
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

NOVEL METHODS FOR SEMI-QUANTITATIVE
ANALYSIS OF BIOCHEMICAL SYSTEMS
NOVÉ METODY PRO SEMIKVANTITATIVNÍ ANALÝZU BIOCHEMICKÝCH SYSTÉMŮ

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR JAN BÍL
AUTOR PRÁCE

SUPERVISOR RNDr. MILAN ČEŠKA, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2021

Brno University of Technology
Faculty of Information Technology

Department of Intelligent Systems (DITS) Academic year 2020/2021

Bachelor's Thesis Specification |||||||||||||||||||||||||
24079

Student: Bil Jan
Programme: Information Technology
Title: Novel Methods for Semi-Quantitative Analysis of Biochemical Systems
Category: Formal Verification
Assignment:

1. Study the current computational methods for automated analysis of chemical reaction
networks including semi-quantitative techniques.

2. Evaluate the performance and applicability of these techniques on practically relevant case-
studies and identify their limitations.

3. Design possible improvements and extensions of these methods including analysis against
temporal and functional specifications.

4. Implement the improvements and extensions within the existing tool SeQuaiA.
5. Carry out a detailed evaluation of the implemented methods including an extension of the

existing benchmarks.
Recommended literature:

• Češka M., Křetínský J. (2019) Semi-quantitative Abstraction and Analysis of Chemical
Reaction Networks. Computer Aided Verification. CAV 2019. Lecture Notes in Computer
Science, vol 11561. Springer, 2019.

• Češka M., Chau C, Křetínský J. (2020) SeQuaiA: A Scalable Tool for Semi-Quantitative
Analysis of Chemical Reaction Networks. Computer Aided Verification. CAV 2020. Lecture
Notes in Computer Science, vol 12224. Springer, 2020.

Requirements for the first semester:
• Items 1, 2 and partially item 3.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Češka Milan, RNDr., Ph.D.
Head of Department: Hanáček Petr, doc. Dr. Ing.
Beginning of work: November 1, 2020
Submission deadline: May 12, 2021
Approval date: November 11, 2020

Bachelor's Thesis Specification/24079/2020/xbilja00 Page 1/1

https://www.fit.vut.cz/study/theses/

Abstract
This thesis aims on providing novel methods for analysis of stochastic bio-chemical systems.
It introduces a new population abstraction based on dirac semi-Markov processes. It turned
out, that this abstraction is more precise than Continuous time Markov chain abstraction.
On this abstraction, analysis methods are provided. Algorithm for transient analysis over
this abstraction is described and also novel timed temporal logic formulas, that allow to
express interesting biological properties are presented. Further, model-checking algorithm
for these formulas is proposed and implemented. Preliminary experiments showing potential
of this approach are also described.

Abstrakt
Cílem této práce je poskytnout nové metody pro analýzu stochastických biochemických
systémů. V práci je představena nová třída populační abstrakce založené na Diracových
semi-Markovových procesech. Na této abstrakci je popsán algoritmus pro výpočet tran-
sientní analýzy a také jsou prezentovány nové časované logické formule umožňující ověření
vlastností zajímavých pro biology. Dále je představen a implementován model-checking al
goritmus pro tyto formule. Rovněž jsou popsány předběžné experimenty ukazující potenciál
tohoto přístupu.

Keywords
Bio-chemical models, Continuous time Markov chains, Chemical reaction networks, Model-
checking

Klíčová slova
Bio-chemické systémy, Markovovy řetězce se spojitým časem, Sítě chemických reakcí, Model-
checking

Reference
BIL, Jan. Novel Methods for Semi-Quantitative Analysis of Biochemical Systems. Brno,
2021. Bachelor's thesis. Brno University of Technology, Faculty of Information Technology.
Supervisor RNDr . Milan Češka, Ph.D.

Rozšířený abstrakt
Analýza komplexních bio-chemických systémů je výpočetně náročný úkol. Tyto systémy
jsou často popisovány pomocí sítí chemických reakcí. Tato síť chemických reakcí vede na
Markovův řetězec se spojitým časem, který umíme analyzovat. Tento přístup má však
několik problémů. Těmi nej zásadnějšími jsou exploze stavového prostoru a velký rozdíl
mezi raty přechodů systému.

Existující metody pro analýzu sítě chemických reakcí můžeme rozdělit do dvou kate
gorií: numerický přístup a přístup založený na simulacích. Principem numerických metod
je výpočetně analyzovat tyto systémy. Jelikož přímá numerická analýza komplexnějších
systémů je výpočetně téměř nemožná, existují různé metody, které výpočet urychlují.
Principem simulačních metod je spuštění simulačních běhů. To je typicky rychlejší než
numerická analýza, ale je potřeba spustit velké množství simulací, aby se odhalilo i málo
pravděpodobné chování.

Nový semi-kvantitativní přístup pro řešení zmíněných problémů byl nedávno představen
v [7, 8]. Tento přístup je založen na dvou hlavních krocích. 1. Ze sítě chemických reakcí je
vytvořena abstrakce. Tato abstrakce spojuje stavy různých populací a druhů do intervalů,
čímž se získá konečný stavový prostor. Dále jsou uvažovány sekvence přechodů a některé
přechody jsou urychleny. Výsledkem je Markovův řetězec se spojitým časem, popisující
chování systému se zredukovaným stavovým prostorem. 2. Nad touto abstrakcí je provedena
semi-kvantitativní analýza, která se zaměřuje jen na pravděpodobné chování systému.

V této práci je představena nová abstrakce, která využívá tyto semi-kvantitativní pos
tupy a lépe popisuje chování bio-chemických systémů. V takovém systému čas odchodu ze
stavu závisí na přechodu, který je použitý. Toho však není možné dosáhnout v Markovovém
řetězci se spojitým časem. Proto je použita speciální třída semi-Markovovského procesu,
kterou označujeme jako Dirakův semi-Markovův proces (DSMP). V D S M P abstrakci má
každý přechod pravděpodobnost a čas, který tento přechod trvá. Porovnáním simulací nové
D S M P abstrakce a abstrakce v podobě Markovova řetězce se spojitým časem se simulací
sítě chemických reakcí je ukázáno, že nová abstrakce popisuje chování systémů opravdu
lépe.

Pro tuto novou abstrakci je představen algoritmus a implementace transientní analýzy.
Transientní analýza poskytnne pro zadaný čas pravděpodobnostní distribuci. Klíčová část
této práce je ověřování vlastností vyjádřených pomocí temporální logiky. Aby bylo možné
vyjádřit biologicky zajímavé vlastnosti, představujeme novou formuli zřetězených until op
erátorů, které umožňuje vyjádřit některé z takových vlastnosti. Pro vyjádření některých
vlastností, jako je například oscilace, může být tato formule příliš omezující. Proto umožňu
jeme i ověření nového časově omezeného 3 operátoru, kterým je možné ověřit přítomnost
oscilace.

V experimentální části je ukázáno, že některé použité modely je možné analyzovat za
pomoci snížené přesnosti i bez použití semi-kvantitativní analýzy. Pro jiné modely, které
obsahují velký počet stavů, je však potřeba použít zmíněnou semi-kvantitativní analýzu.
Dále jsou ukázány výsledky použití nových formulí.

Novel Methods for Semi-Quantitative Analysis of
Biochemical Systems

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the author
under the supervision of RNDr . Milan Češka, Ph.D The supplementary information was
provided by Stefan Matiček, Calvin Chau and Martin Helfrich. I have listed all the literary
sources, publications and other sources, which were used during the preparation of this
thesis.

Jan B i l
May 18, 2021

Acknowledgements
I would like to thank my supervisor RNDr . Milan Češka, Ph.D. for his encouragement and
continuous support throughout the work on this project.

Contents

1 Introduction 3

2 Preliminaries 6
2.1 Chemical reaction networks 6
2.2 Continuous Time Markov Chain 8

2.2.1 Transient and steady state analysis 11
2.3 Population abstraction 12

3 Dirac Semi-Markov Process for population abstraction 14
3.1 Motivation 14
3.2 Comparison of D S M P x C T M C abstraction 16

4 Specification Language 18
4.1 Logics for biologically relevant properties 18

4.1.1 Continuous Stochastic Logic 19
4.1.2 CSL model checking 19

4.2 Multiple Until 19
4.3 Oscillation property 21

5 Model checking of Dirac Semi-Markov processes 22
5.1 Stepping algorithm 22
5.2 Chain of untils 24

5.2.1 Formal algorithm of chain of untils 24
5.2.2 Demonstration of chain of untils algorithm on example 26
5.2.3 Bounded exists operator 28

6 Implementation 29
6.1 Stepping algorithm 29
6.2 Chain of untils 30
6.3 Bounded Exists operator 31
6.4 Testing 31

7 Experiments 32
7.1 Used models 32
7.2 Performance evaluation 33

7.2.1 Event-based approximation 33
7.2.2 Multiple untils 35

7.3 Mo del-checking results 36

1

8 Conclusion

Bibliography

Chapter 1

Introduction

Biochemical systems describes chemical processes in living organisms. As an example, we
can think about processes between our cells or viruses or bacteria and many more. Its study
has a great potential. Understanding those processes might help improving our lives. For
instance modified viruses will become means for supplying our cells with healthy proteins
or cure for various diseases will be found. Unfortunately such systems are very complicated
and it is difficult to analyze them[24].

Chemical reaction networks (CRN) is language widely used for modelling and analysis
of those real world biochemical systems [9]. C R N contains set of reactions and their rates
(intuitively speed). The time evolution of CRNs is governed by Master Chemical Equation
that leads to potentially infinite discrete space Continuous time Markov chain (C T M C) . It
describes how the probability of molecular counts of each chemical species evolves in time.
Analysis of such system is computationally very intensive task and have several problems.
1. Analysis is computationally difficult, because many biochemical systems often leads to
complex dynamics, which includes: state-space explosion (number of species can exponen
tially grow, possibly even to infinity due to unbounded populations), stochasticity (races
between reactions), stiffness (rates of different magnitudes) and multimodality (qualitatively
different behaviours such as extinction of predators only, or also of preys in the predator-
prey models) [13, 22].
2. Rates of reactions are typically not exactly known. Often only order of magnitude is
given or rate is completely unknown, which makes analysis more difficult.
3. To see behaviour of the system, analysis is not needed to be precise numerically, but
qualitatively. For example, that initial growth of species is followed by its extinction. Un
fortunately it is hard to get qualitative analysis without the numerical one.
4. Biologist and engineers also often need to know explanation of the behaviour of the sys
tem. As set of system simulations/trajectories or population distributions is not sufficient
enough, the ability to provide an accurate explanation for the temporal or steady-state
behaviour is another major challenge for the existing techniques. [7, 8]

There exists two main approaches how to analyze CRNs. Simulation based and nu
merical based techniques. Simulation based approach produces simulates behaviour of the
system. It is typically faster then computation of the behaviour, but to reveal less probable
behaviour, a lot of simulation must be made. Numerical approach numerically computes
behaviour, but for more complicated systems it is rather impossible.
For both approaches various abstractions and approximations exists. First of all, for CRNs
with large populations of species, fluid approximation techniques can be used. These are
also known as mean field approximations (leading to an O D E characterisation) that can be

3

extended to higher-order moments and equipped by Gaussian process in Linear Noise Ap
proximation as well as in the form of various hybrid models combining a discrete stochastic
process for low population species and a continuous process for large population species.
Another existing solution is state space reduction technique. It either truncates low prob
ability states of underlying C T M C or aggregates states to set of states. Last is multi-scale
simulation technique. It uses partitioning scheme to speed up the standard simulation
algorithm (SSA) [12].

