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ABSTRAKT

Tato diplomova prace se zabyva verifikaci integrovanych obvodu pracujicich ve smiseném
modu. Teoretickd ¢ast prace obsahuje prehled modernich verifikacnich metod a zaméiuje se
zejména na ,,assertion based methodology* . V praktické ¢asti prace jsou pak rozebrany
popisné jazyky pouzivané u této metody, a nasledné je vytvoren kod pro verifikaci bloku
tfidicitho obvodu spinanych zdroja.
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ABSTRACT

This master thesis deals with verification methods of mixed-signal integrated circuits.
Theoretical part contains summary of modern verification methods with emphasis on
,,assertion based methodology* . The practical part analyses descriptive languages used in this
method and a code for verification of a power supply control circuit block is created.
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INTRODUCTION

Mixed-signal design is a combination of analog and digital circuitry. Mixed-signal
applications are among the fastest growing market segments in the electronic and
semiconductor industry. Mixed signal content in most of today's integrated circuits has
increased from 10-20 % to 50 % or more due to increased needs for mobility, higher
performance and integration of interfaces. Similarly, what used to be pure analog blocks now
include significant amounts of digital logic either to increase functionality or to assist the
analog portions of the design achieve target performance.

This escalating complexity poses severe challenges for mixed-signal verification and
uncertainties in verification coverage. According to industry estimates [2] , more than 60 % of
SoC design re-spins at 45 nanometers and below are due to mixed-signal errors. A re-spin
costs extra money and delays a product rollout for weeks or months. Many re-spins are due to
commonplace, avoidable errors such as inverted or disconnected signals. To avoid these
errors, mixed-signal SoC teams need to implement modern verification methodologies.

The aim of this master thesis is to provide a summary of modern verification methods used
in mixed-signal designs. Emphasis is put on ,assertion based methodology*“ , which is
common in verification of digital circuits and gradually expands into the field of analog and
mixed-signal integrated circuits. The practical part analyses descriptive languages used in this
method and a code for verification of a power supply control circuit block is created.



1 MIXED-SIGNAL VERIFICATION

Verification is a procedure used for checking that designed circuit meets requirements and
specifications and that it fulfills its intended purpose.

The basic verification process of electronic devices involves creating a verification plan,
development of test benches, simulation, post processing of results including measurements
and comparison with the specification [1].

1.1 Gap between digital and analog verification process

Verification of mixed-signal designs with plainly separated analog and digital parts was
possible in the past. Today's complex ICs have analog and digital functionality tightly
integrated throughout the whole design at different levels of hierarchy, and cannot be verified
separately [5].
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Figure 1: Complexity of mixed-signal design [2].

In the classic analog world, verification is performed using SPICE simulators at a detailed
transistor level and is usually done in a bottom-up fashion. This means implementation of
individual blocks from their specifications using transistor-level representation and their
ensuing isolated verification to match specific verification goal. Thus verified block is then
integrated with similarly verified blocks and the integration process proceeds from block to
progressively higher levels of integration. This approach works quite well when design size is
small, as design size and complexity grows and design characteristics start changing from
pure analog to mixed-signal, a bottom-up methodology shows severe limitations. The most
obvious being the increasing cost of resources needed to perform simulation at the detailed
transistor level and the lack of methodology to integrate block-level verification tasks with
system-level specifications [5].



On the other hand, the digital verification approach is essentially top-down and is driven
by a chip-level verification plan that causes the verification process to start at an early stage of
design. Such verification plan guides the simulation planning as well as the levels of models
required at each stage of integration. The state space of the design is effectively explored by
directed random metrics and tests, such as functional coverage and provides feedback
regarding how much of the verification plan has been exercised by the existing regression
suite [5].



1.1.1 Analog and digital simulation

Analog and digital simulations used as a basis of verification are fundamentally different.
Analog signals can change in almost infinitely small increments of terms of time and
amplitude. During transient analysis, analog simulators are tasked with solving a set o
matrices at every time step. Each element in the design can have an instantaneous influence
on any other element in the matrix.

The typical analog simulator breaks the time axis into small time steps and then calculates
the equation solution that describes what should happen over each step. Then the simulator
decides how big time step it can safely take and it must iterate and converge toward a solution
that solves the Kirchhoff's laws at the new time point [1], [3].

Voltage

i

CONTINUOUS TIME
DISCRETE TIME

DISCRETE EVENT (LOGIC)

Figure 2: Comparison of various sampling methodologies[3].

The behavior of digital circuits is described by Boolean relations. Digital simulators solve
logical expressions sequentially by triggering events and do not require an iterative nonlinear
equation solver. They are therefore much faster than their analog counterparts [1].
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1.2 Challenges of mixed-signal verification

As complexity of ICs increases, the verification task is growing rapidly. The main challenge
in verifying today's mixed-signal designs is that traditional direct test verification methods are
becoming much harder to apply [1].
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Figure 3: Results of a 2011 survey showing biggest mixed-signal verification challenges [3].

As shown in Figure 3, analog simulation, as a component of the mixed-signal verification,
is a major bottleneck. Advancements in SPICE simulation, such as Fast-SPICE, provide
additional speed and capacity at the cost of some accuracy however a single simulation run
could take days even with the fastest simulator.

To tackle the poor performance of SPICE, many mixed-signal teams are turning to analog
behavioral modeling. This approach can increase simulation speed, but the creation of good
models can be challenging.

A 2011 Design Automation Conference (DAC) panel [6] discussed the need for analog
design and verification to become more like digital, more structured, and more top-down.
Debug methodologies such as Assertion-based verification (ABV), Metric-driven verification
(MDV) and Universal Verification Methodology (UVM) need to be introduced for analog and
mixed-signal designs [5].
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2 MODERN MIXED-SIGNAL VERIFICATION
METHODS

In order to properly verify today's complex mixed-signal ICs, several verification techniques
have been recently introduced into mixed-signal world.

2.1 Behavioral modeling

Behavioral modeling is a key component in a mixed-signal verification methodology.
Describing analog and mixed-signal blocks in a higher level of abstraction makes mixed-
signal simulation more effective. Since creation of models is not a simple task, there are
several challenges:

e The intended purpose and scope of the model must be well understood and suitable
model architecture/template chosen. In a top-down methodology, models are
developed before circuits are available and for functional verification at the system
level a simpler model might be sufficient. In bottom-up approach, the model might
need to match an already implemented block for performance verification, and thus a
more accurate model is used.

e The model must be validated to make sure that it is sufficiently equivalent to circuit
or specification with required accuracy.

e The model must be kept in sync with changes in the circuit or specification.

e The model needs to be written in way that does not cause convergence issues during
simulation.

e Modeling is hard to automate and typically requires specialized engineering talent.
Model creation requires an understanding of analog and mixed-signal simulation
algorithms, knowledge of analog and mixed-signal circuits, design techniques, coding
and debugging.

Analog and mixed-signal modeling has a wide range of possible features to model.
Depending on complexity, development of a model can take from minutes to months, and the
simulation can run a rate slower than the transistor-level design to a million times faster.
There is no single correct modeling approach, but there are areas where poor decision in
modeling dimensions can result in models, that are not suitable for intended tasks [4].
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Types of modeling

It is common, to use variety of several modeling formats during verification of a large IC.
Typical formats are:

Device based design (Spectre, SPICE) - schematics built using process-specific
devices is the standard transistor-level design technique. A macromodeling approach
that uses generic elements and dependent source to define simple block operation can
also be used.

