trained on a much bigger dataset 
wi th various data augmentations making it more robust. Another difference is the input 
data. W h i l e i n the case of A lexNe t , it is spectrograms, ResNet uses filter banks, which are 
more difficult to interpret. 

6.1 Explanation of audio spectrogram gender classification 

I used the previously proposed method — L R P , to find out based on what the A lexNe t model 
is making its decisions. The L R P used for this experiment utilizes L R P - 0 to propagate 
relevance values through linear layers and L R P - e p s for hidden and input layers w i th epsilon 
value 0.8. Th is value was chosen based on prel iminary experiments. Figure 6.1 shows 
heatmaps overlayed on top of the corresponding spectrograms of audio recordings. The 
obtained heatmaps look similar to the ones presented i n [4], where the neural network 
makes decisions based on the lower frequencies. 

In Figure 6.2, spectrograms of female and male recording are modified by setting 1% 
of the bins w i t h the highest positive contr ibution towards correct predict ion to zero w.r.t . 
L R P heatmaps shown i n Figure 6.1. This 1% shows that even though the Figure 6.1 shows 
relevant bins i n higher frequencies, the most relevant bins are located i n lower frequencies. 
In case of male speakers, the model learned to look at parts of spectrograms that were 
zero-padded during the pre-processing but had a value of —80 i n spectrograms. The male 
spectrograms have padded areas that are usually bigger than those i n female spectrograms. 
In male spectrograms, on average, 75 dimensions out of 227 have padded values (—80). 
Female spectrograms have 52 out of 227 dimensions, on average, w i th a padded value 
(—80). This difference i n male and female data may be one of the causes of such a flaw 
of the model . It is possible that the dependency on the padded area can be reduced by 
augmentation of the t ra ining dataset, e.g. choosing a different approach on how to pad 
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the data. However, this shows behavior similar to Clever Hans predictors, where a model 
performs very well but has learned patterns that can be considered wrong. 

seconds seconds 

Figure 6.1: Heatmaps produced by L R P on female(left) and male(right) spectrograms. 
R e d represents time-frequency bins wi th positive relevance scores and blue wi th negative 
relevance scores. 

seconds seconds 

Figure 6.2: A u d i o M n N I S T spectrograms, female(left) and male(right), where 1% of the 
most relevant time-frequency bins were set to zero. 

Heatmaps produced by L R P are interpretable for humans but do not guarantee that 
these explanations are also faithful. To determine the faithfulness of the used L R P method 
and rules, I used the same method as proposed by S. Becker et a l . [4] called pixel-flipping. 
Th is method is based on setting specific pixels, i n this case, time-frequency bins, of input 
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data to zero before classification and evaluating the model's performance. In this experi­
ment, from 0% to 100% of spectrogram bins were set to zero wi th three different strategies. 
Fi rs t , from the most relevant spectrogram bins w i t h the highest positive contr ibution ac­
cording to L R P , referred to as lrp. The second strategy chose spectrogram bins randomly, 
referred to as random. The th i rd strategy is the reverse of the lrp, where the first bins set 
to zero were the ones wi th the highest negative contribution, referred to as lrp_rev. 
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Figure 6.3: Accuracy of A l e x N e t model w.r.t. pixel-fl ipping method. L r p represents setting 
time-frequency bins to zero from the ones wi th highest positive contribution, l r p_ rev wi th 
highest negative contribution, and random sets bins at random. 

Results of the pixel-fl ipping evaluation are shown in Figure 6.3. In case of pixel-flipping 
using lrp, A lexNet ' s accuracy dropped rapidly right at the beginning, where only 0.5% 
to 1% time-frequency bins were set to zero. Eva lua t ion wi th the pixel-fl ipping method 
shows two things. F i rs t , it proves the faithfulness of L R P method, i.e. time-frequency bins 
highlighted by heatmaps are indeed the most relevant. The second is that this model's 
predictions heavily depend on a smal l fraction of time-frequency bins. The faithfulness 
is also supported by the fact that setting bins, w i th high negative contr ibution towards 
correct prediction, to zero, slightly increases the model's accuracy by 0.03%. Furthermore, 
the accuracy of the model does not decrease even when 95% of the spectrogram's time-
frequency bins are set to zero, such spectrogram is shown i n Figure 6.4. 

