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ABSTRAKT 

Tato diplomová práce se zabývá verifikací integrovaných obvodů pracujících ve smíšeném 

módu. Teoretická část práce obsahuje přehled moderních verifikačních metod a zaměřuje se 

zejména na „assertion based methodology“ . V praktické části práce jsou pak rozebrány 

popisné jazyky používané u této metody, a následně je vytvořen kód pro verifikaci bloku 

řídícího obvodu spínaných zdrojů.  

KLÍČOVÁ SLOVA 

verifikace, behaviorální modelování, wreal, assertion, mixed-signal 

ABSTRACT 

This master thesis deals with verification methods of mixed-signal integrated circuits. 

Theoretical part contains summary of modern verification methods with emphasis on 

„assertion based methodology“ . The practical part analyses descriptive languages used in this 

method and a code for verification of a power supply control circuit block is created.   
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INTRODUCTION 
Mixed-signal design is a combination of analog and digital circuitry. Mixed-signal 

applications are among the fastest growing market segments in the electronic and 

semiconductor industry. Mixed signal content in most of today's integrated circuits has 

increased from 10-20 % to 50 % or more due to increased needs for mobility, higher 

performance and integration of interfaces. Similarly, what used to be pure analog blocks now 

include significant amounts of digital logic either to increase functionality or to assist the 

analog portions of the design achieve target performance.  

     This escalating complexity poses severe challenges for mixed-signal verification and 

uncertainties in verification coverage. According to industry estimates [2] , more than 60 % of 

SoC design re-spins at 45 nanometers and below are due to mixed-signal errors. A re-spin 

costs extra money and delays a product rollout for weeks or months. Many re-spins are due to 

commonplace, avoidable errors such as inverted or disconnected signals. To avoid these 

errors, mixed-signal SoC teams need to implement modern verification methodologies. 

     The aim of this master thesis is to provide a summary of modern verification methods used 

in mixed-signal designs. Emphasis is put on „assertion based methodology“ , which is 

common in verification of digital circuits and gradually expands into the field of analog and 

mixed-signal integrated circuits. The practical part analyses descriptive languages used in this 

method and a code for verification of a power supply control circuit block is created.   
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1 MIXED-SIGNAL VERIFICATION  
Verification is a procedure used for checking that designed circuit meets requirements and 

specifications and that it fulfills its intended purpose.  

     The basic verification process of electronic devices involves creating a verification plan, 

development of test benches, simulation, post processing of results including measurements 

and comparison with the specification [1]. 

1.1 Gap between digital and analog verification process 

Verification of mixed-signal designs with plainly separated analog and digital parts was 

possible in the past. Today's complex ICs have analog and digital functionality tightly 

integrated throughout the whole design at different levels of hierarchy, and cannot be verified 

separately [5]. 

 

Figure 1: Complexity of mixed-signal design [2]. 

     In the classic analog world, verification is performed using SPICE simulators at a detailed 

transistor level and is usually done in a bottom-up fashion. This means implementation of 

individual blocks from their specifications using transistor-level representation and their 

ensuing isolated verification to match specific verification goal. Thus verified block is then 

integrated with similarly verified blocks and the integration process proceeds from block to 

progressively higher levels of integration. This approach works quite well when design size is 

small, as design size and complexity grows and design characteristics start changing from 

pure analog to mixed-signal, a bottom-up methodology shows severe limitations. The most 

obvious being the increasing cost of resources needed to perform simulation at the detailed 

transistor level and the lack of methodology to integrate block-level verification tasks with 

system-level specifications [5]. 
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     On the other hand, the digital verification approach is essentially top-down and is driven 

by a chip-level verification plan that causes the verification process to start at an early stage of 

design. Such verification plan guides the simulation planning as well as the levels of models 

required at each stage of integration. The state space of the design is effectively explored by 

directed random metrics and tests, such as functional coverage and provides feedback 

regarding how much of the verification plan has been exercised by the existing regression 

suite [5].    
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1.1.1 Analog and digital simulation 

Analog and digital simulations used as a basis of verification are fundamentally different. 

Analog signals can change in almost infinitely small increments of terms of time and 

amplitude. During transient analysis, analog simulators are tasked with solving a set o  

matrices at every time step. Each element in the design can have an instantaneous influence 

on any other element in the matrix. 

     The typical analog simulator breaks the time axis into small time steps and then calculates 

the equation solution that describes what should happen over each step. Then the simulator 

decides how big time step it can safely take and it must iterate and converge toward a solution 

that solves the Kirchhoff's laws at the new time point [1], [3].  

 

Figure 2: Comparison of various sampling methodologies[3]. 

 

     The behavior of digital circuits is described by Boolean relations. Digital simulators solve 

logical expressions sequentially by triggering events and do not require an iterative nonlinear 

equation solver. They are therefore much faster than their analog counterparts [1]. 
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1.2 Challenges of mixed-signal verification 

As complexity of ICs increases, the verification task is growing rapidly. The main challenge 

in verifying today's mixed-signal designs is that traditional direct test verification methods are 

becoming much harder to apply [1]. 

 

Figure 3: Results of a 2011 survey showing biggest mixed-signal verification challenges [3]. 

     As shown in Figure 3, analog simulation, as a component of the mixed-signal verification, 

is a major bottleneck. Advancements in SPICE simulation, such as Fast-SPICE, provide 

additional speed and capacity at the cost of some accuracy however a single simulation run 

could take days even with the fastest simulator. 

     To tackle the poor performance of SPICE, many mixed-signal teams are turning to analog 

behavioral modeling. This approach can increase simulation speed, but the creation of good 

models can be challenging. 

     A 2011 Design Automation Conference (DAC) panel [6] discussed the need for analog 

design and verification to become more like digital, more structured, and more top-down. 

Debug methodologies such as Assertion-based verification (ABV), Metric-driven verification 

(MDV) and Universal Verification Methodology (UVM) need to be introduced for analog and 

mixed-signal designs [5].  
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2 MODERN MIXED-SIGNAL VERIFICATION 

METHODS 
 

In order to properly verify today's complex mixed-signal ICs, several verification techniques 

have been recently introduced into mixed-signal world. 

2.1 Behavioral modeling 

Behavioral modeling is a key component in a mixed-signal verification methodology. 

Describing analog and mixed-signal blocks in a higher level of abstraction makes mixed-

signal simulation more effective. Since creation of models is not a simple task, there are 

several challenges: 

 The intended purpose and scope of the model must be well understood and suitable 

model architecture/template chosen. In a top-down methodology, models are 

developed before circuits are available and for functional verification at the system 

level a simpler model might be sufficient. In bottom-up approach, the model might 

need to match an already implemented block for performance verification, and thus a 

more accurate model is used. 

 The model must be validated to make sure that it is sufficiently equivalent to circuit 

or specification with required accuracy. 

 The model must be kept in sync with changes in the circuit or specification. 

 The model needs to be written in way that does not cause convergence issues during 

simulation. 

 Modeling is hard to automate and typically requires specialized engineering talent. 

Model creation requires an understanding of analog and mixed-signal simulation 

algorithms, knowledge of analog and mixed-signal circuits, design techniques, coding 

and debugging. 

      

Analog and mixed-signal modeling has a wide range of possible features to model. 

Depending on complexity, development of a model can take from minutes to months, and the 

simulation can run a rate slower than the transistor-level design to a million times faster. 

There is no single correct modeling approach, but there are areas where poor decision in 

modeling dimensions can result in models, that are not suitable for intended tasks [4].  
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2.1.1 Types of modeling 

It is common, to use variety of several modeling formats during verification of a large IC. 

