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1 Quantum Key Distribution protocols

1.1 Quantum key distribution

Cryptography has always been an important part of communication. The secu-
rity of transmitted messages is very important today and throughout the his-
tory. With the advent of Internet, electronic business and online transactions
that came later, cryptographic security became an integral part of modern life.
Well-developed cryptographic protocols assure us that our personal information
will remain secure during any online transactions. The ultimate dream of code-
makers is to create such a protocol that will be impossible to crack and will
remain secure and unbreakable in any circumstances and for any possible future
technologies. Surprisingly, this protocol, the so-called One-Time Pad (OTP)
was already invented and if used correctly this protocol cannot be cracked.
OTP was proposed in years 1917-1926 by Gilbert Vernam [1]. It's predecessor,
Vernam cipher, used similar coding system, but was vulnerable because secret
key was reused after some time. OTP as many other cryptographic systems is
based on the secret keys that should be available only to trusted parties, while
the encrypted text can be publicly known.

Figure 1: Illustration of one-time pad. Alice encodes her message using secure
key by performing bitwise XOR operation. The encrypted message is sent to
Bob through untrusted channel. Bob uses the same secure key and performs
bitwise XOR operation on ciphertext to get the original message. Although Eve
can copy the encrypted message she would not be able to decode it without
secure key.

As illustrated on �gure 1 OTP is an encryption algorithm that allows to
encode text in ASCII using the secure key. This secure key has 3 requirements:

1. Key must have the same length as an original message.

2. Key must be random.
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3. Key must be known only to trusted parties of communication.

Granted that the secure key will be used only once, the absolute security was
proven by Claude Shannon [2].

Despite the proven security OTP su�ers from practical implementation di�-
culties. These di�culties arise from previously stated requirements to the secure
key. First of all, truly random numbers are di�cult to obtain. Truly random
numbers cannot be acquired from chaotic, but in principle classical processes,
due to deterministic nature of classical physics. However truly random numbers
can be generated with the use of elementary quantum processes [3]. Secondly,
there is no way to fully securely distribute a key though untrusted channel.
If there was a way to do this directly than protocols dealing with secure key
transmission would not be needed. The main problems is that any kind of
information encoded by classical means can be copied and duplicated. These
limitations explain why OTP that theoretically provides impeccable security
was used so rarely in practice. There are other protocols that use much shorter
keys for secure communication, but these protocols are not as secure as the
OTP.

Figure 2: RSA protocol

Nowadays one of the most popular cryptographic scheme is RSA, named
after its inventors - Ron Rivest, Adi Shamir and Leonard Adleman [4]. RSA is
an asymmetric algorithm with a public key, based on computational complexity
of �nding prime factor of a large integer. In this scheme Bob prepares two
di�erent cryptographic keys - public key and private key. Public key can be
acquired by anyone, but private key is known only to Bob. Alice can easily
get a public key, use it to encode her message and send it to Bob via public
channel. Eve, an eavesdropper, if she is listening to this public channel, can
copy the encoded information but she will also need a copy of the private key,
that can decrypt encoded message and is only known to Bob.

RSA algorithm, that belongs to public key cryptographic algorithms group,
overcome the necessity of having trusted channel or trusted couriers, that deliver
key to trusted parties through untrusted channel. This signi�cant property of
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RSA made it very popular amongst other cryptographic algorithms and widely
adopted in modern cryptographic systems. Sadly, RSA is based on unproven
mathematical assumption that there is no e�cient way to �nd the prime factors
of a large integer. Yet, this assumptions has not been proved and it's proba-
ble proof is still an open question. If an e�cient way will be ever developed
it would compromise most public cryptographic systems. Furthermore, an ef-
�cient factoring algorithm running on a quantum computer exists [5]. Possible
connection of a quantum computer to modern networks will result in disastrous
consequences. Although the creation of quantum computer is still a distant
perspective, such a security threat cannot be disregarded.

Nevertheless the way to distribute secret keys through untrusted channels
was found and is called quantum key distribution (QKD). QKD can be applied
to other cryptographic schemes including previously mentioned OTP. QKD is
based not on computational complexity but rather on limitations imposed by
laws of physics.

Figure 3: Quantum key distribution scheme

Presented on �gure 3 is a general scheme of QKD that includes 3 main par-
ticipants: Alice �the sender�, Bob �the receiver� and powerful Eve �the eaves-
dropper�. First of all, one makes an assumption that Eve possesses unlimited
computational capabilities and is limited by laws of physics only. Secondly, Al-
ice and Bob share two channels - authenticated classical channel and quantum
channel (by quantum channel we mean a channel where quantum-information
carriers propagate). Despite the fact that these main participants and their
roles stay the same there are lots of possible types of QKD based on various
information carriers, types of reconciliation, light sources etc.
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QKD begins with the distribution of single quanta between Alice and Bob.
Eavesdropping, from physical point of view, is an act of measurement or du-
plicating a distributed carriers of information, performed by an outside (un-
trusted) party. According to the rules of quantum mechanics, in general, any
performed measurement inevitably modi�es the state of the quantum particle.
Any attempt of measurements in the untrusted transmission channel can later
be discovered by Alice and Bob in a following public communication.

Any QKD based scheme, in general, proceeds as follows: Alice on her side
prepares the information carrier, encodes information into it and then sends
it to Bob through untrusted quantum channel (air, optical �ber). Initially we
assume that Eve can fully control the quantum channel. After the information
carrier got on Bob's side and was measured, Alice and Bob use authenticated
classical channel for reconciliation. Both of them do not reveal information
about detection results, so even if Eve is eavesdropping this classical channel
she would not acquire additional information about the key.

1.2 The priciples of quantum cryptography

1.2.1 No-cloning theorem

The no-cloning theorem is one of the most earliest and important result in the
study of quantum information. In 1982 N. Herbert proposed FLASH, a super-
luminal communication device based on quantum entanglement and on perfect
cloning of an arbitrary unknown quantum state [6]. Herbert's suggestion con-
�icted with special relativity and aroused a huge debate in scienti�c community.
Soon a refutations of his proposal, containing independently discovered quan-
tum no-cloning theorem, were made by W.K. Wooters and W.H. Zurek [7] and
D.Dieks [8].

No-cloning theorem is an important result of quantum mechanics and is
utmost crucial for quantum key distribution. No-cloning theorem asserts that
creation of identical copies of an arbitrary unknown quantum state is forbidden.
If it was not, the cloning machine could be used to produce several identical
copies of an unknown state, measurements on these copies could provide an
information about conjugate properties of the state with high precision that
violates uncertainty principle. No-cloning theorem is a consequence of linearity
of quantum mechanics.

W.K. Wooters and W.H. Zurek provided a simple and intuitive proof [7].
Assuming that perfect cloning is possible a device that can create such replicas,
the cloning machine, would have the following e�ect on an incoming qubit:

|A0〉 |ψ〉 → |Aψ〉 |ψψ〉 (1)

Here |A0〉 is the initial state of the machine that is independent on the state
of the incoming qubit, and |Aψ〉is machine's �nal state, which may or may not
depend on the state of original qubit that is intended to be cloned. Suppose
that we want to clone a photon with certain polarization state. Than cloner
will work for vertical polarizations as
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|A0〉 |l〉 → |Avert〉 |ll〉 (2)

and for horizontal polarizations

|A0〉 |↔〉 → |Ahor〉 |↔↔〉 (3)

Such transformations should be represented by a linear operator. If initial
photon is, for example, linearly polarized in 45 ◦ direction, than its state can
be written as α |l〉 + β |↔〉, where α = β = 1√

2
. Using equations (2) and (3)

interaction of such a photon with cloning machine can be written as

|A0〉 (α |l〉+ β |↔〉)→ α |Avert〉 |ll〉+ β |Ahor〉 |↔↔〉 (4)

Generally cloning machine's states |Avert〉 and |Ahor〉 after cloning proce-
dure can be dissimilar, then photons at the output of the apparatus will be
in a maximally mixed state. If apparatus states are identical than the output
photons will be in a pure state.

α |ll〉+ β |↔↔〉 (5)

In neither of these cases output of the cloning machine contains two photons
having α |l〉 + β |↔〉 polarization. Therefore no device can perfectly clone an
arbitrary polarization unless we have a prior knowledge that possible states of
initial qubit are orthogonal.

Apparently no-cloning theorem imposes lots of limitations, but it turns out
that they can be turned to advantages, and the biggest one is that this theorem
allows us to reveal any communication eavesdropper since his presence inevitably
disturbs the quantum state.

Quantum key distribution can be divided into 2 branches: discrete variable
and continuous-variable protocols. For better understanding of main principles
and mechanics of QC it is convenient to start with the �rst proposed discrete-
variable protocol.

1.2.2 The BB84 protocol

BB84 is a QKD scheme developed by Charles H. Bennet and Gilles Brassard
in 1984 [9]. and was a basis for the �rst quantum cryptography protocol. The
protocol itself is secure due to previously described no-cloning theorem, it also
is based on one-time pad encryption. Generally BB84 can be used for any kind
of qubit - electron, photon etc.

Polarization qubits are commonly used in BB84, and we will use them for
further description of the protocol. As previously mentioned 3 main partici-
pants take part in QKD. Alice wishes to send a private key to Bob, she uses 4
polarization states to encode bits of information: horizontal (H), vertical (V),
diagonal (D, 45 ◦) and anti-diagonal (A, −45 ◦). She can assign bit values of �0�
and �1� to these respective polarization states, but commonly H or D represent
�0� and V or A represent �1�. Bob on his side has a detector that can measure
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either in H and V basis (+)or in A and D basis (×). For each sent photon
Alice randomly chooses a basis of polarization, as well as Bob randomly chooses
the basis of the analyzer. If Bob's and Alice's basis were the same than Bob's
measurement result will provide correct bit value with certainty. On the other
hand if Bob will choose �wrong� basis, he will obtain a random result.

