
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

PERFORMANCE OPTIMIZATION OF TESTING
AUTOMATION FRAMEWORK BASED
ON BEAKERLIB
OPTIMALIZACE VÝKONU AUTOMATIZOVANÉ TESTOVACÍ PLATFORMY ZALOŽENÉ

NA BEAKERLIBU

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR
AUTOR PRÁCE

JAKUB HEGER

SUPERVISOR
VEDOUCÍ PRÁCE

Mgr. Be. HANA PLUHÁČKOVÁ

BRNO 2017

Bachelor's Thesis Specification/20237/2016/xheger00

Brno University of Technology - Faculty of Information Technology

Department of Intelligent Systems Academic year 2016/2017

Bachelor's Thesis Specification
For: Heger Jakub
Branch of study: Information Technology
- p i t l e . Performance Optimization of Testing Automation Framework Based on

Beakerlib

Category: Software analysis and testing

Instructions for project work:

1. Study how BeakerLib (integration test library) works.
2. Analyze performance of BeakerLib, design the metric of performance which would be

optimized and identify the functional areas of BeakerLib and chosen harness to optimize
performance (based on architectural review of the system, code review, code
performance analysis).

3. Prepare and describe test set and environment for performance measurement.
4. Perform initial base line measurements, select at least one optimization and implement

this optimization, e.g., by modification of BeakerLib code.
5. Check implemented optimization and discuss results.

Basic references:
• according to the instruction of the supervisor

Detailed formal specifications can be found at http://www.fit.vutbr.cz/info/szz/

The Bachelor's Thesis must define its purpose, describe a current state of the art, introduce the theoretical and
technical background relevant to the problems solved, and specify what parts have been used from earlier projects or
have been taken over from other sources.

Each student will hand-in printed as well as electronic versions of the technical report, an electronic version of the
complete program documentation, program source files, and a functional hardware prototype sample if desired. The
information in electronic form will be stored on a standard non-rewritable medium (CD-R, DVD-R, etc.) in formats
common at the FIT. In order to allow regular handling, the medium will be securely attached to the printed report.

Supervisor: Pluháčková Hana, Mgr. Be , DITS FIT BUT
Beginning of work: November 1, 2016
Date of delivery: May 17, 2017

VYSOKÉ UČENÍ TECHNICKÉ V URNĚ
Fakulta informačních.technolooií
Ustav Inteligentní^
612 66 Brno,

Petr Hanáček
Associate Professor and Head of Department

http://www.fit.vutbr.cz/info/szz/

Abstract
The a im of this thesis it to analyze and optimize performance of BeakerLib testing library,
specifically its logging mechanism, which was reported to perform poorly. F i rs t part of the
thesis focuses on analysis of given problem, second one describes proposed solutions and
its implementation. In the final part performance testing is carried out to verify success of
implemented solutions. Th is thesis was wri t ten i n collaboration wi th company R e d Hat .

Abstrakt
Cílem t é t o p r á c e je analyzovat a optimalizovat výkon tes tovac í knihovny BeakerLib , k o n k r é t n ě
logovacího mechanizmu, k t e r ý by l n a h l á š e n ý jako p r o b l e m a t i c k ý z hlediska výkonu . P r v n í
čás t p r á c e se zabývá a n a l ý z o u d a n é h o p r o b l é m u , v d r u h é jsou p o p s á n y n a v r ž e n á řešení a
jejich implementace. N a závěr bylo provedeno m ě ř e n í v ý k o n u i m p l m e n t o v a n ý c h řešení aby
došlo k ověření ú spěšnos t i . Tato p r á c e byla ř e šena ve spo lup rác i s firmou R e d Hat .

Keywords
BeakerLib , Beaker, Bash, Py thon , performance testing, performance opt imizat ion

Klíčová slova
BeakerLib , Beaker, Bash, Py thon , optimalizace výkonu , t e s tován í výkonu

Reference
H E G E R , Jakub. Performance Optimization of Testing
Automation Framework Based
on Beakerlib. Brno , 2017. Bachelor's thesis. Brno Universi ty of Technology, Facul ty of
Information Technology. Supervisor P l u h á č k o v á Hana.

Performance Optimization of Testing
Automation Framework Based
on Beakerlib

Declaration
Proh lašu j i , že jsem tuto b a k a l á ř s k o u p rác i vypracoval s a m o s t a t n ě pod v e d e n í m p a n í M g r .
Be. Hany P luháčkové . Dalš í informace m i poskyt l M g r . D a v i d K u t á l e k , M g r . Aleš Zel inka
a Ing. Da l ibor Pospíš i l . Uved l jsem všechny l i t e rá rn í prameny a publikace, ze k t e r ý c h jsem
čerpal .

Jakub Heger
M a y 18, 2017

Acknowledgements
I would like to thank my technical supervisor M g r . D a v i d K u t á l e k for his advice wi th
wr i t ing this thesis as well as to M g r . Be . Hana P l u h á č k o v á for her help.

Furthermore I would like thank my family for continuous support namely to Ing.
K r i s t ý n a S t re i tová and Ing. T o m á š Heger who provided me w i t h technical advice and
more impor tant ly wi th their moral support.

Contents

1 Introduction 3

2 Relevant projects 4
2.1 BeakerLib 4
2.2 Beaker 4

2.2.1 beaker-wizard 5
2.3 Test Harness 5

2.3.1 Beah harness 5
2.3.2 Restraint harness 5

2.4 Projects ' relation 5

3 BeakerLib 7
3.1 Important functions 7
3.2 Phases 8
3.3 BeakerLib Test 8
3.4 BeakerLib output 9

3.4.1 journal . txt 9
3.4.2 Console output 10
3.4.3 T E S T O U T . l o g 11
3.4.4 journa l .xml 11
3.4.5 BeakerLib directory 12

3.5 Source files 13
3.6 Analysis of slow performance 13

4 Solution of Journaling problem 15
4.1 X M L parser switch 15
4.2 Change in cal l ing jour nail ing, py 16

4.2.1 Queue file solution 16
4.2.2 Daemon-like solution 16

5 Implementation of proposed solutions 18

5.1 Change of X M L parser 18
5.2 Queue file solution 18

5.2.1 Queue file 19
5.2.2 journal.sh 19
5.2.3 q u e u e d ^ our nail ing, py 20
5.2.4 Problems wi th implementat ion 20

5.3 Daemon-like solution 21

1

5.3.1 journal .sh 21
5.3.2 j our nai l ing daemon, py 22
5.3.3 Signals 22
5.3.4 Problems wi th implementation 23

5.4 Verification of implemented solutions 23

6 Performance testing 24

6.1 Tests 24
6.1.1 Ar t i f i c i a l tests 24
6.1.2 Rea l tests 25

6.2 Testing Environment 25
6.2.1 L o c a l 25
6.2.2 Remote i n beaker 26

6.3 Measured Value 26

7 Analysis of results 27
7.1 Tests 27

7.1.1 T e s t l 27
7.1.2 Test2 27
7.1.3 Test3 27
7.1.4 Test4 32
7.1.5 Test5 32
7.1.6 Test6 32

7.2 Va l id i ty of performance testing 32

8 Conclusion 36

Bibliography 37

Appendices 39

Lis t of Appendices 40

A Content of enclosed C D 41

B Measured values 42

B . l Baseline measurements 42
B.2 Implemented optimizations 42

B.2.1 l x m l parser 42
B.2.2 Queue file solution wi th l x m l parser 43
B.2.3 Daemon solution w i t h l x m l parser 43

2

Chapter 1

Introduction

This thesis was wri t ten i n collaboration wi th R e d Hat software company and focuses on
a performance opt imizat ion of R e d Hat BeakerLib library, par t icular ly its Journal feature.
BeakerLib l ibrary is an open source shell-level integration testing l ibrary wri t ten mostly
in Bash wi th some functionality in Py thon , which provides many convenience functions
to simplify wr i t ing integration and black-box tests and also automates parts of testing
process. One of the key features, uniform logging mechanism called Journal , has been
numerously reported by its users to perform poorly, which motivated this thesis to propose
and implement solution that would solve it.

The thesis is structured i n a following way: chapter 2 introduces projects relevant to
BeakerLib and its testing environment. Chapter 3 explains more in-depth how BeakerLib
works, w i th focus on its Journal feature and analysis of its performance.

In the chapter 4 possible optimizations are discussed and chapter 5 focuses on im­
plementation of proposed solutions. The chapter 6 then describes how performance was
measured and i n what environment. Chapter 7 is dedicated to analyzing measured results
of ind iv idua l implemented optimizations.

Las t ly chapter 8 sums up implemented solutions and considers possible future work on
BeakerLib library.

3

Chapter 2

Relevant projects

This chapter describes BeakerLib and projects relevant to i t . F i r s t of a l l brief summary of
BeakerLib itself is presented. Next section is devoted to Beaker system and the last section
focuses on test harnesses.

