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Pracovǐstě Katedra optiky
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Introduction

Today’s civilization is based on informations and their processing. This causes
the need for better understanding of it. One can look at information as a purely
mathematical object and do not look at physical aspects of a medium that carries the
information. This point of view is called classical information theory and it was studied
from 1948 [1]. The other point of view is about physical aspects. The information
is carried by physical systems which must obey physical laws. As there exist needs
for faster and cheaper processing, we must use smaller systems until we use objects
from microworld. Here we switch from physical laws for classical world to quantum
physics where laws are different. Thus the information studied in microwolrd is known
as quantum information theory. One of important things is to explore the relation
between these two information theories and what can one theory give to the other. For
example, one can explore the links between quantum entanglement being the central
concept of quantum information theory and secret classical correlation, which is a
crucial concept in classical cryptography.

Other important thing is to look at the relation between the whole system and
its parts. In mathematical statistics it is known under the name of marginal problem
whose origin dates back to 1940s [2]. In its basic form one wants to recognize a set
of all joint probability distributions compatible with a given set of reduced probability
distributions. In quantum physics we can meet its counterpart known as quantum
marginal problem [3, 4]. Instead of probability distributions one works with global
density matrices and reduced density matrices but the main question is still the same.
The quantum marginal problem can be used to classification [5] or quantification [6]
of quantum entanglement but also for detection of a global property of a composite
system from its parts. The question is now of the form what can we say about properties
of the global system using only the partial information contained in reduced density
matrices. Moreover, if marginals do not carry the required property the task starts to
be more interesting. We are looking for the so called ”emerging property”, i.e., property
appearing only at a certain level of complexity of the system. This emerging property
can be quantum entanglement or some special type of it. Is there a counterpart of this
type of quantum marginal problem for classical probability distributions?

As interesting as the correspondence between quantum and classical marginal prob-
lem is the correspondece between properties of discrete and continuous variable sys-
tems. The problem of emerging property was constructed and solved in the discrete
variables where an example of genuine multipartite entangled state was found whose
entanglement can be concluded from its reduced separable density matrices [7]. In this
work all possible reduced systems were used, but the same type of entanglement can
be inferred only from a proper subset of nearest-neighbor marginals [8]. But can we
find its counterpart in continuous variable systems?

In this work, we study these two questions. More precisely, we construct a classical
analogue of a state from Ref.[9], which is genuine multipratite entangled and at the
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same time, its entanglement can be cocluded from its separable marginals. We also
find its continuous variable counterpart where we use only a set of nearest-neighbor
two-mode marginals.

This work is organized as follows. In Chapter 1 we give a brief introduction into
the theory of quantum entanglement. In Chapter 2 we construct a classical analogue
of emergent genuine multipartite entanglement. Finally, in Chapter 3 we give example
of multimode Gaussian states whose genuine multipartite entanglement can be verified
from the nearest-neighbour two-mode marginals.

The contest of Chapter 2 is based on our paper [10] and it follows experimental
paper [11] dedicated to quantum problem from Ref. [7]. Chapter 3 is generalization
of results from Ref. [11] to case, where one does not know all marginals and results of
this chapter are preparing for publication.
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Chapter 1

Quantum entanglement

This thesis is about a special property in the quantum physics called genuine mul-
tipartite entanglement. The concept of quantum entanglement was first mentioned in
paper by Einstein, Podolsky and Rosen [12] where they discuss compelteness of the
quantum mechanics. This concept was later implemented in quantum physics by Er-
win Schrödinger [13]. To get to our observed property we need to explain basics of
quantum mechanics.

A state of a physical system in quantum mechanics is described by a vector from
separable complex Hilbert space which is a complete linear vector space with scalar
product. The completeness is with respect to the distance induced by the scalar prod-
uct and the linearity of the space is needed to guarantee the superposition principle.
The space must be complex because we use a relative phase between vectors in the
superposition. If the space is separable we can work with countable orthogonal base.

A state of a quantum system can be described by a state vector |ψ〉 in state spaceH.
The state vector contains all available information about the system. States described
by state vectros are called pure states. A pure state is an idealization of a real state
and often one cannot get a total information about the studied system. Then we talk
about a mixed state which is characterized by a density matrix ρ. It is a positive
semidefinite Hermitian operator, i.e., ρ ≥ 0, ρ = ρ† and Tr(ρ) = 1. The density matrix
can be written in the form

ρ =
∑
i

pi |ψi〉 〈ψi| , (1.1)

where pi are probabilities that the system is in the state |ψi〉.
The state space of the system consisting of several subsystems with state spaces

H1,H2, . . . ,Hn is a direct product of state spaces of the particular subsystems

H = H1 ⊗H2 ⊗ . . .⊗Hn. (1.2)

The simplest system in which we can study the quantum entanglement is a bipartite
system, which consists of two parts. For example, it can be made of two qubits, i.e.,
the simplest quantum systems with two-dimensional Hilbert space H = C

2. A system
consisting of two subsystems A and B is called separable if one can write it in the
following form:

ρsepA|B =
∑
i

piρ
(i)
A ⊗ ρ

(i)
B , (1.3)

where 0 ≤ pi ≤ 1,
∑

i pi = 1 are probabilities and ρ
(i)
A , ρ

(i)
B are density matrices of the

subsystems A and B. If a bipartite density matrix cannot be written in the form (1.3)
it is called as entangled.
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Systems consisting of more than two parts are called multipartite systems. With
more parts of the system one have more possibilities how the system can be separable.
We show this on the simplest multipartite system made of three subsystems A, B and
C. For the tripartite system we have five classes of separability [14]. Major role there
play partitions of the three systems into two sets. Altogether, we get three bipartite
splitting A|BC, B|AC and C|AB and the following five separability classes [14]:

1. Fully inseparable states, i.e. states which are entangled with respect to all three
splittings.

2. One-qubit biseparable states, i.e. states which are separable with respect to one
splitting but they are entangled across the other two splittings.

3. Two-qubit biseparable states, i.e. states which are entangled with respect to one
splitting but they are separable across the other two splittings.

4. Three-qubit biseparable states, i.e. states which are separable with respect to all
three splittings but they cannot be written as the following convex matrix:

ρABC 6=
∑
i

piρ
(i)
A ⊗ ρ

(i)
B ⊗ ρ

(i)
C , (1.4)

where ρ
(i)
j , j = A,B,C are states of individual subsystems.

5. Fully separable states are states which can be written in the form (1.4).

In this thesis we work with special states from the class of fully inseparable states
called genuine multipartite entangled states. These states carry the strongest form of
multipartite entanglement, which reguires a global operation on all three subsystems.
Mathematically, a state ρABC is genuine multipartite entangled if it cannot be written
as the following convex mixture of states which are separable with respect to different
bipartitons:

ρbisepABC 6= p1ρA|BC + p2ρB|AC + p3ρC|AB, (1.5)

where pi, i = 1,2,3 are probabilities. States, which can be wirtten in this form are
called biseparable and they cover not only states from classes 2− 5 but also some fully
inseparable states.
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Chapter 2

Classical analog of emergent
multipartite entanglement

It is natural to wonder what can be said about the whole based only on the knowl-
edge of its patrs. In mathematical statistics this problem is known as the marginal
problem [2] where one wants to find all joint probability distributions compatible with
a given set of reduced probability distributions. There is a quantum-mechanical analog
of this problem known as the quantum marginal problem [3, 4]. Instead of the set of
joint probability distributions one is given a set of marginal density matrices and seeks
all global density matrices compatible with these.

One of the possible uses of the problem is the detection of a global property from
parts. This task is more interesting if the marginals do not contain the property or
any sign of it. Then we talk about an ”emerging property”, i.e., a property appearing
only at a certain level of complexity of the system. So far, the marginal problem with
emergent property has been investigated only in the context of multipartite entangle-
ment in quantum systems with finite-dimensional Hilbert state space [7, 8, 9, 15, 16].
Below we use mapping of quantum states onto probability distributions to construct a
classical analog of this marginal problem [10]. Content of this chapter is based on our
paper [10].

2.1 Mapping entanglement onto secret correlations

Is there any example of the classical marginal problem with the emerging property?
To answer this question one needs to map a quantum state on a probability distribu-
tion by a quantum mearurement [17]. A purification |ψ〉ABE of a density matrix ρAB
of a two-level quantum system must meet the requirement ρAB = TrE(|ψ〉〈ψ|ABE).
From the purified state we can obtain a probability distribution by implementing local
projective measurements Pi, i = A,B,E, on all subsystems of the purification. The
outcomes of the measurement obey the following probability distribution:

P (A,B,E) = Tr(PA ⊗ PB ⊗ PE|ψ〉〈ψ|). (2.1)

By carrying out a suitable measurement of the original state ρAB carrying a specific
quantum property one can get a probability distribution with a classical analog of this
property.

