
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

LIBRARY OF REUSABLE COMPONENTS AND UTILITIES
FOR THE ANGULAR 2 FRAMEWORK
KNIHOVŇA ZNOVUPOUŽITELNÝCH KOMPONENT A UTILIT PRO FRAMEWORK ANGULAR 2

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. GABRIEL BRANDERSKÝ
AUTOR PRÁCE

SUPERVISOR prof. Ing. ADAM HEROUT, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2017

Master's Thesis Specification/20183/2016/xbrand04

Brno University of Technology - Faculty of Information Technology

Department of Computer Graphics and Multimedia Academic year 2016/2017

Master's Thesis Specification
For: Branderský G a b r i e l , Be.

Branch of study: Information Systems

T j t l e . L i b r a r y o f R e u s a b l e C o m p o n e n t s a n d U t i l i t i e s f o r t h e A n g u l a r 2
F r a m e w o r k

Category: User Interfaces

Instructions for project work:
1. Get famil iar with existing client web technologies and study the Angular 2 framework

in detail. Outline the principles for implementing UI components in this framework as
well as principles for designing a user interface.

2. Explore and analyze existing libraries of reusable components for Angular.
3. Define requirements on a new library and its components. Design a consistent

architecture and principles for the library's components.
4. Design and implement the core of the library, and the user interface.
5. Create an application or applications demonstrat ing the usage of individual

components.
6. Evaluate the characteristics of the library and the created components based on user

feedback. Evaluate the achieved results and discuss possible future work; create a
poster and a short video for presenting the project.

Basic references:
• consult the supervisor

Requirements for the semestral defense:
Items 1-3, considerable progress on items 4 and 5.

Detailed forma! specifications can be found at http://www.fit.vutbr.cz/info/szz/

The Master's Thesis must define its purpose, describe a current state of the art, introduce the theoretical and
technical background relevant to the problems solved, and specify what parts have been used from earlier
projects or have been taken over from other sources.

Each student will hand-in printed as well as electronic versions of the technical report, an electronic version of
the complete program documentation, program source files, and a functional hardware prototype sample if
desired. The information in electronic form will be stored on a standard non-rewritable medium (CD-R, DVD-R,
etc.) in formats common at the FIT. In order to allow regular handling, the medium will be securely attached to
the printed report.

Supervisor: H e r o u t A d a m , prof , Ing„, Ph.D. , DCGM FIT BUT

Beginning of work: November 1, 2016
Date of delivery: May 24, 2017

, Fakulta informačních technologií
Ustav počítačové grafiky a multimédií

612 fičí Bmo. Sořstčchova 2

Jan Černocký
Associate Professor and Head of Department

http://www.fit.vutbr.cz/info/szz/

Abstract
This thesis is concerned wi th the creation of a l ibrary of reusable components and utili t ies
designed for use i n data-intensive applications. One typica l component of such applications
is a table, which is considered to be the main component of the library. A l l other components
and utili t ies are closely related to this component i n order to ensure high cohesion. The final
set of components can be used declaratively i n various combinations. The user interface is
accustomed for data-intensive applications w i t h various elements.

Abstrakt
T á t o p r á c a sa z a o b e r á v y t v o r e n í m knižnice znovapouži teľných komponent a ut i l i t u r č e n é na
použ i t i e v dá t avo - in t enz ívnych ap l ikác iách . Jednou typickou komponentou pre t a k é apl iká
cie je t abuľka , k t o r á je považovaná za h l a v n ú komponentu knižnice . P re zaistenie vysokej
kohézie sú v š e t k y o s t a t n é komponenty a u t i l i ty sú s nou úzko p r e p o j e n é . Výs l edná sada
komponent je použ i teľná d e k l a r a t í v n y m s p ô s o b o m a umožňu je rôzne konfigurácie. Uži
vate lské rozhranie je t iež p r i z p ô s o b e n é na dá tovo - in t enz ívne apl ikác ie s r ô z n y m i p rvkami .

Keywords
U I components, util i t ies, Web technologies, Angular , U X , data-intensive applications, data
table, table extensions

Klíčová slova
U I komponenty, uti l i ty, Webové technologie, Angular , U X , dá tovo- in t enz ívne apl ikácie ,
d a t o v á tabulka, rozš í renia t abulky

Reference
B R A N D E R S K Y , Gabr ie l . Library of Reusable Components and Utilities for the Angular
2 Framework. Brno , 2017. Master 's thesis. Brno Univers i ty of Technology, Facul ty of
Information Technology. Supervisor Herout A d a m .

Library of Reusable Components and Utilities for
the Angular 2 Framework

Declaration
W i t h this, I declare that this master's thesis was prepared as an original author's work under
the supervision of professor A d a m Herout. Addi t ional ly , I received the supplementary
information i n a company interfacewerk G m b H , namely from K e v i n Merckx , M o r i t z C .
Ti i rck , and Sebastian Ul lherr . A l l the relevant information sources, which were used during
preparation of this thesis, are properly cited and included in the list of references.

Gabr ie l Brandersky
M a y 23, 2017

Acknowledgements
I would like to express my thanks to the professor A d a m Herout for his numerous advice, the
guidance, and point ing me i n the right direction. I am also very grateful for the opportuni ty
to uti l ize this l ibrary i n a real-world project inside interfacewerk G m b H . The support from
interfacewerk G m b H was indispensable for the realization of this library.

Contents

1 Introduction 3

2 W e b Technologies 4
2.1 The Language(s) of the Web 4
2.2 Single-Page Appl ica t ions 5
2.3 Angular Framework 5
2.4 React Framework 8

3 User Experience 9
3.1 Usabi l i ty Heuristics 9
3.2 Techniques for Designing and Testing User Interfaces 10
3.3 Developer Experience 11

4 Analysis & Design 12
4.1 Overview of Component Libraries 12
4.2 Focus 13
4.3 Use Case App l i ca t i on 14
4.4 Evalua t ion of Ex i s t i ng Components 16
4.5 Design Specification 17
4.6 Architecture 19
4.7 Pub l i c Interface 21

5 Implementation 28
5.1 Implementation Language 28
5.2 Project Setup & Tools 29
5.3 Folder Structure 30
5.4 Core Modu le 30
5.5 Performance Opt imizat ions 34

6 Demonstrat ion 36
6.1 Basic Example 36
6.2 Cus tom Templates 37
6.3 Uti l i t ies 38

7 Usabil i ty Testing & Evaluat ion 39
7.1 Iterations 39
7.2 User Feedback 40
7.3 Statistics 41

1

8 Conclusion

Bibl iography

Chapter 1

Introduction

The goal of this thesis is to create a client-side library, which is designed especially for
data-intensive applications. The l ibrary incorporates components and util i t ies that are
typical ly necessary for such applications, par t icular ly opt imized for the data volume and
data complexity.

The idea for this l ibrary emerged from the need of a real-world applicat ion started in
the beta version of Angula r 2. Ex i s t i ng libraries could not satisfy a l l project requirements.
It was concluded that it should be supported by a library, what consequently gave the b i r th
to this thesis.

The final release of Angu la r 2 was published only in September 2016. Since it is not
backwards-compatible, the lack of libraries is one of the biggest problems when starting wi th
the new version of Angular . M a n y companies prefer to stay on the old version w i t h the
much richer ecosystem. The secondary goal of this work is to contribute to the ecosystem
development by exploring patterns for designing third-party libraries.

The second chapter lies the technical foundation. It presents various web technologies,
most impor tant ly the Angu la r framework. Then, user experience (U X) is introduced i n the
th i rd chapter since it is a necessity for the design and testing of user interfaces.

In the fourth chapter, the analysis of the current state of the art is intertwined wi th
the comprehensive design of the library. Afterward, we transi t ion from the design to im
plementation i n the fifth chapter. The emphasis is put on the core module.

The design of the l ibrary is demonstrated on tangible samples in the s ix th chapter. The
penultimate chapter is concerned wi th usabil i ty testing. It evaluates the l ibrary based on
the user feedback.

Final ly , the last chapter reiterates the important information of the thesis and the results
that were achieved.

3

Chapter 2

Web Technologies

This chapter introduces several web technologies w i th their specific terms and concepts. It
is often the case that the same term is used by various technologies to denote (slightly)
different meaning. The term "component" is par t icular ly overloaded term, so it is defined
in the section about the Angula r framework among other things. Several code snippets are
presented to enhance the understanding of concepts. The Angula r syntax is used also a
chapter demonstrating the usage of the library.

Another complementary view on a client-side framework is provided i n the section about
the React framework. B o t h Angu la r and React are intended for single-page applications.

2.1 The Language(s) of the Web

If there is a single language of the Web, then it is Hyper Text M a r k u p Language [2]. It
is present on a l l web pages unlike addi t ional technologies (Cascading Style Sheets [1],
JavaScript []) that might be skipped for some reason. However, different technologies
have their specific purpose i n the architecture of web applications. This architecture con
sists of a client and a server. The client is sending requests to the server and displays
responses (in the graphical interface of a browser). A t the same time, mult iple clients can
be served by one server. There might also be mult iple servers handling one client request.
Typ ica l ly there is a database server dedicated to storing the data and applicat ion server pro
cessing the data. In Angula r development, no part icular server-side technology is assumed:
therefore, only relevant client-side technologies are described i n this section.

HyperText M a r k u p Language (H T M L)
The purpose of H T M L is to define the structure and the content by embedding the
markup into the text. Th is markup can often be found i n many online editors allowing
users to format the text because of its declarative nature. Even non-technical people
can understand it, which is not true for many other programming languages.

Cascading Style Sheets (CSS)
Al though H T M L offers style tags, their use is discouraged; separating the structure
from the presentation achieved wi th C S S brings several advantages. It is easier to
maintain, and there might be several different styles for the same H T M L document.
Separated styles are useful for applying only on specific devices, e.g. smartphones.

JavaScript & TypeScr ipt
In contrast to C S S and H T M L that allow only static websites, JavaScript adds in -

4

teractive elements. JavaScript combines imperative, functional, and object-oriented
paradigms. It is one of the most widely used languages. It is ut i l ized not only in
client but also the server applications, databases, and even embedded devices.

JavaScript, like any other language in active use, is evolving over t ime. The actual
editions of this language are defined i n the E C M A S c r i p t standard. The last version
E C M A S c r i p t 6 was published in the year 2015, which represents the largest update to
the language w i t h numerous new features, e.g. classes. L u c k i l y for developers, it fol
lows the philosophy "Don ' t break the Web" , so it is backwards-compatible. However,
the support of browsers is problematic. To overcome this l imi ta t ion , JavaScript can
be transpiled from version E C M A S c r i p t 6 into lower version 5 w i th excellent support.
Transpi l ing was anticipated, and E C M A S c r i p t 6 was designed for i t .

Diverse languages can be compiled into JavaScript . One of them is T y p e S c r i p t 1 ,
which is a superset of JavaScript . A l though TypeScr ip t was released already in the
year 2002 by Microsoft , it considerably gained i n popular i ty in recent years. Th is
growth could be at t r ibuted not only to the added support of E C M A S c r i p t 6 but also
as a result of Angular 2 being implemented i n TypeScr ip t . Despite that Angula r 2
allows various languages, TypeScr ip t is recommended by the Angu la r team.

Besides E C M A S c r i p t 6 features, TypeScr ip t adds addi t ional features on top of i t . A s
the name implies, TypeScr ip t also enriches JavaScript w i t h opt ional typing system.
If the type is not specified, TypeScr ip t tries to infer the type from the context i f
possible. Otherwise, impl ic i t type "any" is assumed.

2.2 Single-Page Applications

A s noted, the foundation of the Web is the client-server architecture. Tradit ionally, each
client request results i n a completely new page. If a user just selects a different section
in the sidebar, only a smal l por t ion of an applicat ion is changed. It is a waste to reload
everything.

If an applicat ion has many interactive elements, it is better suited to be developed
as a single-page applicat ion []. Single-page applications do not need a full page reload.
Instead, the data are requested as needed by an applicat ion. In representational state
transfer (R E S T) , ind iv idua l resources can be requested. One type of resource is usually
associated wi th one U R L . One common response format is (JavaScript Object Notat ion)
J S O N .