2.1 BeakerLib

BeakerLib is a L i n u x shell-level integration testing library, providing convenience functions
which simplify wri t ing , running and analysis of integration and blackbox tests[]. It is
developed and maintained by R e d Hat and operates under G N U General Pub l i c License.
M a i n features of BeakerLib include:

• Journal - Uni fo rm logging mechanism (logs and results saved i n flexible X M L format,
easy to compare results and generate reports),

• Phases - Logica l grouping of test actions, clear separation of setup / test / cleanup,

• Asserts - C o m m o n checks affecting the overall results of ind iv idua l phases (checking
for exit codes, file existence and content...),

• Helpers - Convenience functions for common operations such as managing system
services, backup and restore of files and more.

BeakerLib was originally developed as a part of Beaker package but since then branched
out as its own project and now is independent on Beaker.

This thesis focuses on BeakerLib Journal feature and problem it causes wi th long tests.
W h i c h is in more detai l described in chapter 3.

2.2 Beaker

Beaker is a full stack software and hardware integration testing system, wi th the abi l i ty to
manage a globally distr ibuted network of test labs[17]. It is R e d Hat community project
under G N U General P u b l i c License version 2 and is distr ibuted in the form of R P M 1

package.
M a i n functionality includes management of hardware inventory, on which Beaker can

instal l wide variety of operating systems from R e d Hat L i n u x family. Another notable

1 R P M Package Manager

4

part is Task l ibrary which contains R P M packages of ind iv idua l tests which can be run on
provided machines. Users then can specify which hardware they require w i t h which O S 2

and tests they want to run on it through either command-line tools or web interface both
of which are part of Beaker instal l package.

If Beaker meets given cri teria i n its inventory it installs Test harness to which it gives
list of tests to be run. Test harness installs and executes them while continuously sending
results back to Beaker where they are stored for specified period of time.

2.2.1 b e a k e r - w i z a r d

Beaker-wizard is a flexible, interactive command-line tool that is a part of Beaker R P M
package. It automates creation of BeakerLib tests using predefined or user-defined tem­
plates to create a l l files that are needed to run BeakerLib test. It also offers integration
wi th git and Bugz i l l a , which is a web-based bug tracking system.

For example user can use beaker-wizard w i t h -b opt ion which takes as an argument
bug identifier from Bugzi l l a . Beaker-wizard creates a l l the necessary files w i t h properly
set variables i n them, to connect newly created test to given bug using the information
beaker-wizard found i n the tracker.

A l l tests created for this thesis were generated by beaker-wizard.

2.3 Test Harness

Test harness is a software framework that automates test execution. It contains tests to be
run, executes them and reports results.

Beaker's harnesses prepare provided machine for BeakerLib by setting environmental
variables to proper values, and then consecutively execute each test, while continuously
reporting results back. They are integral part of Beaker ecosystem, as they allow user to
run long test sets, which would require much of manual work without harness.

2.3.1 B e a h harness

Beah is a R e d Hat community project and is a default Beaker harness[16].

2.3.2 R e s t r a i n t harness

Restraint is an alternative Beaker harness which can, unlike Beah, run wi th Beaker or
standalone without it [12].

2.4 Projects' relation

Relat ion between Beaker, harness and BeakerLib is shown i n figure 2.1. In this example
user submits Beaker job containing three tests and hardware/software requirements for a
machine the tests should run on. After Beaker reserves it , it installs operating system and
harness which then successively executes each test and uploads their results back to Beaker
where user can access them.

2 Operating System

5

Test
result

storage

Beaker
Job Beaker

Server

Task
Library

Results

Machine

Reservation

Hardware
Inventory

Tests from Job

Testi

Tests

Result

Test2
Test

Harness Result

BeakerLib
Test 1

BeakerLib
Test 2

Test3

Result

BeakerLib
Test 3

Figure 2.1: Beaker relation to BeakerLib

6

Chapter 3

BeakerLib

This chapter takes a closer look on inner workings of BeakerLib , w i th focus on Journal
feature and performance issues it suffers from.

3.1 Important functions

A s stated earlier, BeakerLib is a shell-level l ibrary wi th functions that are helpful while
wr i t ing tests and testing i n general. BeakerLib adds testing functions to s h e l l functionality,
so user can combine normal s h e l l commands and constructions wi th helping functions
which can make wr i t ing tests and examining their results easier. There is close to 80 of
these functions (also known as rlCommands), description of most used ones follows:

• rlRunO - The first argument of this function is any shell command, which is then
executed by rlRun(). The second parameter is an expected exit code of the first
argument. It can contain one or more codes. The th i rd argument is a comment.
BeakerLib logs FAIL or PASS after executing the command given as the first argument
if the expected exit code differs from the actual one or not respectively along wi th the
comment given as the th i rd argument. This is the most used and the most important
function.

• rlPassO - M a n u a l assertion and logging of PASS. Useful when in combination wi th
an i f statement which user doesn't want to appear i n logs but s t i l l wants to log its
result. Reciprocal function r l F a i l O exists as well.

• rlAssertExists - Asserts whether file given as a first argument exists.

• rlAssertGrepO - Funct ion logs PASS when pattern given as first argument finds a
match i n a file which is given a second argument. Opt iona l flags are passed to grep
and behave the same way.

• rlAssertRpmO - Funct ion asserts PASS when package given as first argument is in ­
stalled. Opt iona l arguments allow specifying part icular version, release or arch of the
package.

• rlAssertDif f er () - Asserts whether two files given as arguments differ in their con­
tent.

7

• rlJournalStart () - Th is function is used at the start of each test. It is essential for
proper run of the test as it initializes BeakerLib outputs, which is described later in
this chapter. Reciprocal function rlJournalEndO must be called at the end of the
test.

• rlPhaseStart () - Th is function starts user-defined phase. Funct ion takes two argu­
ments, first one is a type of phase, second one is a name. Phase must be ended by
call ing rlPhaseEndO . Phases are more closely explained i n the next section.

3.2 Phases

BeakerLib divides tests into logical groups called Phases. There are three predefined types
of phases:

• Setup - Prepar ing conditions for the test (such as creating temporary files, starting
needed system services and more), started by cal l ing rlPhaseStartSetupO,

• Test - M a i n phase for testing, started by cal l ing rlPhaseStart Test (),

• Cleanup - Revert ing changes made by the test, started by call ing
rlPhaseStartCleanupO.

Apar t from predefined phases, user can also define own phases by cal l ing rlPhaseStart ()
function. F i rs t argument of the function is one of two types phase can have:

• W A R N - If any r l C o m m a n d i n phase of this type fails, whole phase w i l l result in
Warn ing state,

• F A I L - Similar to previous type however this t ime resulting i n Fai led state.

Basic phases Setup and Cleanup are W A R N type, Test phase is a F A I L type.
The result of the whole test is the same as the worst result of any phase i n the order:

Failed, Warning , Passed. Asserts must not be used outside of phases, if such case occurs, a
new phase is opened, its result is set to F A I L , then the stray assert is added into the new
phase and then the phase closes.

This divis ion helps wi th examining the result of test as it shows which phase, i f any,
causes fail i n BeakerLib output.

3.3 BeakerLib Test

BeakerLib test is a Bash script which at the start of its run sources BeakerLib environment
by using file beakerlib.sh which is described later i n this chapter. T h e n it can run regular
Bash functions as well as r lCommands . If the test is supposed to run in Beaker or other
related project, 3 files must exist:

• runtest.sh - Script containing the test,

• PURPOSE - P l a i n text file w i th description of what the test does, it is included in
BeakerLib output which is discussed i n one of the following sections,

• Makefile - Makefile w i th instructions how to execute the test, its type and other
information used by Beaker or other projects.

8

Example test 3.1 shows how basic BeakerLib test looks.

1 # I n c l u d e B e a k e r e n v i r o n m e n t
2 . / u s r / b i n / r h t s - e n v i r o n m e n t . s h I I e x i t 1
3 . / u s r / s h a r e / b e a k e r l i b / b e a k e r l i b . s h I I e x i t 1
4
5 P A C K A G E = b e a k e r l i b
6 # S t a r t of J o u r n a l
7 r 1 J o u r n a l S t a r t
8 # S t a r t of S e t u p P h a s e , c r e a t i n g temp d i r e c t o r y where t e s t w i l l t a k e p l a c e
9 r l P h a s e S t a r t S e t u p

10 r l A s s e r t R p m $PACKAGE
11 r l R u n "TmpDir=\$(mktemp - d) " 0 " C r e a t i n g tmp d i r e c t o r y "
12 r l R u n "pushd $ TmpDir"
13 r l P h a s e E n d
14 # S t a r t of T e s t P h a s e , t e s t i n g t o u c h and I s commands
15 r l P h a s e S t a r t T e s t
16 r l R u n " t o u c h f o o " 0 " C r e a t i n g t h e f o o t e s t f i l e "
17 r l A s s e r t E x i s t s " f o o "
18 r l R u n " I s -1 f o o " 0 " L i s t i n g t h e f o o t e s t f i l e "
19 r l P h a s e E n d
20 # S t a t r of C l e a n u p p h a s e , temp d i r e c t o r y i s d e l e t e d
21 r l P h a s e S t a r t C l e a n u p
22 r l R u n "popd"
23 r l R u n "rm - r $TmpDir" 0 "Removing tmp d i r e c t o r y "
24 r l P h a s e E n d
25 r l J o u r n a l P r i n t
26 r l J o u r n a l E n d

Lis t ing 3.1: Example of basic BeakerLib test

3.4 BeakerLib output

BeakerLib produces three kinds of outputs. Two file formats and a console output i n case
of local testing or three file formats when testing remotely.