Recently, approach which uses semi-quantitative reasoning was proposed [8]. It uses
some techniques to face these problems and to give wanted results. To handle computational
complexity and to obtain explanation of behaviour of the system, it uses more of the qual
itative approach, instead of pure quantitatively precise approach. This semi-quantitative
approach provides good look at the behaviour and also some rough timing information as
well as information about probability classification of each behaviour.
This semi-quantitative reasoning was used in tool called SeQuaia (Semi-Quantitative anal
ysis). The tool consists of two main levels. Firstly, an abstraction of the systems into
semi-quantitative models is done. Then, semi-quantitative analysis over the models is per
formed. Direct analysis of Continuous time Markov chain (C T M C) derived from C R N is
difficult, so desired model is made with some techniques. The state space is abstracted by
population model of each species following classic may abstraction described in [14]. That
means the population is divided into finitely many intervals. Also, sequences of transi
tions are considered, which helps to solve the problem of non-deterministic self loops. As a
result, self-looping transitions are accelerated, which means taken multiple times. This ac
celeration helps adequately capture the transitions between population levels. Accelerated
transitions are key idea to semi-quantitative abstraction.

In this thesis, focus is on improvement of this approach using novel population abstrac
tion. C T M C does not capture behaviour of the system properly, because both, transition
time and probability depends on transitions rate. In fact, exit time heavily depends on the
transition that is used. That means, that transition probability and exit time needs to be
separated. This is very natural as single abstract transition capture sequence of reactions.
Since in C T M C this separation cannot be easily achieved, we propose to use special class
of semi-markov process, further denoted as dirac-semi-Markov process (DSMP) having a
degenerated distribution of the waiting times - the probability that the waiting time is
equal to the expected waiting time is one. Thus, every transition has probability that the
transition is taken and waiting time modelling the expected time needed to perform the
transition equipped.

Key contribution of this work is novel algorithms and implementation for analysing
DSMP. Standard transient analysis, that provides probability distribution of the system for
the given time instant, can be computed. Except for transient distribution, also properties
given by temporal logic are verified. In order to express properties useful and easily under
standable for biologists, chained until formulation is introduced and can be also verified.
Chained until is too strict for some properties, which then cannot be verified properly. For
example quick oscillation of population is problematic to detect. Because of that, bounded
exists operator is introduced, which allows to verify even this kind of properties.

In experimental part, it is shown, that for some models, approximation of the algorithm
for computation of the transient analysis can be used with lowered precision providing solid
results with much lower computation time. This approximation is based on pre-computing
reactions happening in the future with every executed set of reaction. This set is given by
precision parameter.

4

Main contribution of this work is novel model-checking algorithm for D S M P and timed
temporal properties. It consists of 3 parts: 1) Stepping algorithm, which allow us to
get transient distribution. 2) model checking algorithm for P C T L using untils operator
allowing to quantify probability of given behaviour. 3) less restrictive chain of bounded
exists operators allowing to quantify properties like oscillation of population. Last two
points are the main focus of my work.

Also, experiments over 3 models were made. These experiments shows performance
evaluation as well as potential of introduced novel model-checking formulas.

5

Chapter 2

Preliminaries

In this chapter, preliminary information about CRNs are provided. Also Continuous Time
Markov Chains and Continuous Stochastic Logic are discussed as it is basic model obtained
from C R N and logic used for numerical analysis of C T M C s and CRNs.

2.1 Chemical reaction networks

Chemical reaction networks (CRNs) is a language used as a formalism for describing chem
ical systems. CRNs consists of several chemical reactions. Example of such reaction might
be familiar reaction:
2H2 + 0 2 4 H20
The quantities on the left side are called reactants, quantities on the right side of the arrow
are called products. Reactants and products are collectively referred to as an species of the
reaction, k denotes rate of the reaction [9].

Formally, chemical reaction network J\f = (A, 1Z) is a pair of finite sets. Elements of A
are species and elements of 7Z are reactions over them. Species in A reacts according to
reactions in 7Z. Reaction r G 7Z is a triple r = (rT,pT,kT) where rT G N ' 7 1 ' is the reactant
complex, pT G N ' 7 1 ' is the product complex and kT G M>o is coefficient associated with
the rate of the reaction. Given a reaction n = ([1,1,0], [0,0, 2], ki), it is often referred as

Ti : Ai + A2 —̂> 2A3.
N 7 1 are discrete states over J\f. These states might be also referred as configurations. They
describe counts of each of the molecular species G A in J\f. Network can move between
states, whenever transition happens. However transition can take place only if all reactants
are available with in state moved from. Then reactants of transition are removed and prod
ucts are added, that is how successor state looks. Formally, we can write it as following:
For a state c G NA and a reaction a over A, we say that a = (r, p) is applicable to c if r < c.
(This means, enough reactants are available in the state and we can apply transition a). If
a is applicable to c, then the result of applying a to c, denoted by a (c), is c' = c — r + p.
In this case we also write c c'. We can define reachable state space as all states that
can be reached by applying sequence of transitions to initial state.

G

Example 2.1:
How CRNs work can be demonstrated on model called SimpleGene defined as:

M = (A, 71) with

A = {Don,Dof,P} and

n = {Dm ^ P + P ^ Q , D m + P ^ Doff}}

This example shows simple C R N with 3 species and 3 reactions. First reaction produces
proteins, second reaction demonstrates degradation of proteins and the last reaction blocks
active D N A , which then no longer produces proteins. Consider initial state c = Don. From
such state only transition a = Don —>• P + Don of 7Z is applicable. Whenever this transition
is applied we have c =̂ q. c' where c' = Don + P. Note that from state c' every transition
from 1Z is applicable.

So far, only which reaction is applicable was discussed. Now, we are going to talk
more about behaviour of the system. Firstly, chemical kinetics is discussed. Chemical
kinetics describes rates of the reactions. Kinetic behaviour is conventionally studied first
by determining how is the reaction rate affected by external factors like temperature or
concentrations of the species. In this work, mass action kinetics is assumed. It is kinetic
scheme, which says that the rate of a chemical reaction is proportional to the product of the
concentrations of the reacting chemical species. That means, rate of the reaction is mul
tiplied with concentration of reactants of current state. Temporal behaviour of the C R N
is described as a Markov process, represented with set of Ordinary Differential Equations
(ODE), which is referred to as Chemical Master Equation (CME) . C M E describes the C R N
as stochastic process. Reason for stochasticity in CRNs is that monomolecular reactions
always involves quantum mechanics and bimolecular reactions requires collisions, which are
so sensitive to initial conditions, that they appear essentially randomly. Stochastic kinetics
can differ a lot from deterministic models, because a system might follow very different
scenarios with non-zero likelihoods. [4, 7, 9, 25]

There exists two main approaches, how to compute evolution of the system in time:
simulation-based and numerical-based techniques. A n idea behind simulation-based tech
niques is to simulate behaviour of the system. Such simulation produces single realization,
but not the proper analysis. Although simulation is typically faster than numerical analysis,
many simulations must be performed to obtain a good accuracy and reveal even a less prob
able behaviours and it can be very time consuming. Simulation technique uses Stochastic
Simulation Algorithm (SSA). SSA generates time to the next reaction and index of that
reaction (which reaction will be performed). Time r to the next reaction is computed as
an exponential random variable and index j of reaction is an integer random variable. For
generating random numbers, the unit-interval uniform random number generator is used.
It produces pseudo-random numbers from the uniform distribution. [12]

Numerical-based approach typically transforms C R N to Continuous Time Markov Chain
(C T M C) . Such transformation is accurate representation of the C R N , but can possibly lead
to infinite state space and even when the state space is finite, analysis is not scalable due to
state-space explosion. More about analysis of C T M C will be discussed in the next section.

Neither of the approaches can provide required solution easily. Various abstractions and
approximation were introduced to reduce computational time of analysis of CRNs.
For numerical based approach, various reduction techniques for stochastic models exists.
Widely studied reduction method is state aggregation based on lumping [6] or (bi-) simulation

7

[3] equivalence. Also several approximate aggregation schemes leveraging the structural
properties of CRNs were proposed [11, 17, 26]. Another method of state-space reduction is
based on removing states, which can be reached only with very small probability.
For simulation-based approach, partitioning schemes for species and reactions have been
proposed, in order to speed up SSA in multi-scale systems. [13, 20, 21]

2.2 Continuous Time Markov Chain

Markov chains are state transition systems, where choice of successor state is determined
by probabilistic choice. That means, successor of state s is chosen by probability distribu
tion. Markov chains also satisfies Markov property, which means behaviour of the system
demands only on the current state and not the path system took before. This is also known
as memoryless property. Discrete Time Markov Chain (DTMC) models system with dis
crete time steps. Markov chains modelling continuous time behaviour are called Continuous
Time Markov Chains (CTMCs).[3]

We start with some terms needed to understand how C T M C works. Random continuous
variable is random variable, where possible values comprise single interval or union of
disjoint intervals on the number line . As it is interval, there is infinity possible values,
we can take. Knowing that, we can say that probability taking exact single value is equal
to zero. Positive probability lies somewhere in intervals. It can be shown by probability
density function (PDF). P D F shows probability that random variable falls into particular
range of values e.i. interval. This can be computed by integrating P D F in this range.
Integrate over whole P D F is equal to 1. Continuous random variable X is exponential with
parameter A > 0 if its P D F is given by:

_ (X-e~xt if t>0 ^
10 otherwise

If we want to know what is the probability, that random variable X will take value less or
equal to variable x, we can use cumulative distribution function (CDF) . C D F Fx(x) means
exactly that. We can get C D F of exponential variable X by integrating its P D F :

Fx{t) = f A • e~Xx dx = [- e - ^ = 1 - e~xt (2.2)

Note that exponential distribution is the only distribution, which is memoryless. We
can show that

Pr(X > h + t2\X > h) = Pr(X > t2)

Due to this feature, C T M C satisfies Markov property. In C T M C s , exit times for individual
state is given by exponential distribution.

Now, we can move to formal definition of C T M C :
C T M C C is a tuple (S, Sinu, R, L), where S is finite set of states, Sinu £ S is the initial
state, R : S x S —> M>o is transition rate matrix and L : S —>• 2AP is a function labelling
the states with atomic propositions.