Analog modeling (Verilog-A) - defines analog description of relations between
current/voltage.

Mixed-signal modeling (Verilog-AMS, VHDL-AMS) - allows description of both
analog and digital behavior for corresponding portions of the block.

Discrete real number modeling (Verilog-AMS, VHDL, SystemVerilog) - models
analog block operation as discrete real data. Typically ignores impedance effects.

Logic modeling (Verilog, VHDL, SystemVerilog) - model defines discrete logic
data flow, ignores analog operations [3].

Figure 4 shows the tradeoff between simulation accuracy and performance among SPICE,
Fast-SPICE, analog behavioral models (Verilog-A, Verilog-AMS, VHDL-AMS), real number
models and pure digital simulation. These numbers can vary significantly for different
applications. SPICE level simulations are used as a golden reference simulation, analog
behavioral modeling provides wide range of accuracy and performance. Digital models may
be sufficient for verification tasks like connectivity checks and real number models provide
high simulation performance with restricted accuracy [2], [7].

A
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FastSpice
>
o II
] |
5 Verilog-AMS |
8 VHDL-AMS
<
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SO >
1 20x 100x 500x 10K x

Figure 4: Model accuracy vs. performance gain for mixed-signal simulation [7].
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Another important factor is the required effort to set up a simulation and create the model.
Figure 5 illustrates the general trends. Although SPICE simulations run slowly, they are easy
to set up. Analog behavioral model creation effort can range from hours to weeks, Real valued
models are inherently restricted to the signal flow approach and analog convergence is not an
issue. Consequently, the modeling effort is significantly lower compared to analog behavioral
models and the same applies for pure digital models [2], [7].

A
+ Verilog-AMS
8 VHDL-AMS
—
LLl
Real/ __
FastSpice Wrey E_”r_e I ._
(Turbo)Spice Performance
— >

1.0 20x 100x 500x 10K x

Figure 5: Required effort vs. performance gain for mixed-signal simulation [7].

To choose what types of models should be developed, it is important to understand the
purpose, capabilities and limitations of each style of modeling.

2.1.2 Discrete digital modeling

Pure digital solvers can be used to model the digital input/output characteristics of a system.
Available languages include Verilog, SystemVerilog and VHDL. This approach does not
handle analog signals, but is extremely efficient at handling logic and timing relationships
using a discrete event simulation kernel. It is commonly used for pure digital modeling and
for black-boxed analog subsystems, where only the digital operations are modeled. The
discrete event simulation approach can be extended to model analog signals as discrete values
(Real number modeling) [4].
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2.1.3 Continuous analog modeling

Pure analog languages (SPICE-like) can be used to model the electrical nature of a system.
Verilog-A is the standard language for analog behavioral modeling. The language creates a
description of the interrelationships between voltages and currents in the system. Impedance
characteristics along with integral and derivative dependencies can be written directly.
Verilog-A model is converted into a set of simultaneous equations (nonlinear, ordinary
differential equations) suitable for a simulator. The built-in models for transistors and other
components are also defined internally to create sets of equations in a similar format. During
transient analysis, matrix-based numerical analysis techniques are used to solve the complete
set of voltage and current equations at each analog time step.

Well-defined analog models can result in a speedup, in the range of 10x to 50x, compared
to transistor-level models. Simulation speed depends on the size and complexity of the
equations to be solved and additionally on the time step used in the transient simulation. The
performance increase from usage of behavioral models is based on the reduction in the
number of equations and nodes in the system and the ability to take larger time steps due to
fewer lower-level nonlinearities in the system.

If logic signals are present in the analog model, the must be converted to electrical
signals that swing between defined voltage levels with specified rise and fall times. Analog
simulations of very active logic networks often simulate relatively slowly due to the small
time steps required during each logic transition. A simulation performed using separate analog
and digital simulators using Inter-Process Communication (IPC) between the simulators can
suffer from the same speed problem, because all logic signals must be converted to analog
waveforms before usage on the analog side of the co-simulation environment, resulting in
similar small time step issues [4].

2.1.4 Mixed-signal modeling

Mixed-signal simulation combines the analog continuous time and discrete digital solvers
within a single simulator. For model description, modeling languages Verilog-AMS and
VHDL-AMS can be used. Mixed-signal languages allow the most natural modeling of mixed-
signal systems, since the analog parts can be modeled with the standard electrical modeling
approach, while the digital portions can be modeled using discrete modeling techniques. Data
and events are transparently passed between the two simulation algorithms. This is also the
preferred language for writing mixed-signal testbenches. Verilog-AMS code can be used to
write procedures that read both analog and digital quantities, making it an optimal
environment for mixed-signal verification testbench development. Real number modeling
techniques can also be used in these languages.

By using well-defined AMS models, simulation speedup depends on the amount of
transistor-level circuitry being replaced. Employing AMS techniques removes the digital
circuitry from analog simulation engine, and the replacement of the remaining analog circuits
with AMS operations can speed up the analog portion by a factor of 10x to 50x [4].
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2.1.5 Real number modeling

Real number modeling (RNM) is a special technique which models electrical signals by
representing them as a time-varying sequence of real values. In a typical analog simulator, the
models define a set of equations which the simulator augments via addition of topology
constraints using Kirchhoff's laws, and then it solves the overall constrained system of
simultaneous equations at each time step to compute the voltages and currents from those
equations. In a discrete real environment, there are no voltage/current equations, no
Kirchhoff's laws, and no simultaneous equation solution step. The output is directly computed
from the input, ignoring currents and feedback mechanisms that could have caused
interdependencies between drive and load in electrical environment [4].

The concept of RNM is straightforward. If the input/output relationship is a direct transfer
characteristic, a mathematical expression can be written that describes how to update the
output whenever input changes. Checking for proper biasing is also simple. The power
supply, bias current and voltage inputs would be passed into the model as real numbers and
the simulator would check if they are within reasonable tolerance. The outputs would only be
driven if the proper bias and control are applied [4].

It is already a common practice to verify subsystems at the transistor level, and then use
behavioral models in higher-level simulations, so it is a natural extension to create that
behavioral model using RNM rather than AMS modeling techniques [4].

Many languages support RNM including Verilog, SystemVerilog, VHDL, and Verilog-
AMS. The first three support a real data type, while Verilog-AMS supports real-wire or wreal.
Verilog-AMS is more advanced in the area of connect modules, while VHDL is slightly more
flexible in terms of resolution function [2], [7].

Verilog real System-Verilog DC(Under Development)
¢ Module internal usage of real e User defined types
variables ¢ User Defined Resolutioin Functions

* No real value ports (requires real
2bits/bits2real)

* No support for X/Z state

* Definition of a net type based on its
connectivity

¢ No multiple wreal driver VLA L

e Easy interaction with analog

VHDL real  Direct connection to electrical nets
* Real valued ports using E2R and R2E connect modules
¢ Resolution function e Disciplines association

* Multiple drivers * Multiple wreal driver support

¢ User-defined types e Ability for scope-based wreal

« Limited connection to analog resolution function specification

¢ |dentification of high-
impedance/unknown state (X/Z
support)

Figure 6: Language support for real number modeling [2].
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2.1.6 Combined approaches

When working in an AMS environment, it is common to develop models that use a
combination of techniques. For example, an RF receiver could be modeled using RNM
techniques for the RF signal path, electrical for the baseband signals, biasing and power
supplies, and discrete logic for control signals. Such approach has a benefit of reasonable
simulation times due to the high-speed signal processing and digital control performed in the
discrete environment, along with easy interface to transistor-level subsystems from the analog
baseband and bias connections [4].
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2.2 Assertion-based verification

By definition, an assertion is a check against the specification of a design that captures the
intended behavior. Assertion-based verification is a powerful verification approach, by which
can designers verify their designs by writing the assertions into blocks to test whether the
blocks work correctly in common scenarios. They act as monitors during simulation,
detecting errors close to their source and reporting both errors and coverage information

[51. [8], [9].