3.4.1 j o u r n a l . tx t

journal.txt is a p la in text file w i th human readable record of test progress. After end of
each phase, copy of the file is sent to Beaker for storage. Snippet of journal.txt generated
by Example test 3.1 is shown i n 3.2.

9

1 :
2 : : [LOG] : : S e t u p

4 : : [PASS] : : C h e c k i n g f o r t h e p r e s e n c e of b e a k e r l i b rpm
5 : : [LOG] : : P a c k a g e v e r s i o n s :
6 : : [LOG] : : b e a k e r l i b - 1 . 1 5 - 1 . f c 2 5 . n o a r c h
7 : : [PASS] : : C r e a t i n g tmp d i r e c t o r y (E x p e c t e d 0, g o t 0)
8 : : [PASS] : : Command 'pushd /tmp/tmp . 3 i X f i T 4 G i R ' (E x p e c t e d 0, g o t 0)
9 : : [LOG] : : D u r a t i o n : 1s

10 : : [LOG] : : A s s e r t i o n s : 3 g o o d , 0 bad
11 : : [PASS] : : RESULT: S e t u p

13 : : [LOG] : : T e s t

15 : : [PASS] : : C r e a t i n g t h e f o o t e s t f i l e (E x p e c t e d 0, g o t 0)
16 : : [PASS] : : F i l e f o o s h o u l d e x i s t
17 : : [PASS] : : L i s t i n g t h e f o o t e s t f i l e (E x p e c t e d 0, g o t 0)
18 : : [LOG] : : D u r a t i o n : Os
19 : : [LOG] : : A s s e r t i o n s : 3 g o o d , 0 bad
20 : : [PASS] : : RESULT: T e s t

22 : : [LOG] : : C l e a n u p

24 : : [PASS] : : Command 'popd' (E x p e c t e d 0, g o t 0)
25 : : [PASS] : : Removing tmp d i r e c t o r y (E x p e c t e d 0, g o t 0)
26 : : [LOG] : : D u r a t i o n : Os
27 : : [LOG] : : A s s e r t i o n s : 2 g o o d , 0 bad
28 : : [PASS] : : RESULT: C l e a n u p

30 : : [LOG] : : / p e r f o r m a n c e / b e a k e r l i b / P e r f o r m a n c e / e x a m p l e _ t e s t

32 : : [LOG] : : P h a s e s : 3 g o o d , 0 bad
33 : : [PASS] : : RESULT: / p e r f o r m a n c e / b e a k e r 1 i b / P e r f o r m a n c e / e x a m p l e _ t e s t

Lis t ing 3.2: Example ofjournal . txt

3.4.2 C o n s o l e o u t p u t

If the executed test is connected to an interactive s h e l l similar, human-readable, output
to the journal.txt is also printed to the standard output (stdout). Apa r t from content
of journal.txt, console output is complemented by the output generated from executed
command. Also the s h e l l output is colored for increased readability. Figure 3.1 shows
snippet of such output.

:: [LOG] :: Test

:: [BEGIN] :: Creating the foo t e s t f i l e :: a c t u a l l y running touch foo'
:: [PASS] :: Creating the foo t e s t f i l e (Expected 0, got 0)
: [PASS] :: F i l e foo should e x i s t

:: [BEGIN] :: L i s t i n g the foo t e s t f i l e :: a c t u a l l y running 'Is -I foo 1

-ra-rw-r -. 1 jheger jheger 0 Hay 15 03:20 foo
:: [PASS] :: L i s t i n g the foo t e s t f i l e (Expected 0, got 0)

Figure 3.1: Snippet from console output

10

3.4.3 T E S T O U T . l o g

If the executed test is not connected to an interactive shell, the same text generated for
console output is printed into the file TESTOUT.log. Th is is mostly the case when executing
a test remotely (in Beaker for example), where it is not possible to see the console output.

3.4.4 j o u r n a l , x m l

Last output is an X M L 1 file. X M L is a markup language, designed to store and transport
data[19].

journal.xml is s tr ipped off of executed commands' own output, but core information
(such as which commands were executed, whether they passed or failed and so on) is
kept. A l so metadata about the test run (time of execution, which component was tested
and more) as well as information about the what hardware and software was used to run
the test, are added, journal.xml is sent back to Beaker same as journal.txt where the are
available for further processing by automated tools. It also serves as a source of information
about current state of the test dur ing its execution, for example whether there is currently
an open phase or how many failed tests or phases there are so far. Example of journal.xml
generated by Example test 3.1 is shown i n 3.3.

1 extensible Markup Language

11

1 < 7 x m l v e r s i o n - " 1 . 0 " ?>
2 < B E A K E R _ T E S T >
3 < p a c k a g e > b e a k e r 1 i b < / p a c k a g e >
4 < p k g d e t a i l s s o u r c e r p m — " b e a k e r l i b — 1.15 — l . f c 2 5 . s r c . rpm ">
5 b e a k e r l i b — 1.15 — 1. f c 2 5 . no -a r ch < / p k g d e t a i l s >
6 < b e a k e r l i b r p m > b e a k e r 1 i b — 1.15 — 1. f c 2 5 < / b e a k e r l i b r p m >
7 < b e a k e r l i b r e d h a t r p m > b e a k e r l i b — r e d h a t — 1 — 6 . f c l 6 < / b e a k e r l i b r e d h a t r p m >
8 < s t a r t t i m e > 2 0 1 7 - 0 5 - 1 5 0 9 : 4 7 : 4 4 C E S T < / s t a r 11 i m e>
9 < e n d t i m e > 2 0 1 7 - 0 5 - 1 5 0 9 : 4 7 : 4 5 C E S T < / e n d t i m e >

10 < t e s t n a m e > / p e r f o r m a n c e / b e a k e r l i b / P e r f o r m a n c e / e x a m p l e t e s t < / t e s t n a m e >
11 < r e 1 e a s e > F e d o r a r e l e a s e 25 (T w e n t y F i v e) < / r c l e a s e >
12 < host n a m e > 1 o c a 1 h o s t . l o c a l d o m a i n < / h o s t n a m e >
13 < a i c l i > x 8 6 _ 6 4 < / a r c h >
14 <hw_cpu>4 x I n t e l (R) C o r e (TM) i 7 - 6 6 0 0 U C P U ® 2 .6 0 G H z < / h w _ c p u >
15 <hw_ram> 19496 M B < / h w _ r a m >
16 < h w _ h d d > 4 5 9 . 8 G B < / h w _ h d d >
17 < p u r pos e>PURPOSE o f / per fo r m a n e e / b e a k e r 1 i b / P e r f or m a n c e / e x a m p l e tes t
18 D e s c r i p t i o n : e x a m p l e t e s t c r e a t e d b y b e a k e r —wi z a r d
19 A u t h o r : J a k u b H e g e r & l t ; j h e g e r @ r e d h a t . com&jg t ;
20 < / p u r p o s e >
21 < l o g >
22 < p h a s e e n d t i m e = " 2 0 1 7 - 0 5 - 15 0 9 : 4 7 : 4 5 C E S T " n a m e = " S e t u p " r e s u 11 =" P A S S "
23 s c o r c = " 0 " s t a r 11 i m e = • 2 0 1 7 - 0 5 - 15 0 9 : 4 7 : 4 4 C E S T " t y pe= "WARN" >
24 < p k g d e t a i l s s o u r c e r p m — " b e a k e r l i b — 1 . 1 5 — l . f c 2 5 . s r c . rpm ">
25 b e a k e r l i b — 1 . 1 5 — l . f c 2 5 . n o a r c h < / p k g d e t a i l s >
26 < t e s t message—" C h e c k i ng f o r t h e p r e s e n c e o f b e a k e r l i b r p m " > P A S S < / t e s t >
27 < m c s s a g c s e v e r i t y —"LOG"> P a c k a g e v e r s i o n s : < / message>
28 < message s e v e r i t y — " L O G " > b e a k e r l i b —1.15 — l . f c 2 5 . n o a r c h < / m e s s a g e >
29 < t e s t command—" TmpDir—$ (mktemp —d) "
30 m e s s a g e s " C r e a t i n g t m p d i r e c t o r y (E x p e c t e d 0 , go t 0) " >
31 P A S S < / t e s t >
32 < t e s t command—" p u s h d / t m p / t m p . 3 i X f i T 4 G i R "
33 mcssage="Command ' p u s h d / t m p / t m p . 3 i X f i T 4 G i R ' (E x p e c t e d 0 , go t 0) " > P A S S < / t e s t >
34 < / p h a s e >
35 < p h a s e e n d t i m e = " 2 0 1 7 - 0 5 - 15 0 9 : 4 7 : 4 5 C E S T " n a m e = " T e s t " r e s u 11 —" P A S S " s c o r e = "0"
36 s t a r t t i m e = " 2 0 1 7 - 0 5 - 1 5 0 9 : 4 7 : 4 5 C E S T " t y pe=" F A I L ">
37 < p k g d e t a i l s s o u r c e r p m — " b e a k e r l i b — 1.15 — l . f c 2 5 . s r c . rpm ">
38 b e a k e r l i b — 1 . 1 5 — l . f c 2 5 . n o a r c h < / p k g d e t a i l s >
39 < t e s t command—" t ouc h f o o " message—" C r ea t i n g t h e foo t e s t f i l e (E x p e c t e d 0 , go t 0) " >
40 P A S S < / t c s t >
41 < t e s t message—" F i l e foo s h o u l d e x i s t " > P A S S < / t e s t >
42 < t e s t command— "Is —1 f o o " m e s s a g e — " L i s t i n g t h e foo t e s t f i l e (E x p e c t e d 0 , go t 0) " >
43 P A S S < / t c s t >
44 < / p hase>
45 < p h a s e e n d t i m e = " 201 — 05 — 16 0 9 : 4 7 : 4 5 C E S T " name=" C l e a n u p " r e s u 11 —" P A S S " s c o r e = " 0 "
46 s t a r t t i m e = " 2 0 1 7 - 0 5 - 1 5 0 9 : 4 7 : 4 5 C E S T " t y pe= "WARN">
47 < p k g d e t a i l s s o u r c e r p m — " b e a k e r l i b — 1.15 — l . f c 2 5 . s r c . rpm ">
48 b e a k e r l i b — 1 . 1 5 — l . f c 2 5 . n o a r c h < / p k g d e t a i l s >
49 < t e s t command—" p o p d " message—" Command ' p o p d ' (E x p e c t e d 0 , go t 0) " > P A S S < / t e s t >
50 < t e s t command—"rm —r / t m p / t m p . 3 i X f i T 4 G i R "
51 m e s s a g e s " R e m o v i n g t m p d i r e c t o r y (E x p e c t e d 0 , go t 0) " > P A S S < / t e s t >
52 < / p h a s e >
53 <message s e v e r i t y — " L O G " > J O U R N A L X M L : / v a r / t m p / b e a k e r l i b — d I 2 o c h w / j o u r n a l . x m l < / m e s s a g e >
54 <message s e v e r i t y — " L O G " > J O U R N A L T X T : / v a r / t m p / b e a k e r l i b — d I 2 o c h w / j o u r n a l . t x t < / m e s s a g e >
55 < / l o g >
56 < / B E A K E R _ T E S T >