Typical formats are: 

 Device based design (Spectre, SPICE) - schematics built using process-specific  

devices is the standard transistor-level design technique. A macromodeling approach 

that uses generic elements and dependent source to define simple block operation can 

also be used. 

 Analog modeling (Verilog-A) - defines analog description of relations between 

current/voltage.    

 Mixed-signal modeling (Verilog-AMS, VHDL-AMS) - allows description of both 

analog and digital behavior for corresponding portions of the block. 

 Discrete real number modeling (Verilog-AMS, VHDL, SystemVerilog) - models 

analog block operation as discrete real data. Typically ignores impedance effects. 

 Logic modeling (Verilog, VHDL, SystemVerilog) - model defines discrete logic 

data flow, ignores analog operations [3]. 

Figure 4 shows the tradeoff between simulation accuracy and performance among SPICE, 

Fast-SPICE, analog behavioral models (Verilog-A, Verilog-AMS, VHDL-AMS), real number 

models and pure digital simulation. These numbers can vary significantly for different 

applications. SPICE level simulations are used as a golden reference simulation, analog 

behavioral modeling provides wide range of accuracy and performance. Digital models may 

be sufficient for verification tasks like connectivity checks and real number models provide 

high simulation performance with restricted accuracy [2], [7].   

 

Figure 4: Model accuracy vs. performance gain for mixed-signal simulation [7]. 
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     Another important factor is the required effort to set up a simulation and create the model.  

Figure 5 illustrates the general trends. Although SPICE simulations run slowly, they are easy 

to set up. Analog behavioral model creation effort can range from hours to weeks, Real valued 

models are inherently restricted to the signal flow approach and analog convergence is not an 

issue. Consequently, the modeling effort is significantly lower compared to analog behavioral 

models and the same applies for pure digital models [2], [7].   

 

 

Figure 5: Required effort vs. performance gain for mixed-signal simulation [7].  

To choose what types of models should be developed, it is important to understand the 

purpose, capabilities and limitations of each style of modeling. 

2.1.2 Discrete digital modeling 

Pure digital solvers can be used to model the digital input/output characteristics of a system. 

Available languages include Verilog, SystemVerilog and VHDL. This approach does not 

handle analog signals, but is extremely efficient at handling logic and timing relationships 

using a discrete event simulation kernel. It is commonly used for pure digital modeling and 

for black-boxed analog subsystems, where only the digital operations are modeled. The 

discrete event simulation approach can be extended to model analog signals as discrete values 

(Real number modeling) [4]. 
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2.1.3 Continuous analog modeling 

Pure analog languages (SPICE-like) can be used to model the electrical nature of a system. 

Verilog-A is the standard language for analog behavioral modeling. The language creates a  

description of the interrelationships between voltages and currents in the system. Impedance 

characteristics along with integral and derivative dependencies can be written directly. 

Verilog-A model is converted into a set of simultaneous equations (nonlinear, ordinary 

differential equations) suitable for a simulator. The built-in models for transistors and other 

components are also defined internally to create sets of equations in a similar format. During 

transient analysis, matrix-based numerical analysis techniques are used to solve the complete 

set of voltage and current equations at each analog time step. 

     Well-defined analog models can result in a speedup, in the range of 10x to 50x, compared 

to transistor-level models. Simulation speed depends on the size and complexity of the 

equations to be solved and additionally on the time step used in the transient simulation. The 

performance increase from usage of behavioral models is based on the reduction in the 

number of equations  and nodes in the system and the ability to take larger time steps due to 

fewer lower-level nonlinearities in the system. 

          If logic signals are present in the analog model, the must be converted to electrical 

signals that swing between defined voltage levels with specified rise and fall times. Analog 

simulations of very active logic networks often simulate relatively slowly due to the small 

time steps required during each logic transition. A simulation performed using separate analog 

and digital simulators using Inter-Process Communication (IPC) between the simulators can 

suffer from the same speed problem, because all logic signals must be converted to analog 

waveforms before usage on the analog side of the co-simulation environment, resulting in 

similar small time step issues [4].   

2.1.4 Mixed-signal modeling 

Mixed-signal simulation combines the analog continuous time and discrete digital solvers 

within a single simulator. For model description, modeling languages Verilog-AMS and 

VHDL-AMS can be used. Mixed-signal languages allow the most natural modeling of mixed-

signal systems, since the analog parts can be modeled with the standard electrical modeling 

approach, while the digital portions can be modeled using discrete modeling techniques. Data 

and events are transparently passed between the two simulation algorithms. This is also the 

preferred language for writing mixed-signal testbenches. Verilog-AMS code can be used to 

write procedures that read both analog and digital quantities, making it an optimal 

environment for mixed-signal verification testbench development. Real number modeling 

techniques can also be used in these languages. 

     By using well-defined AMS models, simulation speedup depends on the amount of 

transistor-level circuitry being replaced. Employing AMS techniques removes the digital 

circuitry from analog simulation engine, and the replacement of the remaining analog circuits 

with AMS operations can speed up the analog portion by a factor of 10x to 50x [4].   
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2.1.5 Real number modeling 

Real number modeling (RNM) is a special technique which models electrical signals by 

representing them as a time-varying sequence of real values. In a typical analog simulator, the 

models define a set of equations which the simulator augments via addition of topology 

constraints using Kirchhoff's laws, and then it solves the overall constrained system of 

simultaneous equations at each time step to compute the voltages and currents from those 

equations. In a discrete real environment, there are no voltage/current equations, no 

Kirchhoff's laws, and no simultaneous equation solution step. The output is directly computed 

from the input, ignoring currents and feedback mechanisms that could have caused 

interdependencies between drive and load in electrical environment [4].   

     The concept of RNM is straightforward. If the input/output relationship is a direct transfer 

characteristic, a mathematical expression can be written that describes how to update the 

output whenever input changes. Checking for proper biasing is also simple. The power 

supply, bias current and voltage inputs would be passed into the model as real numbers and 

the simulator would check if they are within reasonable tolerance. The outputs would only be 

driven if the proper bias and control are applied [4].    

     It is already a common practice to verify subsystems at the transistor level, and then use 

behavioral models in higher-level simulations, so it is a natural extension to create that 

behavioral model using RNM rather than AMS modeling techniques [4].    

     Many languages support RNM including Verilog, SystemVerilog, VHDL, and Verilog-

AMS. The first three support a real data type, while Verilog-AMS supports real-wire or wreal. 

Verilog-AMS is more advanced in the area of connect modules, while VHDL is slightly more 

flexible in terms of resolution function [2], [7].    

 

Figure 6: Language support for real number modeling [2].     
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2.1.6 Combined approaches 

When working in an AMS environment, it is common to develop models that use a 

combination of techniques. For example, an RF receiver could be modeled using RNM 

techniques for the RF signal path, electrical for the baseband signals, biasing and power 

supplies, and discrete logic for control signals. Such approach has a benefit of reasonable 

simulation times due to the high-speed signal processing and digital control performed in the 

discrete environment, along with easy interface to transistor-level subsystems from the analog 

baseband and bias connections [4].      
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2.2 Assertion-based verification 

By definition, an assertion is a check against the specification of a design that captures the 

intended behavior. Assertion-based verification is a powerful verification approach, by which 

can designers verify their designs by writing the assertions into blocks to test whether the 

blocks work correctly in common scenarios. They act as monitors during simulation, 

detecting errors close to their source and reporting both errors and coverage information     

[5], [8], [9].  

     Assertions are written during development of the design and the verification environment. 

Both designers and verification engineers can be involved in identifying requirements and 

capturing them as assertions. Through the use of assertions, verification can start earlier while 

detection and removal of bugs is faster. Also in contrast to traditional way of eye-balling 

waveforms and tracing them back to failure, graphical assertion browser leads to quicker 

identification of bugs as shown in Figure 7 [5], [9].  

