
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION T E C H N O L O G Y
DEPARTMENT OF INFORMATION S Y S T E M S

NTP KLIENT PRO SYSTÉM CONTIKI
CONTIKI NTP CLIENT

BAKALÁŘSKÁ PRAČE
BACHELOR 'S THESIS

AUTOR PRÁCE J O S E F LUŠTICKÝ
AUTHOR

VEDOUCÍ PRÁCE Ing. TOMÁŠ KAŠPÁREK
SUPERVISOR

BRNO 2012

Bachelor Project Specification/14271/2011/xiusWO

B rno U n i v e r s i t y of T e c h n o l o g y - Fa cu l t y o f I n f o r m a t i o n T e c h n o l o g y

C o m p u t e r Cen t re A c adem i c y ea r 2 0 1 1 / 2 0 1 2

Bachelor Project Specif icat ion
For: Lušt i cký J o s e f

B ranch of s tudy: In fo rmat ion Techno logy

Tit le: C o n t i k i N T P C l i e n t

Ca tego ry : Opera t ing S y s t e m s

Ins t ruc t ions for project work:
1. S tudy opera t ing s y s t em for embedded dev i ces Cont ik i and ma in ly its d i f ferences f rom

POSIX s t anda rd . S tudy NTP protoco l for prec ise t ime synch ron i za t i on .
2. Dev i se necessa ry mod i f i ca t ions for both Cont ik i opera t ing s y s t em and NTP cl ient and

d iscuss portab i l i ty of the c l ient for this OS .
3. Imp l emen t necessa ry changes for the OS and port the NTP cl ient for Cont ik i OS.
4. Prov ide a demons t r a t i on of NTP cl ient funct iona l i ty , d iscuss the a m o u n t of changes , that

were necessa ry for both the c l ient and OS . A re there any l imi tat ion for full NTP serv ice
suppor t (daemon mode) ?

Bas ic re ferences:
• The Cont ik i OS , [on l ine][c i t . 2 0 1 1 - 0 9 - 2 1] . Ava i l ab le on <ht tp : / /www.cont i k i -os .o rg/>
• Network T ime Protocol project, [onl ine][c i t . 2 0 1 1 - 0 9 - 2 1] . Ava i l ab le on

<ht tp : / /www.n tp .o rg />

Deta i led fo rma l spec i f i ca t ions can be found at h t tp: / /www. f i t . vu tb r . cz / in fo /szz /
The Bachelor Thesis must define its purpose, describe a current state of the art, introduce the theoretical and

technical background relevant to the problems solved, and specify what parts have been used from earlier projects or
have been taken over from other sources.

Each student will hand-in printed as well as electronic versions of the technical report, an electronic version of the
complete program documentation, program source files, and a functional hardware prototype sample if desired. The
information in electronic form will be stored on a standard non-rewritable medium (CD-R, DVD-R, etc.) in formats
common at the FIT. In order to allow regular handling, the medium will be securely attached to the printed report.

Superv i so r : Kašpárek Tomáš , I n g . , C C FIT BUT

Beg inn ing of work: N o v e m b e r 1, 2011

Date of de l i ve ry: May 16, 2012
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Fakulta Informačních technologií
Ústav informačních systémů
612 66 Brrro^oŽetěchova 2

o
Dušan Kolář

Associate Professor and Head of Department

http://www.contiki-os.org/
http://www.ntp.org/
http://www.fit.vutbr.cz/info/szz/

Abstrakt
Účelem t é t o p ráce je popis o p e r a č n í h o s y s t é m u C o n t i k i pro ves tavěné sys témy, popis pro
tokolu N T P pro synchronizaci času a vy tvo řen í n á v r h u a implementace klienta protokolu
N T P pro ope račn í s y s t é m Con t ik i .

Abstract
The purpose of this thesis is to describe the operating system C o n t i k i for embedded systems,
N T P time synchronisation protocol and to design and implement an N T P client for the
Con t ik i operating system.

Klíčová slova
ope račn í sys t ém, C o n t i k i , synchronizace času , N T P , S N T P , IP síť, ves t avěné sys témy, pro
tokol, hodiny, čas

Keywords
operating system, Con t ik i , t ime synchronisation, N T P , S N T P , I P network, embedded sys
tems, protocol, clock, t ime

Citace
Josef Luš t i cký : C o n t i k i N T P Client , b a k a l á ř s k á p ráce , Brno , F I T V U T v B r n ě , 2012

Contiki N T P Client

Prohlášení
Proh lašu j i , že jsem tuto b a k a l á ř s k o u p rác i vypracoval s a m o s t a t n ě pod v e d e n í m pana Ing.
T o m á š e K a š p á r k a .

Josef Luš t i cký
Ju ly 18, 2012

Poděkování
I would like to thank my supervisor Ing. T o m á š K a š p á r e k for helping me wi th pract ical
advice and leadership, Prof. D r . Re inhold Kröger and K a i Beckmann from Dopsy group at
R h e i n M a i n Univers i ty of A p p l i e d Sciences i n Wiesbaden for providing an equipped work
place i n the laboratory and helping me wi th hardware setup, and L y d i a Wooldridge and
Marcus Thoss for grammar corrections.