Lis t ing 3.3: Example of journa l .xml

3.4.5 B e a k e r L i b d i r e c t o r y

Described files are saved into a BeakerLib test directory created for each ind iv idua l test.
If the test is run locally, temporary directory is created on system wi th mktemp com­

mand, which creates pseudo-random name.
If run on Beaker a unique T E S T I D is generated for each test. T h i s ID serves as a

name for test directory as well as an identifier which Beaker later uses when connecting test
results w i th correct test. It is also important i n case when restart is a regular part of a test.
U p o n restarting the test machine the same T E S T I D s are relayed from Beaker to harness
wi th information which tests were already run. Harness then continues wi th execution of
unfinished tests, starting wi th test that caused the restart, in the same BeakerLib directory
the test before, where there are par t ia l results of the test, so it can continue where it left
off.

12

3.5 Source files

This section describes a few of BeakerLib source files, relevant to this thesis.

• beakerlib.sh - Star t ing point of every BeakerLib test. It is sourced at the beginning
of each test and in turn sources a l l other BeakerLib files.

• testing, sh - Contains definitions of the most used r lCommands as well as some internal
functions.

• journal, sh - Provides Bash-side Journal ing functionality. Functions from this file
process information about what to log and relay them to journalling.py (with r l j
prefix) or query the journal.xml to obtain information about the current state of the
test(with standard r l prefix).

• journalling.py - Python script responsible for creating most of BeakerLib outputs. It
creates and modifies journal.xml file.

• logging.sh - Complements journalling.py i n creating console output by pr in t ing output
produced by commands called wi th lRun ().

3.6 Analysis of slow performance

It was reported that BeakerLib suffers performance problems when running long tests. T ime
of processing of each r l C o m m a n d grew longer after many (several hundreds and more) were
used. Analys is of l ibrary was problematic due to lack of documentation, complex structure
and uncommented code, however thorough investigation of the source code indicated that
problem lies w i th generating journal.xml.

Script journalling.py is called after each r l C o m m a n d to log its result into journal.xml.
This is not big problem wi th smal l tests as the journal.xml file takes up only a few kilobytes,
however when the file takes up dozens or hundreds of kilobytes, repeated loading the file from
disk, parsing, adding a line of log and then saving the file back to the disk adds significantly
more load to C P U 2 . Runn ing larger tests therefore becomes quite t ime consuming and
considerably slows down testing as a whole. Th is has been determined as the main focus
of the thesis since it probably is the most significant performance bottleneck. Influence of
used harness was thought to be negligible and won't be focused on i n this thesis.

Figure 3.2 illustrates simplified version of how rlRunO propagates through different
functions from BeakerLib files (which are sourced at the t ime test execution, depicted by
rounded rectangles) and how it is logged into the Journal . Figure also par t ia l ly reveals
complicated environment of BeakerLib , where every r l C o m m a n d is processed by many
internal functions, making understanding and developing BeakerLib problematic.

The next chapter describes proposed solutions to analyzed problem wi th their pros and
cons.

2 Central Processing Unit

13

BeakerLib Test testing, sh journal.sh

rlJournaStart
rIPhaseStartTest
rlRun "Is -a" 0 "Is cwd"
rIPhaseEnd
rlJournalEnd

rlRun

f

eval 'Is -a' —

t

> ConditionalAssert(] rlJournaStart
rIPhaseStartTest
rlRun "Is -a" 0 "Is cwd"
rIPhaseEnd
rlJournalEnd

K LogAndJournalPass()

return 0 J return 0

journalling.py

Loading from disk

Parsing xml

Adding log to journal

Saving to disk

Returning code

journal.xml

return 0

Figure 3.2: Logging of r l R u n to Journal

14

Chapter 4

Solution of Journaling problem

Sections i n this chapter provide possible solutions to the Journal ing problem. Besides
explaining the principle of each solution, the sections also discuss their advantages, disad­
vantages and potential issues.

4.1 X M L parser switch

X M L parser is a program which can tu rn X M L document into structured object in R A M 1 .
Depending on implementat ion of the parser, that object is then easier to access by the
program as it may provide methods to navigate the object and search it or potential ly
modify.

Parsing of X M L in BeakerLib is performed by journalling.py script by Python module
xml.dom.minidomf].

xml.dom.minidom is a native part of Python from version 2.0 and provides min ima l
implementation of the D O M 2 interface, w i th an A P I 3 s imilar to that i n other languages.

I decided to change parser to different one, to measure whether it w i l l provide better
performance. Because of reasons of backward compat ibi l i ty w i th R H E L 5 4 which needs to
be supported by BeakerLib , the choice of X M L parsers was l imi ted to modules present in
Python 2.4.3 installed i n R H E L 5. Two addi t ional X M L parsers were present i n mentioned
R H E L package.

• l x m l - The lxml X M L toolki t is a pythonic binding for the C libraries l ibxml2 and
libxslt . It combines the speed and X M L feature completeness of these libraries w i t h
the s implic i ty of a native Python A P I [2].

It works s imilar ly to xml.dom.minidom i n the way that when reading X M L object
from a file, it reads it whole, builds an object out of it and provides methods for the
object to allow access to it.

• xml.sax [15] - xml.sax originated as a parser for Java[]. In Python it was released
wi th version 2.0. It differs from xml. dom. minidom and lxml where the two mentioned
parsers work wi th a whole X M L file, xml. sax emits events as it goes step by step
through the file[13]. Us ing this approach means less memory has to be allocated for

1 Random Access Memory
2Document Object Model
3Application Programming Interface
4Red Hat Enterprise Linux 5

15

X M L handling and therefore makes it ideal when working wi th very large amount of
X M L data.

I decided to implement lxml parser as it is supposed to be faster and less demanding
on memory than xml.dom.minidomf], while keeping its intuit ive interface. Also sizes of
journal, xml do not approach sizes that would benefit

4.2 Change in calling journalling.py

Next proposit ion to make BeakerLib faster is i n a way journalling.py is called. The assump­
t ion being that repeated parsing of X M L document slows BeakerLib the most, reducing the
number of times it was parsed was then the highest priority.

