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Abstract 
This thesis proposes an improvement of the efficiency of testing concurrent software by 

employing data min ing techniques and genetic algorithms i n the process of testing con­
current software. Concurrent, or multi-threaded, programming has become very popular 
over the last few years. However, as the concurrent programming is far more demanding 
the sequential programming, its increased use leads to a significant increase in the number 
of errors that appear i n commercial software due to errors in synchronization. F i n d i n g such 
errors using t radi t ional testing methods is difficult. Moreover, repeated test executions 
of t radi t ional testing that are performed in the same environment w i l l typical ly examine 
similar inter leavings only. Hence, the noise-based injection approach is used for influencing 
the scheduling by injecting various kinds of noise (delays, context switches, and so on) 
into the common thread behaviour which stress the software and can to show some rare 
behaviour. However, for the noise injection to be efficient, one has to choose suitable noise 
injection heuristics from among the many existing ones as well as to suitably choose values 
of their various parameters, which is not easy. In this work, there are used data mining 
methods and genetic algorithms and their combinations to deal w i th the problem of choos­
ing such noise injection heuristics and values of their parameters. Besides setting up of 
the goals of the thesis, this proposal also provides a brief summary of the state of the art in 
application of data mining techniques and genetic algorithms to program testing problems. 

Abstrakt 
Tato p ráce navrhuje z lepšení výkonu t e s tován í p r o g r a m ů p o u ž i t í m technik dolování z dat 
a gene t ických a l g o r i t m ů př i t e s tován í para le ln ích p r o g r a m ů . P a r a l e l n í p r o g r a m o v á n í se 
v pos ledních letech s t ává velmi p o p u l á r n í m i p ře s to , že toto p r o g r a m o v á n í je mnohem 
náročně jš í než j e d n o d u š š í sekvenční a proto jeho zvýšené použ íván í vede k p o d s t a t n ě vyšš ímu 
p o č t u chyb. T y t o chyby se vysky tu j í v d ů s l e d k u chyb v synchronizaci j edno t l i vých pro­
cesů programu. Nalezen í t a k o v ý c h chyb t r a d i č n í m z p ů s o b e m je složi té a nav íc opakované 
spouš t ěn í t ě ch to t e s t ů ve s t e j ném p r o s t ř e d í typicky vede pouze k p roh l edáván í s te jných 
p r o k l á d á n í . V prác i se využ ívá metody vs t ř ikování š u m u , k t e r á vystresuje program tak, že 
se mohou objevit n ě k t e r á nová chování . P r o úč innos t t é t o metody je n u t n é zvolit v h o d n é 
heuristiky a též i hodnoty jejich p a r a m e t r ů , což nen í s n a d n é . V prác i se využ ívá metod 
dolování z dat, gene t ických a l g o r i t m ů a jejich kombinace pro na lezení t ě ch to heuristik a hod­
not p a r a m e t r ů . V prác i je vedle výs ledků v ý z k u m u uveden s t r u č n ý p řeh led dalš ích technik 
t e s tován í pa ra le ln ích p r o g r a m ů . 
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Chapter 1 

Introduction 

Since programming is demanding and programmers always make mistakes, it is important to 
verify programs as carefully as possible. However, program verification is not easy, and some 
errors are very difficult to find. O n the other hand, when a program fails, the consequences 
can be very expensive. 

A n example of such an expensive failure is the software failure that interrupted the New 
York Mercant i le Exchange and telephone service to several East Coast cities i n February 
1998. Overal l , estimates of the economic costs of faulty software i n the U . S . range in 
tens of bill ions of dollars per year and they present approximately just under 1 percent of 
the nation's gross domestic product [96]. 

Hence, proper methods for finding errors in computer programs and/or for verifying 
their correctness are highly needed, and a lot of research effort is invested into developing 
new approaches for analysis, verification, and testing. 

1.1 Analysis and Verification of Programs 

There are various approaches how to analyze and verify programs and how to detect errors in 
the programs. F r o m a high-level point of view, these methods can be divided to (1) methods 
of testing and dynamic analysis, and (2) methods of static analysis ranging from light-weight 
approaches (error patterns) to heavier-weight approaches (such as model checking, abstract 
interpretation, or theorem proving). Some of the latter approaches can be considered 
as formal verification approaches that can prove correctness of a system wi th respect to 
a specification (not just find errors). 

A n ideal verification too l would be a tool that has the following features: full automation 
(no human help is needed), soundness (a program found correct is indeed correct, i.e., no 
false negatives), completeness (reported errors are real; no false alarms), and termination 
(meaning that verification always terminates). However, due to undecidabil i ty and state 
explosion, the ideal is usually not achievable. M a n y verification methods do not guarantee 
terminat ion and /or can cause false alarms, are not fully automatic, or do not scale well . In 
the following paragraphs, the basic types of analysis and verification methods are introduced 
in some more detail . 

Program Testing. In program testing, a programmer writes a test or the test is 
generated from a high-level specification. A n error i n the program or i n the test case is 
detected i f the expected output is not achieved or i f the program fails before producing 
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the output. P rogram testing checks the code along the execution trace of the test case only. 
This method is the most common way of finding errors in programs nowadays. 

Dynamic Analysis . Th is technique also detects errors along execution traces. How­
ever, instead of checking outputs of a test, dynamic analysis automatical ly gathers informa­
t ion about the execution (the order of locking, the order of accessing shared memory loca­
tions, etc.) and analyses the gathered information wi th an intention to discover abnormal 
execution conditions. Usually, some k ind of instrumentation that injects some addi t ional 
code into the original code is used to gather the information. The information can be 
analyzed on-the-fly, dur ing the execution, or post-mortem, after the end of the execution. 
A l though the analysis gathers information concerning a single or several executions, some­
times, i f some approximation is performed, it can discover even errors that are not directly 
on the witnessed execution traces. In the best-case scenario, a dynamic analysis is sound 
and complete w i th respect to the examined execution traces, but it is usually unsound wi th 
respect to a l l possible execution traces. 

Static Analysis . Static analysis is based on a compile-time analysis. Some static ana­
lyses require for the code to be compilable only, al though some heavy-weight static analysis 
approaches need the code to be runnable, too. These methods usually infer abstraction of 
the program behaviour from the code and t ry to find errors i n this abstraction. Due to 
the over-approximation used, the methods often suffer from false positives. The code cover­
age may be total ; sometimes static analysis even analyzes dead code that is never used along 
any possible execution trace (this is also a source of incompleteness) [89]. Static analysis in ­
cludes various techniques, such as model checking, which is an example of the heavy-weight 
approaches that need a runnable code, theorem proving, a deductive verification method, 
often similar to the t radi t ional mathematical theorem proving beginning wi th axioms, or ab­
stract interpretation, a general approach that evaluates the program over suitable abstract 
domains, ignoring some details of the concrete semantics. 

1.2 Verification of Concurrent Software 

Concurrent programs belong among those where there is a very high chance of programmers 
making mistakes but which are also very difficult to verify. These programs have often very 
large state space due to many possible inter leavings of the threads, and errors often hide in 
some rare, corner-case interleavings that involve some t r icky interplay of the threads that 
the programmers d id not th ink of. 

Heavier-weight formal methods of verification, such as model checking [ ], a i m at 
precise program verification. Unfortunately, these precise approaches do not scale well for 
complex concurrent software. Th is is one of the ma in reasons why heuristic approaches 
such as light-weight static analysis, testing, and dynamic analysis are very popular in this 
area. W h i l e light-weight static analysis may scale, it often produces many false alarms 
(or it must be heavily fine-tuned for the given verification scenario — often for the price of 
suppressing some real errors together w i th the false ones). 

W h e n dealing wi th concurrent programs, testing and dynamic analysis that rely on 
executing the system under test ( S U T ) and evaluating the witnessed run are complicated 
by having to deal w i t h the non-deterministic scheduling of program threads. Due to this 
problem, a single execution of a program is insufficient to find errors i n the program even 
for the part icular input data used i n the execution. Moreover, even i f the program has 
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been executed many times w i t h the given input without spott ing any failure, it is s t i l l 
possible that its future execution wi th exactly the same input w i l l produce an incorrect 
result. A problem is that repeated testing i n the same environment usually does not explore 
schedules that are too different. 

One approach that is commonly accepted as a way to significantly improve on the above 
problem is the so-called noise injection (other common approaches are mentioned i n Sec­
t ion 2.1). The noise injection approach [ ] is based on heuristically dis turbing the schedul­
ing of program threads i n hope of observing scheduling scenarios unseen so far. A l though 
this approach cannot prove correctness of a program even under some bounds on its be­
haviour, it was demonstrated i n [40, 62, 2 !] that it can rapidly increase the probabil i ty 
of spott ing concurrency errors without introducing any false alarms. The noise injection 
approach is described in more detai l i n Section 2.2. 

1.3 Goals of Thesis 

The thesis is focused on concurrent software testing based on noise injection. A s we have 
already sketched above and as we w i l l discuss i n more detai l later on, this type of testing can 
stress programs in such a way that there manifest uncommon behaviours and interleavings 
of threads. Th is can be used to reveal rare errors that are otherwise extremely difficult to 
find. O n the other hand, noise injection has many parameters that need to be suitably set 
(together w i th parameters of the programs under test themselves), and finding the right 
setting is difficult. 

The main goal of the thesis is hence to improve the efficiency of the current methods 
of testing concurrent programs using noise injection by simplifying the process of finding 
the right settings of noise and test parameters. In the work, various approaches for finding 
suitable values of parameters of tests and noise are studied. In particular, those include data 
mining techniques, genetic algorithms and their combination, as well as further heuristics, 
such as exploitat ion of dependencies among testing under metrics of different cost. 

1.4 Plan of Thesis and Overview of Achieved Results 

The rest of the thesis is organized as described below. Chapter 2 introduces major under­
ly ing concepts and methods, on which the presented research builds, namely noise-based 
testing, selected concurrency metrics, basics of mathematical methods including data min­
ing and basics of opt imizat ion approaches (such as genetic algorithms). This chapter also 
presents related works that are not specific for the ind iv idua l parts of the thesis, the tools 
which we used for analyzing concurrent programs, and we also present the multi-threaded 
benchmarks which are used i n the experiments. 

The other chapters present the contr ibution of the thesis and are organized chronologi­
cally wrt . our publ icat ion results. 

Chapter 3 introduces our methods based on the multi-objective genetic algorithm (MO-
GA) that we proposed for setting test and noise parameters of noise-based injection. This 
approach is compared wi th the older approach proposed for the same purpose, namely, set­
t ing of test and noise parameters by means of a single-objective genetic algorithm (SOGA). 
This approach was proposed wi th in the V e r i F I T research group before the beginning of 
the work on this thesis. Our research focused on using M O G A for setting test and noise pa­
rameters, including its comparison wi th the S O G A approach, was published as a conference 
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paper at the S S B S E ' 1 4 conference [44], and as the technical report [43] i n cooperation wi th 
the O R T Braude College in K a r m i e l , Israel wi th in a Kontak t II project. 

The ma in goal of Chapter 4 is to use data min ing to resolve the test and noise configu­
rat ion problem. For this purpose, the AdaBoos t approach, which is subsequently modified 
for better results i n the given area, is suggested for use. The second goal of the chapter 
is a combination of the AdaBoos t approach wi th genetic algorithms. This combination 
shows that both methods have their advantages. The AdaBoos t approach was presented as 
the conference paper [6] at the M E M I C S ' 1 4 conference. The modification of the AdaBoos t 
approach was presented as a student poster at the A E R F A I / I N I T 2015 Summer School on 
Machine Learning i n Benicassim and the results were also published as the journal paper [ ] 
in the journal of Concurrency and Computa t ion : Pract ice and Experience. We were also in ­
vi ted to the European Conference about D a t a Analys is ( E C D A ' 1 8 ) , where the combination 
of the AdaBoos t approach and genetic algorithms was presented. 

Chapter 5 is focused on improving the t ime needed for noise-based testing. In part i­
cular, for measuring the results of the test, there exist some concurrency metrics. Testing 
under some of them is more t ime-consuming but the metrics provide more information. 
O n the other hand, testing under some metrics is less time-consuming, but they give less 
information. The different costs manifest, of course, dur ing finding of the right parameters 
of the S U T and of the noise generation too. Hence the main idea of our next result is to 
t ry to identify dependencies between parameter settings suitable for testing under metrics 
of different costs and then use testing under a cheaper metric to find settings suitable 
for a more expensive metric. Alternat ively, testing under several cheaper metrics can be 
used for this purpose too. This idea was presented at the E U R O C A S T ' 1 7 conference and 
published as the conference paper [ ]. The next goal of this chapter is to find the opt imal 
number of cheaper metrics for predict ion of the given metrics. For this purpose, three 
approaches — using two, three, and four cheap metrics for the prediction — are compared. 
In the chapter there is also discussed a combinat ion of the prediction approach wi th genetic 
algorithms. 

Final ly , Chapter 6 presents a summary of the results, concludes this P h D thesis, and 
introduces possible future research directions. Some prel iminary results obtained wi th in 
one of these directions were presented as a poster at the students' poster session during 
the conference M E M I C S ' 1 7 (and unfortunately, not further developed due to a loss of 
the collaborating M S c student). 
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Chapter 2 

Preliminaries 

In this chapter, we introduce the basics of several areas which form the basis of the following 
chapters—namely: Section 2.1 presents an overview of different approaches to testing and 
analysis of concurrent programs. A more detailed introduct ion to noise based testing is 
provided in Section 2.2. Section 2.3 presents different types of metrics that can be used to 
measure coverage of behaviour of concurrent programs achieved during testing. A n overview 
of the mathematical methods used for analyzing and verification of the concurrent programs 
is i n Section 2.4, focusing on data min ing and genetic algorithms that we later use. In 
Section 2.5 there is presented the tool support used for our experiments. F ina l ly , Section 
2.6 introduces multi-threaded benchmarks used as our case studies. 

2.1 Testing and Analysis of Multi-threaded Programs 

In the following section, there are presented overview of different testing methods which 
are used for testing and analyzing of the concurrent programs. Namely, there are presented 
examples of using stress, noise injection, systematic testing, dynamic analysis, coverage-
driven testing and active testing. 

Simple stress testing which is based on execution of a large number of threads competing 
for shared resources has been shown to increase the possibil i ty of spott ing concurrency 
errors only a l i t t le [83]. It has been also discussed many times that only smal l number 
of threads (usually two) are sufficient to detect concurrency errors and that concurrency 
errors manifest themselves only under specific interleaving scenario(s), e.g. [78, 107, 24]. 

The noise injection technique [ , ] influences thread interleavings by inserting small 
delays, called noise, into the execution of selected threads. If there is another enabled 
thread, the noise cause switch of threads without much hurt to the performance of the app­
lication. The noise is inserted at random or based on specific parametrized heuristics which 
targets specific classes of concurrency errors. M a n y different noise heuristics can be used for 
this purpose [62]. The efficiency of the approach depends on the nature of the system under 
test ( S U T ) and the testing environment, which includes the way noise is generated [62]. 
A proper choice of noise seeding heuristics (e.g. cal l ing sleep or yield statements, hal t ing 
selected threads, etc.), noise placement heuristics (purely random, at selected statements, 
etc.), as well as of the values of the many parameters of these heuristics (such as strength, 
frequency, etc.) can rapidly increase the probabil i ty of detecting an error, but on the other 
hand, improper noise injection can hide it [58]. A proper selection of the noise heuristics 

7 



and their parameters is not easy, and it is often done by random [ ]. More details about 
noise heuristics and parameters is in Section 2.2. 

A m o n g the main alternatives to noise-based testing, we first mention the so-called sys­
tematic testing [41, 9, 104, 71, 46, 45, 107]. The main idea of systematic testing is to control 
the scheduling of threads and systematically enumerates their different inter leavings. U n ­
like noise-based testing, systematic testing provides better guarantees that a concurrency-
related error w i l l be found if present, and it can avoid re-execution of the same schedules. 
O n the other hand, despite many heuristic optimizations that have been proposed, due 
to a need to systematically enumerate different schedules, systematic testing is s t i l l more 
heavy-weight than noise-based testing. Moreover, systematic testing can have problems 
wi th programs containing sources of non-determinism such as user input, external client 
requests, etc. 

The systematic testing approach can be also seen as execution-based model checking 
which systematically tests as many thread interleaving scenarios as possible. The number 
of possible interleavings is often huge and therefore these techniques works wi th abstract 
and/or considerably bounded models of the S U T . The technique is therefore suitable mainly 
for unit testing i n which is the technique able to discover and test a l l possible interleavings 
(with respect to the used abstraction and/or bounds). The technique is also suitable for 
debugging because the same recorded interleaving scenario can be enforced in the next 
execution of the test. Disadvantages of the technique include performance degradation due 
to need for dynamic computing and storing of the considered S U T thread interleavings 
model. The technique also suffer from problems wi th other sources of non-determinism in 
S U T , for instance, non-determinism caused by i / o operations. 

Testing of concurrent programs can be combined wi th dynamic analysis [26, 52] which 
collects various pieces of information along the executed path and tries to detect errors 
which are i n the S U T but d id not necessarily occur during the execution. M a n y problem-
specific dynamic analyses have been proposed for detecting special classes of errors, such 
as data races [26], a tomici ty violations [72], or deadlocks [11]. Most of the analyses are 
unsound and therefore can sometimes produce false alarms. Efficiency of dynamic analysis 
can be increased when a different execution path is analyzed during each execution of 
the test. A combinat ion of noise injection or deterministic testing and dynamic analysis 
can thus lead to a synergy effect [22]. 

Coverage-driven testing as proposed in [107] and implemented i n the Maple tool at­
tempts to influence the scheduling such that the obtained coverage of several important 
synchronization idioms (called iRoots) is maximized. These idioms capture several impor­
tant memory access patterns that are shown to be often related w i t h error occurrences. 
Maple uses several heuristics to l ikely increase the coverage of iRoots . The technique pro­
vides lower guarantees of finding an error than systematic testing, but it is more scalable. 
The approach of Maple does not support some kinds of bugs (e.g. value-dependent bugs 
or some forms of deadlocks). Interestingly, mult iple of the heuristics it uses are based on 
randomization. Maple can thus be viewed as being in between of systematic testing and 
noise-based testing (note that some of our noise placement heuristics are based on maxi ­
miz ing coverage too). A n interesting question for future work is thus whether an approach 
for finding suitable values of noise parameters, such as the one we propose i n this thesis, 
could be combined w i t h the heuristics used i n Maple too. 

Final ly , various combinations of the above approaches have been studied i n the litera­
ture. In active testing, which is considered, e.g. in [90, 82, 53], some bug detector based 
on static analysis or extrapolat ing dynamic analysis is used to detect possible concurrency 
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errors and then some form of noise-based testing, directed by information from the first 
phase, is used to check whether the detected error is real. In [29], an approach combining 
noise-based testing and extrapolating dynamic analysis i n the first phase was combined 
wi th bounded software model checking along the (partially) recorded trace from the first 
phase and in its neighbourhood. Such a combined approach can benefit from the techniques 
presented in this thesis too. 

2.2 Noise Injection Techniques 

A s we have already said, noise injection disturbs the common scheduling of concurrently 
executing threads i n order to allow for testing less common (but legal) schedules. In figu­
re 2.1, we illustrate two of the possible effects that noise injection can have. Figure 2.1(a) 
illustrates a scenario i n that the usual order i n which two threads execute some events is 
swapped by noise injection (e.g. by an inserted delay). T h i s can uncover a bug that happens 
only i f the events happen i n the swapped order. Note that i f the swapped order can happen 
wi th noise injection, then the programmer d id not exclude it using any synchronization 
means, and it can happen even without noise injection. If there was some synchronization 
in place, noise injection could not overcome i t . Th i s is, no new behaviour is introduced; just 
without noise injection, the probabil i ty of the events happening i n the swapped order may 
be very low. Figure 2.1(b) then shows a si tuation where noise injection prolongs the time 
spend by a thread in a cr i t ica l section, which can lead to another thread executing its 
cr i t ical section i n parallel w i th the first one, possibly causing some concurrency error. A s 
before, i f such an error happens, it is a real error since the programmer d id not prevent 
the si tuation by using any synchronization means, which noise injection would not be able 
to overcome. Thus, the si tuation can happen even without noise injection, though perhaps 
wi th a much lower probabili ty. 

time Threadl Thread2 

read(v) 

write(v) 

Threadl Thread2 

read(v) r 

write(v) 

time Threadl Thread2 Threadl Thread2 

b) 

Figure 2.1: Two examples of the effect of noise injection: (a) reordering of the common 
order of two events in a concurrent program execution and (b) prolongation of the time 
spent by a thread in a cr i t ica l section, leading to an overlapped execution of two cr i t ical 
sections. 
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We now provide some more technical details on noise injection. A thorough discussion 
of the technique can be found, e.g. in [30]. Noise injection heavily depends on two kinds 
of heuristics—namely, noise seeding heuristics and noise placement heuristics. The noise 
seeding heuristics determine the type and strength of the generated noise whereas the noi­
se placement heuristics determine at what instants of program executions the noise gets 
injected. 

2.2.1 No i se Seeding Heur i s t i c s 

The basic noise seeding heuristics are: yield, sleep, wait, busy Wait, synchYield, and mixed. 
The yield and sleep heuristics inject calls of the yieldO and sleep () methods, respectively. 
In the case of the wait heuristic, the concerned threads must first obtain a special shared 
monitor, then ca l l the wait() method, and finally release the monitor. The synchYield 
heuristic combines the yield heuristic w i th obtaining the monitor as i n the case of the wait 
heuristic. The busy Wait heuristic inserts a busy-waiting loop that is executed for some 
time. Final ly , the mixed heuristic randomly chooses one of the five other basic heuristics 
at each noise injection location. 

The addi t ional noise seeding heuristics are: haltOneThread and timeoutTamper. The halt-
OneThread technique occasionally stops one thread unt i l any other thread cannot run. 
The timeoutTamper heuristic randomly reduces the time-outs used when cal l ing sleep () 
in the tested program (to test that programmers do not t ry to synchronize their threads by 
expl ici t ly delaying some events). 

A l l the above mentioned seeding techniques are parametrized by the so-called strength 
of noise. In the case of the sleep and wait heuristics, the strength gives the t ime to wait. 
In the case of the yield heuristic, the strength says how many times the yield () method 
should be called. 

2.2.2 No i se P l a c e m e n t Heur i s t i c s 

The noise placement heuristics are: the random heuristic, the sharedVarNoise heuristic, 
and the coverage-based heuristic. The random heuristic injects noise w i t h some probabi l i ty 
before every concurrency-related event i n the program execution. The sharedVarNoise 
heuristic allows one to focus noise pr imar i ly at accesses to shared variables. There are two 
versions of this heuristic: sharedVarNoise-all which targets a l l accesses to shared variables 
and sharedVarNoise-one which targets accesses to a single randomly chosen shared variable 
in each test execution. Moreover, for both of these heuristics, one can decide whether 
the noise should be inserted solely when accessing shared variables or also at synchronisation 
operations such as locking (the so-called nonVariableNoise heuristic). 

The coverage-based heuristic is based on collecting information about pairs of subsequent 
accesses to a shared variable from different threads and on inserting noise before further 
executions of the program instruct ion by which the given variable was accessed first (or 
before acquiring the shared lock that guards the given access provided there is such a lock). 
Th is is motivated by t ry ing to reverse the ordering i n which threads access variables. 

A s we have mentioned already above, the noise placement heuristics inject noise at 
the selected points of program executions wi th some probabili ty. Th is probabil i ty is de­
termined by the noise frequency parameter. The values of this parameter range from 
never inserting a noise to always inserting i t . Addi t ional ly , the coverage-based heuristic 
can be extended by another heuristic (denoted as the coverage-based-frequency heuristic) 
that monitors the frequency wi th which a program locat ion is visi ted during testing and 
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injects noise at the given program location wi th a probabil i ty adjusted according to this 
frequency—the more often a program location is executed the lower probabi l i ty is used. 

2.2.3 Test a n d Noi se C o n f i g u r a t i o n Search P r o b l e m 

The test and noise configuration search problem (the T N C S problem) is formulated as 
the problem of selecting test cases and their parameters together w i th types and parameters 
of noise placement and noise seeding heuristics that are suitable for a certain test objective. 
Formally, let Typep be a set of available types of noise placement heuristics each of which 
we assume to be parametrized by a vector of parameters. Let Par amp be a set of a l l 
possible vectors of parameters. Further, let P C Typep x Par amp be a set of a l l allowed 
combinations of types of noise placement heuristics and their parameters. Analogical ly, we 
can introduce sets Types, Par am s, and S for noise seeding heuristics. Next , let C C 2 P x S 

contain a l l the sets of noise placement and noise seeding heuristics that have the property 
that they can be used together wi th in a single test run. We denote elements of C as noise 
configurations. Further, like for the noise placement and noise seeding heuristics, let Typex 
be a set of test cases, Paramx a set of vectors of their parameters, and T C TypexxParamx 
a set of a l l allowed combinations of test cases and their parameters. We let TC = T x C 
be the set of test configurations. 

2.3 Measuring Quality of Testing Multi-threaded Programs 

A n important role i n modern testing is played by the metrics which measure how well 
the S U T has been tested. This functionality is often provided by coverage metrics which 
measure how many of considered goals (based on selected coverage criteria) have been 
targeted by the tests. Coverage metrics which handle thread inter leavings precisely [73] 
are hard to enumerate stat ically and effectively use due to potential ly huge number of 
possible inter leavings. O n the other side, coverage metrics which do not consider thread 
interleavings at a l l , such as synchronization coverage [12], are insufficient because achieving 
full coverage does not mean that the program cannot contain concurrency errors. 

In [61], there are presented an alternative coverage metrics based on coverage criteria 
which considers internal states to which a selected dynamic analysis a lgori thm can get. 
Such metrics natural ly abstract away a l l behaviour of the S U T which are not important 
in order to detect (or cause) part icular type of concurrency error. S t i l l , coverage goals of 
these metrics are hard to compute stat ically and therefore such metrics are suitable mainly 
i n saturation-based [91] and search-based testing which w i l l be introduced next. In these 
approaches, the coverage metrics are used mainly to compare different results or to observe 
evolution of the testing process which do not require to know what is the full coverage. 

The deterministic testing approaches discussed above benefit from model of S U T they 
dynamical ly bu i ld and maintain. Usual ly the model has form of a graph and therefore graph 
coverage metrics can be used to measure how well S U T has been tested. Since the model is 
constructed dynamical ly and the approaches has no knowledge on how big the model could 
potentially be, the problem wi th determination of full coverage remains for them as well. 

In the paragraphs below, there are presented i n detail the concurrency metrics which 
are used in this thesis wi th in the experiments. A l l descriptions are taken from the paper 
[30]. 
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Concur Pairs. The ConcurPai rs coverage is based on concurrently executing instructions. 
It is a metric i n which each coverage task is composed of a pair of program locations that 
are assumed to be encountered consecutively i n a run and a th i rd i tem that is true or false. 
Results false means that the two locations are visi ted by the same thread. O n the ot­
her hand, the true means that there occurred a context switch between the two program 
locations. Th is metric provides statement coverage information — using false m a r k - a n d 
interleaving information when it is used true mark at once. A task of this metric is denoted 
as a tuple {pl\,pl2, switch) below. Variables ph,ph £ P represent here the consecutive 
program locations (only concurrency primitives and variable accesses are monitored), and 
switch G {true, false} indicates whether the context switch occurs i n between of them. 