A typical quantum property is some form of quantum entanglement. Its classical
analog is the corresponding form of secret correlations. The concept of secret corre-
lations originates from the classical secret-key agreement protocol [18]. Two honest
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parties, Alice and Bob, and an adversary Eve share independent realizations of three
random variables A, B and E, which are distributed according to a probability distribu-
tion P (A,B,E). Alice and Bob want to extract from their variables by local operations
and public communication (LOPC) a secret key, i.e., a shared string of random bits
about which Eve has no information. A necessary condition for this to be possible is
that the distribution P (A,B,E) contains secret correlations, i.e., the distribution can-
not be created by LOPC. A convenient tool for detection of secret correlations is used
the intrinsic information defined as [19]:

I(A;B ↓ E) = inf
E→Ẽ

[I(A;B|Ẽ)]. (2.2)

Here,
I(A;B|E) = H(A,E) +H(B,E)−H(A,B,E)−H(E), (2.3)

where H(X) is the Shanon enthropy, is the conditional mutual information, the mini-
malization is performed over all channels E → Ẽ. A probability distribution contains
secret correlations if, and only if, I(A;B ↓ E) > 0 [20, 21]. To prove that the probability
distribution does not carry any secret correlations one needs to show I(A;B ↓ E) = 0,
which can be done similarly as in [20, 22, 23]. It can be done by finding a suitable
channel E → Ẽ which nullifies the conditional mutual information. Thus, the intrin-
sic information (2.2) vanishes and the investigated distribution does not carry secret
correlations.

If one wants to show the presence of secret correlations in given probability distri-
bution, one way is to prove the strict positivity of the intrinsic information (2.2). This
way is very difficult because of minimization which must be done with respect to all
possible channels E → Ẽ. The intrinsic infromation is an upper bound on the secret
key rate S(A;B||E) [19] as thus the other approach may look at the lower bound on
the secret key rate. The lower bound is given by [24]

S(A;B||E) ≥ max [I(A;B)− I(A;E),I(A;B)− I(B;E)] , (2.4)

where I(X;Y ) = H(X) + H(Y ) − H(X,Y ) is the mutual information. If the right-
hand side of Eq. (2.4) is strictly positive, the secret key rate is strictly posivite and
the probability distribution contains secret correlations.

2.2 Construction of the analog

Our task is to show if there exists a set of marginal probability distributions with
no secret correlations which is compatible only with global distribution carrying secret
correlations.

We start with the three-qubit state found in Ref. [9],

ρ =
2

3
|ξ〉〈ξ|+ 1

3
|111〉〈111| (2.5)

where

|ξ〉 =
1

2
|010〉+

1

2
|100〉+

1√
2
|001〉. (2.6)

This state is genuine multipartite entangled but its three two-qubit reduced density
matrices are separable. Additionally the reduced matrices are compatible only with
the global state (2.5).
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To obtain the global probability distribution we consturct a purification |ψ〉ABCE
of the state (2.5). The purification reads as

|ψ〉ABCE =

√
2

3
|ξ〉|0〉+

√
1

3
|111〉|1〉. (2.7)

Next we perform suitable projective measurements Pi, i = A,B,C,E, on the purified
state. The outcomes of this measurement are distributed according to the fourvariate
probability distribution of the form:

P (A,B,C,E) = Tr(PA ⊗ PB ⊗ PC ⊗ PE|ψ〉〈ψ|). (2.8)

In case of the purified state (2.7) the probability distribution is obtained by a measure-
ment in the computational basis. The nonzero probabilities are summarized in Tab.
2.1.

A B C E P (A,B,C,E)
0 0 1 0 1/3
0 1 0 0 1/6
1 0 0 0 1/6
1 1 1 1 1/3

Table 2.1: Probability distribution of outcomes of the measurement of the purification
(2.7) in the computational basis.

Besides the global distribution we need to compute also marginal distributions
P (A,B,E), P (A,C,E) and P (B,C,E). Because the distributions P (A,C,E) and P (B,C,E)
coincide, we use only distribution P (A,C,E). Proofs for the distribution P (B,C,E) will
be exactly the same. Nonzero probabilities of both distributions are summarized in
Tab. 2.2 and 2.3, respectively.

A B E P (A,B,E)
0 0 0 1/3
0 1 0 1/6
1 0 0 1/6
1 1 1 1/3

Table 2.2: Marginal distribution P (A,B,E)

A C E P (A,C,E)
0 0 0 1/6
0 1 0 1/3
1 0 0 1/6
1 1 1 1/3

Table 2.3: Marginal distribution P (A,C,E). The table of the marginal distribution
P (B,C,E) is obtained from previous table by replacing A with B in the first row of
the table.

In the next section we show, that the marginal distributions P (A,B,E), P (A,C,E)
and P (B,C,E) carry no secret correlations whereas all compatible distributions P (A,B,C,E)
carry secret correlations.
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2.3 Proof of the properties of the analog

Now we show in few steps, that the probability distribution in Tab. 2.1 carries a
classical analog of multipartite entanglement verifiable from its separable reductions.
For this purpose we need to prove, that the marginal distributions in Tabs. 2.2 and
2.3 do not carry secret correlations and simultaneously we can deduce from them that
all global distributions compatible with them carry secret correlations.

First, we need to find all global probability distributions compatible with the
marginal distributions P (A,B,E), P (A,C,E) and P (B,C,E). We use the marginal
probabilities as known variables and the global probabilities as unknown variables. The
marginal probability distribution P (A,B,E) can be received from the global probability
distribution by equation

PABE (i,j,k) = PABCE (i,j,0,k) + PABCE (i,j,1,k) , (2.9)

where i,j,k = 0,1. Other marginal distributions can be obtained analogously. Alto-
gether it gives twenty-four equations for sixteen variables. Moreover, every variable
is constrained by an inequality 0 ≤ PABCE (i,j,k,l) ≤ 1. It seems that this system
is overdetermined. However, many marginal probabilities are equal to zero so with
inequalities it gives us eleven variables equal to zero. More precisely, P (0,0,0,1) =
P (0,0,1,1) = P (0,1,0,1) = P (0,1,1,0) = P (0,1,1,1) = P (1,0,0,1) = P (1,0,1,0) =
P (1,0,1,1) = P (1,1,0,0) = P (1,1,0,1) = P (1,1,1,0) = 0. It reduces number of
equations to eight for five unknown variables. However, we get two pairs of identi-
cal equations and one is a linear combination of other equations. We are now left
with only five equations for five unknown variables. From this set we directly re-
cieve the values of last variables P (0,0,0,0) = P (0,0,1,0) = P (1,1,1,1) = 1/3 and
P (0,1,0,0) = P (1,0,0,0) = 1/6. Therefore, the global distribution is unequivocally
given. It is interesting that the uniqueness of global state ρABC compatible with re-
ductions ρAB, ρAC and ρBC was transferred to the probability distribution.

Next step is to show that the global distribution from the first step carries secret
correlations across all bipartitions A|BC, B|AC and C|AB. Because of the symmetry
under exchange of bits A and B in the distribution we need to show it only for bipar-
titions A|BC and C|AB. We use the formula (2.4) for the lower bound on the secret
key rate but extended to the case of four variables. For bipartition A|BC it is now in
the form:

S (A;BC||E) ≥ max [I (A;BC)− I (A;E) ,I (A;BC)− I (BC;E)] . (2.10)

The lower bound gives for the bipartition A|BC approximately 0.541 and for the bi-
partition C|AB, respectively B|AC, it is equal to 2/3. Both bounds are posivite which
means that the global distribution from Tab. 2.1 carries secret correlations across all
bipartitions.

In the last step we need to prove that the marginal distributions do not contain
secret correlations. It is the opposite of what we did in previous step. The probability
distribution does not carry secret correlations if its instrinsic information (2.2) is zero
[19]. We need to find a suitable channel E → Ẽ for both marginal distributions such,
that the conditional mutual information (2.3) vanishes.

We start with the distribution P (A,B,E). The suitable channel for this distribu-
tion can be charatcerized by the conditional probability distribution: PE|Ẽ(0,0) = 1,
PE|Ẽ(1,0) = 0, PE|Ẽ(0,1) = 1/4 and PE|Ẽ(1,1) = 3/4. The marginal distribution with

the new channel P (A,B,Ẽ) is shown in Table 2.4. If we calculate conditional mutual
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A B Ẽ P (A,B,Ẽ)
0 0 0 1/3
0 1 0 1/6
1 0 0 1/6
1 1 0 1/12
1 1 1 1/4

Table 2.4: New marginal distribution P (A,B,Ẽ).

information (2.3) for the new distribution, we get I(A;B|Ẽ) = 0. It means that the
instrinsic information I(A;B ↓ E) = 0 and the marginal distribution does not carry
secret correlations. Moreover, the distribution can be prepared by LOPC.

Moving to the other marginal distribution, one can use new channel described
by the conditional distribution: PE|Ẽ(0,0) = 0, PE|Ẽ(1,0) = 1, PE|Ẽ(0,1) = 0 and

PE|Ẽ(1,1) = 1. The obtained marginal distribution P (A,C,Ẽ) is diplayed in Tab. 2.5.