After receiving the incoming encoded message Bob uses authenticated clas-
sical channel to reveal to Alice the sequence of analyzers that he was using to
detect photons. Alice tells him which times he used proper analyzer, but does
not reveal the bit value. Next they conduct a reconciliation - process in which
they discard all measurements for which Bob used the wrong analyzer, so that
Alice and Bob at the end in principle will share the same bit sequence without
any errors.

Figure 4: BB84 protocol. Alice encodes bit sequence onto photon polarization
states and sends them to Bob, who chooses measurement bases, detects photons
an obtains another bit sequence. Alice and Bob use classical channel to check
whether Bob used a proper basis for every individual measurement therefore
they sift second bit sequence and obtain secure key [10].

Eve, in her turn, must also guess which analyzer to use for measuring each
photon sent by Alice. Despite any technological advancement that Eve can
potentially posses, she still has a probability of 1/2 to guess the correct analyzer.
If she picks a correct analyzer, she can prepare and resend photon to Bob, but
Eve will inevitably choose the wrong analyzer and will change the quantum
state of the photon by her measurements. Consequently, when Bob receives a
photon, he will occasionally get the wrong bit value even though he and Alice
used the same polarization bases. Alice and Bob can take a small sample of
their bit sequence and examine it for errors, that will allow them to determine
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if an eavesdropper was present.
So after reconciliation Alice and Bob share the �sifted� bit sequence, that

still may contain errors due to technical imperfections or Eve's intervention.
Usually such errors are at rates of few percents. Conclusively, Alice and Bob
should perform error correction, using any suitable error correction algorithm.
Another important step - privacy ampli�cation, that is done to reduce Eve's
knowledge about the key. Both error correction and privacy ampli�cation use
part of the shared bit sequence and ultimately reduce the total length of it.
For example during one of the plain error correction algorithms Alice chooses
2 bits from the shared bit sequence and discloses their XOR value. If Bob has
the same XOR value for respective bits than he and Alice keep the �rst bit
and discard the second bit from the chosen pair, if Bob's XOR value does not
correspond to Alice's one than both of them discard both bits. There are a lot
of other more complex and e�cient error correction algorithms, but all of them
inevitably reduce the key length. The same is true for privacy ampli�cation.
Here is the example of one of the possible algorithms. Alice chooses 2 bits from
the sequence and calculate their XOR value, but this time she does not send
the XOR value but the number of bits she has chosen (e.g. number 11 and
218). After this Alice and Bob replace these bits with their XOR value. This
technique e�ectively reduces Eve's knowledge about the key, since she possess
only partial information about the bits and she will have even less for their XOR
value. If Eve knows the value of the �rst bit, but doesn't know anything about
the second bit, than she cannot get their XOR value. For example if - Eve
knows the value of both bits with 60% probability, then the probability that
she correctly guesses the XOR value is only 0.62 + 0.42 = 52%. This process
should be repeated numerous times, and can involve larger bit blocks for higher
e�ciency [11].

Figure 5: Information exchange between authenticated QKD parties

1.2.3 Entanglement based QKD

Quantum entanglement is an extremely interesting and peculiar phenomena
in quantum mechanics. Firstly mentioned in well-known paper by Einstein,
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Podolsky and Rosen in 1935 [12], entanglement has rapidly become one of the
most perplexing and peculiar element of quantum mechanics mechanics. Quan-
tum entanglement occurs when a pair of particles (photons, electrons, molecules
etc.) is properly described by the same quantum mechanical description (state),
which is inde�nite in terms of important factors such as position, momentum,
spin polarization etc. [13]. Generally speaking entanglement occurs when two
physical systems interact and some correlation of quantum nature is generated
between them. This correlation persists even when interaction stops and two
systems are spatially separated1 .

Quantum entanglement can be viewed as a form of quantum superposition.
If one of the systems is measured separately, despite the location of the second
system, measurement will cause the �rst system to take a de�nite value forcing
the other entangled system to take respective correlated value. Entanglement is
non-local and non-classical phenomena that can be described and comprehended
only by means of quantum mechanics.

One can describe an arbitrary polarization state of a single photon as a
superposition of two basis states

|ψ〉singlephoton = α |l〉+ β |↔〉

where |l〉and |↔〉represent vertical and horizontal polarization states, form-
ing a set of orthogonal bases, α and β are complex numbers that should satisfy
the normalization condition αα∗+ββ∗ = 1. In this example we assume that the
state we describe is pure and there is a well-de�ned phase relation between the
two basis components. The most general pure polarization state of a photon
pair can be described by a superposition of four basis states:

|ψ〉photonpair = α1 |l〉1 |l〉2 + α2 |l〉1 |↔〉2 + α3 |↔〉1 |l〉2 + α4 |↔〉1 |↔〉2

where |l〉1 |l〉2 is a basis state state in which both photons are in vertical
polarization state, other terms in the equation are understood in a similar way.

In special case when α1 = α4 = 1√
2
and α2 = α3 = 0, entangled photon pair

state can be written as

|Φ〉pair =
1√
2

(|l〉1 |l〉2 + |↔〉1 |↔〉2)

One special feature of the above state is that it cannot be described by a
tensor product: |Φ〉pair 6= |ψ〉1 ⊗ |ψ〉2, where |ψ〉1 and |ψ〉2 are arbitrary single
photon polarization states. In other words, the two photons are �entangled�
with each other.

Entanglement of photons can be successfully used in QKD. Alice on her side
can have an EPR source2 and due to the main property of entanglement she

1Entanglement can be also created without direct interaction between the subsystems, via
the so-called entanglement swapping [14].

2EPR source - light source that radiates a pair of entangled photons
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can encode the information not by directly preparing the photon states but by
measuring one of the photons therefore changing the other entangled photon.
If Alice will conduct measurement in + basis she will detect H or V polarized
photon with equal probability. Her measurement conditionally prepare the pho-
ton sent to Bob in the corresponding polarization state. If Bob subsequently
measures his photon in the same basis, his result will be perfectly correlated
to Alice's result. However, if Bob will conduct measurement in × basis, cor-
relation will be absent. The �nal result will be the same if Bob will perform
measurement before Alice or if both of them will use × basis.

The described above situation can be implemented in BB84 protocol as fol-
lows: EPR source is placed between Alice and Bob, one photon form the en-
tangled pair is sent to each trusted party. For each incoming photon Alice and
Bob randomly and independently choose measurement bases (+ or × ). After
the transmission of the whole bit sequence, Alice and Bob using classical au-
thenticated channel disclose the basis orientations that they were using for each
photon but not the measurement result itself.

The main advantage of using EPR-source scheme is that Eve will gain no
actual information by measuring transmitted photons, since there is no encoded
information in them. The information is being encoded by the act of measure-
ment itself, so it is much harder for Eve to obtain the key.

The �rst protocol using EPR source and advantages of entanglement was
proposed by Artur Ekert in 1991 and is called E91 [15]. Since Eve intervention
destroys the correlations between Alice and Bob, Ekert suggested to use Bell
inequalities [16] for verifying the entanglement.

1.2.4 Continuous-variable protocols

Previously mentioned protocols and their con�gurations are called discrete-
variable schemes, because the carrier of information in them is a single qubit,
in other words, 1 bit of information is encoded into 1 photon. Such kinds of
protocols have one disadvantage: one-photon signal that is sent to the receiver
can be correctly detected only with a certain probability, besides it can also
be completely lost in the channel. Therefore occurred a problem of creation of
protocols that would have all (or at least most of them) measurements more
e�cient and informative. This can be achieved by encoding information into
multi-photon states using so-called continuous variables.

The �rst continuous-variable protocol was developed by Hillery in 2000 [17].
He suggested a scheme that was using a squeezed light for information encoding.
Squeezed light saturates uncertainty relation but quadratures noise is unequal.
The character from an alphabet can be encoded into the value of quadrature that
is being �squeezed�. Scheme suggested by Hillery was very noise sensitive and
required a high squeezing that can be challenging from technical point of view.
Despite these disadvantages his idea became very popular due to numerous ad-
vantages. Unlike discrete-variable protocols the alphabet of continuous-variable
protocols can be much bigger than �0� and �1�.
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Figure 6: Squeezed state modulation in phase space x- quadrature (left) and
p-quadrature (right)

Later in 2001, protocol was improved by Cerf [18]. He suggested to use
Gaussian distribution modulation instead of just random modulation. Basically
he suggested to apply Gaussian noise, stressing out that this makes continuous
not only variable but key itself, and it is later discretized with the help of
additional security enhancing algorithms.

Whereas realization of protocols with squeezed light is relatively compli-
cated, coherent states were suggested as carriers of encoded information by
Grosshans and Grangier in 2002 [19]. Using coherent states also allows to en-
code information in both quadratures. In other protocol suggested by Silberhorn
et. al. [19] protocol, similarly to E91, Alice does not prepare a state but uses an
EPR source and key is generated randomly during measurement processes. De-
spite relatively more complicated theoretical background of continuous-variable
protocols comparing to discrete-variable ones, the �rst ones have a number of
advantages:

� E�ciency of homodyne or heterodyne detections (v90%) that are being
used in continuous-variable protocols is much higher than of single-photon
detectors (v30%) that are used in discrete variable protocols.