D U P a i r s . It is a definition-use coverage which is based on the all-du-path coverage met­
ric from parallel programs. The metric considers coverage tasks i n the form of triples 
(var, nl

u,ni) where n%

u is the uth node i n the thread where the value of program variable 
var is defined while it is referenced i n vth node in the thread Tj. A path i n a Para l le l Pro­
gram F l o w G r a p h ( P P F G ) covers such coverage task i f the value of variable var is the first 
defined by thread Tj and then the same value is used in Tj. Th is can be only guaranteed 
if a synchronization among threads Tj quite simple model of parallel computat ion, for in ­
stance, it supports post and wait system of synchronization and thread-create operation for 
creating new threads only, just the master thread is allowed to create worker threads, and 
the number of created threads in a program need to be determined statically. Under this 
l imi ta t ion, it is possible to number the part icular threads. W h e n dealing wi th today real-life 
applications, one cannot apply such restrictions. The original coverage metric was therefore 
slightly modified. The modified metric is referenced to as D U P a i r s * below. The coverage 
tasks of this metric has the form of tuples (var,pl\,pl2,t\,t2) meaning that value of variable 
var is defined at program locat ion pl\ i n the thread t\ and then used at program location 
ph i n the thread ti- Instead of precise numbering of ind iv idua l threads the metric uses 
an abstract thread identification. 

Synchronization Coverage (Synchro) . The synchronization coverage focuses on the use 
of synchronization primitives and does not directly consider thread inter leavings. Coverage 
tasks of the metric are defined based on various distinctive situations that can occur when 
using each specific type of synchronization primitives. For instance, i n the case of a syn­
chronized block (defined using the Java keyword synchronized), the obtained tasks are: 
synchronization visited, synchronization blocking, and synchronization blocked. The syn­
chronization visi ted task is basically just a code coverage task. The other two are reported 
when there is an actual contention between synchronized blocks—when a thread t\ reaches 
a synchronized block A and stops because another thread ti is inside a block B synchro­
nized on the same lock. In this case, A is reported as blocked, and B as blocking (both, 
in addit ion, as visited). Tasks of this metric are denoted as tuples of the form (pli,mode) 
where pl\ £ P represents the program locat ion of a synchronization primit ive, and mode 
represents an element from the set of the distinctive situations relevant for the given type 
of synchronization. 

Coverage Metr ics Based on Avio . The Avio a lgori thm detects atomici ty violat ion 
over one variable and does not require any addi t ional information from the user about in ­
structions that should be executed atomically. The algori thm considers any two consecutive 
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accesses a\ and ai from one thread to a shared variable var to form an atomic block B. Se-
r ia l izabi l i ty is then defined based on an analysis of what can happen when B is interleaved 
wi th some read or write access 03 from another thread to the variable var. Ou t of the eight 
to ta l cases arising i n this way, four (namely, r / w / r , w / w / r , w / r / w , r / w / w ) are considered 
to lead to an unserializable execution. Tracking of a l l accesses that occur concurrently to 
a block B can be very expensive. Therefore, a cri terion to consider only the last interleaving 
access to the concerned variable from a different thread is defined. The basic Av io metric 
uses coverage tasks i n the form of tuples (pl\,pl2,ph,var) where the considered atomic 
block B spans between program locations pl\ G P and ph G P where the variable var G V 
is accessed by a thread t\ G T while it interferes w i th the access from a different thread 
£2 G T, £2 7̂  t\ at program locat ion pis G P. The extended metric Avio* incorporates into 
coverage tasks also information about the threads from which the accesses have been made 
resulting in tuples of the form (ph,pl2,ph,var,ti,t2)- Single threaded programs cannot 
generate any such coverage task because basic as well as extended version of Avio-based 
coverage metric requires the variable var to be accessed by two distinct threads. 

Coverage Metr ics Based on Eraser. The coverage metrics Eraser and Eraser* are 
based on the Eraser algori thm. For each thread, the a lgori thm computes a set of locks 
currently held by the thread, and for each variable access, the a lgori thm uses these sets to 
derive the set of locks that were held by each thread that had so far accessed the variable. 
These so-called locksets are maintained according to a state assigned to each variable which 
represents how the variable has been operated so far (e.g. exclusively wi th in one thread, 
shared among threads, for reading only, etc.). Basic coverage tasks have the form of a tuple 
(pi, var, state, lockset) where pi G P identifies the program location of an instruct ion access­
ing a shared variable var G V, state G {virgin, exclusive, exclusive', shared, modified, ra­
ce} indicates the state i n which the Eraser's finite control automaton is when the given 
locat ion is reached (the extended version of Eraser using the exclusive' state is considered), 
and lockset C L denotes a set of locks currently guarding the variable var. Eraser* extends 
the basic Eraser metric by identification of a thread t G T performing the access operation. 
Extended coverage tasks thus have the form of (pi, var, state, lockset, t). Accessing a vari­
able var at a certain program location pi is a code coverage task which is here enriched by 
the information whether the variable has been already ini t ia l ized (indicated by virgin or 
exclusive state). Other possible values of the state cannot be reached i n single threaded 
applications. 

Coverage Metr ics Based on Gold iLocks . Go ld iLocks is an advanced lockset-based 
algori thm which combines the use of locksets w i t h computing the happens-before relation 
that says which events are guaranteed to happen before other events. In Gold iLocks , locksets 
are allowed to contain not only locks (L) but also variables (O) and threads (T) . If a thread 
t appears in the lockset of a variable when the variable is accessed, it means that t is 
properly synchronized for using the given variable because a l l other accesses that might 
cause a data race are guaranteed to happen before the current access. The algori thm 
uses a l imi ted number of elements placed i n the lockset to represent an important part of 
the synchronization history preceding an access to a shared variable. The basic Gold iLocks 
algori thm is s t i l l relatively expensive but can be opt imized by the so-called short circuit 
checks (SC) which are three cheap checks that are sufficient for deciding race freedom 
between the two last accesses to a variable. The original a lgori thm is then used only when 
S C cannot prove race freedom. The basic G o l d i L o c k metric is based on coverage tasks 
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having the form of tuples (pi, var, goldiLockSet) where pi G P gives the location of an in­
struction accessing a variable var G V and goldiLockSet C OULUT represents the lockset 
computed by Go ld iLock . The tuple can be extended by a thread t G T which accesses 
the variable var getting Gold iLock* coverage tasks of the form (pi, var, goldiLockSet, t). 
Program location pi at which the variable var has been accessed represents a code coverage 
task. For single threaded applications, one of the short circuit checks discovers that data 
race cannot occur and the information about execution history captured i n goldiLockSet 
can thus only dist inguish the first access to the variable from the others. 

Coverage Metr ics Based on G o o d L o c k . G o o d L o c k is a popular deadlock detection 
algori thm that has several implementations' the metric presented here builds on the imple­
mentation published by Bensalem and Havelund. The algori thm builds the so-called guarded 
lock graph which is a labeled oriented graph where nodes represent locks, and edges repre­
sent nested locking wi th in which a thread that already has some lock asks for another one. 
Labels over edges provide addi t ional information about the thread that creates the edge. 
The algori thm searches for cycles i n the graph wrt . the edge labels in order to detect dead­
locks. The metrics focus on occurrence of nested locking that is considered interesting by 
GoodLock . Col lect ion of the locksets of the threads which the original a lgor i thm uses as 
one element of the edge label is omit ted because this information is used i n the a lgori thm 
to suppress certain false alarms only. The G o o d L o c k metric is therefore based on coverage 
tasks in the form of tuples (pl\,ph, h,h) meaning that some thread t G T has first obtained 
the lock li G L at the locat ion pl\ G P and later requested the lock I2 G L at the location 
pfa G P. The extended metric GoodLock* incorporates also identification of the thread t 
forming the tuple (ph,ph,h,h,t)- Locks are usually used for synchronization of accesses 
to shared resources among several threads, however, also a single threaded applicat ion can 
request for locks and thus generate GoodLock-based coverage tasks. 

Coverage Metr ics Based on Happens-Before Pairs. These coverage metrics are mo­
tivated by observations obtained from the Gold iLocks a lgori thm and the vector-clock algo­
rithms, both of them depend on computat ion of the happens-before relation. In order to get 
r id of the possibly huge number of coverage tasks produced by the vector-clock algorithms 
and t ry ing to decrease the computat ional complexity needed when the full Go ld iLocks al­
gori thm is used, the metrics focus on pieces of information the algorithms use for creating 
their representations of the analyzed program behaviours. A l l of these algorithms rely on 
synchronization events observed along the execution path. Inspired by this, the metrics 
capture successful synchronization events based on locks, volatile variables, wait-notify o-
perations, and thread start and jo in operations used i n Java. A basic coverage task is 
defined as a tuple (pl\,pl2, syncObj) where pl\ G P is a program locat ion in a thread t\ G T 
that was synchronized wi th the locat ion pl2 G P of the thread £2 G T, t<i 7̂  t\ using the syn­
chronization object syncObj. The extended metric H B P a i r * incorporates identification of 
the synchronized threads forming the task as a tuple (pli,pfo, syncObj, £1,^2)• In the same 
way as for the Avio-based metrics, no single threaded applicat ion can generate any H B ­
Pa i r or H B P a i r * coverage task because it captures a synchronization between two distinct 
threads only. 

Datarace. The Datarace metric measures the number of warnings issued by the chosen 
data race detector. In our case, we use the G o l d i L o c k a lgor i thm for this purpose. Thus, 
metric says how many times the a lgori thm was successful and reported a possible error. 
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2.4 Methods Used in Thesis 

This section provides an introduct ion to the areas of the methods that were used in the app­
roaches proposed i n the thesis and dur ing the evaluation of the experiments. It covers main 
statistical approaches, data mining, and genetic algorithms. 

Stat is t ical methods are mainly used i n the evaluation of tests, e.g. to compare the results 
of different approaches by the Student's t-value (statistical hypothesis about whether two 
approaches are significantly different or not) or standard numerical characteristics, such as 
average, variation, median or standard deviation. These methods were used i n the expe­
rimental parts of the thesis for an evaluation of the tests we performed. 

Approaches used i n this work are introduced in more detai l in the following two sections 
where basic data mining methods are presented and base of genetic algorithms. 

2.4.1 B a s i c D a t a M i n i n g A l g o r i t h m s 

D a t a min ing allows us to answer a number of problems in different ways. There are four 
basic methods in data mining: (1) classification, (2) regression, (3) association rules, and 
(4) clustering [ ]. O n l y two of them, namely, classification and regression, are introduced, 
as those have been used i n the methods proposed i n this work. 

B o t h of these methods are so-called methods wi th a supervisor. Supervised learning 
uses predictive models that have a mat r ix X as their input and a vector y as their output. 
The input matr ix represents features, i.e. attributes of the given data sets. The output 
vector could be represented by categorical values (i.e. categories such as T R U E vs F A L S E , 
or A , B , C , D , E and F as the classification i n school) which is the case of classification or 
pattern recognition, or could be represented by real values, which is the case of regression. 
In both data set is d ivided into the t ra ining and the validat ion sample. The pre­
dict ion model is created on the t ra ining sample and then it is tested on the validat ion 
sample. The validat ion sample is used for evaluating accuracy of the created model. 

Classification. A s mentioned in the previous text, the classification task consists of 
assigning variables from a given data set, described by a set of discrete- or continuous-
valued attributes, to a set of classes, which can be considered values of a selected discrete 
target attr ibute. There are two main methods of classification: binary and multiclass. 
Classification approaches include decision trees, boosted trees, Na'iev Bayes, and K-Nearest 
Neighbours. 

For our purposes, the test and noise parameters are marked as variables and we want to 
assign a specific combinat ion of the variables to the one of the two possible classes depending 
on the given goal of program testing. Here, the classes mean whether the given setting of 
the test has a higher probabil i ty of meeting the given goal. In Chapter 4, an approach 
based on boosted decision trees called AdaBoos t is used for classifying of program testing. 

Regression. The regression task consists of assignment of a numerical value to variables 
from a given data set, described by a set of discrete- or continuous-valued attributes. This 
assignment is supposed to approximate some target function, generally unknown, except 
for a subset of the data s e t - t r a i n i n g sample. Th is t raining sample can be used to create 
the regression model that makes prediction of unknown target function values for any 
possible variable from the same data set feasible. In pract ical applications, the target 
function represents an interesting property of variables from the data set that either is 
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difficult and costly to determine, or (more typical ly) becomes known later than is needed. 
A m o n g the regression approaches, there are linear regression or regression trees. 

For our purposes, we have variables such as coverage metrics, where we count the num­
ber of tasks visible dur ing the test execution of concurrent programs and our goal is to 
increase the coverage. In Chapter 5, three different regression algorithms are compared 
that could combine more metrics for predict ion of the coverage of the metrics which are 
more t ime-consuming to collect. 

A s mentioned above, the data set is d ivided on t ra ining and validat ion samples in the su­
pervised methods. The precision of the obtained classifier/model should be evaluated on 
the val idat ion set. Notions of accuracy and sensitivity, based on the following quantities 
[57], can be used for that purpose: 

• The number TP of true positives that is the number of correctly classified positive 
examples, i.e. those objects x where (x, 1) G V and F(x) = 1. 

• The number FP of false positives that is the number of wrongly classified negative 
examples, i.e. those objects x where (x, —1) G V but F(x) = 1. 

• The number TN of true negatives that is the number of correctly classified negative 
examples, i.e. those objects x where (x, —1) G V and F(x) = —1. 

• The number FN of false negatives that is the number of wrongly classified negative 
examples, i.e. those objects x where (x, 1) G V but F(x) = — 1. 

Accuracy then gives the probabil i ty of a successful classification and can be computed as 
the fraction of the number of correctly classified items and the total number of items: 

TP + TN 
a C C U r a C V = TP + FP + TN + FN-

O n the other hand, sensitivity (also called the true positive rate or T P R ) expresses the frac­
t ion of correctly classified positive results and can be computed as the number of the items 
that were correctly classified positively divided by the sum of the correctly posit ively and 
incorrectly negatively classified items (for example, see [103]): 

TP 

sensitivity = T p + p N . 

2.4.2 G e n e t i c A l g o r i t h m s 

In this section, we briefly introduce genetic and evolutionary algorithms. More detailed 
information is presented i n 3.2.1. These algorithms generally produce high-quality mo­
dels. O n the downside, they are very time-consuming. The following paragraphs introduce 
the basics of the genetic algorithms that w i l l be used as an opt imizat ion method in the pro­
cess of noise-based testing and dynamic analysis of concurrent programs. 

The evolutionary algori thm ( E A ) tries to find the best solution possible from a search 
space of candidate solutions wi th respect to selected criteria. E A is suitable for problems 
wi th a huge search space, for which finding the best solution by the brute force approach 
is not feasible. In the context of E A , candidate solutions are called individuals and the set 
of a l l candidates solution is referred to as individual space. The ind iv idua l space is mapped 
into the set of parameters associated wi th candidate solutions that is called decision space. 
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The specific values of parameters from this decision space for part icular individuals are 
called decision vector. The decision vector corresponds to a genome i n biology and a single 
parameter from the vector corresponds to a gene. Individuals are evaluated by objective 
functions resulting i n an objective vector of specific values for part icular objectives. Each 
such objective is related to a cri terion applied on a candidate solution. The evaluation of 
the objective can be based on a single gene, however, it can be influenced by the whole 
genome as well . To compare candidate solutions i n order to determine which of them is 
the best one, so-called fitness function combining the evaluation of a l l desired cri teria into 
a single number is needed [108]. O n the other hand, there is also another possibil i ty where 
the fitness function focuses on evaluation of the given desired cri teria separately — this type 
of fitness function is discussed i n detai l in Chapter 3. 

A rather successful meta-heuristic search technique for complex opt imizat ion problems 
is the genetic algorithm ( G A ) [ ], which is inspired by the process of natural selection. G A 
tries to find the best solutions by biased sampling of the solution search space, starting wi th 
an in i t i a l set (called a generation) of candidate solutions (also referred to as individuals). 
Each ind iv idua l i n the current populat ion is evaluated and assigned a value called fitness, 
representing the sui tabi l i ty of the part icular solution. The next generation of individuals is 
obtained from the current generation, typical ly by using stochastic recombination (called 
a crossover) of individuals selected according to their fitness and mutation of the new 
individual 's attributes (called genes) in order for the search to not get stuck in the local 
extreme. 

Search Process of G A . A subset of an ind iv idua l space wi th a constant size is called 
a population. G A starts w i th an in i t i a l populat ion and evaluates a l l its members (i.e. 
candidate solutions) by a fitness function. Based on this evaluation, the fi t t ing individuals 
called parents are chosen by selection operators to generate new individuals called children. 
New individuals are usually the result of a crossover of two parents followed by a mutat ion. 
This process, called breeding, proceeds unt i l a new chi ld populat ion is completed. New 
generations are gradually created un t i l a sufficiently good solution is found or the max imum 
number of generations is created. 

Selection Operators. Parents from the current populat ion can be chosen for breeding 
using different techniques. Fitness-Proportionate Selection selects individuals proportio­
nally to their fitness—individuals w i th higher fitness have higher probabil i ty to be selected 
for breeding than individuals w i th lower fitness [75]. Tournament Selection is based on 
a tournament. A specific number of individuals is randomly selected from the current 
populat ion and the one wi th the highest fitness is taken for breeding [ ]. For mul t i -
objective opt imizat ion, Mating Scheme may be considered as a selection technique. M a t i n g 
Scheme is slightly more complicated as it works in two phases and selects both parents. 
W i t h i n the first phase, a certain number of individuals is randomly selected for the first 
parent (group A ) and the same number of individuals for the second parent (group B ) . In 
the second phase, the best ind iv idua l from group A is selected for breeding while the indi­
v idua l from group B that is most s imilar to the parent from group A is selected for breeding 
[47]. 

Crossover. W h e n two parents are selected for breeding, crossover takes place—two new 
individuals are created by a recombination of genomes of the parents (i.e. by exchanging 
parts of their decision vectors). The most common crossover techniques are One-Point, 
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Two-Point, and Uniform Crossover [75]. W h e n the One-Point crossover is applied, the cros­
sing occurs at one place only. The place of crossing c is chosen between 1 and the length 
of the genome I. New individuals are obtained by exchanging genes of parents from place c 
to the end of their genomes. For the Two-Point crossover, two places of crossing c\ and C2 
are chosen, both between 1 and I, and new individuals are obtained by exchanging genes of 
the parents just between places c\ and ci. The Uni fo rm Crossover technique goes through 
the whole genomes and exchanges pairs of corresponding genes wi th the preset probabili ty. 

Mutat ion . M u t a t i o n is applied on a single individual—each gene from the individual ' s 
genome is w i th a preset probabi l i ty replaced by any value permissible for this gene. 

2.5 Tool Support Used in Thesis 

This section provides a description of the tools that were used for our experiments w i th 
testing of concurrent programs. The ma in tool is SearchBestie, which cooperates w i th I B M 
ConTest , and E C J Toolki t [68]. 

2.5.1 SearchBest ie 

SearchBestie is a generic tool designated for solving search or opt imizat ion problems in 
the form of finding a combinat ion of input parameters of a given system such that suits 
the tested system as well as the predefined goals of the testing. SearchBestie is i n par­
t icular fine-tuned for the case when the system of interest is a concurrent program to be 
tested. The properties of interest can then be defined in two ways. The first approach 
is finding an error or warning by a dynamic analyser. However, since findings errors (in 
particular, rarely manifesting concurrency errors) is difficult, another target property can 
be the achieved coverage under some concurrency metric [61]. 

The name SearchBestie is an acronym for Search-Based Test ing Enviroment . The goal 
of SearchBestie is not to execute the tests, but to resolve testing as a search problem. 
Execut ion and instrumentation of the tested Java p rogram 1 is provided by external software 
that integrates into SearchBestie as a plug-in. A n example of such software is ConTest that 
is introduced i n the following subsection. The development of SearchBestie itself has been 
carried out in cooperation wi th researchers from I B M Haifa. 

The architecture of SearchBestie consists of four cooperating modules: Manager, State 
space storage, Search and Executor. A general overview of the structure and functioning of 
the SearchBestie architecture is provided i n Figure 2.2. The manager reads a configuration 
file and initializes other modules. T h e n the manager enters a loop common for a l l search 
techniques. The manager asks the search engine to identify a state i n the searched state 
space, which may be viewed as a test and its parameters, to be explored i n the next step. 
The chosen state is then passed to the execution module that executes the appropriate test. 
Results of the test are collected and an object encapsulating the results is passed back to 
the search engine as a feedback and stored i n the state space storage. Subsequently, a test 
checking whether the pre-defined terminat ion conditions have been fulfilled is performed. 
If not, the next i teration starts, and the manager asks the search engine to provide a next 
state of the search space to be explored. W h e n the search is finished, the manager can 
analyze the obtained results or export them. 

1 SearchBestie is only created to test the programs written in Java language. 
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Figure 2.2: High-level architecture of SearchBestie 

The architecture is meant to be very generic and therefore a l l modules consist of two 
parts: an interface that communicates w i t h the rest of the infrastructure and plug-ins that 
actually provide the functionality. Plug-ins can implement the functionality on their own 
or can implement an interface to an external l ibrary or tools. Since plug-ins for the same 
module share a common interface, they can be easily interchanged. This allows users to 
easily experiment w i th several different testing approaches. The generality of the archi­
tecture is also supported by the idea of bui ld ing blocks that allow for combining several 
plug-ins into more complicated entities. 

2.5.2 I B M C o n T e s t 

The I B M Concurrency Testing tool (ConTest) has been developed and supported by re­
searchers from the I B M Verification and Technologies group in Haifa, Israel. ConTest is 
an advanced testing solution and its main use is to expose and eliminate concurrency-related 
bugs i n multi-threaded Java appl icat ions 2 [23]. 

A typ ica l scenario of the ConTest use is that it performs instrumentation of Java byte-
code before its execution first. W h e n the instrumented code is executed, ConTest is in i ­
t ial ized before executing the code of the test. Dur ing the ini t ia l izat ion, ConTest reads its 
configuration files that contain a parameter setting of ConTest , a list of enabled ConTest 
plug-ins and parameters used by the plug-ins. ConTest also generates a unique identifier 
for the current execution. Then the instrumented byte-code is executed. ConTest and its 
plug-ins produce outputs (e.g. the coverage) into the ConTest output directory. The data 
generated from the execution are available i n sub-directories of the output directory after 
execution. E a c h generated file contains the ConTest unique execution identifier i n its name. 
Final ly , unnecessary data produced by ConTest or already processed data can be deleted. 

2 https: / / www. research, ibm. com/haifa / proj ects / verification / contest / 
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The cooperation of SearchBestie w i t h C o n Test is implemented wi th in executor module 
plug-ins. The only act ivi ty required by the SearchBestie user is to enable testing wi th Con-
Test and properly set the parameters controll ing its behaviour, the code to be executed, 
and parameters of ConTest and its plug-ins. The main functionality is implemented in 
the test engine that is responsible for generation of configuration files of ConTest and its 
plug-ins, execution of the test wi th in a separate process and import of generated data from 
the ConTest output directory into the vector of results used by SearchBestie. The configu­
rat ion of the test engine can contain variables whose values are determined by SearchBestie 
according to the state of the state space currently being evaluated. The engine also allows 
for detection of exceptions occurrence by observing outputs of the executed test. Process­
ing the executed test outputs also allows for detection of situations when the running test 
produces no output for a predefined t ime. This helps to detect deadlocks and some other 
progress problems. In such case, the execution can be terminated by the test engine. 

2.5.3 E C J toolki t 

E C J is a Java-based evolutionary computat ion system that has been developed for more 
than ten years. It supports a wide range of metaheuristic algorithms and approaches, in ­
cluding genetic programming, genetic algorithms, evolutionary strategies, particle swarm 
optimizat ion, and differential evolution [102]. Its internal design allows one to easily inter­
connect SearchBestie w i th E C J . 

Ex te rna l tools like E C J uses SearchBestie as a procedure for evaluation of candidate 
solutions. The cooperation works as follows. E C J is executed by the user and wi th in 
the E C J in i t ia l iza t ion phase, SearchBestie is also ini t ia l ized. E C J then generates individuals 
for evaluation and performs a search. Each t ime E C J requires an ind iv idua l to be evaluated, 
SearchBestie is called. The evaluation consists of three steps: the ind iv idua l is transformed 
into the corresponding state i n the state space used by SearchBestie. Then the manager 
module evaluates the state as i f it came from the search module. In the end the result 
is stored i n the state space storage module and the computed fitness is passed back to 
E C J . The search process can be stopped either by E C J , e.g. when a predefined number of 
generations is evaluated, or by SeachBestie. 

2.6 Case Studies 

We now present the multi-threaded programs that are used as test cases in the experiments 
presented in the rest of the thesis. 

Airlines. The size of the test case is 0.3 kLOC, 8 classes. It is a smal l test case containing 
an atomicity violation error. It simulates an airline reservation system wi th three para­
meters X, Y, and Z: The system creates a flight whose capacity is Z (number of available 
seats). Then, X seller threads are executed, and they are periodical ly t ry ing to get a seat 
on the flight. The parameter Y controls how many iterations of an idle loop are done (and 
hence how much time is spent) between two successive attempts to book a ticket. 

Animator. The size of the test case is 1.5 kLOC, 31 classes. It is a program containing 
a data race and an atomicity violation. An ima to r is our short name for the X T A N G O 
animation program [ ] which is a general-purpose system for a lgori thm animat ion that 
allows programmers to create colourful, real-time, 2 & 1/2 dimensional, smooth animations 
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of their algorithms and programs. The focus of the system is on ease of use—programmers 
using this system need not be graphics experts to develop their own animations. 

Crawler. The size of this test case is 1.2 kLOC, 19 classes. The test case includes 
an atomicity violation. The program is taken from an I B M repository. It represents a skele­
ton of an I B M crawler product w i th a test environment s imulat ing real usage of the system. 
Namely, the system creates a given number of threads wai t ing for a connection. If a con­
nection is established, a worker thread serves i t . Afterwards, when a given global t ime l imi t 
occurs, a shutdown sequence is ini t ia ted. Th is means that the working threads are not 
accepting new tasks, and, after finishing the current task, they die [59]. The bug present 
in the program manifests itself dur ing the shutdown sequence but very rarely (roughly 15 
times per 10,000 runs). 

Elevator. The size of this test case is 1.2 kLOC, 12 classes. The program contains 
a data race and an atomicity violation. It implements a real-time discrete-event simulation. 
The applicat ion is used as an example i n a course on concurrent programming. Elevators 
are modeled as ind iv idua l threads that po l l directives from a central control board. C o m ­
municat ion through the control board is synchronized through locks. The configuration 
used for our experiments simulates four elevators [8 i] . This benchmark has one parameter 
which controls the number of threads used. 

Rover. The size of the test case is 5.4 kLOC, 82 classes. Rover contains an atomicity 
violation and a deadlock. The K 9 Rover from N A S A Ames is an experimental platform for 
autonomous wheeled vehicles for exploration of a planetary surface such as Mars . The ro­
ver executive software prototype monitors executions of actions and performs responses 
and cleanup when the execution fails. In the configuration used i n our experiments, eight 
threads are launched i n the system [81]. This benchmark has one parameter which selects 
one of the available test scenarios. 

Cache4j. The size of this test case is 1.7 kLOC, 66 classes. Cache4j does not contain 
any known error. It is an L R U (Least Recently Used) lock-based cache implementation. 
The implementat ion is based on two internal data structures, a tree and a hash-map. 
The tree manages the L R U while the hash-map holds the data. The implementat ion is 
based on a single global lock [ ]. 

HEDC. The size of the test case is 12.7 kLOC, 747 classes. The program does not 
contain any known error. It represents an applicat ion kernel that implements a meta-
crawler for searching mult iple Internet archives i n parallel . In our benchmark configuration, 
four pr incipal threads issue random queries to two archives each. The ind iv idua l queries 
are handled by a short random sleep interval of 0-200 ms; this ensures that the pr incipal 
threads work out of sync. The applicat ion employs a l ibrary for concurrent programming by 
Doug L e a — i n particular, the Pooled-Executor pattern. The workload and memory access 
pattern of this appl icat ion kernel are typica l for Internet server applications and similar to 
applications based on alternative mechanisms such as Java Servlets [84, 87]. 

Moldyn. The size of the test case is 0.8 kLOC, 14 classes. It does not contain any known 
error. M o l D y n is an N - b o d y code model l ing particles interacting under a Lennard-Jones 
potential i n a cubic spatial volume wi th periodic boundary conditions. Performance is 
reported i n interactions per second. The number of particles is given by N . The original 
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Fort ran 77 code was wri t ten by Dieter Heerman, Institut für Theoretische Physik , Germany 
and converted to Java by L o r n a Smi th , E P C C . 