Transition rate matrix assigns rate to every pair of states. This rate is parameter
A to the exponential distribution. That means for every rate R(s, s') probability, that
transition is triggered before time t is 1 — e - R (s > s ') 4 . Whenever there is multiple transitions

8

Figure 2.1: Probability distribution function Figure 2.2: Cumulative distribution function
for exponential random variables for exponential random variables

from one state, first transition triggered determines the next state. This is called the race
condition. If we want to know the probability of leaving the state s before t time units,
we simply sum all transition rates from state s. This is called the exit rate. Then, exit
rate is used as parameter to exponential distribution, so probability of leaving state s in
time [0,t] is equal to 1 — e ~ E ^ ' t If exit rate of some state is equal to zero, such state is
called absorbing. Embedded Discrete Time Markov Chain can also be derived from C T M C .
Embedded D T M C is independent to time and only probabilities of transitions are covered.
Embedded D T M C derived from C T M C C is defined as:
emb(C) = (S, Sinit, Pemb(c\L), where S, Sinit, L is the same as in C and Pemb(C) : S x S ^
[0,1] is transition probaility matrix and is defined as:

Pemb(-C\s,s')
if E(s) > 0
if E(s) =
otherwise

0 and s = s' (2.3)

Example 2.2:
Let's have an example of C T M C shown below in the Figure 2.3. Note that this C T M C
is derived from C R N shown in Example 2.1. In the figure, reactions are denoted as p for
production, d for degradation and b for blocking. Also, Don and DQff are shown as discrete
states, in fact, they are states [l,0,x] and [0,1,x]. As one can see, this is C T M C with infinite
number of states.

State-space of such C T M C derived from C R N is given by combination of every pop
ulation of each species, reachable from initial C R N state (in this case Don). Transitions
are derived using mass-action kinetics, so transition rates are given by multiplication of
reaction rates and population of reactants. For instance, degradation rate of state [Don, 1]
is 1 • 0.1 = 0.1, and for state [Don, 51] it is 51 • 0.1 = 5.1.

[D o n , 0] <p,10> [D 0„, 1] <p,io> 4 [D o n , 2] [D o n , 0] [D 0„, 1] * [D o n , 2]
<d,0.1>

<b,0.0 01> V
<d,0.2>

<b,0.0 02> ,

[Doff, 0]

<d,0.1>
<b,0.0

[Doff, 1]

<d,0.2>
<b,0.0

[D„ff, 2] [Doff, 0] <d,0.1> [Doff, 1]
<d,0.2>

[D„ff, 2]

• • •
[D o n , 50]

<b F0.05>
• • •

<p,10> [D 0„, 51]
<d,5.1>

<b,0.051>
[Doff. 50]

<d,5.1>
[Doff, 51] • • •

Figure 2.3: Example of infinite state C T M C derived from C R N .

9

For the purpose of demonstrating key terms, consider that there is bound for number
of proteins as in Figure 2.4.

— * • [D o n , 0] <p,10>
[D o n , 1] <P,IO>X [Don, 2] — * • [D o n , 0]

, . - —
[D o n , 1] [Don, 2] — * •

<d,0.1>
<b,0.0 01>,

<d,0.2>

<b,0.0
02> » i

— * •

[D o f f (0]

<d,0.1>
<b,0.0

[Doff, 1]

<d,0.2>

<b,0.0
[D0ff- 2]

— * •

[D o f f (0]
<d,0.1>

[Doff, 1] <d,0.2> [D0ff- 2]

Figure 2.4: Example of C T M C

This C T M C has just six states: [Dm, 0], [Dm, 1], [Dm, 2], [Doff, 0], [Doff, 1], [£> o / / , 2].
Transition matrix R is shown below. We can compute exit rates for every state:
[Don, 0] = 10, [Don, 1] = 10.101, [Don, 2] = 0.202 and so on. Wi th those, embedded D T M C ,
where transition matrix p e m b (c) represents probabilities going to another state not con
sidering time can be computed.

R =

10 0 0 0 o \
0.1 0 10 0 0.001 0
0 0.2 0 0 0 0.002
0 0 0 0 0 0
0 0 0 0.1 0 0

\ o 0 0 0 0.2 o >

Path in C T M C is sequence of states and time intervals. Time intervals represent time
spent in the previous state. We can define infinite path as:

SO, t(), Si, t\,S2,t2...,

where R (S J , S J + I) > 0 and U £ M>n for all i £ N . Rate between state and its successor
must be greater than zero because otherwise it means there is no transition to successor
and probability of such path is always equal to zero. Also time interval must be greater
then 0, because probability of leaving the state in no time is again always zero. Finite path
is defined as:

SO, h , 81, h , ...,tk-l,Sk,

where R(SJ, Sj+i) > 0 and U G M>n for all i < k. is absorbing.

Cylinder set Cyl(a;) is the set of infinite and finite paths, where UJ is the common prefix
of those paths. We can obtain probability space by those cylinder sets:

Prs{Cyl{s) = 1) and

Prs(Cyl(s, I, s i , h , l n - i , s n , l', s')

=Prs(Cyl(S, I, Si,h, ln-l, Sn) • Pemb(C\S, S') • (e - ^ » W _ e-E{sn)-supl'^

where pemh(c){
sn, s') means the probability of reaching state s' from state sn using the

embedded D T M C . e-EM-infl' _ e-E(sn)-supl' i g probability, that the time spent in state s n

10

is within the interval of I', (inf and sup stands for innmum and supremum, i.e. minimum
and maximum of time interval).

Example 2.3:
Consider C T M C in Figure 2.4. from Example 2.2 and Cylinder:
Cyl([Dm,0], (0,1], [Don, 1])
We are interested in computing probability of this path:

Pr[Donfi](Cyl([Dm, 0], (0,1], [Dm, 1]))
=Pr[Don,0](Cyl([Don, 0])) • Pemb^([Don, 0}[Don, 1]) • (e-E([A,„,o]).o _ ^ ([A ^ o]) - !)

= l . l . (e - i o - o _ e - i o . i)

=1 - e" 1 0

«0.9999546

When talking about analysis of C T M C , interest is often in transient and steady state
behaviour. Transient behaviour describes, how the state of the model at particular time
looks like e.i. it gives us probability distribution at given time. Steady state behaviour
describes state of the model similarly in a long-run.

2.2.1 Transient and steady state analysis

Transient probability p{t) = F[X(t) = s\X(0) = so] describes probability, that after time
t > 0 residing state is s £ S. This can be obtained by various methods. One way might be
getting all cylinder sets leading to s with time length t and integrating through them. This
approach is computationally infeasible. Another ways are solving a system of differential
equation or as a matrix exponential and therefore evaluated as a power series. These otions
are possibly computational unstable. Probabilities are instead computed using uniformised
D T M C . Rough idea of uniforization of C T M C is transforming into discrete time system, but
in contrast with embedded D T M C , uniformization considers largest exit rate, so inter-state
transitions are normalized by largest exit rate. Also self loops for states, where probability
of leaving transitions is not summing up to 1, are introduced.
Formally, Uniformised D T M C Punif is:

P-f(s,s') = lR^S')/q { i S ^ S ' (2.4)
V ' \l-E(s)/q if s = s' V 7

where q > max{E{s)\s £ S} is the uniformization rate. Such uniformized D T M C can track
probability distribution in given number of jumps. Transient probability after k steps is
denoted as = po • (p u r a /) f c . We can also compute probability of performing k jumps in
time t. It is so, because discrete jumps are independent and exponentially delayed with rate
q. Probability of k jumps occurring at time t is random variable with Poisson distribution:
F[k jumps] = e ijr = : ^qt(k). When probability distribution after k steps is multiplied
by probability of k steps occurring at time t, result is part of the distribution at time t. To
receive whole distribution, it is needed to sum for every possible k:

oo
p * = y ^ ^ g t w • u f e

k=0

11

It is needed to sum over the interval from zero to infinity, because even for very large k,
there is probability greater then zero, that k jumps is performed, but it might be very small.
Summation of infinity elements is indeed problematical. Instead, under approximation via
partial sum can be used:

k

i=0

There is also a better solution, which uses fact that probability of performing k steps at time
t is handled by Poisson distribution and so interval of values k, where 1 — e of probability
lies can be computed, e is a given error. So we get truncation bounds L and R and
approximation of pt:

R

S L , R = ^2 ^gt(k) uk <pt

k=L
can be performed. Then, probability missing in this approximation is less or equal to A.
Truncation points L and R can be obtained by Fox&Glynn's scheme, when given error A.
As mentioned, steady state behaviour can be also analysed. Steady state Poo(s) = limt^oo Pt(s),
this limit exists for every finite C T M C and intuitively, it represents percentage of time spent
in each state in a long run. [16, 3, 23]

2.3 Population abstraction

As mentioned earlier, one of the problems with analyzing CRNs is that C R N often leads to
a large state state space C T M C , possibly even infinite for unbounded populations (as shown
in Figure 2.3). Rough idea is to merge multiple states into intervals of populations. It is ex
tended with treating sequences of actions, called acceleration, which was introduced in [8, 7]

More concretely, given C R N 1Z, every species A £ A is divided into finite intervals
reflecting rough size of population. Also, intervals keep track whether the transitions are
enabled. That means, A includes interval {0} (for species where in reactant is only 0 or 1)
and also also intervals for every integer less then maximum number that can be found in
reactants part of reactions before A. The intervals define the abstract states.
Transitions from abstract states are defined according to may abstraction This is solved
in order with ideas of classic may abstraction introduced in [14]. Since the abstract states
keep track whether are transitions enabled, transitions from abstract states are given by
every successor reachable from concrete states contained in the abstract state. Rate of
those reaction is smallest interval including every transition rate from concrete enabled
transitions. Example of this abstraction for the C T M C shown in Figure 2.3 is shown in
Figure 2.5 As one can see, there are 4 intervals. 0 is automatically included, then [1,20],
[21,50] and [51,1000].

12

<d,[0.2,2]> <p,10> <d,[2.2,5]> <p,10> <d,[5.2,100]> <p,10>

i < p , 1 0 > Q Q < p . m > O O < P , 1 0 > _ Q Q _
[Don- 0] [D o n , 1-20]

<d,0.1>
<b,[0.001-0.02]>

[D ^ 0]

[D™ 21-50]
<d,2.1>

<b,[0.021-0.05]>,
[D o f f , 1-20}

[D o n , 51-1000]
<d,5.1>
<b, [0 .051 - l]>

[D o f f , 21-50] [D ^ , 51-1000]
<d,0.1> ^ <d,2.1> Q <d,5.1> ^

<d,[0.2,2]> <d, [2.2,5]> <d,[5.2,100]>

Figure 2.5: Example of population abstraction

This abstraction is problematic as it includes high-level of non-determinism. Non-
determinism is connected with the abstract population sizes and so abstract transitions
to different abstract states happens only non-deterministically. That means, it cannot be
determined which transition is the most probable one and so probable behaviour of the
system also cannot be determined. It is marked as red in the example above.
To solve this non-deterministic self loops and transitions leading to higher or lower abstract
states, these transitions are dropped. Instead, sequence of actions leading to another ab
stract state is considered and simultaneously self-loops are taken multiple times. As result,
one transition, which represents how the system moves to abstract state with higher pop
ulation interval is produced. It accelerates their effect and so it reflects change to another
different abstract state happening in real system. This idea is called acceleration.