 

Figure 7: SimVision assertion browser shows failed assertion [12]. 

     In the digital world, assertion-based verification is a well established methodology that has 

evolved to meet the needs of logic designers. It is based on standard assertion languages such 

as PSL and SVA. Assertions can for instance provide a formal framework for: [5] 

 Checking a set of behavior of a signal that must occur independently on time. 

 Checking a behavior of a signal that must occur within a certain time frame. 

 Checking boundary conditions that must trigger a set of behavior. 

 Specifying values or sequences that would describe an error condition. 

 Watching signal value of a certain signal critical to the functionality of the design.  
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2.2.1 Assertions in mixed-signal space 

Certain form of assertions already exists in the analog domain. The SPICE Device Operating 

Condition Checkers can be used to set a custom characterization check that specifies the safe 

operating conditions of the circuit. These checks are useful to verify the device-level 

characteristics but cannot be used for verification of more complex circuit conditions [10]. 

Major difficulties in verification of analog or mixed-signal systems are: 

 Absence of a consistent language and methodology to express the verification intent in 

the form of assertions across the spectrum of continuous, discrete event-driven and 

mixed-signal systems. 

 Information expressed by one group of design or verification engineers, in the 

analog/mixed signal domain, does not flow easily to another group, or from one level 

of design abstraction to another.    

 Absence of a standard verification plan which would include analog or mixed-signal 

blocks. It is not possible to combine items tested in isolation, with the same items in 

context of the complete system. This challenge includes verifying aspects like current 

leakage, power sequences or noise figures from respective blocks in a context of full 

system.   

     In a view of the challenges mentioned above, it is natural to attempt to apply the well 

established concepts of assertions from digital space into analog and mixed-signal domains. 

Two standard groups are working towards standardizing analog/mixed-signal assertions [5]: 

 The analog System Verilog Assertions committee is focused on analog/mixed-signal 

extensions to the SVA subset of the SystemVerilog language.  

 The SystemVerilog-AMS (SV-AMS) committee is working on alignment of Verilog-

AMS with the SystemVerilog into new SystemVerilog-AMS standard [13]. 
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2.2.2 SystemVerilog Assertion SVA 

SystemVerilog Assertions (SVA) is a legal subset if the SystemVerilog P1800-2012 standard. 

SystemVerilog deals with discrete logic data flow and does not allow the presence of 

continuous domain object (2.1.1). However, recent extensions to SystemVerilog allow the 

usage of  real data types (2.1.5), which may be used to connect real valued ports to the 

electrical domain by inserting „electrical to real“ connect modules as shown inFigure 8 [5], 

[10]. 

     Usability of SystemVerilog Assertion is restricted to digital and real net types. An analog 

quantity of interest (node voltage, current) has to be converted into real data type in order to 

perform a simulation. A major advantage of this is the ability to use the same testbench with 

different model types. The same assertion that can be used to check a Verilog model of an 

analog block can be used later on in the design when SPICE netlist is available [15].  

 

 

Figure 8: SystemVerilog Real variable connecting to Verilog-AMS electrical domain [12]. 
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2.2.3 Verilog-AMS PSL 

Writing assertions in Verilog-AMS is possible through Property Specification Language 

(PSL). Unlike SVA, Verilog-AMS PSL Boolean expressions can contain analog expressions. 

They can appear in clocking expressions and as arguments in property and sequence 

instances, when there is a single top-level clock defined [5], [10], [12].  

 

Figure 9: Assertion containing analog expression in Verilog-AMS PSL [12]. 

    Verilog-AMS PSL also supports real number models (2.1.5) which are in Verilog-AMS 

represented by Wreal data type. Expressions involving wreal objects can appear within PSL 

assertions in Boolean expression, clocking expressions and as arguments in property and 

sequence instances [5], [12]. 

2.2.4 PSL vs SVA 

    PSL and SVA have similar capabilities, assertions written in either language are sufficient 

to describe a set of behavior in analog/mixed-signal blocks.  

 

Figure 10: A simple assertion in both PSL and SVA [16]. 

     Figure 10 shows a simple assertion written in both languages. The assertions are evaluated 

according to the rising edge of clk. If req and ack are both true, then req must be false until 

the first time point at which gnt is true [16]. 
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      SVA is tightly tied into SystemVerilog and as a result, inherits its expression language 

including data types, expression syntax and semantics. SVA can be also written directly into 

SystemVerilog design. PSL is a separate language designed to work with many HDLs and 

their expression layers. Unlike SVA, it cannot be written directly into designs, but can be 

attached to HDL models using binding directives (2.2.5) [16]. 

     The tight coupling of SVA with SystemVerilog means that assertions can be written to 

interact with other testbench components without crossing the boundary of a programming 

language interface. The failure or passing of an assertion can be defined to trigger an 

execution of a specific block of SystemVerilog code which may call an error handling task, 

update a testbench coverage database or influence the heuristic parameters of a reactive self-

adaptive testbench [16]. 

     PSL has a structure of multiple abstraction layers and a rich set of operators that can be 

used at different levels of abstraction. As a result, PSL provides the capability to write 

assertions that range from system-level down to RT level. To summarize - PSL is a multi-

purpose, multi-level assertion language while SVA is tightly connected to SystemVerilog. 

Both PSL and SVA have similar capabilities and both can be used in mixed-signal 

verification.  

 

2.2.5 Module bound verification units 

Module bound verification unit (vunit) is an auxiliary file that is linked to the design file for 

simulation. Vunits are mainly used to store PSL assertion code. They can also be used for 

storing values in variables/registers. Vunit is a useful feature if the source text of the design 

block should not or cannot be modified. 

     Verification units can be used to add assertions to Verilog, Verilog-AMS, SystemVerilog 

and VHDL instances.  
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2.3 Metric-driven verification 

Metric-driven verification (MDV) is a verification methodology originally used for 

verification of large digital designs, where huge amount of state spaces made simulation of all 

possible combinations impossible. MDV helped to achieve good functional verification by 

coverage-directed random stimulus generation. As functional complexity of today's designs 

increases, MDV is being adapted for use with analog and mixed-signal circuits [5], [6]. 

 

 

Figure 11: Verification flow for analog IP [16]. 

 

The concept of MDV methodology is shown in Figure 11. MDV is based on a verification 

plan. Verification plan outlines the testing scenarios, coverage metrics and specifies which 

features should meet the specification by measurement. These measurements are called 

functional coverage. A testbench with automatic stimulus generation is created to check the 

functionality and measure coverage of a design. For best verification performance, the analog 

circuit should be modeled as a real number model (2.1.5). The methodology can also be 

applied to Verilog-AMS models or SPICE netlists.  
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3 PRACTICAL PART 
Aim of the practical part was to choose one of the mentioned descriptive languages, and 

create assertions for verification of power supply control circuit or its blocks. All assertions 

were simulated in Cadence SimVision 10.20 using the Virtuoso AMS Designer Simulator. 

3.1 PSL and SVA assertions 

To decide which descriptive language is more suitable, a simple assertion written both in PSL 

and SVA was tested.  

     Assertion below tests, that voltage on selected node stays within specified range, when 

controlling logic signal is asserted. First part of the Verilog-AMS code defines input ports. 

Port in_v is of type electrical and is meant for connection of monitored voltage. Port in_l is 

for connection of controlling logic signal. Parameters v_max and v_min specify desired 

voltage range. Next part defines 500 MHz clock whose rising edge is used for assertion 

evaluation. Final part is the PSL assertion itself.  