4.2.1 Q u e u e file so lut ion

Firs t solution is to create a new, temporary queue file, which w i l l act as a k ind of buffer.
r lCommands w i l l behave as before apart from creating BeakerLib journals, but instead
they w i l l write message into the queue file. Th is file w i l l be read and processed only when
necessary, that is at the end each phase, when journals are sent to Beaker.

Disadvantages

The way BeakerLib is designed now it i n most cases expects some form of return value
from journalling.py immediately after adding a log to a journal . Performed logging either
returns code indicat ing success of failure or string w i th information about the current
state of test. This presents problem as there is no way how to communicate back these
information when parsing is postponed.

4.2.2 D a e m o n - l i k e so lut ion

Second solution is to rewrite journalling.py script to have daemon-like behavior.
Daemons i n U n i x are long-running background processes that answers requests for

services [9].
This solution w i l l run X M L parser as a separate background process for each test. The

X M L object w i l l be stored i n memory, and parsed as whole only at the beginning of journal
creation and in case of restarting the test run.

This way BeakerLib can receive response about current test state immediately while
s t i l l keeping C P U load min ima l . Daemon-like solution however brings different obstacles.

Disadvantages

A n independent, potential ly long running process daemon is more vulnerable to unplanned
events such as unexpected exit. Th is must be addressed by both daemon (to exit as safely
as possible) and by the rest of BeakerLib (to detect that daemon is no longer running and
to behave accordingly).

16

Communicat ion

Inter-process communicat ion between running test and daemon has to be created for test
to inform which r l C o m m a n d is supposed to be logged and for daemon to respond wi th
current state of X M L document. Th i s two-way communicat ion must be synchronous to
assure BeakerLib and daemon process their respective messages in correct order. Fol lowing
options were considered:

• U n i x sockets - Sockets have file-like and mostly are known for their usage i n network
protocols, however U n i x domain sockets, which operate on similar principle as network
ones, can be used for inter-process communication.

• named pipes - Named pipes are device files. They allow inter-process communicat ion
by reading it and wr i t ing into is as if regular file, however under normal circumstances
the read/wri te is a blocking operation [3]. Th is means i f one process opens pipe for
reading, it w i l l hang there un t i l another process opens the pipe for wr i t ing . This
feature can be used for synchronization of communicat ion between processes.

I chose to implement communicat ion through named pipes because synchronization
issue is taken care of because of the way named pipes are designed.

17

Chapter 5

Implementation of proposed
solutions

This chapter describes how the proposed solutions were implemented. Each solution has its
own section that describes implementat ion details and obstacles that were found and had
to be solved during the implementation. D u r i n g changing of parsers I discovered and fixed
few bugs present i n current implementat ion of journalling.py.

5.1 Change of X M L parser

A s mentioned before I chose to change original X M L parser to lxml. O n l y changes in source
code were i n file journalling.py as it is only part of BeakerLib that directly works wi th X M L
object, which represents Journal . Most of the changes were in xml. dom. minidom method for
creating new X M L element and assigning value into i t . The biggest difference between given
parsers is that lxml does not provide as many helping methods as xml.dom.minidom does.
For example in lxml there is no method getElementsByTagNameO to search X M L object
by a tag name. Instead lxml supports xpath[] syntax for searching the object, x p a t h 1 is
part of X S L T 2 standard. It can be used to navigate through elements and attributes i n an
X M L document.

Another example of difference is an approach for accessing element children. Whi l e
xml .dom.minidom has dedicated methods and attributes such as hasChildNodes () which
returns bool value or childNodes which is an iterable attr ibute of children of called el­
ement, lxml has more low level implementat ion. It treats elements as Python l i s t s so
hasChildNodes() can be replaced w i t h simple len(element) != 0.

Because prel iminary performance measurement showed faster test execution wi th lxml,
it was decided to implement the rest of the proposed solutions w i t h this parser.

5.2 Queue file solution

This section deals w i th implementat ion of queue file solution. It is d ivided into subsections
that discuss files I designed or changed during implementation.

X X M L Path Language
2 extensible Stylesheet Language Transformations

18

5.2.1 Q u e u e file

Queue file was designed i n a way so it was simple to implement, i n a human readable format
for potential test debugging and easy to extend by new, future functions that w i l l work wi th
it. It is a p la in text file, each line containing one buffered message for Python script to
process later, on demand. Messages are kept in the same format as original solution uses for
call ing journalling.py to preserve consistency wi th the exception that they are now escaped,
which is described in section.

5.2.2 j o u r n a l . s h

Creat ion of queue file, by using touch command, was added to function r l JournalStart ()
which initializes Journal ing functionality. Us ing touch assures that i f the queue file already
exists (which happens when test run is interrupted and started again), its content is not
deleted (in case of restart of the testing machine as described i n section 3.4.5).

It now also exports new variable BEAKERLIB_QUEUE, w i t h path to queue file, into the
test environment so Python script queued_jjournalling.py, can later access it.

Or ig ina l cal l ing of journalling.py script, which is a main functionality of journal.sh, was
replaced i n one of two ways:

• Delayed cal l ing - New function r l j P r i n t To Queue () takes a l l arguments that were
originally meant for journalling.py and instead prints them into the queue file, where
it w i l l be processed by queued_journalling.py later dur ing execution of the test. Th is
concerns functions which do not necessarily require response about current test state
from journal.xml. In original solution responses to these functions were only exit
codes which they d id not uti l ize in any way or i f they d id theirs functionality was
re-implemented. Namely functions that use delayed cal l ing are: rlJournalPrint (),
rljAddTest(), rljAddMetric(), rljAddMessageO, rljRpmLogO

• Immediate cal l ing of queued_journalling.py - Essentially the same as the original
solution. These functions require immediate response. Us ing this way of cal l ing won't
save on any C P U load (in fact the load w i l l be slightly higher than before because of
operations related to queue file processing), however i n typica l BeakerLib test these
functions are i n minor i ty compared to previous type of call ing. Functions and the
response they require are:

— r l JournalStart () - requires confirmation that journal was ini t ia ted success-
fully,

— rlJournalPrint Text () - requires journal.txt which is generated from current
journal.xml,

— rlGetTestState () - requires number of failed asserts i n the test so far,

— rlGetPhaseStateO - requires number of failed phases i n the test so far,

— rljAddPhase () - requires immediate print of name of the new phase to console
output,

— rljClosePhase() - requires result of closed phase, to send it to Beaker along
wi th Journal ,

— rlJournalEndO - requires immediate print of journal.txt which is generated
from journal.xml.

19

Funct ion rljAddTest () is the cause of the most calls of journalling.py in original so­
lut ion, therefore had the highest need to be moved into group of functions wi th Delayed
call ing. However it does require knowledge of current state of the test. Tha t being si tuation
when Assert (r lCommand using rljAddTest () for Journaling) is used outside of a phase,
such information is held only i n current journal, xml. To solve this problem functionality
of rljAddTest () had to moved into queued_journalling.py script, discussed i n the next
subsection.

Apar t from pr int ing to queue file, rljPrintToQueue () also has to escape given ar­
guments. Th is needs to be done because firstly some of the arguments originating from
user may contain newline character which would break t h e „ o n e queued command per line"
rule i n format of queue file and secondly so queued_journalling.py may process it w i th
optparse module. Escaping is done wi th p r i n t f Bash bui l t inf l] , specifically its °/0q opt ion
which causes p r i n t f to output i n shell-quoted format.

5.2.3 queued j o u r n a l l i n g . p y

Fi le queued_journalling.py originated from journalling.py but it differs in several ways.
Now when it is called, it first parses current journal.xml and then calls new method

updateXMLO w i th parsed X M L object as an argument. Th is method opens queue file and
finds last line it accessed in previous cal l . F r o m there it reads queued lines, parses each
wi th Python module optparse and modifies the X M L object accordingly, in the similar
way it d id originally, this t ime however without parsing journal.xml each t ime as the X M L
object is passed as an argument to appropriate methods.

W h e n it reaches end of file, it makes a mark (by adding a line at the end of the queue
file w i t h a number already processed lines) for future readings and returns to the original
cal l , coming from one of the journal.sh Immediate cal l ing functions. After modification
from that function it generates response and returns it to journal, sh.

Exceptions to this behavior are:

• rlJournalStart () - Th is function doesn't access queue file but only initializes X M L
object and returns an exit code whose value depends on whether the ini t ia l izat ion
was successful,

• rlJournalEndO - This one makes sure every queued command was processed as it
is an exit point from the test and so last opportuni ty to modify journal.xml.

A s mentioned i n previous subsection, functionality of rljAddTest () had to be altered.
Given that Bash side of BeakerLib had no way of knowing if the test was added outside of
phase at the t ime of wr i t ing this operation into the queue file, this action had to be resolved
when queued_journalling.py processed the queue file. New method testOutOf Phase () was
implemented which is called when assertion outside of phase is detected and it performs
the same process as when this event happened i n original journal, sh, described i n chapter
3 i n section Phases.