Individual values of the model's accuracy w.r.t pixel-fl ipping are shown in Table 6.1. 
W i t h only 1% of time-frequency bins changed to zero, the accuracy dropped from 97.83% 
to 4.33%, which uncovers the low robustness of the model . Because of a drastic drop in 
accuracy, I used the pixel-fl ipping method for only 1% of pixels to get more insight into 
such a sudden drop. In this experiment, N spectrogram bins were set to zero, where N 
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Figure 6.4: Spectrogram of female voice recording, where 95% of time-frequency bins wi th 
the lowest positive contr ibution towards correct predict ion is set to zero w.r.t . hetmap 
produced by L R P . Th is spectrogram is s t i l l classified correctly as female voice. 

Figure 6.5: Accuracy of A lexNe t model w.r.t . pixel-fl ipping method. Showing only first 
one percent (515 bins) of time-frequency bins changed. 
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The results of the pixel-fl ipping evaluation differ from the results i n the original by 
S. Becker et a l . [4]. In the original paper, the curve representing accuracy drop achieved by 
pixel-flipping was less steep, and i n the case of pixel-fl ipping w.r.t. hp , the accuracy dropped 
only slightly under 50%. Also , the random curve was similar to the lrp_rev curve i n the 
evaluation I achieved (Figure 6.3). In this case, the drop under the chance level is caused by 
the low robustness of the model and the fact that the model is highly dependent on time-
frequency bins w i t h a high positive contr ibution towards correct prediction. W h e n these 
bins are removed wi th the pixel-fl ipping method, a high por t ion of the positive contr ibution 
is removed as well . Th is results i n predominantly negative contributions contributions 
towards correct classification, and therefore the opposite gender is classified. I do not 
know what exactly caused such a big difference i n accuracy w.r.t . L R P but it can be 
caused by several factors such as a differently trained model and/or differences in L R P 
implementation. 

Table 6.1: Numer ic representation of model's accuracy showed in Figure 6.3. Rows show 
different approaches to pixel-fl ipping time-frequency bins, and columns show the model's 
accuracy w.r.t . percentage of the bins set to zero. 

Percentage of bins changed to zero 
M e t h o d 0 0.5 1 5 10 15 20 25 30 

lrp 97.83 10.8 4.33 2.43 2.17 2.13 2.13 2.13 2.13 
random 97.83 97.53 97.70 96.80 93.70 89.70 84.03 79.67 74.87 

lrp reverese 97.83 97.86 97.86 97.86 97.86 97.86 97.86 97.86 97.86 

6.2 Increasing robustness of model for gender classification 

I decided to use the information obtained by the explanation method i n previous experi­
ments to improve the trained model . The a i m is to lower the model's high dependency on 
such a smal l number of time-frequency bins and potential ly increase its performance on a 
val idat ion set. 

Firs t , I created an augmented t ra ining set using the pixel-fl ipping method described 
in the previous Section 6.1 by setting 1% of the most relevant time-frequency bins to 0. 
Besides the bins set to zero this augmented dataset has the same features as the original 
A u d i o M N I S T t ra ining dataset described i n Chapter 4. The pre-trained model reaching 
an accuracy of 97.83% was re-trained on the augmented dataset for 100 epochs w i t h the 
same hyperparameters described i n Section 4.3. Th is new model was evaluated w i t h the 
pixel-flipping method on the original A u d i o M N I S T validat ion set. Results of pixel-flipping 
evaluation and spectrograms of this re-trained model are shown i n Figure 6.6 and Figure 
6.7, respectively. Figure 6.6 shows that the model accuracy is around 50%, and the lrp or 
random pixel-fl ipping method has almost no effect on i t . Figure 6.7 shows the heatmap 
(left) produced by L R P for the re-trained model and spectrogram of the same recording 
wi th 1% of, according to L R P , the most relevant time-frequency bins set to zero (right). 
The spectrogram (right) in the Figure 6.7 shows that there is a shift of the most relevant 
bins to the higher frequency range i n comparison to the spectrogram (left) i n the Figure 6.2. 
The accuracies for different models i n the Table 6.2 show that the pixel-fl ipping method 
where time-frequency bins are set to zero is not a suitable method for augmentation of a 
t ra ining set. 
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Figure 6.6: Accuracy of A l e x N e t model w.r.t. pixel-fl ipping method. L r p represents setting 
time-frequency bins to zero from the ones w i t h the highest positive contr ibut ion and random 
sets bins at random. This model was trained on a dataset augmented wi th the pixel-flipping 
method. 

