
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

PERFORMANCE OPTIMIZATION OF TESTINGAUTOMATION FRAMEWORK BASEDON BEAKERLIBOPTIMALIZACE VÝKONU AUTOMATIZOVANÉ TESTOVACÍ PLATFORMY ZALOŽENÉ
NA BEAKERLIBU

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE
AUTHOR JAKUB HEGER
AUTOR PRÁCE
SUPERVISOR Mgr. Bc. HANA PLUHÁČKOVÁ
VEDOUCÍ PRÁCE

BRNO 2017

Abstract
The aim of this thesis it to analyze and optimize performance of BeakerLib testing library,
specifically its logging mechanism, which was reported to perform poorly. First part of the
thesis focuses on analysis of given problem, second one describes proposed solutions and
its implementation. In the final part performance testing is carried out to verify success of
implemented solutions. This thesis was written in collaboration with company Red Hat.

Abstrakt
Cílem této práce je analyzovat a optimalizovat výkon testovací knihovny BeakerLib, konkrétně
logovacího mechanizmu, který byl nahlášený jako problematický z hlediska výkonu. První
část práce se zabývá analýzou daného problému, v druhé jsou popsány navržená řešení a
jejich implementace. Na závěr bylo provedeno měření výkonu implmentovaných řešení aby
došlo k ověření úspěšnosti. Tato práce byla řešena ve spolupráci s firmou Red Hat.

Keywords
BeakerLib, Beaker, Bash, Python, performance testing, performance optimization

Klíčová slova
BeakerLib, Beaker, Bash, Python, optimalizace výkonu, testování výkonu

Reference
HEGER, Jakub. Performance Optimization of Testing
Automation Framework Based
on Beakerlib. Brno, 2017. Bachelor’s thesis. Brno University of Technology, Faculty of
Information Technology. Supervisor Pluháčková Hana.

Performance Optimization of Testing
Automation Framework Based
on Beakerlib

Declaration
Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedením paní Mgr.
Bc. Hany Pluháčkové. Další informace mi poskytl Mgr. David Kutálek, Mgr. Aleš Zelinka
a Ing. Dalibor Pospíšil. Uvedl jsem všechny literární prameny a publikace, ze kterých jsem
čerpal.

. .
Jakub Heger

May 18, 2017

Acknowledgements
I would like to thank my technical supervisor Mgr. David Kutálek for his advice with
writing this thesis as well as to Mgr. Bc. Hana Pluháčková for her help.

Furthermore I would like thank my family for continuous support namely to Ing.
Kristýna Streitová and Ing. Tomáš Heger who provided me with technical advice and
more importantly with their moral support.

Contents

1 Introduction 3

2 Relevant projects 4
2.1 BeakerLib . 4
2.2 Beaker . 4

2.2.1 beaker-wizard . 5
2.3 Test Harness . 5

2.3.1 Beah harness . 5
2.3.2 Restraint harness . 5

2.4 Projects’ relation . 5

3 BeakerLib 7
3.1 Important functions . 7
3.2 Phases . 8
3.3 BeakerLib Test . 8
3.4 BeakerLib output . 9

3.4.1 journal.txt . 9
3.4.2 Console output . 10
3.4.3 TESTOUT.log . 11
3.4.4 journal.xml . 11
3.4.5 BeakerLib directory . 12

3.5 Source files . 13
3.6 Analysis of slow performance . 13

4 Solution of Journaling problem 15
4.1 XML parser switch . 15
4.2 Change in calling journalling.py . 16

4.2.1 Queue file solution . 16
4.2.2 Daemon-like solution . 16

5 Implementation of proposed solutions 18
5.1 Change of XML parser . 18
5.2 Queue file solution . 18

5.2.1 Queue file . 19
5.2.2 journal.sh . 19
5.2.3 queued_journalling.py . 20
5.2.4 Problems with implementation . 20

5.3 Daemon-like solution . 21

1

5.3.1 journal.sh . 21
5.3.2 journalling_daemon.py . 22
5.3.3 Signals . 22
5.3.4 Problems with implementation . 23

5.4 Verification of implemented solutions . 23

6 Performance testing 24
6.1 Tests . 24

6.1.1 Artificial tests . 24
6.1.2 Real tests . 25

6.2 Testing Environment . 25
6.2.1 Local . 25
6.2.2 Remote in beaker . 26

6.3 Measured Value . 26

7 Analysis of results 27
7.1 Tests . 27

7.1.1 Test1 . 27
7.1.2 Test2 . 27
7.1.3 Test3 . 27
7.1.4 Test4 . 32
7.1.5 Test5 . 32
7.1.6 Test6 . 32

7.2 Validity of performance testing . 32

8 Conclusion 36

Bibliography 37

Appendices 39
List of Appendices . 40

A Content of enclosed CD 41

B Measured values 42
B.1 Baseline measurements . 42
B.2 Implemented optimizations . 42

B.2.1 lxml parser . 42
B.2.2 Queue file solution with lxml parser 43
B.2.3 Daemon solution with lxml parser 43

2

Chapter 1

Introduction

This thesis was written in collaboration with Red Hat software company and focuses on
a performance optimization of Red Hat BeakerLib library, particularly its Journal feature.
BeakerLib library is an open source shell-level integration testing library written mostly
in Bash with some functionality in Python, which provides many convenience functions
to simplify writing integration and black-box tests and also automates parts of testing
process. One of the key features, uniform logging mechanism called Journal, has been
numerously reported by its users to perform poorly, which motivated this thesis to propose
and implement solution that would solve it.

The thesis is structured in a following way: chapter 2 introduces projects relevant to
BeakerLib and its testing environment. Chapter 3 explains more in-depth how BeakerLib
works, with focus on its Journal feature and analysis of its performance.

In the chapter 4 possible optimizations are discussed and chapter 5 focuses on im-
plementation of proposed solutions. The chapter 6 then describes how performance was
measured and in what environment. Chapter 7 is dedicated to analyzing measured results
of individual implemented optimizations.

Lastly chapter 8 sums up implemented solutions and considers possible future work on
BeakerLib library.

3

Chapter 2

Relevant projects

This chapter describes BeakerLib and projects relevant to it. First of all brief summary of
BeakerLib itself is presented. Next section is devoted to Beaker system and the last section
focuses on test harnesses.

2.1 BeakerLib
BeakerLib is a Linux shell-level integration testing library, providing convenience functions
which simplify writing, running and analysis of integration and blackbox tests[18]. It is
developed and maintained by Red Hat and operates under GNU General Public License.
Main features of BeakerLib include:

∙ Journal - Uniform logging mechanism (logs and results saved in flexible XML format,
easy to compare results and generate reports),

∙ Phases - Logical grouping of test actions, clear separation of setup / test / cleanup,

∙ Asserts - Common checks affecting the overall results of individual phases (checking
for exit codes, file existence and content...),

∙ Helpers - Convenience functions for common operations such as managing system
services, backup and restore of files and more.

BeakerLib was originally developed as a part of Beaker package but since then branched
out as its own project and now is independent on Beaker.

This thesis focuses on BeakerLib Journal feature and problem it causes with long tests.
Which is in more detail described in chapter 3.

2.2 Beaker
Beaker is a full stack software and hardware integration testing system, with the ability to
manage a globally distributed network of test labs[17]. It is Red Hat community project
under GNU General Public License version 2 and is distributed in the form of RPM1

package.
Main functionality includes management of hardware inventory, on which Beaker can

install wide variety of operating systems from Red Hat Linux family. Another notable
1RPM Package Manager

4

part is Task library which contains RPM packages of individual tests which can be run on
provided machines. Users then can specify which hardware they require with which OS2

and tests they want to run on it through either command-line tools or web interface both
of which are part of Beaker install package.