 

  
//Verilog-AMS HDL for "cn19Proj", "assertion_1" "verilogams" 

 

`include "constants.vams" 

`include "disciplines.vams" 

`timescale 1ns / 10ps 

 

module assertion_1 ( in_v, in_l ); 

 

input in_v, in_l; 

electrical in_v; 

logic in_l; 

 

parameter real v_max = 5.1;   

parameter real v_min = 4.9;   

 

/////////////////////////////////////////////// 

reg clk; 

initial clk=0; 

always #1 clk=~clk; 

/////////////////////////////////////////////// 

//psl default clock = (posedge clk); 

//psl voltage_check: assert always  

//    ((in_l == 1) -> ((V(in_v) >= v_min) && (V(in_v) <= v_max))); 

endmodule 
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Following code in SVA describes the same assertion. This time, port in_v is of type real, 

because System Verilog does not allow presence of continuous domain objects.   

 

  //systemVerilog HDL for "cn19Proj", "a1SV" "systemVerilog" 

`timescale 1ns / 10ps 

 

module a1SV( in_v, in_l ); 

 

  input in_v, in_l; 

  real in_v; 

  logic in_l; 

 

parameter v_max = 5.1 ; 

parameter v_min = 4.9 ; 

/////////////////////////////////////////////// 

reg clk; 

initial clk=0; 

always #1 clk=~clk; 

/////////////////////////////////////////////// 

v_check_SVA: assert property( 

  @(posedge clk)  

     ((in_l == 1) |-> ((in_v >= v_min) && (in_v <= v_max))) 

   ); 

    

endmodule 
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Although both assertions are the same, simulation results differ. Figure 12 shows monitored 

voltage (in_v) and controlling logic signal (enable). PSL assertions within Verilog-AMS test 

block make evaluations with voltage values sampled every positive edge of the defined clock. 

SVA assertions make evaluations with converted real values. This converted wave (in_Real) 

slightly differs from the original (in_v). Because of these conversion inaccuracies, assertion 

states are detected several clock cycles late, or not detected at all. This is obvious from Figure 

12 at time 3.5 µs, where PSL assertion detects failure but SVA does not.       

     Simulation results show three types of resulting assertion states. „Inactive" state means, 

that specified first condition ( enable == 1 ) was not met and assertion was not evaluated. 

States „finished" and „failed" indicate, whether voltage stayed within specified range.  

 

 

Figure 12: Simulation results of PSL and SVA assertion in SimVision. 

 

The conversion inaccuracies could be probably suppressed by editing the electric to real 

conversion modules. Due to the fact that Cadence Verilog-AMS PSL supports analog 

expression arguments in property and sequence instances, Verilog-AMS PSL seems like more 

suitable choice for the purpose of mixed-signal verification. For this reason, all following 

assertions are created in this language.   
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3.2 Assertion clocking 

This chapter mentions three basic approaches in assertion clocking. 

3.2.1 Defined clock 

The most basic form of assertion clocking is using a system clock. If there is no clock (analog 

circuits) , clock for assertion evaluation can be explicitly declared in a Verilog-AMS code, as 

in chapter 3.1. Values of voltages and currents are then sampled every positive or negative 

clock edge. 

     The obvious drawback of assertions clocked this way is, that it cannot detect glitches that 

occur for time intervals shorter, than period of defined sampling clock. For instance a 1 MHz 

sampling clock (1 µs period), would unlikely detect a 20 ns error. Increasing the clock 

frequency would lead to better accuracy, but it would also slow down the simulation.  

3.2.2 Analog event function 

Verilog-AMS supports function cross as clocking event. 

cross (expression , direction, time_tolerance, expression_tolerance) 

     The cross function is used for generating a monitored analog event. Event is generated 

each time the expression crosses zero in the specified direction. The direction can only 

evaluate to +1, -1, or 0. If set to 0, or not specified, event will occur on both signal crossings. 

If set to +1, event occurs on rising transition, if -1, then the event occurs only on falling 

transitions of the signal. For example cross( V( in ) - 2.5, +1) ) generates event every time the 

voltage at node in crosses 2.5 Volts in a positive direction [17]. 

     This approach should have minimal effect on simulation time. The drawback is that every 

crossing has to be explicitly declared, which may be laborious in more complex assertions 

with several signals. 

3.2.3 Variable clock 

Variable clock can be created using absdelta event function in Verilog-AMS. 

absdelta (expression , delta, time_tolerance, expression_tolerance) 

     The absdelta function generates event every time the expression changes more than delta ± 

expression tolerance, relative to the value at previous event time. Time tolerance specifies a 

time increment after the previous time point. No event is generated when the current time is 

within tolerance of previous event time. Specified time tolerance that is smaller than time 

precision of the simulation is ignored and the time precision is used instead [17]. 

     Example of variable clock code is in Appendix B, this method of assertion clocking has 

great accuracy with reasonable impact on simulation time. 
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3.3 Examples of created assertions 

This chapter contains examples of several types of PSL assertions that were used in 

verification of power supply control circuit block. 

3.3.1 Voltage level monitor assertion 

This assertion is similar to those mentioned in chapter 3.1. Difference is, that instead of using 

defined clock for evaluation, Verilog-AMS analog event function cross is used. 

 

 

 

 

 

 

 

 

 

 

      

For monitoring voltage level with controlling logic signal, assertion needs to be evaluated 

when voltage crosses upper or lower tolerance value or when controlling logic signal changes. 

This is ensured by adding cross functions for these cases.      

 

 

Figure 13: Voltage level monitor - simulation result in SimVision. 

//Verilog-AMS HDL for "cn19Proj", "v_level_ena" "verilogams" 

`include "constants.vams" 

`include "disciplines.vams" 

 

module v_level_ena ( in_v, in_l ); 

 

input in_v, in_l; 

electrical in_v; 

logic in_l; 

 

parameter real tresh = 0.1; 

parameter real v_max = 5.1;   

parameter real v_min = 4.9;   

/////////////////////////////////////////////// 

//psl voltage_check: assert always  

//   ((in_l == 1) -> (V(in_v) >= v_min) && (V(in_v) <= v_max)) 

//    @(cross(V(in_v) - tresh, 0) or cross(V(in_v) - v_min, 0) or 

//      cross(V(in_v) - v_max, 0) or in_l); 

endmodule 
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3.3.2 Voltage difference assertion 

This assertion monitors voltage difference between two nodes. When this difference exceeds 

value set in parameter delta_vmax, assertion fails, as can be seen in Figure 14.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Voltage difference assertion - simulation result in SimVision. 

  

//Verilog-AMS HDL for "cn19Proj", "delta_v" "verilogams" 

`include "constants.vams" 

`include "disciplines.vams" 

 

module delta_v (in_v1,in_v2 ); 

 

input in_v1, in_v2; 

electrical in_v1, in_v2; 

 

parameter real delta_vmax = 200m ; 

/////////////////////////////////////////////// 

//psl delta_v_check: assert never  

// (( v1 - v2 > delta_vmax ) || ( v2 - v1 > delta_vmax )) 

// @(cross((V(in_v1) - V(in_v2)) - delta_vmax, 0) or  

//   cross((V(in_v2) - V(in_v1)) - delta_vmax, 0)); 

endmodule 
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3.3.3 Voltage start-up assertion 

Assertion monitors voltage during start-up and checks, that it stabilizes in specified time 

without undershoots or overshoots. 

     There are several parameters in the assertion code - t_to_stabil_us specifies the maximum 

acceptable time in which the voltage must stabilize within desired value range, given by 

parameters v_stable_max and v_stable_min. Parameter stablefor_us defines the time period 

for which the voltage must stay within range, in order to be considered stable.   