The conditional mutual information (2.3) for the new distribution is I(A;C|Ẽ) = 0

A C Ẽ P (A,C,Ẽ)
0 0 1 1/6
0 1 1 1/3
1 0 1 1/6
1 1 1 1/3

Table 2.5: New marginal distribution P (A,C,Ẽ). The marginal distribution P (B,C,Ẽ)
can be obtained by replacing A with B in the first column.

which implies that the distribution does not contain secret correlations as we wanted
to prove. Recall finally, that the last marginal distribution P (B,C,E) is obtained
from P (A,C,E) by replacing A with B. Thus by applying the latter channel to the
distribution P (B,C,E) one gets new distribution P (B,C,Ẽ) for which I(B,C|Ẽ) = 0
and therefore also the last distribution P (B,C,E) carries no secret correlations as
required.

2.4 Discussion and conclussions

We have obtained the global probability distribution carrying secret correlations
which is determined by its marginal probability distributions without secret correla-
tions. This shows that one can detect a global correlation property from marginals
which do not have this property not only in quantum mechanics. Secret correlations
carried by our global probability distribution appear across all three bipartite splittings
and thus it can be viewed as a classical analog of a fully inseparable state.

The quantum state from Ref. [9], which we originally used to construct the global
probability distribution is a state with stronger form of multipartite entanglement
known as genuine multipartite entanglement. One can now ask if there exists a classical
analog of the genuine multipartite entanglement. In analogy with biseparable state
this probability distribution cannot be obtained as a convex mixture of distributions
without secrete correlations across bipartite splittings. Moreover, to prove genuine
multipartite entanglement of a quantum state it is needed to use a quantum operator
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called entanglement witness. Thus there arrise new question if one can find a classical
analog of the entanglement witness and how it would look like.

The interesting thing is that in contrast with a genuine tripartite entangled state
[9] where one needs to use all two-qubit reduced density matrices we worked only
with three out of four marginal probability distributions. We do not use marginal
distribution P (A,B,C) because it does not contain variable E and thus for this marginal
distribution the concept of secret correlations cannot be introduced.

We have demonstrated the possibility to map the quantum marginal problem with
the constraints on separability of reduced states onto the classical marginal problem
with the constraints on the secrecy content of the marginal distributions. We believe
that there can be other distributions with the same properties. We tried to map a state
from Ref. [7] in the same way like the presented state. The marginal probability distri-
butions are not compatible with only one global distribution but with one-parametric
set of the global distributions. When we calculated the lower bound on secret key rate
(2.4) for the set of the global distributions, we discovered that for some values of the
parameter the lower bound is not positive. It means that the proof of existence of
the secret correlations in these global distributions will be more intricate and it needs
further research which is beyond the scope of the present thesis.
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Chapter 3

Gaussian genuine multipartite
entanglement verifiable from
separable marginals

So far, studies on emergent genuine multipartite entanglement focused on systems
of qubits, At the outset, examples of multiqubit states have been constructed [7, 9]
and experimentally demonstrated [11] whose genuine multipartite entanglement can
be detected from all possible two-qubit marginals. Later, also examples of such states
have been found, for which one can infer the entanglement from the so called minimal
set of two-qubit marginals [8]. The minimal set of bipartite marginals contains every
part of the system and the marginals between nearest neighbours. This guarantees
that the global entanglement can be deduce from the set.

In this chapter we extend the concept of emergent genuine multipartite entangle-
ment to the realm of Gaussian states of systems with infinite-dimensional systems
called as modes in what follows. As for Gaussian states the knowledge of all two-
mode marginals in equivalent with the knowledge of the entire state, here we consider
influence of genuine multipartite entanglement from the minimal sets of two-mode
marginals. The latter sets can be conveniently characterized by a special kind of
graphs, where vertices represent modes and edges the two mode marginals belonging
to the set.

The minimal set of two-mode marginals can be defined already for three-mode
systems. We can look at the mininal set graphicaly where the vertices represents
subsystems of the global system and the edges its bipartite marginals. The respective
graphs for three- and four-mode systems are shown in Fig. 3.1.

In the next section we construct three-mode and four-mode Gaussian genuine multi-
partite entangled states whose genuine multipartite entanglement can be inferred from
the minimal sets of its marginals depicted in Fig. 3.1.

3.1 Gaussian states

The most frequently used states in systems with infinite-dimensional Hilbert state
space are Gaussian states. Because of the infinite dimension their density matrices are
infinite-dimensional and there are more simple ways how to describe them. One of
them is through the Wigner function which is a quasiprobability distribution. More
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Figure 3.1: Graphical representation of the minimal set for the three-mode systems (a)
and four-mode systems where one obtain two options: linear graph (b) and ”t-shaped”
graph (c). Symbols γij stands for the covariance matrix of modes i and j.

precisely, it is a Weyl transformation of the density operator. The Wigner function of
a Gaussian state is Gaussian-shaped. This allows to describe Gaussian states with first
and second statistical moments of quadrature operators.

Consider a system consisting of N modes Aj, j = 1,2, . . . ,N , where each mode is
characterized by a position and momentum quadrature operator xAj and pAj , respec-
tively. These operators are summarized in a 2N×1 vector ξ = (xA1 ,pA1 , . . . ,xAN ,pAN )T .
Components of this vector must satisfy the commutation relations [ξk,ξl] = i(ΩN)kl
where

ΩN =
N⊕
i=1

J , J =

(
0 1
−1 0

)
. (3.1)

The first moments of the system are characterized by a 2N×1 vector 〈ξ〉 = Tr [ξρ]. The
second moments are summarized in a 2N × 2N matrix known as covariance matrix
(CM) γ. Elements of the CM are obtained as γij = 〈ξiξj + ξjξi〉 − 2〈ξi〉〈ξj〉. The
first moments can be turn to zero by local displacements, which means that they are
irrelevant for studies of the correlations. From now on the first moments are therefore
set to zero. Every CM γ must obey the Heisenberg uncertainty principle which can be
written in the form [25]

γ + iΩN ≥ 0, (3.2)

which gives us a necessary and sufficient condition for a real symmetric 2N×2N matrix
γ to be a CM of a quantum state.

Gaussian states can be transform by linear optics to which we count phase shifts,
squeezers and beam-splitters. This transformations are described by the Hamiltonians
which are quadratic functions of the quadrature operators. They induce linear trans-
formations of the quadrature operators, i.e., ξ′ = Sξ and preserve Gaussian character
of the state. The matrix S is the so called symplectic matrix which is a 2N × 2N real
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matrix satisfying
SΩNS

T = ΩN . (3.3)

On the CM level a symplectic transformation transforms the CM γ to γ′ = SγST .
The CM carries complete information about the quantum correlations in the con-

sidered system. A quantum state ρjk of two subsystems j and k (the state can be
generally multimode) is separable if it can be written as a convex mixture (1.3). For
a two-mode Gaussian state one can use s partial transposition criterion [25, 26, 27] to
certify the separability. The partial transposition operation Tj with respect to mode j
of a two-mode Gaussian state ρjk transforms its CM γjk as

γ
Tj
jk = (σz ⊕ 12)γjk(σz ⊕ 12), (3.4)

where σz =

(
1 0
0 −1

)
is the Pauli-z matrix and 1m is m × m identity matrix. The

partial transposition criterion [25] then says that a two-mode Gaussian state ρjk is

separable if and only if the matrix γ
Tj
jk is a physical CM, i.e.

γ
Tj
jk + iΩ2 ≥ 0. (3.5)

This criterion is a sufficient condition for separability also for 1 ×M -mode Gaussian
states [28]. For more complicated systems, one needs a more powerfull criterion [28].
According to this criterion an N -mode Gaussian state with CM γ, which consists of an
l-mode subsystem A and (N − l)-mode subsystem B is separable, if there exist CMs
γA and γB of subsystems A and B such that

γ − γA ⊗ γB ≥ 0. (3.6)

3.2 Witnessing Gaussian entanglement via SDP

Except the use on more complex systems the criterion (3.6) has another advantage.
It can be formulated as the following semi-definite programme (SDP) [29]

minimize
γA,γB ,xe

(−xe)

subject to γ − γA ⊕ γB ≥ 0,

γA ⊕ γB + (1 + xe)iΩN ≥ 0.

(3.7)

If the optimal solution xe is nonnegative, i.e., xe ≥ 0, the CM γ describes a separable
state. This is because there are CMs γA and γB such that the separability criterion
(3.6) is satisfied. If the optimal solutions is negative, then the CM γ describes an
entangled state.

The dual problem corresponding to the primal problem (3.7) can be written in a
form [29]:

minimize
X1,X2

Tr[γXre
1 ]− 1,

subject to Xbd,re
1 = Xbd,re

2 , X1 ≥ 0, X2 ≥ 0,

Tr[iΩNX2] = −1,

(3.8)

where X1,2 are 2N × 2N Hermitian matrices, Xre
1 is the real part of matrix X1. If one

expresses the matrices X1,2 in the block form with respect to bipartition A|B

X1,2 =

(
A1,2 B1,2

C1,2 D1,2

)
, (3.9)
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then Xbd
1,2 means Xbd

1,2 = A1,2 ⊕ D1,2. For every possible solution X1 ⊕ X2 the matrix
Xre

1 satisfies
Tr [γXre

1 ] ≥ 1 (3.10)

for every CM γ of a separable state [29]. For entangled states one receives

Tr [γXre
1 ] < 1, (3.11)

which means that the matrix Xre
1 is an entanglement witness.