When acceleration is applied to system shown in Figure 2.5, it can be seen, that non-
determinism is no longer included and accelerated transitions took place (denoted with A) .
Red transition indicates accelerated transition, that replaced non-deterministic transitions
also marked red earlier. (Figure 2.6)

[D o n , 0]
<p , l >

[D o n , 1-20]

<Ap,0.36> <Ap,0.0019>

[D o n , 21-50]

<d/Ad,0 .1>,
<b ,0 .001>

<Ad,0.13>
<b,0 .01>

[D o n . 51-1000]

<Ad,0.087>
^ < b , 0 . 0 3 5 >

[D o f f , 0] - [D o f f , 1-20] [D o f f l 21-50] [D o f f , 0] - [D o f f , 1-20] [D o f f l 21-50]

<b,0 .53>

[D o f f , 51-1000]

<d/Ad,0.1> <Ad,0.14> <Ad,0.11>

Figure 2.6: Example of applied acceleration to abstraction.

Further is described, that C T M C abstraction can be improved with using new Dirac
Semi-Markov Process.

13

Chapter 3

Dirac Semi-Markov Process for
population abstraction

In this chapter, novel Dirac Semi-Markov Process abstraction for CRNs is introduced. Also,
it is shown, why it reflects behaviour of the system better then C T M C abstraction.

3.1 Motivat ion

In the C T M C abstraction, every transition has assigned just one rate and so expected time
of transition is independent to its successor, but it does not capture behaviour of population
model of C R N well. In CRNs expected time highly depends on the transition. It can be
demonstrated on the following example.

Example 3.1 Let N be a C R N over species S = {A,B} with initial state 2A + 10005
and the following two reactions: A ——> 0 and B ——> B + B. Consider initial abstract
state {(a, 6) | 1 < a < 3 A 975 < b < 1025}. Interest is in which direction and when will
system leave the initial abstract state. It is shown in Figure 3.1. It is clear, that time in
which is the abstract state left is not exponentially distributed as in C T M C abstraction,
but it is rather bell-shaped with very few transitions, that are much faster than expected.
Further, time until the system leaves depends on the actual successor (which transition
will be taken). Time until the system leaves the state in direction A is 15 time units and
for direction B it is 24 time units. This cannot be modeled by C T M C , where exit time
of leaving abstract state is 20.4 and it is independent of the successor. That is why new
abstraction is used. It has to allow modelling exit times depending on the actual successor.

In order to enable times of transitions to depend on the successor, Dirac Semi-Markov
Process (DSMP) is introduced, where probabilities and expected leaving times are separated
and also transition times have no variance.

Formally, Dirac Semi-Markov Process is a tuple D = (S,so,P,Q); where S is a finite
set of states, so G S is an initial state, P: S x S —>• [0,1] is a transition probability matrix,
and Q: S x S —>• Q>o is a matrix assigning a conditional expected waiting-time for each
transition. The state s is absorbing if P(s, s) = 1.
Path OJ in D is defined as non-empty sequence of states and times: SQ,tQ,s\,t\,where

14

A

Figure 3.1: (left) Fraction of runs that leave the abstract state of Example 3.1 for a given
point in time. Blue runs leave in dimension A, orange runs in dimension B. Full lines show
actual behaviour of system. Dashed lines show expected time for leaving in a dimension.
The dotted lines show the behaviour of the C T M C abstraction, (top right) Initial abstract
state in C T M C abstraction where transitions only have a rate, (bottom right) Initial
abstract state in improved D S M abstraction where transitions occur with probability "p"
and take exactly time "t".

[0, D_on]
p=1.0
1=0.10

[1,D on]

[0, D off]
p=1.0

t=22.28

[l.D_off]

p=1.0
t=0.66 [2, D o n]

p=0.63
t=6.05

p=1.0
t=16.53

t= 17.40

p=0.05
t=30.71

[3,D_on]

p=0.95
t=3.85

[2, D_oflf]
p=1.0

t=16.82

[3, D o f f]

Figure 3.2: Example of D S M P population abstraction.

P (S J , Sj+i) > 0 and Q (SJ ,SJ+I) = i j . i-th state of the path can be denoted as for
i > 0 and Si is meant. State, where path is located in f £ Q>o is denoted as ui@t.
It is uij, where j is the smallest index for which ^2l=0U — Set of all paths starting
in state s is referred to as: Paths. Probability of such set of paths can be computed
and is denoted as Prs over Paths. Transient probability at time t G Q>0 7rf assigns
probability in interval [0,1] to every state and sum of probabilities is equal to 1. It is
defined as 7r^(s) = PrSo{cv G PathSo\w@t = s}. The steady-state is then defined as
n^(s) = l i m i ^ 0 0 7r i

D(s).

Example of the D T M C abstraction of SimpleGene model is shown in Figure 3.2. In
tervals for protein population are: {0}, [1,10], [11, 100], [101, 1000]. These intervals are
denoted as abstract states 0, 1, 2 and 3. The other species are again denoted as discrete
states Don or P>0ff instead of [x, 1,0] or [x,0,l]. Note, that every transition is assigned with
its probability and time that it takes transition to be fired.
Let's describe now, how such system behaves. At the beginning systems starts in the initial

15

Figure 3.3: (left) Simulation of C R N of PredatorPrey model (right) Simulation of C R N of
SimpleGene model. Blue line is population of proteins

state [0, Don]. Then, two transitions with probability 1 are fired and all of the probability
mass is in state [2, Don] at time 0.76 (sum of exit times of fired transitions.). From this
state, with probability 0.37, transition leading to state [3, Don] is taken. If this happens,
time in this state would be 18.16 time units, and and with probability 0.63, blocking tran
sition leading to state [2, DQff] is fired. Transition takes 6.05 time units, so time there
would be 6.81.

3.2 Comparison of D S M P x C T M C abstraction

In this section, we experimentally demonstrate that, that D S M P population abstraction be
haves more similarly to actual C R N than C T M C abstraction using simulations. We compare
the typical simulations of the original C R N with C T M C and DSMP-based abstraction using
the same number of popultation levels. We discuss that already this very rought comparsion
demonstrates that DSMP-based abstraction is more precise than CTMC-based abstraction.
For every introduced example, simulation illustrating the most typical behaviour is shown.

We will show first PredatorPrey model, where it is visible, that new abstraction is
fundamentally more precise than C T M C abstraction. In Figure 3.3 left simulation run
over C R N model is shown. It shows the most typical behaviour of the system. Firstly, it is
compared to the typical simulation run over C T M C population abstraction (Figure 3.4 left).
Then, the same comparison is made with D S M P population abstraction in Figure 3.4 right.
One can see, growth and reduction of oscillation amplitude in C R N simulation run. This
behaviour is also visible in D S M P abstraction simulation, but it does not appear in C T M C
abstaction simulation. Also, number of oscillations in the C T M C model is lower compared
to the other two simulations. These indicates, that D S M P is more accurate abstraction.

Its behaviour can be seen in Figure 3.3 right, where simulation of this model is shown.
As we can see, typical behaviour of this model is quick generating of proteins and then,
after D N A is blocked, protein population instantly starts to fall quickly. When compared
to Figure 3.5, it is visible, that D S M P abstraction (right) is more accurate compared to

16

Figure 3.5: (left) Simulation of SimpleGene model over C T M C population abstraction,
(right) The same simulation as for left, but for D S M P population abstraction.
Green line is population of protein.

C T M C abstraction (left), because C T M C abstraction stays in the peak moment for quite
some time unlike in the simulation of C R N . D S M P abstraction simulation grows fast and
after D N A is blocked protein population starts to fall with almost no delay.

17

Chapter 4

Specification Language

Principle of model-checking is to check, whether the model satisfies desired property. To
verify this, two main ingredients are needed. One of those is to have an appropriate model,
which was discussed earlier.

The second ingredient is the temporal logic formula, which allows to express desired
property. When talking about behaviour of biological models, interest is often in one of
the following properties: reachability properties, temporal ordering of events, variable cor
relations, (multi)stability properties, monotonie trends and oscillation properties. Some
examples of these properties are shown using Linear Time Logic:

• Reachability property expresses reachability of concentration level of species.
F(10 < A < 20) expresses that A reaches concentration level between 10 and 20
during the model dynamics.

• Stability properties holds for every state in the path. Example of this property might
be G{A > 2), which means, that A concentration is always above 2.

• Multi-stability queries for existence of several different stable states.
[{A < 5) => G(A < 5)] A [(A > 5) => G(A > 5)]
In this formula, two different stable states are included: A is bellow concentration 5
and A is above this concentration level.

4.1 Logics for biologically relevant properties

Temporal logics are convenient way to formalize and verify properties like properties men
tioned earlier. They can be generally divided into two basic logical formalisms: Linear
Time Logic (LTL) [19] and branching time Computational Tree Logic (CTL) [10].

To express important quantitative properties like time aspect, stochasticity or energy
costs, various extensions for mentioned logics exists. We can divide these extensions into
two categories: deterministic and stochastic logics.

Deterministic logics often extends logics with notion of time. C T L time extension is
called T C T L [1]. It adds clock constraints to the language. Dense time extension of L T L
is Metric Interval Logic (MITL) [2]. It is restricted Metric Temporal Logic (MTL) [15]. It
is based on timed until operator. Similar operator is used in this work and is described in
detail later. Another logic is Signal Temporal Logic (STL) [18]. It combines dense time of
M I T L and the numerical predicates over real numbers.

18

Regarding stochastic logics, they specifies probability and performance measures over
the Markov chains. Discrete time Markov chains (DTMCs) are covered with Probabilistic
Computation Tree Logic (PCTL) and Probabilistic Liner Temporal Logic (PLTL) , which
is probabilistic extension to C T L and L T L respectively, adding probabilistic operator P to
those logics. Regarding continuous time logic is called Continuous Stochastic Logic (CSL).
In this work, focus is on this logic as it works for stochastic continuous time models. [5]

4.1.1 Continuous Stochastic Logic

CSL is extension of the non-probabilistic temporal logic C T L . Key additions to C T L are
probabilitic operator P and steady state operator S.
Syntax of C T L is:

$::= true \ a | $ A $ | P~p[(f>] | .S~p[<l>]
4>::=X§ |

where a is an atomic proposition, / interval of M>o, p £ [0,1] and ~G {<,>,<,>}. $ is
a state formula and 0 is a path formula. In fact, CSL formula is always state formula and
path formula occurs only inside the P operator. P~p[<fi] indicates that probability, that path
formula <fi from a state is satisfied meets the bound ~ p. ^U1^ is bounded until formula,
which is satisfied, when $ stands until time instant t, which is in interval / , when ^ is
satisfied. 'Unbounded' until can also be derived by considering / = [0,oo). Steady-state
operator S^p describes probability being in state meets the bound ~ p. s \= $ indicates,
that CSL formula $ is satisfied in a state s and denote by Sat($>) the s e t { s G 5 | 5 ^ $ } .
Also, we write UJ \= 4> when formula 4> is satisfied by path OJ. Also, temporal operators o
and • can be used. These operators stands for „eventually" for o and „always" for • .