Assertions are written during development of the design and the verification environment.
Both designers and verification engineers can be involved in identifying requirements and
capturing them as assertions. Through the use of assertions, verification can start earlier while
detection and removal of bugs is faster. Also in contrast to traditional way of eye-balling
waveforms and tracing them back to failure, graphical assertion browser leads to quicker
identification of bugs as shown in Figure 7 [5], [9].
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Figure 7: SimVision assertion browser shows failed assertion [12].

In the digital world, assertion-based verification is a well established methodology that has
evolved to meet the needs of logic designers. It is based on standard assertion languages such
as PSL and SVA. Assertions can for instance provide a formal framework for: [5]

e Checking a set of behavior of a signal that must occur independently on time.

e Checking a behavior of a signal that must occur within a certain time frame.

e Checking boundary conditions that must trigger a set of behavior.

e Specifying values or sequences that would describe an error condition.

e Watching signal value of a certain signal critical to the functionality of the design.
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2.2.1 Assertions in mixed-signal space

Certain form of assertions already exists in the analog domain. The SPICE Device Operating
Condition Checkers can be used to set a custom characterization check that specifies the safe
operating conditions of the circuit. These checks are useful to verify the device-level
characteristics but cannot be used for verification of more complex circuit conditions [10].

Major difficulties in verification of analog or mixed-signal systems are:

Absence of a consistent language and methodology to express the verification intent in
the form of assertions across the spectrum of continuous, discrete event-driven and
mixed-signal systems.

Information expressed by one group of design or verification engineers, in the
analog/mixed signal domain, does not flow easily to another group, or from one level
of design abstraction to another.

Absence of a standard verification plan which would include analog or mixed-signal
blocks. It is not possible to combine items tested in isolation, with the same items in
context of the complete system. This challenge includes verifying aspects like current
leakage, power sequences or noise figures from respective blocks in a context of full
system.

In a view of the challenges mentioned above, it is natural to attempt to apply the well
established concepts of assertions from digital space into analog and mixed-signal domains.
Two standard groups are working towards standardizing analog/mixed-signal assertions [5]:

The analog System Verilog Assertions committee is focused on analog/mixed-signal
extensions to the SVA subset of the SystemVerilog language.

The SystemVerilog-AMS (SV-AMS) committee is working on alignment of Verilog-
AMS with the SystemVerilog into new SystemVerilog-AMS standard [13].
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2.2.2 SystemVerilog Assertion SVA

SystemVerilog Assertions (SVA) is a legal subset if the SystemVerilog P1800-2012 standard.
SystemVerilog deals with discrete logic data flow and does not allow the presence of
continuous domain object (2.1.1). However, recent extensions to SystemVerilog allow the
usage of real data types (2.1.5), which may be used to connect real valued ports to the
electrical domain by inserting ,,electrical to real“ connect modules as shown inFigure 8 [5],
[10].

Usability of SystemVerilog Assertion is restricted to digital and real net types. An analog
quantity of interest (node voltage, current) has to be converted into real data type in order to
perform a simulation. A major advantage of this is the ability to use the same testbench with
different model types. The same assertion that can be used to check a Verilog model of an
analog block can be used later on in the design when SPICE netlist is available [15].

»

" Digital Block

analog_out m

digital_out|e— =~
SystemVerilog e (Verilog-D)

Testbench

»
» »

i -
/ E2R\ (Verilog-AMS)

analog_out in
A

real analog out;
reg [@:size-1] in;
wire [0:size-1] digital_out;
sequence S1;
real myreall, myreal2;
((digital out == in)[*5], myreall = analog out) ##1 myreall > 0.5;
endsequence
sva_opcheckl : assert property (@(posedge clk) S1);

Figure 8: SystemVerilog Real variable connecting to Verilog-AMS electrical domain [12].
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2.2.3 Verilog-AMS PSL

Writing assertions in Verilog-AMS is possible through Property Specification Language
(PSL). Unlike SVA, Verilog-AMS PSL Boolean expressions can contain analog expressions.
They can appear in clocking expressions and as arguments in property and sequence
instances, when there is a single top-level clock defined [5], [10], [12].

electrical int_node, int_node2;
reg clk;

// psl mixed _signal check:
// assert always (clk -> next(V(int_node2) < 0.6))
@(cross(V(int_node) - 1.25));

Figure 9: Assertion containing analog expression in Verilog-AMS PSL [12].

Verilog-AMS PSL also supports real number models (2.1.5) which are in Verilog-AMS
represented by Wreal data type. Expressions involving wreal objects can appear within PSL
assertions in Boolean expression, clocking expressions and as arguments in property and
sequence instances [5], [12].

2.2.4 PSL vs SVA

PSL and SVA have similar capabilities, assertions written in either language are sufficient
to describe a set of behavior in analog/mixed-signal blocks.

PSL: SVA:

assert always ( always @ (posedge clk)
{req && ack} |=> assert property (
req && ack |=>
(!'req within gnt[->1])
) 7

{!req within gnt[->1]}
) @ (posedge clk);

Figure 10: A simple assertion in both PSL and SVA [16].

Figure 10 shows a simple assertion written in both languages. The assertions are evaluated
according to the rising edge of clk. If req and ack are both true, then req must be false until
the first time point at which gnt is true [16].
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SVA is tightly tied into SystemVerilog and as a result, inherits its expression language
including data types, expression syntax and semantics. SVA can be also written directly into
SystemVerilog design. PSL is a separate language designed to work with many HDLs and
their expression layers. Unlike SVA, it cannot be written directly into designs, but can be
attached to HDL models using binding directives (2.2.5) [16].

The tight coupling of SVA with SystemVerilog means that assertions can be written to
interact with other testbench components without crossing the boundary of a programming
language interface. The failure or passing of an assertion can be defined to trigger an
execution of a specific block of SystemVerilog code which may call an error handling task,
update a testbench coverage database or influence the heuristic parameters of a reactive self-
adaptive testbench [16].

PSL has a structure of multiple abstraction layers and a rich set of operators that can be
used at different levels of abstraction. As a result, PSL provides the capability to write
assertions that range from system-level down to RT level. To summarize - PSL is a multi-
purpose, multi-level assertion language while SVA is tightly connected to SystemVerilog.
Both PSL and SVA have similar capabilities and both can be used in mixed-signal
verification.

2.2.5 Module bound verification units

Module bound verification unit (vunit) is an auxiliary file that is linked to the design file for
simulation. Vunits are mainly used to store PSL assertion code. They can also be used for
storing values in variables/registers. Vunit is a useful feature if the source text of the design
block should not or cannot be modified.

Verification units can be used to add assertions to Verilog, Verilog-AMS, SystemVerilog
and VHDL instances.
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2.3 Metric-driven verification

Metric-driven verification (MDV) is a verification methodology originally used for
verification of large digital designs, where huge amount of state spaces made simulation of all
possible combinations impossible. MDV helped to achieve good functional verification by
coverage-directed random stimulus generation. As functional complexity of today's designs
increases, MDV is being adapted for use with analog and mixed-signal circuits [5], [6].
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Figure 11: Verification flow for analog IP [16].