Figure 2.1 shows a thick client that communicates w i th a R E S T applicat ion program
ming interface (A P I) . Firs t ly , the client loads the resources necessary at startup of an
application i n two separate requests. Because of the network delay, a response for the first
request arrives later than the second. This is not a concern i n the t radi t ional model since
al l resources are always requested at once. Then , a user selects a specific i tem, which causes
another request for that i tem. This process can continue un t i l the applicat ion terminates.

2.3 Angular Framework

The Angu la r framework [3, 10] is a cross-platform solution for creating applications in client-
side web technologies. It creates single-page applications, i.e. very interactive applications.

x h t t p s : //www.typescriptlang.org/

5

http://www.typescriptlang.org/

Client Server

1
I

~ ~ G E T /currentUser

GET /items

Resource 2_ - -

Resource 1
GET /items /1

Figure 2.1: In single-page applications, a client requests only certain data throughout the
life-cycle of an application.

The first version of Angula r appeared in 2009 and over the years gained immense pop
ularity. It proved its qualities for developing interactive user interfaces. A t the same time,
such wide adoption revealed some l imitat ions (e.g. server-side rendering, lazy loading of
modules) that could not be solved without significant architecture changes. O n the grounds
of these restrictions and advances i n the web technology (e.g. E C M A S c r i p t 6), the A n g u
lar 2 framework was announced. It is a complete rewrite of the framework. Despite keeping
some of the previous concepts, Angu la r 2 changed so dramatical ly that it could be consid
ered a different framework. These changes inevi tably impact libraries, typical ly resulting in
their reimplementation. A t this point, it is worth mentioning that official migrat ion path
exists, but it is intended preferably for applications since libraries usually rely on advanced
features and low-level interfaces that are more l ikely to be affected.

A n y applicat ion of significant size needs to be decomposed into different parts to in
crease maintainabil i ty. For that purpose, A n g u l a r 2 possesses several primitives allowing
decomposition and then helps w i t h composing them together.

Modules
Modules not only create a namespace but also structure applications into coherent
and independent units. A collection of related primitives can be put into a separate
module, then a l l of them can be included as a whole by impor t ing the module.

Components
A component is a basic bui lding block of Angular applications. Every component
owns a view created by the component's template and its logic. The logic imple
mented i n the component's class is made accessible inside the template, which is an
H T M L file extended wi th Angula r template syntax. Inside the component's template,
other components can be declaratively used according to their defined interface. A s

2 By convention, it is preferred to refer to Angular without specifying a version number unless it is
necessary. It is for the sake of upcoming major releases. There is already the planned release of Angular 4.
This is only a small incremental update in comparison to a huge jump to the second version. This convention
is followed. In this text, we always refer to Angular 2 and beyond if no version is specified.

(i

a result, an Angula r applicat ion is just a tree of components. The parent compo
nent communicates w i th its children by passing data, while a chi ld component can
communicate upwards only through events.

The previously described concepts together w i th template syntax are demonstrated
in code l is t ing 2.1 implemented i n TypeScr ip t . There is a class Parent Component
annotated wi th ©Component decorator from Angular , which decorates the class w i t h
Angular-specific metadata. There are decorators w i th different metadata for each
primit ive. Inside this decorator, C S S selector specifies how the component is used
(usually element name like in this case). Addi t ional ly , there is the inline template,
which uses of another chi ld component by passing one input and expecting one output,
named correspondingly.

The square brackets should resemble assigning to a property of an object. Wi thou t
square brackets, string "answer" would be passed as input into the component, instead
of the content of that variable. For the output event, round brackets resemble call ing
a function. The implementat ion of a chi ld component is not presented here, but we
can assume that it triggers the output event under certain conditions, i f a part icular
value is given to input . After the event is triggered, the expression on the right
onAnswerCorrect() is executed.

Inside the class, only one property answer is defined and also annotated as ©Input
of the component. A s a result, this component can be used i n H T M L as <parent-
component answer="42"x/parent-component>. If the attr ibute is not passed, then
the default value of answer "default value" remains.

import {Component, Input]- from ' ©angular / core ' ;

©Component({
s e l e c t o r : 'parent-component J ,
temp l a t e : '

<child-component
[input]="answer" (o u t p u t) = " o n A n s w e r C o r r e c t () " >

</child-component>

})
c l a s s Parent Component {

©Input () answer = ' d e f a u l t u v a l u e ' ;

onAnswerCorrect () {
a l e r t (' C o r r e c t . u T h e u a n s w e r u i s u 4 2 ') ;

>

}

Lis t ing 2.1: Implementation of an Angu la r component.

Attr ibute Directives
Att r ibu te directive, unlike a component, does not need a template because it only
augments the behavior of an existing element by applying as an attr ibute. Despite
that, it can s t i l l have addi t ional inputs and outputs. The demonstration of the usage
(without implementation details) is in the following code l ist ing. The tool t ip directive

7

is applied to the paragraph by adding the at tr ibute "tooltip". The text attribute
" tool t ipText" is the input of that directive.

<p t o o l t i p t o o I t i p T e x t = " T h i s u i s u t o o l t i p u t e x t " >
Hovering over t h i s element w i l l d i s p l a y the t o o l t i p .

</p>

Lis t ing 2.2: The tool t ip directive is added to graph element.

Services

It is very common that some logic is shared across mult iple components. Th is is where
services come into play. They can be injected into a l l components and provide higher
abstraction. The implementat ion of data-layer is one common task for the service. A
component just calls a method on service to store the record without caring about
the implementat ion details. D a t a could be saved into local storage or on the database
server by executing a server request. This k ind of implementation details can change
without affecting components as long as the interface remains unchanged.

Pipes
Pipes in Angu la r are very similar to pipes in U n i x systems. A pipe is a transformation
of data implemented i n one method. This is frequently needed in the templates for
formatting values, but it can be used in the other parts of applicat ion too. Angula r
offers common pipes, e.g. date pipe for formatt ing date values.

2.4 React Framework

Reac t 3 is a competitive framework developed by Facebook. In comparison to Angular ,
it does not t ry to do as many things. It is often referred as a view layer i n the Mode l -
View-Contro l le r (M V C) pattern [9]. In that sense, Angula r represents a complete M V C
framework that has services as the model layer, component classes as the controller layer,
and templates as the view layer.

Some of the concepts adopted in Angula r 2 come originally from React, e.g. component
architecture. Even concepts that are not in the Angu la r framework itself can s t i l l be present
in Angu la r libraries. One such example is Redux, which defines three principles for state
management:

1. A n applicat ion state is modeled as one object.

2. A n applicat ion state can be modified as a result of emit t ing an action. That means
that every change is modeled as an object.

3. A state is modified only wi th a pure function called reducer. It accepts an applicat ion
state and returns an updated applicat ion state.

Keeping a state and its changes i n one place decouples it from the rest of the applicat ion.
There are no duplicated applicat ion data, which need to by synchronized. This state object
is a single source of t ruth .

3 h t t p s : //facebook.github.io/react/

8

Chapter 3

User Experience

Human-computer interaction plays a key role i n the process of creating user interfaces that
communicate effectively wi th a user. The properties of a system are examined from the
view of a user, not a system. For example, the response t ime of an action can be measured
i n milliseconds. F r o m the purely technical perspective, the faster response means better
system. Tha t is not necessarily true for a user i f the response is so fast that it is hardly
noticeable. W h a t is considered good practice for user experience is described i n the usabil i ty
heuristics section. Creat ing user interface addi t ional ly requires designing and testing. For
that purpose, various techniques are presented. A t the end of the chapter, the developer
experience is discussed.

3.1 Usability Heuristics

These heuristics [] describe general recommendations that should be followed when de
signing a user interface. These are only heuristics, not rules that should be str ict ly obeyed.

Visibi l i ty of system status User interface reflects the current state of a system. If there
is an operation in execution or an error occurred, the user is informed about i t .

M a t c h between system and the real world The system presents information in such
manner that is known to the user. It communicates in the user's language (terminol
ogy and concepts), not i n a system oriented language.

User control and freedom The user is free to experiment, t ry functionalities of the sys
tem, and even make mistakes. There is an undo option to correct potential mistakes.

Consistency and standards Devia t ion from standards causes inconsistencies, which are
the source of confusion or mistakes.

E r r o r prevention G o o d user interface anticipates user errors and helps to correct them
or even better to prevent them. Tha t is far more important than just good error
messages.

Flexibil i ty and efficiency of use User interface adapts to the user and not vice versa.
For first-time users, there is a tu tor ia l w i th guided steps and for experts keyboard
shortcuts.

9

Minimal is t ic design A n y irrelevant information takes space and makes relevant informa
t ion harder to find.

Help and documentation In the case of errors, there should be help or documentation
available describing a l l steps for solving an error.

3.2 Techniques for Designing and Testing User Interfaces

So far, only general recommendations were described, which do not answer specific questions
in regards to user interface. Lucki ly , there are some techniques [8, 13] dedicated to that
purpose.

Observation and contextual interview
Observation and contextual interview are techniques for determining the user needs.
The basic assumption is that we can not s imply ask users because they usually do
not know how to solve their problems. They may not even realize what exactly their
problems are, but if they do, they usually bury their needs wi th a mult i tude of other
unimportant requirements.

These techniques are t ry ing to understand the goals and ind iv idua l tasks of a user and
based on that design an appropriate user interface. In the observation session, users
are s imply watched during their work. In the contextual interview, specific questions
about activities in their job are asked. The questions are deliberately targeted on the
facts, not subjective opinions.

Combin ing these techniques might be pract ical . A few questions during observation
can help to understand the user's act ivi ty when it is troublesome to deduce. Never
theless, interrupting the natural flow of work should be avoided.

Personas
Personas are only hypothet ical archetypes of users, not actual users, which represent
their characteristics, goals, and needs. Before creating personas, it is necessary to
gather information, e.g. through observation or contextual interview. Personas create
understanding and empathy for users, which help designers to avoid self-centered
design.

T h i n k i n g aloud
It is a simple tool for testing a user interface. The user is asked to say what is on
his/her m i n d while t ry ing the applicat ion. It is important to assure the testing users
that they should not be afraid to crit icize or express their opinion because that is the
point of testing. Dur ing the testing, a user may have a list of tasks to finish. Th is
process can reveal even smal l usabil i ty problems. A testing session may be recorded or
at least notes about the problems are wri t ten down by the observer. F i n d i n g problems
has no value i f they are not addressed by proper adjustments.

A / B testing
Dur ing this type of testing, several design proposals are compared. The difference
might be subtle, e.g. different posit ion of an element. In the end, only one proposal
can be accepted. It may be determined subjectively by a designer or a user. Al te rna
tively, each variant is shown only to certain users while measuring chosen parameters,

10

e.g. conversion rate, durat ion of stay, or frequency of use. Even smal l change in
formulation of a sentence can have a substantial effect.

User feedback
Ask ing users for feedback can be invaluable despite the systematic mistakes users
make, e.g. imagining the value of a future feature. Questions should take these
mistakes into consideration to maximize the value; having something tangible (sketch,
mockup, user interface) may help. Col lect ing of feedback can be conducted i n any
phase wi th different methods, e.g. i n an interview or by submit t ing a form.

3.3 Developer Experience

A user interface is intended for users; a programmatic interface of a l ibrary is designed for
developers. In that sense, developers are basically users of the library.

Developer experience can be considered a subset of user experience. The main difference
being that a l ibrary does not have a graphical user interface, but it is manipulated only
wi th a text interface. Nevertheless, many concepts for designing user interface are s t i l l
relevant for text interface. For example, the consistency is important regardless of the type
of interface.

For the purpose of this text, we loosely define the developer experience by quoting a
developer relations expert Pamela Fox [5]: "Developer experience is the sum of all inter
actions and events, both positive and negative, between a developer and a library, tool, or
API."

11

Chapter 4

Analysis & Design

The analysis of existing libraries at the beginning of this chapter is reflected i n the focus of
the library. Then, a use case applicat ion is introduced as a source of requirements for the
design and evaluation of the sui tabil i ty of existing libraries.