If Beaker meets given criteria in its inventory it installs Test harness to which it gives
list of tests to be run. Test harness installs and executes them while continuously sending
results back to Beaker where they are stored for specified period of time.

2.2.1 beaker-wizard

Beaker-wizard is a flexible, interactive command-line tool that is a part of Beaker RPM
package. It automates creation of BeakerLib tests using predefined or user-defined tem-
plates to create all files that are needed to run BeakerLib test. It also offers integration
with git and Bugzilla, which is a web-based bug tracking system.

For example user can use beaker-wizard with -b option which takes as an argument
bug identifier from Bugzilla. Beaker-wizard creates all the necessary files with properly
set variables in them, to connect newly created test to given bug using the information
beaker-wizard found in the tracker.

All tests created for this thesis were generated by beaker-wizard.

2.3 Test Harness
Test harness is a software framework that automates test execution. It contains tests to be
run, executes them and reports results.

Beaker’s harnesses prepare provided machine for BeakerLib by setting environmental
variables to proper values, and then consecutively execute each test, while continuously
reporting results back. They are integral part of Beaker ecosystem, as they allow user to
run long test sets, which would require much of manual work without harness.

2.3.1 Beah harness

Beah is a Red Hat community project and is a default Beaker harness[16].

2.3.2 Restraint harness

Restraint is an alternative Beaker harness which can, unlike Beah, run with Beaker or
standalone without it[12].

2.4 Projects’ relation
Relation between Beaker, harness and BeakerLib is shown in figure 2.1. In this example
user submits Beaker job containing three tests and hardware/software requirements for a
machine the tests should run on. After Beaker reserves it, it installs operating system and
harness which then successively executes each test and uploads their results back to Beaker
where user can access them.

2Operating System

5

Figure 2.1: Beaker relation to BeakerLib

6

Chapter 3

BeakerLib

This chapter takes a closer look on inner workings of BeakerLib, with focus on Journal
feature and performance issues it suffers from.

3.1 Important functions
As stated earlier, BeakerLib is a shell-level library with functions that are helpful while
writing tests and testing in general. BeakerLib adds testing functions to shell functionality,
so user can combine normal shell commands and constructions with helping functions
which can make writing tests and examining their results easier. There is close to 80 of
these functions (also known as rlCommands), description of most used ones follows:

∙ rlRun() - The first argument of this function is any shell command, which is then
executed by rlRun(). The second parameter is an expected exit code of the first
argument. It can contain one or more codes. The third argument is a comment.
BeakerLib logs FAIL or PASS after executing the command given as the first argument
if the expected exit code differs from the actual one or not respectively along with the
comment given as the third argument. This is the most used and the most important
function.

∙ rlPass() - Manual assertion and logging of PASS. Useful when in combination with
an if statement which user doesn’t want to appear in logs but still wants to log its
result. Reciprocal function rlFail() exists as well.

∙ rlAssertExists - Asserts whether file given as a first argument exists.

∙ rlAssertGrep() - Function logs PASS when pattern given as first argument finds a
match in a file which is given a second argument. Optional flags are passed to grep
and behave the same way.

∙ rlAssertRpm() - Function asserts PASS when package given as first argument is in-
stalled. Optional arguments allow specifying particular version, release or arch of the
package.

∙ rlAssertDiffer() - Asserts whether two files given as arguments differ in their con-
tent.

7

∙ rlJournalStart() - This function is used at the start of each test. It is essential for
proper run of the test as it initializes BeakerLib outputs, which is described later in
this chapter. Reciprocal function rlJournalEnd() must be called at the end of the
test.

∙ rlPhaseStart() - This function starts user-defined phase. Function takes two argu-
ments, first one is a type of phase, second one is a name. Phase must be ended by
calling rlPhaseEnd(). Phases are more closely explained in the next section.

3.2 Phases
BeakerLib divides tests into logical groups called Phases. There are three predefined types
of phases:

∙ Setup - Preparing conditions for the test (such as creating temporary files, starting
needed system services and more), started by calling rlPhaseStartSetup(),

∙ Test - Main phase for testing, started by calling rlPhaseStartTest(),

∙ Cleanup - Reverting changes made by the test, started by calling
rlPhaseStartCleanup().

Apart from predefined phases, user can also define own phases by calling rlPhaseStart()
function. First argument of the function is one of two types phase can have:

∙ WARN - If any rlCommand in phase of this type fails, whole phase will result in
Warning state,

∙ FAIL - Similar to previous type however this time resulting in Failed state.

Basic phases Setup and Cleanup are WARN type, Test phase is a FAIL type.
The result of the whole test is the same as the worst result of any phase in the order:

Failed, Warning, Passed. Asserts must not be used outside of phases, if such case occurs, a
new phase is opened, its result is set to FAIL, then the stray assert is added into the new
phase and then the phase closes.

This division helps with examining the result of test as it shows which phase, if any,
causes fail in BeakerLib output.

3.3 BeakerLib Test
BeakerLib test is a Bash script which at the start of its run sources BeakerLib environment
by using file beakerlib.sh which is described later in this chapter. Then it can run regular
Bash functions as well as rlCommands. If the test is supposed to run in Beaker or other
related project, 3 files must exist:

∙ runtest.sh - Script containing the test,

∙ PURPOSE - Plain text file with description of what the test does, it is included in
BeakerLib output which is discussed in one of the following sections,

∙ Makefile - Makefile with instructions how to execute the test, its type and other
information used by Beaker or other projects.

8

Example test 3.1 shows how basic BeakerLib test looks.
1 # Include Beaker environment
2 . /usr/bin/rhts - environment .sh || exit 1
3 . /usr/ share / beakerlib / beakerlib .sh || exit 1
4
5 PACKAGE = beakerlib
6 # Start of Journal
7 rlJournalStart
8 # Start of Setup Phase , creating temp directory where test will take place
9 rlPhaseStartSetup

10 rlAssertRpm $PACKAGE
11 rlRun " TmpDir =\$(mktemp -d)" 0 " Creating tmp directory "
12 rlRun " pushd $TmpDir "
13 rlPhaseEnd
14 # Start of Test Phase , testing touch and ls commands
15 rlPhaseStartTest
16 rlRun " touch foo" 0 " Creating the foo test file"
17 rlAssertExists "foo"
18 rlRun "ls -l foo" 0 " Listing the foo test file"
19 rlPhaseEnd
20 # Statr of Cleanup phase , temp directory is deleted
21 rlPhaseStartCleanup
22 rlRun "popd"
23 rlRun "rm -r $TmpDir " 0 " Removing tmp directory "
24 rlPhaseEnd
25 rlJournalPrint
26 rlJournalEnd

Listing 3.1: Example of basic BeakerLib test

3.4 BeakerLib output
BeakerLib produces three kinds of outputs. Two file formats and a console output in case
of local testing or three file formats when testing remotely.

3.4.1 journal.txt

journal.txt is a plain text file with human readable record of test progress. After end of
each phase, copy of the file is sent to Beaker for storage. Snippet of journal.txt generated
by Example test 3.1 is shown in 3.2.