� Homodyne detectors can process information much faster than single-
photon detectors.

� Gaussian states for continuous variable protocols are easier to generate
compared to single photons that are needed for discrete variable protocols.

Unlike single-photon protocols, where qubits either arrive to Bob's side or can
be renewed after compensation of environmental in�uence, continuous-variable
protocols are very sensitive to continuous in�uence of environment that cannot
be compensated. In�uences of losses and noise should always be taken into
account for these types of protocols.
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1.3 Basics of continuous-variable protocols

1.3.1 Introduction to continuous-variable systems

A continuous-variable system is an in�nite dimensional quantum system com-
posed of N modes in a Hilbert space [13]

H =
N
⊗
k=1

Hk (6)

resulting from a tensor product of N in�nitely-dimensional Fock spaces Hk.
These N modes can be seen as harmonic oscillators represented by following
Hamiltonian

Ĥ =

N∑
k=1

~ωk
(
â†kâk +

1

2

)
(7)

while each mode has di�erent frequencies (ωk), polarization or other properties.
In equation (7) â† and â are creation and annihilation operators respectively. A
creation operator increases the amount of particles in a respective state by one,
and it is the adjoint of the annihilation operator and they both satisfy bosonic
commutation relation:[

âk, â
†
l

]
= δkl, [âk, âl] =

[
â†k, â

†
l

]
= 0 (8)

The Fock space Hk is spanned by Fock basis |n〉i of eigenstates of the number
operator n̂ = â†â. The vacuum state of the global Hilbert space can written as
|0〉 = ⊗k |0〉k, where âk |0〉k = 0 is the ground state of the Hamiltonian (7).

For each mode corresponding quadrature operators can be de�ned as

x̂ = â† + â, (9)

p̂ = i (â† − â). (10)

The quadrature operators can be grouped in a vector

r̂ = (x̂1, p̂1, x̂2, p̂2, . . . , x̂N , p̂N )T (11)

that also satis�es quadratures canonical commutation relation

[r̂i, r̂j ] = iΩij (12)

where Ω is the symplectic form

Ω =
N
⊕
i=1
ω, ω =

(
0 1
−1 0

)
. (13)

In single-mode Hilbert space Hk, the eigenstates of âkconstitute the impor-
tant set of coherent states [20]. Coherent states result from applying the single-
mode Weyl displacement operator D̂k to the vacuum |0〉k, |α〉k = D̂k(α) |0〉k,
where
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D̂k (α) = eαâ
†
k−α

∗âk (14)

and the coherent amplitude α∈ C satis�es âk |α〉k = α |α〉. Weyl operator is
the generalization of the displacement operator to N modes of the displacement
operator.

1.4 Phase-space picture

It is convenient to treat quantum states of continuous-variable systems using
not density operators (ρ̂) on Hilbert space but functions de�ned on phase space.
The complete description of quantum state can be provided by its character-
istic function, which is related to Wigner function via Fourier transform. The
Wigner function is quasi-probability function that connects wavefunction from
Schrödinger's equation with phase-space. Using previously mentioned Weyl dis-
placement operator, one can de�ne the characteristic function as

χρ (ξ) = Tr [ρDξ] , (15)

where ξ ∈ R2N - vector on a real 2N -dimensional space, which is called phase
space. An arbitrary state can be written using equation (15) as

ρ =
1

(2π)
N

�
d2Nξχρ(−ξ)Dξ. (16)

The quasi-probability Wigner function can be written as

W (ξ) =
1

(2π)
N

�
d2N ςeiξ

T Ωςχρ(ς) . (17)

There is an important set of Gaussian states that are characterized by
Wigner functions, that are also Gaussian

W (ξ) =
1

π2N
√

det γ
e−(ξ−D)T γ−1(ξ−D) (18)

here, γ is a symmetric covariance matrix. In the picture of distribution function,
an n-mode Gaussian state is characterized by the 2n-dimensional covariance
matrix γ and the 2n-dimensional displacement vector D.

γ =


γ1 σ1,2 · · · σ1,n

σT1,2
. . .

. . .
...

...
. . .

. . . σn−1,n

σT1,n · · · σTn−1,n γn

 (19)

where diagonal elements γn consist of γi,j = 〈rirj〉 − 〈ri〉 〈rj〉, and correspond
to the reduced state of a respective mode, and o�-diagonal elements σ - carry
the information about intermodal correlations.
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Gaussian states are speci�c quantum states that found their usage in a great
variety of quantum applications. Vacuum, coherent, thermal and squeezed
states are all Gaussian states that are of utmost importance in quantum in-
formation and QKD. Covariance matrices (19) are necessary for description of
Gaussian states and for further calculations in quantum information process-
ing . It is important to mention that not every covariance matrix describes a
real physical state. Covariance matrix describes a physical state if and only if
γ + iΩ ≥ 0, Gaussian state is pure if and only if det γ = 1 [20]. This condition
is also necessary, although not su�cient for other non-Gaussian states.

The usage of covariance matrices greatly simpli�es lots of calculations since
they can be connected to all properties of quantum state. Single-mode Gaussian
states can be completely characterized by the displacement operator and a 2×2
covariance matrix.

γ =

[
a c
c b

]
A general two mode Gaussian state is characterized by a mean d = d1 ⊗ d2

and a covariance matrix

γAB =

[
γA C
C γB

]
where γA(B) are the covariance matrices of the the two modes, and C is the

matrix that describes the correlation between two modes.
The case where C = 0 corresponds to a tensor product of single-mode states:

γAB = γA ⊕ γB
Previous de�nitions can be generalized to systems of N modes.

1.4.1 Vacuum, Coherent and Thermal states

The vacuum state is the state with the lowest possible energy. Generally it
contains no physical particles. Usually vacuum is seen as an absolute empti-
ness and absence of any kind of energy, however it is not truly so. Vacuum
contains �eeting electromagnetic waves and transient �uctuations that can ex-
hibit many characteristics of an ordinary particle, but that exists for a limited
time. Even though in quantum vacuum the average values of the �elds vanish,
their variances do not. Using phase space representation vacuum state can be
described as the one that is located at the center of the phase space, in other
words, vacuum state is a coherent state without displacement (D = (0, 0)).
Minimal uncertainty is also characteristic property of vacuum state, therefore
its covariance matrix is identity matrix (γ = I).

Similarly to previous vacuum state de�nition, coherent state can be de�ned
as a displaced vacuum state. Coherent state possess minimal uncertainty but
contrary to vacuum state has a non-zero displacement.
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|α〉 ≡ D(α) |0〉 ≡ eαâ
†−α∗â |0〉 (20)

Coherent state can be de�ned in other way: coherent state is an eigenstate
of the non-Hermitian annihilation operator â, and it can be expressed as a
superposition of eigenstates of the radiation �eld.

â |α〉 = α |α〉 (21)

Coherent states are closest states to classical theory, they can be reasonably
well described from classical point of view, however full description can be made
only using quantum mechanics. However one should not consider coherent state
as classical state but rather as a quantum state that mimics some classical
properties. [21].

Figure 7: Vacuum and coherent states on phase space.

Thermal states have null mean value, but do not have minimum uncertainty
and covariance matrix for an arbitrary thermal state can be written as

γ =

[
V 0
0 V

]
where quantity V shows the energy of the state and can be expressed through
the number of photons n contained in the state as V = 2n+1. Vacuum state can
be also viewed as a thermal state that has no photons at all (n = 0). Thermal
state can be seen as a noisy version of coherent state.

1.4.2 Squeezed state

Previously described states have the same uncertainty in both quadratures, it
means that the probability of detecting the encoded value is identical in both
quadratures. In other words even though we displace the state on phase space
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on the precise value due to fundamental uncertainty measurement will not give
us the precise displacement value. One can consider this fundamental limitation
as inevitable noise in quadratures.

Squeezed states have asymmetrical uncertainties in quadratures, one compo-
nent has smaller than minimum uncertainty however the other component has
uncertainty much bigger than minimum. Speaking in terms of fundamental de-
tection noise - squeezed state's noise in one of the quadratures is lower than shot
noise level, but simultaneously has increased �uctuations in other quadrature.

Squeezed state can be obtained by squeezing and displacing the vacuum state
or vice versa by displacing the vacuum state therefore obtaining coherent state
and squeezing it after. If minimum uncertainty relation holds than the degree
of attenuation and ampli�cation of respective quadratures is determined by
squeezing factor r. The squeezed vacuum state has null mean value, but cannot
be considered a vacuum state anymore since squeezed vacuum has signi�cantly
more energy than just a vacuum state. Covariance matrix for squeezed state is

γ =

[
e−2r 0

0 e2r

]
, (22)

where one can observe the squeezing in x- (if r > 0) or p- quadrature (if r < 0)
and anti-squeezing in the conjugate one. Squeezed coherent state have similar
covariance matrix but a non null displacement.