The principles affecting both the architecture and interface of the l ibrary are defined
in the design specification. The details of the architecture and the public interface for
ind iv idua l components are given i n the final sections.

4.1 Overview of Component Libraries

Most of the existing Angu la r component libraries are based on some C S S framework such
as Bootstrap, Angula r Mater ia l , or Zurb Foundat ion. These C S S frameworks ship w i th
several widely used components, more precisely w i th the styles for components. Then , it
is the job of developers to create a corresponding structure i n H T M L . A n Angula r l ibrary
simplifies the usage of these components by providing dedicated H T M L tags wi th appro
priate parameters. It is as i f the components were supported directly by H T M L . It is not
rare to see mult iple libraries based on the same C S S framework since there can s t i l l be
differences i n a supported version and A P I .

N G Boo t s t r ap 1 & ngx-bootstrap
B o t h libraries provide seamless integration of Bootstrap 4 components, but only the
former is backwards-compatible w i th Bootstrap 3. In included components, there are
tabs, alerts, pagination, progress bars, moda l windows, drop-down menus, etc.

A number of team members of N G Bootstrap are core contributors to Angular , and
ngx-bootstrap backed up by Valor Software - a company wi th many open-source
contributions i n Angu la r - is not behind at a l l .

Pa r t i a l implementat ion of Mate r i a l Design specification in Angu la r 2, which currently
supports around half of the components from the design specification. The idea behind
Mate r i a l design is to make user interface (UI) look and feel s imilar to the materials in
the real world. Since it was one of the first libraries started in Angular 2 by a team

Mate r i a l 2 3

x h t t p s : //github.com/ng-bootstrap/ng-bootstrap
2 h t t p s : //github.com/valor-software/ngx-bootstrap
3 h t t p s : //github. com/angular/mater i a l 2

12

in Google, it also states that it tries to be an example for Angu la r 2 developers by
following best practices and implementing high-quality components.

Covalent 4

Covalent is buil t on top of Mate r i a l 2. It supplements Angula r Mate r i a l w i th addi
t ional components, various basic layouts, design style guide, and patterns. In addit ion,
Covalent provides services for unit testing and integration testing.

Angular U I 5

Angular U I is another well-established l ibrary or "companion suite(s)" as it describes
itself. It consists of 26 various modules, each of which has a specific purpose ranging
from small val idat ion module to fully-featured Ul- router for flexible routing. Angula r
U I became a brand guaranteeing the quali ty of ind iv idua l modules. However, there
is almost no support for Angula r 2 applications at the moment.

Onsen 6

This component l ibrary is based on Polymer library, the platform for extending H T M L
in compliance wi th Web Components standard. Tha t makes the l ibrary framework
agnostic. It can be used wi th many popular client-side frameworks like React, Vue,
Meteor, and Angula r . Th is l ibrary is especially focused on mobile applications. The
styles of components are highly customizable.

P r i m e N G 7

This l ibrary contains an overwhelming number of components w i th own mobile-
friendly styles. It also comes wi th various themes for components. It is developed
by Pr imeTek Informatics, which is a company focused on providing open source U I
components.

4.2 Focus

The previous section demonstrates that components must be united in some way i n order
to form a component l ibrary. Otherwise, it is just a collection of random components put
together. A uni t ing factor could be the style, the architecture or a dedicated purpose.

A s noted in the introduction, we focus on data-intensive applications. It is an intention
ally ambiguous term to avoid being too restrictive. Developers should decide based on their
subjective judgment whether this l ibrary is suitable for their use case. A developer may
decide to use the l ibrary for a simple appl icat ion w i t h a m i n i m u m of data if it is expected
to grow. Despite the overhead, the simple applicat ion s t i l l benefits from the library. One
representative example of a data-intensive applicat ion appropriate for the l ibrary is given
in the following section 4.3.

The current focus does not imply what components should be included in the l ibrary
although it reduces the number of possibilities. One component that is closely related to
data-intensive applications is a table. It is the most typica l component that appears i n any
substantially complex system. The main concern wi th data-intensive applications is the
amount of data that must be displayed in the user interface. O n one side, the data should

4 h t t p s : //teradata.github.io/covalent/*/
5 h t t p s : //angular-ui.github.io/
6 h t t p s : //onsen.io/angular2/
7 h t t p : //www.primef aces.org/primeng/#/

13

http://www.primef

be available to the user. O n the other hand, the user should not be overwhelmed w i t h too
much data. The table allows to present the data i n a condensed form well-known to users.
However, the default H T M L table is not user-friendly for displaying records w i t h dozens
of columns. In this data volume, a l l shapes of data could be found, figuratively speaking.
So data complexity is another concern. It is not enough to consider a l l field types i n the
database, because one integer type may represent age, money or grade. The values must be
presented i n a way that is the most appropriate to the user. Addi t ional ly , the user should
be able to perform actions that help h i m to work wi th the data, e.g. sorting. These features
are discussed in detail in the context of the use case applicat ion.

The choice of the first component is an important design decision that affects the fol
lowing components because it is desired to keep the high cohesion among the components.
In other words, a l l components should be related one to another. In that sense, the first
component adds addi t ional restrictions. For the sake of very high cohesion, we extend this
restriction even further by considering the table to be the main component. Other com
ponents must be able to operate in connection wi th the table component. For example,
a hierarchical recursive menu fits into the context of data-intensive applications, but it
does not fulfill that requirement. The menu could be used alongside the table, but it is
hard to imagine any cooperation wi th the table component. A n example that satisfies this
restriction is a search component that filters the table rows.

So new components are added only wi th this constraint in mind . This effectively l imits
the possible components. Thereby, the focus is sufficiently narrowed down.

4.3 Use Case Applicat ion

The purpose of a use case applicat ion is to act as a reference point for the design. It
allows to address specific issues on a concrete case what makes the design clearer than an
abstract interpretation. However, the use case applicat ion is just one representative example
of a group of applications supported by the library. For that reason, the creation of a
l ibrary is much harder than bui ld ing an applicat ion. The l ibrary must anticipate the needs
of different applications independently on its domain. O n the contrary, the applicat ion
is t ight ly coupled to certain data. So if an applicat ion data change tremendously, the
application is very l ikely to need more updates than a library.

The use case applicat ion is based on a real project for a university. The pr imary goal is
to manage the information about the former, current and applying students. The users of
this system are either professors or officers who need to work wi th students' information.
For example, a professor may want to send an e-mail to students who are enrolled in his/her
course. Similarly, an officer can update a student's status if he/she interrupted the study.

Since users work wi th the system daily, it is desired that the users can perform their
tasks as quickly and easily as possible. The first challenge is that only the student entity
contains around 50 fields i n the database. Not to mention that users may also need to see
the associated information from other entities. Disp lay ing the records in the table allows
users to look at many students at once, but it quickly becomes overwhelming if there are
too many columns. Therefore, the information load on the user should be reduced by hiding
it un t i l it is needed. A professor, unlike an officer, is less l ikely to need the address of a
student. So the users should be able to predefine what information is relevant to them, and
also quickly change it i f a task at hand requires other information.

Overal l , there are are many features that can save users t ime when working wi th a table
data. Sort ing rows by a column helps to find the student w i th the highest score quicker

14

than a user would do manually. Being able to see related information such as studies in
the context of other columns is also beneficial. So it should be possible to display them in
the table despite that it is another entity. One issue wi th that is that one person can have
many studies (i.e. 1 to N relationship), but pract ical ly there w i l l be no more than dozens
of studies. So it is unnecessary to display studies in another view, e.g. as a separate table.
Th is applies to many other entities, e.g. an address or a list of addresses.

Here is the summary of required features for the use case applicat ion from the user's
perspective:

1. Dynamica l ly change which columns are currently visible.

2. Sort columns, either in ascending or descending direction.

3. Change the order of columns.

4. Display complex structured data inside one cell , e.g. an address or several studies.

5. A l l o w further selection of subfields i n the case of complex data.

6. Paginate the records if there are too many of them.

7. F i l t e r on table data.

•

Hits.
o n M r ,

4 <M Dr.

Figure 4.1: A Sketch of the user interface for the use case applicat ion.

These requirements br ing many new elements that require a proper user interface. For
that purpose, we employ a simple, yet powerful technique, i.e. sketching [8]. Figure 4.1

15

shows a user interface sketch of the table library. Fi rs t ly , visible columns are l imited
according to user preferences. Users can customize them dynamical ly i n various ways. For
enabling addi t ional columns, there is a plus sign i n the last header cell of the last empty
column. After c l icking the plus sign, it switches to a select element w i th a list of available
columns grouped into categories.

Addi t ional ly , each column has a context menu w i t h an option to add a column at the
part icular posit ion next to i t . In the sketch, the column is being added to the right from
"Studies" column. For the reverse effect, there is also an option for removing a column.
Two more options are for sorting columns i n the desired direction. C o l u m n "Personal I D " is
sorted from the lowest to the highest values. Since this is very common action, the column
name can be clicked to sort or reverse the sorting direction.

For filtering, there is an input element above the table. T y p i n g into it immediately
l imits the rows depending on the match i n any column.

Some menu options are available only for columns wi th complex data types such as
"Subfields" in the "Studies" column. These options modify the display of column cells or
more precisely sub-cells. E a c h study cell contains a list of studies for one person. One study
is an object w i th mult iple properties. B y checking off a subfield, a corresponding property
is displayed i n the sub-cell.

Lastly, the records are divided into pages. The currently displayed number of records
is displayed i n the right corner. A user can use arrows to navigate the pages.

A l l the actions from a perspective of a l ibrary are modeled in the use case diagram in
Figure 4.2. The user actions are numbered according to the requirements at the beginning
of this section.

Figure 4.2: The use case diagram for a l ibrary based on the requirements of the use case
application.

4.4 Evaluation of Exist ing Components

This section examines the sui tabil i ty of existing libraries for the use case applicat ion. A t
this point, we are concerned wi th the ind iv idua l components rather than just a l ibrary as

16

a whole. Fi rs t ly , we take a closer look at the components from the previously mentioned
libraries in section 4.1 and then introduce addi t ional single-purpose libraries.

ng(x)-bootstrap Covalent P r ime N G ag-grid ngx-datatable
C o l u m n toggling no no yes yes no
Sort ing no yes yes yes yes
Reordering no no yes yes yes
Complex types no no no no no
Subfield toggling no no no yes yes
Paginat ion yes yes yes yes yes
F i l t e r ing no yes yes yes yes

Table 4.1: The table compares the various libraries i n terms of supported features. It does
not list a l l features for each library. The listed features are based on the requirements
of the use case applicat ion. The first column shows the support for ngx-bootstrap and
ng-bootstrap at the same time.

Al though Boots t rap provides some styles for tables, there are no components for tables
i n neither of the two Boots t rap libraries. O n l y the pagination component is relevant.
Covalent has a data table component, but it lacks the complex data types, column toggling,
and drag&drop reordering. Moreover, these component libraries are best suited for projects
that already use a corresponding C S S framework. The components then fit the style of an
application.

The data table of P r i m e N G meets almost a l l requirements, except for complex cell
types wi th a subfield selection. Instead, it has many other features like facets, exporting,
etc.

One of the outstanding data table solutions is ag-gr id 8 where "ag" stands for agnostic. It
is compatible w i th many different technologies, e.g. Angular , React or pure JavaScript . The
project strives to be the world's best JavaScript data gr id for Enterprise. The entire ag-Gr id
company is devoted to this goal. Several license types are offered by the company. Near ly
everything is included among the features of ag-grid, e.g. sorting on columns, filtering rows,
selection of rows/cells, and grouping by values, except for complex cell types such as an
array.

The ag-grid may also be too heavy for smaller business applications. A lighter alter
native is ngx-datatable 9 , which is available for Angu la r 2 and beyond. It creates v i r tua l
D O M to handle large data sets. It also has intelligent resizing of columns and vert ical and
horizontal scrolling. Nevertheless, it does not have column toggling, nor complex cell types.

None of the libraries satisfies a l l requirements as summarized i n table 4.1. However, not
only features are important as we briefly touched. The following section discusses other
aspects that cannot be so easily quantified.