© Josef Lušt ický, 2012.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakulté in

formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3

2 Cont ik i O S 4
2.1 Features 4
2.2 Protothreads 5
2.3 uIP 6
2.4 Kerne l and processes 7
2.5 Timers 9

3 Network T i m e Protocol 10
3.1 Topology and hierarchy 10
3.2 T ime and timescales 11
3.3 Network and timestamps 12
3.4 Algor i thms 15

4 Analysis 17
4.1 Hardware clock 17
4.2 Con t ik i clock interface 18
4.3 T ime interface 19
4.4 N T P client application 20

5 Design 22
5.1 T ime interface extension 22
5.2 Clock l ibrary extension 24
5.3 Con t ik i N T P client 25

6 Implementation 28
6.1 T i m e interface extension 28
6.2 Clock l ibrary extension 30
6.3 Con t ik i N T P client 32
6.4 Code metrics 34

7 Measurements 36
7.1 Clock interrupt frequency 36
7.2 Clock offset 37
7.3 Clock phase 38

8 Conclusion 40

1

A Protothreads Example

B Clock Interrupt Frequency Measurements

C Clock Offset Measurements

D Clock Phase Measurements

E C D Contents

2

Chapter 1

Introduction

Nowadays we live in a world where embedded systems are part of almost every electronic
device. M o d e r n televisions contain embedded systems to allow you to browse the Web,
modern cars use embedded systems to control an engine or to give you a summary of your
journey using G P S , even fridges showing the list of things you should buy at a market are
becoming popular. Embedded systems are becoming more widespread than ever and so do
their needs for a network connection.

Con t ik i is an operating system targeted at embedded systems and developed by A d a m
Dunkels from the Swedish Institute of Computer Science in K i s t a , Sweden. C o n t i k i brings
new concepts to the embedded world and supports the Internet P ro toco l version 6 and 4.
Since C o n t i k i aims for m a x i m u m portabil i ty, it is wri t ten in the C programming language.
Con t ik i therefore provides an ideal solution for connecting embedded systems to an existing
network on many different hardware platforms.

T ime synchronisation is nowadays also important . A lmos t every modern system needs
to know the t ime - your video-recorder or home cinema automatical ly starts recording a
film at a scheduled time, your washing-machine should have finished a selected program
when you return home or your radio should automatical ly adjust its clock when the time
changes due to daylight saving.

Network T i m e Pro toco l (N T P) is a ubiquitous t ime synchronisation protocol between
computers in the modern Internet. Though being one of the oldest protocols, N T P is s t i l l
developed and updated to conform to the latest network standards. The actual version at
the t ime of wr i t ing is N T P version 4, which updates its previous version to accommodate
Internet P ro toco l version 6.

This thesis describes the operating system Con t ik i , its concepts and philosophy, Network
T ime Pro toco l version 4 and design and implementat ion of an N T P client for the C o n t i k i
operating system.

3

Chapter 2

Contiki OS

Only 2% of a l l microprocessors that are sold today are used i n P C s and the remaining 98%
of a l l microprocessors are used i n embedded systems []. Embedded systems have much
smaller amounts of memory than P C computers. Moore 's law predicts that these devices
can be made significantly smaller and less expensive in the future. W h i l e this means that
embedded system networks can be deployed to greater extents, it does not necessarily imply
that the resources w i l l be less constrained []. The memory constraints make programming
for embedded systems a challenge.

The operating system C o n t i k i is targeted at embedded systems based on M S P 4 3 0 , A V R ,
A R M , x86 and other architectures []. Con t ik i aims for m a x i m u m portabi l i ty and therefore
is wr i t ten i n C . It is a feature-rich operating system and only some of its features are
described and used i n this thesis.

Con t ik i is developed by a group of developers from industry and academia lead by
A d a m Dunkels from the Swedish Institute of Computer Science. The Con t ik i team cur
rently consists of sixteen developers from SICS , S A P A G , Cisco, A t m e l , N e w A E and T U
M u n i c h []. Con t ik i is also deployed at R h e i n M a i n Univers i ty in Wiesbaden. The 3-clause
B S D license places min ima l restrictions on redistr ibution of Con t ik i . Version 1.0 of C o n t i k i
OS was released in 2002, version 2.0 in 2007 and the latest version at the t ime of wr i t ing was
version 2.5, released i n 2011. The actual development happens using an online repository
accessible on the C o n t i k i homepage at h t t p : / / w w w . c o n t i k i - o s . o r g / by the G i t version
control system.

2.1 Features

Con t ik i O S features lightweight stackless threads called Protothreads. Protothreads intro
duced a new concept to the embedded world. They are extremely lightweight and compat
ible w i th standard C [13]. Each Protothread does not require a separate stack, which fits
Protothreads perfectly for use in memory constrained embedded systems. Protothreads are
discussed in more detai l in section 2.2.

Apar t from Protothreads, C o n t i k i features a T C P / I P communicat ion stack called u IP (mi
cro IP) that conforms to the Request For Comments memorandums published by the Inter
net Engineering Task Force. The u IP stack allows Con t ik i to communicate over both IPv4
and IPv6 []. C o n t i k i w i th its u IP stack is IPv6 Ready Phase 1 certified and therefore has
the right to use the IPv6 Ready silver logo [16]. Before Cont ik i ' s uIP, the embedded world
considered I P to be too heavyweight. A l l previous I P implementations for general pur-

4

http://www.contiki-os.org/

Web browser

Web server

IPI UNC: uUNC

193.2
193.2
64.68
193. 1
193. 1
193. 1

Processes

11 Proces
10 Ca lcu l
09 She l l
03 Web br
07 Web se
06 Proqra
05 CTK
04 Packet
03 CTK Co
02 DNS re
01 TCP/IP

Upd
pro

ate

Web browser
Back Down Stop

I h t tp: / / w w . s i cs . s e / ^ a d a i V c o n t i k i /

Cont ik i i s an open source, h iqh ly por tab le
networked, rau 1 ti - taski nq operat inq SLJS te rn T o r
nrienwry-constrained sus terns .