5.2.4 P r o b l e m s w i t h i m p l e m e n t a t i o n

M a i n goal of this solution was to reduce number of times journal.xml is parsed, by delaying
as many Journal ing operations as possible, while keeping BeakerLib outputs the same. The
way BeakerLib is designed now it is not possible, because some information is always lost
when operations are delayed. In case of this implementat ion I was able to keep journal.xml,

20

and therefore journal.txt as well, the same as w i t h original solution, however at the price of
console output (therefore TESTOUT.log one too as it is console output printed to file) which
is now missing a l l information usually given by functions from Delayed cal l ing category.
On ly complementary output created by functions from logging.sh remain.

Solving this issue would require more extensive changes to BeakerLib design which I
decided not to implement for now so Queue file solution remains only as a proof of concept.

5.3 Daemon-like solution

This section describes ind iv idua l changes made to BeakerLib design i n order to implement
Daemon-like solution.

5.3.1 j o u r n a l . s h

Funct ion rlJournalStart () in this implementat ion creates named pipe using mkfifo and
then exports its pa th into environment. T h e n it spawns daemon_jjournalling.py process
i n the background wi th & operator and stores its PID3 into variable.

Every ca l l of journalling.py in original implementat ion was replaced wi th new function
rljCallDaemonO , which takes the same arguments as original function. W h e n this new
function is called it firstly escapes given arguments using similar way as in queue file, this
t ime however another function had to be created. rljCallDaemonO passes its argument
to the function escapeArguments () which uses p r i n t f and echo Bash buil t ins to escape
arguments in loop which are then caught back i n rljCallDaemonO w i th $ () construct[5] for
catching output. It is implemented this way to avoid using temporary file.After arguments
are escaped, rljCallDaemonO checks whether the daemon is s t i l l running wi th k i l l - 0
$DAEM0N_PID cal l .

k i l l program is used to send signals to processes. If used wi th - 0 option, no signal is
actually sent but error checking against the process is s t i l l performed and it returns 0 when
process wi th given P I D is running[8]. This is done to make sure the daemon is s t i l l running
before pipe wri t ing operation. If the daemon wasn't running before wr i t ing to pipe, the test
would hang there indefinitely, so i f the daemon is not running, the test exits w i th error.

After this check is performed, rljCallDaemonO writes to named pipe escaped message,
where it waits un t i l daemon reads it and responds. Response is read as a next action,
decoded from a format that w i l l be discussed i n the next subsection and then the response
is returned to function that called rljCallDaemonO . This is repeated unt i l end of the test
is reached, where function r l j JournalEnd O sends signal w i th k i l l to end the daemon.

Funct ion rlJournalPrintText () had to be reworked slightly. This function generates
journal.txt output from journal.xml and has two main usages:

• It is a standard part of BeakerLib test where it is called directly right before test ends
by cal l ing rlJournalEnd() . It prints journal.txt to stdout i f the test is connected to
interactive shell.

• It is used by internal functions during test execution to continuously generate par t ia l
journal, txt files and send them back to Beaker i f using Beaker and harness or storing
them to disk when no harness is used.

3Process identifier

21

Reworked function now accepts one optional argument and passes it to rljCallDaemonO
and it was added to a l l currently implemented BeakerLib functions that cal l
rlJournalPrintText () . In original solution there was a simple way how to have
journalling.py print either to stdout or to catch the same output into variable using $()
construct or redirecting it to a file, because each ca l l of journalling.py was a separate process
whose output could be controlled. W h e n using daemon however, this is no longer possible,
either a l l output would be caught or none at a l l . A way how to differentiate which jour­
nalling.py output is supposed to be printed to stdout and which is supposed to be returned
to journal.sh through named pipe had to be implemented. Functions that need to catch the
output from daemon now use rlJournalPrintText () w i th the opt ional argument. How it
affects daemon_journalling.py is described in next subsection. Current ly unused function
rlJournalPrint () was reworked is the same way.

5.3.2 j o u r n a l l i n g d a e m o n , py

journalling_daemon.py script again originates from journalling.py. This t ime however, it
is designed to run i n endless loop, instead of returning after one executed action.

Before the daemon enters the endless loop, it performs checks whether environment is
prepared for it (whether named pipe exists or it can access P I D of the test). O n l y i f a l l
checks are successfully verified it enters the loop, otherwise exits w i th error.

In each i teration it checks whether test process is s t i l l running analogously to how
rljCallDaemonO does i t . Then it reads the named pipe and waits there unt i l
rljCallDaemonO writes to i t . After message is read, method parseAndProcess () is called
and it parses the message and acts upon it.

If the message received comes from rlJournalStart () the X M L object is ini t ia l ized
and stored i n global variable j r n l so it its accessible to a l l other methods that use the
X M L object.

A s was stated i n previous subsection, change in output t ing behavior had to be imple­
mented. W h e n optional argument toVar is detected a l l functions related to pr int ing instead
of print function store their respective outputs i n variables. These are gradually appended
to each other and at the end of a l l pr in t ing they are instead returned through named pipe
back to journal.sh where ind iv idua l functions can catch them.

A n y other message cal l the same methods as i n original implementat ion wi th the dif­
ference which is that now the methods use the global j r n l .

W h e n a message is processed, parseAndProcess () must encode the response, because
original implementat ion was able to respond w i t h either return code or string and this
solution is only able to respond wi th string. Simple format message: X-code: Y, where X is
replace wi th string and Y wi th return code, was implemented which is quickly decoded
by rljCallDaemonO using Regular expressionf].

5.3.3 Signals

Signals are asynchronous interrupts that are used for inter-process communicat ion. Sig­
nals are usually used by the operating system to notify processes that some event has
occurred[]. For example when operating system plans to reboot, it sends signal to a l l
running processes to inform them that reboot w i l l take place. rlJournalEnd () i n daemon­
like solution sends signal SIGTERM to end daemon_journalling.py process where it is caught
and handled by signal handler implemented i n daemon.

22

Signal handlers are functions that are called when program receives signal to handle the
event properly. In daemon solution Signal handlers were added to both daemon and Bash
side of BeakerLib .

In daemon_journalling.py method signalHandler () was created. It is set to han­
dle most common signals, that would cause it to exit improperly. W h e n such signal is
received, daemon interrupts what is currently doing and through signalHandler () calls
saveAndExit () method which saves current state of X M L object to disk and exits.

journal.sh uses trap command to catch signals. U p o n receiving signal it k i l l s daemon
to always make sure that daemon w i l l not stay running i n the background after test is
unexpectedly ended.

5.3.4 P r o b l e m s w i t h i m p l e m e n t a t i o n

Using background processes w i th blocking operations is a rather volatile solution. In a
case of some unanticipated event it may happen one side or the other may be hung up
on blocking operation w i t h no process to unblock i t , even though Signal handlers were
implemented to lower the chance of such a si tuation to happen.

Dur ing testing of this solution such behavior was not reproduced. However testing
on much larger scale, including different operating systems, C P U architectures and other
testing conditions, would have be concluded to confirm it is unl ikely such event could occur.

5.4 Verification of implemented solutions

Verification that implemented optimizations didn ' t cause regression, was directed on jour­
nal, xml as it is a main focus point of this thesis. Due to its nature automated verification
was problematic to implement, because two journal.xml files generated from one test may
differ in many ways while both s t i l l being val id (they may differentiate in such information
as t ime of execution, hardware/software specifications or even i n reported results, as test
could pass or fail independently on BeakerLib implementation).

Because of this reasons only manual verification took place, which results were deemed
to be acceptable.

23

Chapter 6

Performance testing

This chapter briefly explains what performance testing is. Then it describes what tests and
in which environments were used to measure performance of BeakerLib before and after
optimizations were implemented.

Performance testing is a type of non-functional testing, that is testing whose goal is
to test quali ty characteristics of a component, rather than its functionality[10].

For performance testing of BeakerLib two kinds of tests were chosen to run, in two kinds
of testing environments. They are described i n following sections.

6.1 Tests

This section describes which tests were chosen to measure performance of implemented
solutions to BeakerLib Journal ing problem.

6.1.1 A r t i f i c i a l tests

Firs t type of tests are artificial tests created by beaker-wizard too l to specifically target
and measure performance of Journal ing modifications this thesis proposes. They consist
mostly of r lCommands that direct ly work w i t h journalling.py (or its variants of implemented
modifications), for example commands rlLogO or rlPhaseStart() and rlPhaseEndO.
This way we can observe clear difference i n performance without being affected by opera­
tions unrelated to Journal ing (executing actions that verify functionality of components in
real tests). E a c h test is briefly summarized and it is estimated how w i l l which implemen­
tat ion manage running it.

• T e s t l - Test used as and example 3.1. It is a very short test and for which pro­
posed solutions were not aimed therefore increase i n performance wi th this test is not
expected. Test contains 17 r lCommands .

• Test2 - Test contains 1000 calls of function rlLogO d ivided into 3 phases. Th is
function requires very l i t t le overhead and so its results represent direct performance
difference caused by implementations however they do not represent performance
difference when running typica l BeakerLib test. Test contains 1014 r lCommands .
Implementations using queue file and daemon one are expected to perform well on
this test.