Figure 8: Squeezed states on phase space

1.5 Continuous-Variable Quantum Key Distribution

Discrete modulation of states is an integral part of discrete-variable protocols
and obtaining a key as a sequence of ones and zeros is pretty straightforward
but in case of continuous-variable various alphabets and modulations can be
done that can lead to more e�cient encoding and higher key rates [22].
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1.5.1 A protocol with squeezed states

Squeezed state protocols are based on modulation of squeezed in one quadrature
x (or p)-states. Displacement of these states gives, as an averaged result, a
thermal state with a variance V . Firstly Alice picks a random variable a from
Gaussian distribution (that is centered at zero and has a variance VA) and
displaces the squeezed vacuum state by its value (d(0; 0)�(a, 0) or d(0; 0)�(0, a)
depending on which type of squeezed state she will use). Provided that Alice will
use x-squeezed states with a covariance matrix (22), averaging over all possible
realizations will give us the mixed Gaussian state with null mean value and
covariance matrix

γs =

[
e−2r + VA 0

0 e2r

]
(23)

One can notice that e=2r+VA = e2r gives us a thermal state of variance V =
e2r. This state is indistinguishable from the thermal state that we would have
ended up with if we used p-squeezed states and the same Gaussian distribution
(centered at zero with variance VA)

γs =

[
e2r 0
0 e−2r + VA

]
=

[
V 0
0 V

]
Such encoding gives us an advantage since in both cases the output mixed states
have variance V and therefore equivalent.

Similarly to BB84 and other protocol communication procedure is a pro-
cess that repeats for each light pulse: Alice generates a random number from
a Gaussian distribution VA = e2r (r - squeezing factor), than she randomly
chooses what type of squeezed states to use x- or p- squeezed states and there-
fore applies proper displacement - dx = (a, 0) or dp = (0, a) respectively, where a
- value of a previously generated number from Gaussian distribution (squeezing
factor must satisfy VA = 2sinh 2r). In his turn, Bob also randomly selects which
quadrature of the incoming pulse to measure x or p. After Bob successfully re-
ceived and measured pulses sequence, he and Alice proceed with post-processing.
First step is to �sift� a key: Alice uses classical authenticated channel to disclose
the information to Bob whether she was using dx or dp, but not revealing the
actual values. Consequently Bob keeps only the cases when he measured cor-
rect quadrature. Finally Alice and Bob use reconciliation protocols that are the
combinations of error corrections and discretization and privacy ampli�cation
after [22].

Reconciliation, depending on what party is sending the information through
classical channel, can be divided into:

Direct reconciliation (DR) . Alice sends correction information and Bob cor-
rects his obtained key elements, so he will have the same values as Alice does.
Basically Bob is reconstructing what was sent by Alice, and classical information
has the same �ow direction as quantum - from Alice to Bob.

Reverse reconciliation (RR). It this case classical information is being send
from Bob to Alice, and Alice corrects her key elements to have the same values
as Bob does. Alice adapts herself to what was received by Bob.
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The production of squeezed states is quite challenging and di�cult, contrary
to them coherent states are more accessible and relatively easier to generate
and manipulate. However if coherent states are considered as noisy versions of
squeezed states, or squeezed states with small squeezing and used in previously
described protocol the key rate will go to zero [18]. Solution was found in 2002
by Grosshans and Grangier, they suggested to modulate the prepared coherent
states in both quadratures at the same time, this protocol was called GG02 [19].
This protocol reaches high secret-key rates [23] and performs relatively faster
than BB84 due to the advantages and speed of homodyne detection comparing
to photon detectors used in latter.

1.5.2 A protocol with coherent states

In the standard GG02 protocol, Alice encodes two di�erent key elements, one of
which will be discarded by Bob. The thermal state with variance V can be still
obtained by bi-variate Gaussian mixture of coherent states. Alice picks random
variable (ax, ap) from the bi-variate Gaussian distribution (as before centered at
zero with variance VA ) encodes it the coherent state by respectively displacing
it dxp = (ax, ap). Therefore turning covariance matrix for coherent state

γ0 =

[
1 0
0 1

]
into

γc =

[
VA + 1 0

0 VA + 1

]
.

By setting a proper VA (VA = V − 1) and averaging over all possible real-
izations, one can obtain a thermal state with variance V [20].

Figure 9: Alice can generate coherent states with mean value (ax, ap) according
to a Gaussian distribution (variance VA). The mixture is equivalent to a thermal
state (V = VA − 1).

The protocol BB84 and the squeezed-state protocol both rely on the sifting
of uncorrelated measurements. This protocol is di�erent in the sense that no
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quantum state is discarded, but instead two pieces of information are encoded,
one of which is discarded. As in previously described protocol Alice repeats the
same step for each sent pulse: �rstly Alice generates two random numbers ax and
ap from two independent Gaussian distributions but with the same variance VA.
Alice displaces the state by dxp = (ax, ap) and sends it to Bob via untrusted
quantum channel. Bob, in his turn, randomly chooses which quadrature to
measure x or p. After Bob successfully received and measured pulses sequence,
he and Alice proceed with post-processing. Bob using classical authenticated
channel discloses the information about which one of the quadratures he was
measuring for each pulse, but does not reveal anything about the measurement
results. Alice keeps the measured by Bob value and discards the other quadra-
ture. After the sifting they proceed with discritezation, error correction and
privacy ampli�cation.

Figure 10: Schematic description of the encoding. The coherent states, such
as the one illustrated in the upper right quadrant, are modulated along both
axes. Their centers follow a bivariate Gaussian distribution, illustrated by the
concentric circles.

Considering that Alice uses two numbers and two quadratures to encode the
information and Bob uses only one of them, this allows to reach high secret-key
rates since the �useful � information is contained in each sent pulse. However, one
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can modify the coherent state protocol [19] in order to use both values [24]. The
suggestion is to use heterodyne detection instead of homodyne. In heterodyne
detection balanced beamsplitter is used to divide the incoming pulse into two
and to measure x-quadrature and p-quadrature separately and simultaneously.
This protocol is called no basis switching protocol.

1.6 Homodyne detection

Homodyne detection is an extremely powerful and useful tool in QKD. Such
kind of detection allows us to measure phase sensitive properties of the impinging
light �elds and therefore acquire information about quantum states of light. The
crucial part of homodyne detection is a reference radiation - local oscillator, that
is usually a light beam in a coherent state with large photon number or non-
modulated part of the incoming signal beam. Produced by signal and local
oscillator beams interference fringes vary with di�erent phase between the two
�elds that allows us to observe quantum statistics of the signal and subsequently
acquire the information about the quantum state of the signal [25].

Lets describe the properties of the most common tool - balanced homodyne
detector. Balanced homodyne detector consists of 50:50 beam splitter, two
photodetectors and electronic circuit [26].

Figure 11: Balanced homodyne detector. The signal is optically mixed with a
strong coherent local oscillator using a 50:50 beam splitter. The emerging �elds
are detected and the photocurrents are electronically subtracted to yield the
measured quantity.

The signal and local oscillator beam are mixed on a beam splitter. Photode-
tectors are detecting the outputs of the beamsplitter, measure photocurrent and
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subsequently subtract measured values:

4 Ĵ = â′
†
2â
′
2− â′

†
1â
′
1 =

1

2

(
â† + â†LO

)
(â+ âLO)− 1

2

(
â† − â†LO

)
(â− âLO) =

= â†âLO + ââ†LO. (24)

Provided that local oscillator beam is coherent and intense (has large pho-
ton number), comparing to original signal �eld, it can be described classi-
cally by substituting the annihilation operator âLO with complex amplitude
αLO = |αLO| eiθ. In this case photocurrent di�erence is rewritten as

4 Ĵ = |αLO|
(
âe−iθ + â†eiθ

)
. (25)

Equation equation (25) is not applicable for all cases, but remains correct
for local oscillator's highly excited coherent state. Thus balanced homodyne
detector directly measures quadratures of the quantum state of light

4 Ĵ = |αLO|
√

2 · x̂θ (26)

namely a combination of quadratures corresponding to a rotation x̂ (Θ) =
x̂ cos Θ + p̂ sin Θ. The phase di�erence between the signal and local oscilla-
tor de�nes the rotation angle. Therefore changing the phase one can obtain
needed information about the respective quadrature.

More complex and detailed description using quantum-statistical theory can
be found in [26, 27, 28].

2 Entropy and information

2.1 Shannon entropy

The most crucial part of any information theory is a quanti�cation of informa-
tion. Entropy is a key concept of information theory. Entropy is a measure
of uncertainty about the state of the physical system. Classical theory uses
a conception of Shannon entropy. Shannon entropy quanti�es on average how
much information one can gain about some random variable X after sequence
of measurements. It can also be de�ned as follows: the entropy of X measures
the amount of uncertainty about X before one learns its value (measures it).
These two de�nitions are complementary, entropy can be represented either as
a measure of uncertainty before one learns the value of X, or as a measure of
information gained after the measurement of X [29].

One of the important properties of entropy is that the type or content of
random variable does not depend on the labels attached to di�erent values this
variable can take. For instance, if we have a system that can take values �+� or
�-� with respective probabilities 1/5 and 4/5, the entropy for such system will
be the same as for the one where variable takes values �0� and �1� with the same
respective probabilities 1/5 and 4/5. Accordingly, the entropy should be de�ned
in such a way that its value will be dependent only on probabilities values that
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variable can take, and not by the labels that are attached to these values. The
Shannon entropy de�ned in terms of probability distributions is

H (X) ≡ −
∑
x

px log2 px. (27)

The entropy can be measured in �bits�, �nats� or �bans�, the most suitable for
our purposes is the usage of �bits� evaluation. The logarithm in equation (27)
may cause some troubles in interpretation of entropy since log 0 is unde�ned.
Intuitively an event that does not occur should not contribute to the entropy,
by convention for this case 0 log 0 ≡ 0, or more formally limx→0 x log x = 0 [29].

There are lots of types of di�erent entropies in information theory. One of
them, the relative entropy is a measure of closeness of two probability distribu-
tions p (x) and q (x), over the same index set, x. For these distributions it can
be de�ned by

H (p (x) |q (x)) ≡
∑
x

p (x) log2

p (x)

q (x)
≡ −H (X)−

∑
x

p (x) log2 q (x) . (28)

The relative entropy is non-negative, H (p (x) |q (x)) ≥ 0, with equality if
and only if p (x) = q (x) for all x. The relative entropy can be used to express
other types of entropies and as a interconnection between them.