Cont ik i runs on a va r i e ty of t iny systems
ranqi nq fronienrbedded 8 - b i t m i c r o c o n t r o l l e r s
to old homeconpu ters such the Conrnodore 64.
Code f o o t p r i n t i s on the order of k i l o b y t e s
and rriemoru. usaqe can be conf iqured to be as
low as tens of by tes .

Cont ik i provides a sirrple e v e n t - d r i v e n kernel
with per -p rocess opt iona l
preemptive mu 1 ti _ threadi nq . i n t e r p r o c e s s
conmini ca ti on usinq messaqe passing throuqh
events a dynamic process s t r u c t u r e with
support for loadinq and unloadinq proqranis,
nat ive TCP/IP support usinq the
u IP TCP/ IP stack , and a GUI subsystem with
e i t h e r d i r e c t graphic support for l o c a l l y

About Conti ki •

Figure 2.1: Screenshot of running Con t ik i O S wi th C T K (source: [7])

pose computers were much bigger than the memory constrained embedded systems could
use []. The u IP communicat ion stack is further described i n section 2.3.

In addi t ion to uIP, Con t ik i is equipped wi th another communicat ion stack called Rime .
R ime is a layered communicat ion stack for sensor networks and it uses much thinner layers
than t radi t ional architectures []. R i m e is designed to simplify the implementat ion of
communicat ion protocols on low-power radios. The communicat ion primitives i n the R ime
stack were chosen based on what typica l sensor network protocols use - single-hop unicast,
single-hop broadcast or mult i-hop [7, 6].

Besides Protothreads, u IP and Rime , C o n t i k i further contains a very simple, relatively
small and easy to use filesystem called Coffee Fi lesystem (C F S) , a graphical user interface
Con t ik i Toolki t (C T K) shown in figure 2.1, an Executable Linkable Format (E L F) loader
for loading object files into a running Con t ik i system and much more.

The operating system Con t ik i , u IP and Protothreads are used on embedded devices
by hundreds of companies i n such diverse systems as car engines, o i l boring equipments,
satellites, and container security systems [5]. The software is also used i n academic research
projects and in university project courses a l l over the world.

2.2 Protothreads

Protothreads provide a way for C functions to run quasi-parallel, that is, a C function
works i n a way similar to a thread [13]. In C o n t i k i , Protothreads allow to wait for incoming
events without blocking the whole system. W h i l e wai t ing for an event to occur, another
function could be run. The core of this solution is a C switch statement used i n conjunction
wi th a variable (called local continuation) containing the posit ion, where the function was
blocked []. The function continues from this point when it is later invoked again.

The advantage of Protothreads over ordinary threads is that a Protothread does not
require a separate stack. The overhead of al locating mult iple stacks can consume large
amounts of available memory in memory constrained systems [13]. In contrast, each Pro
tothread requires only a few bytes for storing the state of execution.

5

A Protothread is driven by repeated calls to the function i n which the Protothread
is running. E a c h t ime the function is called, the Protothread w i l l run unt i l it blocks or
exits. Protothreads are implemented using the local continuations. The local continuation
represents the current state of execution at a part icular posit ion i n the program, but does
not provide any cal l history or local variables [].

The Protothreads A P I consists of four basic operations: ini t ia l isat ion PT_INIT(), ex
ecution PT-BEGINQ, condit ional blocking PT.WAIT.UNTILQ and exit PT.ENDQ [13].
However, experience wi th rewri t ing event-driven state machines to Protothreads revealed
the importance of an uncondit ional blocking wait PT_YIELD(), which temporari ly blocks
the Protothread un t i l the next t ime the Protothread is invoked []. After invoked, the
Protothread continues executing the code following the PTJYIELDQ statement. To un
derstand the implementat ion of Protothreads and how they actually work, please refer to
appendix A , where an example of use is shown.

Since Protothreads are implemented i n standard C , a l ibrary providing Protothreads
can be used everywhere, where the C toolchain is available. B u t there are some constraints
to consider. Because Protothreads are stackless, a Protothread can run only wi th in a
single C function. There is also no way of storing automatic local variables []. A n d since
Protothreads are implemented using a C switch statement, which can not be nested, the
code that uses Protothreads can not use switch statements itself. A workaround for storing
local variables is to prepend them wi th the static keyword, which makes them being put into
the data segment by the compiler and thus remembering their values between the function
calls [].

2.3 uIP

The T C P / I P protocol suite is often used for communicat ion over the Internet as well as
local networks. u IP (micro IP) is a complete T C P / I P communicat ion stack developed by
A d a m Dunkels for memory constrained systems such as embedded systems.

Before uIP, the T C P / I P architecture was considered to be heavyweight because of its
perceived need for processing power and memory. The IP protocol was seen as too large to
fit into the constrained environment - existing implementations of the I P protocol family for
general purpose computers would need hundreds of kilobytes, whereas a typica l constrained
system has only a few tens of kilobytes of memory []. Several non-IP stacks were developed
for this reason.