MonteCarlo. The size of the test case is 1.4 kLOC, 22 classes. It does not contain any 
known error. MonteCar lo is a financial s imulation, using Monte Car lo techniques to price 
products derived from the price of an underlying asset. The code generates mult iple time 
series w i th the same mean and fluctuation as a series of historical data. Th is benchmark 
has one parameter which controls the number of threads used for the computat ion [92]. 

Raytracer. The size of the test case is 1.0 kLOC, 22 classes. It is without any known 
error. This benchmark measures the performance of a 3D ray tracer. The rendered scene 
contains 64 spheres, and it is rendered wi th a resolution of NxN pixels. The outermost loop 
(over rows of pixels) has been parallelised using a cyclic d is t r ibut ion for load balancing. This 
benchmark has one parameter controll ing the number of threads used for the computat ion 
[80, 92]. 

SOR. The size of the test case is 7.2 kLOC, 256 classes. The program does not contain 
any known error. S O R (Successive Over-Relaxat ion over a 2D grid) synchronizes its threads 
using a barrier rather than locks. It implements an iterative method for solving discretized 
Laplace equations on a gr id data structure. In particular, it performs mult iple passes over 
a rectangular gr id un t i l the values i n the grid change less than a certain threshold, or a pre­
defined number of iterations has been reached. The new value of a gr id point is computed 
using a stencil operation, which depends only on the previous value of the point itself and 
its four neighbours i n the grid. The program has two parameters: the number of iterations 
and the number of threads [80, 84]. 

TSP. The size of this test case is 0.4 kLOC, 8 classes. It is without any known error. 
T S P (Travelling Salesman Problem) is a travelling salesman applicat ion which computes 
the shortest path for a salesperson to visit a l l cities in a given set exactly once, start ing in 
one specific city. The program is parallelized by dis t r ibut ing the search space over different 
processors. Because the a lgori thm performs pruning, the amount of computat ion needed for 
each subspace is not known in advance and varies between different parts of the search space. 
Therefore, dynamic load balancing between the processors is needed. This benchmark has 
two parameters: the number of threads and a given input file w i th a T S P instance [80, 85]. 
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Chapter 3 

Application of Genetic Algorithms 
in Noise-based Testing 

In this chapter, we propose an applicat ion of a multi-objective genetic a lgori thm to solve 
the T N C S problem. W i t h i n the proposal, we also suggest ways improve handling of w i th 
the inherent scheduling non-determinism i n a genetic opt imizat ion process as well as of 
the much higher costs of some coverage tasks. Our work is motivated by a previous ap­
plicat ion of the single-objective genetic a lgori thm ( S O G A ) i n the domain of noise-based 
testing of concurrent programs [ ]. The S O G A approach improved the process of noise-
based testing but came wi th significant problems on its own. A s discussed i n more details 
below, these problems concern the construction of a suitable fitness function aggregating 
al l the objectives of interest in a way suitable for the highly non-deterministic environment 
of noise-based testing of concurrent programs. In part icular w i th constructing a suitable 
fitness function aggregating a l l the objectives of interest. 

In the following sections, we first discuss some specific related work and then provide 
the multi-objective genetic algorithm ( M O G A ) . Afterwards, as our first contr ibution, we 
focus on selecting suitable objective functions that can be used wi th in a multi-objective 
fitness function when solving the T N C S problem. This is needed since according to our 
experience, very significantly influence the quali ty of the search process. We part icular ly 
focus on the number of distinct values that the objectives can have, their correlation, and 
their tendency to suffer from the influence of non-determinism. Furthermore, we propose 
a novel modification of the coverage-based objective functions based on the so-called penal­
izat ion of commonly achieved concurrency behaviour, which leads to quali ty improvement 
of the objectives wrt . the number of distinct values they can get and which guides the search 
process towards testing uncommon but legal behaviours. 

Next , we compare the three commonly used multi-objective algorithms, namely, SPEA, 
SPEA2, and NSGA-II, w i th respect to their sui tabil i ty for solving the T N C S problem. 
Subsequently, we study a suitable setting of parameters of the chosen algori thm to increase 
the quali ty of solutions discovered by this a lgori thm in our setting. Next , we present 
in i t i a l promising experiments demonstrating the abi l i ty of our M O G A approach to find 
good solutions of the T N C S problem and to suppress problems of the previous GA-based 
approach. Final ly , we make a comparison of the previous GA-based approach wi th our new 
multi-objective genetic algori thm. 
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3.1 Related Work 
This section provides an overview of works that apply metaheuristics and opt imizat ion 
techniques to the testing of multi-threaded programs. 

Major i ty of the existing works i n the area of search-based testing of concurrent programs 
focus on applying various metaheuristic techniques to control the state space exploration 
wi th in the guided (static) model checking approach [37]. T h e basic idea of this approach 
is to explore areas of the state space that are more l ikely to contain concurrency errors 
first. Various algorithms, such as simulated annealing [ ], genetic algorithms [37, 3], 
par t ia l swarm optimisat ion (PSO) [15], ant colony opt imisat ion ( A C O ) [2, 1], and estimation 
dis tr ibut ion algori thm ( E D A ) [93], were applied here. 

The fitness functions used i n these approaches are based on detection of error states 
(e.g. [ ]), a distance to error manifestation (e.g. a high number of blocked threads can 
indicate that we are close to a deadlock [37, 3]) or formula-based heuristics [2, 1] which 
estimate the number of transitions required to get an objective node from the current one. 
Most of the approaches also search for a min ima l counterexample path, i.e. a number of 
edges taken before the objective node is reached [93, 37, 3]. 

A n advantage of this approach is that the underlying model checking offers a well-defined 
state space and a high degree of determinism. The disadvantage originates i n the use of 
static model checkers, which do not scale well . Moreover, without exploring the entire state 
space, absence of errors cannot be proven. Therefore, we can consider such approaches as 
a heavy-weight deterministic testing. 

Heurist ic testing of multi-threaded programs using noise injection techniques is studied 
i n [16] and [42]. In [16], the cross entropy heuristics is used to navigate the deterministic 
testing approach. Several fitness functions were proposed i n this work for common non-
concurrency errors, such as buffer overflow (a por t ion of buffer being used), and concurrency 
errors, such as a data race (a number of shared resources being accessed). In [ ], a genetic 
algori thm was used to find a solution to the T N C S problem: the weighted fitness function 
combined detected errors, high concurrency related coverage and time. 

Several other works focus on a slightly different problem of debugging multi-threaded 
programs, which tries to maximize the probabil i ty that a known error manifests during 
the test execution. In [28], genetic algorithms are applied to find a set of places i n the pro­
gram, where a noise should be placed to increase probabil i ty of spott ing an error. In this 
case, the fitness function tries to minimize the number of places affected by the noise and 
favours solutions that put a high amount of noise to very smal l set of places. 

The problem of increasing the probabil i ty of an error manifestation wi th in the debugging 
process is targeted i n [10, 9 ] as well . In [10], program locations are stat ically classified 
according to their sui tabi l i ty for the noise injection. Then a probabil ist ic a lgori thm is used 
to find a subset of program locations that increase the error manifestation ratio. In [99], 
a machine learning feature selection algori thm is used to identify a subset of program 
locations for noise injection. In this case, the test is executed many times. The program 
locations, to which the noise was injected i n each execution, are collected together w i th 
information whether the error got manifested (or not). 

A combination of the noise-based testing wi th G A appeared first i n [42] (denoted as 
S O G A ) . There, a way of using the G A for finding a suitable setting of noise injection 
parameters was proposed and the following problems were identified. The combination 
v i a a weighted fitness function showed to be sensitive to the setting of weights. F i n d i n g 
weights that would be suitable i n general turns out to be indeed very hard i n the given 
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context, since different metrics can have very different ranges, which can moreover change 
from a test case to a test case. A p a r t from that, some of the metrics tend to correlate in 
some test cases, but not i n others. 

Furthermore, it was discovered that candidate solutions highly rated during one eval­
uation d id not provide such good results when reevaluated again. This was caused by 
the thread scheduling non-determinism. It influenced the evaluation of candidate solutions 
too much despite the use of the accumulated evaluation over several test runs. It was also 
discovered that i n some cases, the used genetic approach suffered from degradation, i.e. 
a quick loss of diversity i n the populat ion. It was caused by an excessive selection pressure 
on some objectives. Such a loss of diversity can unfortunately have a negative impact on 
the abi l i ty of the approach to achieve coverage tasks that are more difficult to cover, since 
they correspond to rare (and hence more likely to contain bugs unknown so far) program 
behaviours. 

The aforementioned ctr6cts sire what we a im to improve i n this work. We also further 
improve the efficiency of solving the T N C S problem using the multi-objective opt imizat ion 
algorithms and novel fitness functions introduced i n Section 3.3. 

3.2 Preliminaries 

Chapter 2.4.2 already contains general information about G A . In this prel iminary section, 
we introduce more details about multi-objective optimizations, like the multi-objective eval­
uation of individuals . T h e n we introduce test cases and environment used for our experi­
ments. 

3.2.1 M u l t i - o b j e c t i v e G e n e t i c A l g o r i t h m s 

A s mentioned above, individuals are evaluated by a fitness function, which represents the ob­
jective cri teria of a problem to be solved by G A . The comparison of the individuals is quite 
easy if the evaluation is based on a single cri terion only. Such a comparison is called 
a Single-objective Optimization Problem (SOP). A more complicated si tuation occurs when 
more objective cri teria need to be followed simultaneously—such a case is called a Multi-
objective Optimization Problem (MOP) and is, actually, our case. 

T h e Single-objective Optimizat ion. In single-objective opt imizat ion, the set of can­
didate solutions needs to be completely (totally) ordered according to the fitness function 
f, i.e. any two candidate solutions a, b G X then either f(a) > f(b) or f(a) < f(b) is 
true. T h e t radi t ional approach to solve a multi-objective problem by the single-objective 
opt imizat ion is to bundle a l l objectives into a single scalar fitness function using a weighted 
sum of objectives 

f(x) = wi * /i(x) + w2 * /2(x) H h wk * /fc(x). 

Using the weighted sum as the fitness function has several drawbacks. The obvious issue 
is how to set the weights u>i, u>2, . . . ,Wk for part icular objectives. T h e weights may reflect 
the importance of concrete objectives; however, they may also capture the balance between 
the objectives. A wrong setting of the weights can lead to neglecting some objectives. 
The other issue is non-linearity of objective values. Furthermore, it may not be possible to 
identify a single best solution for several multi-objective problems, because the individuals 
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are not total ly ordered wi th respect to the given objectives—only a par t ia l order can be 
found among them. For example, we want to buy an aircraft and we have two criteria: range 
( / l ) and m a x i m u m cruise speed ( /2) . We want an aircraft w i th a high range and high cruise 
speed wi th in the given budget, but these objectives go against each other. Figure 3.1 shows 
six different individuals . For instance, we can see that ind iv idua l A has better cruise speed 
(i.e. higher / 2 ) than ind iv idua l B , who has a better range (i.e. higher fl) than ind iv idua l A 
and thus, we cannot decide which aircraft is better. In such situations, it can be useful to 
examine the Pareto dominance or Pareto non-dominance. 

T h e Multi-objective Optimizat ion. M O P in general consists of a set of n parameters 
(i.e. decision variables), a set of k objective functions, and a set of m constraints on the de­
cision variables [108]. The opt imizat ion goal is to maximize the objective vector y: 

y = f(x) = ( / 1 (x) , / 2 (x) , . . . , / f c (x) ) 

wi th respect to the constraints e del imit ing the set of candidate solutions: 

e(x) = (ei(x), e 2(x), . . . , em(x)) < 0 

where x = (xi,X2, • • • ,xn) £ X is a decision vector from the decision space X . 

Pareto Dominance. For any two decision vectors a and b from the decision space X , 

a >- b (we say a dominates b) iff f(a) > f(b) 

a y b (we say a weakly dominates b) iff f(a) > f(b) 

a ~ b (we say a is indifferent to b) iff f (a) ^ f(b) A f (b) ^ f (a) 

In our example (Figure 3.1), there are four individuals (A , B , C , and D) that are not 
dominated by any other ind iv idual . 
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Pareto Optimality. A decision vector x G X is said to be non-dominated regarding a set 
A C X iff $& £ A : a >- x. The non-dominated decision vector x is called Pareto optimal 
and the set of a l l non-dominated decision vectors is called the Pareto-optimal front. 

In our example (Figure 3.1), the Pareto-opt imal front or the Pareto Front Rank contains 
four individuals , namely, A , B , C , and D . If we then remove these individuals from our set, 
we can create the second Pareto front. It contains two individuals , namely, E and F , which 
are dominated by some individuals from the Pareto front, but they are not dominated by 
each other. The evaluation of one ind iv idua l is not based on objective functions only, but 
it is also influenced by other individuals . 

There are several algorithms for the multi-objective opt imizat ion that use different eva­
luat ion of individuals . However, a l l of them exploit the non-dominated sorting. For our 
purposes, we have analyzed the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) 
and two versions of the Strength Pareto Evolutionary Algorithm (SPEA and SPEA2). 

N S G A - I I . The skeleton of the N S G A - I I is as follows: (1) we start w i th in i t i a l popula­
t ion P, (2) we compute the Pareto ranks of a l l individuals , (3) the best n individuals are 
held in an archive, (4) we breed new populat ion Q from populat ion P, (5) we compute 
the Pareto ranks of a l l individuals PUQ and decide, which individuals stay i n the archive, 
(6) new populat ion Q becomes populat ion P, (7) the process continues wi th step (4) unt i l 
we obtain the required solution or create the m a x i m u m number of generations. 

Sparsity. To achieve better diversity among individuals from the same Pareto front, we 
can define sparsity. For instance, as the Manhattan distance over every objective between 
an individual ' s left and right neighbours [69]. The sparsity of outer individuals that have 
only one neighbour is defined as infinite. We illustrate the sparsity on individuals B and C 
from Figure 3.1. The sparsity of ind iv idua l B (i.e. \C\ — A\\ + \Ci — A<i\) is higher than 
the sparsity of ind iv idua l C (i.e. \D\ — B\ \ + \D<i — B<^\). 

S P E A and S P E A 2 . In S P E A , the value of fitness is not based direct ly on Pareto fronts, 
but on the so-called strength. The Pareto-opt imal solutions found so far are stored in 
the archive, which is also referred to as an external set. The fitness of individuals from 
populat ion P is calculated using the strengths of individuals i n the external set. A t first, 
each ind iv idua l i from the external set i £ E S w i th decision vector Xj is assigned wi th 
strength S(i) (a real value from [0,1)). The strength represents the ratio between the num­
ber of individuals j w i th decision vector X j , which are weakly dominated by ind iv idua l i 
and the size N of populat ion P plus one. 

~ n + i 

Fitness F{i) of ind iv idua l i from the external set is equal to its strength. That is 
F{i) = S{i) while fitness F(j) of ind iv idua l j from populat ion P is equal to one plus the sum 
of strengths of individuals from the external set, which weakly dominate ind iv idua l j. 

F(j) = 1 + £ S(i) 
ieES\xi>iXj 

Note that the value of such a fitness needs to be minimized here. The main steps of 
SPEA are the following, (1) in i t ia l iza t ion—ini t ia l populat ion P, (2) updating—create or 
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update the external set, (3) fitness assignment—evaluation of individuals , (4) breeding— 
selection of parents, recombination, mutat ion, (5) termination—terminate search or go to 
step (2). 

The weakness of the fitness evaluation wi th in S P E A is the dis t r ibut ion of individuals in 
the external set. If the external set does not contain enough different individuals , the d i ­
versity of the evaluation is weak. Moreover, the diversity of evaluation is weak as well i f 
the individuals in P are close to each other, because such individuals are dominated by 
the same individuals from the external set and thus they have the same fitness value. 

These problems are addressed by SPEA2, which evaluates individuals not only using 
the external set E S , but also using populat ion P itself. Strength S(i) for each ind iv idua l i 
from E S U P represents the number of individuals that are dominated by i. 

S(i) = \{j\j £ £ S U ? A x ^ x 3 } | 

The raw fitness of ind iv idua l j is then calculated as the sum of strengths of its dominat ing 
individuals i. The fitness needs to be minimized here as well (actually, a zero value means 
a Pareto-opt imal solution). 

R(j) = £ S(i) 
i&ESUP\xi^Xj 

For example, ind iv idua l j is dominated by individuals i\ and %2, ind iv idua l i\ dominates 
two individuals (i.e. S{i\) = 2) and ii dominates three individuals (i.e. S{%2) = 3). Then 
the raw fitness of ind iv idua l j is R(j) = S(ii) + Sfo) = 5. 

Add i t iona l density information D(i) £ (0,1) is incorporated to discriminate between 
individuals having the same raw fitness value. The SPEA2 uses A:-th nearest neighbour 
method and adds the density to the raw fitness F{i) = R{i) + D{i). 

The main loop of the SPEA2 a lgori thm is similar to SPEA: (1) in i t ia l iza t ion—ini t ia l po­
pulat ion P, (2) fitness assignment—evaluation of a l l individuals from P, (3) environmental 
selection—fill the external set w i t h iV best individuals from ES U P, (4) terminat ion—if 
some terminat ing cri teria is satisfied, (5) breeding—selection of a parents, recombination, 
mutat ion and continue wi th step (2). 

SPEA2 has a fixed size of the external set—compared to SPEA, where the size of 
external set depends on the size of the Pareto front rank (of course, if the number of Pareto-
opt imal solutions exceeds a predefined l imi t , some members are removed by a clustering 
technique to preserve the characteristics of the non-dominated front). SPEA2 fills the size 
of the external set w i t h dominated individuals [109, 110]. 

Quantitative Traits and Realized Heritability. A s mentioned above, there are se­
veral similarities between the evaluation of individuals in genetic algorithms and i n biology. 
Here, we would like to discuss another notion from biology that can be useful for our pur­
pose. In biology, there are two main types of trai ts—quali tat ive and quantitative. The basic 
difference is that a qualitative trait is typical ly influenced by a single gen, while a quantita­
tive trait is influenced by several gens and /or environment. This means that two genetically 
identical individuals can have different evaluation of the same trai t . In our case, two in­
dividuals w i th the same decision vector can have different objective vectors and thus, we 
may use the evaluation inspired by quantitative traits. 

Heritability indicates whether the variabi l i ty of monitored traits is due to genetic fac­
tors, while realized heritability (h2) is often used to quantify the degree to which a trait 
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in a populat ion can be pushed by selection [17, 51]. We exploit heri tabil i ty and realized 
heri tabil i ty to confirm that our approach of using G A for the T N C S problem is useful. Re­
alized heri tabil i ty can be either calculated using several formulas or estimated statistically 
by linear regression. The regression coefficient reflects a relationship between the offspring 
evaluation and the parent evaluation. A low values h2 (less than 0.01) occurs when the off­
spring of the selected parents differ a l i t t le from the original populat ion. O n the other hand, 
a high values of h2 (more than 0.6) occurs when the offspring of the selected parents differ 
from the original populat ion almost as much as the selected parents do. We use the rea­
lized heri tabi l i ty estimated by the linear regression technique to confirm the inheri tabi l i ty 
of selected objectives. 

Linear regression is an approximat ion of given values by a line using a method of least 
squares. This line can be described using the following function: 

y = A) + Pix + e 

where y is dependent variable—in our case, it represents values of offspring, x is explanatory 
variable—in our case, it represents values of parents, J3Q and f3\ are regression parameters, 
and e is noise. A vector of regression parameters j5 can be estimated as follows: 

P= ( X T X ) _ 1 X T Y 

where X is a mat r ix wi th ones i n the first column and the values of parents in the second 
column, and where Y is a vector of the values of offspring. If parameter (3\ (i.e. the slope 
of the regression line) is equal to 0, then there is no dependency between offspring and 
parents. The degree of the dependency, i f indicated by the slope of the regression line, can 
be determined using either the coefficient of determination r2 or correlation coefficient r . 
The coefficient of determination can be calculated as: 

2 r 

r = 1 - — 

where Se is the residual sum of squares and St is the to ta l sum of squares. These sums can 
be calculated as: 

Se= ( Y - Y ) T ( Y - y ) 

where Y = /3X and 
St = (Y- Yf (Y - Y) 

where Y is the ari thmetic mean of Y components. Note that the coefficient of determination 
is square of the correlation coefficient. In our experiments, we have used the correlation 
coefficient for evaluation of dependency. It is from interval (—1,1) and the value 0 means 
that there is no correlation between the values, i.e. offspring is independent of parents. 
Values of the correlation coefficient that are closer to —1 or 1 mean stronger dependency. 
The correlation coefficient is calculated using covariance between parents and their offspring 
divided by their standard deviations: 

C ( X , Y ) 
r = 

where C (X , Y) is covariance calculated as 

C ( X , Y ) = ] T ( X - X ) ( Y - Y ) . 
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3.2.2 Test Cases a n d E n v i r o n m e n t W e U s e 

In the following sections, we present various results obtained i n our infrastructure for test­
ing concurrent programs. This infrastructure is based on the SearchBestie [ ] platform, 
which uses the I B M Concurrency Testing Too l (ConTest) [40] to inject noise into execu­
t ion of considered programs and its plug-ins [59, 61] for dynamic analysis and collection of 
coverage metrics. The used meta-heuristic algorithms were implemented wi th in the E C J 
l ibrary [102], which cooperates w i th our SearchBestie platform as well. 

Our in i t i a l observations presented below are based on data collected from the three 
multi-threaded Java programs, namely, Air l ines , Animator , and Crawler . They were pre­
sented i n Section 2.6 and each of them contains a concurrency error. An ima to r was executed 
on the Intel i7-3770K processor using Oracle J D K 1.6. The other two test cases were exe­
cuted on a machine wi th two Intel X5355 processors using the same version of the Oracle 
J D K . 

3.3 Multi-objective Genetic Solution of T N C S Problem 

This section describes our proposal of applying M O G A to the T N C S problem. It touches 
upon several important aspects of setting M O G A for a successful applicat ion to the T N C S 
problem. In particular, we introduce possible objectives in Section 3.3.1 first. These can 
be used in construction of a successful fitness function, w i th emphasis on the selected pro­
perties that affect their sui tabi l i ty for our approach. Section 3.3.2 compares three popular 
multi-objective genetic algorithms ( S P E A , S P E A 2 and N S G A - I I ) w i th respect to their suit­
abi l i ty for our approach. In Section 3.3.3, we discuss several aspects that influence selection 
of part icular objectives and construction of suitable fitness functions for our M O G A ap­
proach. F ina l ly , the setting of parameters of the part icular M O G A (such as the size of 
population, mutat ion, and crossover operators) is discussed and experimentally evaluated 
in Section 3.3.4. 

3.3.1 I m p o r t a n t P r o p e r t i e s of C o n s i d e r e d Objec t ives 

Various metrics can be collected from the execution of the instrumented programs. Our 
testing infrastructure is able to detect test failure, measure a durat ion of the test execution, 
and collect various code and concurrency coverage metrics as well as warnings produced 
by various attached dynamic analyzers, which are able to detect data races, atomici ty 
violations, and deadlocks. Col lec t ing a l l these data introduces a considerable slowdown. 
Moreover, some of the metrics are more suitable to be used as an objective and some are 
less suitable for this purpose. In this section, we discuss key properties of metrics suitable 
for the meta-heuristic approach, especially M O G A . We part icular ly focus on the number 
of distinctive values produced by metrics, correlation among objectives, and their stability. 
The stabil i ty here means the abi l i ty of the objective to provide similar values for the sa­
me decision vector i n presence of the non-deterministic behaviour of tested multi-threaded 
programs. 

N u m b e r of Distinct Values Produced by Objectives. One of the important pro­
perties of the considered objectives is their abi l i ty to classify the considered solutions. In 
general, many meta-heuristic algorithms provide worse results when the objectives wi th 
a low number of distinct values i n objectives are used [97]. In our case, we indeed do have 

30 



metrics that suffer from the lack of distinct values. For instance, the error metrics provides 
us w i th a boolean value whether the test fails or passes. The number of distinct values can 
be sl ightly increased by mult iple execution of the same test (this makes sense i n presence 
of a non-deterministic behaviour of the executed multi-threaded programs). However, 10 
executions gives us a possibil i ty to classify the considered solution only into 10 groups 
according to the number of test executions that fail . A very smal l number of distinct values 
is also provided by metrics based on warnings produced by the dynamic analyses. 

In [61], we discuss and compare a few coverage metrics from several perspectives, includ­
ing the number of distinct values they provide. There are coverage metrics, such as HBPair, 
that focus only on the synchronization done among two threads and provide only a few dis­
t inct values for smal l programs or programs w i t h only l i t t le synchronization. The more 
context information is included into the coverage metrics, the higher number of distinct va­
lues is usually obtained. For instance, the Avio metrics considers three subsequent accesses 
to a single shared variable from two threads. The Avio* metrics adds an identification 
determining from which two threads these accesses were performed and therefore again 
increases the number of distinct values. The GoldiLockSC metrics, which provides very 
good results in comparison, does not consider a direct identification of threads. Instead, 
the higher number of distinct values is obtained by considering the contents of a lockset 
produced by the G o l d i L o c k algori thm [26] as context information. 

H igh numbers of distinct values of an objective might be impract ical i n some cases. 
For instance, the ConcurPair coverage metrics [ ] considers a l l the subsequent tuples 
of concurrency-related events. The concurrency aspect can be even emphasized by as­
signing different weights to the concurrency-related events executed by the same thread 
and the concurrency-related events executed i n different threads (referenced as WConcur-
Pair [ ]). Hand l ing and working wi th a huge number of coverage tasks of these metrics 
produced by a big, heavily concurrent program might be slow. However, for the small 
programs we use, the metrics provide fine-grained information about concurrency. 

A very good candidate for a satisfactory objective from the point of view discussed 
here is t ime, because the length of the test execution can be measured i n smal l units (e.g. 
milliseconds). However, t ime does not reflect concurrency and therefore is less attractive 
for us. O n the other hand, it might be interesting to use it later on when searching for 
solutions that provide good results in a short time. 

Correlat ion of Objectives. Another important property of the considered objectives 
is their correlation. If two objectives correlate, they contribute to the search wi th the sa­
me information. Therefore, it is recommended to use non-correlating objectives i n meta-
heuristic algorithms [! ] so they do not need to bother w i t h correlation themselves. A s 
most of the considered concurrency coverage metrics focus on the concurrency behaviour, 
there is a high chance that some of them w i l l correlate. Therefore, we analyzed a l l metrics 
proposed in [61] and used i n [ ], whether they correlate on our test cases. In particular, we 
performed 1000 executions of each of the considered test cases, namely, An ima to r , Air l ines , 
and Crawler, w i t h randomly chosen configurations of noise. D u r i n g each execution, we 
collected a l l considered metrics and analyzed correlation among them. 

Table 3.1 shows a fragment of our results focused only on metrics, which we mention 
in this section. D a t a for the correlation table are taken from a l l considered test cases. 
There is a high correlation (over 0.8) among the Avio*, GoldiLockSC*, Eraser and DUPair 
objectives, which focus on the same behaviour of the considered programs (i.e. the way 
how threads access shared variables). The LockSet metrics, which captures warnings pro-
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duced by the lockset-based Eraser a lgori thm [8£ ], natural ly correlates w i th metrics based 
on locksets (i.e. GoldiLockSC* and Eraser). 

Objectives w i t h low correlation wi th other shown objectives are Time and Error, which 
do not consider a concurrency-related behaviour at a l l . Rather smal l correlation wi th 
other concurrency-related metrics is provided by the HBP air and WConcurPair objectives, 
which focus on different behaviours. Specifically, HBP air considers synchronization among 
threads only and WConcurPair captures thread context switches. 

Table 3.1: Correla t ion of objectives i n a l l three considered test cases. 