4.5 Design Specification

Each of the existing component libraries from section 4.1 possesses a different set of char
acteristics. One characteristic can be found in many libraries and is not so interesting by
itself. However, each l ibrary has a unique combinat ion of these characteristics. In similar

8 h t t p s : //www.ag-grid.com/
9 h t t p s : //github.com/swimlane/ngx-datatable

17

http://www.ag-grid.com/

fashion, this design specification results in a distinct set of characteristics that are especially
appropriate for our use as outl ined in section 4.3.

Declarative
The s implic i ty of H T M L is a result of its declarative syntax. So learning H T M L
is much easier than learning JavaScript. O n the other hand, JavaScript is more
expressive.

The philosophy of Angu la r is to be as declarative as possible. Angu la r was originally
developed for designers who know H T M L but not necessarily JavaScript . However, it
turned out that even experienced JavaScript developers can benefit from the declar
ative syntax.

One benefit of the declarative use of components is that the creator is put into the
right mindset. Developers have to th ink about the interface of a component before
they can proceed wi th its imperative definition. O n the contrary, starting w i t h the
focus on implementat ion details may produce a component that is difficult to use.

Developers spent a lot of t ime using libraries, which requires them to know them in
the first place. Us ing a declarative l ibrary is generally easier than an imperative are
since it specifies what to do, not how to do it.

For the benefits mentioned above, we inherit the Angular ' s mission for declarative
interface whenever possible. In some cases, it makes more sense to give the developers
more power wi th an imperative code.

Convention over Configuration
Favoring convention over configuration is well-known concept thanks to a server-side
framework R u b y on Rai l s . It was adapted to many other frameworks and libraries

The l ibrary should provide sensible defaults so that the developers can get started
quickly. A configuration can be just predefined to a specific value, impl ied from the
name, or computed from the available data.

Preferring convention over configuration helps to reduce a lot of boilerplate code.
Natural ly, developers can always override the defaults if the default does not fit their
needs.

Agnostic of the C S S framework
This l ibrary can be used wi th or without a C S S framework. Different applications may
favor various C S S frameworks, but not necessarily components. Th is decision, being
C S S framework agnostic, comes wi th some trade-offs. Some teams may prefer only
a certain C S S framework and components made for i t . The integration is then very
straightforward. Th is is par t icular ly important for low abstraction components that
appear frequently, e.g. form control. Nevertheless, using a certain C S S framework
might not be advantageous nor feasible for a l l components, especially not for high-
abstraction components. Not to mention, it could be even considered the dupl icat ion
of the effort to implement them i n a l l C S S frameworks. The parts that are framework
specific usually constitute only a smal l fraction. There are alternatives how to avoid
them. It comes only at a price of higher implementat ion cost.

Levels of abstraction
Last but not least, the l ibrary exposes A P I s w i th different levels of abstraction. The

18

idea is to leverage the advantages of a certain abstraction level and mitigate its short
comings. The high-abstraction A P I accomplishes a lot w i th l i t t le effort, but it offers
less control. The risk that a developer comes to the b l ind alley is very high if only
high-abstraction A P I is exposed. O n the contrary, the low-abstraction A P I is flexible,
but it takes more effort to get the things done. Natural ly , it is not just black and
white, so a whole range of abstraction levels exists. F i n d i n g the right level of the
abstraction for components is the design challenge discussed i n section 4.7.

Fallback
The developer should be able to gradually migrate out of the library. It may seem
counter-intuitive to prepare a fallback solution because the l ibrary should t ry to keep
its users, but not at a l l cost.

Let us consider a typica l developer workflow, which starts by picking one l ibrary that
seems to be the most appropriate. After a successful setup, it continues to live i n the
application w i t h occasional adjustments. In some cases, it turns out that a l ibrary
needs to be replaced. After some time, it is either not the best fit for the applicat ion
anymore or a new requirement requires the l ibrary to work differently. Libraries are
not general-purpose frameworks, even similar libraries may be opt imized for certain
situations.

If a l ibrary needs to be replaced, a developer should be able to do it quickly. If we
imagine that a developer is working on a feature estimated for a few hours, then
it turns out that a whole l ibrary needs to be replaced. A few hours would become
several days. The l ibrary has the power to avoid this si tuation, but it is also a matter
of empathy, i.e. being able to put yourself into the shoes of a developer i n such
situation.

There are many other important characteristics such as performance that are not men
tioned here as the ma in characteristic, but not neglected.

In summary, it a l l comes down to one thing, which is the adaptabili ty. The l ibrary should
adapt to its users, not vice versa. Developers who are getting started wi th the l ibrary can
leverage declarative components w i th the high level of abstraction. Experienced developers
are able to get more control from the library. Th is is i n correspondence to the heuristic
"F lex ib i l i ty and efficiency of use".

Similarly, projects can be setup wi th different C S S frameworks or libraries. Nevertheless,
it should be possible for them to use the l ibrary regardless of their setup. The only thing
that matters is the sui tabi l i ty for their use case.

Projects usually do not have fixed a set of requirements. F r o m the in i t i a l requirements, it
is pretty easy to know the sui tabi l i ty of a l ibrary for current use case; however, requirements
may change resulting in different needs for the library. Even i n cases like this, the l ibrary
allows users to react to new situations.

4.6 Architecture

Despite that the l ibrary is buil t for the Angu la r framework, the design should be inde
pendent of the implementation. Therefore, we restrain from using Angular-specific terms
and use only the broader terms such as component architecture. Th is is a foundation of
many client-side frameworks, e.g. React. A s a result, the architecture of the l ibrary can be
adapted to other client-side frameworks.

19

One of the most important tasks in the architecture is to divide the responsibilities and
decompose them into coherent units. Since the l ibrary adheres to the component-based
architecture, the responsibilities are divided among the components. Based on the use case
application, several independent components can be identified:

D a t a Table
A s previously mentioned, this is the main component of this l ibrary. It renders a
complete table wi th a l l its data and the functionality.

D a t a Select
This is an enhancement of the H T M L select element for data-intensive applications. If
there are too many options, it is not easy to find the one we are looking for. Therefore,
the data select element allows the user to search for it.

Pagination
It is advantageous to split the records of a table into several pages to decrease the
loading t ime and increase the responsiveness of an applicat ion. This component dis
plays the pagination controls as sketched in Figure 4.1. The controls can be configured
to look differently. The actual pagination is executed by utili t ies that can connect it
to the table.

Filtering
Similarly, there is a component that allows users to search. The filtering controls can
have different variations. In the simplest case, it is just one filtering input as shown
in the sketch.

Addit ional utilities
Generally, these are either some helper methods or classes implementing some logic.
Just to name a few examples i n Angular , it can be a service for filtering, a pipe for
pagination or a directive for drag&drop reordering.

A s shown in diagram 4.3, each of these components is classified into a separate module
on the left because developers should be able to pick only one specific module. They
may need only a data select from SelectModule or just the pagination controls from
PaginationModule. Natural ly , impor t ing a module brings a l l its dependencies. So im
port ing a data table from TableModule also imports the dependent module SelectModule.

Unlike other elements, the data table represents a big bui ld ing block so it should be
decomposed further. The main component TableComponent consists of two subcompo
nents, namely TheaderComponent and TbodyComponent. Each subcomponent is composed
of even smaller subcomponents. The subcomponent TheaderComponent renders a table
header while u t i l iz ing AddColumnComponent for adding new columns, and ThComponent
to render a header cell. Similarly, TbodyComponent renders a table body while u t i l iz ing
TdComponent to render body cells. Complex cell types are implemented in separate com
ponents ArrayCellComponent and ObjectCellComponent.

The components of the table module take advantage of the service layer. It is a place to
put shared state and logic for a l l table components. Each service has a dedicated purpose:

TablelnitService The service is responsible for the complete in i t ia l iza t ion of the table.
It sets the default values and automatical ly detects the configuration from the data
if the configuration is missing.

20

Component L a y e r

T a b l e H o d u l e |

, [TableComponentj (

- -|TheadCom portent [- - I TbodyComponent |

I AddColumnComponent [- -

P a g i n a t i o n H o d u " l e ~ |

I PaginationComponent]

|ThComponent| |TdComponent | •

t í
|ObjectCellComponent [<- -| ArrayCellComponent |

•dule I

>-| SelectComponent |

F i l t e r M o d u l e |

I FilterComponent |

- I

S e r v i c e L a y e r

TableSorting Service
A

TableReducerService I

TablelnitService

->JTableStateService|

->j FilterService]

Figure 4.3: The diagram depicts the architecture of the l ibrary in two parallel layers. The
layer on the left defines a mult i tude of components divided into four modules. The service
layer mostly holds the state and the logic shared for a l l components of the table module.

TableSortingService The sorting functionality is implemented i n this service.

TableStateService It holds the state of a table, which is accessible to any component.

TableReducerService Th is service acts as a facade because a l l events are processed here.
A n event can be delegated to another service.

The design of services is inspired by three principles of Redux as listed in section 2.4:

1. The table state service keeps a state i n one central place.

2. A l l table components only dispatch an event instead of modifying a state directly.

3. A n event effectively describes a change that should happen. The state change is then
performed by the table reducer service.

The services provide another possibil i ty for the further customization as they can be
replaced. To accomplish that, a developer creates an alternative service w i t h the same
interface and swaps it w i th the default service.

4.7 Public Interface

A t this point, the responsibilities are divided among the components. However, we d id
not define a public interface that is accessible to the user of the library. E a c h component
defines an interface, but not a l l components have to be publ ic ly available. If a component
is dedicated only for internal use inside a library, then its interface can be changed freely
without affecting any users. If a component is exposed, then its interface should be carefully
considered in order to avoid breaking changes.

21

The first step is to decide which components should be publ ic ly accessible for each
module i n diagram 4.3. There must be at least one component published per module for a
developer to be able to use the module at a l l . Tha t sets it straight for modules w i t h only
one component, but what about the table module wi th a mult i tude of components?

Let us start by exposing only the table component, so other components are its internal
details. Since the component acts as a black box, its internal behavior can be adjusted only
through a l imi ted number of inputs. Tha t means that the table component should provide
an abstraction that is powerful enough to fulfill the requirements for countless variations
of val id data. If we consider the inputs for sorting, the developer should be able to set a
column that is sorted by default when a page loads. Addi t ional ly , it should be possible to
disable the sorting on a specific column or to disable sorting completely. If a co lumn is
sorted for the first t ime, then it makes sense to sort it either i n ascending or descending
order depending on the column. For instance, column "name" should be sorted ascending
and column "updated at" should be sorted i n descending direction. So this should be
configurable as well . In a similar fashion, we consider various inputs and outputs for other
requirements (reordering, complex data, editing, column toggling and filtering), which are
listed at the end of this section.

W h a t i f the developer wants to slightly adjust the behavior of the table component, but
there is no corresponding input for that? For example, there should be a column called
"Act ions" filled w i th buttons to execute an action on a row. Since this feature is application-
specific, it probably does not make sense to add it to the library. If not, the developer must
replace the whole table, either by another l ibrary or by a custom implementation. This
should not happen. It is very hard to create a good abstraction that anticipates a l l possible
use cases.

W h a t i f we expose a l l components present i n the table module? That means we must
carefully design inputs and outputs for a l l components from the table module. Th is gives
developers more flexibility for the price of learning addi t ional applicat ion programmatic
interfaces (APIs) . The upper components have the highest abstraction level. To gain
more flexibility, a developer can access bui ld ing blocks of lower abstractions. They can be
combined, complemented or replaced as needed. In that sense, the high abstraction A P I
is a shortcut rather than an abstraction. It just combines the lower-level components i n a
typica l way.

A t first, it might seem that publishing a l l components of the table module is against
encapsulation. It is possible to access its internal details, thus a component does not act
like a black-box anymore. However, each component s t i l l has its private state that can be
changed without any breaking changes.

After publishing the components, it is necessary to specify a public interface for ev
ery component. The inputs and outputs for each component are listed i n the following
subsections.