In the early 2000's, however, this view was challenged by lightweight implementations of
the I P protocol family for smart objects such as the u IP stack []. u IP showed that the IP
architecture would fit nicely into the typica l constrained system without removing any of
the essential IP mechanisms. Note that these resources, which are considered constrained
today, are fairly close to the resources of general purpose computers that were available
when I P was designed [30]. The u IP stack has become widely used in networked embedded
systems since its in i t i a l release [30, 5].

uIP provides two different application programming interfaces to programmers: a B S D
sockets-like A P I called Protosockets and a raw event-driven A P I . Protosockets are based on
Protothreads, which puts the same l imitat ions on them - such as no way to store the local
variables and an impossibi l i ty to use C switch statements. Protosockets only work wi th
T C P connections []. Because N T P uses the User Datagram Pro toco l (U D P) , Protosockets
w i l l not be further discussed i n this thesis. For more information about Protosockets please
refer to the C o n t i k i documentat ion [7].

6

uIP contains only the absolute m i n i m u m of required features to fulfill the protocol
standard. It can handle only a single network interface and contains the IP , I C M P , U D P
and T C P protocols [7]. In order to reduce memory requirements and code size, the uIP
implementation uses an event-based A P I , which is fundamentally different from the most
common T C P / I P A P I , the B S D sockets A P I , present on Unix- l ike systems and defined by
the P O S I X standard [5, 29]. A n application is invoked i n response to certain events and it
is up to the application, that receives the events from uIP, to handle a l l the work wi th data
to be transmit ted - e.g. i f the data packet is lost in the network, the application w i l l be
invoked and it has to resend the packet. This approach is based on the fact that it should
be simple for the application to rebuild the same data. Th is way, the u IP stack does not
need to use explicit dynamic memory allocation. Instead, it uses a single global buffer for
holding the packets and it has a fixed table for holding the connection state. The global
packet buffer is large enough to contain one packet of a m a x i m u m size [7].

W h e n a packet arrives from the network, the device driver places it i n the global buffer
and calls the uIP stack. If the packet contains data, the u IP stack w i l l notify the cor
responding applicat ion. Because the data i n the buffer w i l l be overwritten by the next
incoming packet, the application w i l l either have to act immediately on the data or copy
the data into its own buffer for later processing. The packet buffer w i l l not be overwritten
by new packets before the application has processed the data [7]. Packets arr iving when
the application is processing the data must be queued either by the network device or by
the device driver. This means that u IP relies on the hardware when it comes to buffering.
Most single-chip Ethernet controllers have on-chip buffers that are large enough to contain
at least 4 m a x i m u m sized Ethernet frames [7]. Th i s way, u IP does not have to have its own
buffer structures and thus requires only a min ima l memory amount. A possible packet loss
is a trade-off for min ima l memory requirements. It is not such a big problem for communi
cation using T C P on the transport layer because of the acknowledgement scheme used in
T C P to prevent data loss. However, data carried on U D P can be irrecoverably lost.

A s was expected, measurements show that the u IP implementat ion provides very low
throughput, par t icular ly when it communicates w i th a P C host []. However, smal l sys
tems that uIP is targeting, usually do not produce enough data to make the performance
degradation a serious problem [].

Despite being so small , u IP is not only R F C compliant, but also IPv6 Ready Phase
1 certified. u IP is wri t ten i n the C programming language and it is fully integrated wi th
the C o n t i k i operating system. In uIP, there are even some more tricks to shrink the stack
but its complete description is outside the scope of this thesis. Please refer to the C o n t i k i
documentation for more details [7].

2.4 Kernel and processes

The Con t ik i kernel is event-driven and provides a cooperative mult i tasking environment, but
the system also supports preemptive mult i threading that can be applied on a per-process
basis []. The preemptive mult i threading support is not implemented i n the kernel, instead
it is implemented as a l ibrary that is l inked only w i t h programs that expl ic i t ly require
mult i threading [11]. The kernel itself contains no platform specific code. It implements
only C P U mult iplexing and lets device drivers and applications communicate directly wi th
hardware [11].

F rom high levels of abstraction, applications i n C o n t i k i O S are implemented and run
as processes. Protothreads, the lightweight threads described i n section 2.2, are used in

7

Scheduling context

Preemptive

Interrupt

•
Real—time timer

•
Cooperative Process A Process B 1 Process C 1

Figure 2.2: C o n t i k i execution contexts (source: [9])

Con t ik i to implement processes. B o t h the C o n t i k i kernel and applications use Protothreads
extensively to achieve cooperative mult i tasking [12]. Every C o n t i k i process consists of a
process control block and a process thread [9]. The process control block contains run-time
information about the process and the process thread contains the code of the process.
A m o n g other things, the process control block contains a textual name of the process, a
pointer to the process thread and a state of the process. The process thread is implemented
as a single Protothread, that is invoked from the process scheduler i n the C o n t i k i kernel [9].

F rom low levels of abstraction, every application is implemented as a simple C function
and the process control block remembers the actual state of execution of this function in
the same way as the local continuation works by Protothreads. Processes are therefore
running quasi-parallel in Con t ik i .

The process control block is not declared or defined directly, but through the PRO
CESS () macro. This macro takes two parameters: a variable name of the process control
block and a textual name of the process, which is used when debugging the system []. The
process control block is shown in l is t ing 2.1.

s t ruc t process {
s t ruc t process *next;
const char *name;
in t (* t h r e a d) (s t r u c t pt *, process_event_t , p rocess_da ta_ t) ;
s t ruc t pt pt ;
unsigned char state .
};

needspol l ;

L i s t ing 2.1: Process control block i n C o n t i k i O S (source [9])

A l l code execution is ini t ia ted by the C o n t i k i kernel that acts like a simple dispatcher
call ing the functions []. Just like Protothreads, processes are also implemented using
macros, making them standard C compatible.