Time Error WConcur. DUPair HBPair Avio* GoldiSC* Eraser LockSet 
Time 1 0.140 0.343 0.506 0.164 0.344 0.481 0.507 -0.373 
Error 0.140 1 -0.268 -0.209 -0.622 -0.187 -0.176 -0.258 0.346 
WConcurPair 0.343 -0.268 1 0.746 0.658 0.900 0.743 0.765 -0.571 
DUPair 0.506 -0.209 0.746 1 0.391 0.857 0.996 0.997 -0.868 
HBPair 0.164 -0.622 0.658 0.391 1 0.557 0.342 0.459 -0.288 
Avio* 0.344 -0.187 0.900 0.857 0.557 1 0.863 0.861 -0.650 
GoldiLockSC* 0.481 -0.176 0.743 0.996 0.342 0.863 1 0.988 -0.866 
Eraser 0.507 -0.258 0.765 0.997 0.459 0.861 0.988 1 -0.863 
LockSet -0.373 0.346 -0.571 -0.868 -0.288 -0.650 -0.866 -0.863 1 

W h e n studying the correlation tables created for part icular test cases, we found that 
the correlation depends on the nature of the test case. For instance, in the Crawler test 
case, most of the objectives highly correlated—including the HBPair coverage, which does 
not correlate in the other considered test cases that much. 

Overal l , non-correlating objectives are Time and Error: they do correlate neither w i th 
each other nor w i th the concurrency-related coverage metrics. The coverage metrics cor­
relation depends on the part icular test case. In most lower correlation was de­
tected among the WConcurPair, HBPair and GoldiLockSC* metrics. A s mentioned above, 
the most contr ibut ing factor i n this phenomenon is the behaviour that is measured by these 
objectives. 

Stability of Objectives. Another property of possible objectives, which we discuss here, 
is the abi l i ty to provide stable values i n presence of non-determinism in execution of concur­
rent programs. The work on using G A to solve the T N C S problem [12] recognized that one 
of the major obstacles for applying G A in this domain is the non-deterministic behaviour 
of concurrent programs, which gets reflected i n non-deterministic objective values. Specifi­
cally, i f we run a single test w i t h a single configuration mult iple times, each run can give us 
different objective values. This can have a rather negative impact on our use of G A , since 
the same ind iv idua l can be considered to give great results at some point dur ing the breed­
ing process and subsequently, it gives poor results only. Below, we briefly introduce several 
possibilities to increase stabil i ty when s t i l l considering just one representative value. Then 
we illustrate problems we faced and choose a suitable technique to reduce non-determinism. 

The natural approach to reduce non-determinism is based on performing the experiment 
mult iple times and use a suitable value (or values) to characterize the result (and, i n some 
cases, a degree of non-determinism). In the work [42], the effects of non-determinism were 
reduced by using cumulation over test runs repeated several times (five i n our case) w i th 
a single candidate solution (i.e. the configuration). However, this solution d id not produce 
t ru ly satisfactory results w i th respect to stability. Therefore, we now look into the pos­
sibi l i ty of using average, median, or modus values instead. 
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Figure 3.2: I l lustrat ion of three common distributions of values of a selected coverage met­
rics (WConcurPair) on Crawler test case. The first subgraph shows a normal dis t r ibut ion 
wi th a smal l variation, the second subgraph shows a dis t r ibut ion that tends to the normal 
one, but unfortunately wi th a high variation. The th i rd subgraph shows a non-normal 
distr ibut ion. 

The well-known statistical measures mentioned above are commonly used to characterize 
data sets. To choose between them, one has to understand what k ind of data are to 
be characterized. Graphs i n Figure 3.2 il lustrate common outcomes of the considered 
objectives i n a repeated execution of the same configuration. The figure shows three graphs 
representing the dis t r ibut ion of values of a selected objective (WConcurPa i r i n this case) 
collected from 1100 independent executions (denoted iV in the figure) of three different test 
and noise configurations of the Crawler test case. The graphs were chosen to illustrate 
three ma in situations that represent common observations we got when analyzing different 
objectives on mult iple executions of different test cases. 

The first graph demonstrates an ideal si tuation when the dis t r ibut ion of observed values 
is normal w i th a few outliers. Moreover, the values in this case have a very smal l variat ion 
coefficient (denoted v in the figure). In such cases, average, modus, and median values rep­
resent the data set quite accurately. Even the cumulated values, which we used previously, 
would characterize the observed data w i th a high stabil i ty i n this case. 

The second graph illustrates the most common si tuation when the dis t r ibut ion is not 
normal w i th several outliers and a high variat ion coefficient. In such cases, the average and 
the cumulat ion do not characterize the observed data accurately and therefore tend to be 
unstable. The modus and the median characterize such data sets w i t h a better accuracy. 

Final ly , the th i rd graph shows the very unpleasant situation, which we sometimes en­
counter as well . The variat ion coefficient is again high and the dis t r ibut ion is not normal , 
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but the number of outliers is very high too. In such cases, even the modus and the median 
do not characterize the results well . Bu t , they are s t i l l more stable approaches than based 
on the average and cumulat ion values. 

Below, we present extended comparison of the mult iple benchmarks (eight concurrent 
programs, namely Air l ines , Animator , Crawler, Elevator, M o l D y n , MonteCar lo , Raytracer, 
and Rover—see Section 2.6) for three aforementioned approaches—median (med), mode 
(mod)1, and the cumulative value (cum), which is computed as sum for t ime and as united 
coverage for the considered coverage metrics. For each of our case studies, we randomly 
selected 100 test configurations, executed each of them i n 10 batches of 10 runs, and com­
puted the representative values i n several different ways for each batch. Afterwards, we 
compared stabil i ty of the representative values obtained across the batches. Table 3.2 
shows the average values of variat ion coefficients of the representatives computed across 
al l the considered configurations for each case study and each approach to /op t ion of com­
put ing a representative value. It is clear that the best average stabil i ty was provided by 
the median. 

Table 3.2: Stabi l i ty of representatives. 

Case med mod cum 

Air l ines 0.033 0.054 0.051 
An ima to r 0.012 0.027 0.092 
Crawler 0.211 0.261 0.255 
Elevator 0.145 0.227 0.107 
M o l D y n 0.020 0.025 0.024 
MonteCar lo 0.015 0.019 0.022 
Raytracer 0.022 0.020 0.016 
Rover 0.059 0.100 0.141 

Average 0.065 0.092 0.088 

Based on these observations and information from literature [21], we decided to use 
modus (denoted mod) and median (denoted med) computed from metrics collected from 
mult iple executions of the test and noise configuration. In particular, we decided to use 
modus for metrics that provide a smal l number of distinct values (e.g. errors) and median 
for the rest of metrics. In the future, we would like to use the variat ion coefficient in 
evaluation of configurations as well. 

3.3.2 Select ion of M u l t i - o b j e c t i v e G e n e t i c A l g o r i t h m 

Another step needed to apply multi-objective genetic opt imizat ion to solve the T N C S prob­
lem is to choose a suitable multi-objective genetic algori thm. Therefore, i n this subsection, 
we analyze the well-known multi-objective genetic algorithms SPEA, SPEA2, and NSGA-II 
introduced i n Section 3.2.1 from the point of view of their appl icabi l i ty for solving the T N C S 
problem. We part icular ly concentrate on checking which of the evaluation functions Fspea(i), 
Fspea2(i)i and Fnsga-ii(i) implemented by these algorithms provides the best results i n clas­
sifying our individuals i into a reasonable (i.e. neither too smal l nor too big) number of 
classes. 

xTaking the biggest modus if there are several modus values. 
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To demonstrate differences among the algorithms, we chose to show the results that we 
obtained when experimenting wi th rather correlating objectives. In particular, we chose 
the Crawler test case and highly (coef. 0.966) correlated metrics Avio* and GoldiLockSC*. 
We chose 40 different individuals i (i.e. test and noise configurations) and evaluated each 
11 times. We therefore obtained 440 different values, which should ideally be classified 
into 40 different fitness values by the considered algorithms. The correlation of objectives 
is not desirable, but different test cases behave differently. We therefore cannot rule out 
the correlated objectives completely. O u r goal is to choose an algori thm that behaves well 
even under such circumstances. 

Table 3.3: Problemat ic pairs of objectives and their evaluation by multi-objective fitness 
functions. 

Pa i r of objectives SPEA SPEA 2 NSGA-LL 

(Avio*, GoldiLockSC") 4 366 106 
(Time, GoldiLockSC) 30 410 38 
(Time, Error) 7 437 386 
(Error, GoldiLockSC*) 8 240 199 

S P E A . A s mentioned in Section 3.2.1, evaluation of individuals by SPEA depends on 
the number and the dis t r ibut ion of individuals i n the external set (the Pareto front rank). 
In our experiments, SPEA provided us wi th an insufficient number of different values of 
Fspea(i) for different individuals i. In the experiment described above, we got four different 
fitness values only (the external set contains just two individuals i n this case). SPEA does 
not provide us w i th a sufficient abi l i ty of classifying different individuals i n this case. 

S P E A 2 . Compared wi th the SPEA a lgori thm, SPEA2 improves the evaluation of indi­
viduals by taking into account not only the dominat ing individuals , but also the dominated 
ones. In our experiments, SPEA2 had no more problems wi th a smal l number of indi­
viduals i n the external set. For correlating objectives in our experiment, SPEA2 achieved 
a much bigger number of different fitness values. O n the other hand, our use of SPEA2 
led to another problem. Specifically, the number of the obtained fitness values got close to 
the number of the evaluated individuals (366 i n this experiment), which is way too much. 

N S G A - I I . The last a lgori thm that we tr ied was NSGA-LL. This a lgori thm finally gave us 
satisfactory results in that the number of the generated classes of individuals was neither 
too smal l nor too big. A s explained i n Section 3.2.1, NSGA-LL assigns individuals into 
the so-called Pareto ranks that provide a basis for evaluation of individuals i by Fnsga_jj(i). 
Subsequently, to achieve a better dis t r ibut ion of values along the Pareto front rank, the no­
t ion of sparsity is used. However, since sparsity concerns a single Pareto rank, we ignored 
it i n the experiment presented here. NSGA-LL produced 106 different fitness values i n our 
experiment, which is a reasonable number for the given case. 

Table 3.3 shows a sample of our further experiments w i th the abi l i ty of the considered 
algorithms to provide satisfactory results when tuples of problematic objectives are used. In 
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Figure 3.3: Graphs showing how NSGA-II handles different pairs of objectives. 

particular, we focus on the problems of correlation (Avio* and G o l d i L o c k S C * ) and distinc­
tive numbers of the objective (Error) that are too low. We chose the test durat ion (Time) 
objective to represent a good objective that does not correlate w i th others and provides 
a high number of distinctive values. The table shows the results for the same experiment 
as considered above (i.e. 40 individuals , 440 evaluations of the Crawler test case). The first 
row therefore summarizes the numbers discussed previously. 

Table 3.3 also shows that SPEA produces too smal l numbers of fitness values, SPEA2 
too large numbers of values, which are close to the number of evaluations, whereas NSGA-II 
gives a reasonable value i n between of the extremes (except the case of the Time and Error 
pair of objectives). 

Figure 3.3 shows key points demonstrating why NSGA-II achieved the numbers shown 
in the table. The graphs show positions of the achieved values i n the space (x-axis repre­
sents the first objective i n a pair and y-axis represents the other objective) and different 
ranks computed by the a lgori thm (depicted using colours). The first four graphs (3.3(a) 
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to 3.3(d)) present situations considered i n Table 3.3. Figures 3.3(e) and 3.3(f) show a si­
tuat ion when we chose good pairs of objectives. Specifically, we chose to present results for 
the (WConcurPair, HBPair) and (WConcurPair, GoldiLockSC*) objectives, respectively. 

A l l the major problems NSGA-II faces wi th our objectives are visible in the figures. 
Graphs 3.3(a) and 3.3(e) demonstrate the problem of correlating objectives, which the al­
gor i thm handles quite well . Graphs 3.3(c) and 3.3(d) emphasize the problem when one 
(Graph 3.3(d)) or both (Graph 3.3(c)) objectives provide an insufficient number of distinct 
values. F ina l ly , Graphs 3.3(b) and 3.3(f) show an ideal si tuation when non-correlating 
objectives wi th a sufficient number of distinct values are used. 

In the rest of our test cases, NSGA-II provided us wi th s imilar ly good results too. 
Therefore, we consider NSGA-II to be the best a lgori thm out of the considered ones for 
our purposes. In the further analyses, we concentrate on its use only. 

3.3.3 Se lect ion of Objec t ives 

In this section, we discuss several aspects of choosing objectives for our M O G A approach. 
Fi rs t , we discuss the number of objectives considered by the chosen NSGA-II a lgori thm. 
Then , we discuss the final selection of objectives for the fitness function. Addi t ional ly , 
the way to emphasize achieving uncommon observations is presented. A n d finally, three 
fitness functions, which we later compare in Section 3.4, are proposed. 

N u m b e r of Considered Objectives. A s mentioned above, there are various metrics 
that can be used as objectives for our M O G A approach. The choice of the NSGA-II 
algori thm makes an important l imi ta t ion to the number of considered objectives. It has 
been shown [48, 20] that the a lgori thm suffers from its abi l i ty to handle more than three 
objectives adequately. Therefore, we decided to choose the max imum, i.e. three objectives. 

Selection of Suitable Objectives. Suitable objectives for our approach are those that 
have a high number of distinctive values and do not correlate. Moreover, the objectives 
should provide stable values in our inherently non-deterministic testing environment. They 
also need to reflect our goal: to achieve a high coverage of various concurrency behaviours 
and/or success i n finding concurrency errors. 

Based on the results presented i n [61] and study of properties of the considered ob­
jectives summarized above, we chose three concurrency coverage metrics as candidates for 
good objectives: HBPair, GoldiLockSC*, and WConcurPair. To minimize impact of non-
determinism, we chose to consider as objective median of these coverage metrics, computed 
from five test executions wi th the same configuration. F ive executions were chosen as 
a trade-off between a higher number of executions, which leads to a lower impact of non-
determinism, and time-constraints, because each execution of S U T requires a considerable 
amount of t ime. 

Since our goal is to find a concurrency error, we decided to also consider the Error and 
LockSet metrics, which provide information whether a concurrency error occurred during 
the execution and whether Eraser a lgori thm detected a problem i n synchronization. We 
decided to use them in our experiments although they often provide an insufficient number 
of distinct values. 

Emphasize U n c o m m o n Observations. W h e n analyzing the results of the tests, we 
noticed that some behaviour was observed every t ime we executed the test. Another be-
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haviour was observed often (i.e. i n more than 50% of executions) and some behaviour was 
rare. The goal of the testing is to observe not only the easily achieved behaviour, but also 
the behaviour that is hard to achieve. Therefore, we decided to penalize often (and there­
fore easily) achieved behaviours. The motivat ion behind this is to force the opt imizat ion 
algori thm to search for candidate solutions that can achieve a high coverage of behaviours 
that are not easily achievable. Th is should lead to a further improvement in the quali ty of 
our solutions. 

Table 3.4: Impact of penalization on the number of distinctive values of coverage metrics. 

Test Coverage Penal izat ion Norma l 

Air l ines W C o n c u r Pairs 95 87 
H B P a i r 1 1 
G o l d i L o c k S C * 31 20 

An ima to r W C o n c u r Pairs 115 115 
H B P a i r 41 20 
G o l d i L o c k S C * 115 110 

Crawler W C o n c u r Pairs 89 88 
H B P a i r 79 23 
G o l d i L o c k S C * 86 57 

The technical solution of the penalization works as follows. We let the genetic a lgori thm 
to evaluate the first generation (i.e. randomly chosen candidate solutions). Then we assign 
a probabil i ty to each covered task. The probabil i ty is assigned according to the number of 
executions it was observed i n wi th in the first generation. A l l the following test executions 
are evaluated wi th respect to these probabilit ies. This means that a l l behaviours not ob­
served i n the first generation add 1 to the considered value and the behaviours observed 
are penalized using the computed probabil i ty (if probabil i ty is 0.1, value 0.1 is taken). 

This approach has also a positive side effect, i.e., the increase of the number of distinctive 
values our metrics can achieve. Th is observation is demonstrated i n Table 3.4, which shows 
the number of distinctive values we achieved wi th and without penalization. The data in 
the table were collected from a randomly chosen M O G A experiment w i th the Crawler test 
case, populat ion size 20, 100 generations and penalization enabled. The penalization was 
therefore computed from 20 candidate solutions of the in i t i a l populat ion and applied to 1980 
individuals from the following generations, from which the data are presented. The table 
clearly shows the increase of the number of distinctive values i n case when the penalization 
is enabled. 

Selected Fitness Functions. Considering the aforementioned findings, we identify the fol­
lowing fitness functions as potential ly suitable for noise-based testing of concurrent software: 

fitnessla = (WConcurPaircum^, HBPaircum^, GoldiLockcSC*cum^) 
fitnesslb = (WConcurPairmed(5), HBPairmed(5), GoldiLockcSC*med^) 
fitness2 = (Errormod^, LockSetmod^, GoldiLockcSC*med^) 

The fitness functions differ i n ways to increase stabil i ty of objectives. The fitnessla 
function uses cumulat ion, fitnesslb and fitness2 use median and for objectives wi th a low 
number of distinct values (i.e. LockSet and Error), modus is used. The fitness2 function 
differs i n considered objectives. It considers the number of concurrency errors (Error) and 
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the number of warnings produced by the Eraser a lgori thm (LockSet) combined wi th a se­
lected concurrency coverage metrics (GoldiLockSC*). The efficiency of the fitness functions 
is evaluated i n Section 3.4. 

3.3.4 Se t t ing u p M u l t i - o b j e c t i v e A l g o r i t h m 

Before the M O G A approach can be used effectively, a proper setting of its parameters is 
needed. Setting of the parameters such as size of populat ion, number of generations, and 
selection, crossover, and mutat ion operators are presented here. Later , this step allows us 
to get most of the M O G A opt imizat ion and also to learn what makes M O G A successful. 
In this section, the previous experience obtained when solving the T N C S problem using 
G A [42] was used to choose the in i t i a l sets of suitable parameters of M O G A that are worth 
to experiment wi th . 

In particular, we experiment w i th the populat ion sizes and the number of generations 
in the way that the number of ind iv idua l evaluations i n one experiment remains constant 
(i.e. 2000 evaluations of individuals per experiment). Therefore, for populations of size 20, 
40, and 100 we used sizes of 100, 50, and 20 generations, respectively. Furthermore, we 
studied the influence of three different crossover operators available in the E C J toolki t [102] 
(called one, two, and any) and three different probabilities of mutat ion (0.01, 0.1, and 0.5). 
In total , we experimented w i t h 27 different settings of M O G A (3 sizes of populat ion, 3 
crossover operators, and 3 mutat ion probabili t ies). The results presented below are based 
on the average values collected from mult iple executions of each M O G A setting, which differ 
only i n the in i t i a l random seed values (i.e. only i n the individuals generated i n the first 
generation). 

The selection operator was the same i n a l l the experiments. It was set to the M a t i n g 
Scheme [ ] selection algori thm, which provides better results for the N S G A algori thm [ ] 
than the fitness-based tournament or the proport ional selection algorithms that are com­
monly used in the single-objective G A . Th i s a lgori thm combines fitness-based selection of 
one parent selected for crossover and the similarity-based tournament selection for the se­
cond parent. This a lgori thm also provided the best results i n our prel iminary experiments. 

Hence our individuals are represented using vectors of integers (as discussed in Sec­
t ion 3.2), the crossover operators works as follows. The one crossover operator randomly 
splits two selected individuals into two parts and generates their offspring by random choos­
ing between parents at each part of the vector. The two operator cuts the vector into three 
pieces of a random length and the any operator cuts the vector into elements. 

The mutat ion operator, which we used randomly, selects an element of the vector and 
sets its value to a random value from the allowed range. A l l experiments were done only on 
the Crawler and the Air l ines test cases introduced i n Section 2.6, which represent test cases 
wi th reasonably short execution t ime (we used 324,000 executions of Crawler and 540,000 
executions of the Air l ines test case to collect data for the results presented here). 

The M O G A approach was set to use only the fitnessla function, but the results were 
compared using mult iple cri teria considering the quali ty of the resulting individuals as 
well as the quali ty of the opt imizat ion process. Specifically, we computed (i) the varia­
t ion of individuals i n the last generation, (ii) the generation in which M O G A degenerated, 
(iii) the average achieved coverage obtained by the individuals from the last generation 
(we considered WConcurPair, HBPair, and GoldiLockSC* metrics, which are used in fit­
nessla), and (iv) the accumulated number of detected errors i n S U T during the experiment. 
The variat ion was computed as the number of different individuals in the last generation 
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divided by the populat ion size. In our work, degeneration is considered a si tuation when 
at least half of the individuals in the populat ion are identical. 

The best configuration of M O G A was selected as follows: for each test case, we sorted 
the configurations according to each cri terion described above and assigned numbers from 
1 (the worst) to 27 (the best) to the ind iv idua l configurations. Final ly , we summed these 
numbers for a l l four considered cri teria and test cases. Then, we chose the best configuration 
to be the one wi th the highest score achieved. Par t icular ly , the best configuration consists 
of: the populat ion size 20 (100 generations), the crossover type two, and the mutat ion 
probabil i ty 0.5 - and it is referred to as MOGAconf below. This configuration provides 
the best values i n the variation, degeneration, and HBPair coverage metrics i n both of 
the considered test cases and very good results i n the other considered criteria. 

Note that MOGAconf operates w i th a relatively high mutat ion probabil i ty (0.5), which 
helps i n exploration of the new promising solutions. Th is is combined wi th a relatively high 
selection pressure. Our results show that this mixture helps M O G A to dramatical ly improve 
possible solutions during the first generations, because the incorporation of the NSGA-II 
archive helps to preserve the best solutions evaluated thus far i n presence of such an agile 
search process. 

3.4 General Experiments with M O G A Approach 

This section contains the first of our experimental evaluation of the M O G A approach (not 
counting the prel iminary experiments that we have presented i n the previous section where 
they were used for properly setting various parameters of our M O G A approach). In par­
ticular, i n Section 3.4.1, we first present experiments proving that our M O G A approach can 
indeed solve the T N C S opt imizat ion problem wi th a positive effect on the testing process 
despite the involved non-determinism. In these experiments, heritability, regression, and 
correlation introduced in Section 3.2 were used to show that the good individuals chosen by 
the M O G A indeed produce good offspring regardless of non-determinism present i n the eva­
luat ion of individuals and that the M O G A approach can be effective in beating the random 
approach often used i n the literature (or i n practice). Subsequently, Section 3.4.2 contains 
a comparison of the fitness functions introduced i n Section 3.3. The fitness functions are 
compared only i n their abi l i ty to avoid degradation of the opt imizat ion process. In Sec­
t ion 3.5, we then proceed wi th experiments comparing our M O G A approach wi th the S O G A 
solution. 

3.4.1 E n s u r i n g that M O G A W o r k s in Presence of N o n - d e t e r m i n i s m 

In this section, we present a set of experiments conducted to ensure the abi l i ty of our M O G A 
approach to actually improve the considered objectives regardless of non-determinism in 
evaluation of individuals . In these experiments, we applied M O G A wi th the MOGAconf 
setting on a set of three different test cases, namely, Air l ines , An ima to r , and Crawler 
introduced i n Section 2.6. We focus mainly on the fitnessla and fitnesslb fitness functions 
proposed in Section 3.3. 

To study the effect of non-determinism, we computed heritability, regression, and cor­
relation to see whether there is a positive relation among parents and their offspring. In 
other words, we check whether parents selected by the selection operator indeed represent 
configurations that are able to steadily improve the testing performance wi th respect to 
considered objectives i n presence of non-determinism i n evaluation of individuals . Below, 

40 



20 30 40 50 60 
(a) WConcurPair fitnessla 

• 
U 

20 30 40 50 6 0 
(b) HBPair fitnessla 

• 

20 30 40 5 0 60 

20 30 40 50 60 
(d) WConcurPair fitnesslb 

so-

so 
••7* ••7* 

40- • 
20-

20 30 40 5 0 60 
(e) HBPair fitnesslb 

Generat ion 

100 

75 

50 

25 

• 

20 30 40 5 3 60 
(c) GoldiLockSC* fitnessla (f) GoldiLockSC* fitnesslb 

Figure 3.4: Regression graphs demonstrating abi l i ty of M O G A to improve achieved results 
in a l l three considered objectives. 

we first show graphically on one test case the general tendency of M O G A to optimize so­
lutions i n presence of non-determinism. Then, we present on a study of correlation and 
heri tabil i ty that the objectives (i.e. fitness function) must be carefully chosen to achieve 
such positive results. 

Graphs in Figure 3.4 il lustrate a relation of part icular objectives (namely, WConcur­
Pair, HBPair, and GoldiLockSC*) between parents (x axis) and their offspring (y axis) in 
the Crawler test case. Each point in the graph represents an average value of a part icular 
objective (i.e. coverage) achieved by parents selected for breeding (x axis) and an average 
value of a objective achieved by offspring generated from these parents (y axis). The num­
ber of points in the graph therefore corresponds to the number of breedings. Moreover, 
the points are coloured to emphasizes the general tendency of M O G A to improve the avail­
able solutions. The dark blue points represent the first generations, the violet points are 
the next generations and so on to the yellow points, which represents the last generations. 

Graphs 3.4 (a), 3.4 (b), and 3.4 (c) depict fitnessla and graphs 3.4 (d), 3.4 (e), and 3.4 (f) 
depict the same results when fitnesslb was used. A s described i n Section 3.2, a positive 
slope emphasizes a high correlation among parents and their offspring, showing that good 
parents produce good offspring. Moreover, it is also clear that the in i t i a l populations 
(dark blue) achieve much worse results than the last populations (yellow), meaning that 
the opt imizat ion works well in these cases. 

Boxplots i n Figure 3.5 further emphasize the positive effect of the opt imizat ion. The da­
ta for boxplots were collected from six executions of the Crawler test case using the MOGA-
conf configuration and the fitnessla function. The boxplots show a comparison of results 
achieved by the individuals from the in i t i a l populat ion, which are generated randomly (de-
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Figure 3.5: Compar ison of R a n d o m vs. the last generation from M O G A in the Crawler 
test case using three considered objectives. 

noted as Random in boxplots), and therefore represent values that can be achieved without 
the M O G A approach, and the results achieved by the individuals from the final popula­
t ion (denoted as MOGA). The bloxplots show data for the considered objective functions, 
i.e. WConcurPair, HBPair, and GoldiLockSC*. The difference between the random and 
the M O G A approach is evident in a l l boxplots. 

Final ly , Table 3.5 summarizes our study of correlation and heri tabil i ty for a l l three 
considered test cases (i.e. Air l ines , Animator , and Crawler) and two fitness functions, 
namely, fitnessla and fitnesslb. Note that a high correlation coefficient represents high 
heritability, which is good for M O G A . In general, the table shows very high correlation 
coefficients (i.e. above 0.8), but there are several important exceptions. 

In some cases, for instance i n the An ima to r test case and the WConcurPair coverage, 
the correlation coefficient for fitnessla is much higher (over 0.9) than for fitnesslb (below 
0.5). Th i s is impact of difference between computat ion of cumulative value (fitnessla) 
and median (fitnesslb). WConcurPair is a very detailed coverage metrics and therefore 
the non-determinism i n its values is the highest from the considered metrics. In such cases, 
the cumulative value represents a somewhat stable value that provides better results in 
the end. 

The si tuat ion wi th the HBPair coverage i n the same test case is the opposite. In average, 
better results were achieved when median was used. Th i s is because HBPair represents 
a coverage metrics w i th a high level of abstraction and hence a low level of diversity. 
The high level of abstraction is emphasized in the Air l ines test case, i n which the NA value 
is presented: the Air l ines test case contains only a l i t t le synchronization; therefore, it was 
easy to achieve full coverage i n this case. There was no improvement in this case. 

Overal l , the presented results show clear evidence that despite presence of a certain 
level of non-determinism i n the evaluation of the individuals , the M O G A approach is able 
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Table 3.5: Parents-offspring correlation coeficients. 