24

• Test3 - Test consists of 500 calls functions of rlPhaseStartTest () and rlPhaseEndO.
Even thought it has the same length as Test2, this test is expected to run longer
because phase controll ing r lCommands have larger overhead when working wi th jour­
nal.xml. Test contains 1014 r lCommands . Daemon is predicted to have the best
results while queue file solution may perform as badly as original implementation.

• Test4 - Test comprises of 500 phases wi th a few typica l r lComands inside them. This
test resembles typica l BeakerLib the most out of a l l art if icial ones and is longest as
well . Test contains 3013 r lCommands . This test should be run quickly w i th daemon
solution.

These tests are included i n Append ix A in directory tests.

6.1.2 R e a l tests

Second type are examples of real tests used i n R e d Hat . F i n d i n g such tests was problematic
because real tests are often wri t ten specifically for part icular hardware or software and
behave differently under different circumstances. The challenge then was not only to find
long running tests but most impor tant ly tests that a l l have the same behavior on one specific
remote machine as well as on local machine used for testing. However at least min ima l
testing has to be performed to measure whether modifications have an effect outside of
controlled environment.

• T e s t l - Th i s is a regression test for component sos which is a data collection tool . It
checks whether a l l expected data are in fact collected. Test contains 610 r lCommands
but b ig part of it is done without r lCommands wi th regular commands and only
results of those are logged wi th r lCommands .

• Test2 - T h i s is a instal l test for maven component, which is a project management and
comprehension tool . It is used to test whether maven can be installed. Test contains
1026 r lCommands .

These tests are not included i n Append ix as they are property of R e d Hat .

6.2 Testing Environment

This section specifies on which environments were previously described tests run. The
choice of environment is important to properly measure performance, as it may directly
influence measured data.

6.2.1 L o c a l

Firs t environment is local laptop for convenience and speed of execution. It can provide
estimates of performance changes, however only remote testing is conclusive. Tests were
run directly, without any harness and wi th these technical specifications:

M o d e l Lenovo T460s
C P U 4 cores Intel(R) i7-6600U, 2 .60GHz
C P U architecture x86_64
R A M 19496 M B
Operat ing System Fedora release 25

25

6.2.2 R e m o t e i n beaker

Second round of testing was done to emulate real testing conditions and to verify that
changes made to BeakerLib do not break functionality outside of controlled environment.
Tests were run using the default test harness Beah. Technical specification tests were run
on follow:

C P U 1 core Intel(R) Xeon , 2 .10GHz
C P U architecture x86_64
R A M 2847 M B
Operat ing System R e d Hat Enterprise L i n u x Server 7.3

6.3 Measured Value

G o a l of this thesis was to optimize performance in regards to t ime of execution, so that is
only the value that was measured. Values were obtained from journal.xml which has bu i l t in
mechanisms to track how long took the execution of the test, w i th precision of one second,
which should be sufficient for needs of this measurement

26

Chapter 7

Analysis of results

This chapter compares measured values of executed tests under ind iv idua l implementations
and analyzes why they are that way. E a c h test described i n previous chapter was run
15 times wi th each implementat ion i n both devised environments. Measured results were
averaged and rounded to precision of one decimal place. Complete data set is located in
Append ix B .

7.1 Tests

This sections analyzes measured results of ind iv idua l tests. E a c h subsection is dedicated
to a single test and it shows how the test performed on different implementations. Mos t ly
only results from remote testing are shown as they are more important for this thesis.

7.1.1 T e s t l

A s expected T e s t l didn ' t reveal difference i n performance, because drawbacks of original
implementation become apparent only when journal.sh reach certain size. Results can be
seen in figure 7.1.

7.1.2 Test2

Test2 indicates big performance improvement when using queue file or daemon, however
as discussed i n section 6.1, this test may show big improvement i n performance but w i l l
not necessarily be reflected in actual test runs. Queue file solution was able to achieve
such speed because the test contained min ima l number operation that required immediate
interaction wi th journal.sh file which would be highly atypical for real test. Results are
depicted in figure 7.2.

7.1.3 Test3

Test3 behaved i n surprising manner. Slow performance of first three implementat ion was
foreseeable, because this test is comprised of r lCommands constantly accessing journal.xml.
This problem was expected to be solved by daemon implementat ion however it performed
almost as bad as other implementations as shown i n figure 7.3. Even stranger is that when
tested local ly it performed as expected which can be seen i n figure 7.4. Exp lana t ion of this
behavior was not fully understood at the t ime of wr i t ing this thesis.

27

H original implementation • Ixml • queue with Ixmi • daemon with lxml

22

Figure 7.1: Test 1 results from remote testing

28

29

Figure 7.3: Test 3 results from remote testing

30

H original implementation Zl Ixml • queue with Ixml • daemon with lxml

Figure 7.4: Test 3 results from local testing

31

H original implementation • lxml • queue with lxml • daemon with lxml

1700 r

1600

1500

1400

Figure 7.5: Test 4 results from remote testing

7.1.4 Test4

Test4 performed predicted. H i g h number of phases slowed down queue solution, which
doesn't present obstacles to daemon, so it could perform better. Results are i l lustrated in
figure 7.5.

7.1.5 Test5

Firs t real test behaved is s imilar manner as Test4, slight improvements w i t h each imple­
mentation, shown i n figure 7.6.

7.1.6 Test6

Test6 performed against expectation as well as Test4. Daemon solution performed worst of
al l i n both remote and local testing. Figure 7.7 represents measured data.

7.2 Validi ty of performance testing

Analysis of test results showed that implementations have not always performed as ex­
pected. There is many possible explanations on to why that could be. One of the issues
was probably smal l test suite and not enough testing environments. Further testing is
warranted before queue file or daemon solution may be incorporated into product ion code.

32

H original implementation Zl Ixml • queue with lxml • daemon with lxml

Figure 7.6: Test 5 results from remote testing

33

Figure 7.7: Test 6 results from remote testing

34

Only consistent increase i n performance was measured wi th change of X M L parser to
lxml w i th which performance increased up to 28%.

35

Chapter 8

Conclusion

The goal of this thesis was to analyze, propose and implement performance opt imizat ion
to BeakerLib testing library. Analys is show potential issue causing bad performance when
BeakerLib is used to run long tests. Th i s was consulted wi th BeakerLib developers and
three proposals to solve the issue were agreed upon. Thesis describes principles of these
solutions and how they were implemented. A t the end performance testing of implemented
solutions was carried out to confirm or disprove their effectiveness. Measured performance
showed that one of the implementations had considerable effect on performance.

Results of this thesis were presented to R e d Hat BeakerLib development team, which
decided that future work on this project w i l l include refactoring of the Journal ing feature
and BeakerLib as a whole to make it faster and easier to develop on. Queue file solution
was chosen to be implemented in BeakerLib , firstly however BeakerLib has to be par t ia l ly
redesigned to avoid its known issues and further testing of proposed solution has to be
realized.

36

Bibliography

[1] M a n u a l page bash_bui l t ins (l) General Commands Manua l . A p r i l 2004.

[2] Beimel , S.: Ixml documentation. [Online; visi ted 15.05.2017].
Retrieved from: h t t p : / / l x m l . d e / i n d e x . h t m l

[3] Behnel , S.: Ixml performance. [Online; visi ted 15.05.2017].
Retrieved from: h t t p : / / l x m l.de / p e r f o r m a n c e . h t m l

[4] Brownel l , D . : Sax2. O ' R e i l l y Med ia . 2002. I S B N 0596002378.

[5] Cooper, M . : Command Substitution. [Online; visi ted 16.05.2017].
Retrieved from: h t tp : / /www. t ldp .org/LDP / abs /h tml /commandsub .h tml

[6] Gold t , S.: Blocking Actions on a FIFO. [Online; visi ted 16.05.2017].
Retrieved from:
http://www.tldp.Org/LDP/lpg/nodel9.html#SECTI0N00734000000000000000

[7] Goyvaerts, J . : Regular Expressions Tutorial. [Online; visi ted 16.05.2017].
Retrieved from: h t t p : / / w w w . r e g u l a r - e x p r e s s i o n s .inf o / t u t o r i a l . h t m l

[8] Goyvaerts, J . ; Zak, K . : M a n u a l page k i l l (l) User Commands . Ju ly 2014.