In C o n t i k i , code runs i n either of two execution contexts: cooperative, i n which code
never preempts other code, and preemptive, which preempts the execution of cooperative
code and returns control when the preemptive code is finished. Processes always run in
the cooperative mode, whereas interrupt service routines and real-time timers run in the
preemptive mode []. The code running in both execution contexts is i l lustrated i n figure 2.2.

Interprocess communicat ion is achieved by posting events i n C o n t i k i O S - processes
communicate w i th each other by posting events to each other [11]. There are two types of
events: synchronous and asynchronous. Synchronous events are direct ly delivered to the

8

receiving process when posted and can only be posted to a specific process [9]. Because
synchronous events are delivered immediately, posting synchronous event is equivalent to
a function cal l : the process to which an event is delivered is directly invoked, and the
process that posted the event is blocked un t i l the receiving process has finished processing
the event [9].

Asynchronous events are delivered to the receiving process some time after they have
been posted []. Before delivery, the asynchronous events are held on an event queue inside
the C o n t i k i kernel. The kernel loops through this event queue and delivers the event to
the process by invoking the process. The receiver of an asynchronous event can be either a
specific process or a l l running processes [9].

2.5 Timers

The C o n t i k i kernel does not provide support for t imed events, instead an application that
wants to use timers needs to expl ic i t ly use a t imer library. The t imer l ibrary provides
functions for setting, resetting and restarting timers, and for checking i f a t imer has ex
pired. A n applicat ion must manual ly check if its timers have expired - this is not done
automatical ly [].

Con t ik i has one clock l ibrary and a set of t imer libraries: timer, stimer, ctimer, etimer,
and r t imer [8]. The clock l ibrary provides functionality to handle the system time and to
block the C P U for short t ime periods. It is the interface between C o n t i k i and the platform-
specific hardware clock [7]. The t imer libraries are implemented wi th the functionality of
the clock l ibrary as a base [8].

The t imer and stimer libraries provide the simplest form of timers and are used to check
whether a t ime period has passed. The difference between these two is the resolution of
t ime - timers use system clock ticks, whose value is incremented when an interrupt from
the hardware clock occurs, while stimers use seconds to offer much longer t ime periods [8].
The value representing seconds is also incremented in the interrupt service routine (ISR),
but only when enough clock ticks since last increment occurred. The number of clock
ticks wi th in one second is represented by the CLOCK-SECOND macro provided by the
clock library. That means there are CLOCK-SECOND interrupts from the hardware clock
per second. The usage of the t imer l ibrary and CLOCK-SECOND macro is shown in
appendix A .

The simplest t imer and stimer libraries are not able to post an event when a t imer
expires. Event timers should be used for this purpose. Event timers (etimer l ibrary)
provide a way to generate t imed events. A n event t imer w i l l post an event to the process
that set the t imer when the event t imer expires []. The etimer l ibrary is implemented as
a C o n t i k i process and uses the t imer l ibrary as a base.

Cal lback timers (ctimer l ibrary) provide a t imer mechanism that calls a specified C
function when a ctimer expires []. Thus, they are especially useful in any code that does
not have an explicit C o n t i k i process [8].

The Real- t ime timers (rtimer l ibrary) handle the scheduling and execution of real-time
tasks wi th predictable execution times []. The r t imer l ibrary provides real-time task sup
port through callback functions - the r t imer immediately preempts any running C o n t i k i
process i n order to let the real-time tasks execute at the scheduled t ime [8]. Th is behaviour
is i l lustrated i n figure 2.2. The r t imer l ibrary uses a separate hardware clock to allow a
higher clock resolution [8]. The smal l part of the r t imer l ibrary is architecture-agnostic,
but the part icular implementat ion is platform-specific.

9

Chapter 3

Network Time Protocol

The Network T i m e Pro toco l provides a mechanism for synchronising systems' clocks over
a variable-latency data network. N T P was introduced and is s t i l l developed by D a v i d
M i l l s from the Univers i ty of Delaware in Newark, Un i t ed States of A m e r i c a [19]. N T P
is arguably the longest running, continuously operating, ubiquitously available protocol
in the Internet [20]. Despite being one of the oldest protocols i n the Internet, it is not
old-fashioned at a l l . N T P version 4, described i n R F C 5905 [], updates the older N T P
version 3 to accommodate N T P to IPv6 . Version 4 also includes improvements i n mit igat ion
and clock discipline algorithms that extend potential accuracy to the tens of microseconds
wi th modern computers and fast L A N s [26]. N T P v 4 corrects some errors in N T P v 3 design
and includes an optional extension mechanism that can be used for adding more capabilities
to N T P , e.g. the Autokey security protocol, described i n R F C 5906, for authenticating
servers to clients.

The Simple Network T i m e Pro toco l is a simplified N T P implementation, lacking com
plex synchronisation algorithms used by N T P []. S N T P is also described in R F C 5905 [26].
The packets of S N T P have the same structure and content as packets of N T P [26]. F r o m
observing the network communicat ion, one can not te l l , whether the client is a full blown
N T P implementat ion or just S N T P . S N T P is a simplified sub-set of algorithms used by
the N T P protocol, making the client implementat ion not only easier, but also suitable for
resource constrained systems, such as embedded systems. Because N T P and S N T P servers
and clients are completely interoperable and can be intermixed in N T P subnets [26], this
thesis refers to an S N T P client for C o n t i k i O S as N T P client.