     When voltage crosses zero in positive direction, value of absolute time is stored into real 

variable starttime. Every time voltage crosses one of the boundary stable values, time is 

stored in real variable stoptime. If voltage stays in range for 5 µs (stablefor_us), assertion gets 

evaluated and both times are subtracted. Assertion fails if the time difference is greater than 

10 µs given by parameter t_to_stabil_us. If the voltage does not stabilize in time greater than 

22.5 µs (timeout), assertion fails. 

  

//Verilog-AMS HDL for "cn19Proj", "startup" "verilogams" 

`include "constants.vams" 

`include "disciplines.vams" 

`timescale 1us / 10ns 

 

module startup (in); 

input in; 

electrical in; 

 

parameter real t_to_stabil_us  = 10;   

parameter real stablefor_us    = 5;    

parameter real v_stable_max    = 5.05; 

parameter real v_stable_min    = 4.95; 

parameter real max_overshoot   = 5.5; 

parameter real max_undershoot  = 4.5; 

real starttime, stoptime, t_stable, timeout; 

reg clk, evaluate; 

integer count, count2; 

///////////////////////////////////////////////////////// 

initial  

begin 

   count = 0; 

   count2 = 0; 

   evaluate = 0; 

   clk = 0; 

   t_stable = t_to_stabil_us * 1e-6; 

   timeout  = 1.5 * (t_to_stabil_us + stablefor_us); 

end 

 

always #1 clk=~clk; 

 

/////////////////////////////////////////////////////////start 
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  /////////////////////////////////////////////////////////start 

always @(cross(V(in) , 1)) 

      begin 

        count2 = 0; 

        starttime = $abstime; 

      end  

  

always @(cross(V(in) - v_stable_max, 0) or cross(V(in) - v_stable_min, 0)) 

      begin 

        stoptime = $abstime; 

  count = 0; 

      end            

/////////////////////////////////////////////////////////stable_count 

always @(clk) 

      begin 

        count = count + 1; 

        if (count == stablefor_us) 

    begin 

       evaluate = ~evaluate; 

    end      

      end 

/////////////////////////////////////////////////////////time-out_count 

always @(clk) 

      begin 

        count2 = count2 + 1; 

        if (count2 >= timeout) 

    begin 

       evaluate = ~evaluate; 

    end      

      end                       

/////////////////////////////////////////////////////////  

//psl v_start_tstable_check: assert always 

// ((V(in) > 0) ->((stoptime - starttime) <= t_stable)  

//  || ((V(in) >= v_stable_max) && (V(in) <= v_stable_min))) 

//   @(cross(V(in), 1) or evaluate);  

// 

//psl max_overshoot_check:   assert always  

//      (V(in) <= max_overshoot) @(cross(V(in) - max_overshoot, 1)); 

// 

//psl max_undershoot_check:  assert always  

//      (V(in) >= max_undershoot) @(cross(V(in) - max_undershoot, -1)); 

 

endmodule 
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In Figure 15, monitored voltage stabilizes in less than 10 µs, and there is no overshoot or 

undershoot above allowed 4.5 V and 5.5 V.  Voltage in Figure 16 stabilizes in time, but both 

overshoot and undershoot assertions fail. 

 

 

Figure 15: Voltage start-up assertion - simulation result in Simvision. 

 

 

Figure 16: Voltage start-up assertion - second simulation result in Simvision. 
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Figure 17 shows the case where assertion failed after 22.5 µs due to timeout. 

 

 

Figure 17: Voltage start-up assertion - third simulation result in Simvision. 
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3.3.4 Transition time assertion 

Assertion checks, that transition between logic 0 to logic 1 and vice versa, occurs in specified 

time.  

     There is auxiliary Verilog-AMS code with 2 always blocks for each assertion. During 

transition from logic 0 to logic 1, values of absolute time are stored when signal crosses 10 

and 90 percent of logic high value in positive direction. For 5 volts logic, time is stored when 

signal crosses 0,5 V and 4,5 V. At 4,5 V - assertion is evaluated and time difference is 

compared to maximum rise time (tr_rise_max). The same principle is used for transition from 

logic 1 to logic 0.  

 

 

       

 

  

//Verilog-AMS HDL for "cn19Proj", "transition" "verilogams" 

`include "constants.vams" 

`include "disciplines.vams" 

 

module transition (in_l); 

input in_l; 

electrical in_l; 

 

parameter real tr_rise_max = 500n; 

parameter real tr_fall_max = 500n; 

parameter real        v_90 = 4.5; 

parameter real        v_10 = 0.5; 

real rise_01; 

real rise_09; 

real fall_09; 

real fall_01; 

 

///////////////////////////////////////////////t_rise_check 

always @(cross(V(in_l) - v_10, 1)) 

        rise_01 = $abstime; 

  

always @(cross(V(in_l) - v_90, 1)) 

        rise_09 = $abstime; 

///////////////////////////////////////////////t_fall_check 

always @(cross(V(in_l) - v_90, -1)) 

        fall_09 = $abstime; 

  

always @(cross(V(in_l) - v_10, -1)) 

        fall_01 = $abstime;  

//////////////////////////////////////////////////////////  

//psl t_rise_check: assert always  

//      ((rise_09 - rise_01) <= tr_rise_max) 

//       @(cross(V(in_l) - v_90, 1)); 

 

//psl t_fall_check: assert always  

//      ((fall_01 - fall_09) <= tr_fall_max)  

//       @(cross(V(in_l) - v_10,-1)); 

endmodule 
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As can be seen in Figure 18, both assertions failed after the first transition, because 

parameters tr_rise_max and tr_rise_min were exceeded. The following three transitions from 

logic 0 to logic 1 happened in time, the last one caused assertion to fail.  

 

 

Figure 18: Transition time assertion simulation results in SimVision. 
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3.3.5 Setup and hold time assertion 

Following assertions check, that the data signal is held steady for specified time period before 

positive edge of the clock (setup time). After the clock event, the data signal should stay 

steady for another time period (hold time). 

     Setup time assertion stores time values during signal transitions. Assertion is evaluated, 

when clock reaches logic 1. Hold time assertion code contains a counter that is used to 

generate an assertion evaluation event. This event is generated when data signal stays in its 

logic level for sufficient time after the clock transition. The hold time assertion is evaluated 

when data signal changes, or when counter evaluation event is generated.   

  

//Verilog-AMS HDL for "cn19Proj", "setup_hold" "verilogams" 

 

`include "constants.vams" 

`include "disciplines.vams" 

`timescale 1ps / 10fs 

 

module setup_hold (in_data, in_clock); 

input in_data, in_clock; 

electrical in_data, in_clock; 

 

parameter real setup_time_min = 50n; 

parameter real  hold_time_min = 50n; 

parameter real            v50 = 2.5; 

parameter real            v90 = 4.5; 

 

real setup_time1, setup_time2, ht; 

integer count, start, finished; 

reg clk, eva_ht; 

 

initial 

   begin 

     ht     = hold_time_min * 1e12; 

     clk    = 0; 

     eva_ht = 0; 

   end   

 

//////////////////////////////////////////////////////////setup time 

always @(cross(V(in_data) - v50, 0)) 

        setup_time1 = $abstime;      

   

always @(cross(V(in_clock) - v50, 1)) 

         setup_time2 = $abstime;        

//////////////////////////////////////////////////////////hold time 

always @(cross(V(in_clock) - v50, 1)) 

      begin 

        count  = 0; 

    start  = 1; 

      end 

always @(cross(V(in_clock) - v50, -1)) 

        finished = 0;  