9

1 ::
2 :: [LOG] :: Setup
3 ::
4 :: [PASS] :: Checking for the presence of beakerlib rpm
5 :: [LOG] :: Package versions :
6 :: [LOG] :: beakerlib -1.15 -1. fc25. noarch
7 :: [PASS] :: Creating tmp directory (Expected 0, got 0)
8 :: [PASS] :: Command ’pushd /tmp/tmp .3 iXfiT4GiR ’ (Expected 0, got 0)
9 :: [LOG] :: Duration : 1s

10 :: [LOG] :: Assertions : 3 good , 0 bad
11 :: [PASS] :: RESULT : Setup
12 ::
13 :: [LOG] :: Test
14 ::
15 :: [PASS] :: Creating the foo test file (Expected 0, got 0)
16 :: [PASS] :: File foo should exist
17 :: [PASS] :: Listing the foo test file (Expected 0, got 0)
18 :: [LOG] :: Duration : 0s
19 :: [LOG] :: Assertions : 3 good , 0 bad
20 :: [PASS] :: RESULT : Test
21 ::
22 :: [LOG] :: Cleanup
23 ::
24 :: [PASS] :: Command ’popd ’ (Expected 0, got 0)
25 :: [PASS] :: Removing tmp directory (Expected 0, got 0)
26 :: [LOG] :: Duration : 0s
27 :: [LOG] :: Assertions : 2 good , 0 bad
28 :: [PASS] :: RESULT : Cleanup
29 ::
30 :: [LOG] :: / performance / beakerlib / Performance / example_test
31 ::
32 :: [LOG] :: Phases : 3 good , 0 bad
33 :: [PASS] :: RESULT : / performance / beakerlib / Performance / example_test

Listing 3.2: Example of journal.txt

3.4.2 Console output

If the executed test is connected to an interactive shell similar, human-readable, output
to the journal.txt is also printed to the standard output (stdout). Apart from content
of journal.txt, console output is complemented by the output generated from executed
command. Also the shell output is colored for increased readability. Figure 3.1 shows
snippet of such output.

Figure 3.1: Snippet from console output

10

3.4.3 TESTOUT.log

If the executed test is not connected to an interactive shell, the same text generated for
console output is printed into the file TESTOUT.log. This is mostly the case when executing
a test remotely (in Beaker for example), where it is not possible to see the console output.

3.4.4 journal.xml

Last output is an XML1 file. XML is a markup language, designed to store and transport
data[19].

journal.xml is stripped off of executed commands’ own output, but core information
(such as which commands were executed, whether they passed or failed and so on) is
kept. Also metadata about the test run (time of execution, which component was tested
and more) as well as information about the what hardware and software was used to run
the test, are added. journal.xml is sent back to Beaker same as journal.txt where the are
available for further processing by automated tools. It also serves as a source of information
about current state of the test during its execution, for example whether there is currently
an open phase or how many failed tests or phases there are so far. Example of journal.xml
generated by Example test 3.1 is shown in 3.3.

1eXtensible Markup Language

11

1 <?xml v e r s i o n ="1.0" ?>
2 <BEAKER_TEST>
3 <package>b e a k e r l i b</ package>
4 <p k g d e t a i l s sourcerpm=" b e a k e r l i b −1.15−1. f c 2 5 . s r c . rpm ">
5 b e a k e r l i b −1.15−1. f c 2 5 . noarch </ p k g d e t a i l s>
6 <beakerlib_rpm>b e a k e r l i b −1.15−1. f c 2 5</ beakerlib_rpm>
7 <beakerlib_redhat_rpm>b e a k e r l i b −redhat −1−6. f c 1 6</ beakerlib_redhat_rpm>
8 <s t a r t t i m e>2017−05−15 0 9 : 4 7 : 4 4 CEST</ s t a r t t i m e>
9 <endtime>2017−05−15 0 9 : 4 7 : 4 5 CEST</ endtime>

10 <testname>/ performance / b e a k e r l i b / Performance / example_test</ testname>
11 <r e l e a s e>Fedora r e l e a s e 25 (Twenty Five)</ r e l e a s e>
12 <hostname>l o c a l h o s t . loca ldomain</ hostname>
13 <arch>x86_64</ arch>
14 <hw_cpu>4 x I n t e l (R) Core (TM) i7 −6600U CPU @ 2 . 6 0GHz</hw_cpu>
15 <hw_ram>19496 MB</hw_ram>
16 <hw_hdd>4 5 9 . 8 GB</hw_hdd>
17 <purpose>PURPOSE o f / performance / b e a k e r l i b / Performance / example_test
18 D e s c r i p t i o n : example t e s t c r e a t e d by beaker−wizard
19 Author : Jakub Heger &l t ; jheger@redhat . com> ;
20 </ purpose>
21 <l o g>
22 <phase endtime=" 2017−05−15 0 9 : 4 7 : 4 5 CEST" name=" Setup " r e s u l t="PASS"
23 s c o r e=" 0 " s t a r t t i m e=" 2017−05−15 0 9 : 4 7 : 4 4 CEST" type="WARN">
24 <p k g d e t a i l s sourcerpm=" b e a k e r l i b −1.15−1. f c 2 5 . s r c . rpm ">
25 b e a k e r l i b −1.15−1. f c 2 5 . noarch </ p k g d e t a i l s>
26 <t e s t message=" Checking f o r the p r e s e n c e o f b e a k e r l i b rpm ">PASS</ t e s t>
27 <message s e v e r i t y="LOG">Package v e r s i o n s :</ message>
28 <message s e v e r i t y="LOG"> b e a k e r l i b −1.15−1. f c 2 5 . noarch</ message>
29 <t e s t command=" TmpDir=$ (mktemp −d) "
30 message=" Creat ing tmp d i r e c t o r y (Expected 0 , got 0) ">
31 PASS</ t e s t>
32 <t e s t command=" pushd /tmp/tmp . 3 iXfiT4GiR "
33 message="Command ’ pushd /tmp/tmp . 3 iXfiT4GiR ’ (Expected 0 , got 0) ">PASS</ t e s t>
34 </ phase>
35 <phase endtime=" 2017−05−15 0 9 : 4 7 : 4 5 CEST" name=" Test " r e s u l t="PASS" s c o r e=" 0 "
36 s t a r t t i m e=" 2017−05−15 0 9 : 4 7 : 4 5 CEST" type=" FAIL ">
37 <p k g d e t a i l s sourcerpm=" b e a k e r l i b −1.15−1. f c 2 5 . s r c . rpm ">
38 b e a k e r l i b −1.15−1. f c 2 5 . noarch </ p k g d e t a i l s>
39 <t e s t command=" touch f o o " message=" Creat ing the f o o t e s t f i l e (Expected 0 , got 0) ">
40 PASS</ t e s t>
41 <t e s t message=" F i l e f o o should e x i s t ">PASS</ t e s t>
42 <t e s t command=" l s − l f o o " message=" L i s t i n g the f o o t e s t f i l e (Expected 0 , got 0) ">
43 PASS</ t e s t>
44 </ phase>
45 <phase endtime=" 201−05−16 0 9 : 4 7 : 4 5 CEST" name=" Cleanup " r e s u l t="PASS" s c o r e=" 0 "
46 s t a r t t i m e=" 2017−05−15 0 9 : 4 7 : 4 5 CEST" type="WARN">
47 <p k g d e t a i l s sourcerpm=" b e a k e r l i b −1.15−1. f c 2 5 . s r c . rpm ">
48 b e a k e r l i b −1.15−1. f c 2 5 . noarch </ p k g d e t a i l s>
49 <t e s t command=" popd " message="Command ’ popd ’ (Expected 0 , got 0) ">PASS</ t e s t>
50 <t e s t command="rm −r /tmp/tmp . 3 iXfiT4GiR "
51 message=" Removing tmp d i r e c t o r y (Expected 0 , got 0) ">PASS</ t e s t>
52 </ phase>
53 <message s e v e r i t y="LOG">JOURNAL XML: / var /tmp/ b e a k e r l i b −dI2ochw / j o u r n a l . xml</ message>
54 <message s e v e r i t y="LOG">JOURNAL TXT: / var /tmp/ b e a k e r l i b −dI2ochw / j o u r n a l . t x t</ message>
55 </ l o g>
56 </BEAKER_TEST>

Listing 3.3: Example of journal.xml

3.4.5 BeakerLib directory

Described files are saved into a BeakerLib test directory created for each individual test.
If the test is run locally, temporary directory is created on system with mktemp com-

mand, which creates pseudo-random name.
If run on Beaker a unique TESTID is generated for each test. This ID serves as a

name for test directory as well as an identifier which Beaker later uses when connecting test
results with correct test. It is also important in case when restart is a regular part of a test.
Upon restarting the test machine the same TESTIDs are relayed from Beaker to harness
with information which tests were already run. Harness then continues with execution of
unfinished tests, starting with test that caused the restart, in the same BeakerLib directory
the test before, where there are partial results of the test, so it can continue where it left
off.