4.1.2 C S L model checking

Model checking of that CSL is based on reducing the problem to computing backward
transient analysis. When given CSL formula and C T M C , firstly CSL formula is reduced to
simple formulas and these are model checked. Transient probability cannot be computed di
rectly on original C T M C , because it cannot verify or quantify probability of these formulas.
To obtain wanted result, C T M C needs to be transformed. A n idea of this transformation
is to recognize states from which is formula always satisfied and states, from which is CSL
formula always violated. We can recognize these states, because they are or are not la
beled with atomic preposition or set of atomic prepositions. These states are then typically
made absorbing and transient distribution is computed over this transformed C T M C . Then
results of all of the simple formulas given together. [16, 3, 23]

4.2 Mul t ip le Un t i l

In this work, main focus is on the temporal ordering of atomic events and oscillation prop
erties. Temporal ordering of atomic events is based on until operator, where ipi U ip2 means
that ipi holds until some eventual state, where ip2 holds. Example of usage of this formula
might be a (P < 10) U [(10 < P < 30) U (P > 30)]. This formula expresses that population
of proteins (P) is initially bellow 10 until it grows to interval between 10 and 30 until it
finally reaches population above 30. Motivation for using temporal ordering of events to be
able to express property such as bell shape property:

19

^1min ^1max '2min *2max

ut

It

f

Figure 4.1: Example of bell shape property

Bell shape property over given species is given by intervals t\, £2 and two thresholds
It, ut. Bell shape is satisfied by the path if and only if:

• Initially, population is under the threshold It.

• Within the interval t\, population goes above It.

• Within the interval ti, population goes below ut.

Example of bell shape and how is it defined is demonstrated in Figure 4.1. This property
appears very often in biological systems, because it describes production followed by degra
dation of species. Quantifying chance of such behaviour can help analyzing those systems.

To be able to express properties similarly to L T L formula above in probabilistic models
with reasonable computation time, extension to CSL is introduced. This extension uses
multiple bounded until operators. It is given in the following form.

,p = §1UIl$2Ul2 ... UIk~^k for k > 2

, where $ j is Boolean combination of atomical propositions over the set of states S and
Ii is time interval. For simplification, overlapping of time intervals is not allowed, so
infli > supli-i. Formula is satisfied if formula $ 1 stands, until time instant t\ G I\, where
$ 2 stands. $ 2 then have to hold again to time instant £2 € I2, from where $ 3 holds and
so on until last interval, where if exists time instant, where is satisfied, it is enough,
similarly to until operator in CSL. Formally, satisfaction relation |= over paths UJ is defined
as:

to \= ip 44> 30 < t\ < ti... < tk — 1 such that

w(tfc_i) |= A V0 < i < k : U e Ii A W e [U-i,U) • w(tfc_i) |= $ i ,

20

where to denotes 0.
Using an introduced formula, bell shape can be expressed as:

ip = (P < It) Ufl (P > It) Uh (P < ut)

4.3 Oscillation property

Another property discussed in this work is oscillation property. Oscillation typically means,
that population oscillates between higher and lower values. Instance of L T L formula ex
pressing permanent oscillation of population A around population 1000:

{G[(A < 1000) F(A > 1000)]) A (G[(A > 1000) F(A < 1000)]),

where G means Globally and F means Future. „Globally" operator means, that every
state in the path must satisfy formula that follows the operator. Future operator is satisfy,
when eventually somewhere in the path, exists state that satisfies formula. =4> is intuitive,
so whenever left side holds, right side also must hold to satisfy whole formula. So, stated
formula can be interpreted as: A l l the time, if A is bellow 1000, eventually A must grow
over 1000 And similarly A l l the time, if A is over 1000, eventually A must drop under 1000.

Stated L T L formula is too restrictive for biological oscillation. Also, model-checking of
such L T L formulas is computationally very intensive. To solve this, „bounded 3 operator"
is introduced as an extension to CSL. It is denoted as : 3^$, where $ is again Boolean
combination of atomic prepositions and I is time interval. This formula is satisfied if
there exists state at time t in path UJ, that satisfies $. This formula is basically F operator
restricted with time interval. Multiple of these can be combined to express desired property
as following:

<p = 3h<S>1 3 / 2 $ 2 . . . 3 / f e $ f e

Again, overlapping of time intervals is not allowed. This formula is satisfied if there exists
time instant U £ Ii, where is satisfied for every i < k.

Oscillation using this formula can be expressed as:

3 ° ' 1 0 (^ < 1000) 3 1 0 ' 2 0 (^ > 1000) 3 2 0 ' 3 0 (^ < 1000)

This can be interpreted as: in time interval [0,10], system hits state that has population
A below 1000 once, somewhere in time interval [10,20], population grows over 1000 and
in [20,30] there exists state that has A population again bellow 1000. That means if time
intervals are long enough, it surely catches oscillation of the system.

This specification language has 3 important features:
- the semantics is reasonably simple such that the biologist can understand it and use it
- can capture important biologically relevant patterns including timed-reachability, mono-
tonic trends, bell-shape patterns or bounded oscillation
- verification of the specification is computationally tractable.

21

Chapter 5

M o d e l checking of Dirac
Semi-Markov processes

In this chapter, algorithm for computing transient distribution as well as chain of untils is
further described.

5.1 Stepping algorithm

Recall, that transient distribution provides probability distribution in the given time. This
is fundamental model checking information and is used for further analysis like model
checking of more complicated properties expressed by logic specification formulas.

Discrete Time Markov Chains have transitions equipped only with probabilities. Com
puting its transient distribution is easy. At given number of discrete steps n, transient
distribution 7rn is given by 7rn = 7Tn - P n , where 7Tn is initial distribution and P is probability
matrix. However recall that in Dirac Semi-Markov Process, transitions are equipped except
from probability also with exit time to fire this transition. This makes it more difficult to
compute transient distribution as it is needed to track time. Rough idea of algorithm to
compute transient distribution is to remember for how long is the probability mass wait
ing in the state. Then, when transition waited long enough i.e. exit time of transition,
transition is fired.

More concretely, current distribution together with number of steps for which did par
ticular probability mass waited is stored in tables. Tables are iteratively computed, since
it keeps data for different times. Time step is given by greatest common divisor of all the
transitions together with inspected transient time. It is because it needs to catch every
transition to inspected transient time. There is upper bound of the number of waiting
times, which is longest exit time of the transition divided by time step and this number is
size of the tables. Transient probability for a state is than obtained by summing column of
the final table with that state. To always move the correct amount of mass, also another
history tables are computed, which stores the probability mass entering each state in a
particular step together with the number of steps performed since it entered the state.
Formally for D S M P D = (S, s0, P, Q), output is function: I l f (s 0) : S -) • [0,1] giving tran
sient probabilities to every state in S at time t.
Let step size A be defined as:

A = gcd({y|3x:Q(x) = y}U{t})

22

Upper bound of the number of waiting times used for the size of the tables:

T = max(Q(s , s ')) /A
s,s'£S

Also, two tables are used:

• Table r : {1 , s t epRange} x S —>• [0,1] to store the current probability distribution
together with the number of steps for which did particular probability mass remains
in the given state

• Table a : {1 , s t epRange} x S —> [0,1] to store the probability mass entering each
state in a particular step together with the number of steps performed since it entered
the state. This is necessary to always move the correct amount of probability mass
when performing a transition in table r.

These tables are recursively computed as follows:

TQ = a0 = {(1, s, 0) | s <E S A s / Sinn} U {(1, s i n i t, 1)}

Tj+i = { (x + l , s , p - p) | (x, s,p) e n A x < T A

p= ^2 P(s,s')ati(x,s)} U
s'£Succx(s)

{(l,s,p) | seSAp=] T E P (s ' , s)« i (x , a ') }
xe{l , . . . , r} s ' e P r e d x (s)

CKi+i = { (x + l,s,p) I (x, £ aj A x < T) U

{(l,s,p) I s € SAp= ^ ^ P(s ' ,s)ai(x,s /)},
xe{l , . . . , r} s>£Predx(s)

where Succs and Preds are functions, which return successors and predecessors of state....
s Respectively, available via a transition with waiting time r • A . Finally, we define the
output probability distribution:

n?(SQ) = {(s,p)\p= J2 p'}
(x , s , p ') S r t / A

E x a m p l e 5.1 This algorithm can be demonstrated on this simple example shown in Figure
5.1. We have three state D S M P there. Circles inside the states represents probability
mass. Coloured transitions in r represents enabled transitions about to be fired. Coloured
transitions in a are enabled transitions together with transitions already taken. Numbers
inside the probability mass circles are times for how long probability mass waited in the
current state. This demonstrates that until all the transitions for given state are taken,
original probability mass is kept to be able to calculate the correct values in r . We go
through this example step by step. At the beginning, in r all the probability mass is in

23

the initial state. One colored transition is enabled, ao table is equal as no transitions were
taken yet. In n we can see, that enabled transition in To was fired, so probability mass
moved to another state. There are two enabled transitions now. In a\ we can see that
since not all transitions were taken yet from initial state probability mass, it stays there.
Also except from enabled transitions, first taken transition is coloured. To construct T2 it
is needed to look at a\ and move probability mass from enabled transitions. So one can
see, blue transition in n was fired and 0.4 of probability mass in a\ was moved. Note that
since not all transitions were fired from initial state yet, in 0.2 are still coloured transitions
already taken. If we wanted to know probability distribution at time 2A, we need to sum
up all probability masses in states in T2-

This basic idea is further developed in Implementation chapter, where approximation
for this algorithm, allowing to compute transient distribution in less time with reasonable
precision for some models, is introduced.

5.2 Chain of untils

In this section, model checking of D S M P using chain of untils will be discussed. It is im
portant part of this work as it allows to check some biologically interesting properties like
bell-shape or oscillation of the population of species. Also, it uses simple notation, so it
can be used and understood by biologists.
As described before chain of untils is sequence of Boolean combination of atomical propo
sitions and bounded until operator:

,p = §1UIl§2Uh ... UIk-^k for k > 2

Example 5.2
Recall when is such formula satisfied on this example:
<p = $ i C / / l $ 2 ^ / 2 ^ > 3) where I\ = [1,3], I2 = [5,7]. We go through conditions, which must
be met for path OJ to be satisfied. First of all, every state included in OJ under time 1, which
is left corner point of I\, must satisfy $ 1 . Next, consider time instant t\ £ I\. For OJ to
satisfy ip, there must exist t\, that at time before t\ every state satisfies $ 1 and at time
interval [ti,3] (3 is right interval of I\) every state satisfies $ 2 - In interval [3,5] (3 is right
corner point of I\ and 5 is left corner point of I2), $ 2 must be satisfied in every state. For
last until operator, there must exist state in OJ, that satisfies $ 3 in interval 12- Instance of
path satisfying ip can look like this:

^ l , ^ ! ! 1 ^ ! A $ 2 , $ l | ' 1 $ 2 , $ 2 | 3 $ 2 , $ 2 , $ 3 | - 5 ,

where I* means time instant.