3.1 Topology and hierarchy

N T P uses two different communicat ion modes: one to one, referred as unicast mode, and
one to many, referred as broadcast mode [26]. In unicast communicat ion mode, an N T P
client sends requests and an N T P server sends responses. In broadcast communicat ion
mode, the client sends no request and waits for a broadcast mode message from one or
more servers [26].

N T P servers are rated wi th s t ra tum (plural form strata) number representing their
level in an N T P hierarchy and their possible accuracy [26]. P r i m a r y (stratum 1) servers
synchronise to the reference clock directly traceable to U T C v ia radio, satellite or modem.
The s t ra tum 2 servers synchronise to s t ra tum 1 servers v ia a hierarchical subnet. The
s t ratum 3 servers synchronise to s t ra tum 2 servers, and so on. The m a x i m u m stra tum is 15,

10

Figure 3.1: Topology and hierarchy of N T P (source: [14])

number 16 means unsynchronised server and higher numbers (up to 255) are reserved [26].
Synchronisation between servers in the same s t ra tum level is also possible. Figure 3.1
shows a brief hierarchy of N T P . The subnet topology should be organised to avoid t iming
loops and to minimise synchronisation distances []. To achieve this in N T P , the subnet
topology is determined using a variant of the Be l lman-Ford distr ibuted routing algori thm,
which computes the shortest-distance spanning tree, rooted on the pr imary (stratum 1)
servers [26]. A s a result of this design, the algori thm automatical ly reorganises the subnet
to produce the most accurate and reliable time, even when one or more pr imary or secondary
servers or the network paths between them fail [26].

3.2 Time and timescales

To express the time, N T P always uses the Coordinated Universa l T i m e (U T C) []. U T C is
maintained by the International Bureau of Weights and Measures in Paris , France. It is the
t ime scale that forms the basis for the coordinated dissemination of standard frequencies and
t ime signals []. The t ime specified by U T C is the same for a l l timezones. Its calculation
is pract ical ly the same as w i th Greenwich M e a n T ime (G M T) , except the daylight savings
are not accounted.

The U T C timescale represents mean solar t ime as disseminated by nat ional standard
laboratories []. Th is timescale is adjusted by the insertion of leap seconds to ensure
approximate agreement w i th the t ime derived from the rotat ion of the Ea r th , which peri
odically speeds up and slows down due to the action of tides and changes wi th in the Ear th ' s
core []. The goal of a leap second is to compensate U T C wi th these changes. A leap
second is inserted or deleted on advice of the International E a r t h Rota t ion and Reference
Systems Service []. N T P is well designed for a leap second occurrence - there is a Leap
Indicator field i n the structure of an N T P packet and there are also fields intended for the
information about the leap second i n structures that the N T P algori thm uses [26]. The

11

formal definition of U T C does not permit double leap seconds [29].
In a computer, the system time is represented by a system clock, maintained by hard

ware and the operating system. The goal of the N T P algorithms is to minimise both the
t ime difference and frequency difference between U T C and the system clock. W h e n these
differences have been reduced below nominal tolerances, the system clock is said to be syn
chronised to U T C [26]. It has never been a goal of N T P to take care of local t ime, it is up
to the operating system to provide users the correct local t ime [20].

The N T P and P O S I X timescales are based on the U T C timescale, but not always
coincident w i th it []. B o t h timescales reckon the t ime in standard (SI) seconds since the
prime epoch, but the origin of the N T P timescale, the N T P prime epoch, is 00:00:00 U T C
on 1 January 1900, while the prime epoch of the P O S I X timescale is 00:00:00 U T C on
1 January 1970 []. So upon the first t ick of the P O S I X clock on 1 January 1970 the N T P
clock read 2 208 988 800, representing the number of seconds since the N T P prime epoch.

3.3 Network and tiniest amps

The network specification of N T P defines the protocol to use the User Datagram Pro toco l
(U D P) on port number 123 [1, 26]. Reliable message delivery such as the Transmission
Cont ro l P ro toco l (T C P) can actually make the delivery of N T P packets less reliable because
retries would increase the delay value and other errors [26]. This is mostly because of the
communicat ion overhead.

N T P handles the t ime through timestamps - records of t ime. A n N T P timestamp has
two fields: a seconds field expressing the number of seconds and a fraction field expressing
a fraction of a second []. A l l N T P timestamps are represented i n 2's complement format,
w i th bits numbered in big-endian fashion from zero start ing at the left, or high-order po
sit ion [26]. There are two t imestamp formats in the N T P packet structure: a long 64-bit
format and a short 32-bit format, as shown i n figure 3.2. The 64-bit long t imestamp consists
of a 32-bit unsigned seconds field, spanning 2 3 2 seconds (approx. 136 years from 1900 to
2036), and a 32-bit fraction field, resolving 2 - 3 2 seconds (approx. 232 picoseconds) [26].
The short 32-bit t imestamp includes a 16-bit unsigned seconds field and a 16-bit fraction
field.

Besides these two formats, there is one more N T P timestamp format - the 128-bit N T P
Date format. It includes a 64-bit signed seconds field and a 64-bit fraction field. For
convenience in mapping between the formats, the seconds field of this format is d ivided
into a 32-bit E r a Number field and a 32-bit E r a Offset field. This 128-bit N T P Date format
is, however, not t ransmit ted over the network and is only used where sufficient storage
and word size is available [26]. There is pract ical ly no need of knowing about this format
for embedded systems at least un t i l the year 2036, when the 64-bit long t imestamp wraps
around and the E r a Number w i l l be incremented from zero to one. B u t s t r ic t ly speaking,
the N T P t imestamp is a truncated N T P Date format [26].