The concept of MDV methodology is shown in Figure 11. MDV is based on a verification
plan. Verification plan outlines the testing scenarios, coverage metrics and specifies which
features should meet the specification by measurement. These measurements are called
functional coverage. A testbench with automatic stimulus generation is created to check the
functionality and measure coverage of a design. For best verification performance, the analog
circuit should be modeled as a real number model (2.1.5). The methodology can also be
applied to Verilog-AMS models or SPICE netlists.
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3 PRACTICAL PART

Aim of the practical part was to choose one of the mentioned descriptive languages, and
create assertions for verification of power supply control circuit or its blocks. All assertions
were simulated in Cadence SimVision 10.20 using the Virtuoso AMS Designer Simulator.

3.1 PSL and SVA assertions

To decide which descriptive language is more suitable, a simple assertion written both in PSL
and SVA was tested.

Assertion below tests, that voltage on selected node stays within specified range, when
controlling logic signal is asserted. First part of the Verilog-AMS code defines input ports.
Port in_v is of type electrical and is meant for connection of monitored voltage. Port in_I is
for connection of controlling logic signal. Parameters v_max and v_min specify desired
voltage range. Next part defines 500 MHz clock whose rising edge is used for assertion
evaluation. Final part is the PSL assertion itself.

//Verilog-AMS HDL for "cnl9Proj", "assertion 1" "verilogams"

“include "constants.vams"
“include "disciplines.vams"
‘timescale 1ns / 10ps

module assertion 1 ( in v, in 1 );

input in v, in 1;
electrical in v;
logic in 1;

parameter real v max = 5.1;

parameter real v min = 4.9;

L1777 7777077777777 7777 777777777 77777777777777
reg clk;

initial clk=0;

always #1 clk=~clk;

L1777 7777777777777 7777777777777 777 77777777777
//psl default clock = (posedge clk);

//psl voltage check: assert always

// ((in 1 == 1) -> ((V(in v) >= v _min) && (V(in v) <= v _max)));
endmodule
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Following code in SVA describes the same assertion. This time, port in_v is of type real,
because System Verilog does not allow presence of continuous domain objects.

//systemVerilog HDL for "cnl9Proj", "alSVv" "systemVerilog"
‘timescale 1ns / 10ps

module alSv( in v, in 1 );

input in v, in 1;
real in v;
logic in 1;

parameter v _max =
parameter v min =
L1777 777777777777
reg clk;
initial clk=0;
always #1 clk=~clk;
L1777 7770077777777 7777777777 777777777777777777
v_check SVA: assert property (
@ (posedge clk)
((in 1 ==1) |-> ((in v >= v _min) && (in v <= v _max)))

5
4
//

~ O

L1177 777777777

) ;

endmodule
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Although both assertions are the same, simulation results differ. Figure 12 shows monitored
voltage (in_v) and controlling logic signal (enable). PSL assertions within Verilog-AMS test
block make evaluations with voltage values sampled every positive edge of the defined clock.
SVA assertions make evaluations with converted real values. This converted wave (in_Real)
slightly differs from the original (in_v). Because of these conversion inaccuracies, assertion
states are detected several clock cycles late, or not detected at all. This is obvious from Figure
12 at time 3.5 ps, where PSL assertion detects failure but SVA does not.

Simulation results show three types of resulting assertion states. ,,Inactive" state means,
that specified first condition ( enable == 1 ) was not met and assertion was not evaluated.
States ,.finished” and ,,failed" indicate, whether voltage stayed within specified range.

0 | 1us 2us 3us 4us 5us 6us

TimeA = 3.509us

enable

=

in_v

ol =

voltage_check

E @ inactive m E:E": finished 3 inactive finished D

in_Real

ol =

v_check_SVA

@ inactive |§:Efb‘ E finished inactive finished |

Figure 12: Simulation results of PSL and SVA assertion in SimVision.

The conversion inaccuracies could be probably suppressed by editing the electric to real
conversion modules. Due to the fact that Cadence Verilog-AMS PSL supports analog
expression arguments in property and sequence instances, Verilog-AMS PSL seems like more
suitable choice for the purpose of mixed-signal verification. For this reason, all following
assertions are created in this language.
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3.2 Assertion clocking

This chapter mentions three basic approaches in assertion clocking.

3.2.1 Defined clock

The most basic form of assertion clocking is using a system clock. If there is no clock (analog
circuits) , clock for assertion evaluation can be explicitly declared in a Verilog-AMS code, as
in chapter 3.1. Values of voltages and currents are then sampled every positive or negative
clock edge.

The obvious drawback of assertions clocked this way is, that it cannot detect glitches that
occur for time intervals shorter, than period of defined sampling clock. For instance a 1 MHz
sampling clock (1 us period), would unlikely detect a 20 ns error. Increasing the clock
frequency would lead to better accuracy, but it would also slow down the simulation.

3.2.2 Analog event function
Verilog-AMS supports function cross as clocking event.
cross (expression , direction, time_tolerance, expression_tolerance)

The cross function is used for generating a monitored analog event. Event is generated
each time the expression crosses zero in the specified direction. The direction can only
evaluate to +1, -1, or 0. If set to 0, or not specified, event will occur on both signal crossings.
If set to +1, event occurs on rising transition, if -1, then the event occurs only on falling
transitions of the signal. For example cross( V(in) - 2.5, +1) ) generates event every time the
voltage at node in crosses 2.5 Volts in a positive direction [17].

This approach should have minimal effect on simulation time. The drawback is that every
crossing has to be explicitly declared, which may be laborious in more complex assertions
with several signals.

3.2.3 Variable clock
Variable clock can be created using absdelta event function in Verilog-AMS.
absdelta (expression , delta, time_tolerance, expression_tolerance)

The absdelta function generates event every time the expression changes more than delta +
expression tolerance, relative to the value at previous event time. Time tolerance specifies a
time increment after the previous time point. No event is generated when the current time is
within tolerance of previous event time. Specified time tolerance that is smaller than time
precision of the simulation is ignored and the time precision is used instead [17].

Example of variable clock code is in Appendix B, this method of assertion clocking has
great accuracy with reasonable impact on simulation time.
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3.3 Examples of created assertions

This chapter contains examples of several types of PSL assertions that were used in
verification of power supply control circuit block.

3.3.1 Voltage level monitor assertion

This assertion is similar to those mentioned in chapter 3.1. Difference is, that instead of using
defined clock for evaluation, Verilog-AMS analog event function cross is used.

//Verilog—-AMS HDL for "cnl9Proj", "v level ena" "verilogams"
g J _ _ g
"include "constants.vams"

"include "disciplines.vams"

module v _level ena ( in v, in 1 );
input in v, in 1;

electrical in v;
logic in 1;

parameter real tresh = 0.1
parameter real v max = 5.1;
parameter real v min = 4.9;

L1111 11177770070777117177777007771117777177771117

//psl voltage check: assert always

// ((in. 1 == 1) -> (V(in v) >= v _min) && (V(in v) <= v _max))

// @(cross(V(in v) - tresh, 0) or cross(V(in v) - v _min, 0) or
// cross(V(in v) - v _max, 0) or in 1);

endmodule

For monitoring voltage level with controlling logic signal, assertion needs to be evaluated
when voltage crosses upper or lower tolerance value or when controlling logic signal changes.
This is ensured by adding cross functions for these cases.