12

3.5 Source files
This section describes a few of BeakerLib source files, relevant to this thesis.

∙ beakerlib.sh - Starting point of every BeakerLib test. It is sourced at the beginning
of each test and in turn sources all other BeakerLib files.

∙ testing.sh - Contains definitions of the most used rlCommands as well as some internal
functions.

∙ journal.sh - Provides Bash-side Journaling functionality. Functions from this file
process information about what to log and relay them to journalling.py (with rlj
prefix) or query the journal.xml to obtain information about the current state of the
test(with standard rl prefix).

∙ journalling.py - Python script responsible for creating most of BeakerLib outputs. It
creates and modifies journal.xml file.

∙ logging.sh - Complements journalling.py in creating console output by printing output
produced by commands called with lRun().

3.6 Analysis of slow performance
It was reported that BeakerLib suffers performance problems when running long tests. Time
of processing of each rlCommand grew longer after many (several hundreds and more) were
used. Analysis of library was problematic due to lack of documentation, complex structure
and uncommented code, however thorough investigation of the source code indicated that
problem lies with generating journal.xml.

Script journalling.py is called after each rlCommand to log its result into journal.xml.
This is not big problem with small tests as the journal.xml file takes up only a few kilobytes,
however when the file takes up dozens or hundreds of kilobytes, repeated loading the file from
disk, parsing, adding a line of log and then saving the file back to the disk adds significantly
more load to CPU2. Running larger tests therefore becomes quite time consuming and
considerably slows down testing as a whole. This has been determined as the main focus
of the thesis since it probably is the most significant performance bottleneck. Influence of
used harness was thought to be negligible and won’t be focused on in this thesis.

Figure 3.2 illustrates simplified version of how rlRun() propagates through different
functions from BeakerLib files (which are sourced at the time test execution, depicted by
rounded rectangles) and how it is logged into the Journal. Figure also partially reveals
complicated environment of BeakerLib, where every rlCommand is processed by many
internal functions, making understanding and developing BeakerLib problematic.

The next chapter describes proposed solutions to analyzed problem with their pros and
cons.

2Central Processing Unit

13

Figure 3.2: Logging of rlRun to Journal

14

Chapter 4

Solution of Journaling problem

Sections in this chapter provide possible solutions to the Journaling problem. Besides
explaining the principle of each solution, the sections also discuss their advantages, disad-
vantages and potential issues.

4.1 XML parser switch
XML parser is a program which can turn XML document into structured object in RAM1.
Depending on implementation of the parser, that object is then easier to access by the
program as it may provide methods to navigate the object and search it or potentially
modify.

Parsing of XML in BeakerLib is performed by journalling.py script by Python module
xml.dom.minidom[14].

xml.dom.minidom is a native part of Python from version 2.0 and provides minimal
implementation of the DOM2 interface, with an API3 similar to that in other languages.

I decided to change parser to different one, to measure whether it will provide better
performance. Because of reasons of backward compatibility with RHEL 54 which needs to
be supported by BeakerLib, the choice of XML parsers was limited to modules present in
Python 2.4.3 installed in RHEL 5. Two additional XML parsers were present in mentioned
RHEL package.

∙ lxml - The lxml XML toolkit is a pythonic binding for the C libraries libxml2 and
libxslt. It combines the speed and XML feature completeness of these libraries with
the simplicity of a native Python API[2].
It works similarly to xml.dom.minidom in the way that when reading XML object
from a file, it reads it whole, builds an object out of it and provides methods for the
object to allow access to it.

∙ xml.sax [15] - xml.sax originated as a parser for Java[4]. In Python it was released
with version 2.0. It differs from xml.dom.minidom and lxml where the two mentioned
parsers work with a whole XML file, xml.sax emits events as it goes step by step
through the file[13]. Using this approach means less memory has to be allocated for

1Random Access Memory
2Document Object Model
3Application Programming Interface
4Red Hat Enterprise Linux 5

15

XML handling and therefore makes it ideal when working with very large amount of
XML data.

I decided to implement lxml parser as it is supposed to be faster and less demanding
on memory than xml.dom.minidom[3], while keeping its intuitive interface. Also sizes of
journal.xml do not approach sizes that would benefit

4.2 Change in calling journalling.py
Next proposition to make BeakerLib faster is in a way journalling.py is called. The assump-
tion being that repeated parsing of XML document slows BeakerLib the most, reducing the
number of times it was parsed was then the highest priority.

4.2.1 Queue file solution

First solution is to create a new, temporary queue file, which will act as a kind of buffer.
rlCommands will behave as before apart from creating BeakerLib journals, but instead
they will write message into the queue file. This file will be read and processed only when
necessary, that is at the end each phase, when journals are sent to Beaker.

Disadvantages

The way BeakerLib is designed now it in most cases expects some form of return value
from journalling.py immediately after adding a log to a journal. Performed logging either
returns code indicating success of failure or string with information about the current
state of test. This presents problem as there is no way how to communicate back these
information when parsing is postponed.

4.2.2 Daemon-like solution

Second solution is to rewrite journalling.py script to have daemon-like behavior.
Daemons in Unix are long-running background processes that answers requests for

services[9].
This solution will run XML parser as a separate background process for each test. The

XML object will be stored in memory, and parsed as whole only at the beginning of journal
creation and in case of restarting the test run.

This way BeakerLib can receive response about current test state immediately while
still keeping CPU load minimal. Daemon-like solution however brings different obstacles.

Disadvantages

An independent, potentially long running process daemon is more vulnerable to unplanned
events such as unexpected exit. This must be addressed by both daemon (to exit as safely
as possible) and by the rest of BeakerLib (to detect that daemon is no longer running and
to behave accordingly).

16

Communication

Inter-process communication between running test and daemon has to be created for test
to inform which rlCommand is supposed to be logged and for daemon to respond with
current state of XML document. This two-way communication must be synchronous to
assure BeakerLib and daemon process their respective messages in correct order. Following
options were considered:

∙ Unix sockets - Sockets have file-like and mostly are known for their usage in network
protocols, however Unix domain sockets, which operate on similar principle as network
ones, can be used for inter-process communication.

∙ named pipes - Named pipes are device files. They allow inter-process communication
by reading it and writing into is as if regular file, however under normal circumstances
the read/write is a blocking operation[6]. This means if one process opens pipe for
reading, it will hang there until another process opens the pipe for writing. This
feature can be used for synchronization of communication between processes.

I chose to implement communication through named pipes because synchronization
issue is taken care of because of the way named pipes are designed.

17

Chapter 5

Implementation of proposed
solutions

This chapter describes how the proposed solutions were implemented. Each solution has its
own section that describes implementation details and obstacles that were found and had
to be solved during the implementation. During changing of parsers I discovered and fixed
few bugs present in current implementation of journalling.py.

5.1 Change of XML parser
As mentioned before I chose to change original XML parser to lxml. Only changes in source
code were in file journalling.py as it is only part of BeakerLib that directly works with XML
object, which represents Journal. Most of the changes were in xml.dom.minidom method for
creating new XML element and assigning value into it. The biggest difference between given
parsers is that lxml does not provide as many helping methods as xml.dom.minidom does.
For example in lxml there is no method getElementsByTagName() to search XML object
by a tag name. Instead lxml supports xpath[20] syntax for searching the object. xpath1 is
part of XSLT2 standard. It can be used to navigate through elements and attributes in an
XML document.