While previous entropies are dealing with distribution of one random variable
there are entropy extensions that deal with more than one random variable.One
of them is the joint entropy. It is de�ned as

H (X,Y ) = −
∑
x,y

p (x, y) log2 p (x, y) (29)

and expresses the total uncertainty about the pair of random variables X and
Y .

The conditional entropy gives us an averaged value of how uncertain we are
about the random variable X, provided that we know the value of Y .

H (X|Y ) ≡ H (X,Y )−H (Y ) . (30)

Another quantity the mutual information shows how much content does
X and Y have in common. But suppose that we add the information about
X, H (X), to the information about Y , H (Y ). Shared between X and Y
information, in this case, will be counted twice, while information unique to X
and to Y will be counted only once. In order to get the mutual information, we
need to subtract the joint information H (X,Y ) from this sum

H (X : Y ) ≡ H (X) +H (Y )−H (X,Y ) (31)

in terms of conditional entropy mutual information can be written as

H (X : Y ) = H (X)−H (X|Y ) . (32)
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All mentioned previously special cases of entropies can be deduced using
depicted on Venn diagram. This diagram is not completely reliable for compre-
hension of properties of entropies, however it provides a clear understanding of
relations between entropies and their properties.

Figure 12: Relationships between di�erent entropies.

Basic properties of Shannon entropy:

� H (X,Y ) = H (Y,X) , H (X : Y ) = H (Y : X) .

� H (Y |X) ≥ 0 and thus H (X : Y ) ≤ H (Y ), with equality if and only if Y
is a function of X, Y = f (X).

� H (X) ≤ H (X,Y ), with equality if and only if Y is a function of X

� H (X,Y ) ≤ H (X) + H (Y ) with equality if and only if X and Y are
independent random variables.

� H (Y |X) ≤ H (Y )and thus H (X : Y ) ≥ 0, with equality in each if and
only if X and Y are independent random variables.

� H (X,Y, Z) + H (Y ) ≤ H (X,Y ) + H (Y,Z), with equality if and only if
Z → Y → X forms a Markov chain.

� H (X|Y, Z) ≤ H (X|Y )

2.2 Von Neumann entropy

The extension of the concept of entropy to quantum mechanics was presented
in a famous book �Mathematische Grundlagen der Quantenmechanik� in 1932
by Johann von Neumann [30]. While the Shannon entropy deals with classical
probability distributions, von Neumann entropy uses density operators.

The Von Neumann entropy is de�ned using quantum state ρ as

S (ρ) = −Tr (ρ log2 ρ) . (33)
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Equation (33) can also be expressed via eigenvalues λx of the state ρ

S (ρ) = −
∑
x

λx log2 λx (34)

where again 0 log 0 ≡ 0, as for the case of the Shannon entropy. One can show
that the Von Neumann entropy has minimal value (S (ρ) = 0) when the state
is pure ρ = |ψ〉 〈ψ| and has maximum value (S (ρ) = log d) when the state is
maximally mixed ρ = I/d.

Similarly to the Shannon entropy it is useful to de�ne the relative entropy
that can be used in quantum mechanics. Suppose ρ and σ are density operators.
The relative entropy of ρ to σ is de�ned by

S (ρ||σ) = Tr (ρ log2 ρ)− Tr (ρ log2 σ) . (35)

The non-negativity of quantum relative entropy is described by Klein's in-
equality [31]:

The quantum relative entropy is non-negative ,

S (ρ||σ) ≥ 0, (36)

with equality if and only if ρ = σ.
Basic properties of Von Neumann entropy:

� The entropy is non-negative. The entropy is zero if and only if the state
is pure.

� In a d−dimensional Hilbert space the entropy is at most log d. The entropy
is equal to log d if and only if the system is in the completely mixed state
I/d.

� Suppose a composite system AB is in pure state. Then S (A) = S (B).

� Suppose pi are probabilities, and the states ρi have support on orthogonal
subspaces. Then

S

(∑
i

piρi

)
= H (pi) +

∑
i

piS (ρi) . (37)

� Joint entropy theorem: Suppose pi are probabilities, |i〉 are orthogonal
states for a system A, and ρi is any set of density operators for another
system, B. Then

S

(∑
i

pi |i〉 〈i| ⊗ ρi

)
= H (pi) +

∑
i

piS (ρi) . (38)

29



2.3 Holevo bound

In quantum information theory there is a great need of knowing how much
information can be contained in a quantum system, in other words - accessible
information. Unfortunately, there is no general method for calculating this
bound, however exists a great variety of proven important bounds and one of
the most important of them is the Holevo bound [32].

Suppose that Alice prepares a set of mixed states {ρ1, ρ2, ..., ρn}. One of the
states - ρx, where X = 0, ..., n , is drawn accordingly to the probability distribu-
tion {p0, ..., pn}. Bob performs a POVM on the state and acquire measurement
result Y . The Holevo's theorem states that for any possible measurement Bob
may achieve:

H (X : Y ) ≤ S (ρ)−
∑
x

pxS (ρx) , (39)

where ρ =
∑
x
pxρx.

Thus the Holevo bound is an upper bound on the accessible information.
The right side of the (39) is called the Holevo information or Holevo q quantity.

The accessible information does not commonly saturate Holevo bound. One
can see that in order to saturate the Holevo bound using product measure-
ments the states must have orthogonal support, which is not generally satis�ed.
Nonetheless collective measurements on the signal can achieve the Holevo bound
and this is the main reason why this bound found such a wide usage in theory
of QKD.

3 Security

Let us brie�y recapitulate the security of the Gaussian CV QKD protocols. Even
if most of the experimental implementations are based on prepare-and-measure
schemes, the theoretical analysis is mainly done using an entanglement-based
scheme, as they are completely equivalent [33] but latter signi�cantly simpli�es
calculations or makes them possible in principle.

Figure 13: Prepare-and-measure protocol scheme

Prepare-and-measure protocol is straightforward - Alice uses radiation from
a source (laser or optical parametric oscillator) and modulator on her side to
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encode the information into quantum states using methods described previously
and then sends the states through untrusted quantum channel they states su�er
from losses (η) and excess noise (ε) and �nally arrive to Bob's side, where they
are being detected and processed further.

Figure 14: Entanglement-based protocol scheme with squeezed states. For co-
herent states heterodyne measurement on Alice's side should be used.

In entanglement-based scheme Alice on her side generates an entangled state
using an EPR source, sends one mode to Bob and measures with appropriate
basis the other mode. Alice can vary her measurements from heterodyne to
homodyne depending on which states she wants to use during QKD, coherent
or squeezed states respectively.

3.1 Individual attacks

Individual attacks are those in which Eve is restricted to interact with and mea-
sure each transmitted signal independently. It was proven [34] that Gaussian
individual attacks are optimal against Gaussian direct and reverse reconciliation
protocols. Since Alice and Bob apply only Gaussian measurements that do not
mix x and p quadratures, and their mutual information is �xed by the amount
of data that was obtained by both of them and the e�ciency of reconciliation, in
order to hold an optimal attack Eve should apply a Gaussian map. Therefore,
Alice and Bob before measurement share quantum state ρAB that is assumed
to be a Gaussian two-mode state with 0 mean value and respective covariance
matrix γAB . Since neither Gaussian operations, nor noise in the Gaussian chan-
nel can introduce correlations between x and p quadratures, one can write a
covariance matrix as

γAB =

[
γxAB 0

0 γpAB

]
(40)

Security is shown as the positivity of the key, following Csiszar - Korner
theorem [11], in other words the information transmission is secure until key
rate reaches zero.

Key rates for direct reconciliation and reverse reconciliation are expressed
through mutual information between participants of QKD and can be written
respectively as:
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KDR = IAB − IAE , (41)

KRR = IAB − IBE , (42)

where I is mutual information (equation (31)) between respective parties. Roughly
speaking protocol remains secure until the information that Alice and Bob share
is bigger than the information known to Eve. In terms of equation (32) key rates
can be written as:

KDR = H (A|E)−H (A|B) , (43)

KRR = H (B|E)−H (B|A) . (44)

Since states and channel are Gaussian, entropies can be expressed in terms
of conditional variances,

H (X|Y ) =
1

2
log2 VX|Y , (45)

where entropy is measured in bits, so the �nal result would give us quantity of
bits per pulse.

Mutual information written in conditional variances:

IAB =
1

2
log2

VB
VB|A

=
1

2
log2

VA
VA|B

, (46)

and variances itself as:

VX|Y = VX −
C2
XY

VY
, (47)

where VX(Y )- variance of a respective light mode and CXY - correlation between
those modes.

In order to have the most general case of the noisy quantum channel one
should assume that Eve holds the puri�cation of state ρAB . Using previously
described entropies and Heisenberg equation one can write:

VA|EVA|B ≥ 1 (48)

which sets the bound on preciseness of Eve's possible measurements and allows
to upper bound Eve's information in case of individual attacks. Equation (48)
can also be written in terms of measured quadratures for di�erent types of
reconciliations, but general meaning stays the same.
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3.1.1 Pure losses

Let us �rst consider a purely lossy channel. During calculations it was assumed
that all other devices in schemes are ideal, working with maximum possible e�-
ciency and noise and transmission losses are introduced in the quantum channel.
Expressions for mutual information between Alice and Bob, Alice and Eve and
Bob and Eve can be respectively written as,

Iab =
1

2
log2

 V

V − η(V 2−1)
−η+η(k+V )+1

 (49)

Iae =
1

2
log2

 V

V − (1−η)(V 2−1)
η+(1−η)(k+V )

 (50)

Ibe =
1

2
log2

 1− η + η(k + V )

1− η + η(k + V )−
√
η(1−η)(1−k−V )2

η+(1−η)(k+V )

 (51)

Graph representations of equations (49,50,51) are shown on �gure 15.
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Figure 15: Dependencies of mutual information (left - coherent states protocol,
right - squeezed state protocol) on channel losses,where Iab, Iae, Ibe- mutual
information between Alice and Bob, Alice and Eve, Bob and Eve respectively.