Correla t ion coefficient 
Coverage fitnessla fitnesslb 

Air l ines W C o n c u r P a i r 0.726 0.703 
H B P a i r N A N A 
G o l d i L o c k S C * 0.812 0.458 

An ima to r W C o n c u r P a i r 0.914 0.578 
H B P a i r 0.705 0.598 
G o l d i L o c k S C * 0.609 0.564 

Crawler W C o n c u r P a i r 0.873 0.906 
H B P a i r 0.964 0.960 
G o l d i L o c k S C * 0.955 0.940 

to search for better solutions. We therefore do not need to use other tools for reduction 
of non-determinism. This is a very positive finding, because most of the non-determinism 
reduction techniques require increase i n the number of measurements (i.e. evaluations) [50]. 
Such solutions would lead to higher t ime requirements, as in our case, each evaluation is 
realized by an execution of S U T . 

3.4.2 F i tness F u n c t i o n s C o m p a r i s o n 

In this section, we focus on the abi l i ty of our modifications of the search process to avoid 
degradation of the search process implemented by our multi-objective genetic algorithms 
when used wi th the fitness functions proposed in Section 3.3 (i.e. fitnessla, fitnesslb, and 
fitness2). Here, degradation refers to a si tuation when the populat ion contains more than 
one copy of the same ind iv idua l which implies a loss of diversity i n the populat ion. 

The same test CctS6S ctS above (namely Air l ines , An ima to r , and Crawler) were employed 
for the purposes of this comparison. We used the same setting of M O G A as i n the previous 
experiment: the MOGAconf configuration. Moreover, we randomly selected six in i t i a l 
populations and let M O G A start from these populations only. This allows us to compare 
the considered fitness functions on the same in i t i a l data. 

The graph in Figure 3.6 summarizes the results obtained i n the comparison. The graph 
shows how the average number of distinct individuals (y-axis) develops across generations 
(x-axis). The average values are computed from a l l executions of a l l three considered test 
cases. 

The worst results from the newly proposed fitness functions were achieved by the fit­
nessla function, which considers cumulated values of objectives. The sparsity computat ion 
used by the NSGA-II a lgori thm described in Section 3.2 should avoid degeneration of 
the search process. Therefore, we were curious why the degeneration is happening here. 
The problem is caused by the non-deterministic evaluation of individuals . Further ana­
lysis shows that the same ind iv idua l is evaluated quite differently and because sparsity 
is computed from the achieved results (i.e. objective vector), NSGA-II considers such 
an ind iv idua l to be different form the already known ones. Moreover, such individuals are 
quite successful and therefore preferred by the algori thm. Therefore, the a lgori thm keeps 
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Figure 3.6: Degeneration of search process when using M O G A wi th proposed fitness func­
tions. 

the newly evaluated ind iv idua l i n the archive, which contains such an ind iv idua l already— 
w i t h a different evaluation. 

M u c h better results were achieved by the fitness lb fitness function: this shows that 
the use of median indeed suppresses the non-deterministic evaluation (as described i n Sec­
t ion 3.3). The graph clearly shows that this posit ively affects the quali ty of the search, 
because i n average, fitnesslb suffers from degeneration much less. The best results from 
the degeneration point of view were achieved by fitness2, which combines the success of 
suppressing non-determinism and objectives introducing less non-determinism (Error, Lock-
Set). 

3.5 Comparison with Single-Objectives Genetic Algor i thm 

A n objective of this section is to show that our approach provides better results when 
compared to the sooner proposed use of the single-objective genetic approach ( S O G A ) , 
which we already mentioned i n Section 3.1. 

The section presents results of four experiments comparing the proposed M O G A - b a s e d 
approach wi th the S O G A - b a s e d approach and both approaches wi th the random approach. 
Fi rs t , we show difference between degeneration of the search process identified i n the S O G A -
based approach in [42] and in our M O G A - b a s e d approach which does not suffer from de­
generation. Then , we show that the proposed penalization does indeed lead to a higher 
coverage of uncommon behaviour. Final ly , we focus on a comparison of the M O G A , S O G A , 
and random approaches wi th respect to their efficiency and stability. 
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The experiments presented below were conducted on a set of eight concurrent bench­
m a r k s — Air l ines , Animator , Crawler , Elevator, M o l D y n , MonteCar lo , Raytracer, and Rover 
(see Section 2.6). 

In the experiments, we used the settings of the M O G A that was already presented i n Sec­
t ion 3.3.3 and Section 3.3.4, i.e., each candidate solution is evaluated 10 times, the achieved 
coverage is penalized, and the median values for the selected metrics are computed. Size of 
the populat ion is 20, number of generations is 50, the crossover type is two, and the mu­
tat ion probabil i ty is 0.5. A s the S O G A - b a s e d approach uses time as one of the objectives 
in the fitness function, we added the execution t ime of tests variable to the M O G A fit­
ness function for opt imizat ion of tests w i t h smal l resource requirements. The objectives 
in the M O G A approach selected for following experiments are GoldiLockSC*, GoodLock*, 
WConcurPairs, and Time. 

In the experiments, we use the following parameters of the S O G A - b a s e d approach taken 
from [ ]: size of populat ion 20, number of generations 50, two different selection operators 
(tournament among four individuals and fitness propor t ional 2 ) , the any-point crossover 
wi th probabil i ty 0.25, a low mutat ion probabil i ty (0.01), and two elites (that is 10% of 
the populat ion). However, to make the comparison more fair, we buil t the fitness function 
of the S O G A - b a s e d approach from the objectives selected above 3 : 

WConcurPairs GoodLock* GoldiLockSC* timemax — time 

WConcurPairsmax GoodLock^iax GoldiLockSC^ax timemax 

The max ima l values of objectives were estimated as 1.5 times the max ima l accumulated 
numbers we got in 10 executions of the part icular test cases. A s proposed i n [42], the S O G A -
based approach uses cumulat ion of results obtained from mult iple test runs without any 
penalization of frequent behaviours. 

A l l results presented i n this section were tested by the statist ical t-test w i t h the signi­
ficance level a = 0.05, which specifies whether the achieved results for Random, M O G A , 
and S O G A are significantly different. In a vast majori ty of cases, the test confirmed a sta­
t is t ical ly significant difference among the approaches. 

Degeneration of the Search Process. Degeneration, i.e. a lack of variabi l i ty i n po­
pulation, is a common problem of population-based search algorithms. Figure 3.7 shows 
average variabi l i ty of the M O G A - b a s e d and the S O G A - b a s e d approaches computed from 
the search processes on eight considered test cases. The x-axis represents generations. 
The y-axis shows numbers of distinct individuals i n the generations (max. 20). The higher 
value the search process achieves, the higher variabil i ty; therefore, low degeneration was 
achieved. The Figure 3.7 clearly shows that our M O G A - b a s e d approach does not suffer 
from the degeneration problem unlike the S O G A - b a s e d approach. 

Degeneration of the S O G A - b a s e d approach and, subsequently, its tendency to get caught 
in a local max imum (often opt imiz ing strongly towards a highly positive value of a single 
objective, e.g. m i n i m u m test t ime, but almost no coverage) can i n theory be resolved by 
increasing the amount of randomness i n the approach. However, then it basically shifts 
towards random testing. A n interesting observation (probably leading to the good results 
presented i n [ ]) is that even a degenerated populat ion can provide a high coverage i f 

experiments presented in [ ] showed that using these two selection operators is beneficial. Therefore, 
we used them again. On the other hand, for MOGA, the mating schema provides better results. 

3 In the experiments performed in [ 12], the fitness function was sensitive on weight. Therefore, we removed 
the weight from our new fitness function for SOGA. 
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Figure 3.7: Degeneration of M O G A - b a s e d and S O G A - b a s e d search processes. 

the repeatedly generated candidate solutions suffer from low stability, which allows them 
to test different behaviours i n different executions. 

Table 3.6: Impact of penalization buil t into M O G A approach. 

Test M O G A S O G A R a n d o m 

Air l ines 59.66 60.61 19.14 
An ima to r 70.1 74.31 44.73 
Crawler 70.73 66.32 61.19 
Elevator 89.26 83.96 65.69 
M o l d y n 68.32 44.25 39.73 
Montecarlo 40.13 54.52 28.25 
R a y tracer 73.08 60.49 54.68 
Rover 53.87 41.45 30.62 

Average 65.52 60.73 43.00 

Effect of Penalization. The goal of the penalization scheme proposed above is to in ­
crease the number of tested uncommon behaviours. A n i l lustrat ion of the fact that this goal 
has indeed been achieved is provided in Table 3.6. The table par t icular ly compares the re­
sults collected from 10 runs of the final generations of 20 individuals obtained through 
the M O G A - b a s e d and the S O G A - b a s e d approaches w i t h the results obtained from 200 
randomly generated individuals . Each value i n the table gives the average percentage of 
uncommon behaviours spot by less than 50 % of candidate solutions, i.e. by less than 10 
individuals . Number 60 therefore means that, on average, the collected coverage consists 
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of 4 0 % of behaviours that occur often (i.e. i n more than 5 0 % of the runs) while 6 0 % are 
rare. 

In most cases, i f some approach achieved the highest percentage of uncommon be­
haviours under one of the coverage metrics, it achieved the highest numbers under the other 
metrics as well . Table 3.6 shows that our M O G A - b a s e d approach is able to provide a higher 
coverage of uncommon behaviours (where errors are more l ikely to be hidden) than the other 
considered approaches. 

Table 3.7: Efficiency of considered approaches. 

Case Metr ics M O G A S O G A R a n d o m 

Air l ines C / T i m e 0.06 0.06 0.04 
S / T i m e 3.73 3.29 2.98 

An ima to r C / T i m e 0.07 0.29 0.19 
S / T i m e 0.33 1.01 0.65 

Crawler C / T i m e 0.21 0.22 0.12 
S / T i m e 4.15 3.84 2.05 

Elevator C / T i m e 0.03 0.04 0.02 
S / T i m e 2.69 3.64 1.28 

M o l d y n C / T i m e 0.01 0.01 0.01 
S / T i m e 11.73 16.83 2.56 

Montecarlo C / T i m e 0.01 0.01 0.01 
S / T i m e 9.52 9.66 0.01 

R a y tracer C / T i m e 0.01 0.01 0.01 
S / T i m e 7.16 5.13 0.69 

Rover C / T i m e 0.11 0.10 0.08 
S / T i m e 5.17 2.49 2.18 

A v g . impr. 2.01 2.11 

Efficiency of the Testing. Next , we focus on the efficiency of the generated test set­
tings, i.e. on their abi l i ty to provide a high coverage in a short t ime. We again consider 
10 testing runs of the 20 individuals from the last generations of the M O G A - b a s e d and 
the S O G A - b a s e d approaches and 200 test runs under random generated test and noise set­
tings. Table 3.7 compares the efficiency of these tests. To express the efficiency, we use 
two metrics: namely, C/Time shows how many coverage tasks of the GoldiLockcSC* and 
GoodLock* metrics got covered on average per a t ime unit (milisecond). S/Time indicates 
how many coverage tasks of the general purpose WConcurPairs coverage metric got covered 
on average per a t ime unit . Higher values in the table therefore represent higher average 
efficiency of the testing runs under the test settings obtained i n one of the considered ways. 
The last row provides the average improvement (Avg. impr.) of the genetic approaches 
against random testing. B o t h genetic approaches are significantly better than the random 
approach. In some cases, the M O G A - b a s e d approach had a better evaluation, while the re­
sults were better for S O G A i n some other cases. However, note that the M O G A - b a s e d 
approach is more l ikely to cover rare tasks (as explained in the previous paragraph). So 
even i f it covers a comparable number of tasks wi th the S O G A - b a s e d approach, it is s t i l l 
l ikely to have more advantages from the pract ical point of view. 
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Stability of Testing. F ina l ly , we show that candidate solutions found by the M O G A -
based approach provide more stable results than the S O G A - b a s e d and the random ap­
proaches. For the M O G A - b a s e d and the S O G A - b a s e d approaches, Table 3.8 provides the a-
verage values of variat ion coefficients of the coverage under each of the three considered 
coverage cri teria for each of the 20 candidate solutions from the last obtained generations 
across 10 test runs. For the case of random testing, the variat ion coefficients were calculated 
from 200 runs generated randomly. The last row of the table shows the average variat ion co­
efficient across a l l the case studies. The table clearly shows that our M O G A - b a s e d approach 
provides more stable results when compared to the other approaches. 

Table 3.8: Stabi l i ty of testing. 

Case M O G A S O G A R a n d o m 
Air l ines 0.06 0.17 0.29 
An ima to r 0.02 0.11 0.12 
Crawler 0.38 0.38 0.26 
Elevator 0.50 0.48 0.58 
M o l d y n 0.11 0.20 0.70 
Montecarlo 0.13 0.11 0.89 
Raytracer 0.16 0.46 0.76 
Rover 0.08 0.10 0.32 

Average 0.18 0.25 0.49 

3.5.1 T h r e a t s to V a l i d i t y 

A n y attempt to compare different approaches faces a number of challenges, because it is 
important to ensure that the comparison is as fair as possible. The first issue to address is 
that of internal validity, i.e. whether there has been a bias i n the experimental design or 
stochastic behaviour of the meta-heuristic search algorithms that could affect the obtained 
results. To attend to this issue, Section 3.3.2 provides a brief discussion and experimental 
evidence that supports the choice of the N S G A - I I M O G A algori thm out of the three con­
sidered algorithms. To address the problem of setting various parameters of meta-heuristic 
algorithms, a number of experiments was conducted to choose configurations that would 
provide good results in the given context. Similar ly, our choice of suitable objectives was 
done based on observations from the previous experimentation [61]. Care was taken to 
ensure that a l l approaches are evaluated i n the same environment. 

Another issue to address is that of external validity, i.e. whether there has been a bias 
caused by external entities, such as the selected case studies (that is, programs to be tested 
in our case) used in the empir ical study. The diverse nature of programs makes it impossible 
to sample a sufficiently large set of programs. The chosen programs contain a variety of 
synchronization constructs and concurrency-related errors that are common i n practice, but 
they represent a smal l set of real-life programs only. The studied execution traces conform 
to real unit and /or integration tests. A s wi th many other empir ical experiments i n software 
engineering, further experiments are needed to confirm the results presented here. 
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Chapter 4 

Using Data Mining in Testing of 
Concurrent Programs 

A s it has been already said, the problem wi th testing of concurrent programs is i n the choo­
sing suitable noise injection heuristics and suitable values of their parameters (as weel as 
suitable values of parameters of the programs being tested themselves). In this chapter, 
we propose the solution of this problem. Here, by suitable, we mean such settings that 
maximize chances of meeting a given testing goal (such as, e.g. maximiz ing coverage of rare 
behaviours and thus maximiz ing chances to find rarely occurring concurrency-related bugs). 
Our approach is, i n particular, based on using data min ing i n the context of noise-based 
testing. We use the approach both to get more insight about the importance of the different 
heuristics i n a part icular testing context as well as to improve fully-automated noise-based 
testing (in combination wi th both random as well as genetically opt imized noise setting). 

4.1 Introduction 

In this chapter, our approach is, in particular, based on using data mining, applied on 
a sample of test runs of a given concurrent program, to derive classifiers capable of dis­
t inguishing which test and noise settings are suitable and which unsuitable for the given 
testing goal. To be more precise, we use decision trees and the AdaBoost machine learning 
algori thm, which is a well-known technique for bui ld ing high-quality classifiers. 

We show how AdaBoos t can be applied to gain new knowledge about efficient noise-
based testing of a given concurrent program wi th a given testing goal (or even more generally 
for a class of programs and /or testing goals). Subsequently, we show how the results 
obtained by data min ing can be used to fully automatical ly improve testing based on 
randomly set up noise injection. This is achieved by either filtering out unsuitable randomly 
chosen settings or by narrowing down the random generation to suitable ranges of noise 
and/or test case parameters. Moreover, we also show that the obtained results can be used 
to guide and consequently speed up an automated search-based process of finding suitable 
values of test and noise parameters. For that purpose, we combine the process of mining 
of suitable settings of noise-based testing wi th a subsequent genetic opt imizat ion restricted 
to the values considered as suitable by data mining. 

In order to show that the proposed approach can indeed be useful, we apply it for 
opt imizing the process of noise-based testing for two part icular testing goals on a set of 
several benchmark programs. Namely, we consider the testing goals of reproducing known 
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errors and covering rare interleavings which are l ikely to hide so far unknown bugs. Our 
experimental results confirm that the proposed approach can discover useful knowledge 
about the influence and suitable values of test and noise parameters, which we show i n two 
ways: (1) We manual ly analyze information hidden i n the classifiers, compare it w i th our 
long-term experience from the field, and use knowledge found as important across multiple 
case studies to derive some new recommendations for noise-based testing. (2) We show that 
the obtained classifiers can be used—in a fully automated way—to significantly improve 
efficiency of noise-based testing using a random selection of test and noise parameters as well 
as to be successfully combined wi th finding suitable noise settings by genetic opt imizat ion. 

4.2 Related Work 

Below, we discuss works where data min ing is applied in testing. None of them, however, 
is going i n the same direction as the research presented i n this thesis. 

Most of the existing works on obtaining new knowledge from mult iple test runs of 
concurrent programs focus on gathering debugging information that helps to find the root 
cause of a failure [25, 99]. In [99], a machine learning a lgor i thm is used to infer points 
in the execution such that the error manifestation probabil i ty is increased when noise is 
injected into them. It is then shown that such places are often involved i n the erroneous 
behaviour of the program. Another approach [ ] uses a technique similar to data mining, 
more precisely, a feature selection algori thm, to infer a reduced cal l graph representation 
of the system under test, which is then used to discover anomalies i n the behaviour of 
the system under test wi th in erroneous executions. 

None of the works above, and, to the best of our knowledge, no other existing work 
has applied data min ing for finding values of test and noise parameters suitable for noise-
based testing of concurrent programs. The only exception is our prel iminary work [ ], on 
which this chapter is based. However, compared wi th [6], the present chapter provides (1) 
a significantly improved presentation of the idea, (2) it proposes a new way of exploit ing 
the results from data min ing for fully-automated noise-based testing, (3) a combinat ion of 
data mining wi th genetic approaches, and (4) it provides a significantly improved experi­
mental evaluation of the approach. 

Natural ly, there is much richer literature and tool support for data mining test results 
without a part icular emphasis on concurrent programs. The existing works study different 
aspects of testing, including identification of test suite weaknesses [ ], opt imisat ion of the 
test suite [106], or error local izat ion [27]. Ad le r et a l [1] show that a substring hole analysis 
is used to identify sets of untested behaviours using coverage data obtained from testing 
of large programs. Cont ra ry to the analysis of what is missing i n coverage data and what 
should be covered by improving the test suite, other works focus on what is redundant. 
Yoo et a l [106] show that a clustering data min ing technique is used to identify tests which 
exercise similar behaviours of the program. The obtained results are then used to prioritise 
the available tests. E r m a n et a l [/ ] show that clustering of similar test case failures is used 
to help the analyst to identify the underlying causes of the failures and thus to make it 
easier to deal w i th huge numbers of test results obtained due to test automation. 

Further, data min ing techniques are, of course, used in many other areas of software 
engineering than testing. A n exhaustive list of such applications is beyond the scope of this 
chapter, and so we mention just a few examples. For instance, i n the recent result [105], 
machine learning is used to extract design knowledge allowing one to improve assignment of 
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responsibilities to classes, which is a v i t a l task in object-oriented design. Cheung et a l [ ] 
show that clustering is used to detect smells i n spreadsheet cells, which are susceptible to 
contain errors. Rubin ic et a l [ ] show that machine learning is applied for software defect 
prediction, using ensembles of genetic classifiers to deal w i th imbalanced data sets. L u o et 
al [76], data min ing is used for automatical ly identifying code changes that may potential ly 
be responsible for a performance regression. Next , Kreutzer et a l [56] show that a clustering 
algori thm is used i n combinat ion w i t h two syntactical s imilar i ty metrics to automatical ly 
detect groups of similar code changes. L i a n g et a l [ ] focus on improving the precision 
of code mining wi th the a i m of error detection by carefully preprocessing the source code. 
Tant i thamthavorn et a l [95] show that an automated parameter opt imizat ion technique 
has been applied to obtain prediction models in the form of classifiers trained to identify 
defect-prone software modules. Wang et a l [101] show that machine learning is used to 
automatical ly learn a semantic representation of programs from their source code. 

4.3 Preliminaries 

In this section, we introduce the basics of the AdaBoost approach to machine learning for 
a proper understanding of the rest of the chapter. AdaBoos t is at the heart of our approach 
to finding suitable values of noise parameters. 

4.3.1 A d a B o o s t M a c h i n e L e a r n i n g A l g o r i t h m 

The core idea of our approach is to apply AdaBoos t i n noise-based testing to derive clas­
sifiers capable of dist inguishing suitable and unsuitable settings of noise parameters as 
well as parameters of the programs under test (and consequently to facilitate searching for 
suitable test and noise settings). The AdaBoos t algori thm, introduced in 1995 by Freund 
and Schapire [32, 33, 34], is a widespread machine learning technique based on improving 
("boosting") the strength of mult iple weak classifiers. Th is is achieved by weighting outputs 
of the weak classifiers and combining them into a single strong classifier. A weak classifier 
is any classifier that behaves better than random guessing (i.e. its error degree is less than 
0.5 i n the binary classification case). 

AdaBoos t works in iterations. In each iteration, the method aims at producing a new 
weak classifier in order to improve the precision of the so far constructed strong classifier. 
To construct the new classifier, objects i n the t ra ining set are assigned weights. Initially, 
the weights are distr ibuted uniformly. In each iteration, weights of wrongly classified ob­
jects are enlarged, which is then used i n the next round to derive and add a new weak 
classifier focusing on the hard examples i n the t ra ining set, hence improving the precision 
of the strong classifier. 

In the binary classification case, the input of AdaBoos t is a set X = {(xi, yi), • • •, 
(~x~n,yn)} where each x\ is an object from some space X of objects that we might want to 
classify as having or not having some property of interest, and each label yi belongs to the set 
Y = {1, — 1}, which says whether Xi does or does not have the property of interest. The in­
put set X is then commonly split to two subsets—the t ra ining set T and the val idat ion set 
V . The t ra ining set is used to get a classifier while the validat ion set is used for evaluating 
the precision of the obtained classifier. More information about computing the precision is 
already presented i n Section 2.4.1. 

Moreover, i n order to avoid over-fitting and to increase confidence i n the obtained 
results, the process of choosing the t ra ining and validat ion set and of learning and validating 
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the classifier can be repeated several times, al lowing one to judge the average values and 
standard deviat ion of accuracy and sensitivity. If the obtained classifier is not validated 
successfully, one can repeat the AdaBoos t a lgori thm wi th more boosting iterations and/or 
a larger input set X. 

The final strong classifier is obtained i n the form 

where x G X, T is the number of boosting iterations, ri is the weak classifier produced at 
the i - th i teration of the a lgori thm (producing decisions from the set Y ) , and Wi is a non-
negative weight expressing confidence in the i - th weak classifier. 

4.4 Classification-based Data Min ing in Noise-based Testing 

In this section, we describe our proposal of using a part icular k ind of AdaBoos t classifiers 
for discovering which test and noise parameters and which of their values are the most 
influential for a given program under test and a given testing goal (or, even in general, 
across different programs under test and /or testing goals). We first describe the concrete 
k ind of AdaBoos t classifiers that we propose to be used i n noise-based testing, and we 
provide a generic approach for deriving such classifiers. We then concretise the method 
for two concrete testing goals common i n practice—namely, for finding rare behaviours in 
which so far unknown bugs may reside and for reproducing known errors. Subsequently, we 
discuss how the derived AdaBoos t classifiers can be used to draw some conclusions about 
which test and noise configurations are the most influential in the given setting. F ina l ly , 
we discuss three ways of using the derived classifiers in fully-automated testing. 

4.4.1 C o m b i n i n g D a t a M i n i n g B a s e d o n A d a B o o s t w i t h Noise -based 

For our applicat ion of data mining wi th the a im of finding suitable settings of noise-based 
testing of concurrent programs, we propose using data min ing based on binary classification. 
Methods that have been used for binary classification i n the literature include decision trees, 
Bayesian networks, support vector machines, or neural networks [103]. In this work, we, 
in particular, choose decision trees. Th is is motivated by the fact that one can easily 
understand and further exploit information hidden i n decision trees obtained by machine 
learning, which we leverage i n the following. 

Decision trees, such as those shown i n F i g . 4.1, can be viewed as hierarchically struc­
tured decision diagrams whose nodes are labelled by Boolean conditions on the items to 
be classified and whose leaves represent classification results (in our case, +1 is used to 
denote a positive result, while —1 denotes a negative result). The decision process starts 
in the root node by evaluating the condit ion associated w i t h the root on the i tem to be 
classified. Accord ing to the evaluation of the condit ion, a corresponding branch is followed 
into a chi ld node. This descent, driven by the evaluation of the conditions assigned to 
the encountered nodes, continues un t i l reaching a leaf node, and hence a decision. Decision 
trees are usually employed as a predictive model constructed v i a a decision tree learning 
procedure, which uses a t ra ining set of classified items. 

In order to reduce the natural tendency of decision trees to be unstable (meaning that 
a minor data oscillation can lead to a large difference i n the classification), we combine 

T e s t i n g 
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Figure 4.1: Examples of decision trees. 

them wi th using the AdaBoos t approach described i n Section 4.3.1. Decision trees, w i th 
the classification result being 1 or —1, are used as the weak classifiers. The resulting strong 
classifier then consists of a set of weighted decision trees that are a l l applied on the i tem to be 
classified, their classification results are weighted by the appropriate weights, summarized, 
and the sign of the result provides the final decision. 

In order to be able to apply AdaBoos t in noise-based testing, one has to first define some 
testing goal expressible as a binary test property that can be evaluated over test results such 
that both positive and negative answers are obtained. The test property w i l l typical ly be 
based on some non-binary test quantity such as the number of discovered error occurrences, 
number of covered tasks of some metric, testing time, or a (weighted) combination of such 
quantities. The binary test property can then be obtained by taking the median value 
of the test quantities obtained throughout the test runs and by classifying test and noise 
settings to those that lead (or do not lead) to results above the median. 

Example 4.4.1. So, a binary test property can, e.g. look like coverage > C A time < 
T where coverage measures coverage under the chosen coverage metric, C is the median 
coverage obtained in the so far performed test runs, test measures the time of executing 
a test, and T is the median testing time in the so far performed runs. 

The requirement of having both positive and negative results can be a problem in 
some cases, notably in the case of discovering rare errors where getting positive results is— 
natural ly—very rare. In such a case, one has to use a property that approximates the target 
test property (e.g. by replacing the discovery of rare errors by discovering any rare program 
behaviours even when they do not contain an error) and provides both positive and negative 
answers sufficiently often. O f course, once some testing goal is satisfied (e.g. once testing 
aimed at rare behaviours manages to find some error), another testing goal can become 
more urgent—e.g. that of repeatedly reproducing the same error for debugging purposes 
or finding other similar errors. The t ra ining process is then to be repeated, possibly using 
the newly available test results found by previously conducted test runs. 

Further, note that, in the context of testing concurrent programs, the test property w i l l 
typical ly not be defined over results of part icular test runs but rather on results of multiple 
test runs performed under the same test and noise setting. The reason is the need of 
min imiz ing the influence of scheduling non-determinism. The results obtained in several test 

53 



runs can be summarised by taking, e.g. the median or cumulative value of the considered 
test quantity. 

Once the test property representing the chosen testing goal is defined, a number of 
test and noise configurations is to be generated at random. Several test runs are to be 
performed for each of these configurations, and the test property is to be evaluated on each 
of the series of the test runs performed wi th the same test and noise configuration. For 
each of the considered test and noise configurations, a couple (x, y) is formed where x is 
a vector recording the test and noise configuration used and y G { 1 , - 1 } is the result of 
evaluating the test property. Th is way, we obtain the set X = {(x~i, yi), • • •, (xn, yn)} to be 
used as the input of AdaBoos t as described i n Section 4.3.1. 

Example 4.4.2. An example of a couple, which can appear in the set X if we consider 
three noise parameters, e.g. noise frequency, strength of noise, and type of noise, can be 
((839,28,1), —1). It says that for the values 839, 28, and 1 of the noise frequency, strength 
of noise, and type of noise, respectively, the test property evaluated negatively. 