The second approach is again to change the values of the most relevant bins to lower 
high dependency on them. B u t the new values should be more less obtrusive, so they blend 
in , and the model eventually learns to make predictions based on more time-frequency 
bins. To achieve this, I propose to set the values of the 1% bins wi th the highest positive 
relevance to an average value of their Moore neighborhood. Using this method, I created 
augmented t ra ining set from the original A u d i o M N I S T . I repeat the process by taking the 
originally trained model and t ra in it again on the augmented dataset for 100 epochs wi th 
the same hyper-parameters as described in Section 4.3. Heatmap and spectrogram wi th 1% 
of the most relevant bins highlighted produced by the L R P method in Figure 6.8 shows that 
model trained on this augmented dataset makes predictions based on the lower frequencies 
as it should. W h e n compared to female spectrogram in Figure 6.2, there is a slight shift 
in the most relevant bins, but they stayed i n a low-frequency range, which is a good sign. 
However, the heatmaps of the new model cannot determine if it is more robust or on how 
many spectrograms' bins the predictions depend. A s before, the pixel-fl ipping method is 
used to evaluate how the new model would respond to augmented spectrograms. 

The evaluation of the improved model and comparison to the previously trained model 
and the original one is i n Figure 6.9 and Table 6.2. The results show increased robustness 
of the model trained on dataset augmented by average values of Moore neighborhood. The 
accuracy of the improved model on the non-augmented val idat ion dataset was increased 
by 1%. Because the validat ion set is composed of 3000 spectrograms this means that 30 
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Figure 6.7: Heatmap produced by L R P of A lexNe t model trained on a dataset augmented 
wi th the pixel-fl ipping method. Spectrogram shows 1% of the most relevant time-frequency 
bins and their shift to higher frequencies in comparison to the female spectrogram i n Figure 
6.2. 

seconds 

Figure 6.8: Heatmap produced by L R P of A lexNe t model trained on a dataset augmented 
by setting the 1% of the most relevant bins to average value of their Moore neighborhood. 
The spectrogram on the right shows that the most relevant time-frequency bins remained 
in the low frequency range, similar to Figure 6.2 

more data samples were classified correctly. However, the ma in reason for this experiment 
was to make the model more robust, therefore lowering the dependency on a smal l number 
of time-frequency bins. W i t h 0.5% of the most relevant bins changed to zero, the model 
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achieved an accuracy of 28.6%, and wi th 1% of changed bins, the accuracy was 22%. This 
means an increase i n almost 18% i n both cases. 
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Figure 6.9: Accuracy of differently trained A l e x N e t models w.r.t. pixel-fl ipping method, 
where time-frequency bins were set to zero from the ones wi th the highest positive contri­
but ion. A lexNe t represents a model trained on the original dataset. A l e x N e t _ a u g _ z e r o 
represents a model trained on a dataset augmented wi th pixel-fl ipping. A l e x N e t _ a u g _ m e a n 
represents a model trained on a dataset augmented by setting the most relevant pixels to 
an average value of their Moore neighborhood instead of zero. 

Table 6.2: Numer ic representation of accuracies for different models showed i n Figure 6.9. 
Rows show different models, whereas columns show their accuracy w.r.t. percentage of 
relevant time-frequency bins set to zero. 

Percentage of bins changed to zero 
M o d e l 0 0.5 1 5 10 15 20 25 

AlexNet 97.83 10.8 4.33 2.43 2.17 2.13 2.13 2.13 
AlexNet aug zero 46.67 51.93 52.93 53.5 93.70 89.70 84.03 79.67 

AlexNet aug mean 98.80 28.67 22.00 10.03 5.17 2.2 1.63 1.23 

Even though the gender classification on spectrograms is a simple task, these experi­
ments demonstrated the usefulness of neural network interpretation i n different ways: 

• gaining insight into neural network predictions by creating heatmaps, i n this case 
showing that decisions are based on lower frequencies, 

• uncovering robustness and vulnerabi l i ty to a smal l number of highly important data 
points, 
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• potential ly improving models based on the obtained information, 

• al lowing to "debug" the neural networks as shown i n Figure 6.7, where we can observe 
a shift of time-frequency bins important to decision making, explaining the model's 
drop of accuracy after t raining. 