Pagination Component
The pagination component only displays a user interface for changing pages. It has
the following properties to be able to display controls for pagination:

initialPage In many cases, in i t i a l page value needs to be ini t ia l ized, e.g. a page is
present in U R L . The default value is 1.

itemsPerPage The number of items per page is necessary to compute the number of
pages. If not provided, the default value (10) is used.

22

totalltems The to ta l number of records is also necessary to compute the number of
pages. It is a required input.

paginationLabel The text to be displayed before pagination controls.

showlnput The user can change the page by entering a number into an input element.
Th is interface is disabled by default.

showArrows The user interface displays arrows to navigate pages. B o t h mechanisms
for changing pages can be active at the same time.

pageChange Th is is an output event notifying about a page change.

Select Component
This component supports the features of the default select element, e.g. grouping.
Despite that it is rather a smal l component, there are s t i l l many properties for its
customization:

items There are several types of items. Fi rs t ly , it can be an array of strings to be
displayed as select options. Th i s is just a shorthand for specifying an array of
objects which have the same identifier i d and a user-readable name text. Last ly,
items can be optionally grouped into categories:

id for a unique identifier of a category,

text for a user-readable category name,

children for nested simple items.

isOpen The selection menu can be set to be in i t ia l ly open. The default value is false.

allowClear If clearing is not allowed, then a selected value can not be reset. Th is is
useful if there must be at least one selected value. The default value is false.

isCategorySelectable Selection of a category can be enabled wi th this option. The
default value is false.

placeholder Placeholder value of a select, e.g. please select a value.

searchPlaceholder The search input displays a placeholder. The default value is
"Type to search".

f ocusSearch The search input box can be focused when the selection menu is opened.
The default value is true.

noOptionsMessage Another message is displayed if there are no available options.

ngModel A n in i t i a l value can be preset w i th this input.

itemTemplate A custom template that is rendered for each i tem. Natural ly , it can
assess the i tem variable.

itemSelected This output event notifies about the selection of an i tem. The selected
i tem is available in the event data.

categorySelected In case that a selection of categories is enabled, this event is t r ig
gered when a category is selected. The event data contain the selected category
wi th its items.

open The output event notifies that a select state is open. A user can choose a value,

close The output event notifies that a select is closed.

23

Filtering Component
The filtering is implemented i n FilterService, which can be controlled wi th the user
interface of this component. The component can be adjusted wi th these properties:

records It accepts records for filtering in this input.

i n s t a n t F i l t e r i n g The filtering is performed either immediately after typing a text
or by cl icking on the search button. The default value is true.

placeholder The filtering input displays a placeholder text, e.g. "Type to filter".

f ilterText If the instant filtering is disabled, then the filter but ton is displayed wi th
the text of this input property.

f ilterTerm The filter can be preset to the filter term.

f i l t e r If the user filters, then the filtered records are emitted by this output property.

Table Component
The interface of the table component is mostly just a composit ion of its direct children.
It has the following input properties:

rows Input data to be displayed i n the table rows. It is an array of objects repre
senting rows. Each row object can contain a nested object or an array of objects
w i th simple data types. In other words, two levels of nesting are allowed. This is
the only required input . Other properties can be automatical ly detected based
on it.

columnsConf i g Input property for a configuration of table columns. It allows to
override the values set by default. Each column configuration object contains
various properties:

id for a unique identifier of a column.

text for a user-readable column name to be displayed i n a table header.

sortingDisabled Since sorting is enabled for a l l columns by default, this prop
erty disables the sorting for a specific column.

formatters There are countless possibilities for formatting a cell value since it
can represent various things like date, time, etc. The formatters is a list of
transformations performed on a cell value to display it in a specific format.
It is also useful for compound properties, e.g. concatenating the first and
last name. Formatter interface matches an interface of an Angula r pipe,
which is not a coincidence. It is to allow the usage of pipes of the Angula r
standard l ibrary or other custom pipes.

subFields E a c h subfield of a column can be configured s imilar ly as a column:

id for a unique identifier of a subfield.

text for a user-readable subfield name displayed i n a column context menu.

i s V i s i b l e A l l subfields are in i t ia l ly visible, but it is possible to specify

which subfields should be hidden,

formatters A list of formatters as i n a column configuration.

visibleColumns Identifiers of in i t ia l ly visible columns in a table.

reorderingEnabled A n input property for enabling/disabl ing drag&drop reordering
of columns. The default value is true.

24

changeColumnVisibility A n input property that enables/disables user interface for
changing column visibi l i ty. The default value is true.

rowsSortingMode Table rows are sorted client-side i n a default sorting mode. The
external mode is intended for server-side sorting. Last ly, the sorting of rows can
be disabled completely, i.e. no sorting icons.

initialSortColumn One column can be set to be sorted when a page is loaded. A n
optional plus or minus sign specifies the sort direction.

Apar t from the previous input properties, there are some advanced options for the
further customization. The developer can provide a custom template to be rendered
at a specific part of the table.

Cus tom templates are a very low-level interface where the developer has the full
power of the framework. The developer can leverage the subcomponents and has
programmatic access to the component interface. A p a r t from the subcomponents,
the l ibrary offers addi t ional utili t ies that help to j o i n the ind iv idua l pieces together.

For example, the developer may want to add statistics to a table footer. However,
there is no footer component in the l ibrary because it is usually application-specific.
The footer must be specified i n the table to form properly aligned cells, which is not
possible without the modifications of the library. If there is no way to specify that,
the developer would have to replace the whole table.

The developer should be able to override only a part that needs a modification. It
is an overki l l to customize a whole table template if only one data cell needs an
adjustment. Various templates offer different granularity of customization:

tableTemplate It specifies a custom template for the whole table.

headerTemplate It specifies a custom template for the table header.

bodyTemplate It specifies a custom template for the table body.

f ooterTemplate It specifies a custom template for the table footer.

bodyRowTemplate It specifies a custom template that is rendered for each body row.
It can access the row variable.

headerRowTemplate It specifies a custom template that is rendered for the table
header row. It can access the column i d i n a variable.

Lastly, there are many events happening at the table. Output properties notify about
them w i t h a l l details so the developer can react accordingly:

addColumn A column was added by the user. The event data contain the column id .

removeColumn A column was removed by the user. Aga in , the event data contain
the column id .

sortColumn A column was sorted by the user. The event data contain the column
id, direction, and the reference to a column state.

addingColumn A column is being added at a specific posit ion. The event data contain
the posit ion where a column should be added.

toggleSubf i e l d Th is event is triggered when the vis ibi l i ty for a subfield is changed.
The event data contain the column id , the subfield id , and currently visible
subfields of the column where the subfield is toggled.

25

visibleColumnsChange Th i s event is trigged whenever a column is added/removed
or the order of columns changed. A list of column ids is provided as the event
data.

rowClick B o d y row was clicked. The event data contain both row and column in
formation i.e. the column id , the row index, the column index, and the row
object.

Table Header Component
A l l properties of the table header component are already described for the table
component. However, this component has only a subset of them:

• rows:
• columnsConfig;
• visibleColumns;
• reorderingEnabled;
• changeColumnVisibility;
• addingColumnlndex;
• rowsSortingMode;
• initialSortColumn;
• headerRowTemplate;
• addingColumn;
• addColumn;
• removeColumn;
• sortColumn;
• sortColumnlnit;
• toggleSubfield, and

• visibleColumnsChange.

Table B o d y Component
A s the table header component, only a subset of properties of the table component is
necessary for the table body component:

• rows;
• columnsConfig:
• visibleColumns:
• changeColumnVisibility;
• addingColumnlndex;
• bodyRowTemplate, and

• rowClick.

Table Header Ce l l Component
The table header cell component has an addit ional required input column for a column
state, but it also uses some of the properties of the table component:

• columnsConfig;

2G

• visibleColumns:
• changeVisibility, and

• rowsSortingMode.

A d d C o l u m n Component
The purpose of this component is to display a user interface for adding columns. It
uses a select component internally, which needs to be integrated into a table. This
component acts as an adapter. It has one input property from the table component
and other properties of the select component:

• visibleColumns:
• open:
• selected, and

• close.

D a t a Ce l l Component
This component displays the data of various types. Simple data types are directly
displayed, but complex data types are delegated to a corresponding component. A
data cell component has two required input properties:

row Despite that only one property of a row is usually displayed, an access to a whole
row object is advantageous i n same cases, e.g. compound properties.

column It is a column state, which stores column id , currently visible fields, etc.

Object Ce l l Component
This component displays values of an object according to subfields configuration. It
extends the table data cell w i th addi t ional properties:

row is the row object,

column is the column state.

object Values of the input row are displayed beneath each other inside the cell.
E i ther the row or the object must be specified.

hasPref ix Displayed values can be prefixed wi th a corresponding subfield text. The
default value is false.

A r r a y Ce l l Component
This component uses the object cell type to display object array items. It extends
the table data cell w i th addi t ional properties:

subrows It is an array of items to be displayed,

column It is a column state.

showAll Depending on this input, either just one or a l l items are shown.

arrayltemTemplate It specifies a custom template to be rendered for each array
item.

27

Chapter 5

Implementation

A t the beginning, the reasoning for the implementat ion language is given. Before d iv ing
into the actual implementat ion of the library, the project setup and its folder structure are
explained. In the implementation, we are focused especially on the core module. Last but
not least, the performance optimizations are outlined.

5.1 Implementation Language

Not so long ago, the question of implementat ion language would have not even arisen
since JavaScript was the only choice. Nowadays, there are alternative languages for web
development; even JavaScript comes in different flavors known as E C M A S c r i p t .

New E C M A S c r i p t 6 features definitely boost developers' product iv i ty and reduce the
clutter, making it clearer. TypeScr ip t has a great support for E C M A S c r i p t 6 w i th addi
t ional benefits that are significant for the l ibrary:

T y p e safety
The TypeScr ip t compiler can reveal a whole range of issues at the compile t ime.
Usually, the earlier an issue is discovered, the faster it is to fix i t . M a n y editors can
point out problematic code while typing it.

Developers are more l ikely to misuse the l ibrary since they are less familiar w i th its
code than their own. Addi t ional ly , the debugging is also harder. It is s imply better
if such error can be detected during the compilat ion, especially for a library.

Let us il lustrate the importance of types, a developer mistyped a name of a property
on a configuration object. The configuration is then passed to the l ibrary wri t ten in
pure JavaScript.

Usually, libraries check for inval id inputs to warn about the incorrect usage. A warn
ing message indicates the problem and ideally suggests a solution. Unfortunately,
the wrong property is silently ignored i n this case. A complex configuration object
requires many checks. The implementat ion of these checks is reminiscent of ad-hoc
type checking. It is error-prone and carries a run-time overhead. This job is better
suited for full-featured type system of TypeScr ip t . It can reliably perform a l l checks
wi th no run-time overhead.

Tooling
Since TypeScr ip t has been around for a while, its tool ing is very mature, i.e. an

28

excellent editor support. A n y popular editor has various extensions a.k.a. plugins
for TypeScr ip t . Developers can benefit from quick refactoring, navigation, auto-
corrections and much more.

If we revisit the previous example, a mistake of wrong property name can not only
be detected; it could be prevented i n the first place i f the developer would have
auto-completed the property name. Addi t ional ly , the developer can see the type
information and the documentation of the configuration object directly i n the editor.

Interoperability
The l ibrary exists i n a large ecosystem. In an application, it has to coexist and
integrate w i th other libraries, often implemented in JavaScript. TypeScr ip t is de
signed for perfect compat ibi l i ty w i th JavaScript , unlike other languages that compile
to JavaScript , e.g. D a r t 1 . Addi t ional ly , the Angula r framework itself is developed in
TypeScr ip t .

Lastly, let us draw a parallel between these advantages and the usabil i ty heuristics
(section 3.1). The type checking means the "error prevention" and the tool ing provides
"Help and documentation". In that sense, these heuristics are applicable to the l ibrary as
a result of the tools that interact w i th the library. To summarize this section, there is no
doubt that TypeScr ip t is a great choice for the library.