In a multipartite scenario with Gaussian states, one can say that an N -mode state
characterized by CM γ is biseparable if there exist a bipartitions π(k) of the N modes
into Mk < N and N −Mk modes, k = 1,2, . . . ,2N−1 − 1, the CMs γπ(k), being block
diagonal with respect to the bipartitions and probabilities λk such that

γ −
K∑
k=1

λkγπ(k) ≥ 0. (3.12)

The number K ≡ 2N−1 − 1 represents the number of all different inequivalent bipar-
titions of N modes [29]. The states which are not biseparable, are known as genuine
multipartite entangled. As for separability, also biseparability can be decided by solving
the following SDP [29]:

minimize
{γπ(k),λk},xe

(−xe)

subject to γ −
K∑
k=1

γπ(k) ≥ 0,

γπ(k) + λkiΩN ≥ 0, for all k,

K∑
k=1

λk = 1 + xe,

λk ≥ 0, for all k

(3.13)

The SDP (3.13) can be further also rewritten as [29]:

minimize
{xπ(k)ij ,λk},xe

(−xe)

subject to γ +

bd,re,π(k)∑
i,j,k

(−Fij)xπ(k)ij ≥ 0,

bd,re,π(k)∑
i,j

Fijx
π(k)
ij + λkiΩN ≥ 0, for all k,

K∑
k=1

λk − xe − 1 ≥ 0,

−

(
K∑
k=1

λk

)
+ xe + 1 ≥ 0,

λk ≥ 0, for all k,

(3.14)

where ’bd,re,π(k)’ in summation refers to ’block-diagonal and real with respect to
partition π(k)’.
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The dual problem to (3.14) is of the form [29]:

maximize
X

− Tr{[γ ⊕ O2NK ⊕ (−1)⊕ 1⊕ OK ]X}

subject to X
re,bd,π(k)
1 = X

re,bd,π(k)
k+1 for all k = 1, . . . ,K,

Tr[iΩNXk+1] +XK+2 −XK+3 +XK+3+k = 0, for all k = 1, . . . ,K,

XK+2 −XK+3 = 1,
(3.15)

where the 1m is the m × m identity matrix and 0m is the m × m zero matrix. The
matrices X over which the maximation in (3.15) are performed are Hermitian posivite-
semidefinite [2N(K + 1) +K + 2]-dimensional matrices. It can be without loss of gen-
erality written in a block-diagonal form

X =
2K+3⊕
j=1

Xj, (3.16)

where Xj for j = 1,2, . . . ,K + 1 are 2N × 2N Hermitian matrices and Xj, j = K +
+ 2, . . . ,2K + 3 are 1× 1 Hermitian matrices, i.e., real numbers.

In the first constraint X
re,bd,π(k)
1 = X

re,bd,π(k)
k+1 the included matrices X1,X2, . . . ,XK+1

are 2N × 2N blocks of the Hermitian matrices X. Moreover, this constraint is only on
the elements (Xk)ij of the matrices corresponding to nonzero variables x

π(k)
ij , i.e., it is

only on the diagonal blocks of the matrices Xk corresponding with diagonal blocks of
the block-diagonal matrices γπ(k). If one writes the matrix Xj in the block form with
respect to partitions π(k)

Xj =

(
A
π(k)
j B

π(k)
j

(B
π(k)
j )† D

π(k)
j

)
, (3.17)

with the Hermitian block A
π(k)
j corresponding to the set of modes in the first part of

the bipartition π(k) and the Hermitian block D
π(k)
j to the set of modes in the second

part of the bipartition. Then the matrix X
bd,π(k)
j is a projection onto the block-diagonal

form of the matrix γπ(k), i.e., X
bd,π(k)
j = A

π(k)
j ⊕Dπ(k)

j . At last X
re,bd,π(k)
j is real part of

the matrix X
bd,π(k)
j , i.e., X

re,bd,π(k)
j = ReX

bd,π(k)
j .

For a real symmetric matrix γ and a Hermitian matrix X1 it holds Tr [γX1] =
Tr [γXre

1 ] and using the last constraint XK+2−XK+3 = 1 one obtains reduced objective
function of SDP (3.15) in the form [29]:

Tr{[γ ⊕ O2NK ⊕ (−1)⊕ 1⊕ OK ]X} = Tr [γXre
1 ]− 1. (3.18)

As was shown for detection of separability (3.10) and (3.11) similar things happen
here [29]. For every feasible solution X of the dual program (3.15) the matrix Xre

1 is
an optimal entanglement witness, i.e., it satisfies conditions

(i) Tr[γXre
1 ] ≥ 1, for all biseparable γ,

(ii) Tr[γXre
1 ] < 1, for some entangled γ. (3.19)

The optimality of the witness is in the sense that set of all possible witnesses the value
of Tr [γXre

1 ] is minimal.
The witness from SDP (3.15) acts on entire CM γ but we need a witness acting only

on the minimal set of two-mode marginal CMs. We are looking for the witness which
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does not act on the 2× 2 off-diagonal blocks of the CM γ. These blocks correspond to
the missing edges from the graph of the minimal set of marginals shown on Fig. 3.1.
More precisely, the witness Xre

1 we want should have zero 2 × 2 off-diagonal blocks
corresponding to missing edges, i.e., edges from the complementary graph. In the
following section we show the additional constrain on the witness it explicitly for a
three- and four-mode cases.

3.2.1 Three-mode example

The three-partite state is the simplest state where one can study genuine multipar-
tite entanglement. In discrete variable scenario it was shown [9] that a three-qubit state
whose genuine multipartite entanglement is verifiable from separable marginals must
be mixed. Moreover, examples of such states have been constructed in Ref. [7, 9] and
experimentally demonstrated [11]. However, there is no example of genuine multipar-
tite entangled state of three qubits certifiable only from the minimal set of marginals
ρAB and ρBC . Examples with this property were found for four, five and six qubits in
Ref. [8]. Despite that we try to find three-mode Gaussian state with this property,
i.e., a three-mode Gaussian state with 6 × 6 CM γABC with all two-mode marginals
separable and whose genuine multipartite entanglement can be infered only from the
minimal set of marginal CMs γAB and γBC .

For a gaussian state of three modes A, B and C the number of possible bipartitions
is K = 23−1 − 1 = 3, and they read explicitly as π(1) = A|BC, π(2) = B|AC and
π(3) = C|AB. The three corresponding CMs are γπ(1) = γA ⊕ γBC , γπ(2) = γB ⊕ γAC
and γπ(3) = γC ⊕ γAB, respectively. From the block-diagonal structure of the latter

CMs we can see that some variables x
π(k)
ij from SDP (3.14) are zero and so the number

of variables over which the dual SDP (3.15) is done is lower. Specifically,

{xπ(1)ij = 0, i = 1,2; j = 3,4,5,6},

{xπ(2)ij = 0, {i = 1,2; j = 3,4},{i = 3,4; j = 5,6}},

{xπ(3)ij = 0, i = 1,2,3,4; j = 5,6}. (3.20)

The first constraint from (3.15) restricts the structure of 6× 6 matrices X1, X2, X3

and X4. For better overview, let us write the matrix Xj in the block form with respect
to splitting A|B|C

Xj =

 (Xj)11 (Xj)12 (Xj)13
(Xj)

†
12 (Xj)22 (Xj)23

(Xj)
†
13 (Xj)

†
23 (Xj)33

 , (3.21)

where (Xj)kl are the 2×2 blocks, the diagonal blocks (Xj)kk are Hermitian. Projecting
matrices Xj onto a block-diagonal form of matrices γπ(1), γπ(2) and γπ(3) we obtain

X
bd,π(1)
j =

 (Xj)11 O2 O2

O2 (Xj)22 (Xj)23
O2 (Xj)

†
23 (Xj)33

 , (3.22)

X
bd,π(2)
j =

 (Xj)11 O2 (Xj)13
O2 (Xj)22 O2

(Xj)
†
13 O2 (Xj)33

 , (3.23)
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X
bd,π(3)
j =

 (Xj)11 (Xj)12 O2

(Xj)
†
12 (Xj)22 O2

O2 O2 (Xj)33

 . (3.24)

For the explicit form see Sec. 1 of Appendix A.
The first contraint in SDP (3.15) for three modes has the form:

X
re,bd,π(1)
1 = X

re,bd,π(1)
2 ,

X
re,bd,π(2)
1 = X

re,bd,π(2)
3 ,

X
re,bd,π(3)
1 = X

re,bd,π(3)
4 . (3.25)

The minimal set of marginals consists of reduced CMs γAB and γBC . If we write
the CM γ in block form with respect to splitting A|B|C