5.2.1 Formal algorithm of chain of untils

Now we can move to algorithm of chain of untils <p = $ 1 U11 $ 2 U1"2 ... UIk~1 $^ ; where
h = [bi,ei]
Notation used in the algorithm

• D[$>] denotes D S M P D where states s £ S satisfying $ are absorbing

. 7r4

D[$](s) = 7r4

D(s) if s \= $ otherwise 7r4

D[$](s) = 0

24

Figure 5.1: A n example of the stepping algorithm

25

Algorithm 1: Model checking algorithm for multiple untils

Input : A D S M P D and formula ip = $ 1 Uh $ 2 Uh ... UIk~1 $fc.
Output: The probability that so \= ip
D1 <- Z?h$ i]
run 71"̂ *1 from SQ

Mi = < [$ i]
for i e {2... k - 1} do

A <- build(L>, i <- ej_i - 6j_i
compute 7r4

Dl from initial distribution

/ i i W = 7 r f 1 [^] (« ') + ^ 1 [^] (« ")
D i <- L>h$j] , t ^ b i - a-i
compute 7r4

Dl from initial distribution /jj

A <- £ > h $ i - i A i <- e j- i - 6j_i
run 7r4

Dl from initial distribution
return £ a e S Tif'

Algorithm 1 firstly needs to remove probability mass, that violated $ i at [0, ti\. This
is made in similarly to model-checking CSL formulas. Transient analysis over transformed
DSMP, where states satisfying are absorbing is computed. Then, only probability mass
in states satisfying $ i is considered. This is covered in the first 3 lines giving a probability
distribution \x\

Then, for every until operator we get D S M P with copies using a b u i l d function, that
builds D S M P Di demonstrated in Figure 5.2. Then, transient analysis over Di is performed
from initial distribution fii-i for time bi-\ — e%-\. This traps probability mass, that violates
formula in states satisfying so this probability is discarded in fii(s). Also, $j must
hold between ej_i and bi. This is solved again by transforming D, so states satisfying $j
are absorbing. Transient analysis is performed over this transformed D S M P for time ej_i
and bi from initial distribution /jj and probability mass in states made absorbing is then
discarded.

After this loop, transient analysis over D S M P Di is performed with initial distribution
fii-i for time bk-i — ek-i- A has states satisfying ->$fc_2 A $fc-i absorbing. This time,
only probability mass in absorbing states satisfying &k-i is considered and returned as the
result.

5.2.2 Demonstration of chain of untils algorithm on example

When given a chain of untils formula ip = $ i XJIx $ 2 U1"2 $ 1 , the algorithm for model-
checking this formula is is decomposed to a few steps. These steps are described using the
same notation as in the algorithm.

• First step
In this step, not satisfying paths are discarded at time interval [0, 61]. Recall, that
in this interval, every state in satisfying path must satisfy $ 1 . In this step, every
state not satisfying $ 1 is made absorbing and with this D S M C is computed transient
distribution for time b\. This way, all the unwanted probability remains in absorbing
states and is discarded.

26

A 02

01 A 0 2 /

5 1 I |-.0l A -.02| | |-i0i A -.02| 5 1 I |-.0l A -.02| | |-i0i A -.02|
/ -101 A 0 2 \

5 1 I
/ -101 A 0 2 \

5 1 I

0 1 A -102 ^ ^
Copy l Copy 2 Copy 3

Figure 5.2: The second step chain. The states satisfying the formulae in red are made
absorbing in the respective copies. The transitions are labeled with the formula that is
satisfied by the successor state, i.e. whenever a successor state satisfies the formula on the
transition, a jump to another copy is performed.

• Second step
This step removes probability violating formula at time interval I\. In this interval $ i
must hold until some time instant, from where every state must satisfy $ 2 - To verify,
that path satisfies this, 3 copies of the original chain and modify some transitions to
target to another copy state. This is demonstrated in Figure 5.2. Idea is, that in Copy
1 is probability mass, which satisfies <f?i A - i $ 2 - Copy 2 is place for probability mass
satisfying both $ i A $ 2 and in Copy 3 is probability which satisfies <f?2> but already
was in state, which does not satisfy $ 1 . Also states in Copy 1 and Copy 2 satisfying
- i $! A - i $ 2 are made absorbing and states in Copy 3 satisfying - i $ 2 are made absorbing.
Probability mass caught in those states is then discarded. Probability distribution
from first step is initial distribution to this step and transient distribution for time
ei — 61 is computed and probability in states satisfying - i $ 2 is discarded.
So, to sum up, probability mass, which satisfies and always satisfied $ 1 is in Copies
1 or 2 depending on whether current state satisfies $ 2 - Once is seen, probability
mass is either moved to Copy 3, if its state currently satisfies $ 2 or is caught in an
absorbing state and discarded later otherwise.

• Third step
Third step is similar to first step. It starts from distribution given by second step and
again states not satisfying needed preposition are made absorbing and after transient
probability for time between time intervals is computed.

When formula contains more until operators, second and third steps are performed
until time instant 6j, where i is the index of last time interval.

• Last step
This step works similarly to first and third step, but not all probability mass in
absorbing states is discarded. States satisfying V $ j , where $j is last preposition
in ip, in this example - i $ 2 V $ 3 , are made absorbing, transient distribution is computed
and probability in states not satisfying $j is discarded.

Example 5.3:
In Figure 5.3 left is shown simple example of D S M P on which constructing of copies in

27

Figure 5.3: (left) Example of D S M P . (right) Demonstration of making copies and transition
between them in Second step of checking chain of untils from example in left. Copies 2 and
3 are denoted with numbers 1 and 2. State [1] satisfies $ i A - i $ 2 > state [2] satisfies $ i A <1?2,

state [3] satisfies A $ 2 and finally state [4] satisfies A - i $ 2

the second step of chain of untils model checking algorithm can be shown (right). To
demonstrate that, probabilities and exit times of transitions can be ignored. Consider, that
states state [1] satisfies $ 1 A - i $ 2 > state [2] satisfies $ 1 A $ 2 > state [3] satisfies A $ 2 and
finally state [4] satisfies A - i $ 2 - In right figure, states in copies 2 and 3 are denoted with
1 and 2 and states in copy 1 remains without additional label. As one can see, transitions
from copy 1 leading to state [2] is redirected to copy 2. also transitions leading to state
[3] are redirected to copy 3. State [4] remains absorbing and probability there is discarded.
Note that state [1] in copy 3 is made absorbing as well, since it satisfies - i $ 2

5.2.3 Bounded exists operator

As mentioned earlier, also „bounded exists" operator is introduced. Roughly, it is a weak
variant of the multiple until operator allowing to capture some behaviour better. Recall,
that path satisfies 3 4 l $, if in interval t\ there is at least one state that satisfies $. It is
allowed to combine this with another „bounded exists" formulas or with chain of untils
formula. That means it is needed to keep track of probability mass that already satisfied
formula and so solution, where only satisfying states are made absorbing cannot be used.
Similarly to second step of chain of untils algorithm, a copy of the system is added. Copy 2
serves for catching probability that already satisfied formula. For that reason, probability,
that starts in state satisfying $ is moved into the appropriate copy 2 state. Also, transi
tions leading into state satisfying $ are redirected to appropriate copy 2 state. This way,
probability mass, that already „saw" state satisfying $ is in copy 2 states and rest is still
in the copy 1. At the end, probability mass in the copy 1 is discarded.

28

Chapter 6

Implementation

In this chapter we discuss how described features are implemented. Also we describe en
countered problems and its solution.

The developed implementation is part of the tool SeQuaia [7]. This tool is developed
within research cooperation between Verifit group and group from T U Berlin. This tool
is written with Java language and includes important features I extended within my im
plementation. These are data structures for a state-transition system derived from C R N
and methods implemented over it. M y main contribution is implementation of verification
of multiple until and bounded exist operators, that uses transient analysis and so it was
needed to add some features to its class as well as to abstraction class I worked with.

Key data for functionality of this tool are states and transitions of the abstraction.
These are stored in the generic transition system class called Automaton. States are there
stored as Set of states and transitions are stored as Map, where keys are Pair of states
(source and target state) and values are of type Quantities, which stores probability and
exit time of the reaction. Also, there is a Map of successors of the state, where key is the
source state and as a value there is set of target states and Quantities of the transition.

In Figure 6.1 there is diagram of the architecture of the tool. From the input C R N ,
abstraction is computed. Abstraction is a class that extends abstract class Automaton.
Abstraction is input for a Transient analysis, which computes transient distribution for a
given time. In Verification class, original abstraction is stored together with instance of
transient analysis.

6.1 Stepping algorithm

Stepping algorithm computes transient analysis and is described earlier. To compute tran
sient distribution, apart from time it is needed to submit two parameters. These are
maximal expected time and step size. These parameters are important for tables, where
probability mass is stored. They determine size of the two tables from algorithm, which is
computed as maxExpectedTime/stepSize. Problem with this approach is that computa
tion time for stiff systems is slow, because of large table size, even with a few transitions
actually happening.

To solve that event-based approximation is used. It pre-computes reactions happening
in the future (events) and whenever transition or set of transitions is fired, new set of events
is computed i.e. probability mass, that was just moved to another state has not yet planned
transitions. These are computed and added to already planned events. For some systems,

29

Transient analysis

Figure 6.1: Diagram of the architecture of the tool.

this approach is much faster as it does not need to iterate through tables of large sizes.
Note, that this is approximation as the method computing transient analysis this way takes
as an argument precision parameter. This parameter is considered, whenever some event
is fired. It is taken time t of that event and every event that is smaller then t + precision
parameter is fired simultaneously. That means larger the parameter is, precision is smaller,
but computation faster. This is shown in the experimental part.

6.2 Chain of untils

Recall, that algorithm for quantifying chain of untils formula is roughly based on different
steps, where some states are made absorbing or copies of the system are introduced and
transitions between them modified and then transient analysis is performed. Modified
distribution obtained from this transient analysis is then used as initial distribution to the
next step.

At the beginning of the computation, new instance of the original abstraction is made.
This instance is modified and transient analysis is run over it. Since the original abstraction
was stored, again, new instance of the original abstraction is made and transient analysis
over this modified abstraction is performed. This is made several times, until whole formulae
is quantified. This corresponds to individual steps of the algorithm. Note, that all of
the transient analysis computations are made over one instant of the transientAnalysis
class. This is so, because it needs to remember transitions waiting to be fired. Except
from abstraction, probability distribution computed by transient analysis also needs to be
modified between steps.