TimeA = 1.86us

0 |1u5 2us 3us 4us Sus

voltage

B
enable

B

] [l

voltage_check

inactive

|

S]]

Efaili[b@f ab | finished mfaib{ inactive

Figure 13: Voltage level monitor - simulation result in SimVision.
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3.3.2 Voltage difference assertion

This assertion monitors voltage difference between two nodes. When this difference exceeds
value set in parameter delta_vmax, assertion fails, as can be seen in Figure 14.

//Verilog-AMS HDL for "cnl9Proj", "delta v" "verilogams"
“include "constants.vams"
"include "disciplines.vams"

module delta v (in vl,in v2 );

input in vl, in v2;
electrical in vl, in v2;

parameter real delta vmax = 200m ;

N,

//psl delta v check: assert never

// (( vl - v2 > delta vmax ) || ( v2 - vl > delta vmax ))
// @(cross ((V(in v1) - V(in v2)) - delta vmax, 0) or

// cross ((V(in v2) - V(in v1)) - delta vmax, 0));
endmodule

0 |1us |2us

vl
= _/h’/—\

v2
i
delta_v_check

[ [onils finished E failed | finished

Figure 14: Voltage difference assertion - simulation result in SimVision.
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3.3.3 Voltage start-up assertion

Assertion monitors voltage during start-up and checks, that it stabilizes in specified time
without undershoots or overshoots.

There are several parameters in the assertion code - t_to_stabil_us specifies the maximum
acceptable time in which the voltage must stabilize within desired value range, given by
parameters v_stable_max and v_stable_min. Parameter stablefor_us defines the time period
for which the voltage must stay within range, in order to be considered stable.

When voltage crosses zero in positive direction, value of absolute time is stored into real
variable starttime. Every time voltage crosses one of the boundary stable values, time is
stored in real variable stoptime. If voltage stays in range for 5 us (stablefor_us), assertion gets
evaluated and both times are subtracted. Assertion fails if the time difference is greater than
10 us given by parameter t_to_stabil_us. If the voltage does not stabilize in time greater than
22.5 us (timeout), assertion fails.

//Verilog—-AMS HDL for "cnl9Proj", "startup" "verilogams"
“include "constants.vams"

"include "disciplines.vams"

‘timescale lus / 10ns

module startup (in);
input in;
electrical in;

parameter real t to stabil us = 10;
parameter real stablefor us = 5;
parameter real v_stable max = 5.05;
parameter real v stable min = 4.95;
parameter real max overshoot = 5.5;
parameter real max undershoot = 4.5;

real starttime, stoptime, t stable, timeout;
reg clk, evaluate;
integer count, count2;
L1777 7777777777777 7777777777777 7777777777777 77777777777
initial
begin
count = 0;
count2 = 0;
evaluate =
clk = 0;
t stable = t to stabil us * le-6;
timeout = 1.5 * (t _to stabil us + stablefor us);
end

always #1 clk=~clk;

N NN X-b 4
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L1177 7 7707777777 777777777777777777777/777777/777777/7777777/starct
always @ (cross(V(in) , 1))
begin
count2 = 0;
starttime =
end

Sabstime;

always @(cross(V(in) - v_stable max, 0) or cross(V(in) - v _stable min, 0))
begin
stoptime = Sabstime;
count = 0;
end
L1177 07 7777077777077 7777777777 77777777777777777777/777////stable count
always @ (clk)

begin
count = count + 1;
if (count == stablefor us)
begin
evaluate = ~evaluate;
end
end

L1777 007 7770777707777 7777777077777 7777777777/777777/7/7/7//time-out count
always @ (clk)

begin
count2 = count2 + 1;
if (count2 >= timeout)
begin
evaluate = ~evaluate;
end
end

N N N s
//psl v_start tstable check: assert always
// ((V(in) > 0) ->((stoptime - starttime) <= t stable)

// 1l ((V(in) >= v_stable max) && (V(in) <= v_stable min)))

// @ (cross (V(in), 1) or evaluate);

//

//psl max_overshoot check: assert always

// (V(in) <= max overshoot) @ (cross(V(in) - max overshoot, 1));

//

//psl max_undershoot check: assert always

// (V(in) >= max undershoot) @(cross(V(in) - max undershoot, -1));
endmodule
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In Figure 15, monitored voltage stabilizes in less than 10 ps, and there is no overshoot or

undershoot above allowed 4.5 V and 5.5 V. Voltage in Figure 16 stabilizes in time, but both
overshoot and undershoot assertions fail.

0 |5us 10us 15us 20us 25us
ol n =%
v_start_tstable_check [~ U
E @ inactive X finished
max_overshoot_check F———
3
max_undershoot_check | inactive
=
Figure 15: Voltage start-up assertion - simulation result in Simvision.
0 |5us 10us 15us 20us 25us
cdll » =
v_start_tstable_check
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hoot_check
"EI(’O-[S OO hee Tmfaﬂed
max_undershoot check | inach 'g:b failed
3]

Figure 16: Voltage start-up assertion - second simulation result in Simvision.
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Figure 17 shows the case where assertion failed after 22.5 ps due to timeout.
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Figure 17: Voltage start-up assertion - third simulation result in Simvision.
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3.3.4 Transition time assertion

Assertion checks, that transition between logic 0 to logic 1 and vice versa, occurs in specified

time.

There is auxiliary Verilog-AMS code with 2 always blocks for each assertion. During
transition from logic 0 to logic 1, values of absolute time are stored when signal crosses 10
and 90 percent of logic high value in positive direction. For 5 volts logic, time is stored when
signal crosses 0,5 V and 4,5 V. At 4,5 V - assertion is evaluated and time difference is
compared to maximum rise time (tr_rise_max). The same principle is used for transition from

logic 1 to logic 0.

//Verilog-AMS HDL for "cnl9Proj", "transition" "verilogams"
"include "constants.vams"
"include "disciplines.vams"

module transition (in 1);
input in 1;
electrical in 1;

parameter real tr rise max = 500n;
parameter real tr fall max = 500n;
parameter real v 90 = 4.5;
parameter real v 10 = 0.5;

real rise 01;
real rise 09;
real fall 09;
real fall 01;

L1177 7777777777 777777777/77777777777777/7///7/t rise check
always @(cross(V(in 1) - v_10, 1))
rise 01 = Sabstime;

always @(cross(V(in 1) - v_90, 1))

rise 09 = Sabstime;
L1770 7770777777777 777777/777777/77777777/7777/7/7€ £fall check
always @(cross(V(in 1) - v_90, -1))

fall 09 = Sabstime;

always @(cross(V(in 1) - v 10, -1))
fall 01 = Sabstime;
L1770 77777 7777777777 77777777777777777777777777777777777777
//psl t rise check: assert always
// ((rise 09 - rise 01) <= tr rise max)
// @(cross(V(in 1) - v_90, 1));

//psl t fall check: assert always

// ((fall 01 - fall 09) <= tr fall max)
// @(cross(V(in 1) - v 10,-1));
endmodule
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As can be seen in Figure 18, both assertions failed after the first transition, because
parameters tr_rise_max and tr_rise_min were exceeded. The following three transitions from
logic 0 to logic 1 happened in time, the last one caused assertion to fail.

TimeA = 6.66us
0 |1us |2us |3us |4us |5us |6us Tus 8us Sus |10us |11us |12us |
in
=
/
t_rise_check r/
[ [l i np failed | finished Efailed
[ [l inactive Efailed | finished E’failed
t fall check

Figure 18: Transition time assertion simulation results in SimVision.
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3.3.5 Setup and hold time assertion

Following assertions check, that the data signal is held steady for specified time period before
positive edge of the clock (setup time). After the clock event, the data signal should stay
steady for another time period (hold time).