Another example of difference is an approach for accessing element children. While
xml.dom.minidom has dedicated methods and attributes such as hasChildNodes() which
returns bool value or childNodes which is an iterable attribute of children of called el-
ement, lxml has more low level implementation. It treats elements as Python lists so
hasChildNodes() can be replaced with simple len(element) != 0.

Because preliminary performance measurement showed faster test execution with lxml,
it was decided to implement the rest of the proposed solutions with this parser.

5.2 Queue file solution
This section deals with implementation of queue file solution. It is divided into subsections
that discuss files I designed or changed during implementation.

1XML Path Language
2eXtensible Stylesheet Language Transformations

18

5.2.1 Queue file

Queue file was designed in a way so it was simple to implement, in a human readable format
for potential test debugging and easy to extend by new, future functions that will work with
it. It is a plain text file, each line containing one buffered message for Python script to
process later, on demand. Messages are kept in the same format as original solution uses for
calling journalling.py to preserve consistency with the exception that they are now escaped,
which is described in section.

5.2.2 journal.sh

Creation of queue file, by using touch command, was added to function rlJournalStart()
which initializes Journaling functionality. Using touch assures that if the queue file already
exists (which happens when test run is interrupted and started again), its content is not
deleted (in case of restart of the testing machine as described in section 3.4.5).

It now also exports new variable BEAKERLIB_QUEUE, with path to queue file, into the
test environment so Python script queued_journalling.py, can later access it.

Original calling of journalling.py script, which is a main functionality of journal.sh, was
replaced in one of two ways:

∙ Delayed calling - New function rljPrintToQueue() takes all arguments that were
originally meant for journalling.py and instead prints them into the queue file, where
it will be processed by queued_journalling.py later during execution of the test. This
concerns functions which do not necessarily require response about current test state
from journal.xml. In original solution responses to these functions were only exit
codes which they did not utilize in any way or if they did theirs functionality was
re-implemented. Namely functions that use delayed calling are: rlJournalPrint(),
rljAddTest(), rljAddMetric(), rljAddMessage(), rljRpmLog()

∙ Immediate calling of queued_journalling.py - Essentially the same as the original
solution. These functions require immediate response. Using this way of calling won’t
save on any CPU load (in fact the load will be slightly higher than before because of
operations related to queue file processing), however in typical BeakerLib test these
functions are in minority compared to previous type of calling. Functions and the
response they require are:

– rlJournalStart() - requires confirmation that journal was initiated success-
fully,

– rlJournalPrintText() - requires journal.txt which is generated from current
journal.xml,

– rlGetTestState() - requires number of failed asserts in the test so far,
– rlGetPhaseState() - requires number of failed phases in the test so far,
– rljAddPhase() - requires immediate print of name of the new phase to console

output,
– rljClosePhase() - requires result of closed phase, to send it to Beaker along

with Journal,
– rlJournalEnd() - requires immediate print of journal.txt which is generated

from journal.xml.

19

Function rljAddTest() is the cause of the most calls of journalling.py in original so-
lution, therefore had the highest need to be moved into group of functions with Delayed
calling. However it does require knowledge of current state of the test. That being situation
when Assert (rlCommand using rljAddTest() for Journaling) is used outside of a phase,
such information is held only in current journal.xml. To solve this problem functionality
of rljAddTest() had to moved into queued_journalling.py script, discussed in the next
subsection.

Apart from printing to queue file, rljPrintToQueue() also has to escape given ar-
guments. This needs to be done because firstly some of the arguments originating from
user may contain newline character which would break the”one queued command per line“
rule in format of queue file and secondly so queued_journalling.py may process it with
optparse module. Escaping is done with printf Bash builtin[1], specifically its %q option
which causes printf to output in shell-quoted format.

5.2.3 queued_journalling.py

File queued_journalling.py originated from journalling.py but it differs in several ways.
Now when it is called, it first parses current journal.xml and then calls new method

updateXML() with parsed XML object as an argument. This method opens queue file and
finds last line it accessed in previous call. From there it reads queued lines, parses each
with Python module optparse and modifies the XML object accordingly, in the similar
way it did originally, this time however without parsing journal.xml each time as the XML
object is passed as an argument to appropriate methods.

When it reaches end of file, it makes a mark (by adding a line at the end of the queue
file with a number already processed lines) for future readings and returns to the original
call, coming from one of the journal.sh Immediate calling functions. After modification
from that function it generates response and returns it to journal.sh.

Exceptions to this behavior are:

∙ rlJournalStart() - This function doesn’t access queue file but only initializes XML
object and returns an exit code whose value depends on whether the initialization
was successful,

∙ rlJournalEnd() - This one makes sure every queued command was processed as it
is an exit point from the test and so last opportunity to modify journal.xml.

As mentioned in previous subsection, functionality of rljAddTest() had to be altered.
Given that Bash side of BeakerLib had no way of knowing if the test was added outside of
phase at the time of writing this operation into the queue file, this action had to be resolved
when queued_journalling.py processed the queue file. New method testOutOfPhase() was
implemented which is called when assertion outside of phase is detected and it performs
the same process as when this event happened in original journal.sh, described in chapter
3 in section Phases.

5.2.4 Problems with implementation

Main goal of this solution was to reduce number of times journal.xml is parsed, by delaying
as many Journaling operations as possible, while keeping BeakerLib outputs the same. The
way BeakerLib is designed now it is not possible, because some information is always lost
when operations are delayed. In case of this implementation I was able to keep journal.xml,

20

and therefore journal.txt as well, the same as with original solution, however at the price of
console output (therefore TESTOUT.log one too as it is console output printed to file) which
is now missing all information usually given by functions from Delayed calling category.
Only complementary output created by functions from logging.sh remain.

Solving this issue would require more extensive changes to BeakerLib design which I
decided not to implement for now so Queue file solution remains only as a proof of concept.

5.3 Daemon-like solution
This section describes individual changes made to BeakerLib design in order to implement
Daemon-like solution.

5.3.1 journal.sh

Function rlJournalStart() in this implementation creates named pipe using mkfifo and
then exports its path into environment. Then it spawns daemon_journalling.py process
in the background with & operator and stores its PID3 into variable.

Every call of journalling.py in original implementation was replaced with new function
rljCallDaemon(), which takes the same arguments as original function. When this new
function is called it firstly escapes given arguments using similar way as in queue file, this
time however another function had to be created. rljCallDaemon() passes its argument
to the function escapeArguments() which uses printf and echo Bash builtins to escape
arguments in loop which are then caught back in rljCallDaemon() with $() construct[5] for
catching output. It is implemented this way to avoid using temporary file.After arguments
are escaped, rljCallDaemon() checks whether the daemon is still running with kill -0
$DAEMON_PID call.

kill program is used to send signals to processes. If used with -0 option, no signal is
actually sent but error checking against the process is still performed and it returns 0 when
process with given PID is running[8]. This is done to make sure the daemon is still running
before pipe writing operation. If the daemon wasn’t running before writing to pipe, the test
would hang there indefinitely, so if the daemon is not running, the test exits with error.

After this check is performed, rljCallDaemon() writes to named pipe escaped message,
where it waits until daemon reads it and responds. Response is read as a next action,
decoded from a format that will be discussed in the next subsection and then the response
is returned to function that called rljCallDaemon(). This is repeated until end of the test
is reached, where function rljJournalEnd() sends signal with kill to end the daemon.

Function rlJournalPrintText() had to be reworked slightly. This function generates
journal.txt output from journal.xml and has two main usages:

∙ It is a standard part of BeakerLib test where it is called directly right before test ends
by calling rlJournalEnd(). It prints journal.txt to stdout if the test is connected to
interactive shell.

∙ It is used by internal functions during test execution to continuously generate partial
journal.txt files and send them back to Beaker if using Beaker and harness or storing
them to disk when no harness is used.