In Section 4.4.2, we illustrate and further concretise the above ideas by proposing con­
crete test properties and ways of evaluating them for two testing goals common i n practice: 
namely, finding rare behaviours and repeatedly reproducing known errors. 

Once the set X is obtained, the AdaBoos t a lgori thm can be applied and the result 
validated as described i n Section 4.3.1. A successfully validated classifier can subsequently 
be analyzed to get some insight which test and noise parameters are influential for testing 
the given program and which of their values are promising for meeting the defined testing 
goal. Such knowledge can then in tu rn be used by testers when th inking of how to optimize 
the testing process. We propose a way how such an analysis can be done i n Section 4.4.3, 
and we experiment w i th it i n Section 4.5.4. Moreover, the obtained classifier can also be 
used to fully automatical ly improve performance of noise-based testing: we propose three 
approaches how this can be done (two of these approaches based on filtering randomly 
generated test and noise settings and one based on a combination wi th genetic optimization) 
in Section 4.4.4. Experiments w i th these approaches are then described i n Section 4.5.5. 

4.4.2 F i n d i n g R a r e B e h a v i o u r s a n d R e p r o d u c i n g K n o w n E r r o r s 

We now concentrate on two concrete testing goals: namely, (1) repeatedly finding known 
errors, which is useful for debugging purposes, and (2) finding rare behaviours, which is 
useful for finding bugs missed by common testing runs. For these two different goals, we 
propose concrete test properties and a way of evaluating them that turned out as suitable in 
our experiments for deriving input sets for AdaBoos t such that AdaBoos t i n tu rn produces 
appropriately trained classifiers for the given testing goals. 

In the case of t ry ing to repeatedly reproduce a known error, the test property of interest 
is s imply the error manifestation property that indicates whether an error manifested during 
the performed test executions or not. W h e n deriving the input set X for AdaBoos t that 
should i n t u r n produce a classifier suitable for reproducing the given error, we generate 
a number of random test and noise configurations, perform several test runs wi th each 
of the configurations 1 , and compute the number of test runs i n which the error has been 
found. Then , we compute the median value of the number of runs i n which an occurrence 
of the given error has been found for the different considered test and noise configurations. 
Configurations that reached a number of error occurrences above the median are marked 

1 In our experiments, we, in particular, use five runs. 
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as positive whereas the remaining ones are marked as negative. Th is w i l l give us the set 
X that w i l l be split into a testing set and a val idat ion set. The testing set w i l l be used as 
the input for AdaBoos t , which w i l l then produce an appropriately trained classifier for the 
error manifestation property. 

Example 4.4.3. For an example of getting an input set for AdaBoost according to the above 
description, see Table 4-1- In particular, we consider five combinations of values of three 
noise parameters, namely, noise frequency, strength of noise, and type of noise. Assume 
that when we perform five testing runs with each of the settings, we get the number of 
error manifestations shown in the fourth column of the table—with the median number 
of error manifestations being 0. Then the classification results will be those given by 
the fifth column of the table. This gives us the set X = {((839, 28,1), 1), ((114, 36, 5), —1), 
((724,48,4), - 1 ) , ((895,12,0), 1), ((234,8,4), - 1 ) } that will be split into a training and val­
idation set for AdaBoost. 

Table 4.1: A n example of constructing an input for AdaBoos t for the error manifestation 
property. 

noise frequency strength of noise type of noise number of 
error manifestations 

classification 
result 

839 28 1 2 1 
114 36 5 0 -1 
724 48 4 0 -1 
895 12 0 5 1 
234 8 4 0 -1 

Once a classifier is derived, its precision and stabil i ty are tested on the val idat ion set. 
In particular, we let the generated configurations be classified by the derived classifier as 
suitable or unsuitable for reproduction of the known errors, and, subsequently, we check 
correctness of the classification through repeated test runs under these configurations. 
The concrete numbers of test runs considered to get the t ra ining and val idat ion sets in 
our experiments are provided in Sections 4.5.3 and 4.5.5. 

Next , we consider the case of finding test and noise configurations suitable for testing 
rare behaviours in which so far unknown bugs might reside. In order to achieve this goal, we 
use classification according to a rare events property that indicates whether a test execution 
covers at least one rare coverage task of a suitable coverage metr ic—in our experiments, 
the GoldiLockSC* metric [26] is used for this purpose. To distinguish rare coverage tasks, 
we collect the tasks that were covered i n at least one of the performed test runs (i.e. bo th 
from the t ra ining and val idat ion sets), and, for each such coverage task, we count the fre­
quency of its occurrence in a l l of the considered runs. We define the rare tasks as those 
that occurred i n less than 20 % of the test executions. 

Furthermore, when learning the classifier, we want to avoid the scenario where we find 
some test and noise configurations that are capable of finding some behaviours that are 
rare i n normal test runs, but they lead to discovering the same behaviours in each noised 
test run again and again. Th is is, we ideally want to keep finding different rare behaviours 
in each test run. To stress this goal, we focus on the cumulative number of covered rare 
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tasks, not only on coverage in ind iv idua l executions. In our experiments, we, i n particular, 
use cumulat ion from five test runs. Th is is, we randomly generate a number of test and 
noise configurations. W i t h each of them, we execute five test runs, and we cumulate (i.e. 
unite) the sets of covered rare tasks. 

Subsequently, as we consider the t ime needed for testing to be also important , we take 
the sizes of the cumulated sets of covered rare tasks and divide them by the t ime needed 
to perform the considered five test executions. We take as positive the test and noise 
configurations whose cumulated number of covered rare tasks divided by the needed test 
t ime is above the median value of this combined test quantity. We then derive the AdaBoos t 
classifier and test its precision and stability. The concrete numbers of test runs considered to 
get the t ra ining and validat ion sets in our experiments are again provided i n Sections 4.5.3 
and 4.5.5. 

Example 4.4.4. Table 4-2 gives an example of obtaining an input set for AdaBoost for 
the rare behaviours property according to the above description. Namely, we consider three 
combinations of three noise parameters (noise frequency, strength of noise, and type of noise 
as before). To shorten the example, we assume that three testing runs were performed with 
each of these configurations only. Further, we assume that the rare tasks that were covered 
in the testing runs are as shown in the fourth column. The fifth column gives the time we as­
sume to be consumed for the testing runs. The sixth column then gives the corresponding cu­
mulative coverage of rare tasks divided by the total consumed time. Finally, the last column 
gives the appropriate classification result (due to the median coverage being 3/7). The value 
from the last column is to be used together with the values in the first three columns to derive 
the input set for AdaBoost: X = {((83, 28,1), - 1 ) , ((451,44, 3), 1), ((729, 32, 3), - 1 ) } . 

Table 4.2: A n example of constructing an input for AdaBoos t for the rare behaviours 
property. 

noise noise noise covered rare testing cumulative classification 
freq. strength type tasks time coverage per time result 

83 28 1 run 1 {a,c,d} 3 (\{a,c,d}\=3)/7 -1 
run 2 {a,d} 2 
run 3 {c,d} 2 

451 44 3 run 1 {a,d} 2 ( | R c , d , e } | = 4) /5 1 
run 2 {c,e} 2 
run 3 R e } 1 

729 32 3 run 1 R e } 3 ( I R e } | = 2 ) / 8 -1 
run 2 H 2 
run 3 {e} 3 

4.4.3 A n a l y s i n g I n f o r m a t i o n H i d d e n i n Classif iers 

In order to be able to easily analyze information hidden i n the classifiers generated by A d a -
Boost , we have decided to restrict the height of the basic decision trees used as weak clas­
sifiers to one. Moreover, our experiments showed us that increasing the height of the weak 
classifiers does not lead to significantly better classification results. 
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A decision tree of height one consists of a root labelled by a condit ion concerning 
the value of a single test or noise parameter and two leaves that correspond to the cases 
when the condit ion is or is not satisfied and that are labelled as leading to either positive or 
negative classification. AdaBoos t provides us wi th a set of such trees, each wi th an assigned 
weight. For better understanding which parameters are important for testing, we convert 
this set of trees into a set of rules such that we get a single rule for each test or noise 
parameter that appears i n at least one decision tree. The rules consist of a condit ion and 
a weight. In part icular, the conditions have the form of a conjunction of interval constraints, 
and the weights are real numbers from the range between zero and one. 

w_3,3=0.010682 w_6,l=0.012289 w_6,2=0.006594 w_7,1=0.008071 w_10,l=0.005002 

Figure 4.2: A n example of several decision trees wi th conditions over parameters 
xi, X3, XQ, xr and x\o created by the AdaBoos t algori thm. 

The rules are obtained as follows. F i r s t , decision trees wi th negative or zero weights 
are omit ted because they correspond to weak classifiers w i th the weighted error greater or 
equals to 0.5. Next , the remaining decision trees are grouped according to the parameter 
about whose value they speak. To illustrate the above, assume that AdaBoos t gives us, 
e.g. the ten decision trees wi th positive weights that are shown i n F i g . 4.2. For each 
obtained group of the trees, a single rule is produced by taking the disjunction of the interval 
constraints associated wi th the grouped decision trees 2 . Intuitively, taking the disjunction 
corresponds to the fact that each of the intervals was found to be relevant for the given 
testing goal. The weight of the rule is computed by summarizing the weights of the trees 
from the concerned group and normalising the result by div id ing it by the sum of the weights 
of a l l trees from a l l groups. This is, if a l l decision trees wi th positive weights created by 
AdaBoos t are w\,..., wm, and the concerned group G consists of n < m trees wi th weights 
w^,..., Win where V I < j < n : 1 < ij < m, then the weight of the rule created from G 

w i l l be computed as the fraction 1 J J . 

In our example, we focus on the importance of the different parameters. We start w i th 
parameter x\. For this parameter, when we take the disjunction of the interval constraints 
associated wi th the trees corresponding to x\ (i.e. the first three trees i n F i g . 4.2), we 
obtain the condit ion x\ < 239.5 V x i < 131.5 V x i > 497.5, which can be simplified to x\ < 
239.5 V x\ > 497.5. The weight of this rule is given by the sum of the three concerned trees 

2 In particular, the interval constraint of the tree is taken as is when the true branch of the decision tree 
leads to the +1 leaf. Otherwise, its complement must be taken. 
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w 1,2 w_l,l w_l,3 

131.5 239.5 497.5 1000 

Figure 4.3: Div i s ion of values of parameter x\ to intervals associated wi th the decision trees 
from F i g . 4.2. 

divided by the sum of the weights of a l l the trees in the figure, which gives the (rounded) 
weight wXl = 0.398. If we process the other parameters i n the same way, we get the following 
weights: wX3 = 0.574, wX6 = 0.017, wX7 = 0.007, wxi0 = 0.004. Note that the weights of 
the parameters satisfy the constraint ^2iwXi

 = 1- Clearly, parameters £ 3 and x\ appear 
to have the highest importance i n the given setting; parameters XQ, XJ, and x\o appear to 
have at least some significance; while parameters such as X2 are of no importance (since 
they d id not even appear i n any of the decision trees w i t h positive weights). 

F rom the rules obtained as described above, we can easily identify the parameters that 
most affect testing of the given program wi th the given testing goal. For that, we can simply 
take the parameters that are associated wi th the rules w i th the highest weights. In case we 
want to derive more general results—spanning over mult iple testing goals and/or multiple 
tested programs, we can do that by looking for parameters (or values) that appear among 
the most influential ones among a l l (or most) of the considered test cases. Alternat ively, 
one can also unite the t ra ining sets obtained for the different testing goals and /or programs 
under test, and then apply AdaBoos t to the combined t ra ining set. In our example, the pa­
rameter which most affects the testing process is the parameter £ 3 that has the highest 
weight. 

Moreover, we can also see which concrete values of the different parameters are the most 
influential. In particular, assume that the condit ion of the rule derived for some parameter 
was created from a set X = In} of interval constraints where the decision trees 
that were associated wi th these intervals had weights w\, ...,wn. We identify a l l max imum 
subsets J = { I ^ , I i m } C I of intervals w i th non-empty intersections (i.e. such that 
^je{i,...,m}Iij 7^ 0) a n d assign each such set a weight wj given by the sum of the weights 
of its elements, i.e. wj = X ^ e { i m}wij- Intuitively, the weights of a l l the decision 
trees whose interval constraints overlap contribute to the weight of their overlapping part. 
The most influential values of the given parameter are then given by the sets J w i th 
the highest weights—namely, by the union U j DI^J I of the intersections of the intervals / 
belonging to the subsets J w i th the highest weights wj. 

Thus, i n the example, we have a look at the most influential values of some of the pa­
rameters from F i g . 4.2. In particular, we concentrate on parameter x\. The parameter is as­
sociated wi th three decision trees and hence three interval constraints, which are i l lustrated 
in F i g . 4.3. F r o m the i l lustrat ion, we see that there are two m a x i m u m subsets of the in­
terval constraints w i th non-empty intersections, namely, J\ = {x\ < 239.5, x\ < 131.5} 
and Ji = {x\ > 497.5}. The corresponding intersections are x\ < 131.5 and x\ > 497.5 
wi th the (rounded) weights wjx = 0.441 and wj2 = 0.005. Clearly, values of x\ less than 
or equal to 131.5 are the most influential. In case one would like to have a finer look at 
the influence of the different values, one can take a l l subsets of the set of intervals associa­
ted wi th the given parameter, compute the corresponding intersections of the constraints 
and their weights (as in the case of the m a x i m u m subsets), and obtain a histogram of 
the weights—such as the one shown i n F i g . 4.4 for the parameter x\. 
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Figure 4.4: His togram of weights of values of parameter x\ derived from the decision trees 
in F i g . 4.2. 

4.4.4 U s i n g A d a B o o s t in F u l l y - A u t o m a t e d T e s t i n g 

We now present several approaches of using AdaBoos t for fully-automated noise-based 
testing. F i rs t , we describe two ways of combining AdaBoos t w i th random generation of test 
and noise parameters. Second, we show how it can be combined wi th genetic algorithms 
for finding the most suitable values of test and noise parameters. 

AdaBoost-Improved R a n d o m Testing 

In practice, noise-based testing is often used wi th randomly generated test and noise confi­
gurations. The simplest way of using AdaBoos t to improve on this practice is the following. 
W h e n performing repeated test runs of a given program to meet a given testing goal, one can 
run the program wi th randomly generated test and noise configurations, but use only those 
randomly generated configurations that get classified as suitable by an AdaBoos t classifier 
derived for the given program and testing goal as described i n Subsection 4.4.2. Th is idea, 
considered already i n our prel iminary work [6], is rather simple, but it can provide quite 
nice results as we illustrate through our experiments presented i n Subsection 4.5.5. 

W h i l e the above approach can provide useful results, we now propose yet another way of 
combining AdaBoos t w i th random generation of test and noise configurations, which was not 
considered i n [6]. Th is approach is motivated by our observation that, i n many of the case 
studies that we conducted and which we report later on, some test and noise parameters 
were significantly more important than others, even though the latter parameters were 
s t i l l influential. In such cases, however, the above proposed use of AdaBoos t can include 
among useful test and noise configurations even some of those configurations where the less 
important parameters are set i n a rather unsuitable way, which is tolerated due to the much 
higher weight of the more important parameters. 

To improve on the above si tuation, we propose to bu i ld on the method for determining 
the most suitable values of each parameter, which is described at the end of Section 4.4.3. 
We then derive the test and noise configurations to be used by independently choosing 
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the value of each of the parameters at random but from the most suitable range of its 
values only. For instance, assume that we have test and noise parameters xi, X2, and X3, 

and the approach of Section 4.4.3 tells us that their most influential values are from intervals 
li, I2, and I3, respectively. Then, every t ime we need a test and noise configuration for 
a repeated test run , we generate it as a three-tuple whose first i tem is randomly chosen from 
the interval I\, the second i tem is randomly chosen from I2, and the th i rd one is randomly 
chosen from I3. Our experiments presented in Section 4.5.5 show that this approach can 
indeed provide significantly better results than the first mentioned approach. 

Combinat ion of Genetic Algori thms and AdaBoost 

Final ly , we also propose a combination of using AdaBoos t and the genetic algorithms that 
we considered for finding suitable test and noise configurations i n chapter 3 ( M O G A and 
S O G A approaches). Th is approach is motivated as follows. Chapter 3 showed that genetic 
algorithms can achieve very good results i n finding suitable test and noise configurations, 
especially when t ry ing to increase the achieved concurrency coverage, but they need to 
execute a huge number of test runs to get these configurations. The reason of this is that 
the genetic algorithms start w i t h random in i t i a l configurations in the first generations and 
slowly create configurations wi th better results i n the next generations. Our idea is to 
accelerate this process by restricting the range of possible values of the different test and 
noise parameters in which the genetic algorithms w i l l search. In particular, we restrict 
the range of the parameters to the most influential values found through AdaBoos t and 
the approach described at the end of Section 4.4.3. Thus, essentially, we use AdaBoos t to 
get coarse knowledge on the suitable values of the test and noise parameters, and then we 
refine this knowledge using genetic algorithms. Our experiments presented below confirm 
that this approach can often significantly outperform a l l the other mentioned approaches. 

4.5 Experimental Evaluation 

In this section, we describe the experiments that we conducted to evaluate the approaches 
proposed above. We first provide a brief description of the benchmark programs that 
we used i n our experiments. Next , we briefly characterize the accuracy and sensitivity 
of the AdaBoos t classifiers that we were able to obtain for our case studies and testing 
goals. Subsequently, we analyze the knowledge hidden i n the classifiers that we obtained, 
compare it w i th our experience obtained in other ways, and derive several new insights 
about the importance of the different test and noise parameters. F ina l ly , we proceed to 
experiments i l lustrat ing that AdaBoos t combined wi th genetic algorithms can also be quite 
successfully used i n fully-automated noise-based testing. 

4.5.1 C a s e Studies 

For our experimental evaluation, we used the multi-threaded programs presented in Sec­
t ion 2.6. The first five of them contain known concurrency-related errors, and so they are 
suitable for experiments w i th reproduction of known bugs for debugging purposes. The re­
maining programs do not contain any known errors, and so they are added to the first five 
case studies wi th in our experiments targeted at increasing coverage of rare behaviours 3 . 

3The case studies we present in this chapter do not include large programs due to we need to perform 
a rather large number of experiments with different test and noise settings: Already with the use cases we 
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4.5.2 C o n s i d e r e d Test a n d Noi se P a r a m e t e r s 

In Section 4.4.1, we said that our input set X for AdaBoos t w i l l consist of couples (x, y) 
where x is a vector recording the test and noise configuration used and y G { 1 , - 1 } is the re­
sult of evaluating the considered test property. In our experiments, we—in particular— 
consider vectors x of test and noise parameters consisting of 12 entries, i.e. x = (xi,X2, 

• • • ,x12). 
In our vectors of test and noise parameters, the parameter x\ G { 0 , . . . , 1000} represents 

the noise frequency, the parameter x2 G { 0 , . . . , 100} is the strength of noise, the parameter 
£ 3 G { 0 , . . . , 5} selects one of the six available basic noise seeding heuristics. The parameters 
£ 4 , £ 5 G {0,1} disable or enable the addi t ional noise seeding heuristics haltOneThread and 
timeoutTamper, respectively. 

The parameter XQ G {0 ,1 , 2} controls the way how the sharedVarNoise noise placement 
heuristic behaves—namely, whether it is disabled (XQ = 0), it applies the sharedVarN oise-
one strategy injecting the noise at accesses to one randomly selected shared variable (XQ = 
1), or it applies the sharedVarNoise-all strategy inserting the noise at accesses to a l l shared 
variables (XQ = 2). The parameter xj G {0,1} disables or enables the nonVariableNoise 
heuristic. The parameters xs,xg G {0,1} disable or enable the coverage-based noise place­
ment heuristic and the related coverage-based-frequency heuristic, respectively. 

Final ly , we summarize the parameters used by the above test cases (on top of the pa­
rameters of the noise injection technology itself) and explain i n more detai l their encoding 
in our experiments. These parameters are encoded as the parameters £ 1 0 G { 1 , . . . , 1 0 } 
and £ 1 1 , £ 1 2 G { 1 , . . . , 100} i n the experiments. In particular, Animator, Cache4j, HEDC, 
and Crawler are not parametrized, and hence £ 1 0 , £ 1 1 , £ 1 2 are not used w i t h them. In 
the Airlines, Elevator, Montecarlo, and Raytracer test cases, the xio parameter controls 
the number of the threads used. In the Rover test case, the xio G { 1 , . . . , 7} parameter 
selects one of the available test scenarios. The Sor and TSP test cases have two test 
parameters. The xio parameter is the number of iterations for Sor while it selects one of 
the available test scenarios for TSP. The x\\ parameter controls the number of the threads 
used for both of these test cases. The Airlines test case uses the x\\ and £ 1 2 parameters 
where the x\\ controls how many cycles the test does and the x\2 parameter indicates 
the flight capacity. 

The total number of noise configurations that one can obtain from the above can be com­
puted by mul t ip ly ing 1001 values of noise frequency, by 101 possible values of noise strength, 
the number of the basic noise seeding heuristics, which is six, by two to reflect whether hal­
tOneThread is or is not used, two to reflect whether timeoutTamper is used, two to reflect 
whether the nonVariableNoise heuristic is used, two to reflect whether the coverage-based 
noise placement is used, two to reflect whether the covergage-based-frequency heuristic is 
used, and three to reflect the possible use case scenarios of the sharedVarNoise heuristic. 
Th is gives a rough estimate of about 58.2 mi l l ion combinations of noise settings when we 
simplify the si tuation by ignoring the fact that some of the settings do not make sense 
when used together (for instance, enabling coverage-based-frequency heuristic has no effect 
when coverage-based heuristic is disabled). O f course, the state space of the test and noise 
settings then further grows wi th the possible values of parameters of the test cases and 
the testing environment [ ]. 

consider, the experiments presented below took approximately 5,592 core hours, i.e. 233 core days. However, 
works such as [22] show that noise-based testing can be successfully used even on programs with millions of 
lines of code and can find previously unknown errors in complex industrial code. 
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4.5.3 A c c u r a c y a n d Sens i t iv i ty of Classif iers 

We now present data about the accuracy and sensitivity of the AdaBoos t classifiers that we 
derived for the above test cases. For the first five of them that contain known concurrency 
errors, we have considered both the testing goal of reproducing a known error as well as 
the goal of increasing coverage of rare behaviours. For the remaining test cases, we have 
considered the latter goal only. 

In our experiments, we used the implementat ion of AdaBoos t available in the G M L 
AdaBoos t M a t l a b Toolbox' 1 . We set it to use decision trees of height restricted to one 
and to use 10 boosting phases. W h e n deriving the classifiers, we proceeded as described 
in Section 4.4.2. W h e n deriving classifiers for the error manifestation property, we used 
2000 random test and noise configurations. For the rare events property, due to a higher 
t ime-consumption of the experiments, we used 200 random test and noise configurations. 
To obtain data al lowing us to derive the accuracy and sensitivity of the derived classifiers, 
100 different random divisions of the randomly generated configurations to t ra ining and 
validat ion sets were considered. 

Table 4.3: The average and standard deviat ion of the accuracy and sensitivity of the A d a -
Boost classifiers derived for the test cases containing known errors. 

Error reproduction Rare behaviours 
Accurancy Sensit ivi ty Accurancy Sensit ivity 

CaseStudies M e a n S td M e a n S td Mean S td Mean S td 
Air l ines 0.7488 0.0163 0.8917 0.0250 0.6601 0.0508 0.6880 0.0900 
Anima to r 0.8353 0.0154 0.9489 0.0195 0.8503 0.0489 0.9006 0.0549 
Crawler 0.9916 0.0026 0.9948 0.0018 0.7453 0.0437 0.7549 0.0740 
Elevator 0.9568 0.0056 0.9965 0.0034 0.7161 0.0439 0.7327 0.0797 
Rover 0.8859 0.0142 0.9611 0.0088 0.6108 0.0406 0.6330 0.0950 
Average 0.8837 0.0108 0.9586 0.0117 0.7165 0.0456 0.7418 0.0787 

Table 4.4: The average and standard deviat ion of the accuracy and sensitivity of the A d a -
Boost classifiers derived for the test cases without known errors. 

Rare behaviours 
Accurancy Sensit ivity 

CaseStudies M e a n S td Mean S td 
Cache4j 0.8454 0.0671 0.8963 0.0907 
H E D C 0.7819 0.0443 0.7797 0.0758 
Montecarlo 0.6692 0.0607 0.6702 0.1230 
Raytracer 0.6298 0.0713 0.6380 0.1114 
Sor 0.7807 0.0457 0.8203 0.0797 
T S P 0.6420 0.0674 0.6587 0.1179 
Average 0.7248 0.0594 0.7439 0.0998 

Tables 4.3 and 4.4 summarise the average accuracy and sensitivity of the derived A d a -
Boost classifiers and their standard deviations. One can clearly see that both the average 

4 http://graphics.cs.msu.ru/en/science/researcli/machinelearning/AdaBoosttoolbox 
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accuracy and sensitivity are quite high for the error reproduction test goal—with the ave­
rage values being 0.8837 and 0.9586, respectively. For the testing goal of finding rare 
behaviours, bo th of the statistics have smaller values. However, the experiments presented 
in Section 4.5.5 show that the method works nicely even i n their case. Moreover, the stan­
dard deviat ion is very low i n a l l cases, which indicates that we always obtained results that 
provide meaningful information about our test runs. 

4.5.4 A n a l y s i s of K n o w l e d g e H i d d e n i n O b t a i n e d Classif iers 

We now employ the approach described i n Section 4.4.3 to interpret the knowledge hidden in 
the classifiers that we inferred for our test cases. F r o m these classifiers, using the approach of 
Section 4.4.3, we derived the rules shown i n Tables 4.5 and 4.6 for the error manifestation 
property and the rare behaviours property, respectively. For each test case, the tables 
contain a row whose upper part contains the condit ion of the rule (in the form of an in­
terval constraint), and the lower part contains the appropriate weight from the interval 
(0,1). 

In order to interpret the obtained rules, we first focus on rules w i th the highest weights 
(corresponding to parameters w i th the biggest influence). Then we look at the parameters 
which are present in rules across the test cases (and hence seem to be important i n general) 
and parameters that are specific for part icular test cases only. Next , we pinpoint parameters 
that do not appear i n any of the rules and therefore seem to be of a low relevance i n general. 

Table 4.5: Inferred rules for the error manifestation property wi th the most influential 
intervals marked out. 

Airlines 
Rules xx < 275 X 3 < 0.5 or 3.5 < x$ XQ < 1.5 2.5 < x\o 73.5 < xi2 

Weights 0.16 0.50 0.04 0.18 0.12 
Animator 

Rules 705 < xi 2.5 <x3< 3.5 x6 < 0.5 
Weights 0.19 0.55 0.26 

Crawler 
Rules xi < 215 15 < x2 1.5 <x3< 3.5 0.5 < X4 x5 < 0.5 XQ < 1.5 

or 4.5 < x 3 

Weights 0.32 0.1 0.38 0.05 0.08 0.07 
Elevator 

Rules x\ < 5 x 3 < 0.5 or 3.5 < xs < 4.5 x7 < 0.5 8.5 < xio 
Weights 0.93 0.04 0.01 0.02 

Rover 
Rules 515 < xi 2.5 <x3< 3.5 0.5 < XA x6 < 0.5 

Weights 0.21 0.48 0.08 0.23 

A s for the error manifestation property (i.e. Table 4.5), the most influential parameters 
are £ 3 i n four of the test cases and x\ in the Crawler test case. Th is indicates that the se­
lection of a suitable noise type ( £ 3 ) or noise frequency (x\) is the most important decision 
to be done when testing these programs wi th the a im of reproducing the errors present 
in them. Another important parameter is XQ controll ing the use of the sharedVarNoise 
heuristic. Moreover, the parameters x\, £ 3 , and XQ are considered important in a l l of 
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the rules, which suggests that, for reproducing the considered k ind of errors, they are of 
a general importance. 