Setup time assertion stores time values during signal transitions. Assertion is evaluated,
when clock reaches logic 1. Hold time assertion code contains a counter that is used to
generate an assertion evaluation event. This event is generated when data signal stays in its
logic level for sufficient time after the clock transition. The hold time assertion is evaluated
when data signal changes, or when counter evaluation event is generated.

//Verilog-AMS HDL for "cnl9Proj", "setup hold" "verilogams"

"include "constants.vams"
"include "disciplines.vams"
‘timescale 1ps / 10fs

module setup hold (in data, in clock);
input in data, in clock;
electrical in data, in clock;

parameter real setup time min = 50n;
parameter real hold time min = 50n;
parameter real v50 = 2.5;
parameter real v90 = 4.5;

real setup timel, setup time2, ht;
integer count, start, finished;
reg clk, eva ht;

initial
begin
ht = hold time min * lel2;
clk = 0;
eva _ht = 0;
end

L1777 7777777777777 777777777 7777777777777/7777777777777/7//setup time
always @(cross(V(in data) - v50, 0))
setup timel = Sabstime;

always @(cross(V(in clock) - v50, 1))

setup time2 = Sabstime;
[177077 7777777777777 777777777/7777777777777/77/7/7777/7/77/77/77/hold time
always @(cross(V(in clock) - v50, 1))
begin
count = 0;
start = 1;
end
always @(cross(V(in clock) - v50, -1))

finished = 0;
/177777777 77777777777777777/77/7777777777777/77/7/77/77/7/77/77/77/hold time



[777777777777777777777/7777/7777777/77777/7777777/7777/777/7/777//hold time
always #1 clk=~clk;
always @ (clk)

begin
count = count + 1;
if (count == ht && start == 1)
begin
eva ht = ~eva_ ht;
start = 0;
finished = 1;
end
end

N s

//psl setup time check: assert always

// ((setup time2 - setup timel) >= setup time min )
// @(cross (V(in clock) - v90, 1));

//psl hold time check: assert always

// ((((setup_timel > setup time2) && (start == 1)

// && (finished == 0)) || ((setup time2 > setup timel)))
// ->(finished == 1))

// @ (cross (V(in data) - v50, 0) or eva ht);

endmodule
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During the first transition, both assertions finished successfully. Setup and hold times were
greater than 50 ns declared in parameters setup_time_min and hold_time_min. After the
second transition, both assertions failed, because setup and hold times were too short. During
the third clock transition, both assertions again finished successfully. The fourth transition
was a hold time failure, because data changed to logic 1 before hold time period elapsed.

Baseline =0
0 |200ns 400ns 600ns 800ns

clock
=
data
i
setup_time_check
[+ inactive X finished Efailed | finished
E @ inactiwve U inactive ]_K inactive X finished l B inactiwve D( inactiv

hold_time_check

Figure 19: Setup and hold time assertions simulation results in SimVision.
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3.4 Case study: Voltage supply block

Assertions mentioned in chapter 3.3 were used for verification of a supply block from power
supply control circuit. The supply block creates internal voltage supplies for analog and
digital parts of the circuit. There are also voltage and current references with controlling logic.

3.4.1 Monitored events

The main subject of the test was to monitor the four voltage supplies (vdda, vddd, vdd_int,
and vdd_osc) and check, that when logic signal enVref is asserted, they never go above
maximum specified values (5.3 V, 5.4 V, 52 V and 5.2 V) . Also, the voltage difference
between them should never be greater than + 100 mV or = 200 mV. When signal enVref is
deasserted, voltages on vdda and vddd should not exceed 30 mV. On vdda and vddd is also
applied the voltage start-up assertion from chapter 3.3.3, which ensures that these voltages
stabilize in time. Two voltage (5 V, 0.2 V) and current (1 pA, 5 nA) references are also tested
and should not go out of specified range. Assertion code can be seen in Appendix A.
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Figure 20: Testbench of voltage supply block
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Simulation results
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Figure 21: Simulation results of supply block assertion clocked by cross function.
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The simulation results can be seen in Figure 21. The voltage supply block should work for
vce ranging between 7 V to 18 V. Supplies vdd_osc and vdd_int are independent from
controlling signal en_vref. During the simulation, vcc varies from 0 V to 12 V and once it
crosses the threshold of 7 V, the monitored voltages reach their nominal value. Loads are
connected for short time periods (1 ms) from time 25 ms to 75 ms, which resulted in several
assertion failures. The total failure count can be seen in Table 1.

Figure 22 shows detail of vdda and vddd start-up at time 125 ms, after signal en_vref is
asserted. Both voltages stabilized in less than 30 us without overshoots.
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dd L
B v =
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E @ max_overshoot_check inactive
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Figure 22: Detail of vdda and vddd at time 125 ms with start-up assertions.
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Apart from running the simulation with assertions shown in Appendix A, other clocking
methods mentioned in chapter 3.2 were also used. The source codes are shown in Appendices
B and C.

The simulation results can be seen in Figure 23, where assertion trios show different
results. It is obvious, that assertions evaluated by defined 50 kHz clock cannot detect errors
that occur for short time periods. For instance, assertion delta_osc_int, which monitors
voltage difference between vdd_osc and vdd_int failed six times since time 100 ms without

detection.
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Figure 23: Simulation results for different assertion clocking methods
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Table 1: Assertion failures from simulations

errors detected

assertion name
cross variable clock clock 50 kHz clock 1 MHz clock 2 MHz

vdda_max_check 1 1 0 0 0
vdda_max_ena0_check 5 5 3 4 4
vddd_max_check 1 1 0 1 1
vddd_max_ena0_check 6 6 3 4 3
vdd_osc_max_check 24 24 4 9 10
vdd_int_max_check 24 24 5 9 9
delta_osc_int_check 14 14 2 3 5
delta_vdda_int_check 20 20 5 8 7
delta_vdda_vddd_check 12 12 5 8 8
delta_vddd_osc_check 20 20 7 10 14
ref _11u_check 13 13 4 6 6
ref _15u_check 18 18 4 6 7
ref_V5v_check 8 8 4 6 5
ref_V02v_check 9 9 4 6 3

Table 1 shows list of assertions and their failure count for all used assertion clocking methods.
Assertions evaluated using cross function or variable clock detected all errors while 2 MHz
clock detected less than half at almost 40 % simulation time increase. Variable clock brought
14 % increase in time, however it is probable, that this slowdown might be greater while
monitoring some rapidly changing signal. The most reasonable method of assertion evaluation
seems to be the cross function, which minimally affected the simulation time and detected all

errors.

Table 2: Simulation times for different assertion clocking methods.

assertion clocking

simulation time

simulation time increase

errors detected

(s) (%) (%)

no assertions 617 - 0
cross 622 1 100
variable clock 702 14 100
clock 50 kHz 642 4 29
clock 1 MHz 721 17 46
clock 2 MHz 845 37 47
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4 CONCLUSION

This master thesis deals with modern verification methods of mixed-signal integrated circuits.
The thesis is divided into two parts. The first theoretical part deals with the challenges of
mixed-signal verification, explains the difference between analog and digital domains and
lists some recently featured verification methods that can be used in mixed-signal verification,
such as real number modeling, assertion-based verification and metric-driven verification.