6.3 Interpretation of speaker ID classification with ResNet 
model 

This experiment aims to explain a deeper neural network model, described i n Section 4.4, 
w i th a similar approach to previous A lexNe t explanations. The main difference i n explain­
ing this network over Alexnet is in ResNet 's u t i l iza t ion of the batch normalizat ion layers, 
pooling through time, and residual connections. 

Heatmaps shown in Figure 6.10 are produced by L R P ut i l iz ing only the LRP-0 rule 
on a l l layers. The input data are filter banks of speech recording augmented by music 
(top) and noise (bottom). Time-frequency ( T F ) bins w i th positive relevance a t t r ibut ion 
are highlighted in red, whereas bins w i th negative a t t r ibut ion are blue. The heatmaps are 
noisy as expected when using only the LRP-0 rule. The most relevant time-frequency bins 
are mostly located around lower and fundamental frequencies and spread through time, 
which can be considered as expected behavior. However, the LRP-0 tends to create chunks 
of relevant bins that are less spread throughout the t ime than the combination of other 
L R P rules. 

The unexpected behavior present i n these heatmaps is the presence of positive and 
negative time-frequency bins i n the same areas creating a checkerboard effect [27]. This 
effect could be a product of deconvolution created during the relevance back-propagation. 

To evaluate the faithfulness of the L R P method on this model, I chose the pixel-flipping 
method the same way as in Sections 6.1 and 6.2. Figure 6.11 shows the accuracy of the 
ResNet model, w.r.t. percentage of time-frequency bins set to zero, on the t ra ining set 
modified wi th the pixel-fl ipping. Random curve represents a random choice of bins changed 
to zero. Lrp curve represents an evaluation where bins were set to zero i n ascending order 
from the ones wi th the most positive relevance. Lrp_rev represents evaluation similar to the 
lrp but w i th descending order, i.e. from bins w i t h the highest negative relevance at t r ibut ion. 
The lrp and lrp_rev curves have an almost identical course that is steeper than the rand 
curve. 

This can be interpreted as two things. F i r s t , the L R P method produces heatmaps 
that, to some extent, correctly show the most relevant parts i n neural network decision 
making. Second, according to L R P , time-frequency bins w i t h positive relevance a t t r ibut ion 
are roughly equally important as bins w i th negative relevance a t t r ibut ion in terms of correct 
speaker classification. The equal importance of both negative and positive bins, which is 
unexpected behavior, is the ma in difference from AlexNe t interpretation experiments in 
Section 6.1. Another difference from AlexNe t experiments is the drop i n the model accuracy 
between lrp and random curve. In the case of ResNet , the lrp (blue) curve has a similar 
shape to the random (orange) curve, and it is much closer to i t . T h i s is probably caused 
by the difference i n robustness of the models. The ResNet model is a lot more robust: 
therefore, changing the most important time-frequency bins to zero has not as significant 
an impact as i n the case of A l e x N e t . The result of the pixel-fl ipping experiment can be 
caused by the noisy gradient i n such a deep neural network as this ResNet model is. A l so , 
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Figure 6.10: This figure shows heatmaps produced by L R P ut i l iz ing only the L R P - 0 rule on 
top of the VoxCeleb filterbank spectrograms augmented w i t h music(top) and noise(bottom). 
The red-colored time-frequency bins represent bins wi th positive relevance values (posi­
tive contr ibution towards correct prediction). The blue-colored time-frequency bins repre­
sent bins w i t h negative relevance values (negative contr ibution towards correct prediction). 
These heatmaps show that uniform L R P - 0 creates noisy heatmaps wi th a checkerboard 
effect[27], therefore, it is not a sufficient rule for interpretation of such a deep model as is 
Resnet. 

this shows the importance of more robust L R P rules when L R P is used as an explanation 
method i n deep neural networks. 

In the previous experiments w i th the A l e x N e t (Section 6.1), even heatmaps produced 
only by the L R P - 0 rule were interpretable, and features wi th positive and negative attributes 
were easily distinguished. Bu t , as the Figure 6.10 shows, this does not apply to ResNet 's 
heatmaps, and therefore using more robust rules such as L R P - 7 and L R P - e , for the relevance 
back-propagation, should br ing improvements. 