Abstraction needs to be modified when performing single step of the algorithm. The
main challenge when implementing it was to create copies of the original states. This is
made by making exact state space as in original system with the same transitions. That
means, new states are added to the set of abstraction states. Created states are marked
as copies and also identifier to recognize different copies is assigned. Original states are
mapped to copy states, so it is possible to get appropriate copy state. This is important
when redirecting transitions to copy states. This way, copies are introduced to the system

30

and then, transitions between them are modified, transient probability is computed and
unwanted probability mass is discarded.

The other parts were easier to apply, as only certain states marked with certain atomic
preposition are made absorbing, transient analysis is performed and unwanted probability
mass is discarded.

Tricky thing to implement was that input D S M P and probability distribution needs to
be changed, because some probability mass might be discarded. Solution for event-based
approach is described as it is faster then stepping algorithm and it differs a bit. D S M P
can be changed there in process and future planned events are based on the new DSMP.
Problem is with already planned events, because they might be leading now to different
state (copy state). These planned events need to be changed. Whenever probability mass
in certain state is discarded, it is needed to also discard events, which has this state as the
source state, because there is no longer probability mass to move.

Another implemented feature is moving probability mass from a certain state. This
needs to be performed, because some probability mass might need to already begin in
another copy. In this case, events, that have such state as source state are changed. Typi
cally, it is needed to change source state as well as target state, because another copy state
transition probably leads to different state than original state.

Similar thing needs to be performed after computing transient distribution with copies.
There are typically planned events, that has source state or/and target state in some copy.
Problem with this is that in the next computation, these states are no longer in the sys
tem. That means, probability mass in those copies states are moved to original states and
transitions are modified, so source and target states are right.

6.3 Bounded Exists operator

Implementation of verifying bounded exists operator uses most of the described features
in chain of untils. It is very similar as it needs to make copy of the original system,
some probability mass might need to begin in another state, some states needs to be made
absorbing and then copies states are after computation no longer in the system.

6.4 Testing

To verify whether the implementation works as we wanted, several tests were performed.
At first, unit tests were triggered off. These tests verified, that individual parts of the code
works as desired. Mainly, methods for making states absorbing, creating of the copies and
deleting and adding transitions from/to the abstraction were tested. Then, it was needed
to check if the transitions between copies are made correctly. This was tested for some not
trivial systems using the method toDotty, that visualize states and transitions. Also, the
code was debugged and tested on simple models, where behaviour can be tracked.

31

Chapter 7

Experiments

In this chapter, behaviour of stepping algorithm and model checking of simple CSL formu
las as well as model checking of chain of until formulas is tested. The goal is to discover,
whether the event-based stepping algorithm is fast enough and how computation time is
affected by the precision parameter. Also what is the impact of lower precision on result.
Also, comparison between model checking of some CSL formula and chain of untils formula
is described in terms of computation time and again, how is this affected by change of
precision parameter. This is important to determine, whether proposed algorithms can be
used for more complicated models. In another section, results of introduced specification
language model-checking interesting biological properties are introduced.

7.1 Used models

For this experimental part SimpleGene model was used. This model was already described
in Example 2.1, recall, that it is given by:
A = {Don,Dof,P} and

TZ = {Don P + Don, P 0, Don + P °'°01> A>//} and starting with Don

On this model, bell shape behaviour can be verified as production and degradation of
proteins takes place with very high probability (see Figure 3.3 right).

In order to get more complicated abstractions with a lot of states, 2 models with inter
esting behaviour were used: PredatorPrey and Goutsias models.

PredatorPrey model includes 2 populations, Predator and Prey population:
A = {Pred, Prey}
and 3 reactions:
TZ = {Prey —> Prey + Prey, Prey + Pred ——> Pred + Pred, Pred —> 0}.
Starting state is lOOOPred + lOOOPrey.
A n idea about how the model behaves can be shown using DSD simulation tool (Figure
3.3 left). One can see oscillations of populations until one of the populations dies out (in
the picture Prey population died out and then Predator population as well). This model
also has quadratic number of states to number of levels, so it is easy to control number
of states and also get high number of states, since reaction rates are not of very different
magnitudes this model is not stiff. Since PredatorPrey models has oscillation behaviour, it
can be verified with bounded until formula.

32

500 Time 15QQ

Figure 7.1: Simulation of Goutsias model using DSD tool.

Goutsias model has 3 large populations and leads to an interesting behaviour even in a
long runs. It is given by populations
A = { M , D, R N A , D N A D , D N A 2 D , D N A } with reactions:

{ R N A ^ > R N A + M , D N A D - ^ ^ > D N A D + R N A , M
0.02 D N A + D ^ > D N A D , D N D A + D 0.0002

71
R N A ^ >
D N A 2 D 0 - 0 0 0 0 0 0 0 0 0 0 0 9) D N A D + D, D N A D ^ D N A + D,

0.0007
>

> D N A 2 D ,

D ^ > M + M} M + M ^ > D ,
and starting state is D N A D + 10M.
Again, simulation of this model is shown in simulation from DSD tool (Figure 7.1). Goutsias
model leads to an interesting behaviour even in a longer runs and also is interesting to
model-checking of some properties for R N A population. Note, that this model is very stiff,
because of that one very slow reaction, so it can represent behaviour on stiff models.

7.2 Performance evaluation

In this section, we evaluate performance of different algorithms. We are mainly interested
in usability of event based approximation and how copies introduced in model-checking
algorithm of multiple untils and bounded exists formulas impact computation time.

7.2.1 Event-based approximation

In this part, experiments over event-based approximation of stepping algorithm are de
scribed. For every experiment firstly, reference solution using highest possible precision
was computed and then, time precision parameter was gradually increased, which means
precision was lowered. Highest possible precision result is obtained with time precision
parameter equal to an exit time of the fastest transition i.e. transition with the lowest
exit time. Precision is lowered by multiplying this parameter with a constant, which is
gradually increased. This constant determines x axis of a graph. Then, results obtained by
computations with lower precision were compared to reference result.

33

Specifically, computation time and variance were determined. Variance was computed
using L I norm. L I Norm is the sum of the magnitudes of the vectors in a space. For
this case, sum of an absolute values in different states is computed. These two values were
plotted into a graph, so results are easily interpreted and visible. To see how computation
reacts on different number of states and different times moments, where transient distribu
tion is computed, computations are made for various levels and times. Levels of the model
define discretization of populations. There is always one level for empty population and
bound for highest possible value of population. For simplification, I denote model only with
highest number of levels for the model.

Ideally, computation time would be significantly lower and variance would not reach
high values with growing time precision parameter.

In Figure 7.2 is shown that for some models, computation time is significantly lower
with higher precision parameter and variance is still low. We can see unstable growing
pattern, which might be caused by the way transitions are fired. This graph shows, that
for stiff models, lower precision does not have a great variance and computation is much
faster.

Goutsias 7levels t ime = 100 Goutsias 7levels t ime = 100

10 20 30
timePrecision

Goutsias 4levels t ime = 1000 Goutsias 4levels t ime = 1000

20 30 40
timePrecision

10 20 30
timePrecision

Figure 7.2: (left top) Graph showing computation times of transient analysis for time =
100, with growing time precision parameter, which is determined by fastest reaction exit
time multiplied by constant shown at x axis for Goutsias model with 7 levels, (right top)
Variance made by gradually higher parameter for the same model, (left bottom) Same
graph as left top for 4 levels and time 1000. (right bottom) Same graph as right top for 4
levels and time 1000.

34

On the other hand, for large models with lot of states, result doesn't look so ideally as we
can see in Figure 7.3. Computation time is still significantly lower, but variance for lower
precision results makes the result basically useless. For those models, semi-quantitative
approach is needed.

PredPreyBOMs time = 10 PredPreyBOMs time = 10

timePrecisian timePrecision

PredPreyBOIvIs t ime = 1 PredPreyeolvIs t ime = 1

0 ID 20 30 40 50 0 ID 20 30 40 50
timePrecisitm timePrecision

Figure 7.3: (left) Graph showing computation times of transient analysis for time = 10 and
time = 1, with growing time precision parameter, which is determined by fastest reaction
exit time multiplied by constant shown at x axis for PredatorPrey model with 60 levels,
(right) Variances made by gradually higher parameter for the same model.

7.2.2 Mult iple untils

With chain of untils formulas, it is possible to verify properties, that are impossible to
formulate in classical CSL. The cost for that is much higher computation time. It is so,
because of the used copies. For the chain of untils, in the second step, state space is
tripled. That has obviously impact on computation times. To find out how big this effect
is, comparison of computation times of verifying simple CSL formula and multiple until
formula was made. It obviously depends on time, for which is second step performed as
it takes most of the computation time. For following experiments, half of the time was in
the second step. This comparison is shown in Figure 7.4. For growing number of levels,
computation time of multiple untils takes up to 4 times more then simple CSL.

For Predator Prey model bounded exists formula revealing oscillation was tested sim
ilarly. Note that state space is doubled for the whole computation when verifying this
formula. Computation for bounded exists formula took almost 30 times more then verify
ing simple CSL formula in some cases.

35

Gutsias 4 levels Gutsias 7 levels Gutsias 15 levels PP10 levels PP 25 levels PP 60 levels

Figure 7.4: (left) Relation of computation times of chain of untils formula and simple
CS1 for Goutsias model with different levels abstraction, (right) The same comparison for
Predator Prey model.

7.3 Model-checking results

First model-checked property is bell shape property on the SimpleGene model using an
multiple untils formula. See the Figure 3.3 right, there protein population is produced and
then after D N A is blocked, it extincts. Multiple untils formula is made to be satisfied in
this simulation. So it looks like this:

<p = ((P< 50) C / l 3 ' 1 0 ! (P > 50) C / l 1 2 ' 5 0 ! (P < 50))

Note, that it actually is satisfied in the shown simulation run as before time 3, population is
bellow 50, in time interval [3,10] population exceeds 50 and it holds above 50 in time interval
[10,12] and somewhere in time interval [12, 50], population again goes bellow 50. This
property is satisfied with probability 35% when verified on abstraction with 5 population
intervals. Wi th growing number of intervals, this probability is lowered down to 26% for
30 levels.

To see, why is this smaller, than expected, simulations over used abstractions were
made. In Figure 7.5, we can see, that this concrete run does not satisfy formula, because
population drops bellow 50 before time 12. Also Proteins are produced faster than accepted
by formula. When formula is edited like this:

<p = ((P< 50) C/ l 0 - 1 ' 7 ! (P > 50) C / l 7 ' 5 0 ! (P < 50)),

it is already satisfied with probability around 80%, which is close to expectation.
Another checked property is oscillation over the PredatorPrey model. Oscillation is

expressed using multiple bounded exists operators:

3[°' 1 0l (Pred < 600) A 3^°'20\Pred > 1350) A 3 2 0 ' 3 0 (P r e d < 600)

See the Figure 3.3 left and note that this formula is satisfied in that one simulation run as
there is moment under time 10, whenever Predator population is bellow 600, also Predator
population goes above 1350 in time interval [10,20] and in time [20,30], there is again
moment, when the population is bellow 600. It reveals oscillation behaviour as growing and
extincting of the population must be included in longer run. This property is satisfied with
probability around 60% for different number of intervals in abstraction not changing much.