The practical part focuses on assertion-based verification. At first, PSL and SVA
descriptive languages are compared on an example of voltage monitor assertion. Verilog-
AMS PSL was chosen as a more suitable language for mixed-signal applications, due to its
support of analog expressions in arguments. Several methods of assertion clocking were also
discussed.

The practical part further contains several examples of created assertions usable in
verification of mixed-signal circuits, such as voltage level monitor, voltage difference
monitor, voltage start-up monitor, transition monitor or setup and hold time monitor. These
assertions are then used in verification of power supply block from power supply control
circuit.

The created verification code discovered 175 errors during simulation of the tested block.
These errors were mostly caused by voltage peaks during load switching. Additional
simulations were run with the purpose of comparing different types of assertion clocking in
terms of detected errors and simulation time. The results show, that the analog cross function
is the most reasonable way of assertion clocking in analog circuit, for it detected all errors at
minimal simulation time increase.

The assertion based verification method proved to be useful tool for debugging analog or
mixed-signal circuits, because it leads to quicker identification of bugs that might otherwise
be overlooked during manual waveform inspection. The properties captured as assertions
have varied from the very simple to the reasonably complex and some of the violations would
not be immediately apparent from waveform inspection. Inspection of assertion status makes
it easier to identify and debug issues in the correct context.
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Appendix A: Voltage supply block assertions clocked
by cross function.

//Verilog-AMS HDL for "cnl9Proj", "wm supply assert cross" "verilogams"

“include "constants.vams"
"include "disciplines.vams"

module wm supply assert cross ( vdda, vddd, vdd osc, vdd int, en vref,
r5v0, r0v2, nbu, nlu );

input vdda, vddd, vdd osc, vdd int, en vref, r5vV0, rOvV2, nbu, nlu;
electrical vdda, vddd, vdd osc, vdd int, r5V0, r0V2, nbu, nlu;

logic en vref;

N NN,

parameter real vdda max = 5.3;
parameter real vddd max = 5.4;
parameter real vdd osc max = 5.2;
parameter real vdd int max = 5.2;
parameter real vdd max ena0 = 30m;
parameter real delta vdda vddd = 200m;
parameter real delta vdd osc_ int = 200m;
parameter real delta vdd int vdda = 100m;
parameter real delta vdd osc vddd = 100m;
parameter real vref 5 min = 4.995;
parameter real vref 5 max = 5.005;
parameter real vref 02 min = 0.195;
parameter real vref 02 max = 0.205;
parameter real iref 5u min = 4.75u;
parameter real iref 5u max = 5.25u;
parameter real iref lu min = 0.950u;
parameter real iref lu max = 1.050u;
parameter real tresh = 5m;
parameter real treshI = 15n;

L1170 0777777777777 7777777 7777777777777777777

//psl vdda max check: assert always

// ((en_vref == 1) -> (V(vdda) < vdda max))

//@(cross (V(vdda) - tresh, 0) or cross(V(vdda) - vdda max, 0)
// or en vref);

//

//psl vddd max check: assert always

// ((en vref == 1) -> (V(vddd) < vddd max))

//@(cross (V(vddd) - tresh, 0) or cross(V(vddd) - vddd max, 0)
// or en vref);

//

//psl vdda max ena0O check: assert always

// ((en vref == 0) -> (V(vdda) < vdd max ena0))

//@(cross (V(vdda) - vdd max ena0O, 0) or en vref);

//

//psl vddd max enaO check: assert always

// ((en vref == 0) -> (V(vddd) < vdd max ena0))

//@(cross (V(vddd) - vdd max ena0, 0) or en vref);
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//psl vdd osc max check: assert never

// (V(vdd osc) > vdd osc_max)

//@(cross(V(vdd_osc) - tresh, 0) or cross(V(vdd osc) - vdd osc max, 0));
//

//psl vdd int max check: assert never

// (V(vdd _int) > vdd int max)

//@(cross (V(vdd int) - tresh, 0) or cross(V(vdd int) - vdd int max, 0));
//

//psl delta vdda vddd check: assert never

// (( V(vdda) - V(vddd) > delta vdda vddd ) ||

//  ( V(vddd) - V(vdda) > delta vdda vddd ))
//@(cross((V(vdda) - V(vddd)) - delta vdda vddd, 0)

//or cross ((V(vddd) - V(vdda)) - delta vdda vddd, 0));

//

//psl delta osc int check: assert never

// (( V(vdd osc) - V(vdd int) > delta vdd osc int ) ||

// ( V(vdd int) - V(vdd osc) > delta vdd osc int ))

//@(cross ((V(vdd osc) - V(vdd int)) - delta vdd osc int, 0)
//or cross ((V(vdd int) - V(vdd osc)) - delta vdd osc int, 0));
//

//psl delta vdda int check: assert never

//  (( V(vdda) - V(vdd int) > delta vdd int vdda ) ||

// ( V(vdd int) - V(vdda) > delta vdd int vdda ))
//@(cross((V(vdda) - V(vdd int)) - delta vdd int vdda, O0)

//or cross ((V(vdd int) - V(vdda)) - delta vdd int vdda, 0));

//

//psl delta vddd osc check: assert never

// (( V(vddd) - V(vdd osc) > delta vdd osc vddd ) ||

// ( V(vdd osc) - V(vddd) > delta vdd osc vddd ))

//@(cross ((V(vddd) - V(vdd osc)) - delta vdd osc vddd, 0)

//or cross ((V(vdd osc) - V(vddd)) - delta vdd osc vddd, 0));

//

//psl ref V5v check: assert always

// ((en _vref == 1) -> ((V(r5V0) >= vref 5 min) &&

// (V(r5vV0) <= vref 5 max)))

//@(cross(V(r5vV0) - tresh, 0) or cross(V(r5vV0) - vref 5 min, 0)
//or cross (V(r5V0) - vref 5 max, 0) or en vref);

//

//psl ref V02v check: assert always

// ((en_vref == 1) -> ((V(r0v2) >= vref 02 min) &&

// (V(r0v2) <= vref 02 max)))

//@(cross (V(r0OV2) - tresh, 0) or cross(V(rOv2) - vref 02 min, O0)
//or cross (V(rOv2) - vref 02 max, 0) or en vref);

//

//psl ref I5u check: assert always

// ((en vref == 1) -> ((I(vdda, nbu) >= iref 5u min) &&

// (I (vdda, nbu) <= iref 5u max)))

//@(cross(I(vdda, nb5u) - treshI, 0) or cross(I(vdda, nb5u) - iref 5u min,
//or cross(I(vdda, nb5u) - iref 5u max, 0) or en vref);

//

//psl ref Ilu check: assert always

// ((en vref == 1) -> ((I(vdda, nlu) >= iref 1lu min) &&

// (I(vdda, nlu) <= iref 1lu max)))

//@(cross(I(vdda, nlu) - treshI, 0) or cross(I(vdda, nlu) - iref 1lu min,
//or cross(I(vdda, nlu) - iref lu max, 0) or en vref);
endmodule
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Appendix B: Voltage supply block assertions clocked
by variable clock.