5.2 Project Setup & Tools

The setup of the l ibrary project was bootstrapped w i t h the Angula r C L I (command line
interface). It predefines many commands useful for the development such as running tests.
Despite that the Angu la r C L I is p r imar i ly intended for applications, it can be adjusted for
libraries as well . It has a separate file dedicated for its configuration. Similarly, TypeScr ip t
compiler has a dedicated file w i th many configuration options.

TypeScr ip t compiler is not very strict by default. Thus, it was configured for the
l ibrary to perform addi t ional checks by enabling some options, e.g. noImplicitAny and
strictNullChecks. The first opt ion states that the compiler throws an error i f a type can
not be impl ied from the context. Normal ly , it would assume the most general type, which is
too permissive. The second option forbids to access a possibly nu l l object without a check.
Accessing a nu l l object is one of the most common mistakes.

A linter performs addi t ional checks for so-called best practices, which are concerned
wi th various aspects of the source code such as naming convention and style. A linter
defines a set of rules and ensures that they are consistently followed. The best practices
were introduced for a reason. For example, a rule that i f statement must always be braced
prevents an error that somebody accidentally adds another statement i n the assumption
that it w i l l be executed only i f the condit ion holds true.

The l ibrary follows the official style guide of the Angu la r framework. It uses a linter
extension that automatical ly checks whether the style guide rules are followed.

Another form of checks are automated tests. Testing is even more important for the
l ibrary since many applications may rely on i t . The tests should be executed on each commit
to a version control system i n order to detect a regression. To achieve that, we are using
a continuous integration service called Trav i s 2 , which is used extensively by open-source

x h t t p s : //www.dartlang.org/
2 h t t p s : / / t r a v i s - c i . o r g /

29

http://www.dartlang.org/

projects. So the tests are executed as a step of the continuous integration process. Other
steps are l in t ing and creating a bu i ld of the library.

5.3 Folder Structure

The source code of the l ibrary is located in the l i b directory. Inside this directory, there
is a subdirectory for each module. Apa r t from the modules from section 4.6, there are
a few implementat ion specific modules sortable and pipes, which contain util i t ies. The
hierarchy of components of the table module is reflected in the nesting of directories.

The directory structure also shows different types of files for some directories. Overal l ,
there are three types of files based on the extension:

*.ts for a TypeScr ip t file:

*.html for an H T M L template, and

*.css for styles.

Addi t ional ly , the TypeScr ip t files can contain various content. For each content, there
is a corresponding file w i t h tests. To distinguish them at the first glance, they have a suffix
according to the Angu la r style guide:

*.spec.ts w i th tests:

*.module.ts w i th a module definition:

*.component.ts w i th a component class:

*.directive.ts w i th a directive class, and

*.pipe w i t h a pipe class.

Another directory of the source code is app/ intended for the demo applicat ion. Then ,
there is assets directory wi th static files. Lastly, environments folder contains configura
t ion files for either development or product ion environment.

5.4 Core Module

The table module is the core of this l ibrary. It is also the most interesting part from
the implementat ion perspective since it is comprised of many components that need to
cooperate together.

Figure 5.3 displays a detailed class diagram for the table module. The relationships
among the components are based on the actual properties or the inheritance. In the view,
it is s t i l l a component tree as shown i n diagram 4.3 from the design.

The component tree does not match the inheritance tree despite that it is desired to
share properties. For instance, the input property rows of a TableComponent should be
accessible to the lower component TheadComponent. However, it is not just a matter of
sharing properties or methods.

The component inheritance i n the Angula r framework 3 also inherits its metadata. That
means that a l l inputs and outputs are also inherited, which is not desired i n this case. There
is no need for rows input property i n TdComponent because it works only wi th one row.

3The component inheritance was introduced in the Angular version 2.3.

30

l i b /
I— dropdown-select/

I— dropdown-select.module.ts
+— dropdown-select.component.{html,ess,ts,spec.ts}

I — f i l t e r /
I— filter.module.ts
I— filter.service.{ts,spec.ts}
+— filter.component.{html,ess,ts,spec.ts}

I— pagination/
I— pagination.module.ts
+— pagination.component.{html,css,ts,spec.ts}

I— pipes/
I — default-value/

I — default-value.pipe.{ts,spec.ts}
+— pipes.module.ts

I — sortable/
I — sortable-item.directive.{ts,spec.ts}
+— sortable.module.ts

+— table/
I— thead/

I-- th/
+— add-column/

I— tbody/
+— td/

I — a r r a y - c e l l /
+— o b j e c t - c e l l /

I —table.module.ts
+— ... # table services and types

app/
assets/
environment s/
Figure 5.1: The folder structure of the source code. It reflects the hierarchy of components
and the decomposition to different modules.

Inheritance is meaningful only for data cell types, so TdComponent is a parent of
ObjectCellComponent and ArrayCellComponent because they are a specific version of
a general data cell . The i r interface should be equivalent. However, TdComponent is not a
more specific version of TbodyComponent. These are two different things.

Al ternat ive means of communicat ion are services, which give us more fine-grained con
t rol . A service can be shared i n a certain subtree of the component tree or a whole appli
cation. Shared properties are stored i n the service TableStateService. The components
then define getters to access the service properties, and setters to change them.

Keeping the state i n one service also allows to easily ini t ial ize its subcomponents. Th is
is automatical ly performed according to certain conventions. A subcomponent firstly checks
whether it is used under a table to ini t ial ize itself. A s a result, there is no need to duplicate
the same input properties even if it is a required input.

31

Associations are shown i n the diagram only for components that share input attributes.
A subcomponent can be used independently of the table component. In that case, it
initializes a new TableStateService for itself and potential children subcomponents.

Diagram 5.2 shows the details of the table services. Accord ing to the Redux principles
(section 2.4), it models the state as one object TableStateService, defines events for user
actions, and the state is updated i n TableReducerService after dispatching of an event.
However, the principles are followed only loosely i n some cases.

One exception is that in i t ia l iza t ion directly modifies the state instead of triggering an
event. The properties of the state table are not read-only so that the table components
can directly assign the user inputs. It would be impract ical to trigger an event for the
assignment of each input . The overhead associated wi th that would make the code less
readable.

Other state changes are performed as a result of user actions, e.g. sorting. These actions
require more complex modifications coordinated by the service TableReducerService. A l l
user actions properly trigger an event. E a c h user event is handled by reduce method that
accepts the current state and an event corresponding to a user action. A s a result, the
current table state is updated.

For some functionality, there is a dedicated service for certain changes such as sorting.
A s specified in the design, services can be replaced wi th an alternative implementat ion if it
has the same public interface. So a dedicated sorting service can be replaced individual ly,
e.g. a different sorting algori thm. The same applies to TablelnitService that is responsi
ble for detecting column configuration from the data. The detection does not work reliably
if a property contains values of different types. Since the developers can always configure
columns themselves, this feature is mainly for developer convenience. Yet , it could be im
proved wi th a use of J S O N Schema 4 detector, which reliably detects an object structure.
O n the other side, it would add a significant overhead to the core module that should be
as lean as possible.

TableReducerService
-reduce(state:TableStateService,event:TableEvent): v o i d
onChanges(state:TableStateService,state:TableStateService): v o i d
•sortColumn{state:TableStateService,sortEvent:SortColumnEvent): void
•sortRows(state:TableStateService,sortEvent:SortColumnEvent): Row[]
•addingColumn{state:TableStateService,addingColumn:AddingColumnEvent): v o i d
•addColumn(state:TableStateService,addColumn:AddColumnAtPositionAt): v o i d
•previewColumns{state:TableStateService,

dragPreview:DragPreviewEvent): void
• r e v e r t P r e v i e w (s t a t e : T a b l e S t a t e S e r v i c e) : void
•dropColumn{state:TableStateService): v o i d
• removeColumn{state:TableStateService,removeColumn:RemoveColumnEvent): v o i d
• t o g g l e S u b f i e l d { s t a t e : T a b l e S t a t e S e r v i c e ,

toggleEvent:ToggleSubfieldEvent): void

TablelnitService
+detectColumnConfiguration(rows:Row[]): [ColumnLookup,

ColumnConfig[]]
+columnsConfig2Lookup(): ColumnLookup
•detectColumnLookup(rows:Row[]): ColumnLookup
•columnsLookup2Config(columnsLookup:ColumnLookup): ColumnConfig[]
-detectColumnConfigFromValue(key:string,

value:any): ColumnConfig

TableStateService
+rows: Row[]
+columnsConfig: ColumnConfig
+columnsLookup: ColumnLookup
+sortedColumnName: s t r i n g
+addingColumnIndex: number
+i n i t i a l S o r t C o l u m n : s t r i n g
+visibleColumnsBeforePreview: s t r i n g []
+reorderingEnabled: boolean
+rowsSortingMode: SortingMode
+changeColumnVisibility: boolean
+addingColumn: AddingColumnEvent
+addColumn: AddColumnAtPositionEvent
+removeColumn: RemoveColumnEvent
+sortColumn: SortColumnEvent
+sortColumnInit: EventEmitter<void>
+toggleSubfield: ToggleSubfieldEvent
+visibleColumnsChange: s t r i n g []
+rowClick: RowClickEvent
+hasAHColumnsVisible: boolean {readonly}
+isSorted(column:ColumnState,direction:string): boolean

TableSortingService
-sort(rows:Row[],columnState:ColumnState): Row[]

TableFilterService
- d e t e c t F i l t e r s (r o w s : R o w [] . p r e s e t : F i l t e r l n d e x) : F i l t e r []
- f i l t e r B y T r e e (r o w s : O b j e c t [] , t r e e : F i l t e r T r e e) : Object[]
• i s R o w K e p t { r o w : O b j e c t , f i l t e r : F i l t e r) : boolean

Figure 5.2: The service layer of the core table module.

4 h t t p : / / j s on- s chema. org/

32

TableModule

TableComponent
+rows: Row[]
+columnsConfig: ColumnConfig[]
+columnsLookup: ColumnLookup {readonly}
+visibleColumns: s t r i n g []
+reorderingEnabled: boolean
+changeColumnvlsibility: boolean
+rowsSortingMode: SortingMode
+initialSortColumn: s t r i n g
+tableTemplate: TemplateRef
+headerTemplate: TemplateRef
+bodyTemplate: TemplateRef
+footerTemplate: TemplateRef
+headerRowTemplate: TemplateRef
+bodyRowTemplate: TemplateRef
+addingColumn: AddingColumnEvent
+addColumn: AddColumnAtPositionEvent
+removeColumn: RemoveColumnEvent
+sortColumn: SortColumnEvent
+sortColumnInit: EventEmitter
+toggleSubfield: ToggleSubfieldEvent
+visibleColumnsChange: string!]
+rowClick: RowClickEvent
+tableReducerService: TableReducerService
•tableStateService: TableStateService
-changeDetectorRef: ChangeDetectorRef
+ng0nlnit(): void
+ngOnChanges(): void
+onSortColumnInit{): void
-dispatch(event:TableEvent): void

<h s

TheadComponent
+rows: Row[]
+columnsConfig: ColumnConfig[]
+columnsLookup: ColumnLookup {readonly}
+visibleColumns: s t r i n g []
+reorderingEnabled: boolean
+changeColumnVisibility: boolean
+addingColumnIndex: number
+rowsSortingHode: SortingMode
+initialSortColumn: s t r i n g
+isLastAddingColumnVisible: boolean {readonly}
+hasAHColumnsVisible: boolean {readonly}
+headerRowTemplate: TemplateRef
+addingColumn: AddingColumnEvent
+addColumn: AddColumnAtPositionEvent
+removeColumn: RemoveColumnEvent
+sortColumn: SortColumnEvent
+sortColumnInit: EventEmitter
+toggleSubfield: ToggleSubfieldEvent
+visibleColumnsChange: s t r i n g []
+tableReducerService: TableReducerService
+tableStateService: TableStateService
-changeDetectorRef: ChangeDetectorRef
-tableComponent: TableComponent
-lastColumnComboboxActive: boolean
-visibleColumnsBeforePreview: s t r i n g []
+ng0nlnit(): void
+ng0nChanges(): void
+onSortColumnInit(): void
-dispatch(event:TableEvent): void