A s the first improvement, I used L R P - e , which, i n theory, should make heatmaps less 
noisy and perhaps easier to interpret. Based on prel iminary experiments, I chose e = 0.5. 
L R P - e was used for most of the hidden layers consisting of convolutional and 2D batch 
normalizat ion layers and input layer. For linear layers, I D batch normalizat ion layer and 
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Figure 6.11: Results of pixel-fl ipping evaluation of L R P on ResNet model, u t i l iz ing only 
L R P - 0 rule, made on 20000 data samples. Lrp(blue) curve represents a drop i n model 
accuracy w.r.t. percentage of time-frequency bins set to zero from the bins wi th the highest 
positive contr ibution to correct prediction. Lrp_rev(red) curve represents a drop i n model 
accuracy w.r.t. percentage of time-frequency bins set to zero, from the bins w i t h the 
highest negative contr ibution to correct prediction. Accuracy, when time-frequency bins 
are randomly set to zero, is represented by a random(orange) curve. The fact that the h p 
and l rp_ rev curves have the same shape and close to the random curve shows that the 
L R P - 0 rule fails at the interpretation of such a deep neural network as is ResNet . A l so , 
the L R P - 0 rule cannot produce heatmaps that distinguish between features wi th a positive 
and negative contr ibution to the correct prediction. 

pooling layers before the linear ones L R P - 0 remained used. Th is combinat ion of the rules 
selection was based on the results presented by Montavon et a l . [23]. 

Heatmaps of the same recordings as in Figure 6.10, produced after the addi t ion of the 
L R P - e rule shown in Figure 6.12 are significantly less noisy. The time-frequency bins wi th 
positive (red) and negative (blue) relevances are now more separated, vis ibly aligned along 
wi th lower frequencies, and therefore easier to interpret. Based on these heatmaps I assume, 
that the model's decisions are mostly based on the features i n the lower frequency range. 

To verify this assumption, I made an evaluation w i t h the pixel-fl ipping method, as in 
previous experiments. The results in Figure 6.13 show a faster decrease i n accuracy after 
setting the values of time-frequency bins to zero w.r.t . their positive relevance (blue curve) 
than wi th L R P - 0 for a l l layers shown in Figure 6.11. In addit ion, the slower decrease in 
accuracy when pixel-fl ipping the bins w.r.t. their negative relevance (red curve) shows an 
improvement. Even though the time-frequency bins wi th negative relevance values have s t i l l 
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Figure 6.12: This figure shows heatmaps produced by L R P ut i l iz ing L R P - 0 wi th L R P - e p s 
rules, where e = 0.8, on top of the VoxCeleb filterbank spectrograms augmented wi th mu-
sic(top) and noise(bottom). The red-colored time-frequency bins represent bins w i t h pos­
itive relevance values (positive contr ibution towards correct prediction). The blue-colored 
time-frequency bins represent bins wi th negative relevance values (negative contr ibution 
towards correct prediction). These heatmaps show that adding a more robust rule such as 
L R P - e p s causes less noisy features. Us ing L R P - e p s creates heatmaps easier for interpreta­
t ion by reducing noise and checkerboard effect [27]. 

a big impact on the model's prediction, a slower decrease i n accuracy means that features 
contr ibuting to an incorrect prediction are slightly better identified using L R P - e . 

Even though the L R P - e rule in combination wi th the L R P - 0 rule produced sufficient 
results, adding L R P - 7 should improve the results even more in terms of heatmap inter-
pretability. In the following experiment, the L R P - 7 rule was added for relevance propa­
gation i n approximately 1/3 of the layers (from the input layer), creating a s imilar chain 
of L R P rules as shown i n Figure 3.5. The e value remained 0.5, and for the L R P - 7 rules, 
the constant value was set to 7 = 5. The 7 value was chosen on prel iminary experiments, 
where 7 < 1 created sparse and noisy heatmaps that were hard to interpret and highlighted 
features that were not nearly the most important for the model's predictions. Heatmaps 
produced by a combination of a l l three rules ( L R P - 0 , -e, -7) are mostly less noisy, as shown 
in Figure 6.14. Features highlighted i n these heatmaps are more separated based on their 
contr ibution to the correct prediction (positive,i.e. red or negative, i.e. blue) relevance val­
ues) . These highlighted features suggest that a speaker is classified based on found features 
in his voice throughout the t ime and mostly i n a lower frequency range. The presence of 
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Figure 6.13: Results of pixel-fl ipping evaluation of L R P on ResNet model, u t i l iz ing L R P - 0 
and L R P - e rules, where e = 0.8, made on 20000 data samples. Lrp(bhie) curve represents a 
drop i n model accuracy w.r.t . percentage of time-frequency bins set to zero from the bins 
wi th the highest positive contr ibut ion to correct prediction. Lrp_rev(red) curve represents 
a drop i n model accuracy w.r.t . percentage of time-frequency bins set to zero, from the 
bins wi th the highest negative contr ibution to correct prediction. Accuracy, when time-
frequency bins are randomly set to zero, is represented by a random(orange) curve. The 
shape of Lrp, lrp_rev and the distance between them show that L R P successfully finds 
features posit ively contr ibut ing to correct prediction but is less successful i n finding the 
most important features that negatively contribute to correct prediction. 