36

This number is lower than expectation given by behaviour in set of simulation runs. This
is because in abstraction one of the population species extincts earlier than in C R N . It can
be seen in Figure 7.5 right, where simulation over abstraction is shown.

Figure 7.5: (left) Simulation run of SimpleGene abstraction with 20 intervals, (right)
Simulation run of PredatorPrey abstraction with 25 intervals.

;s7

Chapter 8

Conclusion

In this work, novel abstraction for semi-quantitative approach for analysis of bio-chemical
systems was discussed. Also it was shown, that this Dirac Semi-Markov Process abstrac
tion is more precise than previously proposed Continuous Time Markov chain abstraction.
Further, for this abstraction, algorithm and implementation for computation of transient
analysis is provided. It is shown, that for some models it is possible to significantly lower
the computation time with lowering the precision with almost no effect on the result. How
ever this is not possible for models with lots of states, because with lower computation
time variance grows fast and so provided result is basically useless. For these models, it is
needed to add semi-quantitative reasoning over this algorithm, which might be focus of the
future research.

The main focus of this work was introducing novel timed temporal logic formulas, that
are able to formulate properties, which are important for biologists. For these formulas,
model-checking algorithm was introduced and implemented. It was shown, that multiple
until formulas and bounded exists formulas are able to formulate and quantify properties
mentioned in the work. Even though this feature allows to quantify wanted properties,
it also magnifies state space and so computation is much slower than transient analysis.
This can be further optimized in the future. Also, adjustment of this algorithm for the
semi-quantitative version of computation of transient analysis is challenge for the further
research.

38

Bibliography

[1] A L U R , R., C O U R C O U B E T I S , C. and D I L L , D. Model-Checking in Dense Real-Time.
Information and Computation. 1993, vol. 104, no. 1, p. 2-34. DOI:
https://doi.org/10.1006/inco.1993.1024. ISSN 0890-5401. Available at:
https: //www. sciencedirect.com/science/axticle/pii/S0890540183710242.

[2] A L U R , R., F E D E R , T. and H E N Z I N G E R , T. A . The Benefits of Relaxing Punctuality.
J. ACM. New York, N Y , USA: Association for Computing Machinery. January 1996,
vol. 43, no. 1, p. 116-146. DOI: 10.1145/227595.227602. ISSN 0004-5411. Available
at: https://doi.org/10.1145/227595.227602.

[3] B A I E R , C. and K A T O E N , J.-P. Principles of Model Checking (Representation and
Mind Series). The M I T Press, 2008. ISBN 026202649X.

[4] B R I J D E R , R. Computing with chemical reaction networks: a tutorial. Natural
Computing. Mar 2019, vol. 18, no. 1, p. 119-137. DOI: 10.1007/sll047-018-9723-9.
ISSN 1572-9796. Available at: https://doi.org/10.1007/sll047-018-9723-9.

[5] B R I M , L . , Č E Š K A , M . and Š A F R Á N E K , D. Model Checking of Biological Systems.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. 63-112 p. ISBN
978-3-642-38874-3. Available at: https://doi.org/10.1007/978-3-642-38874-3_3.

[6] B U C H H O L Z , P. Exact performance equivalence: A n equivalence relation for stochastic
automata. Theoretical Computer Science. 1999, vol. 215, no. 1, p. 263-287. DOI:
https://doi.org/10.1016/S0304-3975(98)00169-8. ISSN 0304-3975. Available at:
https: //www. sciencedirect.com/science/article/pii/S0304397598001698.

[7] Č E Š K A , M . , C H A U , C. and K Ř E T Í N S K Ý , J . SeQuaiA: A Scalable Tool for
Semi-Quantitative Analysis of Chemical Reaction Networks. In: L A H I R I , S. K .
and W A N G , C , ed. Computer Aided Verification. Cham: Springer International
Publishing, 2020, p. 653-666. ISBN 978-3-030-53288-8.

[8] Č E Š K A , M . and K Ř E T Í N S K Ý , J . Semi-quantitative Abstraction and Analysis of
Chemical Reaction Networks. In: D I L L I G , I. and T A S I R A N , S., ed. Computer Aided
Verification. Cham: Springer International Publishing, 2019, p. 475-496. ISBN
978-3-030-25540-4.

[9] C H E L L A B O I N A , V . , B H A T , S. P., H A D D A D , W . M . and B E R N S T E I N , D. S. Modeling

and analysis of mass-action kinetics. IEEE Control Systems Magazine. 2009, vol. 29,
no. 4, p. 60-78. DOI: 10.1109/MCS.2009.932926.

[10] C L A R K E , E. , G R U M B E R G , O. and L O N G , D. Verification tools for finite-state
concurrent systems. In: B A K K E R , J . W . de, R O E V E R , W . P. de and R O Z E N B E R G , G . ,

39

https://doi.org/10.1006/inco.1993.1024
http://sciencedirect.com/science/axticle/pii/S0890540183710242
https://doi.org/10.1145/227595.227602
https://doi.org/10.1007/sll047-018-9723-9
https://doi.org/10.1007/978-3-642-38874-3_3
https://doi.org/10.1016/S0304-3975(98)00169-8
http://sciencedirect.com/science/article/pii/S0304397598001698

ed. A Decade of Concurrency Reflections and Perspectives. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1994, p. 124-175. ISBN 978-3-540-48423-3.

[11] F E R M , L . and L O T S T E D T , P. Adaptive solution of the master equation in low
dimensions. Applied Numerical Mathematics. 2009, vol. 59, no. 1, p. 187-204. DOI:
https://doi.Org/10.1016/j.apnum.2008.01.004. ISSN 0168-9274. Available at:
https: //www. sciencedirect.com/science/axticle/pii/S0168927408000263.

[12] G I L L E S P I E , D . T. Exact stochastic simulation of coupled chemical reactions. The
Journal of Physical Chemistry. 1977, vol. 81, no. 25, p. 2340-2361. DOI:
10.1021/jl00540a008. Available at: https://doi.org/10.1021/jl00540a008.

[13] G O U T S I A S , J . Quasiequilibrium approximation of fast reaction kinetics in stochastic
biochemical systems. The Journal of Chemical Physics. 2005, vol. 122, no. 18,
p. 184102. DOI: 10.1063/1.1889434. Available at:
https: //doi.org/10.1063/1.1889434.

[14] K A T O E N , J.-P., K L I N K , D., L E U C K E R , M . and W O L F , V . Three-Valued Abstraction
for Continuous-Time Markov Chains. In: D A M M , W . and H E R M A N N S , H . ,
ed. Computer Aided Verification. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, p. 311-324. ISBN 978-3-540-73368-3.

[15] K O Y M A N S , R . Specifying real-time properties with metric temporal logic. Real-Time
Systems. Nov 1990, vol. 2, no. 4, p. 255-299. DOI: 10.1007/BF01995674. ISSN
1573-1383. Available at: https://doi.org/10.1007/BF01995674.

[16] K W I A T K O W S K A , M . , N O R M A N , G. and P A R K E R , D. Stochastic Model Checking.
In: Proceedings of the 7th International Conference on Formal Methods for
Performance Evaluation. Berlin, Heidelberg: Springer-Verlag, 2007, p. 220-270.
SFM'07. ISBN 9783540724827.

[17] M A D S E N , C , M Y E R S , C. J. , R O E H N E R , N . , W I N S T E A D , C. and Z H A N G , Z . Utilizing
stochastic model checking to analyze genetic circuits. In: I E E E . 2012 IEEE
Symposium on Computational Intelligence in Bioinformatics and Computational
Biology (CIBCB). 2012, p. 379-386.

[18] M A L E R , O. and N I C K O V I C , D . Monitoring Temporal Properties of Continuous
Signals. In: L A K H N E C H , Y . and Y O V I N E , S., ed. Formal Techniques, Modelling and
Analysis of Timed and Fault- Tolerant Systems. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, p. 152-166. ISBN 978-3-540-30206-3.

[19] P N U E L I , A . The temporal semantics of concurrent programs. Theoretical Computer
Science. 1981, vol. 13, no. 1, p. 45-60. DOI:
https://doi.org/10.1016/0304-3975(81)90110-9. ISSN 0304-3975. Special Issue
Semantics of Concurrent Computation. Available at:
https: //www. sciencedirect.com/science/article/pii/0304397581901109.

[20] R A O , C. V . and A R K I N , A . P . Stochastic chemical kinetics and the quasi-steady-state
assumption: Application to the Gillespie algorithm. The Journal of Chemical
Physics. 2003, vol. 118, no. 11, p. 4999-5010. DOI: 10.1063/1.1545446. Available at:
https: //doi.org/10.1063/1.1545446.

40

https://doi.Org/10.1016/j.apnum.2008.01.004
http://sciencedirect.com/science/axticle/pii/S0168927408000263
https://doi.org/10.1021/jl00540a008
https://doi.org/10.1007/BF01995674
https://doi.org/10.1016/0304-3975(81)90110-9
http://sciencedirect.com/science/article/pii/0304397581901

[21] S A L I S , H . and K A Z N E S S I S , Y . Accurate hybrid stochastic simulation of a system of
coupled chemical or biochemical reactions. The Journal of Chemical Physics. 2005,
vol. 122, no. 5, p. 054103. DOI: 10.1063/1.1835951. Available at:
https://doi.Org/10.1063/l.1835951.

[22] V A N K A M P E N , N . Stochastic Processes in Physics and Chemistry. Elsevier Science,
1992. North-Holland Personal Library. ISBN 9780080571386. Available at:
https: //books, google. cz/books?id=3e7XbMo JzmoC.

[23] Č E Š K A , M . and A N D P J U S H C H E N K O , R . Modelling and Analysis of Probabilisitic
Systems. Faculty of Information Technology, Brno University of Technology,
February 2021.

[24] V O I T , E . A First Course in Systems Biology. 2ndth ed. Garland Science, 2017. ISBN
0815344678.

[25] W O L F , V . , G O E L , R . , M A T E E S C U , M . and H E N Z I N G E R , T. A . Solving the chemical
master equation using sliding windows. BMC Systems Biology. Apr 2010, vol. 4,
no. 1, p. 42. DOI: 10.1186/1752-0509-4-42. ISSN 1752-0509. Available at:
https://doi.org/10.1186/1752-0509-4-42.

[26] Z H A N G , J. , W A T S O N , L . T. and C A O , Y . Adaptive aggregation method for the
chemical master equation. International journal of computational biology and drug
design. Inderscience Publishers. 2009, vol. 2, no. 2, p. 134-148.

41

https://doi.Org/10.1063/l.1835951
https://doi.org/10.1186/1752-0509-4-42