TBodyomponent
•rows: Row[]
+columnsConfig: ColumnConfig[]
+columnsLookup: ColumnLookup {readonly}
+visibleColumns: stri n g []
+changeColumnVisibility: boolean
+addingColumnIndex: number
+bodyRowTemplate: TemplateRef
+toggleSubfield: ToggleSubfieldEvent
+visibleColumnsChange: stri n g []
+rowClick: RowClickEvent
+editCell: EditCellEvent
+tableReducerService: TableReducerService
•tableStateService: TableStateService
elementRef: ElementRef
changeDetectorRef: ChangeDetectorRef
tableComponent: TableComponent

+ng0nlnit(): void
+ngOnChanges(): void
+isSorted(column:ColumnState,direction:String)
-dispatch(event:TableEvent): void
+column(columnNarne:string): ColumnState
+onRowClick(rowlndex:number,rowObject:any,

columnlndex:number,column:string)

TdComponent
+ row: Row
+column: ColumnState
+cellValue: any {readonly}
+content: s t r i n g {readonly}
+isChanged: boolean {readonly}
+formattedvalue: any {readonly}
+isArray: boolean {readonly}
+activeFields: s t r i n g [] {readonly}
+hasSubfields: boolean {readonly}
#formatColumnPipe: FormatColumnPipe
-isSubColumnvisible(subcolumn:string): boolean

ObjectCellComponent
+object: Object
+hasPrefix: boolean
+allSubfieldsHidden: boolean

+object: Object
+hasPrefix: boolean
+allSubfieldsHidden: boolean

I +ng0nlnit()
+keyToSubcolumn(key:string)

I

ThComponent
•column: ColumnState
+columnsConfig: ColumnConfig[]
+visibleColumns: s t r i n g []
+changeColumnVisibility: boolean
+rowsSortingHode: SortingMode
+hasAllColumnsVisible: boolean {readonly}
+isLastColumn: boolean
+headerRowTemplate: TemplateRef
+addingAdj acentColumn: AddingAdj acentEvent
+removeColumn: RemoveColumnEvent
+sortColurnn: SortColumnEvent
+toggleSubfield: ToggleSubfieldEvent
+visibleColumnsChange: string!]
+id: s t r i n g {readonly}
+isSorted: boolean {readonly}
+isSortedAsc: boolean {readonly}
+isSortedDesc: boolean {readonly}
+tableReducerService: TableReducerService
+tableStateService: TableStateService
-changeDetectorRef: ChangeDetectorRef
-tableComponent: TableComponent
-theadComponent: TheadComponent
+ng0nlnit(): void
+isSortingDisabled(column:ColumnState): boolean
+showSortIcon(column:ColumnState,sortType:string,

s o r t D i r e c t i o n : s t r i n g) : boolean
+onSortColumn(column:ColumnState,direction:string)
+onRemoveColumn(columnId:string): void
+onToggleSubfield(column:ColumnState,subfieldName:string): void
+onAddingAdjacentColumn(atPosition:AdjacentDirection): void
-dispatch(event:TableEvent): void

5
AddColumnComponent

+visibleColumns: string!]
+open: boolean
+selected: AddColumnEvent
+close: EventEmitter
+items: (Category | LeafItem)[]
+tableReducerService: TableReducerService
+tableStateService: TableStateService
+tableComponent: TableComponent
+theadComponent: TheadComponent
+columnsConfig: ColumnConfig[] {readonly}
+ngOnChanges()
+onSelected(selection:SelectItemEvent)
+onClose(): void
+columnsNotVisibleInTable(): ColumnConfig[]
+categorizeColumns(columns:ColumnConfig[]):
+dispatch(event:TableEvent): void

(Category | Leafltem)[]

ArrayCellComponent
+subrows: Object[]
+column: ColumnState
+showAll: boolean
+arrayItemTemplate: TemplateRef
+hasNoSubrows: boolean
+hasMultipleSubrows: boolean
+enabledSubrows: Object[]
+ng0nlnit(): void
+toggle(clickEvent:Event)
+isHiddenItem(index:number): boolean

Figure 5.3: The core module of the library.

33

Records Rendering before A O T [s] Rendering after A O T [s] Difference [%]
10 2.07 1.89 8.7

100 2.92 2.54 13.01
1000 9.12 8.73 4.27

Table 5.1: The A O T compilat ion improved the rendering time.

5.5 Performance Optimizations

The performance is an important factor when dealing wi th data-intensive applications al
though user interface usually displays only a part of the data, e.g. thanks to pagination.
The Angu la r framework by itself is very fast, but there were two addi t ional performance
optimizations:

1. The first performance opt imizat ion is the ahead-of-time (A O T) compilat ion of the
library. It basically means that the l ibrary is able to run without the overhead of
the framework. This can be achieved by pre-compiling the source code into pure
JavaScript.

Generally speaking, frameworks are good for wr i t ing the code, but not so good for
running i t . Firs t ly , a framework increases the size of an application; it may even
be larger than an applicat ion itself. More importantly, it adds a run-time overhead
associated wi th interpreting its abstractions. In the Angu la r framework, components
w i t h its extended template syntax have to be processed before they can be rendered
a.k.a. just-in-time compilat ion.

Configuring the A O T compilat ion for the l ibrary requires el iminat ing certain code
constructs, which are not statically analyzable. Despite that, it is s t i l l possible to
perform dynamic behavior since it is s t i l l JavaScript , a very dynamic language, at the
end of the compilat ion.

A s a result of static compilat ion, not only the rendering is faster but also security
improved. The static compilat ion became a part of the continuous integration process
to ensure that new commits are statically analyzable.

The impact of this opt imizat ion was measured by rendering the table component w i t h
a varying number of automatical ly generated records. E a c h record contains nested
objects, e.g. studies of a random count. The records are generated synchronously to
measure the in i t i a l page rendering t ime for a l l of them. In a typica l applicat ion, the
results would be loaded from a server without blocking.

Table 5.1 shows the average of 5 measurements before and after A O T compilat ion for
each size of records. The rendering t ime decreased for any count of records.

2. One of the most t ime-consuming tasks executed by the Angula r framework is change
detection. It keeps the user interface and underlying data in synchronization. The
default detection strategy is performed frequently and assumes that everything can
change.

We activated a faster push strategy; thereby, took the change detection into our
hands. W i t h this strategy, it is our responsibili ty to make sure that the changes are
correctly detected.

34

In the library, a l l events that can cause changes are coordinated by one service, i.e.
TableReducerService. Thus, this service knows when certain pieces of code can
change and ensures that a change detection is triggered accordingly.

One caveat is that a change can be triggered externally i n an applicat ion. These
changes can not be reliably detected. Tha t could cause the confusion i f the developer
is not familiar w i t h this behavior. In the worst case, it may lead to a bug in the
application. Therefore, this opt imizat ion is disabled by default. It is meaningful
to opt-in in many situations, e.g. if a developer uses immutable operations or data
structures.

To test this opt imizat ion, we measured the percentage of t ime devoted to the change
detection after performing certain actions, i.e. sorting and reordering a column. The
percentage is around 68% for the default strategy i n the sample applicat ion that
renders the table component w i th 100 records. It is fairly constant for a different
count of records.

The percentage decreased by 6.04% after activating the push strategy. This has a sig
nificant effect on the responsiveness of an applicat ion because if the change detection
is running, an applicat ion is blocked.

35

Chapter 6

Demonstration

The ma in goal of this chapter is to demonstrate the characteristics of the l ibrary as they
are defined i n the design specification. It does not t ry to list a l l the possible use cases. It
only illustrates the various aspects of the l ibrary on a few simple examples. More advanced
examples of the l ibrary usage can be found i n the demo application.

The first section starts w i th a usage of the main table component i n a sample applicat ion.
This component is then adjusted to demonstrate the custom templates. Last ly, we present
one example of a uti l i ty.

6.1 Basic Example

The l ibrary is used declaratively wi th special tags and attributes. The convention is to
prefix them to avoid collision wi th the default H T M L tags or other libraries. If something
is defined by an applicat ion, it typical ly has a prefix "app".

L i s t ing 6.1 demonstrates the usage of the main component <iw-table> by passing
students from the sample applicat ion AppComponent as explained i n section 2.3, more
specifically L i s t ing 2.1.

For the demonstration purpose, the students are hard-coded in the applicat ion. Nor
mally, they would be fetched from a server. Other inputs of the table are automatical ly
detected from the data according to convention over configuration.

Except for the setup necessary for the applicat ion, the actual usage of the l ibrary is just
one line of declarative code i n the component's template. The result is shown i n Figure 6.1.
The user gets a full-featured table w i th sorting, drag&drop reordering, dynamical ly config
urable columns, collapsed study items, etc. It can be adjusted w i t h addi t ional attributes,
e.g. reorderingEnabled. Wi thou t this high-level abstraction, it would require hundreds
of lines in the applicat ion to implement this functionality.

The demo applicat ion contains another example where several input attributes are
changed, and a l l output events are printed to the console.

©Component ({
s e l e c t o r : 'app-component ',
template : '

<hl>Data Table</hl>
<iw-table [rows]="students"></iw-table>

})

36

c l a s s AppComponent {
stude n t s = [{

lastName : 'Heme', b i r t h d a y : '1985-10-8', // email
address : {

c o u n t r y : 'Lao P e o p l e \ ' s Democratic R e p u b l i c ' ,
c i t y : 'North Madelynnhaven ' ,
s t r e e t : '934 D a n i e l a C r e s c e n t '

} ,

s t u d i e s : [{
f i n i s h e d : t r u e , degree: 'Master', // u n i v e r s i t y , f a c u l t y

}] ,
} ,
// other s t u d e n t s
] ;

}

Lis t ing 6.1: The basic usage of the l ibrary in the sample application.

6.2 Custom Templates

Cus tom templates are useful i n various situations, e.g. styling. L i s t ing 6.2 assumes the
same component class AppComponent as in the previous code l is t ing w i th a different H T M L
template. The table look is altered by specifying styles from the Boots t rap framework, i.e.
table table-stripped. The l ibrary does not depend on any specific C S S framework, but
it does not exclude them. A framework often requires the style to be applied directly to an
element, which is not possible if they are hidden under the hood of a component. Lucki ly , a
custom template ng-template gives developers control over adding classes to the elements.
We can even completely disable the styles of the table component by omit t ing the class
iw-table.

Note that the subcomponents iw-thead and iw-tbody are used without specifying their
required attributes since their state is inherited from the parent table. Once again, conven
t ion over configuration i n action. Th is code snippet actually illustrates a l l characteristics
from 4.5. Two most important ones are "Levels of abstraction" and "Fallback".

Cus tom templates are effectively the fallback solution. Developers get the full power of
the framework while leveraging the components of the lower abstraction, uti l i t ies, and the
public A P I of components, i.e. the access to properties or cal l ing methods.

For example, an applicat ion may suddenly require an uncommon interface for editing
that is not supported by the library. The body cells are supposed to be edited inside
a dropdown menu. In this case, we can just replace iw-tbody w i th application-specific
implementation app-tbody. It can be implemented by inheri t ing from iw-tbody. The
developer can also use other existing libraries for editing. Tha t is possible in any custom
template. Most importantly, an applicat ion s t i l l benefits from features of iw-thead, i.e.
sorting and reordering.

The demo applicat ion has an addi t ional example for customizing one specific cell , i.e.
studies. It display them i n the dropdown menu.

<iw-table [rows]="students" [t a b l e T e m p l a t e] = " t t " >
<ng-template #tt>

37

<table c l a s s = " i w - t a b l e t a b l e t a b l e - s t r i p e d " >
<thead iw-thead></thead>
<tbody iw-tbody></tbody>

</table >
</ng-tempiate >

</iw-table >
Lis t ing 6.2: The table style is altered i n the custom table template.