3Process identifier

21

Reworked function now accepts one optional argument and passes it to rljCallDaemon()
and it was added to all currently implemented BeakerLib functions that call
rlJournalPrintText(). In original solution there was a simple way how to have
journalling.py print either to stdout or to catch the same output into variable using $()
construct or redirecting it to a file, because each call of journalling.py was a separate process
whose output could be controlled. When using daemon however, this is no longer possible,
either all output would be caught or none at all. A way how to differentiate which jour-
nalling.py output is supposed to be printed to stdout and which is supposed to be returned
to journal.sh through named pipe had to be implemented. Functions that need to catch the
output from daemon now use rlJournalPrintText() with the optional argument. How it
affects daemon_journalling.py is described in next subsection. Currently unused function
rlJournalPrint() was reworked is the same way.

5.3.2 journalling_daemon.py

journalling_daemon.py script again originates from journalling.py. This time however, it
is designed to run in endless loop, instead of returning after one executed action.

Before the daemon enters the endless loop, it performs checks whether environment is
prepared for it (whether named pipe exists or it can access PID of the test). Only if all
checks are successfully verified it enters the loop, otherwise exits with error.

In each iteration it checks whether test process is still running analogously to how
rljCallDaemon() does it. Then it reads the named pipe and waits there until
rljCallDaemon() writes to it. After message is read, method parseAndProcess() is called
and it parses the message and acts upon it.

If the message received comes from rlJournalStart() the XML object is initialized
and stored in global variable jrnl so it its accessible to all other methods that use the
XML object.

As was stated in previous subsection, change in outputting behavior had to be imple-
mented. When optional argument toVar is detected all functions related to printing instead
of print function store their respective outputs in variables. These are gradually appended
to each other and at the end of all printing they are instead returned through named pipe
back to journal.sh where individual functions can catch them.

Any other message call the same methods as in original implementation with the dif-
ference which is that now the methods use the global jrnl.

When a message is processed, parseAndProcess() must encode the response, because
original implementation was able to respond with either return code or string and this
solution is only able to respond with string. Simple format message:X-code:Y, where X is
replace with string and Y with return code, was implemented which is quickly decoded
by rljCallDaemon() using Regular expression[7].

5.3.3 Signals

Signals are asynchronous interrupts that are used for inter-process communication. Sig-
nals are usually used by the operating system to notify processes that some event has
occurred[11]. For example when operating system plans to reboot, it sends signal to all
running processes to inform them that reboot will take place. rlJournalEnd() in daemon-
like solution sends signal SIGTERM to end daemon_journalling.py process where it is caught
and handled by signal handler implemented in daemon.

22

Signal handlers are functions that are called when program receives signal to handle the
event properly. In daemon solution Signal handlers were added to both daemon and Bash
side of BeakerLib.

In daemon_journalling.py method signalHandler() was created. It is set to han-
dle most common signals, that would cause it to exit improperly. When such signal is
received, daemon interrupts what is currently doing and through signalHandler() calls
saveAndExit() method which saves current state of XML object to disk and exits.

journal.sh uses trap command to catch signals. Upon receiving signal it kills daemon
to always make sure that daemon will not stay running in the background after test is
unexpectedly ended.

5.3.4 Problems with implementation

Using background processes with blocking operations is a rather volatile solution. In a
case of some unanticipated event it may happen one side or the other may be hung up
on blocking operation with no process to unblock it, even though Signal handlers were
implemented to lower the chance of such a situation to happen.

During testing of this solution such behavior was not reproduced. However testing
on much larger scale, including different operating systems, CPU architectures and other
testing conditions, would have be concluded to confirm it is unlikely such event could occur.

5.4 Verification of implemented solutions
Verification that implemented optimizations didn’t cause regression, was directed on jour-
nal.xml as it is a main focus point of this thesis. Due to its nature automated verification
was problematic to implement, because two journal.xml files generated from one test may
differ in many ways while both still being valid (they may differentiate in such information
as time of execution, hardware/software specifications or even in reported results, as test
could pass or fail independently on BeakerLib implementation).

Because of this reasons only manual verification took place, which results were deemed
to be acceptable.

23

Chapter 6

Performance testing

This chapter briefly explains what performance testing is. Then it describes what tests and
in which environments were used to measure performance of BeakerLib before and after
optimizations were implemented.

Performance testing is a type of non-functional testing, that is testing whose goal is
to test quality characteristics of a component, rather than its functionality[10].

For performance testing of BeakerLib two kinds of tests were chosen to run, in two kinds
of testing environments. They are described in following sections.

6.1 Tests
This section describes which tests were chosen to measure performance of implemented
solutions to BeakerLib Journaling problem.

6.1.1 Artificial tests

First type of tests are artificial tests created by beaker-wizard tool to specifically target
and measure performance of Journaling modifications this thesis proposes. They consist
mostly of rlCommands that directly work with journalling.py (or its variants of implemented
modifications), for example commands rlLog() or rlPhaseStart() and rlPhaseEnd().
This way we can observe clear difference in performance without being affected by opera-
tions unrelated to Journaling (executing actions that verify functionality of components in
real tests). Each test is briefly summarized and it is estimated how will which implemen-
tation manage running it.

∙ Test1 - Test used as and example 3.1. It is a very short test and for which pro-
posed solutions were not aimed therefore increase in performance with this test is not
expected. Test contains 17 rlCommands.

∙ Test2 - Test contains 1000 calls of function rlLog() divided into 3 phases. This
function requires very little overhead and so its results represent direct performance
difference caused by implementations however they do not represent performance
difference when running typical BeakerLib test. Test contains 1014 rlCommands.
Implementations using queue file and daemon one are expected to perform well on
this test.

24

∙ Test3 - Test consists of 500 calls functions of rlPhaseStartTest() and rlPhaseEnd().
Even thought it has the same length as Test2, this test is expected to run longer
because phase controlling rlCommands have larger overhead when working with jour-
nal.xml. Test contains 1014 rlCommands. Daemon is predicted to have the best
results while queue file solution may perform as badly as original implementation.

∙ Test4 - Test comprises of 500 phases with a few typical rlComands inside them. This
test resembles typical BeakerLib the most out of all artificial ones and is longest as
well. Test contains 3013 rlCommands. This test should be run quickly with daemon
solution.

These tests are included in Appendix A in directory tests.

6.1.2 Real tests

Second type are examples of real tests used in Red Hat. Finding such tests was problematic
because real tests are often written specifically for particular hardware or software and
behave differently under different circumstances. The challenge then was not only to find
long running tests but most importantly tests that all have the same behavior on one specific
remote machine as well as on local machine used for testing. However at least minimal
testing has to be performed to measure whether modifications have an effect outside of
controlled environment.

∙ Test1 - This is a regression test for component sos which is a data collection tool. It
checks whether all expected data are in fact collected. Test contains 610 rlCommands
but big part of it is done without rlCommands with regular commands and only
results of those are logged with rlCommands.

∙ Test2 - This is a install test for maven component, which is a project management and
comprehension tool. It is used to test whether maven can be installed. Test contains
1026 rlCommands.

These tests are not included in Appendix as they are property of Red Hat.

6.2 Testing Environment
This section specifies on which environments were previously described tests run. The
choice of environment is important to properly measure performance, as it may directly
influence measured data.