//Verilog-AMS HDL for "cnl9Proj", "wm supply assert clock var" "verilogams"

"include "constants.vams"
"include "disciplines.vams"
‘timescale 1ns / 10ps

module wm supply assert clock var ( vdda, vddd, vdd osc, vdd int, en vref,
r5v0, r0vV2, nbu, nlu);

input vdda, vddd, vdd osc, vdd int, en vref, r5vV0, rOvV2, nb5u, nlu;
electrical vdda, vddd, vdd osc, vdd int, r5V0, r0V2, nbu, nlu;

logic en vref;

L)1 7770777777777 7777 77777 7777777777777/7777/777//var.clock
real clk a;
reg clk = 0;

always @ (absdelta(clk a, 5m, 100p, 1m))

if ((clk a == 1.0) || (clk a == 0.0)) clk = ~clk;
analog begin

clk a =1.0 - clk_a;
end

LI P 0000 r7r77777777777777777777

parameter real vdda max = 5.3;
parameter real vddd max = 5.4;
parameter real vdd osc max = 5.2;
parameter real vdd int max = 5.2;
parameter real vdd max enal = 30m;
parameter real delta vdda vddd = 200m;
parameter real delta vdd osc int = 200m;
parameter real delta vdd int vdda = 100m;
parameter real delta vdd osc vddd = 100m;
parameter real vref 5 min = 4.995;
parameter real vref 5 max = 5.005;
parameter real vref 02 min = 0.195;
parameter real vref 02 max = 0.205;
parameter real iref 5u min = 4.75u;
parameter real iref 5u max = 5.25u;
parameter real iref lu min = 0.950u;
parameter real iref lu max = 1.050u;
parameter real tresh = 5m;
parameter real treshI = 15n;

L1777 7 7777707777777 7777777777777 777777777777 777777
//psl default clock = (posedge clk);

//

//psl vdda max var clk: assert always

// ((en vref == 1) -> (V(vdda) < vdda max));
//

//psl vddd max var clk: assert always

// ((en _vref == 1) -> (V(vddd) < vddd max));
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//psl vdda max enalO var clk: assert always

// ((en _vref == 0) -> (V(vdda) < vdd max_ena0));
//

//psl vddd max enal0 var clk: assert always

// ((en_vref == 0) -> (V(vddd) < vdd max_ena0));
//

//psl vdd osc max var clk: assert never
// (V(vdd osc) > vdd osc max);

//

//psl vdd int max var clk: assert never
// (V(vdd int) > vdd int max);

//

//psl delta vdda vddd var clk: assert never
// (( V(vdda) - V(vddd) > delta vdda vddd )
// ( V(vddd) - V(vdda) > delta vdda vddd ));

//

//psl delta osc_int var clk: assert never

// (( V(vdd osc) - V(vdd int) > delta vdd osc_int )
// ( V(vdd int) - V(vdd osc) > delta vdd osc int ));
//

//psl delta vdda int var clk: assert never

// (( V(vdda) - V(vdd int) > delta vdd int vdda )

// ( V(vdd int) - V(vdda) > delta vdd int vdda ));
//

//psl delta vddd osc var clk: assert never

// (( V(vddd) - V(vdd osc) > delta vdd osc vddd )
// ( V(vdd osc) - V(vddd) > delta vdd osc vddd ));

//

//psl ref V5v _var clk: assert always

// ((en_vref == 1) -> ((V(r5V0) >= vref 5 min) &&

// (V(r5V0) <= vref 5 max))); -

//

//psl ref VO2v_var clk: assert always

// ((en_vref == 1) -> ((V(r0V2) >= vref 02 min) &&
// (V(r0V2) <= vref 02 max)));

//

//psl ref I5u var clk: assert always

// ((en_vref == 1) -> ((I(vdda, nbu) >= iref 5u min)
// (I(vdda, n5u) <= iref 5u max))); -

//

//psl ref Ilu var clk: assert always

// ((en_vref == 1) -> ((I(vdda, nlu) >= iref lu min)

)
// (I(vdda, nlu) <= iref lu max)));

endmodule
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Appendix C: Voltage supply block assertions clocked
by defined clock.

//Verilog-AMS HDL for "cnl9Proj", "wm supply assert clock" "verilogams"

"include "constants.vams"
"include "disciplines.vams"
‘timescale 1ns / 10ps

module wm supply assert clock ( vdda, vddd, vdd osc, vdd int, en vref, r5V0,
r0vV2, nbu, nlu);

input vdda, vddd, vdd osc, vdd int, en vref, r5vV0, rOvV2, nb5u, nlu;
electrical vdda, vddd, vdd osc, vdd int, r5V0, r0V2, nbu, nlu;

logic en vref;

LITTTLI0 0077770000777/ 2Mhz clock
reg clk;

initial clk=0;
always #250 clk=~clk;

NN,

parameter real vdda max = 5.3;
parameter real vddd max = 5.4;
parameter real vdd osc max = 5.2;
parameter real vdd int max = 5.2;
parameter real vdd max enal = 30m;
parameter real delta vdda vddd = 200m;
parameter real delta vdd osc_ int = 200m;
parameter real delta vdd int vdda = 100m;
parameter real delta vdd osc vddd = 100m;
parameter real vref 5 min = 4.995;
parameter real vref 5 max = 5.005;
parameter real vref 02 min = 0.195;
parameter real vref 02 max = 0.205;
parameter real iref 5u min = 4.75u;
parameter real iref 5u max = 5.25u;
parameter real iref lu min = 0.950u;
parameter real iref lu max = 1.050u;
parameter real tresh = 5m;
parameter real treshI = 15n;

L1170 7 0777777777777 777777777 77777777777777777777777
//psl default clock = (posedge clk);

//

//psl vdda max clk: assert always

// ((en vref == 1) -> (V(vdda) < vdda max));
//

//psl vddd max clk: assert always

// ((en vref == 1) -> (V(vddd) < vddd max));

52



//psl vdda max ena0O clk: assert always

// ((en _vref == 0) -> (V(vdda) < vdd max_ena0));
//

//psl vddd max ena0O clk: assert always

// ((en_vref == 0) -> (V(vddd) < vdd max_ena0));
//

//psl vdd osc max clk: assert never
// (V(vdd osc) > vdd osc max);

//

//psl vdd int max clk: assert never

// (V(vdd _int) > vdd int max);

//

//psl delta vdda vddd clk: assert never

// (( V(vdda) - V(vddd) > delta vdda vddd ) ||
// ( V(vddd) - V(vdda) > delta vdda vddd ));
//

//psl delta osc int clk: assert never

// (( V(vdd osc) - V(vdd int) > delta vdd osc int ) ||
// ( V(vdd int) - V(vdd osc) > delta vdd osc int ));
//

//psl delta vdda int clk: assert never

// (( V(vdda) - V(vdd int) > delta vdd int vdda ) ||
// ( V(vdd int) - V(vdda) > delta vdd int vdda ));

//

//psl delta vddd osc clk: assert never

// (( V(vddd) - V(vdd osc) > delta vdd osc vddd ) ||
// ( V(vdd osc) - V(vddd) > delta vdd osc vddd ));
//

//psl ref V5v clk: assert always

// ((en_vref == 1) -> ((V(r5V0) >= vref 5 min) &&

// (V(r5V0) <= vref 5 max))); -

//

//psl ref V0O2v_clk: assert always

// ((en_vref == 1) -> ((V(r0V2) >= vref 02 min) &&

// (V(r0vV2) <= vref 02 max)));

//

//psl ref I5u clk: assert always

// ((en_vref == 1) -> ((I(vdda, nbu) >= iref 5u min) &&
// (I(vdda, n5u) <= iref 5u max))); -

//

//psl ref Ilu clk: assert always

// ((en_vref == 1) -> ((I(vdda, nlu) >= iref lu min) &&

// (I(vdda, nlu) <= iref lu max)));

endmodule
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