In two cases, namely, Crawler and Rover, the haltOneThread heuristic ( £ 4 ) turns out 
to be relevant. In these test cases, the haltOneThread heuristic should be enabled i n order 
to detect an error. Th is behaviour fits into our previous results [ !] in which we show 
that, in some cases, this unique heuristic (the only heuristic which allows one to exercise 
thread interleavings which are normal ly far away from each other) considerably contributes 
to the detection of an error. Final ly , the presence of the x\o and X12 parameters i n the rules 
derived for the Airlines test case indicates that the number of threads (xio) and the number 
of cycles executed during the test ( # 1 2 ) pays an important role in the noise-based testing 
of this part icular test case. The X\Q parameter (i.e. the number of threads) turns out to be 
important for the Elevator test case too, indicat ing that the number of threads is of a more 
general importance. 

Final ly , we can see that the x%, xg, and x\\ parameters are not present in any of the de­
rived rules. Th is indicates that the coverage-based noise placement heuristics are of a low 
importance i n general, and the x\\ parameter specific for Airlines is not really important 
for finding errors i n this test case. 

Next , for the case of classifying according to the rare behaviours property, the obtained 
rules are shown in Table 4.6. The highest weights can again be found i n rules based on 
the X3 parameter (Animator, Crawler, Rover, Cache4j, HEDC, Montecarlo, Sor, TSP) and 
on the x\ parameter (Airlines). However, in the case of Elevator and Raytracer, the most 
contr ibuting parameter is now the number of threads used by the test (X\Q). Moreover, 
the X\Q parameter is also important i n the Montecarlo, Sor, and TSP test cases. Th is 
suggests that choosing the right number of threads is quite important to maximize the chan­
ces to spot rare behaviours, and that it is not necessarily the case that the higher number 
of threads is used the better. Further, the generated sets of rules often contain the £ 3 

parameter controll ing the type of noise (all test cases except for Airlines and Raytracer) 
and the XQ parameter which controls the sharedVarNoise heuristic. These parameters thus 
appear to be of a general importance for the rare behaviours property. 

The parameter X12, i.e. the number of test cycles, does again tu rn out to be important 
in the Airlines test case. F ina l ly , the xs parameter is shown only in one test case (TSP), 
xg shows up i n the rules generated for two test cases (Cache4j and TSP), and the x\\ 
parameter does not show up i n any of the rules, and hence seem to be of a low importance 
in general for finding rare behaviours (which is the same as for reproduction of known 
errors). 

Overal l , the obtained results confirmed some of the facts we discovered during our 
previous experimentation such as that different goals and different test cases may require 
a different setting of noise heuristics [62, 44, 42] and that the haltOneThread noise injection 
heuristics ( £ 4 ) provides i n some cases a dramatic increase i n the probabil i ty of spott ing 
an error [62]. More importantly, the analysis revealed ( in an automated way) some new 
knowledge as well . Main ly , the type of noise (x%) and the setting of the sharedVarNoise 
heuristic (XQ) as well as the frequency of noise (x\) are often the most important parameters 
(although the importance of x\ seems to be a bit lower). Further, it appears to be important 
to suitably adjust the number of threads (xio) whenever that is possible. 
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Table 4.6: Rules inferred for the rare behaviours property. 

Airlines 
Rules 

Weights 
x i < 295 or 745 < xx < 925 

0.52 
X2 < 35 

0.06 
0.5 < x5 

0.1 
61.5 < £12 < 91.5 

0.32 
Animator 

Rules 
Weights 

0.5 < x 3 < 3.5 or 4.5 < xs 

0.80 
0.5 < x6 < 1.5 

0.20 
Crawler 

Rules 
Weights 

0.5 < x 3 < 3.5 or 4.5 < xs 

0.46 
0.5 < XA 

0.08 
0.5 < x5 

0.20 
0.5 < x6 < 1.5 

0.26 
Elevator 

Rules 

Weights 

0.5 <x3< 3.5 
or 4.5 < x 3 

0.22 

0.5 < XA 

0.05 

0.5 < x5 

0.20 

1.5 < XQ 

0.06 

1.5 < xio < 4.5 
or 7.5 < X\Q 

0.47 
Rover 

Rules 
Weights 

2.5 < x 3 < 3.5 or 4.5 < xs 

0.46 
xA < 0.5 

0.26 
x6 < 0.5 

0.16 
0.5 < x7 

0.12 
Cache4j 

Rules 
Weights 

x 3 < 0.5 or 3.5 < xs < 4.5 
0.92 

x5 < 0.5 
0.02 

1.5 < XQ 
0.05 

x9 < 0.5 
0.01 

H E D C 
Rules xx < 279 49.5 < x2 x 3 < 0.5 or 3.5 < x3 < 4.5 1.5 < XQ 

Weights 0.03 0.02 0.89 0.06 
Montecarlo 

Rules X l < 548.5 x 3 < 0.5 
or 3.5 < X3 

x5 < 0.5 0.5 < x6 x9 < 0.5 3.5 < xio < 5.5 

Weights 0.09 0.30 0.05 0.18 0.09 0.29 
Raytracer 

Rules 20.5 < X2 < 53.5 0.5 < x5 x6 < 0.5 0.5 < x7 â io < 1-5 
or 75.5 < x 2 or 4.5 < x 1 0 

Weights 0.29 0.09 0.15 0.06 0.41 
Sor 

Rules xx < 144.5 X3 < 1.5 or 3.5 < x 3 0.5 < XQ x7 < 0.5 xio < 13 
Weights 0.26 0.32 0.07 0.07 0.28 

T S P - part i 
Rules xx < 691 x2 < 26 x 3 < 0.5 or 3.5 < x3 < 4.5 x5 < 0.5 

Weights 0.07 0.11 0.48 0.06 
T S P - part2 

Rules 0.5 < XQ 0.5 < x$ x9 < 0.5 xxo < 18.5 
Weights 0.06 0.06 0.07 0.09 

4.5.5 F u l l y - A u t o m a t e d Noise -based T e s t i n g w i t h A d a B o o s t 

We now present experimental results showing usefulness of the ways of applying AdaBoos t 
in fully-automated noise-based testing that we proposed in Section 4.4.4. We consider both 
the combinat ion of AdaBoos t and random noise injection as well as the combinat ion of 
AdaBoos t and genetic algorithms. We start by considering the case of repeated reproduction 
of a known concurrency error and then proceed to the case of coverage of rare tasks. 
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Repeated E r r o r Manifestation 

W i t h i n our experiments aimed at repeated reproduction of known concurrency-related er­
rors, we compare noise-based testing under test and noise configurations generated in the fol­
lowing ways: 

• Pure ly random generation (referred to as Random below). 

• Generation based on single-objective and multiple-objective genetic algorithms pro­
posed i n our earlier work and briefly described i n chapter 3 (denoted as SOGA and 
MOGA below). 

• R a n d o m generation filtered through the classic AdaBoos t approach as described in 
the first part of Section 4.4.4 (referred to as AdaBoost in what follows). 

• R a n d o m generation restricted to the AdaBoost-recognised most influential values of 
parameters described i n the second half of Section 4.4.4 (denoted as AdaBoost2 be­
low). 

• Generation based on the single-objective and multiple-objective genetic algorithms re­
stricted to the AdaBoost-recognised most influential values of parameters as proposed 
in Section 4.4.4 (referred to as SOGA2 and MOGA2 below). 

We run 5000 executions i n the learning phase of those approaches that need some trai­
ning. To compare capabilities of the obtained test and noise configurations i n repeatadly 
finding the known errors, we then run 20 executions for 20 best configurations obtained 
through each of the approaches (apart from the random approach where we s imply run 400 
executions). 

For experiments w i t h the genetic algorithms, one has to choose the fitness function to 
be used. In particular, for the SOGA and SOGA2 experiments, based on the experience 
we gained i n our previous work, we have chosen the following fitness function: 

.. Error Warning GoldiLockSC* timemax — time 
fztTVGSS — ^ 10 | j j 

Err or max Warningmax GoldiLockSCmax timemax 

Here, the GoldiLockSC* coverage metric is used since it has good properties for measuring 
general coverage of concurrency behaviour. The value GoldiLockSC* used i n the fitness 
function gives the cumulative number of tasks covered i n a series of five test runs performed 
wi th the given test and noise parameter values while GoldiLockSCmax gives the max ima l 
cumulative number of covered tasks across a l l so far performed series of test runs. However, 
since we want the fitness function to steer the search towards error discovery, we add to 
the fitness function information about the number of detected errors and error warnings. 
In particular, Error gives the number of error manifestations detected i n the given series of 
five runs by looking for unhandled exceptions, and Errormax gives the max ima l number of 
error manifestations so far seen i n some series of five test runs. Warning gives the number 
of warnings detected i n the given series of five test runs through the Avio checker [61] 
which detects atomici ty violations over one variable. Th is metric has been chosen because 
atomici ty violations are present in a l l the case studies considered i n this experiment. A g a i n , 
Warningmax gives the m a x i m u m Avio coverage obtained i n the so far performed series of 
test runs. Final ly , as we want to reflect the t ime needed for the test runs, we add it into 
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the fitness function i n such a way that lower amounts of t ime needed for the test runs are 
preferred . 

For the MOGA and MOGA2 experiments, we have let the multi-objective genetic al­
gori thm work w i t h the same objectives as those summarized i n the fitness function of 
the SOGA and SOGA2 approaches, i.e. the number of detected error manifestations, 
the Avio coverage, the GoldiLockSC* coverage, and the needed testing time. In a l l our 
experiments w i th the genetic algorithms, we used the following settings: the probabil i ty 
of mutat ion was set to 0.5, the number of individuals i n one populat ion was 20, and each 
ind iv idua l was evaluated by using the cumulative value from five executions of one confi­
guration. We used the two-point crossover and the tournament selection operator (which 
provided us wi th the best results in our previous work i n chapter 3). For each case study, 
we repeat each experiment ten times. 

Table 4.7 compares results obtained using the above described approaches. In particular, 
the table presents numbers and percentages of the executions that managed to find an error 
in those of our benchmark programs that contain a known error. A s we can see, the single-
objective genetic a lgori thm restricted to the AdaBoost-selected most influential parameter 
values (i.e. SOGA2) has achieved the best results on average. However, random generation 
of test and noise parameter values restricted to the AdaBoost-selected most influential 
parameter values (AdaBoost2) and the combinat ion of the multi-objective genetic algori thm 
and AdaBoos t (MOGA2) have also achieved very good results. 

Table 4.7: A n experimental comparison of various fully-automated approaches to noise-
based testing in the context of reproducing a known error. The best results are highlighted 
i n bold. 

Random SOGA MOGA AdaBoost 
CaseStudies error/ % error / % error/ % error/ % 
Air l ines 
An ima to r 
Crawler 
Elevator 
Rover 

132.93/33.23 
106.75/26.69 

0.00/0.00 
59.25/14.81 

17.00/4.25 

313.25/78.31 
220.20/55.05 

0.50/0.13 
133.25/33.31 

143.00/35.75 

272.25/68.06 
131.00/32.75 

0.50/0.13 
116.75/29.19 

88.25/22.06 

323.50/80.88 
144.80/36.20 

0.80/0.20 
80.40/20.10 
57.40/14.35 

Average 
A S D 

/15.80 
/6.01 

/40.51 
/5.50 

/30.44 
/7.91 

/19.11 
/7.44 

AdaBoost2 SOGA2 MOGA2 
CaseStudies error/ % error/ % error/ % 
Air l ines 
An ima to r 
Crawler 
Elevator 
Rover 

351.80/87.95 
252.40/63.10 

1.00/0.25 
36.60/9.15 
48.4/12.65 

371.80/92.95 
350.30/87.58 

2.40/0.60 
105.00/26.25 

324.80/81.20 

332.7/83.13 
241.25/60.31 

0.80/0.20 
86.80/21.70 

203.30/50.83 

Average 
A S D 

/34.62 
/4.91 

/57.72 
/4.89 

/43.24 
/2.58 

5Here, one could be tempted to divide the fitness values by the time needed. We do not use this approach 
since our previous experience presented in Chapter 3 showed that this often leads to significant degeneration 
of the search (producing configurations that produce very low coverage in extremely short time). 
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It must be noted that 14 generations were used for the SOGA and MOGA experiments, 
and 7 generations were used for the S0GA2 and M0GA2 experiments, which are very small 
numbers only. The reason for using such smal l numbers of generations is that we wanted to 
compare the different approaches while giving them the same time for the learning phase. 
The M0GA2 approach had the lowest standard deviat ion on average. Th is means that 
the M0GA2 approach gives good results w i th a high probabili ty. 

Coverage of Rare Concurrent Behaviours 

Table 4.8: A comparison of average cumulative numbers of rare tasks over the time needed 
to cover them. 

Rand . S O G A M O G A AdaBoos t 
CaseStudies rareTasks/ % rareTasks/ % rareTasks/ % rareTasks/ % 
Air l ines 0.6566/ 41.4 1.2950/ 81.6 1.5462/ 97.4 0.4768/ 30.0 
An ima to r 7.0193/ 4.6 145.8694/ 95.3 153.0821/ 100.0 87.3576/ 57.1 
Cache4j 0.0165/ 38.9 0.0167/ 39.4 0.0413/ 97.4 0.0292/ 68.9 
Crawler 3.0415/ 51.1 4.7546/ 79.9 3.1230/ 52.5 3.6581/ 61.5 
Elevator 9.0015/ 48.1 13.5446/ 72.4 16.9801/ 90.8 17.4073/ 93.1 
H E D C 0.3605/ 22.1 0.9909/ 60.7 0.7595/ 46.5 0.9754/ 59.7 
Montecarlo 0.1469/ 59.9 0.2158/ 88.0 0.2453/ 100.0 0.1482/ 60.4 
R a y tracer 0.0009/ 7.7 0.0003/ 2.6 0.0003/ 2.6 0.0006/ 5.1 
Rover 1.1532/ 42.1 1.7713/ 64.6 1.5623/ 57.0 1.4008/ 51.1 
Sor 0.0497/ 25.4 0.0742/ 37.9 0.0860/ 44.0 0.1088/ 55.6 
T S P 0.0381/ 36.9 0.0659/ 63.9 0.0971/ 94.1 0.0520/ 50.4 

Average / 34.4 / 62.4 / 71.1 / 55.6 
A S D / 17.6 / 26.9 / 32.5 / 20.7 

AdaBoos t2 S O G A 2 M O G A 2 
CaseStudies rareTasks/ % rareTasks/ % rareTasks/ % 
Air l ines 0.9298/ 58.6 1.5876/ 100.0 1.1216/ 70.6 
An ima to r 136.5519/ 89.2 114.9578/ 75.1 110.4470/ 72.1 
Cache4j 0.0194/ 45.8 0.0389/ 91.7 0.0424/ 100.0 
Crawler 5.8669/ 98.6 4.1439/ 69.6 5.9502/ 100.0 
Elevator 18.7019/ 100.0 14.9516/ 79.9 17.1540/ 91.7 
H E D C 1.1568/ 70.8 1.3836/ 84.7 1.6334/ 100.0 
Montecarlo 0.1780/ 72.5 0.1664/ 67.8 0.1823/ 74.3 
Raytracer 0.0052/ 44.4 0.0117/ 100.0 0.0104/ 88.9 
Rover 1.3018/ 47.5 1.9877/ 72.5 2.7411/ 100.0 
Sor 0.1154/ 59.0 0.1855/ 94.8 0.1956/ 100.0 
T S P 0.0642/ 62.2 0.0867/ 84.0 0.1032/ 100.0 

Average / 67.7 / 83.6 / 90.7 
A S D / 20.5 / 11.8 / 12.4 

In the second part of our experiments, we concentrate on increasing coverage of rare 
concurrent behaviours. Compared wi th the experiments of the previous section, we consider 
al l of our benchmark programs since we do not need them to contain an error. For the SOGA 
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and S0GA2 approaches, we use the following simplified fitness function: 

fitness 
GoldiLockSC* time. max — time 

GoldiLockSC* + time. max 

From the fitness function, we have left out information about errors and warnings since we 
now do not focus on occurrences of any known errors. The MOGA and M0GA2 approaches 
are based on the same objectives as SOGA and S0GA2, i.e. time and GoldiLockSC*. A s in 
the experiments of the previous section, the probabi l i ty of mutat ion was set to 0.5, and each 
ind iv idua l was evaluated using cumulative coverage obtained in five runs. Each generation 
had 20 individuals . 

For the random approach, we executed 1000 test runs wi th randomly generated test 
and noise configurations. For the other approaches, we used the same number of test runs, 
which we divided into 500 runs to t ra in the approaches and the remaining 500 runs to 
execute the test cases w i t h the configurations obtained from the t ra ining phase. W h e n 
t ra ining the AdaBoost-based approaches, we took as positive (i.e. suitable for testing) 50 
configurations wi th the highest results of cumulative coverage obtained from five runs and 
the other configurations as negative. For the approaches based purely on genetic algorithms, 
i.e. SOGA and MOGA, we used five generations i n the t ra ining phase. For the combinat ion 
of AdaBoos t and genetic algorithms, i.e. SOGA2 and MOGA2, we used 250 runs for t raining 
AdaBoos t and three generations for the subsequent t ra ining of the genetic algorithms. For 
each case study, we repeated each experiment ten times. 

In Table 4.8, we present results of the above experiments (which took i n to ta l ap­
proximately 6,939 core hours, i.e. 289 core days). In particular, the entries of the table 
contain—for the different programs and different approaches—the obtained coverage of 
rare tasks over the t ime needed to obtain the coverage. We divide the obtained coverage by 
the needed time in order to better see which of the approaches is better to quickly obtain 
a high coverage of rare tasks. Moreover, the obtained coverage over the testing t ime is 
followed by its interpretation i n per cent. Namely, the approach wi th one hundred per cent 
is the winning one, and, for the others, the percentage shows how far they are from the win­
ning approach i n terms of the achieved coverage over t ime. A s we can see, the combinations 
of AdaBoos t w i th the genetic approaches (i.e. MOGA2 and SOGA2) have the best results 
on average, and they are also more stable than the other methods. 

4.6 Conclusions and Future Work 

In this chapter, we have proposed a novel appl icat ion of data min ing in the context of noise-
based testing of concurrent programs. In particular, we have employed data min ing based 
on binary classification, decision trees, and the AdaBoos t machine learning algori thm. We 
have shown how to use these technologies for finding a suitable set up of noise injection, 
i.e. selecting suitable noise injection heuristics out of the many known ones and finding 
suitable values of their various parameters, w i th the a i m of maximiz ing chances of meeting 
a given testing goal. We have i l lustrated our approach on two concrete testing goals in 
the context of concurrent programs, namely, reproduction of known errors for debugging 
purposes and covering rare behaviours, which are more l ikely to contain so far unknown 
bugs than common behaviours. We have shown how data min ing can be used to gain more 
insight into the sui tabi l i ty of the different noise heuristics and their parameters, allowing 
testers to choose the right ones for the given context, as well as how to use data mining 
to improve fully automated noise-based testing. For the latter case, we have combined 

69 



our approach bo th w i t h noise-based testing on a random basis as well as w i th genetically 
optimized noise-based testing. For a l l the proposed approaches, we have i l lustrated on 
a number of case studies that they can indeed improve the process of noise-based testing 
of concurrent programs. 

In the future, we would like to apply i n the context of testing of concurrent programs 
other approaches to data mining than AdaBoos t and binary classification that we conside­
red i n this chapter. Th is could include approaches such as outliers detection, clustering, or 
association rules mining. We would also like to look for other applications of data mining 
than setting up noise injection in a suitable way. For example, many of the concurrency 
coverage metrics based on dynamic detectors contain a lot of information on the behaviour 
of the tested programs, and when mined, this information could be used for debugging pur­
poses. One could also th ink of generalising the various existing works devoted to detection 
of untested behaviour or to el iminat ing tests of similar behaviour of sequential programs 
(cf. Section 4.2) for the case of concurrent programs. 
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Chapter 5 

Prediction Coverage of Expensive 
Metrics from Cheaper Ones 

We already know from previous chapters that analysing of concurrent programs is very 
difficult due to scheduling non-determinism. To find suitable values of test and noise pa­
rameters, when one uses noise-based testing or analysis. For maximiz ing coverage under 
some metrics, one may need a large number of test executions, which is t ime-consuming. 
To minimize this problem, we show that there are correlations between metrics of different 
cost and that one can find a suitable test and noise setting to maximize coverage under 
costly metrics by experiments w i th cheaper metrics. 

5.1 Introduction 

To maximize coverage under a chosen concurrency coverage metric (or a combinations 
of such metrics), the space of possible thread schedules has to be properly examined. If 
the T N C S problem is not solved properly, the usage of noise can even decrease the obtained 
coverage [ ]. However, solving the T N C S problem is not an easy task. Sometimes, its 
solution is not even attempted, and purely random noise generation is used. Alternat ively, 
one can use genetic algorithms or data min ing [42, 44, 6]. These approaches can outperform 
the purely random approach, but finding suitable test and noise settings this way can be 
quite costly. The a i m of this chapter is to make the cost of this process cheaper. 

The approach which we propose builds on the facts that (1) maximiz ing coverage under 
different metrics may have different costs, and that (2) one can find correlations between 
test and noise settings that are suitable for maximiz ing coverage under different metrics. 
Moreover, such correlations may l ink even metrics for which the process of maximiz ing 
coverage is expensive but which are highly informative for steering the testing process and 
metrics for which the process of maximiz ing coverage is cheaper but which are less efficient 
when used for steering the testing process. We confirm a l l these facts through a set of 
our experiments. In particular, we identify the correlations by bui ld ing a predictive model 
between several expensive metrics (under which one may want to simultaneously maximize 
coverage) and several cheap metrics. 

Using the above facts, we suggest to optimize the testing process i n the following way. 
Given some expensive but informative metrics, one may find suitable values of test and noise 
parameters for maximiz ing coverage under these metrics by experimenting wi th coverage 
under some cheap metric (or a combination of such metrics) and then use this setting for 
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testing wi th the expensive metrics. We show on a set of experiments that this approach 
can indeed increase the efficiency of noise-based testing. 

Our contr ibution is thus threefold: (1) A n experimental categorisation of various con­
currency-related metrics to cheap and expensive ones according to the price of maximiz ing 
coverage under these metrics. (2) The observation and experimental confirmation of corre­
lations between test and noise settings suitable for testing under metrics of different cost. 
(3) The idea of exploi t ing the above facts for more efficient noise-based testing of concurrent 
programs and its experimental evaluation. 

5.2 Related Work 

In previous chapters, we focused on solving the test and noise problem v ia genetic algorithms 
and data mining. Here, we propose an orthogonal opt imisat ion based on solving the T N C S 
problem for expensive concurrency metrics by using cheaper ones, which is justified by 
existence of a predictive model between the expensive and cheap metrics. Pred ic t ion is 
used i n various other areas of software testing, e.g. to predict bug severity [ ] or to l ink 
concurrency-related code revisions wi th the corresponding issues and characterize bugs [18]. 
None of these works, however, builds on predict ion i n a s imilar way as our work i n this 
chapter. 

5.3 Preliminaries 

In this section, we briefly introduce regression methods, as well as the benchmark programs 
and experimental setting used in the rest of the chapter. 

5.3.1 Regress ion M o d e l s 

In the following part of the chapter, we briefly introduce three algorithms which are mostly 
used to create regression models. These three algorithms are stepwise regression, ridge 
regression, and the L A S S O algori thm. We discuss their usage i n the context below and 
conclude that the L A S S O algori thm suits as the best. 

Our motivat ion for using some regression algori thm is to find a combination of cheap 
metrics whose coverage could predict some expensive metrics. For our purpose, we also need 
to select the ideal number of cheap metrics which is necessary for creation of the prediction 
model. 

For the regression models, suppose that we have data (x l ,yj) , i = 1,2, ...,N where 
x* = ( X J I , . . . ,Xip)T are the predictor variables (cheap metrics) and yi are the responses 
(expensive metrics). A s is usual i n regression, we assume either that the observations are 
independent or that the yis are condit ionally independent given the XjjS. 

Stepwise Regression 

Stepwise regression is a classical statist ical method which calculates the F-value for in ­
cremental inclusion of each variable i n the regression. The F-value is an equivalent to 
the square root of the Student's t-value, expressing how different two samples are from 
each other. The t-value is calculated as 
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which represents the difference between a sample mean (i.e. average) X and the populat ion 
mean a d ivided by the standard deviat ion of the sample s, and so 

F = V t- value. 

The F-value is sensitive to the number of variables used for its calculation. Stepwise regres­
sion calculates the F-value both wi th and without using a part icular variable and compares 
it w i th a cr i t ica l F-value either to include the variable (forward stepwise selection) or to 
eliminate the variable from the regression (backward stepwise selection) [39]. This algori thm 
can be used to select the variables which are in our case cheap metrics. 

Ridge Regression 

The most popular form of regularized regression is ridge regression, which places a con­
straint on the sum of squares of the coefficient's weights. Formally, ridge regression perfects 
the residual (Error) sum of squares (RSS) subject to a constraint on P — in our case, this 
means the number of cheap metrics used for prediction. Ridge regression is motivated by 
a constrained minimiza t ion problem, which can be formulated as follows: 

n p 

Pridge = argminpGw - X?(3)2 subject to y~] /3 2 < t 
i=l j=l 

for t > 0 which is a so-called tuning parameter. Moreover, the coefficient (3Q is excluded 
from the penalty term [39, 36]. 

T h e L A S S O A l g o r i t h m 

The LASSO (least absolute shrinkage and selection operator) algori thm, by contrast to 
ridge regression, tries to produce a sparse solution, in the sense that several of the slope pa­
rameters w i l l be set to zero. One may therefore refer to ridge regression as soft thresholding, 
whereas the L A S S O algori thm is soft/hard, and the subset selection is a hard thresholding: 
since, i n the latter, only a subset of the variables is included i n the final model. 

A s i n ridge regression, the L A S S O algori thm can be expressed as a constrained min i ­
mizat ion problem by the following equation: 

n p 
PLASSO = argminp^-Rv ^ ( 1 * - X?(3)2 subject to ^ < t 

i=l j=l 

where t > 0 is a tuning parameter. 
Generally, comput ing the L A S S O algori thm solution is a quadratic programming prob­

lem. A smal l enough t w i l l set some coefficients exactly equal to 0. Thus, the L A S S O 
algori thm does a k ind of continuous subset selection. L ike the subset size i n variable subset 
selection, or the penalty parameter in ridge regression [39], t should be adaptively chosen 
to minimize the estimated predict ion error. 
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Comparison of the Regression Methods 

Statist ical methods which are introduced i n the previous paragraphs are used mostly in 
other scientific disciplines than information technology and testing of concurrent programs. 
Such disciplines are, for example, biology, meteorology, etc. This is the reason why this 
subsection presents papers from other disciplines. 

In [77], they compare stepwise algorithms w i t h some alternative approaches such as 
the L A S S O algori thm. The paper says that al though the stepwise algorithms remain the do­
minant method i n some part of science, the automatic stepwise subset selection methods 
often perform poorly, bo th i n terms of variable selection and estimation of coefficients 
and standard errors, especially when the number of independent variables is large and 
mult icoll ineari ty is present. The use of stepwise methods were outperformed by alternative 
methods. 

Moreover, paper [100] describes the procedure of stepwise regression and uses expe­
riments and Venn diagrams to il lustrate the three main problems of stepwise regression: 
a wrong degree of freedom, capital izat ion on sampling, and the R2 error not opt imized. 

In [35], they use a different downscaling statist ical methods for prediction where between 
them is also L A S S O regression. The L A S S O algori thm was tested and validated against 
three other downscaling methods, namely, the local intensity method, quantile-mapping, 
and stepwise regression. Compared to these three downscaling methods, L A S S O algori thm 
shows the best performances. Furthermore, L A S S O algori thm could reduce the error for 
certain sites, where no improvement could be seen when other methods were used. The stu­
dy proves that L A S S O is a reasonable alternative to other statist ical methods wi th respect 
to the downscaling of precipitat ion data. 