On �gure 15 the behavior of mutual information between di�erent protocol
parties with decreasing of losses is shown. Losses should be apprehended as
beam-splitter with corresponding transmittance η. Noticeably mutual informa-
tion between Alice and Bob increases with the decrease of losses, correspondingly
mutual information between Alice and Eve decreases since Eve receives less in-
formation when data leakage in untrusted channel is smaller. However for any
values of losses mutual information between Eve and Bob remains smaller than
the one between Alice and Bob. One can conclude that direct reconciliation
becomes insecure if η < 0.5, while reverse reconciliation can tolerate any pure
loss.
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3.1.2 Noisy channel

In order to saturate Eve's knowledge about the transferred key we have to take
into account realistic conditions. One of these conditions is presence of noise in
the untrusted channel. And since we make an assumption that Eve fully controls
the losses and noise that quantum states su�er from, for calculations we use the
so called entangling cloner [?] to purify Eve's attack. In an entangling cloner
attack Eve possesses her own EPR source of variance N and a beamsplitter
with transmittance η. Half of the Eve's state is mixed with Bob's mode on
beamsplitter. Since Alice and Bob have access only to half of the EPR, they
can see only thermal states with variance N . N is tuned in such a way to match
the noise of the real channel. The other half of the EPR will serve to reduce
Eve's uncertainty on the noise added by the channel. Since channel is Gaussian
and phase-insensitive, noise a�ects x and p quadratures in a same way.

Eve has to �x N in a proper way:

N =
ηε

1− η
+ 1. (52)

In the most expedient scenario Eve has to store two ancillary systems E1

and E2, in two quantum memories and after Alice and Bob start to reveal the
selected basis (key sifting) through classical channel, Eve will measure the right
quadrature on systems E1 and E2. The correct measurement on E2 will allow
Eve to decrease the noise in E1. Mutual informations for squeezed-state protocol
after the whole process of key transferring, interaction with Eve's ancillas can
be written as:

IAB =
1

2
log2

(
ηV (V + ε− 1) + V

η + ηV (ε− 1) + V

)
(53)

IAE =
1

2
log2

(
V (η + ηV (ε− 1) + V )

η(V + ε− 1) + 1

)
(54)

IBE =
1

2
log2

(
(η + ηV (ε− 1) + V )(η(V + ε− 1) + 1)

V

)
(55)

On �gure 16 one can we can see a di�erence between the squeezed state
and coherent state protocols, more speci�cally - coherent state protocol is less
robust to noise.
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Figure 16: Mutual information on channel losses. Left - coherent state protocol,
Right - squeezed state protocol, ε = 0.2, V = 100

3.2 Collective attacks

Security of QKD protocols should be proven even for the case when Eve has
no technological limitations, so she can achieve the Holevo bound (39). This
case is generalized by collective attacks, security to which was shown to imply
security against any attack. In this scenario key rates for direct and reverse
reconciliations respectively read:

KDR = IAB − χAE , (56)

KRR = IAB − χBE . (57)

where KDR(RR)depends on the key sifting, but does not depend on the puri�-
cation ofρAB , and χAE (χBE)- Holevo bound between respective parties.

Collective attacks are much more sophisticated attacks than individual ones.
Eve's measurement is done after the processes of error-correction and privacy
ampli�cation are completed. During her attack Eve attaches a separate, uncor-
related probe to each transmitted state, than she keeps probes in a quantum
memory (where quantum states can be kept for a long time) until she can gather
additional information about error-correction and privacy ampli�cation (eaves-
dropping a classical channel). After this Eve performs the optimal measurement
on her probes in order to learn the maximal information on the �nal, sifted key.
The case of collective attacks is the strongest attack suggested so far, and per-
haps is the strongest possible attack.

During calculations of Holevo bound we use the fact that von Neumann
entropies that are expressed through bosonic entropy functions:

SX =
∑
n

G

(
λn − 1

2

)
, (58)

where

G (x) = (x+ 1) log2(x+ 1)− x log2 x. (59)
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For single-mode covariance matrix of Eve's state, key rate reads:

KDR(RR) = IAB − SE + SE|A(E|B) = IAB −G
(
λ1 − 1

2

)
+G

(
λ2 − 1

2

)
, (60)

where λn - symplectic eigenvalues of a respective covariance matrix.
Due to Williamson theorem [35] we know that for any N -mode covariance

matrix γ there is a symplectic transformation S such that:

SγST = λ (61)

where λ is a tensor product of thermal states, called the Williamson normal
form,

λ =
N
⊕
k=1

[
λk 0
0 λk

]
. (62)

The symplectic eigenvalues λk being the eigenvalues of the matrix |iΩγ|,
where

Ω =

[
ω 0
0 ω

]
, ω =

[
0 1
−1 0

]
.

The symplectic transformation is a unitary operation so a state is pure if and
only if λ = I. More precisely, the purity µ of a Gaussian state ρ of covariance
matrix γ reads,

µ = Trρ2 =
1√

det γ
. (63)

The determinant is then a symplectic invariant, as detS = 1, which leads
to,

det γ = detλ =

N∏
i=1

λ2
i . (64)

The most basic cases are for one and two mode covariance matrices. The
normal decomposition of one mode: λ1 =

√
det γ1. For two mode covariance

matrix

γAB =

[
γA σAB
σAB γB

]
,

First symplectic invariant:

det γAB = λ2
1λ

2
2. (65)

Second symplectic invariant:

4 = λ2
1 + λ2

2 = det γ1 + det γ2 + 2 detσAB ,

Then λi are given by z2 −4z + det γAB = 0, λ1,2 =
√
z1,2.

For bigger number of modes situation is much complicated and generally
cannot be solved and simpli�ed analytically [20].
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4 Advanced security

4.1 Preparation noise

In ideal case when there are no losses and noise, and detectors are ideal, the
process of obtaining secure key between trusted parties is plain and straight-
forward. But for correct realistic calculations one should take into account all
possible in�uences on quantum key distribution. Two of them were presented
previously - channel losses η, that are modeled by a beamsplitter with respec-
tive transmittance, and excess noise ε. Detectors are typically assumed to be
trusted - preparation and receiving of the states are completely secure, there is
no information leakage to potential eavesdropper, but the noise can be added
on the trusted side. However, it was shown that noise on the remote receiver
side does not limit the security, but can even be useful in reverse reconcilia-
tion scenario [36]. On the other hand, trusted preparation noise can break the
security of coherent-state protocol [37] already for the pure loss in the case of
reverse reconciliation, but can be compensated with proper puri�cation [38]. In
our theoretical analysis we consider both coherent and squeezed state protocols.
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Figure 17: Dependency of key rate for reverse reconciliation on channel losses
and preparation noise4V for squeezed (left) and coherent (right) state protocol.

One should emphasize that preparation noise, if it is on the reference side of
reconciliation, does not break the security [20, 39].

First, we generalize the study of the preparation noise to the squeezed state
protocol [11]. For purely lossy channels in case of in�nitely squeezed states
expression for preparation noise that breaks the security can be written as,

4V =
2− η
1− η

(66)

and for coherent state protocol with arbitrary large source variance [37] it is
known as more strict bound:

4V =
1

1− η
(67)
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Figure 18: Comparison of dependencies of maximum tolerable preparation noise
on channel losses between squeezed and coherent state protocols for purely lossy
channel, for in�nitely high variance V → ∞ (solid) and mild variance V = 2
(dashed).

If the channel noise is present, then the expression for maximal tolerable
preparation noise in case of entangling cloner attack on squeezed state protocol,
reads

4V =
2− η − ηε2 + 2ηε− 2ε

1− η + ηε
. (68)

As can be seen from �gure 18 squeezed state protocol is more robust against
the preparation noise upon the same energy of the signal states.
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Figure 19: Dependency of maximum tolerable preparation noise on channel
losses (in dB) for various in�uences of excess noise ε, where starting from top
curve ε = 0.1, 0.3, 0.5, 0.7, 0.9

4.2 Side channel

It is reasonable to assume that attackers will try any means possible to break
the security of information transmission. Computational complexity that lays
in the basis of any protocol can be weakened or even bypassed using additional
information, therefore it is necessary to investigate all possible ways attackers
can �backdoor� the security. Attacks that are based on information obtained
from physical implementation of a cryptosystem instead of exploiting theoretical
weaknesses or cryptoanalysis are called side-channel attacks. Timing informa-
tion, power consumption, electromagnetic �elds, dissipating heat or even sound
can provide an extra source of information which can be exploited to break the
system. Some side-channel attacks require technical knowledge of the internal
operation of the system on which the cryptography is implemented, although
others such as di�erential power analysis are e�ective as black-box attacks.

There are a few types of side channel attacks:

� Invasive and non-invasive: Invasive attacks require direct access to the
inside components of the cryptographic device while non-invasive attacks
only exploit externally reachable information.