6.2.1 Local

First environment is local laptop for convenience and speed of execution. It can provide
estimates of performance changes, however only remote testing is conclusive. Tests were
run directly, without any harness and with these technical specifications:

Model Lenovo T460s
CPU 4 cores Intel(R) i7-6600U, 2.60GHz
CPU architecture x86_64
RAM 19496 MB
Operating System Fedora release 25

25

6.2.2 Remote in beaker

Second round of testing was done to emulate real testing conditions and to verify that
changes made to BeakerLib do not break functionality outside of controlled environment.
Tests were run using the default test harness Beah. Technical specification tests were run
on follow:

CPU 1 core Intel(R) Xeon, 2.10GHz
CPU architecture x86_64
RAM 2847 MB
Operating System Red Hat Enterprise Linux Server 7.3

6.3 Measured Value
Goal of this thesis was to optimize performance in regards to time of execution, so that is
only the value that was measured. Values were obtained from journal.xml which has builtin
mechanisms to track how long took the execution of the test, with precision of one second,
which should be sufficient for needs of this measurement

26

Chapter 7

Analysis of results

This chapter compares measured values of executed tests under individual implementations
and analyzes why they are that way. Each test described in previous chapter was run
15 times with each implementation in both devised environments. Measured results were
averaged and rounded to precision of one decimal place. Complete data set is located in
Appendix B.

7.1 Tests
This sections analyzes measured results of individual tests. Each subsection is dedicated
to a single test and it shows how the test performed on different implementations. Mostly
only results from remote testing are shown as they are more important for this thesis.

7.1.1 Test1

As expected Test1 didn’t reveal difference in performance, because drawbacks of original
implementation become apparent only when journal.sh reach certain size. Results can be
seen in figure 7.1.

7.1.2 Test2

Test2 indicates big performance improvement when using queue file or daemon, however
as discussed in section 6.1, this test may show big improvement in performance but will
not necessarily be reflected in actual test runs. Queue file solution was able to achieve
such speed because the test contained minimal number operation that required immediate
interaction with journal.sh file which would be highly atypical for real test. Results are
depicted in figure 7.2.

7.1.3 Test3

Test3 behaved in surprising manner. Slow performance of first three implementation was
foreseeable, because this test is comprised of rlCommands constantly accessing journal.xml.
This problem was expected to be solved by daemon implementation however it performed
almost as bad as other implementations as shown in figure 7.3. Even stranger is that when
tested locally it performed as expected which can be seen in figure 7.4. Explanation of this
behavior was not fully understood at the time of writing this thesis.

27

Figure 7.1: Test 1 results from remote testing

28

Figure 7.2: Test 2 results from remote testing

29

Figure 7.3: Test 3 results from remote testing

30

Figure 7.4: Test 3 results from local testing

31

Figure 7.5: Test 4 results from remote testing

7.1.4 Test4

Test4 performed predicted. High number of phases slowed down queue solution, which
doesn’t present obstacles to daemon, so it could perform better. Results are illustrated in
figure 7.5.

7.1.5 Test5

First real test behaved is similar manner as Test4, slight improvements with each imple-
mentation, shown in figure 7.6.

7.1.6 Test6

Test6 performed against expectation as well as Test4. Daemon solution performed worst of
all in both remote and local testing. Figure 7.7 represents measured data.

7.2 Validity of performance testing
Analysis of test results showed that implementations have not always performed as ex-
pected. There is many possible explanations on to why that could be. One of the issues
was probably small test suite and not enough testing environments. Further testing is
warranted before queue file or daemon solution may be incorporated into production code.

32

Figure 7.6: Test 5 results from remote testing

33

Figure 7.7: Test 6 results from remote testing

34

Only consistent increase in performance was measured with change of XML parser to
lxml with which performance increased up to 28%.

35

Chapter 8

Conclusion

The goal of this thesis was to analyze, propose and implement performance optimization
to BeakerLib testing library. Analysis show potential issue causing bad performance when
BeakerLib is used to run long tests. This was consulted with BeakerLib developers and
three proposals to solve the issue were agreed upon. Thesis describes principles of these
solutions and how they were implemented. At the end performance testing of implemented
solutions was carried out to confirm or disprove their effectiveness. Measured performance
showed that one of the implementations had considerable effect on performance.

Results of this thesis were presented to Red Hat BeakerLib development team, which
decided that future work on this project will include refactoring of the Journaling feature
and BeakerLib as a whole to make it faster and easier to develop on. Queue file solution
was chosen to be implemented in BeakerLib, firstly however BeakerLib has to be partially
redesigned to avoid its known issues and further testing of proposed solution has to be
realized.

36

Bibliography

[1] Manual page bash_builtins(1) General Commands Manual. April 2004.

[2] Behnel, S.: lxml documentation. [Online; visited 15.05.2017].
Retrieved from: http://lxml.de/index.html

[3] Behnel, S.: lxml performance. [Online; visited 15.05.2017].
Retrieved from: http://lxml.de/performance.html

[4] Brownell, D.: Sax2. O’Reilly Media. 2002. ISBN 0596002378.

[5] Cooper, M.: Command Substitution. [Online; visited 16.05.2017].
Retrieved from: http://www.tldp.org/LDP/abs/html/commandsub.html

[6] Goldt, S.: Blocking Actions on a FIFO. [Online; visited 16.05.2017].
Retrieved from:
http://www.tldp.org/LDP/lpg/node19.html#SECTION00734000000000000000

[7] Goyvaerts, J.: Regular Expressions Tutorial. [Online; visited 16.05.2017].
Retrieved from: http://www.regular-expressions.info/tutorial.html

[8] Goyvaerts, J.; Zak, K.: Manual page kill(1) User Commands. July 2014.

[9] Indiana University: In Unix, what is a daemon? [Online; visited 16.05.2017].
Retrieved from: https://kb.iu.edu/d/aiau

[10] ISTQB Exam Certification: What is Non-functional testing? [Online; visited
17.05.2017].
Retrieved from: http://istqbexamcertification.com/what-is-non-functional-
testing-testing-of-software-product-characteristics/

[11] Little Unix Programmers Group: Introduction To Unix Signals Programming.
[Online; visited 16.05.2017].
Retrieved from: https://web.archive.org/web/20130926005901/http://
users.actcom.co.il/~choo/lupg/tutorials/signals/signals-programming.html

[12] Peck, B.; Callaghan, D.; Bastian, J.; et al.: Restraint documentation. [Online; visited
15.05.2017].
Retrieved from: http://restraint.readthedocs.io/en/latest/

[13] Python Software Foundation: Sax. [Online; visited 15.05.2017].
Retrieved from: https://wiki.python.org/moin/Sax

37

http://lxml.de/index.html
http://lxml.de/performance.html
http://www.tldp.org/LDP/abs/html/commandsub.html
http://www.tldp.org/LDP/lpg/node19.html#SECTION00734000000000000000
http://www.regular-expressions.info/tutorial.html
https://kb.iu.edu/d/aiau
http://istqbexamcertification.com/what-is-non-functional-testing-testing-of-software-product-characteristics/
http://istqbexamcertification.com/what-is-non-functional-testing-testing-of-software-product-characteristics/
https://web.archive.org/web/20130926005901/http://users.actcom.co.il/~choo/lupg/tutorials/signals/signals-programming.html
https://web.archive.org/web/20130926005901/http://users.actcom.co.il/~choo/lupg/tutorials/signals/signals-programming.html
http://restraint.readthedocs.io/en/latest/
https://wiki.python.org/moin/Sax

[14] Python Software Foundation: xml.dom.minidom documentation. [Online; visited
15.05.2017].
Retrieved from: https://docs.python.org/2/library/xml.dom.minidom.html

[15] Python Software Foundation: xml.sax documentation. [Online; visited 15.05.2017].
Retrieved from: https://docs.python.org/2/library/xml.sax.html

[16] ”Red Hat Inc.“: Beah documentation. [Online; visited 14.05.2017].
Retrieved from: https://beah.readthedocs.io/en/latest/

[17] ”Red Hat Inc.“: Beaker documentation. [Online; visited 14.05.2017].
Retrieved from: https://beaker-project.org/

[18] ”Red Hat Inc.“: BeakerLib GitHub wiki man page. [Online; visited 15.05.2017].
Retrieved from: https://github.com/beakerlib/beakerlib/wiki/man