γ =

 γA ωAB ωAC
ωTAB γB ωBC
ωTAC ωTBC γC

 , (3.26)

we see that the witness we are looking for has to be ”blind” to the block ωAC contain-
ing correlations between mode A and mode C. Thus the witness acting only on the
respective part of CM is given by the 6× 6 Hermitian matrix in block form:

Xre
1 =

 (Xre
1 )11 (Xre

1 )12 O2

(Xre
1 )T12 (Xre

1 )22 (Xre
1 )23

O2 (Xre
1 )T23 (Xre

1 )33

 . (3.27)

We need to add a new constraint to the SDP (3.15) to find the witness of the form
(3.27). The constraint can be written as

(Xre
1 )13 =

(
(Xre

1 )15 (Xre
1 )16

(Xre
1 )25 (Xre

1 )26

)
=

(
0 0
0 0

)
(3.28)

and the SDP in now in the form

minimize
X1,...,X9

Tr[γXre
1 ]− 1

subject to X1 ≥ 0, X2 ≥ 0, . . . , X9 ≥ 0,

X
re,bd,π(1)
1 = X

re,bd,π(1)
2 ,

X
re,bd,π(2)
1 = X

re,bd,π(2)
3 ,

X
re,bd,π(3)
1 = X

re,bd,π(3)
4 ,

Tr[iΩ3Xk+1] +X5 −X6 +X6+k = 0, for all k = 1,2,3,

X5 −X6 = 1,(
(Xre

1 )15 (Xre
1 )16

(Xre
1 )25 (Xre

1 )26

)
=

(
0 0
0 0

)
,

(3.29)

where we used the rewritten objective function.

3.2.2 Four-mode Gaussian state

For the four-mode state we have two possible minimal sets of marginals. Our goal
is to add constraints into the SDP so as to integrate into it the requirement that the
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witness acts only on the marginal CMs from the minimal set. First we look at some
features which are common to both the sets.

For four-mode state the number of possible bipartitions is K = 24−1 − 1 = 7.
Namely, it is π(1) = A|BCD, π(2) = B|ACD, π(3) = C|ABD, π(4) = D|ABC, π(5) =
AB|CD, π(6) = AC|BD and π(7) = AD|BC with corresponding block-diagonal CMs
γπ(1) = γA ⊕ γBCD, γπ(2) = γB ⊕ γACD, γπ(3) = γC ⊕ γABD, γπ(4) = γD ⊕ γABC ,
γπ(5) = γAB ⊕ γCD, γπ(6) = γAC ⊕ γBD and γπ(7) = γAD ⊕ γBC , respectively. From the

block-diagonal structure of the matrices we can see that some variables x
π(k)
ij from the

SDP (3.14) are zero. Specifically,

{xπ(1)ij = 0, i = 1,2; j = 3,4,5,6,7,8},

{xπ(2)ij = 0, {i = 1,2; j = 3,4},{i = 3,4; j = 5,6,7,8}},

{xπ(3)ij = 0, i = 1,2,3,4,7,8; j = 5,6},

{xπ(4)ij = 0, i = 7,8; j = 1,2,3,4,5,6},

{xπ(5)ij = 0, i = 1,2,3,4; j = 5,6,7,8},

{xπ(6)ij = 0, {i = 1,2; j = 3,4,7,8},{i = 3,4; j = 5,6},{i = 5,6; j = 7,8}},

{xπ(7)ij = 0, {i = 1,2; j = 3,4,5,6},{i = 3,4; j = 7,8},{i = 5,6; j = 7,8}}.
(3.30)

The first constraint from (3.15) projects the matrices Xj, j = 1,2, . . . ,7, onto the
block-diagonal form of the matrices γπ(j) and thus we obtain:

X
bd,π(1)
j =


(Xj)11 O2 O2 O2

O2 (Xj)22 (Xj)23 (Xj)24
O2 (Xj)

†
23 (Xj)33 (Xj)34

O2 (Xj)
†
24 (Xj)

†
34 (Xj)44

 , (3.31)

X
bd,π(2)
j =


(Xj)11 O2 (Xj)13 (Xj)14
O2 (Xj)22 O2 O2

(Xj)
†
13 O2 (Xj)33 (Xj)34

(Xj)
†
14 O2 (Xj)

†
34 (Xj)44

 , (3.32)

X
bd,π(3)
j =


(Xj)11 (Xj)12 O2 (Xj)14
(Xj)

†
12 (Xj)22 O2 (Xj)24

O2 O2 (Xj)33 O2

(Xj)
†
14 (Xj)

†
24 O2 (Xj)44

 , (3.33)

X
bd,π(4)
j =


(Xj)11 (Xj)12 (Xj)13 O2

(Xj)
†
12 (Xj)22 (Xj)23 O2

(Xj)
†
13 (Xj)

†
23 (Xj)33 O2

O2 O2 O2 (Xj)44

 , (3.34)

X
bd,π(5)
j =


(Xj)11 (Xj)12 O2 O2

(Xj)
†
12 (Xj)22 O2 O2

O2 O2 (Xj)33 (Xj)34
O2 O2 (Xj)

†
34 (Xj)44

 , (3.35)
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X
bd,π(6)
j =


(Xj)11 O2 (Xj)13 O2

O2 (Xj)22 O2 (Xj)24
(Xj)

†
13 O2 (Xj)33 O2

O2 (Xj)
†
24 O2 (Xj)44

 , (3.36)

X
bd,π(7)
j =


(Xj)11 O2 O2 (Xj)14
O2 (Xj)22 (Xj)23 O2

O2 (Xj)
†
23 (Xj)33 O2

(Xj)
†
14 O2 O2 (Xj)44

 . (3.37)

For the explicit form of the matrices see Sec. 2 of Appendix A.

A. Linear graph

First type of the minimal set of marginals corresponds to the linear graph in Fig.
3.1 b). It does not contain marginal CMs γAC , γAD and γBD which implies that the
witness will ignore the blocks ωAC , ωAD and ωBD of the CM (3.43). The witness then
shloud be in the form:

Xre
1 =


(Xre

1 )11 (Xre
1 )12 O2 O2

(Xre
1 )T12 (Xre

1 )22 (Xre
1 )23 O2

O2 (Xre
1 )T23 (Xre

1 )33 (Xre
1 )34

O2 O2 (Xre
1 )T34 (Xre

1 )44

 , (3.38)

so the new constraints which should be added to the SDP (3.15) are

(Xre
1 )13 =

(
(Xre

1 )15 (Xre
1 )16

(Xre
1 )25 (Xre

1 )26

)
=

(
0 0
0 0

)
, (3.39)

(Xre
1 )14 =

(
(Xre

1 )17 (Xre
1 )18

(Xre
1 )27 (Xre

1 )28

)
=

(
0 0
0 0

)
, (3.40)

(Xre
1 )24 =

(
(Xre

1 )37 (Xre
1 )38

(Xre
1 )47 (Xre

1 )48

)
=

(
0 0
0 0

)
. (3.41)
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If we then rewrite the SDP as in previous case we obtain

minimize
X1,...,X17

Tr[γXre
1 ]− 1

subject to X1 ≥ 0, X2 ≥ 0, . . . , X17 ≥ 0,

X
re,bd,π(1)
1 = X

re,bd,π(1)
2 ,

X
re,bd,π(2)
1 = X

re,bd,π(2)
3 ,

X
re,bd,π(3)
1 = X

re,bd,π(3)
4 ,

X
re,bd,π(4)
1 = X

re,bd,π(4)
5 ,

X
re,bd,π(5)
1 = X

re,bd,π(5)
6 ,

X
re,bd,π(6)
1 = X

re,bd,π(6)
7 ,

X
re,bd,π(7)
1 = X

re,bd,π(7)
8 ,

Tr[iΩ4Xk+1] +X9 −X10 +X10+k = 0, for all k = 1, . . . ,7,

X9 −X10 = 1,(
(X1re)15 (Xre

1 )16
(Xre

1 )25 (Xre
1 )26

)
=

(
0 0
0 0

)
,(

(Xre
1 )17 (Xre

1 )18
(Xre

1 )27 (Xre
1 )28

)
=

(
0 0
0 0

)
,(

(Xre
1 )37 (Xre

1 )38
(Xre

1 )47 (Xre
1 )48

)
=

(
0 0
0 0

)
,

(3.42)

where matrices X
bd,π(k)
j are given by Eq. (3.31)-(3.37).