� Active and passive: Active attacks try to alter in a speci�c way the func-
tionality of the cryptographic device while passive attacks are entirely
based on observations and do not disturb the working process of the de-
vice.

In further calculations we consider that Eve can carry non-invasive passive at-
tack. Such kind of attacks do not require any sophisticated and expensive
equipment and they pose a serious threat to any cryptographic system.

39



In classical cryptography there are lots of di�erent classes of passive attacks
- such as timing, power monitoring , electromagnetic, acoustic etc. In all cases,
the underlying principle is that physical e�ects caused by the operation of a
cryptosystem (on the side) can provide useful extra information about secrets in
the system, for example, the cryptographic key, partial state information, full or
partial plain texts and so forth. The term cryptophthora (secret degradation)
is sometimes used to express the degradation of secret key material resulting
from side channel leakage [40]. Further we consider e�ect on side-channels in
CV QKD.

Figure 20: Side channel in QKD

Side channels are present in all QKD systems due to the imperfections of
equipment. However side channel concept also allows to simplify the calculations
for preparation and detection noise, since it is hard to characterize all possible
sources of preparation and detection noise and instead of treating all these
sources separately, it is easier to describe their total impact as an additional
side-channel under Eve's control.

4.2.1 Vacuum input

In QKD we introduce side channel to the system as an additional beamsplitter
on trusted side. The re�ectance of this beamsplitter is proportional to leakage
of the main signal to the side channel.

Let us consider the side-channel loss, where the input of a side-channel is a
vacuum state coupled to a signal with ratio S and is not by any means controlled
by Eve (�gure 21,22). However Eve can use this side channel to gain knowledge
about the key without introducing errors and therefore does not reveal herself.
As can be seen from previous calculations reverse reconciliation is more robust
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for key transferring to longer distances and it also allows us to cross out the
in�uence of detection noise, so further we will proceed with calculations only
for reverse reconciliation.

First we calculate the impact of side channel on the security against indi-
vidual attacks to estimate the insecurity region. As we perform the calculations
in the equivalent entangled-based setup (using the reverse reconciliation), the
expression for mutual information between Alice and Bob and Bob and Eve
using equation (46) are

IAB =
1

2
log2

VA
VA|B

, (69)

IBE =
1

2
log2

VB
VB|E1E2

, (70)

where VA|B = VA− C2
AB

VB
and VB|E1E2

= VB|E1
− C2

BE2|E1

VE2|E1

are relevant condi-

tional variances (equation (47)), E1 stands for the side channel and E2 stands
for channel losses. In our case, the variances are VA = V (or VA = V+1

2 for
coherent-state protocol), VB = ηS(V −1) + 1, VE1 = S+V −SV , VE2 = S(η−
ηV +V −1)+1 and the mode correlations are CAB =

√
η
√
S
√
V 2 − 1 (or CAB =

√
η
√
S
√
V 2−1√

2
for coherent-state protocol), CBE1

=
√
η
(
−
√
−(S − 1)S

)
(V − 1),

CBE2 =
√
−(η − 1)η(−S)(V − 1), CE1E2 =

√
1− η

√
−(S − 1)S(V − 1).

In the limit of arbitrary large source variance (arbitrary high modulation)
key rate for squeezed and coherent state protocols respectively turns to

K(S)RR =
1

2
log2

1

(1− ηS)2
(71)

K(C)RR =
1

2
log2

1

1− ηS
(72)

The explicit expression for the key rate in general case is obtainable analyt-
ically, but it is too lengthly.

41



Figure 21: General EPR based quantum key distribution scheme with a side
channel

Figure 22: General Prepare & Measure based quantum key distribution scheme
with a side channel

Since collective attacks are optimal and predict �worst case scenario� (in
other words if protocol is secure against them, than it is generally secure) in
further we will proceed calculations for collective attacks.

In the case of collective attacks it is convenient to look at the in�uence
of the side-channel noise on the robustness of protocols to factors that limit
transmission distance, key rates etc., factors that cannot be a�ected by trusted
parties. Channel losses η are usually related to transmission distances. One of
the biggest limitations however is associated with excess noise. By de�nition,
excess noise is the noise above the vacuum noise level associated with channel
losses, and it is a major issue in continuous variables QKD.

As can be seen from �gure 23 coherent state protocol is less robust to excess
noise than squeezed state protocol.
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Figure 23: Comparison between coherent (dashed) and squeezed state protocols
for maximum tolerable excess noise on channel losses (in dB) in absence of
side-channel.

However side-channel decreases robustness of protocols to excess noise as
seen from �gure 24.
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Figure 24: Side channel in�uence on squeezed (left) and coherent (right) state
protocols for di�erent coupling ratios (starting from top S = 1, 0.8, 0.6, 0.4,
where 1 stands for absence of side-channel)

As can be seen from �gure 24 when side channel coupling ratio to signal is
small more informaion �ows into side channel, tolerance to channel excess noise
decreases and eventually reaches zero therefore protocol is no longer secure for
any values of excess noise. However we are interested in values of coupling
rations or in other words level of presence of side channel that are still tolerable
for the security.

4.2.2 Trusted input

Let us assume that the input of side channel is under Alice's control. In case
of Prepare & Measure scheme, as seen on �gure 25, Alice can use an additional
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modulator to input a known value of noise into the side channel. This side
channel is coupled to a main signal with a coupling ratio S and its output
is measured by Eve. It is assumed that Alice fully controls the side-channel
modulator and Eve cannot by any means in�uence the input of the side-channel.
Since Alice knows what noise she inputs into side channel, later she possibly can
use this information to decrease Eve knowledge about the transmitted key.

Figure 25: Prepare & Measure based side-channel quantum key distribution
scheme with additional modulation input to side-channel

Alice's noise modulation will shift the input mode quadrature of side channel.
We can write the input mode change in terms of x quadrature (calculations for
the case when of p-quadrature is measured will be equivalent) as

x
′

0 = x0 + xD ,

where xD - shift, known to Alice, and its variance is referred to as side-
channel input noise (Vm), while x0 - quadrature of a vacuum state with variance
1. Similarly, the same shift is applied to Alice's mode:

x
′

A = xA + xD ,

where xA - quadrature of Alice's mode with a respective variance V . For in-
dividual attacks calculations are done similarly to previous case of vacuum side
channel input. Variances for respective modes can be written as: VA = V + Vm
(or VA = 1

2 (V + Vm + 1) for coherent-state protocol), VB = ηS(V − Vm − 1) +
ηVm+1, VE1

= V +S(1−V +Vm), VE2
= η+(1−η)(S(V −Vm−1)+Vm+1) and

the mode correlations are CAB =
√
η
(√

S
√
V 2 − 1 +

√
1− SVm

)
(or CAB =

√
η(
√
S
√
V 2−1+

√
1−SVm)√

2
for coherent-state protocol), CBE1

=
√
η
√
−(S − 1)S(1−

V+Vm), CBE2
=
√
−(η − 1)η(−(S(V−Vm−1)+Vm)), CE1E2

=
√

1− η
√
−(S − 1)S(V−

Vm − 1).
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In the limit of arbitrary large source variance (arbitrary high modulation)
key rate for squeezed and coherent state protocols respectively turns to

K(S)RR =
1

2
log2

 ηS

η
(
Vm − 2

√
−(S − 1)SVm − S

)
+ 1

−1

2
log2

(
ηS(1− η(S + Vm) + Vm)

Vm + 1

)
(73)

K(C)RR =
1

2
log2

(
ηS

−2η
√
−(S − 1)SVm + ηVm + 1

)
−1

2
log2

(
−ηS(ηS + (η − 1)Vm − 1)

Vm + 1

)
(74)

As was mentioned previously EPR scheme is completely equivalent to P&M
scheme. Corresponding EPR scheme to P&M scheme on �gure 25 is shown on
�gure 26.To purify modulation, introduced by Alice, we add additional EPR
source under Alice's control. This source with its own variance should be corre-
lated with both modes of the original EPR source. The process goes as follows:
second EPR source radiates a pair of entangled modes, one of the modes is sent
directly into the side channel, the input of which is a vacuum state, and after
this, Bob's mode �interacts� with a side channel that is coupled to it with ratio
S. The other entangled mode radiated from the second EPR source goes to
Alice's side that and is coupled to her mode of the main EPR source. First
mode from EPR:N source is sent through beam-splitter with re�ectance T into
the side channel, another mode with re�ectance (1 − T ) is coupled to the Al-
ice's signal mode. The re�ectance for second beam-splitter should be very low,
so main signal mode won't be altered too much, but Alice's detection should
provide information on both modes.

Figure 26: EPR based side-channel quantum key distribution scheme

Calculations of in�uence of the side-channel input noise on coherent and
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squeezed state protocols showed that the security of both of these protocols
holds.

Let us �rst show maximal tolerable excess noise for both protocols. The area
below the dependency curve is the area of a positive key rate and secure protocol.
As can be seen on �gure 27 - squeezed state protocol is much more robust to
noise than the coherent state protocol. Since coherent-state protocol can be seen
as more noisy version of squeezed-state protocol, the di�erence in robustness is
understandable. Interesting to notice that the in�uence of side-channel input
noise on excess noise is not linear. The robustness of both protocols starts from
the respective values, increases and rapidly saturates. For this particular case
coupling ratio (S = 0.9) is rather small which means that the side channel is
only slightly �present�.

0.0 0.2 0.4 0.6 0.8 1.0
Vm0.1

0.2

0.3

0.4

0.5

0.6
Εmax

Figure 27: Dependency of maximal tolerable excess noise on side channel input
noise for coherent (dashed) and squeezed state protocols. Side channel coupling
ratio S = 0.9, V = 1000, η = −3dB.