[19] W3Schools: Introduction to XML. [Online; visited 15.05.2017].
Retrieved from: https://www.w3schools.com/xml/xml_whatis.asp

[20] W3Schools: XPath Tutorial. [Online; visited 15.05.2017].
Retrieved from: https://www.w3schools.com/xml/xpath_intro.asp

38

https://docs.python.org/2/library/xml.dom.minidom.html
https://docs.python.org/2/library/xml.sax.html
https://beah.readthedocs.io/en/latest/
https://beaker-project.org/
https://github.com/beakerlib/beakerlib/wiki/man
https://www.w3schools.com/xml/xml_whatis.asp
https://www.w3schools.com/xml/xpath_intro.asp

Appendices

39

List of Appendices

A Content of enclosed CD 41

B Measured values 42
B.1 Baseline measurements . 42
B.2 Implemented optimizations . 42

B.2.1 lxml parser . 42
B.2.2 Queue file solution with lxml parser 43
B.2.3 Daemon solution with lxml parser 43

40

Appendix A

Content of enclosed CD

Files:

∙ beakerlib/ - Directory with beakerlib directory

∙ latex/ - Source files for latex of this thesis

∙ Manual.pdf - Manual explaining working with BeakerLib

∙ tests/ - Directory with tests used in performance testing

∙ xheger00-BeakerLib-optimization.pdf - PDF version of the thesis

41

Appendix B

Measured values

B.1 Baseline measurements
Local

Test Measured time is seconds Average
Test1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0.9
Test2 62 63 63 64 67 66 63 63 66 65 65 63 64 64 61 63.9
Test3 109 109 110 110 112 110 119 112 113 111 114 111 118 110 109 111.8
Test4 393 396 397 408 398 395 400 421 429 407 395 398 399 395 403 402.3
Test5 45 46 43 47 42 42 43 42 42 42 42 42 42 43 43 43.1
Test6 4 5 4 3 3 3 4 4 5 3 4 4 3 3 2 3.6

Remote
Test Measured time is seconds Average
Test1 27 21 19 22 19 19 19 20 20 20 19 19 19 19 20 21.1
Test 2 132 125 127 122 122 122 122 121 121 125 120 123 124 122 126 123.6
Test 3 1239 1303 1241 1258 1274 1282 1295 1289 1307 1285 1293 1296 1295 1303 1312 1284.8
Test 4 1417 1400 1390 1383 1535 1501 1548 1413 1490 1531 1541 1455 1437 1487 1402 1462
Test 5 313 189 184 180 182 178 181 182 182 181 180 184 182 178 180 190.4
Test 6 85 40 40 41 38 38 40 46 39 39 39 39 38 39 40 42.7

B.2 Implemented optimizations

B.2.1 lxml parser

Local
Test Measured time is seconds Average
Test1 1 1 2 1 1 1 1 2 1 1 2 1 1 1 1 1.2
Test2 61 60 65 63 62 61 61 61 63 60 60 62 63 61 59 61.5
Test3 100 88 88 88 96 96 96 97 98 101 98 96 97 98 100 95.8
Test4 228 228 236 236 241 246 236 219 214 214 211 208 206 222 231 225.1
Test5 46 46 45 46 46 46 47 45 47 46 47 47 46 48 46 46.3
Test6 6 6 6 5 5 5 5 5 5 6 5 5 5 3 6 4.9

Remote
Test Measured time is seconds Average
Test1 25 19 19 19 19 20 20 19 20 20 20 19 19 19 20 19.8
Test2 121 113 113 113 113 113 113 115 114 115 114 114 113 113 113 114
Test3 1322 1223 1247 1264 1261 1281 1290 1292 1301 1286 1293 1293 1295 1302 1304 1283.6
Test4 1042 1035 1036 1109 1097 1049 1039 1033 1037 1039 1040 1037 1036 1035 1037 1046.7
Test5 302 180 175 175 175 176 176 176 177 178 175 176 180 172 175 184.5
Test6 75 37 36 36 36 37 37 37 38 36 36 43 37 37 36 39.6

42

B.2.2 Queue file solution with lxml parser

Local
Test Measured time is seconds Average
Test1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0.3
Test2 4 4 3 4 5 4 4 4 4 4 4 4 4 4 4 4
Test3 101 102 105 97 98 99 101 97 100 99 98 98 97 103 99 99.6
Test4 119 119 116 117 121 117 116 117 118 124 116 115 116 116 107 116.9
Test5 12 11 12 12 11 12 12 12 12 12 12 12 12 12 12 11.9
Test6 2 2 2 2 2 1 2 1 1 2 2 1 1 2 1 1.6

Remote
Test Measured time is seconds Average
Test1 27 19 19 20 20 19 19 20 19 19 20 20 19 20 20 20
Test2 27 22 22 22 22 21 21 21 21 21 21 21 21 22 22 21.8
Test3 1316 1227 1254 1259 1276 1283 1288 1292 1281 1291 1289 1293 1292 1307 1305 1283.5
Test4 898 890 881 875 876 877 871 910 994 957 977 935 880 913 935 911.3
Test5 249 130 133 134 130 134 131 136 133 133 133 133 132 129 131 140.1
Test6 86 45 39 36 36 36 36 37 36 43 36 38 37 35 36 40.8

B.2.3 Daemon solution with lxml parser

Local
Test Measured time is seconds Average
Test1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0.3
Test2 5 6 6 6 6 6 5 5 5 6 5 6 6 7 7 5.8
Test3 20 20 21 21 20 20 19 22 21 21 20 21 20 24 20 20.7
Test4 44 44 44 44 44 44 45 42 42 44 46 45 45 46 44 44.2
Test5 13 13 13 13 13 13 13 13 13 12 13 13 13 13 13 12.9
Test6 14 14 14 14 14 14 14 14 14 14 14 14 15 14 14 14.1

Remote
Test Measured time is seconds Average
Test1 27 21 19 22 19 19 19 20 20 20 19 19 19 19 20 21.1
Test2 40 41 32 37 43 30 32 28 29 55 55 33 42 29 27 36.9
Test3 1249 1226 1243 1256 1271 1294 1278 1292 1287 1286 1283 1283 1290 1304 1308 1276.7
Test4 773 780 787 751 814 745 731 736 783 757 759 787 741 732 736 760.8
Test5 238 129 125 124 125 122 121 118 118 119 119 123 120 119 123 129.5
Test6 124 50 51 48 47 46 49 48 52 49 50 48 49 48 46 53.7

43

	Introduction
	Relevant projects
	BeakerLib
	Beaker
	beaker-wizard

	Test Harness
	Beah harness
	Restraint harness

	Projects' relation

	BeakerLib
	Important functions
	Phases
	BeakerLib Test
	BeakerLib output
	journal.txt
	Console output
	TESTOUT.log
	journal.xml
	BeakerLib directory

	Source files
	Analysis of slow performance

	Solution of Journaling problem
	XML parser switch
	Change in calling journalling.py
	Queue file solution
	Daemon-like solution

	Implementation of proposed solutions
	Change of XML parser
	Queue file solution
	Queue file
	journal.sh
	queued_journalling.py
	Problems with implementation

	Daemon-like solution
	journal.sh
	journalling_daemon.py
	Signals
	Problems with implementation

	Verification of implemented solutions

	Performance testing
	Tests
	Artificial tests
	Real tests

	Testing Environment
	Local
	Remote in beaker

	Measured Value

	Analysis of results
	Tests
	Test1
	Test2
	Test3
	Test4
	Test5
	Test6

	Validity of performance testing

	Conclusion
	Bibliography
	Appendices
	List of Appendices

	Content of enclosed CD
	Measured values
	Baseline measurements
	Implemented optimizations
	lxml parser
	Queue file solution with lxml parser
	Daemon solution with lxml parser