B. ’t-shaped’ graph

Second type of the minimal set of marginals is captured by the ’t-shaped’ graph in
Fig. 3.1 c). It reveals that in this case one knows marginal CMs γAB, γBC and γBD.
From the full CM γ written in the block form

γ =


γA ωAB ωAC ωAD
ωTAB γB ωBC ωBD
ωTAC ωTBC γC ωCD
ωTAD ωTBD ωTCD γD

 , (3.43)

we can see that for this minimal set the witness should ignore the blocks ωAC , ωAD
and ωCD, i.e., correlations between modes A and C, A and D and C and D. Thus the
witness Xre

1 which acts only on the corresponding part of the CM would read as:

Xre
1 =


(Xre

1 )11 (Xre
1 )12 O2 O2

(Xre
1 )T12 (Xre

1 )22 (Xre
1 )23 (Xre

1 )24
O2 (Xre

1 )T23 (Xre
1 )33 O2

O2 (Xre
1 )T24 O2 (Xre

1 )44

 . (3.44)

Thus we get three new constraints to the SDP (3.15) to find the witness in the form
(3.44). Namely, they are given by (3.39), (3.40) and

(Xre
1 )34 =

(
(Xre

1 )57 (Xre
1 )58

(Xre
1 )67 (Xre

1 )68

)
=

(
0 0
0 0

)
. (3.45)
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The SDP with all the new constraints and itemized first constraint has now form:

minimize
X1,...,X17

Tr[γXre
1 ]− 1

subject to X1 ≥ 0, X2 ≥ 0, . . . , X17 ≥ 0,

X
re,bd,π(1)
1 = X

re,bd,π(1)
2 ,

X
re,bd,π(2)
1 = X

re,bd,π(2)
3 ,

X
re,bd,π(3)
1 = X

re,bd,π(3)
4 ,

X
re,bd,π(4)
1 = X

re,bd,π(4)
5 ,

X
re,bd,π(5)
1 = X

re,bd,π(5)
6 ,

X
re,bd,π(6)
1 = X

re,bd,π(6)
7 ,

X
re,bd,π(7)
1 = X

re,bd,π(7)
8 ,

Tr[iΩ4Xk+1] +X9 −X10 +X10+k = 0, for all k = 1, . . . ,7,

X9 −X10 = 1,(
(Xre

1 )15 (Xre
1 )16

(Xre
1 )25 (Xre

1 )26

)
=

(
0 0
0 0

)
,(

(Xre
1 )17 (Xre,

1 )18
(Xre

1 )27 (Xre
1 )28

)
=

(
0 0
0 0

)
,(

(Xre
1 )57 (Xre

1 )58
(Xre

1 )67 (Xre
1 )68

)
=

(
0 0
0 0

)
,

(3.46)

where matrices X
bd,π(k)
j are given by Eqs. (3.31)-(3.37).

3.3 Results for three modes

Our taks is now to find a three-mode genuine multipartite entangled Gaussian state
with all two-mode marginals separable and such that its entanglement can be verified
only from marginal CMs γAB and γBC . It can be done by iterations consisting of two
steps. First step of the iteration is to find an optimal entanglement witness for given
CM which is provided by SDP (3.29). Second step is to find an optimal CM to the
received witness. This step is provided by the following SDP:

minimize
γ

Tr[γReX1]

subject to γ + iΩN ≥ 0,

γ
(Tj)
jk + iΩ2 ≥ 0, for all j 6= k = 1, . . . ,N ,

γ2j−12k = γ2j2k−1 = 0, j,k = 1, . . . ,N ,

(3.47)

where the minimization is performed over all real symmetric 2N × 2N matrices γ. In
the first constraint, we guarentee that the matrix is CM of a physical state. The second
constraint assures that all two-mode marginals are separable and the third constraint
causes that there are no x− p correlations in the obtained CM.

To start the iteration process we need to generate some initial CM. Similarly as it
was done for qubits in Ref. [7] we choose to start with a randomly generated CM of a
pure Gaussian state which possesses no x− p correlations.
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3.3.1 Found state

We have carried out the iterative search numerically with the help of Mgr. Jan
Provazńık from Palacký University, and from Viktor Nordgren and prof. Natalia Ko-
rolkova from University of St. Andrews. we found many examples of the sought state
the best one being described by the following CM:

γ3 =


18.69 0 −12.09 0 7.07 0

0 0.26 0 −0.01 0 −0.32
−12.09 0 10.11 0 −5.79 0

0 −0.01 0 4.93 0 4.92
7.07 0 −5.79 0 9.41 0

0 −0.32 0 4.92 0 5.43

 . (3.48)

The original solution was rounded to two decimal places. The corresponding optimal
witness for the rounded CM (3.48) is of the form:

Xre
1 =


7.38 0 10.39 0 0 0

0 47.81 0 2.17 0 0
10.39 0 15.6 0 1.14 0

0 2.17 0 65.26 0 −60.18
0 0 1.14 0 1.31 0
0 0 0 −60.18 0 55.59

 · 10−2 (3.49)

and it gives Tr [γXre
1 ]−1

.
= −0.125. This tells us based on the condition for the witness

(3.11) that the state (3.48) is genuine multipartite entangled. One can also see, that
the upper right and lower left blocks of the witness are zero and thus it is ”blind” to the
block ωAC . Moreover, this state has stronger effect than the best four-qubit example
found in Ref.[8], where the mean value of the witness is Tr [ρW ]

.
= −3.15 · 10−3.

The separability of the marginals can be verified by the partial transposition cri-
terion (3.5). The minimal eigenvalues of the matrix on the right hand side of the
criterion are shown in Tab. 3.1. They are all positive which means that the reduced
CMs describe separable states. The closeness of two eigenvalues to zero indicates that
the respective marginals are close to the set of entangled states.

ij AB AC BC
αij 0.006 0.156 0.002

Table 3.1: The minimal eigenvalues αij of the matrix γTiij + iΩ2 for the CM (3.48)

In the possible experimental demonstration the closeness of the marginals to the
set entangled states can be a problem but we can add a moderated amount of white
noise to the CM γ3. This would shift the marginals more far from the set of entangled
states while keeping the mean value of the witness negative and far enough below zero.
The white noise can be added as γ′3 = γ + p1 with 0 ≤ p ≤ pmax, where pmax

.
= 0.066

is the amount of the white noise when the quantity Tr [γ′3X
re
1 ] − 1 vanishes. Thus if

one adds whereas, for instance, half of the tolerable noise p = pmax/2, one obtains
Tr [γ′3X

re
1 ]− 1

.
= −0.063, αAB

.
= 0.039 and αBC

.
= 0.035.

3.3.2 Logical circuit

Thanks to a high quality of the found three-mode state (3.48), it appears to be a
good candidate for an experimental demonstration and thus we want to design a linear-
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optical scheme for preparation of the state. For thus purpose we use the Williamson’s
symplectic diagonalization of a CM [31], the Bloch-Messiah decomposition of a sym-
plectic matrix [32] and the decomposition of an orthogonal symplectic matrix into an
array of beam-splitters and phase-shifters [33, 34].

According to Williamson’s theorem [31] here is a symplectic transformation S such
that any CM can be transformed to

SγST = diag(ν1,ν1,ν2,ν2,ν3,ν3) ≡ W , (3.50)

where ν1,ν2,ν3 are the so called symplectic eigenvalues. For the CM γ3, Eq. (3.48) the
eigenvalues read explicitly as ν1 = 6.508, ν2 = 1.083 and ν3 = 1.005. The symplectic
matrix S can be found by using a method in Ref. [35] or a method in Ref. [36]. It
can be further decomposed into a passive and active linear-optical elements using the
Bloch-Messiah decomposition [32] as S = URV T where U and V are orthogonal and
symplectic matrices correasponding to passive elements and R is a diagonal matrix
containing squeezing parametrs as entries. Matrices U and V can be decomposed to
an array of beam-splitters and phase-shifters but without x−p correlations in the final
state we need only phase-free beam-splitters. Matrices U and V are in the form [34]

U = BU
23(T23)B

U
13(T13)B

U
12(T12), (3.51)

V = BV
23(τ23)B

V
13(τ13)B

V
12(τ12), (3.52)

where Tjk and τjk, jk = 12,13,23 are beam-splitter transmission coefficients. For the
matrix U the beam-splitter transmission coefficients Tjk are shown in Tab. 3.2 and the
corresponding matrices are in the form:

BU
23 =

1 0 0

0
√

1− T 2
231 T231

0 T231 −
√

1− T 2
231

 , (3.53)

BU
13 =


√

1− T 2
131 0 T131

0 1 0

T131 0
√

1− T 2
131

 , (3.54)

BU
12 =


√

1− T 2
121 T121 0

−T121
√

1− T 2
121 0

0 0 −1

 , (3.55)

where 1 and 0 are 2× 2 identity and zero matrices. Beam-splitters that comprise the
matrix V are given by

BV
23 =

1 0 0

0 −
√

1− τ 2231 −τ231
0 τ231 −

√
1− τ 2231

 , (3.56)

BV
13 =


√

1− τ 2131 0 τ131
0 1 0

τ131 0
√

1− τ 2131

 , (3.57)

BV
12 =


√

1− τ 2121 τ121 0

τ121 −
√

1− τ 2121 0

0 0 1

 (3.58)
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jk 12 13 23
Tjk 0.093 0.374 0.999
τjk 0.991 0.641 0.774

Table 3.2: Transmision coeficients for beam-splitter matrices (3.53)-(3.58).

with transmission coefficients in Tab. 3.2. Finally the matrix R is of the form

R = diag(1.314,0.761,0.650,1.539,0.193,5.178) (3.59)

(see Appendix B for more details of the decomposiiton). If we give together all parts we
obtain the linear-optical scheme for preparation the state desrcibed by the CM (3.48),
which is shown in Fig. 3.2.