features i n lower frequencies is similar to results obtained by previous experiments w i th 
AlexNe t i n Section 6.1. 

The faithfulness evaluation of the relevance heatmaps, produced by the combinat ion of 
three rules, can be seen in Figure 6.15. The method for this evaluation was again pixel-
flipping wi th the same meaning of ind iv idua l curves as i n previous experiments. The lrp 
curve, where time-frequency bins wi th the most positive relevance values are set to zero, is 
less steep i n comparison to the previous evaluation (Figure 6.13), where only L R P - 0 and 
L R P - e rules were used. Th is change can be caused by the fact that L R P - 7 favors features 
wi th positive relevance values over the features wi th negative relevance values. Therefore, 
some time-frequency bins that are less important may have higher positive relevance when 
using L R P - 7 over L R P - e . O n the other hand, the lrp_rev curve, where time-frequency bins 
wi th the highest negative value are set zero first, is a lot less steep compared to using only 
L R P - e and L R P - 0 rules. Th is behavior suggests that the addi t ion of the L R P - 7 rule better 
separates and highlights features wi th a negative contr ibution towards correct prediction. 
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Figure 6.14: This figure shows heatmaps produced by L R P ut i l iz ing a combination of L R P -
0, L R P - e , and L R P - 7 rules, where e = 0.8 and 7 = 5, on top of the VoxCeleb filterbank spec­
trograms augmented wi th music(top) and noise (bottom). The red-colored time-frequency 
bins represent bins wi th positive relevance values (positive contr ibution towards correct 
prediction). The blue-colored time-frequency bins represent bins w i t h negative relevance 
values (negative contr ibut ion towards correct prediction). In comparison to Figure 6.12, 
the addi t ion of the L R P - 7 rule caused even less noisy heatmaps. Also , it v is ibly divided 
features wi th the positive and negative contr ibution to the correct prediction, which makes 
these heatmaps even better and easier to interpret. 

In conclusion, bo th combinations of rules, L R P - 0 + L R P - e and L R P - 0 + L R P - e + L R P -
7, could highlight features important for correct speaker classification. Accord ing to the 
results of pixel-flipping evaluations L R P - 0 + L R P - e could find ind iv idua l time-frequency 
bins or smaller areas of important features better. O n the other hand, the combination 
of L R P - 0 + L R P - e + L R P - 7 could better dist inguish between features that contribute to 
the correct prediction and the ones that do not. Addi t ional ly , this combinat ion of rules 
produced nicer heatmaps better for interpretation wi th decent faithfulness. 
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Figure 6.15: Results of pixel-fl ipping evaluation of L R P ut i l iz ing L R P - 0 , L R P - e , and L R P -
7, where e = 0.8 and 7 = 5, on ResNet model made on 20000 data samples. Lrp(blue) curve 
represents a drop i n model accuracy w.r.t . percentage of time-frequency bins set to zero 
from the bins w i t h the highest positive contr ibution to correct prediction. Lrp_rev(red) 
curve represents a drop i n model accuracy w.r.t . percentage of time-frequency bins set to 
zero, from the bins wi th the highest negative contr ibut ion to correct prediction. Accuracy, 
when time-frequency bins are randomly set to zero, is represented by a random (orange) 
curve. The shape of hp , h p rev and the distance between them show that L R P can be 
considered faithful because it correctly highlights features important for correct or incorrect 
prediction. 
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Chapter 7 

Conclusion 

The goal of this thesis was an interpretation of the deep neural network used for audio 
classification, i.e., find features i n data w i th high contr ibution to made prediction and 
t ry to replicate results of gender classification from spectrograms originally presented by 
S.Becker et a l . [4]. Then wi th information obtained from previous results extend the 
interpretation experiments further. 