[9] Indiana Universi ty: In Unix, what is a daemon? [Online; visi ted 16.05.2017].
Retrieved from: h t t p s : / / k b . i u . e d u / d / a i a u

[10] I S T Q B E x a m Certif icat ion: What is Non-functional testing? [Online; visited
17.05.2017].
Retrieved from: h t t p : / / i s t q b e x a m c e r t i f i c a t i o n . c o m / w h a t - i s - n o n - f u n c t i o n a l -
t e s t i n g - t e s t i n g - o f - s o f t w a r e - p r o d u c t - c h a r a c t e r i s t i c s /

[11] L i t t l e U n i x Programmers Group: Introduction To Unix Signals Programming.
[Online; visi ted 16.05.2017].
Retrieved from: h t t p s : //web.archive.org/web/20130926005901/http: / /
u s e r s . a c t c o m . c o.il / ~ c h o o / l u p g / t u t o r i a l s / s i g n a l s / s i g n a l s - p r o g r a m m i n g . h t m l

[12] Peck, B . ; Cal laghan, D . ; Bast ian, J . ; et a l . : Restraint documentation. [Online; visited
15.05.2017].
Retrieved from: h t t p : / / r e s t r a i n t . r e a d t h e d o c s . i o/en / l a t e s t /

[13] P y t h o n Software Foundation: Sax. [Online; visi ted 15.05.2017].
Retrieved from: h t t p s : / / w i k i . p y t h o n . o r g / m o i n/Sax

37

http://lxml.de/index.html
http://lxml.de/performance.html
http://www.tldp.org/LDP/abs/html/commandsub.html
http://www.tldp.Org/LDP/lpg/nodel9.html%23SECTI0N00734000000000000000
http://www.regular-expressions.inf
https://kb.iu.edu/d/aiau
http://istqbexamcertification.com/what-is-non-functional-
http://archive.org/web/20130926005901/http
http://users.actcom.co.il/~choo/lupg/tutorials/
http://restraint.readthedocs.io/en/latest/
https://wiki.python.org/moin/Sax

[14] P y t h o n Software Foundation: xml.dom.minidom documentation. [Online; visited
15.05.2017].
Retrieved from: h t t p s : / / d o c s . p y t h o n . o r g / 2 / l i b r a r y / x m l . d o m . m i n i d o m . h t m l

[15] P y t h o n Software Foundation: xml.sax documentation. [Online; visi ted 15.05.2017].
Retrieved from: h t t p s : / / d o c s . p y t h o n . O r g / 2 / l i b r a r y / x m l . s a x . h t m l

[16] „Red Hat Inc.": Beah documentation. [Online; visi ted 14.05.2017].
Retrieved from: h t t p s : / / b e a h . r e a d t h e d o c s . i o / e n / l a t e s t /

[17] „Red Hat Inc.": Beaker documentation. [Online; visi ted 14.05.2017].
Retrieved from: h t t p s : / / b e a k e r - p r o j e c t . o r g /

[18] „Red Hat Inc.": BeakerLib GitHub wiki man page. [Online; visi ted 15.05.2017].
Retrieved from: h t t p s : / / g i t h u b . c o m / b e a k e r l i b / b e a k e r l i b / w i k i / m a n

[19] W3Schools: Introduction to XML. [Online; visi ted 15.05.2017].
Retrieved from: h t t p s : / / w w w . w 3 s c h o o l s . c o m / x m l / x m l _ w h a t i s . a s p

[20] W3Schools: XPath Tutorial. [Online; visi ted 15.05.2017].
Retrieved from: h t t p s : / / w w w . w 3 s c h o o l s . c o m / x m l / x p a t h _ i n t r o . a s p

38

https://docs.python.Org/2/library/xml.sax.html
https://beah.readthedocs.io/en/latest/
https://beaker-project.org/
https://github.com/beakerlib/beakerlib/wiki/man
https://www.w3schools.com/xml/xml_whatis.asp
https://www.w3schools.com/xml/xpath_intro.asp

Appendices

39

List of Appendices

A Content of enclosed C D

B Measured values
B . l Baseline measurements
B .2 Implemented optimizations

B.2.1 l x m l parser
B.2.2 Queue file solution w i t h l x m l parser
B.2.3 Daemon solution wi th l x m l parser

40

Appendix A

Content of enclosed C D

Files:

• beakerl ib/ - Directory wi th beakerlib directory

• latex/ - Source files for latex of this thesis

• M a n u a l . p d f - M a n u a l explaining working wi th BeakerLib

• tests/ - Directory wi th tests used in performance testing

• xhegerOO-BeakerLib-optimization.pdf - P D F version of the thesis

41

Appendix B

Measured values

B . l Baseline measurements

Local
Test Measured time is seconds Average

Testl 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0.9
Test2 62 63 63 64 67 66 63 63 66 65 65 63 64 64 61 63.9
Test3 109 109 110 110 112 110 119 112 113 111 114 111 118 110 109 111.8
Test4 393 396 397 408 398 395 400 421 429 407 395 398 399 395 403 402.3
TestS 45 46 43 47 42 42 43 42 42 42 42 42 42 43 43 43.1
Test6 4 5 4 3 3 3 4 4 5 3 4 4 3 3 2 3.6

Remote
Test Measured time is seconds Average

Testl 27 21 19 22 19 19 19 20 20 20 19 19 19 19 20 21.1
Test 2 132 125 127 122 122 122 122 121 121 125 120 123 124 122 126 123.6
Test 3 1239 1303 1241 1258 1274 1282 1295 1289 1307 1285 1293 1296 1295 1303 1312 1284.8
Test 4 1417 1400 1390 1383 1535 1501 1548 1413 1490 1531 1541 1455 1437 1487 1402 1462
Test 5 313 189 184 180 182 178 181 182 182 181 180 184 182 178 180 190.4
Test 6 85 40 40 41 38 38 40 46 39 39 39 39 38 39 40 42.7

B.2 Implemented optimizations

B . 2 .1 l x m l parser

Loca l

Test Measured time is seconds Average
Testl 1 1 2 1 1 1 1 2 1 1 2 1 1 1 1 1.2
Test2 61 60 65 63 62 61 61 61 63 60 60 62 63 61 59 61.5
Test3 100 88 88 88 96 96 96 97 98 101 98 96 97 98 100 95.8
Test4 228 228 236 236 241 246 236 219 214 214 211 208 206 222 231 225.1
TestS 46 46 45 46 46 46 47 45 47 46 47 47 46 48 46 46.3
Test6 6 6 6 5 5 5 5 5 5 6 5 5 5 3 6 4.9

Remote
Test Measured time is seconds Average

Testl 25 19 19 19 19 20 20 19 20 20 20 19 19 19 20 19.8
Test2 121 113 113 113 113 113 113 115 114 115 114 114 113 113 113 114
Test3 1322 1223 1247 1264 1261 1281 1290 1292 1301 1286 1293 1293 1295 1302 1304 1283.6
Test4 1042 1035 1036 1109 1097 1049 1039 1033 1037 1039 1040 1037 1036 1035 1037 1046.7
TestS 302 180 175 175 175 176 176 176 177 178 175 176 180 172 175 184.5
Test6 75 37 36 36 36 37 37 37 38 36 36 43 37 37 36 39.6

42

B.2 .2 Q u e u e file so lut ion w i t h l x m l parser

Loca l
Test Measured time is seconds Average

Testl 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0.3
Test2 4 4 3 4 5 4 4 4 4 4 4 4 4 4 4 4
Test3 101 102 105 97 98 99 101 97 100 99 98 98 97 103 99 99.6
Test4 119 119 116 117 121 117 116 117 118 124 116 115 116 116 107 116.9
TestS 12 11 12 12 11 12 12 12 12 12 12 12 12 12 12 11.9
Test6 2 2 2 2 2 1 2 1 1 2 2 1 1 2 1 1.6

Remote
Test Measured time is seconds Average

Testl 27 19 19 20 20 19 19 20 19 19 20 20 19 20 20 20
Test2 27 22 22 22 22 21 21 21 21 21 21 21 21 22 22 21.8
Test3 1316 1227 1254 1259 1276 1283 1288 1292 1281 1291 1289 1293 1292 1307 1305 1283.5
Test4 898 890 881 875 876 877 871 910 994 957 977 935 880 913 935 911.3
TestS 249 130 133 134 130 134 131 136 133 133 133 133 132 129 131 140.1
Test6 86 45 39 36 36 36 36 37 36 43 36 38 37 35 36 40.8

B.2 .3 D a e m o n so lut ion w i t h l x m l parser

Loca l
Test Measured time is seconds Average

Testl 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0.3
Test2 5 6 6 6 6 6 5 5 5 6 5 6 6 7 7 5.8
Test3 20 20 21 21 20 20 19 22 21 21 20 21 20 24 20 20.7
Test4 44 44 44 44 44 44 45 42 42 44 46 45 45 46 44 44.2
TestS 13 13 13 13 13 13 13 13 13 12 13 13 13 13 13 12.9
Test6 14 14 14 14 14 14 14 14 14 14 14 14 15 14 14 14.1

Remote

Test Measured time is seconds Average
Testl 27 21 19 22 19 19 19 20 20 20 19 19 19 19 20 21.1
Test2 40 41 32 37 43 30 32 28 29 55 55 33 42 29 27 36.9
Test3 1249 1226 1243 1256 1271 1294 1278 1292 1287 1286 1283 1283 1290 1304 1308 1276.7
Test4 773 780 787 751 814 745 731 736 783 757 759 787 741 732 736 760.8
TestS 238 129 125 124 125 122 121 118 118 119 119 123 120 119 123 129.5
Test6 124 50 51 48 47 46 49 48 52 49 50 48 49 48 46 53.7

43