Figure 3.2: Linear-optical scheme for the CM γ3; νj - thermal states with mean number
of thermal photons (νj − 1)/2, j = A,B,C; U - passive transformation consisting of
beam splitters Bjk, jk = 12,23,13; V - passive transformation consisting of beam
splitters B′jk; R - squeezing transformation consisting of one squeezer in momentum
quadrature, R1, and two squeezers in position quadrature, R2 and R3.

3.4 Results for four modes

Next, we extended the search also to the four-mode case.

A. Linear graph

We also looked at the four-mode state with minimal set given by a linear graph in
Fig. 3.1 b). We obtain the following CM

γ
(l)
4 =



5.95 0 −0.22 0 −2.63 0 0.55 0
0 1.19 0 −2.15 0 1.83 0 −0.52

−0.22 0 7.50 0 6.59 0 −1.38 0
0 −2.15 0 4.70 0 −3.88 0 1.10

−2.63 0 6.59 0 7.51 0 −0.02 0
0 1.83 0 −3.88 0 5.27 0 −1.46

0.55 0 −1.38 0 −0.02 0 5.49 0
0 −0.52 0 1.10 0 −1.46 0 0.60


. (3.60)
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For the CM, which was again rounded to two decimal places, we get γ
(l)
4 Tr

[
γ
(l)
4 X

re
1

]
−

1
.
= −0.0485. The separability is once again verified by the partial transposition

criterion (3.5) and the minimal eigenvalues for all marginals are shown in Tab. 3.3.

ij AB AC AD BC BD CD

α
(t)
ij 0.011 0.234 0.098 0.01 0.114 0.003

Table 3.3: The minimal eigenvalues α
(t)
ij of the matrix (γ

(l)
4 )Tiij + iΩ2 for the CM (3.60)

.

B. ’t-shaped’ graph

Finally, for a ’t-shaped’ graph we obtain the following CM rounded to two decimal
places

γ
(t)
4 =



3.02 0 −1.76 0 −0.53 0 0.69 0
0 5.65 0 3.22 0 0.83 0 −4.94

−1.76 0 6.89 0 5.38 0 3.79 0
0 3.22 0 2.28 0 0.10 0 −2.82

−0.53 0 5.38 0 6.30 0 4.43 0
0 0.83 0 0.10 0 1.13 0 −1.08

0.69 0 3.79 0 4.43 0 5.04 0
0 −4.94 0 −2.82 0 −1.08 0 5.03


. (3.61)

The rounded CM yields Tr
[
γ
(t)
4 Xre

1

]
− 1

.
= −0.0156 which evidenced the presence

of genuine multipartite entanglement. For the verification of the separability of the
marginals we used again the partial transposition criterion (3.5). The obtained eigen-
values of the right-hand side are shown in Tab. 3.4.

ij AB AC AD BC BD CD

α
(t)
ij 0.010 0.772 0.067 0.341 0.062 0.142

Table 3.4: The minimal eigenvalues α
(t)
ij of the matrix (γ

(t)
4 )Tiij + iΩ2 for the CM (3.61)

.

Thanks to the weaker effect, the possible experimental demonstration will be more
challenging.
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Conclusion

In this thesis we extended analysis of a phenomen of emergent genuine multipar-
tite entanglement to the realm of classical discrete random variables and Gaussian
continuous variables.

In the first part of this thesis we used the mapping between quantum states and
probability distributions to get a cryptographic analog of the investigated phenomenon.
More precisely, we found a set of marginal distributions which carry no secret correla-
tions yet the global distribution with which they are compatible carries the correlations.
This demonstrates, that the investigated effect does not exist only in quantum world
but it can be found also in the context of classical random variables.

In the second part of this thesis we found Gaussian states, which exhibit the studied
effect. Interstingly, we found the effect already for three-mode case, whereas a three-
qubit examples is not known. The effect in our three-mode example is relatively strong
and thus it is attractive from the point of view of experiment.
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Appendix A

Explicit forms of matrices in (3.8)

In this appendix we show the explicit form of the matrices X
bd,π(k)
j which appear in

SDP (3.8) for N = 3 and N = 4.

1. N = 3

For N = 3 we have 3 bipartitions π(1) = A|BC, π(2) = B|AC and π(3) = C|AB.
The first constraint in the SDP (3.8) is on certain elements of real parts of the 6 × 6
Hermitian matrices Xj, j = 1,2,3,4. Projecting matrices Xj onto a block-diagonal form
of matrices γπ(1), γπ(2) and γπ(3) we obtain

X
bd,π(1)
j =

 (Xj)11 O2 O2

O2 (Xj)22 (Xj)23
O2 (Xj)

†
23 (Xj)33

 , (A.1)

X
bd,π(2)
j =

 (Xj)11 O2 (Xj)13
O2 (Xj)22 O2

(Xj)
†
13 O2 (Xj)33

 , (A.2)

X
bd,π(3)
j =

 (Xj)11 (Xj)12 O2

(Xj)
†
12 (Xj)22 O2

O2 O2 (Xj)33

 . (A.3)

If we itemize it in terms of elements (Xj)kl we get

X
bd,π(1)
j =

(
(Xj)11 (Xj)12
(Xj)

∗
12 (Xj)22

)
⊕


(Xj)33 (Xj)34 (Xj)35 (Xj)36
(Xj)

∗
34 (Xj)44 (Xj)45 (Xj)46

(Xj)
∗
35 (Xj)

∗
45 (Xj)55 (Xj)56

(Xj)
∗
36 (Xj)

∗
46 (Xj)

∗
56 (Xj)66

 , (A.4)

X
bd,π(2)
j =


(Xj)11 (Xj)12 0 0 (Xj)15 (Xj)16
(Xj)

∗
12 (Xj)22 0 0 (Xj)25 (Xj)26

0 0 (Xj)33 (Xj)34 0 0
0 0 (Xj)

∗
34 (Xj)44 0 0

(Xj)
∗
15 (Xj)

∗
25 0 0 (Xj)55 (Xj)56

(Xj)
∗
16 (Xj)

∗
26 0 0 (Xj)

∗
56 (Xj)66

 , (A.5)

X
bd,π(3)
j =


(Xj)11 (Xj)12 (Xj)13 (Xj)14
(Xj)

∗
12 (Xj)22 (Xj)23 (Xj)24

(Xj)
∗
13 (Xj)

∗
23 (Xj)33 (Xj)34

(Xj)
∗
14 (Xj)

∗
24 (Xj)

∗
34 (Xj)44

⊕ ( (Xj)55 (Xj)56
(Xj)

∗
56 (Xj)66

)
. (A.6)
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2. N = 4

For N = 4 we have 7 bipartitions π(1) = A|BCD, π(2) = B|ACD, π(3) = C|ABD,
π(4) = D|ABC, π(5) = AB|CD, π(6) = AC|BD and π(7) = AD|BC. Thus the

matrices X
bd,π(k)
j , k = 1, . . . ,7 are

X
bd,π(1)
j =


(Xj)11 O2 O2 O2

O2 (Xj)22 (Xj)23 (Xj)24
O2 (Xj)

†
23 (Xj)33 (Xj)34

O2 (Xj)
†
24 (Xj)

†
34 (Xj)44

 , (A.7)

X
bd,π(2)
j =


(Xj)11 O2 (Xj)13 (Xj)14
O2 (Xj)22 O2 O2

(Xj)
†
13 O2 (Xj)33 (Xj)34

(Xj)
†
14 O2 (Xj)

†
34 (Xj)44

 , (A.8)

X
bd,π(3)
j =


(Xj)11 (Xj)12 O2 (Xj)14
(Xj)

†
12 (Xj)22 O2 (Xj)24

O2 O2 (Xj)33 O2

(Xj)
†
14 (Xj)

†
24 O2 (Xj)44

 , (A.9)

X
bd,π(4)
j =


(Xj)11 (Xj)12 (Xj)13 O2

(Xj)
†
12 (Xj)22 (Xj)23 O2

(Xj)
†
13 (Xj)

†
23 (Xj)33 O2

O2 O2 O2 (Xj)44

 , (A.10)

X
bd,π(5)
j =


(Xj)11 (Xj)12 O2 O2

(Xj)
†
12 (Xj)22 O2 O2

O2 O2 (Xj)33 (Xj)34
O2 O2 (Xj)

†
34 (Xj)44

 , (A.11)

X
bd,π(6)
j =


(Xj)11 O2 (Xj)13 O2

O2 (Xj)22 O2 (Xj)24
(Xj)

†
13 O2 (Xj)33 O2

O2 (Xj)
†
24 O2 (Xj)44

 , (A.12)

X
bd,π(7)
j =


(Xj)11 O2 O2 (Xj)14
O2 (Xj)22 (Xj)23 O2

O2 (Xj)
†
23 (Xj)33 O2

(Xj)
†
14 O2 O2 (Xj)44

 . (A.13)

If we itemize it in terms (Xj)kl we obtain:

X
bd,π(1)
j =

(
(Xj)11 (Xj)12
(Xj)

∗
12 (Xj)22

)
⊕


(Xj)33 (Xj)34 (Xj)35 (Xj)36 (Xj)37 (Xj)38
(Xj)

∗
34 (Xj)44 (Xj)45 (Xj)46 (Xj)47 (Xj)48

(Xj)
∗
35 (Xj)

∗
45 (Xj)55 (Xj)56 (Xj)57 (Xj)58

(Xj)
∗
36 (Xj)

∗
46 (Xj)

∗
56 (Xj)66 (Xj)67 (Xj)68

(Xj)
∗
37 (Xj)

∗
47 (Xj)

∗
57 (Xj)

∗
67 (Xj)77 (Xj)78

(Xj)
∗
38 (Xj)

∗
48 (Xj)

∗
58 (Xj)

∗
68 (Xj)

∗
78 (Xj)88

 ,

(A.14)
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X
bd,π(2)
j =



(Xj)11 (Xj)12 0 0 (Xj)15 (Xj)16 (Xj)17 (Xj)18
(Xj)

∗
12 (Xj)22 0 0 (Xj)25 (Xj)26 (Xj)27 (Xj)28

0 0 (Xj)33 (Xj)34 0 0 0 0
0 0 (Xj)

∗
34 (Xj)44 0 0 0 0

(Xj)
∗
15 (Xj)

∗
25 0 0 (Xj)55 (Xj)56 (Xj)57 (Xj)58

(Xj)
∗
16 (Xj)

∗
26 0 0 (Xj)

∗
56 (Xj)66 (Xj)67 (Xj)68

(Xj)
∗
17 (Xj)

∗
27 0 0 (Xj)

∗
57 (Xj)

∗
67 (Xj)77 (Xj)78

(Xj)
∗
18 (Xj)

∗
28 0 0 (Xj)

∗
58 (Xj)

∗
68 (Xj)

∗
78 (Xj)88


,

(A.15)

X
bd,π(3)
j =



(Xj)11 (Xj)12 (Xj)13 (Xj)14 0 0 (Xj)17 (Xj)18
(Xj)

∗
12 (Xj)22 (Xj)23 (Xj)24 0 0 (Xj)27 (Xj)28

(Xj)
∗
13 (Xj)

∗
23 (Xj)33 (Xj)34 0 0 (Xj)37 (Xj)38

(Xj)
∗
14 (Xj)

∗
24 (Xj)

∗
34 (Xj)44 0 0 (Xj)47 (Xj)48

0 0 0 0 (Xj)55 (Xj)56 0 0
0 0 0 0 (Xj)

∗
56 (Xj)66 0 0

(Xj)
∗
17 (Xj)

∗
27 (Xj)

∗
37 (Xj)

∗
47 0 0 (Xj)77 (Xj)78

(Xj)
∗
18 (Xj)

∗
28 (Xj)

∗
38 (Xj)

∗
48 0 0 (Xj)

∗
78 (Xj)88


,

(A.16)

X
bd,π(4)
j =


(Xj)11 (Xj)12 (Xj)13 (Xj)14 (Xj)15 (Xj)16
(Xj)

∗
12 (Xj)22 (Xj)23 (Xj)24 (Xj)25 (Xj)26

(Xj)
∗
13 (Xj)

∗
23 (Xj)33 (Xj)34 (Xj)35 (Xj)36

(Xj)
∗
14 (Xj)

∗
24 (Xj)

∗
34 (Xj)44 (Xj)45 (Xj)46

(Xj)
∗
15 (Xj)

∗
25 (Xj)

∗
35 (Xj)

∗
45 (Xj)55 (Xj)56

(Xj)
∗
16 (Xj)

∗
26 (Xj)

∗
36 (Xj)

∗
46 (Xj)

∗
56 (Xj)66

⊕
(

(Xj)77 (Xj)78
(Xj)

∗
78 (Xj)88

)
,

(A.17)

X
bd,π(5)
j =


(Xj)11 (Xj)12 (Xj)13 (Xj)14
(Xj)

∗
12 (Xj)22 (Xj)23 (Xj)24

(Xj)
∗
13 (Xj)

∗
23 (Xj)33 (Xj)34

(Xj)
∗
14 (Xj)

∗
24 (Xj)

∗
34 (Xj)44

⊕


(Xj)55 (Xj)56 (Xj)57 (Xj)58
(Xj)

∗
56 (Xj)66 (Xj)67 (Xj)68

(Xj)
∗
57 (Xj)

∗
67 (Xj)77 (Xj)78

(Xj)
∗
58 (Xj)

∗
68 (Xj)

∗
78 (Xj)88

 ,

(A.18)

X
bd,π(6)
j =



(Xj)11 (Xj)12 0 0 (Xj)15 (Xj)16 0 0
(Xj)

∗
12 (Xj)22 0 0 (Xj)25 (Xj)26 0 0

0 0 (Xj)33 (Xj)34 0 0 (Xj)37 (Xj)38
0 0 (Xj)

∗
34 (Xj)44 0 0 (Xj)47 (Xj)48

(Xj)
∗
15 (Xj)

∗
25 0 0 (Xj)55 (Xj)56 0 0

(Xj)
∗
16 (Xj)

∗
26 0 0 (Xj)

∗
56 (Xj)66 0 0

0 0 (Xj)
∗
37 (Xj)

∗
47 0 0 (Xj)77 (Xj)78

0 0 (Xj)
∗
38 (Xj)

∗
48 0 0 (Xj)

∗
78 (Xj)88


,

(A.19)

X
bd,π(7)
j =



(Xj)11 (Xj)12 0 0 0 0 (Xj)17 (Xj)18
(Xj)

∗
12 (Xj)22 0 0 0 0 (Xj)27 (Xj)28

0 0 (Xj)33 (Xj)34 (Xj)35 (Xj)36 0 0
0 0 (Xj)

∗
34 (Xj)44 (Xj)45 (Xj)46 0 0

0 0 (Xj)
∗
35 (Xj)

∗
45 (Xj)55 (Xj)56 0 0

0 0 (Xj)
∗
36 (Xj)

∗
46 (Xj)

∗
56 (Xj)66 0 0

(Xj)
∗
17 (Xj)

∗
27 0 0 0 0 (Xj)77 (Xj)78

(Xj)
∗
18 (Xj)

∗
28 0 0 0 0 (Xj)

∗
78 (Xj)88


.

(A.20)
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Appendix B

Bloch-Messiah decomposition of the
symplectic matrix

To get the exact form of symplectic matrix realizing the Wiliamson’s symplec-
tic diagonalization of the CM γ3 we use extended method from Ref. [37]. To eas-
ier manipulation, we transform the obtained symplectic matrix to the second or-
dering of the quadrature operators, where the vector of quadratures is in the form
τ = (x1,x2, . . . ,xN ,p1,p2, . . . ,pN)T . It is correlated with ξ by a tranformation τ = Tξ,
where T is an orthogonal matrix, i.e., T−1 = T T . Nonzero elements of T are Tj2j−1 = 1
and TN+j2j for j = 1,2, . . . ,N . The transformation transforms symplectic matrix as
σ = TST T . Due to missing x − p correlations is the sympletic matrix in the block
diagonal form σ = σx ⊕ σp. We can work only with the first block corresponding to
the x-quadratures because the block correspoding to p-quadratures can be obtained as
σp = (σTx )−1. Using single-value decomposition we receive exact forms of matrices u,
v and r which are first blocks of matrices U , V and R, respectively. Elements of the
matrix r give us squeezing parameters s1 = 1.314, s2 = 0.650 and s3 = 0.193 which
means that the first mode is squeezed in p quadrature and second and third modes are
squeezed in x quadrature.

We need to decompose matrices u and v to an array of beam-splitters, i.e., in form
[34]

u = bu23(T23)b
u
13(T13)b

u
12(T12), (B.1)

where Tjk, jk = 12,13,23 are beam-splitter transmision coeficients. The array of beam-
splitters for the matrix u is of beam-splitters with transmision coeficients Tjk shown in
Tab. 3.2. The matrices are in the form:

bu23 =

1 0 0

0
√

1− T 2
23 T23

0 T23 −
√

1− T 2
23

 , (B.2)

bu13 =


√

1− T 2
13 0 T13

0 1 0

T13 0
√

1− T 2
13

 , (B.3)

bu12 =


√

1− T 2
12 T12 0

−T12
√

1− T 2
12 0

0 0 −1

 . (B.4)
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Beam-splitters that are in the array in the matrix v are

bv23 =

1 0 0

0 −
√

1− τ 223 −τ23
0 τ23 −

√
1− τ 223

 , (B.5)

bv13 =


√

1− τ 213 0 τ13
0 1 0

τ13 0
√

1− τ 213

 , (B.6)

bv12 =


√

1− τ 212 τ12 0

τ12 −
√

1− τ 212 0
0 0 1

 . (B.7)

Final matrices U and V can be obtained as U = u ⊕ u and V = v ⊕ v in the second
ordering of quadrature operators.
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