//////////////////////////////////////////////////////////hold time 
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//////////////////////////////////////////////////////////hold time 

always #1 clk=~clk; 

always @(clk) 

      begin 

        count = count + 1; 

        if (count == ht && start == 1) 

    begin 

       eva_ht   = ~eva_ht; 

       start    = 0; 

       finished = 1; 

    end      

      end      

       

//////////////////////////////////////////////////////////  

//psl setup_time_check: assert always  

//       ((setup_time2 - setup_time1) >= setup_time_min ) 

//           @(cross(V(in_clock) - v90, 1)); 

//psl hold_time_check: assert always  

//   ((((setup_time1 > setup_time2) && (start == 1)  

//    && (finished == 0)) || ((setup_time2 > setup_time1))) 

//     ->(finished == 1))        

//       @(cross(V(in_data) - v50, 0) or eva_ht);  

 

endmodule 
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During the first transition, both assertions finished successfully. Setup and hold times were 

greater than 50 ns declared in parameters setup_time_min and hold_time_min. After the 

second transition, both assertions failed, because setup and hold times were too short. During 

the third clock transition, both assertions again finished successfully. The fourth transition 

was a hold time failure, because data changed to logic 1 before hold time period elapsed.  

 

 

Figure 19: Setup and hold time assertions simulation results in SimVision. 
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3.4 Case study: Voltage supply block 

Assertions mentioned in chapter 3.3 were used for verification of a supply block from power 

supply control circuit. The supply block creates internal voltage supplies for analog and 

digital parts of the circuit. There are also voltage and current references with controlling logic.  

3.4.1 Monitored events 

     The main subject of the test was to monitor the four voltage supplies (vdda, vddd, vdd_int, 

and vdd_osc) and check, that when logic signal enVref is asserted, they never go above 

maximum specified values (5.3 V, 5.4 V, 5.2 V and 5.2 V) . Also, the voltage difference 

between them should never be greater than ± 100 mV or ± 200 mV. When signal enVref is 

deasserted, voltages on vdda and vddd should not exceed 30 mV. On vdda and vddd is also 

applied the voltage start-up assertion from chapter 3.3.3, which ensures that these voltages 

stabilize in time. Two voltage (5 V, 0.2 V) and current (1 µA, 5 µA) references are also tested 

and should not go out of specified range. Assertion code can be seen in Appendix A. 

 

 

Figure 20: Testbench of voltage supply block 
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Simulation results  

 

Figure 21: Simulation results of supply block assertion clocked by cross function. 
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The simulation results can be seen in Figure 21. The voltage supply block should work for  

vcc ranging between 7 V to 18 V. Supplies vdd_osc and vdd_int are independent from 

controlling signal en_vref. During the simulation, vcc varies from 0 V to 12 V and once it 

crosses the threshold of 7 V, the monitored voltages reach their nominal value. Loads are 

connected for short time periods (1 ms) from time 25 ms to 75 ms, which resulted in several 

assertion failures. The total failure count can be seen in Table 1.  

     Figure 22 shows detail  of vdda and vddd start-up at time 125 ms, after signal en_vref is 

asserted. Both voltages stabilized in less than 30 µs without overshoots. 

 

 

Figure 22: Detail of vdda and vddd at time 125 ms with start-up assertions. 
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Apart from running the simulation with assertions shown in Appendix A, other clocking 

methods mentioned in chapter 3.2 were also used. The source codes are shown in Appendices 

B and C. 

      The simulation results can be seen in Figure 23, where assertion trios show different 

results. It is obvious, that assertions evaluated by defined 50 kHz clock cannot detect errors 

that occur for short time periods. For instance, assertion delta_osc_int, which monitors 

voltage difference between vdd_osc and vdd_int failed six times since time 100 ms without 

detection.      

 

Figure 23: Simulation results for different assertion clocking methods  
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Table 1: Assertion failures from simulations 

assertion name 
errors detected 

cross variable clock clock 50 kHz clock 1 MHz clock 2 MHz 

vdda_max_check 1 1 0 0 0 

vdda_max_ena0_check 5 5 3 4 4 

vddd_max_check 1 1 0 1 1 

vddd_max_ena0_check 6 6 3 4 3 

vdd_osc_max_check 24 24 4 9 10 

vdd_int_max_check 24 24 5 9 9 

delta_osc_int_check 14 14 2 3 5 

delta_vdda_int_check 20 20 5 8 7 

delta_vdda_vddd_check 12 12 5 8 8 

delta_vddd_osc_check 20 20 7 10 14 

ref_I1u_check 13 13 4 6 6 

ref_I5u_check 18 18 4 6 7 

ref_V5v_check 8 8 4 6 5 

ref_V02v_check 9 9 4 6 3 

 

 

Table 1 shows list of assertions and their failure count for all used assertion clocking methods. 

Assertions evaluated using cross function or variable clock detected all errors while 2 MHz 

clock detected less than half at almost 40 % simulation time increase. Variable clock brought 

14 % increase in time, however it is probable, that this slowdown might be greater while 

monitoring some rapidly changing signal. The most reasonable method of assertion evaluation 

seems to be the cross function, which minimally affected the simulation time and detected all 

errors.  

  

Table 2: Simulation times for different assertion clocking methods. 

assertion clocking 
simulation time simulation time increase errors detected 

(s) (%) (%) 

no assertions 617 - 0 

cross 622 1 100 

variable clock 702 14 100 

clock 50 kHz 642 4 29 

clock 1 MHz 721 17 46 

clock 2 MHz 845 37 47 
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4 CONCLUSION 
This master thesis deals with modern verification methods of mixed-signal integrated circuits. 

The thesis is divided into two parts. The first theoretical part deals with the challenges of 

mixed-signal verification, explains the difference between analog and digital domains and 

lists some recently featured verification methods that can be used in mixed-signal verification, 

such as real number modeling, assertion-based verification and metric-driven verification. 

     The practical part focuses on assertion-based verification. At first, PSL and SVA 

descriptive languages are compared on an example of voltage monitor assertion. Verilog-

AMS PSL was chosen as a more suitable language for mixed-signal applications, due to its 

support of analog expressions in arguments. Several methods of assertion clocking were also 

discussed.  

     The practical part further contains several examples of created assertions usable in 

verification of mixed-signal circuits, such as voltage level monitor, voltage difference 

monitor, voltage start-up monitor, transition monitor or setup and hold time monitor. These 

assertions are then used in verification of power supply block from power supply control 

circuit.    

     The created verification code discovered 175 errors during simulation of the tested block. 

These errors were mostly caused by voltage peaks during load switching. Additional 

simulations were run with the purpose of comparing different types of assertion clocking in 

terms of detected errors and simulation time. The results show, that the analog cross function 

is the most reasonable way of assertion clocking in analog circuit, for it detected all errors at 

minimal simulation time increase.       

     The assertion based verification method proved to be useful tool for debugging analog or 

mixed-signal circuits, because it leads to quicker identification of bugs that might otherwise 

be overlooked during manual waveform inspection. The properties captured as assertions 

have varied from the very simple to the reasonably complex and some of the violations would 

not be immediately apparent from waveform inspection. Inspection of assertion status makes 

it easier to identify and debug issues in the correct context. 
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Appendix A: Voltage supply block assertions clocked 

by cross function. 