Further calculations show that side-channel input noise can actually have
positive impact on security of quantum key distribution. The behavior of de-
pendency of key rate on side-channel input noise is similar to the dependency
of maximum tolerable excess noise on side-channel input noise. Turns out that
protocol key rate is not linearly dependent on side channel input noise and
for any value of excess noise and channel losses there is a respective maximum
achievable key rate. The most interesting is that the key rate increases at �rst,
this allows us to suggest that there is an optimal value of side-channel input
noise that can partly compensate the in�uence of presence of side channel.
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Figure 28: Coherent state protocol key rate depending on side-channel input
noise for di�erent side channel coupling ratios S. V = 1000, ε = 0, η = −3dB

The same e�ect can be seen for squeezed state protocol.
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Figure 29: Squeezed state protocol key rate depending on side-channel input
noise for di�erent side channel coupling ratios S. V = 1000, ε = 0, η = −3dB.
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This dependency behavior remains similar for protocol robustness to excess
noise.
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Figure 30: Dependency of maximal tolerable excess noise on side-channel input
noise for coherent state protocol for various coupling ratios S, V = 1000, η =
−3dB
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Figure 31: Dependency of maximal tolerable excess noise on side-channel input
noise for squeezed state protocol for various coupling ratios S, V = 1000, η =
−3dB
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Thus, we have shown that additional modulation introduced on the input of
side-channel can improve QKD protocols robustness to channel noise, and such
modulation must be optimized in the given conditions.
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5 Conclusions

We have investigated the in�uence of side channel loss on the security of the
quantum key distribution schemes based on the coherent and squeezed state pro-
tocol upon realistic conditions of channel loss and channel excess noise. While
the presence of side channel was shown not to be destructive for the secure
key transmission, side channel still limits the robustness of protocols to noise
in the quantum channel. It is shown that the key rates for both coherent and
squeezed state protocols response to side channel information leakage in the
same way, however squeezed-state protocol is more robust to it. We investigate
the possibility to compensate the in�uence of side channel by inputting known
and trusted noise into it. For both coherent and squeezed state protocols an
optimal side-channel input noise can be found. Optimal input noise maximally
decreases the negative e�ect on security of side channel. Moreover, such noise
can increase the robustness of protocol to noise in the quantum (untrusted)
channel. Further noise optimization should be considered. The investigation of
additional realistic conditions can result in more e�ective optimization and may
be the subject for further research.

50



References

[1] G.S. Vernam. Cipher printing telegraph systems for secret wire and radio
telegraphic communications. J. IEEE, 55:109�115, 1926.

[2] C. E. Shannon. Communication theory of secrecy systems. Bell Syst. Tech.
J., 28:pp.656�715, 1949.

[3] T. Jennewein et al. A fast and compact quantum random number generator.
Rev. Sci. Instrum., 71:1675�1680, 2000.

[4] Shamir A. Rivest, R. L. and L. M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Commun. ACM, 21:120�
126, 1978.

[5] P. W. Shor. Algorithms for quantum computation: discrete logarithms
and factoring. In Proceedings of the 35th Symposium on Foundations of
Computer Science, edited by S. Goldwasser (IEEE Computer Society),Los
Alamitos, California, 1994.

[6] N. Herbert. Flash-a superluminal communicator based upon a new kind of
quantum measurement. Found. Phys., 12:1171�1179, 1982.

[7] W.K. Wootters and W.H. Zurek. Single quantum cannot be cloned. Nature,
299:802�803, 1982.

[8] D. Dieks. Communication by EPR devices. Phys. Lett., 92A:271�272, 1982.

[9] C. H. Bennett and G. Brassard. Quantum cryptography: public key dis-
tribution and coin tossing. In Proceedings of the IEEE International Con-
ference on Computers, Systems and Signal Processing, (IEEE, New York),
pages 175�179, 1984.

[10] G. Weihs W. Tittel. Photonic entanglement for fundamental tests and
quantum communication. Quantum Inf. Process., 1:3, 2001.

[11] W. Tittel N. Gisin, G. Ribordy and H. Zbinden. Quantum cryptography.
Rev. Mod. Phys., 71:145�195, 2002.

[12] B. Podolsky A. Einstein and N. Rosen. Can quantum mechanical descrip-
tion of physical reality be considered complete? Phys. Rev., 47:777�780,
1935.

[13] Gerardo Adesso. Entanglement of Gaussian States. Ph.D. Thesis, Univer-
sity of Salerno, 2007.

[14] S. Popescu C. H. Bennett, H. J. Bernstein and B. Schumacher. Can quan-
tum mechanical description of physical reality be considered complete?
Phys. Rev. A, 53:2046, 1996.

51



[15] A. K. Ekert. Quantum cryptography based on Bell's theorem. Phys. Rev.
Lett., 67:661�663, 1991.

[16] J. S. Bell. On the Einstein Podolsky Rosen paradox. In Physics 1, Long
Island City, N.Y., pages 195�200, 1964.

[17] M.Hillery. Quantum cryptography with squeezed states. Phys. Rev., A
61:022309, 1991.

[18] M. Levy N. J. Cerf and G. Van Assche. Quantum distribution of gaussian
keys using squeezed states. Phys. Rev. A, 63:052311, 2001.

[19] Grosshans and P. Grangier. Continuous variable quantum cryptography
using coherent states. Phys. Rev., 88:057902, 2002.

[20] Raul Garcia-Patron Sanchez. Quantum Information with Optical Continu-
ous variables: from Bell tests to key distribution. Ph.D. thesis, UL Brussels,
2007.

[21] Vedral V., editor. Modern Foundations of Quantum Optics. Imperial Col-
lege Press, 2005.

[22] Gilles van Assche, editor. Quantum cryptography and secret-key distillation.
University Press, Cambridge, 2006.

[23] J. Wenger et al. F. Grosshans, G. Van Assche. Quantum key distribution
using gaussian-modulated coherent states. Nature, 421:238�241, 2003.

[24] W. P. Bowen T. Symul T. C. Ralph C. Weedbrook, A. M. Lance and
P. K. Lam. Quantum cryptography without switching. Phys. Rev. Lett.,
93:170504, 2004.

[25] Tomas Opatrny Dirk-Gunnar Welsch, Werner Vogel. Homodyne detection
and quantum state reconstruction. Progress in Optics, XXXIX:63�211,
2009.

[26] H.Paul U. Leonhardt. Measuring the quantum state of light. Progress in
Quantum Electronics, 19:89�130, 1995.

[27] S. L. Braustein. Phys. Rev., A 42:474, 1990.

[28] W. Vogel and J. Grabow. Phys. Rev., A 47:4427, 1993.

[29] Isaac L. Chuang Michael A. Nielsen, editor. Quantum Computation and
Quantum Information. University Press, Cambridge, 2000.

[30] J. von Neumann, editor.Mathematische Grundlagen der Quantenmechanik.
Springer Verlag, 1932.

[31] O. Klein. Zur quantenmechanischen begrundung des zweiten hauptsatzes
der warmelehre. Z. Physik, 72:767�775, 1931.

52



[32] A. S. Holevo. Bounds for the quantity of information transmitted by a
quantum communication channel. [Probl. Inf. Transm., 9:110, 1973.

[33] J. Wenger R. Tualle-Brouri F. Grosshans, N. J. Cerf and P. Grangier. Vir-
tual entanglement and reconciliation protocols for quantum cryptography
with continuous variables. Quantum Inf. Comput., 3:535, 2003.

[34] G. Giedke M. M. Wolf and J. I. Cirac. Extremality of gaussian quantum
states. Phys. Rev. Lett., 96:080502, 2006.

[35] S. Chaturvedi R. Simon and V. Srinivassan. Congruences and canonical
forms for a positive matrix: Application to the schweinler-wigner extremum
principle. J. Math. Phys., 40:3632, 1999.

[36] R.Garcia-Patron and N.J.Cerf. Continuous-variable quantum key distribu-
tion protocols over noisy channels. Phys. Rev. Lett., 102:120501, 2009.

[37] R. Filip. Security of coherent-state key distribution through an amplifying
channel. Phys. Rev., A 77:022310, 2008.

[38] R. Filip C. Usenko. Feasibility of continuous-variable quantum key distri-
bution with noisy coherent states. Phys. Rev., A 81:022318, 2010.

[39] S. Lloyd T.C. Ralph C. Weedbrook, S. Pirandola. Quantum cryptography
approaching the classical limit. Phys. Rev. Lett., 105:110501, 2010.

[40] S.Parameswaran J. Ambrose, A.Ignjatovic, editor. Power Analysis Side
Channel Attacks. VDM Publishing, 2010.

53


	Quantum Key Distribution protocols
	Quantum key distribution
	The priciples of quantum cryptography
	No-cloning theorem
	The BB84 protocol
	Entanglement based QKD
	Continuous-variable protocols

	Basics of continuous-variable protocols
	Introduction to continuous-variable systems

	Phase-space picture
	Vacuum, Coherent and Thermal states
	Squeezed state

	Continuous-Variable Quantum Key Distribution
	A protocol with squeezed states
	A protocol with coherent states

	Homodyne detection

	Entropy and information
	Shannon entropy
	Von Neumann entropy
	Holevo bound

	Security
	Individual attacks
	Pure losses
	Noisy channel

	Collective attacks

	Advanced security
	Preparation noise
	Side channel
	Vacuum input
	Trusted input


	Conclusions
	Bibliography