Data Table
LASTNAME Jl — Add a column ; — « . T D

Alvi5.S:okes2ä(a>g™il.com Oct 8, 1985 Type lo search

id

salutation

Lao People's Demo

Add column to the left

Add column to the right

Hide thiscolumn

University of Response

wolf LuzJacobliinigmall.com Sep 22,1985 phone

Nigeria

Subfields in the column

street

B city

•* country

University of Group

Jovan.SienowlBihotiiicil.com Oct 25.198; 2414 Lyla Oossroac

Subfields in the column

street

B city

•* country
UniveisiLyofMeu its
Fatuity of Functionality

Leosackborough
Lao People's Democratic Republic

Faculty of Marketing

Schroeder Deonte851Photmail.com Sep ' 1.1985 5249 Aliie Glens
Faculty of usability
Master

Kri5.Gerlac.h93ighotrriail.com Mar 13, 1979
isldrovllle
Switzerlanc

Universitvof Infrastructure
Faculty of Mobility

Runolfsdottr A rnelyfi 4® hotmail.com Jun 28,1985 34256 Meggie Ways
Hannahbjry Fa c u Ity of I n pie men ta tion

Quigley DiynaSZSphoLiiidiUi.,,, Jan 2, 1979 24Ö77 Windier Lights

Sudan Faculty of Mobility

Figure 6.1: The final user interface of the table component.

6.3 Utilit ies

The utili t ies help to put various pieces together, which is handy especially in custom tem
plates. One u t i l i ty is demonstrated i n L i s t i ng 6.3. A p p l y i n g the directive iwSortableltem
to cell elements allows users to change their posi t ion by dragging and dropping them.

A l l presented examples might seem simple, but the true power of the l ibrary is in its
abi l i ty to put these concepts together. For example, the sorting u t i l i ty can also be applied
to the rows or even the rows of several tables that can exchange their rows.

<table >
<tr >

<td i w S o r t a b l e l t e m > C e l l A</td>
<td i w S o r t a b l e l t e m > C e l l B</td>

</tr >
</table >

Lis t ing 6.3: The sortable u t i l i ty adds reordering functionality to the table cells.

38

http://Jovan.SienowlBihotiiicil.com
http://Deonte851Photmail.com
http://Kri5.Gerlac.h93ighotrriail.com
http://hotmail.com

Chapter 7

Usabili ty Testing & Evaluation

The previous sections describe the current state of the library, which is a result of an
iterative process. The first section goes through the history of the project to describe how
it was shaped. Then, the l ibrary is evaluated based on the feedback of users. A t the end of
the chapter, the statistics for the l ibrary are presented.

7.1 Iterations

The user interface was created in iterations. E a c h i teration ended wi th usabil i ty tests
according to the testing protocol from [6] i n order to find out what works and what does
not.

In the first phase, a prototype was created, which mostly lacks the underlying function
ality, e.g. hard-coded output data. Nevertheless, it verifies some of the basic assumptions
made during the design without much development effort.

In the testing session, users get a list of tasks to finish:

• F i n d the youngest person.

• W h a t is his /her address?

• The columns are quite jammed. C a n you somehow reduce the information?

• A n e-mail column should be at the beginning.

For the first task, it is expected that the users discover the U I for sorting and how it
works by themselves. The second task requires adding an address column. Other features
are tested by the remaining tasks.

The ideal number of users for usabil i ty tests is no more than 5 according to []. We
chose for 4 testing users. A l l of them were able to finish their tasks although they were
confused sometimes. One user was afraid to remove a column because it might delete the
data. To fix this usabil i ty issue, U I should use better wording that implies no mutat ion
"Hide this co lumn" instead of "Remove this column". Even smal l adjustments can be of
great value.

So far, we only mentioned the testing of UI , namely user experience. We also care
about good developer experience while working wi th the library. Th is is actually even more
important since we are pr imar i ly concerned wi th the design of a library. A n applicat ion
can be customized i n many ways by the library.

39

We employ the same testing method, except that the users are developers who have to
work wi th the programmatic interface in order to finish their tasks. Testing users usually
get everything prepared, but we would like to see whether they are able to integrate the
l ibrary in a different environment. So the first task was to instal l the l ibrary and use the
table component w i th sample data.

The first two testing sessions discovered that the instal lat ion is overly complicated
mainly because of dependencies. The l ibrary required a JavaScript component Select2 1 ,
which i n tu rn required j Q u e r y 2 . Addi t ional ly , the styles for Select2 and Bootstrap were
necessary. There was a mismatch between dependencies in one testing session, so the l i
brary could not work properly. This caused that one user was not able to finish his tasks.

Since interoperabili ty w i th the libraries that are from outside the Angu la r wor ld is
problematic, Select2 and jQuery were removed. There were addi t ional benefits i n terms of
features and smaller l ibrary size. Bootstrap also became optional . Thus, the instal lat ion
process was simplified to one command to add the l ibrary package.

Afterward, no significant issues appeared in two addi t ional testing sessions. Users fin
ished their tasks successfully.

7.2 User Feedback

This section focuses on developers as target users of the library. User feedback was gathered
throughout the project life-cycle, mainly i n the form of discussions. Nevertheless, they were
s t i l l influential, i.e. contributed to new ideas.

In the final phase, we conducted a survey to evaluate the library. The questions were
chosen to address various aspects according to U S E (usability, satisfaction, ease of use)
questionnaire []:

0« ^ ^
E a s e of use Usability Satisfation

Dimensions

Figure 7.1: The results of a survey showing three dimensions evaluated by users.

• How easy is it to get started wi th the l ibrary?

• How applicable is the l ibrary for data-intensive applications?

x h t t p s : //select2.github.io/
2 h t t p s : //jquery.com/

40

http://select2.github.io/

• How do you feel about the l ibrary overall?

• Do you have any other feedback?

Users can choose a value on the scale from 1 to 10 for a l l questions, except the last one.
Figure 7.1 displays the summary of results for 6 submit ted responses. Especial ly the ease
of use was rated very high wi th 81.66%, but other aspects are not far behind.

800

600

-

| 400

Q

200

0

December 2016 January 2017 February 2017 March 2017 Apri l 2017

77me

Figure 7.2: The number of downloads for the l ibrary grows linearly every month. The
download statistics are publ ic ly available by N P M .

The survey contained one open question for wr i t ing any k ind of feedback:

• "The table looks visually nice. It is also functional."

• "The first time to see the select component in the Angular way."

• "It's sometimes a battle to tweak the library to do what you want. It may even be
faster to write it from scratch in some cases. Faster means cheaper for companies.
Maybe that's a part of the reason why many companies have their internal libraries
for things like a table. Own implementation is easy to modify for their needs.
I can imagine that a company would use this library at the beginning. Then as they
need to adjust more things, they would gradually replace certain templates until it is
replaced completely."

• "Nice library!"

The final words of feedback belong to K e v i n Merckx who is not only an Angula r expert
but also a product owner of an applicat ion i n interfacewerk G m b H that uses the l ibrary
extensively:

"The library is very flexible. It was able to adapt nicely to various situations."

7.3 Statistics

Firs t ly , the download statics show a positive interest i n a l ibrary despite that there was
almost no propagation of the library, except for publishing it on the development platform

41

" G i t h u b 3 " and the registry of JavaScript packages called " N P M 4 " . Figure 7.2 shows a
number of downloads from N P M over a five-month period. The number of downloads per
months is steadily increasing. T h e to ta l number of downloads is 2031.

Lastly, we would like to mention other l ibrary statistics. Overal l , there are 4 l ibrary
modules and 1 module for the demo applicat ion. In these modules reside 13 components,
2 directives, 2 pipes, and 8 services. These were created in 166 commits. The first commit
performed by Angu la r C L I generates 571 lines. Other commits contain 23,379 additions
and 12,126 deletions.

3github.com
https: //www.npmj s.com/

42

http://www.npmj

Chapter 8

Conclusion

In the first chapter, we gave an int roduct ion to client-side web technologies, especially these
closely related to Angula r . Then , we dived into the Angula r framework itself. We described
its various aspects and principles for the implementat ion of components. The creation of
U I also involves the design and testing which was covered i n the second chapter. Afterward,
the existing component libraries were analyzed, and the detailed specification was created.
It states a set of key characteristics for the library. Then , we designed the architecture
and the public interface of components. The implementat ion was explained wi th the focus
on the l ibrary core. The demonstrative examples picture the l ibrary i n accordance wi th
the characteristics stated i n the design specification. The usabil i ty tests examined the user
interface and the programmatic interface, which led to several improvements. The survey
was conducted to evaluate the usability, satisfaction, and ease of the use. The results are
satisfactory. The download statistics also indicate positive reactions.

The l ibrary and demo applicat ion are published on G i t h u b 1 under M I T license. The
l ibrary offers a collection of related components and utili t ies for data-intensive applications.
Its user interface is accustomed for this use case wi th certain U I elements such as collapsed
list of nested entities. Its programmatic interface contains patterns and conventions relevant
for designing other third-party libraries.

Some possibilities for the future work were already discussed at the end of implementa
t ion section 5.4. For example, an alternative service for the in i t ia l iza t ion of the table would
detect column configuration more reliably based on the J S O N schema. B o t h the existing
solution and the alternative have their pros and cons. Ideally, the developer can choose
their preferred implementation.

Natural ly, it is always possible to add new components and utili t ies, e.g. for exporting.
This paper is pr imar i ly concerned wi th the core of the library, which proved itself i n real-
world scenarios. A l t h o u g h it is rather minimalis t ic , it can be easily adjusted and extended.

x h t t p s : //github.com/zorec/ng2-pack

43

Bibliography

[1] Cascading Style Sheets, [online; visi ted 2017-05-21].
Retrieved from: h t t p s : / / w w w . w 3 . o r g / S t y l e / C S S /

[2] H T M L 5.2. W 3 C . [online; visi ted 2017-05-21].
Retrieved from: h t t p s : / / w 3 c . g i t h u b . i o / h t m l /

[3] One framework. - Angular, [online; visi ted 2016-12-28].
Retrieved from: h t t p s : / / a n g u l a r . i o /

[4] Standard E C M A - 2 6 2 . [online; visi ted 2017-05-21].
Retrieved from:
h t t p : / / w w w . e c m a - i n t e r n a t i o n a l . o r g / p u b l i c a t i o n s / s t a n d a r d s / E c m a - 2 6 2 . h t m

[5] Fox, P.: W D C N Z : The Developer Experience [online; visi ted 2017-05-16].
http:/ /blog.pamelafox.org/2011 /08/wdcnz-developer-experience.html. 2011.

[6] K r u g , S.: Don't Make Me Think: A Common Sense Approach to the Web (2Nd
Edition). Thousand Oaks, C A , U S A : New Riders Publ i sh ing . 2005. I S B N 0321344758.

[7] L u n d , A . : Measuring Usabi l i ty w i t h the U S E Questionnaire [online; visited
2017-05-15]. 2001.
Retrieved from: h t t p s : / / w w w . r e s e a r c h g a t e . n e t / p u b l i c a t i o n /
2 3 0 7 8 6 7 4 6 _ M e a s u r i n g _ u s a b i l i t y _ w i t h _ t h e _ U S E _ q u e s t i o n n a i r e

[8] Math i s , L . : Designed for Use. The Pragmat ic Programmers L L C . 2011. I S B N
13 978-1-93435-675-3.

[9] Monteiro , F . : Learning Single-page Web Application Development. Packt Publ i sh ing .
2014. I S B N 978-1-78355-209-2.

[10] Murray , N . ; Lerner, A . ; Coury, F . ; et a l . : ng-book 2: The Complete Book on Angular
2 (Volume 2). Fullstack.io. 2016. I S B N 0991344618.

[11] Nielsen, J . : W h y Y o u O n l y Need to Test w i th 5 Users [online; visi ted 2014-04-27].
2000-03-19.
Retrieved from:
h t t p : / / w w w . n n g r o u p . c o m / a r t i c l e s / w h y - y o u - o n l y - n e e d - t o - t e s t - w i t h - 5 - u s e r s /

[12] Preece, J . : Human-Computer Interaction. Addison-Wesley. 1994. I S B N 0-201-62769-8.

[13] Scott, B . ; N e i l , T . : Designing Web Interfaces. O ' R e i l l y M e d i a . 2009. I S B N
978-0-596-51625-3.

44

https://www.w3.org/Style/CSS/
https://w3c.github.io/html/
https://angular.io/
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://blog.pamelafox.org/2011
https://www.researchgate.net/publication/
http://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/