 

 
 

  

//Verilog-AMS HDL for "cn19Proj", "wm_supply_assert_cross" "verilogams" 

 

`include "constants.vams" 

`include "disciplines.vams" 

 

module wm_supply_assert_cross ( vdda, vddd, vdd_osc, vdd_int, en_vref, 

r5V0, r0V2, n5u, n1u ); 

input      vdda, vddd, vdd_osc, vdd_int, en_vref, r5V0, r0V2, n5u, n1u; 

electrical vdda, vddd, vdd_osc, vdd_int, r5V0, r0V2, n5u, n1u; 

logic      en_vref; 

 

/////////////////////////////////////////////////// 

parameter real vdda_max            = 5.3;   

parameter real vddd_max            = 5.4; 

parameter real vdd_osc_max         = 5.2; 

parameter real vdd_int_max         = 5.2;   

parameter real vdd_max_ena0        = 30m;  

parameter real delta_vdda_vddd     = 200m; 

parameter real delta_vdd_osc_int   = 200m; 

parameter real delta_vdd_int_vdda  = 100m; 

parameter real delta_vdd_osc_vddd  = 100m;  

parameter real vref_5_min          = 4.995; 

parameter real vref_5_max          = 5.005; 

parameter real vref_02_min         = 0.195; 

parameter real vref_02_max         = 0.205;  

parameter real iref_5u_min         = 4.75u;  

parameter real iref_5u_max         = 5.25u; 

parameter real iref_1u_min         = 0.950u; 

parameter real iref_1u_max         = 1.050u; 

parameter real tresh               = 5m;  

parameter real treshI              = 15n;    

 

///////////////////////////////////////////////////      

//psl vdda_max_check: assert always  

//   ((en_vref == 1) -> (V(vdda) < vdda_max)) 

//@(cross(V(vdda) - tresh, 0) or cross(V(vdda) - vdda_max, 0)  

// or en_vref); 

// 

//psl vddd_max_check: assert always  

//   ((en_vref == 1) -> (V(vddd) < vddd_max)) 

//@(cross(V(vddd) - tresh, 0) or cross(V(vddd) - vddd_max, 0) 

// or en_vref); 

// 

//psl vdda_max_ena0_check: assert always  

//   ((en_vref == 0) -> (V(vdda) < vdd_max_ena0)) 

//@(cross(V(vdda) - vdd_max_ena0, 0) or en_vref); 

// 

//psl vddd_max_ena0_check: assert always  

//   ((en_vref == 0) -> (V(vddd) < vdd_max_ena0)) 

//@(cross(V(vddd) - vdd_max_ena0, 0) or en_vref); 
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//psl vdd_osc_max_check: assert never  

//   (V(vdd_osc) > vdd_osc_max) 

//@(cross(V(vdd_osc) - tresh, 0) or cross(V(vdd_osc) - vdd_osc_max, 0)); 

// 

//psl vdd_int_max_check: assert never 

//   (V(vdd_int) > vdd_int_max) 

//@(cross(V(vdd_int) - tresh, 0) or cross(V(vdd_int) - vdd_int_max, 0)); 

// 

//psl delta_vdda_vddd_check: assert never 

//   (( V(vdda) - V(vddd) > delta_vdda_vddd ) ||  

//   ( V(vddd) - V(vdda) > delta_vdda_vddd )) 

//@(cross((V(vdda) - V(vddd)) - delta_vdda_vddd, 0)  

//or cross((V(vddd) - V(vdda)) - delta_vdda_vddd, 0)); 

// 

//psl delta_osc_int_check: assert never  

//   (( V(vdd_osc) - V(vdd_int) > delta_vdd_osc_int ) || 

//   ( V(vdd_int) - V(vdd_osc) > delta_vdd_osc_int )) 

//@(cross((V(vdd_osc) - V(vdd_int)) - delta_vdd_osc_int, 0)  

//or cross((V(vdd_int) - V(vdd_osc)) - delta_vdd_osc_int, 0)); 

// 

//psl delta_vdda_int_check: assert never  

//   (( V(vdda) - V(vdd_int) > delta_vdd_int_vdda ) || 

//   ( V(vdd_int) - V(vdda) > delta_vdd_int_vdda )) 

//@(cross((V(vdda) - V(vdd_int)) - delta_vdd_int_vdda, 0)  

//or cross((V(vdd_int) - V(vdda)) - delta_vdd_int_vdda, 0)); 

// 

//psl delta_vddd_osc_check: assert never  

//   (( V(vddd) - V(vdd_osc) > delta_vdd_osc_vddd ) || 

//   ( V(vdd_osc) - V(vddd) > delta_vdd_osc_vddd )) 

//@(cross((V(vddd) - V(vdd_osc)) - delta_vdd_osc_vddd, 0)  

//or cross((V(vdd_osc) - V(vddd)) - delta_vdd_osc_vddd, 0)); 

// 

//psl ref_V5v_check: assert always  

//   ((en_vref == 1) -> ((V(r5V0) >= vref_5_min) &&  

//   (V(r5V0) <= vref_5_max))) 

//@(cross(V(r5V0) - tresh, 0) or cross(V(r5V0) - vref_5_min, 0)  

//or cross(V(r5V0) - vref_5_max, 0) or en_vref); 

// 

//psl ref_V02v_check: assert always  

//   ((en_vref == 1) -> ((V(r0V2) >= vref_02_min) &&  

//   (V(r0V2) <= vref_02_max))) 

//@(cross(V(r0V2) - tresh, 0) or cross(V(r0V2) - vref_02_min, 0) 

//or cross(V(r0V2) - vref_02_max, 0) or en_vref); 

// 

//psl ref_I5u_check: assert always  

//   ((en_vref == 1) -> ((I(vdda, n5u) >= iref_5u_min) && 

//   (I(vdda, n5u) <= iref_5u_max))) 

//@(cross(I(vdda, n5u) - treshI, 0) or cross(I(vdda, n5u) - iref_5u_min, 0) 

//or cross(I(vdda, n5u) - iref_5u_max, 0) or en_vref); 

// 

//psl ref_I1u_check: assert always  

//   ((en_vref == 1) -> ((I(vdda, n1u) >= iref_1u_min) &&  

//   (I(vdda, n1u) <= iref_1u_max))) 

//@(cross(I(vdda, n1u) - treshI, 0) or cross(I(vdda, n1u) - iref_1u_min, 0) 

//or cross(I(vdda, n1u) - iref_1u_max, 0) or en_vref); 

 

endmodule 
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Appendix B: Voltage supply block assertions clocked 

by variable clock. 

 

 
 

  

//Verilog-AMS HDL for "cn19Proj", "wm_supply_assert_clock_var" "verilogams" 

 

`include "constants.vams" 

`include "disciplines.vams" 

`timescale 1ns / 10ps 

 

module wm_supply_assert_clock_var ( vdda, vddd, vdd_osc, vdd_int, en_vref, 

r5V0, r0V2, n5u, n1u); 

input      vdda, vddd, vdd_osc, vdd_int, en_vref, r5V0, r0V2, n5u, n1u; 

electrical vdda, vddd, vdd_osc, vdd_int, r5V0, r0V2, n5u, n1u; 

logic      en_vref; 

 

///////////////////////////////////////////////////var.clock 

real clk_a; 

reg clk = 0; 

 

always @(absdelta(clk_a, 5m, 100p, 1m)) 

   if ((clk_a == 1.0) || (clk_a == 0.0)) clk = ~clk; 

analog begin 

   clk_a = 1.0 - clk_a; 

end   

 