The standard N T P packet structure without extension fields and Autokey security pro
tocol is shown in figure 3.3. T h i s structure is 48 bytes long and contains the following
thirteen fields:

• Leap Indicator is a 2-bit integer, warning of an impending leap second to be inserted
or deleted in the last minute of the current month [26].

• Version Number is a 3-bit integer, representing the N T P version number, currently 4.

12

15 16 31

Seconds (16 bits) Fraction (16 bits)

NTP short 32-bit format

31

Seconds (32 bits)

Fraction (32 bits)

32 63
NTP long 64-bit format

Figure 3.2: T ime formats used in N T P packet

LI I VN I Mode I St rat | Poll | Prec
Root Delay

Root Dispersion
Reference Identifier

Reference Timestamp (64)

Originate Timestamp (64)

Receive Timestamp (64)

Transmit Timestamp (64)

LI Leap Indicator (2 bits)

VN Version Number (3 bits)

Mode Mode (3 bits)

Strat Stratum (8 bits)

Poll Poll Interval (8 bits)

Prec Precision (8 bits)

Figure 3.3: Basic N T P packet structure (source: [])

13

Mode is a 3-bit integer, representing the protocol mode. This is the only field dis
t inguishing between servers and clients i n N T P . In the client-server communicat ion
model, the client sets this field to value 3 (client) i n the request, and the server sets it
to value 4 (server) i n the response. In the broadcast communicat ion model, the server
sets this field to value 5 (broadcast). Other modes are not used by S N T P servers and
clients [26].

S t ra tum is an 8-bit integer, representing the s t ra tum as described i n section 3.1. If
the S t ra tum field is 0, which implies unspecified or inval id , the Reference Identifier
field can be used to convey messages useful for status reporting and access control.
These messages are called Kiss -o ' -Death (K o D) packets and the A S C I I messages they
convey are called kiss codes [26].

P o l l is an 8-bit signed integer, representing the m a x i m u m interval between successive
messages, i n log2 seconds. Suggested default l imits for m i n i m u m and m a x i m u m of
the po l l interval are 6 and 10, respectively [26].

Precision is an 8-bit signed integer, representing the precision of the system clock,
in log2 seconds. For instance, a value of -20 corresponds to a precision of about one
microsecond (2 - 2 0 s) [26].

Root Delay is a short 32-bit N T P timestamp, expressing the to ta l round-trip delay
to the reference clock [26].

Root Dispersion is a short 32-bit N T P timestamp, expressing the to ta l dispersion to
the reference clock [26].

Reference Identifier is a 32-bit code, identifying the part icular server used for syn
chronisation or the reference clock. For packet s t ra tum 0, this is a four-character
A S C I I string called kiss code. K i s s codes are part icular ly used by the server to te l l
the client to stop sending packets or to increase its pol l ing interval . For s t ra tum 1,
this is a four-octet, left-justified, zero-padded A S C I I string assigned to the reference
clock (e.g. „ G P S " when synchronising against the G l o b a l Posi t ion System clock).
Above s t ra tum 1, this is the reference identifier of the server used for synchronisa
t ion and can be used by the client together w i th the s t ra tum field to detect loops
in the N T P hierarchy. If communicat ing over IPv4 , the identifier is IPv4 address.
If communicat ing over IPv6 , it is the first four octets of the M D 5 hash of the IPv6
address [26].

Reference Times tamp is a long 64-bit N T P timestamp, expressing the t ime when the
system clock was last synchronised against the reference clock [26].

Originate Timestamp (or Or ig in Timestamp) is a long 64-bit N T P timestamp, ex
pressing the t ime at the client when the request departed for the server [26]. The
Originate Timestamp field is copied unchanged by the server from the Transmit
Timestamp field of the client's request. It is important that the server copies this
field intact, as the N T P client uses it to check the server's response.

Receive Times tamp is a long 64-bit N T P timestamp, expressing the t ime at the server
when the request arrived from the client [26].

14

MODE: Client

ORG: NULL

REC: NULL

XMT: 12:00:01
NTP Client Request

T2

T4
NTP Client

T3
NTP Server

NTP Server Response

MODE: Server

ORG: 12:00:01

REC: 12:00:04

XMT: 12:00:05

Figure 3.4: N T P unicast communicat ion scenario

• Transmit Timestamp is a long 64-bit N T P timestamp, expressing the t ime at the
server when the response left for the client [26].

The short 32-bit t imestamp format is used for the Root Dispersion and Root Delay
fields, because they do not need the scope and precision of the long 64-bit t imestamp
format. To better understand the N T P packet filling process and the meaning of Originate
(org), Receive (rec) and Transmit (xmt) timestamps, a common unicast communicat ion
scenario is shown i n figure 3.4. Please note that this figure shows only the timestamps used
by N T P for the local clock offset and round-tr ip delay calculat ion. Algor i thms used for the
calculations are described in section 3.4.

3.4 Algorithms

Because of network latency, the received Transmit Timestamp w i l l never be exactly corre
sponding to the current t ime. One of the main goals of N T P is to deal w i th the network
latency [20].

A s described i n section 3.3, there are the following 64-bit long timestamps i n the N T P
packet: Or ig in , Receive and Transmit Timestamp. U p o n N T P packet arr ival , the client
determines another t imestamp called, Dest inat ion Timestamp [26]. Th is t imestamp is
represented as T 4 i n figure 3.4 and is not part of the N T P packet structure.