I successfully produced heatmaps similar to the ones presented i n the original paper. 
Accord ing to these heatmaps, used convolutional neural network made gender predictions 
from spectrograms based on lower frequencies. Eva lua t ion of these heatmaps w i t h the 
pixel-flipping method showed their faithfulness and uncovered low robustness of the trained 
model. Even though this model achieved 97.8% accuracy i n predicting correct gender, using 
L R P , I found out that the predictions were based on a smal l number of spectrogram's time-
frequency ( T F ) bins. Us ing the pixel-fl ipping method w.r.t. L R P , the model's accuracy of 
predicting correct gender dropped from 97.8% to only 10.8% when only 0.5% of T F bins 
were set to zero. To extend these experiments and use information obtained from heatmaps, 
I create an augmented t ra ining dataset w.r.t . heatmaps and re-trained the model . I manage 
to make the re-trained model more robust, i.e. less dependant on such a smal l number of T F 
bins, boosting its accuracy when 0.5% of T F bins were set to zero w.r.t . L R P from 10.8% to 
28.67%. I further extended the experiments using L R P to interpret a more complex ResNet 
model trained for the speaker I D classification task. Interpretation of this model showed 
some negative effects caused by deep convolutional networks when using L R P - 0 rule, such 
as noisy heatmaps or checkerboard effect presented in heatmaps. I overcame these problems 
using more robust L R P rules during propagation, creating less noisy and relatively easier 
to interpret heatmaps. 

For future work, I propose implementing L R P , or even other interpretation methods, for 
more neural network layers and change the way of creating these layers during computat ion 
so the computat ion of L R P can be modified and easily used for different models. Because 
L R P is heavily dependent on the model's architecture and needs to have access to its layer, 
such generalized implementat ion could potential ly make usage of interpretation methods 
more common not only in the field of research. For example, L R P could be used as a form 
of debugging for neural networks, i.e. by looking on heatmaps that highlight important 
features in data, one could determine i f these features represent desired behavior or not. 
Another example is using interpretation methods as a tool to increase deep neural network 
credibil i ty among people, e.g. when a company creates a product using machine learning. 
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Appendix A 

Contents of the 
media 

/ 
augmented_datasets/ 
data/ 
eval_data/ 

AlexNet/ 
speakerlD/ 

figures/ 
interpretation/ 

i n i t .py 
interpret_methods.py 
lrp_class.py 

models/ 
AlexNet/ 
AudioNet/ 
customDataset.py 

i n i t .py 
wrapper.py 

_SpeakerlD/ 
thesis/ 
AlexNet_experiments.ipynb 
AlexNet_pf_video.py 
AlexNet_wrong.txt 
cnn_lrp_demo.py 
create_dataset.py 
dataset_check.py 
lrp_eval.py 

_README.md 
relu.py 
speakerID_eval.py 
speakerID_experiments.ipynb 
speakerID_heatmaps.py 
speaker_lrp_demo.py 

included stora 
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u t i l s . p y 
enviroment.yml 

_LICENSE 
thesis.pdf 

Source files (.py and .ipynb) and how to setup an enviroment are described in R E A D M E . m d 
i n included storage media. 

• augmented datasets/ — datasets created using pixel-fl ipping method w.r.t. 

heatmaps produced by L R P 

• da ta / — AlexNe t spectrograms in .hdf5 format for demo 

• figures/ — experiment figures used in thesis 

• interpretation/ — source codes for Layer-wise Relevance Propagat ion 

• models / — AlexNe t architecture, trained models and utili t ies for model loading, 
training, evaluating and etc. 

• S p e a k e r l D / — ResNet model and VoxCeleb data used for experiments 

• thesis/ — L a T e X source code for thesis 

• R E A D M E . m d — manual for running the code, loading enviroment and description 
of .py and .ipynb scripts 

• enviroment.yml — anaconda enviroment w i th dependencies 

. L I C E N S E — code license 

• thesis.pdf — Bachelor thesis in pdf 
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