/////////////////////////////////////////////////// 

parameter real vdda_max            = 5.3;   

parameter real vddd_max            = 5.4; 

parameter real vdd_osc_max         = 5.2; 

parameter real vdd_int_max         = 5.2;   

parameter real vdd_max_ena0        = 30m;  

parameter real delta_vdda_vddd     = 200m; 

parameter real delta_vdd_osc_int   = 200m; 

parameter real delta_vdd_int_vdda  = 100m; 

parameter real delta_vdd_osc_vddd  = 100m;  

parameter real vref_5_min          = 4.995; 

parameter real vref_5_max          = 5.005; 

parameter real vref_02_min         = 0.195; 

parameter real vref_02_max         = 0.205;  

parameter real iref_5u_min         = 4.75u;  

parameter real iref_5u_max         = 5.25u; 

parameter real iref_1u_min         = 0.950u; 

parameter real iref_1u_max         = 1.050u; 

parameter real tresh               = 5m;  

parameter real treshI              = 15n;    

 

/////////////////////////////////////////////////// 

//psl default clock = (posedge clk); 

// 

//psl vdda_max_var_clk: assert always 

// ((en_vref == 1) -> (V(vdda) < vdda_max)); 

// 

//psl vddd_max_var_clk: assert always  

// ((en_vref == 1) -> (V(vddd) < vddd_max)); 
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//psl vdda_max_ena0_var_clk: assert always 

// ((en_vref == 0) -> (V(vdda) < vdd_max_ena0)); 

// 

//psl vddd_max_ena0_var_clk: assert always 

// ((en_vref == 0) -> (V(vddd) < vdd_max_ena0)); 

// 

//psl vdd_osc_max_var_clk: assert never 

// (V(vdd_osc) > vdd_osc_max); 

// 

//psl vdd_int_max_var_clk: assert never 

// (V(vdd_int) > vdd_int_max); 

// 

//psl delta_vdda_vddd_var_clk: assert never 

// (( V(vdda) - V(vddd) > delta_vdda_vddd ) ||  

// ( V(vddd) - V(vdda) > delta_vdda_vddd )); 

// 

//psl delta_osc_int_var_clk: assert never 

// (( V(vdd_osc) - V(vdd_int) > delta_vdd_osc_int ) ||  

// ( V(vdd_int) - V(vdd_osc) > delta_vdd_osc_int )); 

// 

//psl delta_vdda_int_var_clk: assert never 

// (( V(vdda) - V(vdd_int) > delta_vdd_int_vdda ) ||  

// ( V(vdd_int) - V(vdda) > delta_vdd_int_vdda )); 

// 

//psl delta_vddd_osc_var_clk: assert never 

// (( V(vddd) - V(vdd_osc) > delta_vdd_osc_vddd ) || 

// ( V(vdd_osc) - V(vddd) > delta_vdd_osc_vddd )); 

// 

//psl ref_V5v_var_clk: assert always 

// ((en_vref == 1) -> ((V(r5V0) >= vref_5_min) && 

// (V(r5V0) <= vref_5_max))); 

// 

//psl ref_V02v_var_clk: assert always 

// ((en_vref == 1) -> ((V(r0V2) >= vref_02_min) && 

// (V(r0V2) <= vref_02_max))); 

// 

//psl ref_I5u_var_clk: assert always 

// ((en_vref == 1) -> ((I(vdda, n5u) >= iref_5u_min) && 

// (I(vdda, n5u) <= iref_5u_max))); 

// 

//psl ref_I1u_var_clk: assert always 

// ((en_vref == 1) -> ((I(vdda, n1u) >= iref_1u_min) && 

// (I(vdda, n1u) <= iref_1u_max))); 

 

endmodule 
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Appendix C: Voltage supply block assertions clocked 

by defined clock. 

 

 
 

  

//Verilog-AMS HDL for "cn19Proj", "wm_supply_assert_clock" "verilogams" 

 

`include "constants.vams" 

`include "disciplines.vams" 

`timescale 1ns / 10ps 

 

module wm_supply_assert_clock ( vdda, vddd, vdd_osc, vdd_int, en_vref, r5V0, 

r0V2, n5u, n1u); 

input      vdda, vddd, vdd_osc, vdd_int, en_vref, r5V0, r0V2, n5u, n1u; 

electrical vdda, vddd, vdd_osc, vdd_int, r5V0, r0V2, n5u, n1u; 

logic      en_vref; 

 

///////////////////////////////////////////////////2Mhz clock 

 

reg clk; 

initial clk=0; 

always #250 clk=~clk; 

 

/////////////////////////////////////////////////// 

parameter real vdda_max            = 5.3;   

parameter real vddd_max            = 5.4; 

parameter real vdd_osc_max         = 5.2; 

parameter real vdd_int_max         = 5.2;   

parameter real vdd_max_ena0        = 30m;  

parameter real delta_vdda_vddd     = 200m; 

parameter real delta_vdd_osc_int   = 200m; 

parameter real delta_vdd_int_vdda  = 100m; 

parameter real delta_vdd_osc_vddd  = 100m;  

parameter real vref_5_min          = 4.995; 

parameter real vref_5_max          = 5.005; 

parameter real vref_02_min         = 0.195; 

parameter real vref_02_max         = 0.205;  

parameter real iref_5u_min         = 4.75u;  

parameter real iref_5u_max         = 5.25u; 

parameter real iref_1u_min         = 0.950u; 

parameter real iref_1u_max         = 1.050u; 

parameter real tresh               = 5m;  

parameter real treshI              = 15n;    

 

/////////////////////////////////////////////////// 

//psl default clock = (posedge clk); 

// 

//psl vdda_max_clk: assert always 

// ((en_vref == 1) -> (V(vdda) < vdda_max)); 

// 

//psl vddd_max_clk: assert always  

// ((en_vref == 1) -> (V(vddd) < vddd_max)); 
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//psl vdda_max_ena0_clk: assert always 

// ((en_vref == 0) -> (V(vdda) < vdd_max_ena0)); 

// 

//psl vddd_max_ena0_clk: assert always 

// ((en_vref == 0) -> (V(vddd) < vdd_max_ena0)); 

// 

//psl vdd_osc_max_clk: assert never 

// (V(vdd_osc) > vdd_osc_max); 

// 

//psl vdd_int_max_clk: assert never 

// (V(vdd_int) > vdd_int_max); 

// 

//psl delta_vdda_vddd_clk: assert never 

// (( V(vdda) - V(vddd) > delta_vdda_vddd ) ||  

// ( V(vddd) - V(vdda) > delta_vdda_vddd )); 

// 

//psl delta_osc_int_clk: assert never 

// (( V(vdd_osc) - V(vdd_int) > delta_vdd_osc_int ) ||  

// ( V(vdd_int) - V(vdd_osc) > delta_vdd_osc_int )); 

// 

//psl delta_vdda_int_clk: assert never 

// (( V(vdda) - V(vdd_int) > delta_vdd_int_vdda ) ||  

// ( V(vdd_int) - V(vdda) > delta_vdd_int_vdda )); 

// 

//psl delta_vddd_osc_clk: assert never 

// (( V(vddd) - V(vdd_osc) > delta_vdd_osc_vddd ) || 

// ( V(vdd_osc) - V(vddd) > delta_vdd_osc_vddd )); 

// 

//psl ref_V5v_clk: assert always 

// ((en_vref == 1) -> ((V(r5V0) >= vref_5_min) && 

// (V(r5V0) <= vref_5_max))); 

// 

//psl ref_V02v_clk: assert always 

// ((en_vref == 1) -> ((V(r0V2) >= vref_02_min) && 

// (V(r0V2) <= vref_02_max))); 

// 

//psl ref_I5u_clk: assert always 

// ((en_vref == 1) -> ((I(vdda, n5u) >= iref_5u_min) && 

// (I(vdda, n5u) <= iref_5u_max))); 

// 

//psl ref_I1u_clk: assert always 

// ((en_vref == 1) -> ((I(vdda, n1u) >= iref_1u_min) && 

// (I(vdda, n1u) <= iref_1u_max))); 

 

endmodule 

 

 