In [8] the authors compared linear regression wi th the regularized regressions such as 
ridge and L A S S O regressions because mult icoll ineari ty is one of the major problems in 
regression analysis, and it could be reduced by using regularized regressions. They find 
that, i n every considered data set, L A S S O and ridge models have smaller R S S 1 value, and 
they conclude that regularized models are best fitt ing models i n regression analysis when 
one found noise exists i n the usual models. 

A conclusion of the comparison of these three regression methods is that ridge and 
L A S S O algorithms are better than stepwise regression. Moreover for our purposes, we 
need a method wi th the variable selection, which is the L A S S O algori thm. Thus, we chose 
the L A S S O algori thm i n our approach for predict ion of expensive metrics from cheaper 
ones. 

5.3.2 B e n c h m a r k s a n d E x p e r i m e n t a l Se t t ing 

The experimental results presented below are based on the following 10 multi threaded 
benchmark programs wri t ten i n Java: Airlines (0.3 k L O C ) , Cache4j (1.7 k L O C ) , Animator 
(1.5 k L O C ) , Crawler (1.2 k L O C ) , Elevator (0.5 k L O C ) , HEDC (12.7 k L O C ) , Montecarlo 
(1.4 k L O C ) , Rover (5.4 k L O C ) , Sor (7.2 k L O C ) and TSP (0.4 k L O C ) . More details about 
these benchmarks can be found in Section 2.6. A l l our experiments were performed using 
the I B M ConTest tool [23] on a machine wi th Intel X e o n E3-1240 v3 processors at 3 .40GHz, 
3 2 G i B R A M , running L i n u x Debian 3.16.36, and using O p e n J D K version 1.8.0 111. 

1The RSS value means the residual sum of squares. 
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5.4 Increasing Coverage of Expensive Metrics by Prediction 

In the following section, we introduce an approach how to predict coverage of multiple 
expensive metrics using a prediction model based on cheap metrics. F i rs t , we focus on 
a classification of the metrics cost. Then , we create the prediction model based on the cheap 
metrics, and, finally, we execute and evaluate experiments w i t h the model. 

5.4.1 Distinguishing Cheap and Expensive Metrics 

We now explain our way of distinguishing cheap and expensive metrics, i.e. metrics for 
which collecting coverage is cheaper or more expensive, respectively. 

For the classification of the cost of the metrics, we first ran a series of 1000 test runs 
of each of our benchmark programs without collecting any coverage. These tests were, 
however, run already in the C o n Test environment, using its random noise setting, which 
already slows the programs down. This way, we obtained the so-called bottom case. The run­
ning t ime of the tests i n the bo t tom case was around 93 seconds for one execution when 
averaging over a l l our case studies. 

Second, for each metric, we performed 100 test runs while collecting coverage under 
the given metric, again using ConTest w i th random noise injection. We then compared 
the t ime needed for the bo t tom case wi th the times of the experiments w i th each single 
metric. We classify metrics into three groups: cheap metrics, expensive metrics, and others 
(i.e. metrics w i th medium slowdown). In particular, we mark metrics w i th the slowdown 
between 10 % and 30 % as cheap metrics and those wi th the slowdown 50 % and more as 
expensive metrics. 

5.4.2 Discovering Correlations between Cheap and Expensive Metrics 

Next , we a im at automatical ly finding correlations between metrics that w i l l allow us to 
find suitable test and noise settings for testing under expensive metrics by experimenting 
wi th cheaper ones. Due to mult iple metrics are often used i n testing of concurrent programs 
(each of them stressing somewhat different aspects of the behaviour), we, i n fact, a i m at 
correlations between sets of expensive metrics and sets of cheap metrics. 

For the above, one can use multi-variable regression on the cumulative coverage of 
the different metrics obtained from mult iple test runs (i.e. coverage based on a union of 
the sets of coverage tasks covered i n the different runs). However, we, instead, decided 
to use one from the regression method presented i n the preliminaries section. For our 
goals, we chose the regression methods which include selection of variables because from 
the set of cheap metrics we need to choose a subset of metrics for prediction. Based of 
the comparison of the three common regression methods presented in 5.3.1, we use for 
our experiments the L A S S O algori thm [19, 39] to bu i ld a predictive model between cheap 
and expensive metrics. The algori thm selects suitable cheap metrics and constructs their 
linear combination capable of predict ing a given expensive metric, hence showing correlation 
among the metrics. In our experience, this approach gives more stable results than normal 
correlation. 

In more detail , we use the L A S S O algori thm to search for a combination of cheap metrics 
which has a high par t ia l correlation coefficient w i th a chosen expensive metric. The algo­
r i thm iteratively increases the par t ia l correlation and selects a subset of cheap metrics w i th 
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the highest par t ia l correlation. The obtained predictive model then looks as follows: 

expMetric = J3Q + j3\ * cheapMetric1 + • • • + f3n * cheapMetric11. 

Note that the above model predicts a single expensive metric based on several cheap 
ones. However, we a im at maximiz ing the coverage under several expensive metrics based 
on the settings suitable for several cheap metrics. To handle this, we propose to replace 
the role of the single expensive metric in the above model by using a fitness function 
representing a weighted combinat ion of the chosen expensive metrics (as often done in 
genetic algorithms). 

Such a combinat ion can have the following form: 

expMetric1 expMetricn 

fitness = — —: !-••• + 
expMetricjnax expMetric. ,n 

max 
Here, expMetric1 is the cumulative coverage under the i - th metric obtained in the given 
series of test runs w i t h the same test and noise setting, while expMetricl

max is the max imum 
of a l l cumulative coverage values under the given metric i n a l l experiments performed so far, 
even wi th different test and noise settings. This way way of approximating the max imum 
is used, since there is no exact way of computing it. 

5.5 Experimental Results 

In this section, we present the ind iv idua l results of our the experiments i n the following 
order: classification of the metrics according to their the slowdown incurred when collecting 
coverage under these metrics; the regression model for predict ion of the expensive metrics 
using the cheap ones; and the approach to the testing of concurrent programs and increasing 
the coverage of the expensive metrics. 

5.5.1 Results of Metric Costs Classification 

We divide the metrics into three classes. The cheapest metrics have the slowdown between 
10% and 30%, the most expensive metrics have the slowdown of 5 0 % and more. The rest 
are metrics w i th a medium slowdown. A s mentioned in Section 5.4.1, the slowdown was 
obtained by comparing the t ime needed to perform 100 test runs while collecting coverage 
under the different metrics against the t ime needed to run the test runs under ConTest but 
without collecting coverage. The obtained classification is shown i n Table 5.1 and used in 
the further experiments. 

5.5.2 Regression Mode l for Prediction 

We decided to experiment w i th finding suitable test and noise settings by simultaneously 
maximiz ing the coverage under a l l the three identified expensive metrics: GoldiLockSC*, 
WEraser*, and Datarace. The first step was to construct a fitness function combining 
these three metrics for using the L A S S O algori thm. For this purpose, we generated 100 
random test and noise settings, ran five tests w i th each configuration, cumulat ing the co­
verage obtained i n these runs. Then , we took the m a x i m u m values of the cumulated 
coverage from the 100 experiments. We obtained the following fitness function: 

GoldiLockSC* WEraser* Datarace 
f l t n 6 S S = 1443 + 3862 + ~ ^ r ~ ' 
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Table 5.1: Cheap and expensive metrics. 

Slowdown in % Metrics 
Cheap metrics 10% < x < 3 0 % Avio , Avio* , 

Concurpairs , H B P a i r , 
GoodLock , ShvarPair*, 
Synchro, WSynchro 

M e d i u m slowdown metrics 30 % < x < 50 % Deadlock, SharedVar, 
GoodLock*, ShvarPair , 
WConcurpa i r s , Eraser, 
Eraser*, Dupai r , 
Dupair*, Atomvio la t , 
LockSet , H B P a i r * 

Expensive metrics 50 % < x Datarace, WEraser*, 
G o l d i L o c k S C * , Go ld iLock , 
Gold iLock* 

Secondly, we used the L A S S O algori thm wi th forward regression as implemented in 
the glmnet() function from the glmnet package [19] of the R-project tool to obtain the pre­
dictive model . We created the predictive model from a cumulat ion of results from the five 
runs on a l l the considered case studies. 

In the forward L A S S O algori thm, it is possible to choose the number of cheap metrics 
for the prediction. This is because the a lgori thm starts w i th an empty model and i n each 
step, it adds one cheap metric to the previously buil t predict ion model . Thus, we can see 
which cheap metrics form the model in each iteration. For our case, we chose to predict 
three expensive metrics by only two cheap metrics. In the second part of this chapter, 
we focus on the comparison of the prediction using two, three, or four cheap metrics. We 
assume that using more cheap metrics for the prediction could be more precise, but also 
more time-consuming. 

Using the above approach, we obtained the following predictive model: 

fitness = 2.9e — 01 + 2.2e — 06 * Concur Pairs + 1.8e — 03 * Avio*. 

This predictive model and also the aforementioned fitness function are used in a l l further 
experiments described i n the next sections. 

5.5.3 Using Correlations of Metrics to Optimize Noise-based Testing 

Once the predictive model is created and we know which set of cheaper metrics can be used 
to predict the coverage under a given (set of) expensive metrics, this knowledge can be used 
to optimize the noise-based testing process. In particular, we can t ry to find suitable test 
and noise settings for the given expensive metrics by experimenting wi th the cheap ones. 
The experiments can be controlled using a genetic a lgori thm [42, 44] or by data mining on 
the test results [6], a l l the t ime evaluating the performed experiments v i a the chosen cheap 
metrics or, more precisely, through the predictive model bui l t . In the simplest case, only 
a number of random experiments w i th different test and noise settings can be performed. 
Then the settings that performed the best in these experiments wrt . the predictive model 
are chosen. This is the approach we follow below to show that our approach can indeed 
improve the noise-based testing process. 
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We randomly generated 100 test and noise configurations and executed five test runs 
wi th each of them for each one of our case studies, while collecting the coverage under 
the selected cheap metrics (this led to 500 executions for each case study). We cumulated 
the results wi th in the five executions of one configuration and then worked wi th the ob­
tained cumulative value. We chose 20 configurations wi th the best results wrt . the derived 
predictive model . These 20 configurations were used for further test runs under the three 
considered expensive metrics. E a c h of the chosen 20 configurations was executed 200 times, 
leading to 4000 test executions under the three expensive metrics for each case study. 
Final ly , to compare the efficiency of this approach wi th the purely random one, we also 
performed 4500 test runs wi th random test and noise settings while direct ly collecting 
the coverage under the expensive metrics for each one of the case studies. Hence, bo th of 
the approaches were given the same number of test runs. 

Table 5.2: A comparison of random and prediction-optimized noise-based testing. 
G o l d i L o c k S C * WEraser* Datarace 

CaseStudies Random Predict Random Predict R a n d o m Predict 
Air l ines 9.46 22.42 74.92 182.59 0.28 0.72 
Animator 817.82 1451.35 233.20 291.42 0.35 0.46 
Cache4j 0.93 2.62 4.14 10.98 0.03 0.10 
Crawler 54.93 88.69 351.85 547.41 1.90 2.86 
Elevator 297.09 286.30 756.72 733.91 2.31 2.23 
H E D C 27.50 19.93 67.37 48.73 0.50 0.36 
Montecarlo 4.24 5.19 9.03 11.35 0.02 0.03 
Rover 37.62 62.89 174.14 292.18 0.08 0.08 
Sor 3.19 7.16 4.93 12.69 0.00 0.00 
T S P 1.86 1.40 15.36 11.74 1.14 0.86 

Average Impr. 1.62 1.59 1.46 

In Table 5.2, we compare the random approach wi th our prediction-based approach. In 
particular, we a i m at checking whether the proposed approach can help to increase the ob­
tained coverage of the expensive metrics when weighted by the consumed testing time. We 
can see in the table that this is indeed the case: the coverage over t ime increased in most of 
the cases. The average improvement of the obtained cumulative coverage over the testing 
t ime across a l l our case studies ranges from 4 6 % to 62%. 

Figure 5.1 (right) compares how the obtained cumulative coverage, averaged over a l l of 
our case studies, grows when increasing the number of performed test runs under the purely 
random noise-based approach and under our opt imized approach. Our approach has better 
results, despite having an in i t i a l penalty because of the use of a number of test runs to 
find suitable test and noise parameters v i a cheap metrics. The left part of the figure then 
compares the average t ime needed by the two approaches over a l l the case studies. A g a i n , 
the opt imized approach shows better results. 

5.6 Discovering Ideal Number of Cheap Metrics to Increase 
Performance 

In the next experiments, we want to predict any three given metrics: not only the expensive 
one, but possibly the cheap ones as well . We present three experiments, i n which we t ry to 
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Time of experiments Cumulative coverage 

Run Run 

Figure 5.1: Testing t ime (left) and cumulative coverage (right) for an increasing number of 
test runs. 

predict the given fitness function by two, three, and four cheap metrics, and we compare 
the results. Such experiments show us the ideal number of cheap metrics to predict some 
other metrics (at least for the cases considered so far). The process of experiments is 
the same as i n the previous part of this chapter. 

5.6.1 Resu l t s of C r e a t i o n P r e d i c t i v e M o d e l s 

We decided to experiment w i th finding suitable test and noise settings by simultaneously 
maximiz ing the coverage under the three given metrics (GoldiLockSC*, WConcurPairs, and 
HBPair*) and by min imiz ing the running t ime (i.e. we have four metrics). The first step 
was to construct a fitness function combining these four metrics by the L A S S O algori thm, 
for this purpose, we followed the same procedure as in the previous experiments: the same 
setting of the number of runs, finding the max ima l coverage, etc. This way, we obtained 
the following fitness function: 

GoldiLockSC* WConcurPairs HBPair* 3504127 - time 
fitness - h 2811899 h 120 h 3504127 ' 

A s i n the previous experiment w i th three expensive metrics, we used the L A S S O al­
gori thm wi th forward regression to obtain the predictive model. In particular, we aimed 
at predicting the four given metrics by two, three, and four cheap metrics. We assumed 
that using more cheap metrics for the prediction could be more precise, but also more 
time-consuming. 

Using the above approach, we obtained the following predictive models. For two cheap 
metrics: 

modell = 1.039 + 0.012 * SYNCHRO + 0.00076 * SHVARPAIRT; 

for three cheap metrics: 

model2 = 1.0345 + 0.0118 * SYNCHRO + 0.0011 * SHVARPAIRT 

-0.00035 * AVIOTRIPT: 

and for four cheap metrics: 

model?, = 1.02 + 0.016 * SYNCHRO + 0.00165 * SHVARPAIRT 
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-0 .00087 * AVIOTRIPT - 7 .27e" U b * WSYNCHRO. 

These predictive models and also the aforementioned fitness function are used in a l l further 
experiments described below. 

The correlations of the fitness function and the combinations of cheap metrics are as 
follows: for two cheap metrics, the correlation is 0.8470027; for three cheap metrics, it is 
0.8510919; and for four cheap metrics, it is 0.8559141. The correlation of the given fitness 
function and the combinat ion of cheap metrics is very high for each considered types of 
prediction. The correlations are also very close to each other, which may indicate that 
there is no big difference between them. 

5.6.2 Resu l t s of M o d e l s C o m p a r i s o n 

Table 5.3: A comparison of random noise based tests and three predict ion-optimized settings 
of noise-based testing. 

G o l d i L o c k S C * 
CaseStudies Rand . mo d e l l model2 model3 

Air l ines 0.36 1.01 0.60 0.59 
Cache4j 0.43 0.95 0.62 0.65 
Crawler 32.15 73.52 76.94 75.59 
Elevator 31.65 36.59 36.44 35.63 
H E D C 55.65 38.00 53.77 58.68 
Rover 35.61 61.24 48.24 47.51 

Average Impr. 1.74 1.48 1.48 

W C o n c u r P a i r s 
CaseStudies R a n d . mo d e l l model2 model3 

Air l ines 0.0010 0.0020 0.0012 0.0012 
Cache4j 0.0000 0.0001 0.0000 0.0000 
Crawler 0.0130 0.0265 0.0281 0.0272 
Elevator 0.0101 0.0102 0.0100 0.0100 
H E D C 0.0006 0.0004 0.0006 0.0007 
Rover 0.0021 0.0036 0.0028 0.0029 

Average Impr. 1.54 1.37 1.39 

H B P a i r * 
CaseStudies R a n d . mode l l model2 model3 

Air l ines 0.0038 0.0078 0.0044 0.0049 
Cache4j 0.0003 0.0006 0.0004 0.0004 
Crawler 0.0726 0.1683 0.1757 0.1731 
Elevator 0.1004 0.0937 0.0906 0.0901 
H E D C 0.0130 0.0095 0.0131 0.0141 
Rover 0.0272 0.0371 0.0306 0.0325 

Average Impr. 1.55 1.35 1.38 
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A s in the case of the three expensive metrics, we randomly generated 100 test and noise 
configurations and executed five test runs wi th each of them for each one of our case studies, 
while collecting the coverage under the selected cheap metrics (leading to 500 executions for 
each case study). We cumulated the results wi th in the five executions of one configuration 
and then worked wi th the obtained cumulative value. We chose 20 configurations wi th 
the best results wrt . the derived predictive model . These 20 configurations were used for 
further test runs under the four considered metrics. Each of the chosen 20 configurations 
was executed 200 times, leading to 4000 test executions under the four given metrics for 
each case study. Final ly , to compare the efficiency of this approach wi th the purely random 
one, we also performed 4500 test runs w i t h random test and noise settings, while directly 
collecting the coverage under the four given metrics for each one of the case studies. Hence, 
both of the approaches were given the same number of test runs. 

In Table 5.3, we compared the random approach wi th three prediction-based approaches. 
F rom the previous experiment w i th three expensive metrics, we know that the prediction 
opt imizat ion works relatively well . Now, we wanted to find how many cheap metrics must 
be used for prediction for the best results. In the table, we can see that the results between 
m o d e l l , model2 and model3 are not very different, but the improvement is the highest in 
the prediction w i t h two cheap metrics. The average improvement of the obtained cumulative 
coverage over the testing t ime across a l l our case studies is more than 50 % in the case of 
m o d e l l . 

Time of experiments Cumulative coverage 

Legend 
modeM 

~ model2 
" model3 
~ random 

E 

CO 
(ft 
TO 

CD 

E 
3 

Run Run 

Figure 5.2: Testing t ime (left) and cumulative coverage (right) for an increasing number of 
test runs. 

Figure 5.2 (right) compares how the obtained cumulative coverage, averaged over a l l of 
our case studies, raises when increasing the number of performed test runs under the purely 
random noise-based approach and under our opt imized approaches. A l l our approaches have 
better cumulative results despite having an in i t i a l penalty because of the use of a number 
of test runs to find suitable test and noise parameters v ia cheap metrics. The left part of 
the figure compares the average t ime needed by the four approaches over a l l case studies. 
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We can see that the opt imized approach using only two cheap metrics has the best results 
(green line). 

5.7 Combination of Genetic Algorithms and Prediction of 
Given Metrics 

In the following section, we want to use the previous results i n the genetic algorithms, 
whose usage in noise-based testing we discussed previously. O u r goal is to increase the per­
formance of the G A s which are commonly very time-consuming. The idea is that we first 
apply the G A wi th a fitness function based on the cheap metrics and we run a number 
of generations. Then we use the results from the first applicat ion of the G A as the input 
generation of another appl icat ion of the G A , but this t ime wi th a fitness function based on 
the expensive metrics and we run next generations. 

We compare this approach wi th the classic execution of G A , i.e. the case where the G A 
algori thm executes a l l generations wi th only one fitness function based on the given expen­
sive metrics. We assume that the experiments w i l l show acceleration of the opt imizat ion 
process used by the genetic algorithms. 

5.7.1 Results of Experiments with Predicted Coverage and Genetic A l ­
gorithms 

For the experiments, we use the Air l ines , Crawler, Elevator, H E D C , and Rover case studies 
only because of their fast executions. We have two types of fitness functions. The first is 
a fitness function based on cheap metrics: 

fitnesscheap = 1.039 + 0.012 * SYNCHRO + 0.00076 * SHVARPAIRT, 

the second one is a classic fitness function wi th the given, more expensive metrics and time: 
_ GoldiLockSC* W Concur Pairs HBPair* 3504127 - time 

fitnessciassic - h 2811899 h 120 h 3504127 ' 

In the experiments, we used 50 generations of the populations for the classic G A w i t h 
fitnessdassic- We divided this number of generations into two sub-generations, combining 
the G A s wi th the predicted coverage, where the first set of generations uses fitnesscheap 
and the next generations use fitness classic- In our case, we tr ied to use an extreme d iv i ­
sion: 49 generations were generated wi th fitnesscheap and the last one was executed wi th 
fitnessdas 

Table 5.4 shows the results of the experiments w i th the coverage of the expensive metrics 
weighted by the total consumed testing time. 

A n average improvement of the cumulative metric coverage over t ime i n the new ap­
proach is more than 50 % for two of the considered metrics. O n l y i n the case W C o n c u r P a i r s 
metric, the result of the coverage decreased a l i t t le on average. 

To sum up the results, the t ime needed for the experiments was on average about 15 % 
worse when using G A combined wi th the predicted coverage than i n the classic setting of 
G A over a l l the benchmarks. O n the other hand, the sum of the coverage for the ind iv idua l 
metrics over a l l the benchmarks was increased. The improvement is between 3 % and 21 %. 
A n interesting question for the future is how to improve the results by finding the ideal 
ratio between the number of generations executed under the fitness function wi th cheap 
metrics and the number of generations wi th the fitness function based on the expensive 
metrics. 
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Table 5.4: A comparison of G A for coverage metrics over the total testing time. 

G o l d i L o c k S C * W C o n c u r P a i r s 
CaseStudies classic G A predict G A classic G A predict G A 

Air l ines 0.0094 0.0060 1.2045 0.8229 
Crawler 0.0409 0.0511 12.1012 11.1557 
Elevator 0.0305 0.0391 9.0522 10.1673 
H E D C 0.0209 0.01496 23.3262 15.7001 
Rover 0.2469 1.0443 24.6319 34.3079 

Average Impr. 1.6234 0.9588 

H B P a i r * 
CaseStudies classic G A predict G A 

Air l ines 0.0028 0.0020 
Crawler 0.0172 0.0197 
Elevator 0.0047 0.0055 
H E D C 0.0012 0.0008 
Rover 0.0239 0.0952 

Average Impr. 1.5412 

5.8 Conclusion and Future Work 

We have proposed an approach that uses correlations between cheap and expensive concur­
rency metrics to optimize the noise-based testing under expensive metrics by finding suitable 
values of test and noise parameters for such testing through experiments w i th cheap metrics. 
Our experiments have shown that such an approach can improve the noise-based testing. 
In the future, it would be interesting to generalize the idea of finding suitable noise settings 
maximiz ing the coverage under an expensive metric v i a experiments w i th a cheap one to 
a context of dealing wi th other kinds of cheap and expensive analyses some parameters of 
which may also be correlated. 
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Chapter 6 

Conclusion 

The goal of this P h D thesis was to propose new approaches to analyze and verify real-life 
multi-threaded programs, i.e., programs that can be large and that can use many different 
features, focusing especially on rarely manifesting synchronization errors. It is very difficult 
to find such errors due to their appearance i n very specific interleavings of the threads only. 

There exist various ways how to increase the chance of finding such errors during test­
ing. In particular, we used the noise-injection technique for this purpose. This technique 
can „stress" running programs so that during their execution, less common thread inter­
leavings are executed. Noise-injection based testing is quite light-weight compared wi th 
other approaches, and so it scales well and can cope wi th many different programs features. 
However, it comes wi th some problems too. One of the problems is a large number of 
combinations how to set up the test and noise parameters for analyzing programs among 
which it is difficult to find the right ones. This problem is the one that we worked on this 
thesis. 

Previously, genetic algorithms were proposed as a way of finding the best solution of 
setting the test and noise parameters (instead of choosing them randomly, which is also 
often used). In particular, the single-objective genetic a lgori thm ( S O G A ) was used in 
the previous work. In this work, we proposed usage of the multi-objective genetic a lgori thm 
( M O G A ) instead and shown how it can be used in the given domain. We have then shown 
that M O G A can indeed deliver better results than both the random approach and the sin­
gle-objective genetic algori thm. One of the major reasons for that is that, i n the M O G A 
case, the individuals do not degenerate dur ing the generation process, i.e., the generation 
of individuals do not lose diversity. Such a loss of diversity can have a negative impact 
on the abi l i ty of the approach to test different program behaviour because the evolution 
could get stuck i n the local extreme. For the S O G A , it is difficult to combine the different 
objectives that are typical ly present i n the T N C S problem and whose wrong setting can 
lead to degeneration. Moreover, we have also proposed a penalization scheme to increase 
the number of tested uncommon behaviours. Apa r t from that the experiments showed that 
M O G A has more stable results than S O G A and random approaches. 

Next , for the same goal, we proposed a use of data mining, in particular, the A d -
aBoost a lgori thm. Us ing this data mining method enabled us to find which parameters 
and their specific values the most affect testing of parallel programs using noise injection 
for a part icular testing goal. O n the other hand, it gives us also information about which 
setting of parameters has not any effect on the testing. We also t r ied to combine both 
approaches—AdaBoost and genetic algorithms. In our comparisons of random, AdaBoos t , 
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genetic algorithms, and a combination of the approaches, the best solution was produced 
by the AdaBoos t and its combinat ion wi th genetic algorithms. 

In the further part of the thesis, our work focused on the t ime needed for finding 
suitable test and noise settings by experiments w i th different coverage metrics which are 
focused on synchronization in concurrent programs. We found that some metrics used 
for controll ing the testing process need a large number of experiments to find right test 
and noise parameter setting for maximiz ing coverage under them while other metrics are 
cheaper. We found some correlation between these expensive and cheap metrics and we 
proposed a way of how these correlations can be used. In particular, we showed that one 
can an avoid costly experiments w i th testing under expensive metrics to find suitable test 
settings by performing the experiments w i th cheaper metrics and then using the discovered 
settings for final testing under the expensive metrics. We used the same principle for 
the case of testing under mult iple metrics at the same time. We realized that the ideal 
number of cheap metrics which predict a given combination of more expensive metrics is 
two. The discovered knowledge has been useful also when using genetic algorithms to find 
the right noise settings. 

Future research directions. One of the most promising directions of the future research 
would be an as efficient as possible combinat ion of static and dynamic analyzes. Fol lowing 
this direction which is s t i l l i n progress, we implemented new heuristics which could be more 
precise i n injecting noise into program execution. In particular, they allow one to choose 
concrete points i n the program or concrete types of points (such as usage of some concrete 
variables, classes, etc.) where to put noise. Such places could be identified v i a static analysis 
as the first step of program verification. The second step would then be dynamic analysis 
focusing the noise on concrete places, classes, or variables which are identified by the static 
analysis. 

In the process of implementat ion of the new heuristics, we also t r ied to replace the I B M 
ConTest tool by some other technology i n the testing process supported by SearchBestie. 
The reason is that the development of the I B M ConTest tool was stopped some time ago, 
and the tool is not even maintained any more. For this purpose, we chose RoadRunner 
which is an open source tool , and it is s t i l l being developed. 

RoadRunner is a tool which was developed at Univers i ty of Cal i fornia at Santa Cruz 
and W i l l i a m s College as an efficient solution for concurrent program testing. A s it was 
wri t ten i n [31], the goal of RoadRunner is to provide a robust and flexible framework 
that substantially reduces the overhead of implementing dynamic analyses. RoadRunner 
manages the messy, low-level details of dynamic analysis and provides a clean A P I for 
communicat ing an event stream to back-end analysis tools. E a c h event describes some 
operation of interest performed by the target program, such as accessing memory, acquiring 
a lock, forking a new thread, etc. Th is separation of concerns allows the developer to 
focus on the essential algori thmic issues of a part icular analysis, rather than on orthogonal 
infrastructure complexities. 

The cooperation of the RoadRunner and SearchBestie was described i n the bachelor's 
thesis wri t ten by D a v i d K o z á k [55], where the author of this thesis helped wi th supervision 
and follow-up research. Unfortunately, this research is not further developed due to a loss 
of the collaborating M S c student. 
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