Using these four timestamps, the N T P client using unicast communicat ion mode can
compute the local clock offset which is given by 9 = \[{t2 — h) + (£3 — £4)], where t\ is the
t ime of the request packet transmission (Orig in Timestamp) , ti is the t ime of the request
packet reception (Receive Timestamp), £3 is the t ime of the response packet transmission
(Transmit Timestamp) and £4 is the t ime of the response packet reception (Destination
Timestamp) [21, 26]. The impl ic i t assumption i n the above is that the one-way delay is

15

[8, 12]

111, 13]

[10, 12]

111, 12]

; 12+ 1

- f h

l i ± l i

—I h

] 11,5 + 0,5 i -irjterva 1. js.cons intent witfa

• | • the largest number o f sources

10

Figure 3.5: Intersection algori thm (source: [])

statistically half of the round-trip delay [26], which is given by 5 = (£4 — £1) — (£3 — £2).

In broadcast communicat ion mode, Or ig in and Receive Timestamps are not accounted.
The client computes its local clock offset which is given by 9 = £3 — £4. The impl ic i t
assumption i n the above is that one-way delay from server to client is zero. Because this
is never the case, it is useful to provide an in i t i a l volley where the client exchanges several
packets w i th the server i n order to calibrate the propagation delay [26].

W h e n computing the result from more servers, the intersection algori thm is used for
selecting the possible most exact t imestamp received from various servers [18, 26]. Intersec
t ion algori thm is derived from Marzu l lo algori thm but the basic computat ion remains the
same []. F i r s t of a l l , a selection of bad and good servers must be made. B a d servers are
called Falsetickers and good are called Truechimers [26]. The division to these sets is based
on their response. A s one can assume, for a sensible result there must be more Truechimers
than Falsetickers [26].

After selecting a set of reliable servers, the N T P algori thm compute the resulting times
tamp. The resulting t imestamp does not have to be the same as one of those provided
by the servers. The N T P algori thm calculates using the clock accuracy estimates, deter
mined by Root Dispersion, Root Delay and Precis ion fields of the server's response. These
estimates are converted to intervals. Figure 3.5 shows the computat ion for the following
example: If we have the estimates 1 0 ± 2 , 1 2 ± 1 and 11 ± 1 then these intervals are < 8; 12 >,
< 11; 13 > and < 10; 12 > which intersect to form < 11; 12 > or 11.5 ± 0.5 as consistent
w i th a l l three values. The ari thmetic mean is used as the result value. W h e n querying
servers again, the algori thm repeats but the new result computat ion also depends on the
previous result [26, 19]. This eliminates possible j i t ter which can be caused by repeatedly
querying the servers and getting slightly different answers from them.

16

Chapter 4

Analysis

To keep, measure and resolve the time, a computer needs a clock. A computer clock is an
electronic device wi th a counter register counting oscillations i n a quartz crystal oscillator
w i th a part icular frequency [27]. The operating system can keep and manipulate the system
time using the hardware clock. Accessing the hardware clock is done through the operating
system clock interface.

O n top of the clock interface is an interface for providing the system time. To implement
a reasonably useful N T P client, the operating system must be able to set, get and eventually
adjust the system t ime through the t ime interface. Though not mandatory, adjusting the
t ime is important i n case the t ime shall be always a monotonical ly increasing function.
Apa r t from that, an abil i ty to communicate over U D P is also required for the N T P client.
Th is is a task of the operating system network interface.

The N T P client is an application, that communicates w i th the N T P server through the
network interface and uses the t ime interface of the operating system. It further calculates
the local clock offset as described i n section 3.4. In order to develop the N T P client
for C o n t i k i , the operating system Con t ik i and the hardware platform must provide the
necessary components, as shown in figure 4.1.

To develop and test the Con t ik i N T P client, the A V R Raven platform wi th the 8-bit
A T m e g a l 2 8 4 P C P U [] w i l l be used. Th is platform features I E E E 802.15.4 (Low-Rate
Wireless Personal A r e a Network) l ink layer support. Together w i th an adaptation layer
called 6 L 0 W P A N (I P v 6 over L o w power Wireless Personal A r e a Networks), A V R Raven is
able to communicate over IPv6 .

4.1 Hardware clock

O n A V R Raven, Con t ik i uses the 8-bit T i m e r / C o u n t e r 2 module, clocked from an asyn
chronous 32 768 H z crystal oscillator, as the hardware clock by default. The oscillator is
independent of any other clock, can only be used w i t h T imer /Coun te r 2 and it enables the
use of T imer /Coun te r 2 as a R e a l T ime Counter []. The T i m e r / C o u n t e r 2 prescale value
8 is used i n C o n t i k i on the A V R Raven platform - the oscillator frequency of 32 768 H z is
effectively divided by 8 and the counter register is hence incremented wi th the frequency of
fx2 = prtclier = = 4 0 9 6 H Z - F I S U R E 4 - 2 shows the T imer /Coun te r 2 module used by
Cont ik i .

The T imer /Coun te r 2 module is used i n the Clear T imer on Compare M a t c h (C T C)
mode by Con t ik i . In this mode, the counter register TCNT2 is incrementing and the

17

NTP cl ient
app l ica t ion

T ime inter face

Clock inter face

Network
inter face

Operat ing sys tem

Hardware clock

NTP client

NTP server

Figure 4.1: N T P client overview

T 8

\t Reset

T C N T 2

32 768 Hz T
Read

OCR2A

Write RO

Figure 4.2: T i m e r / C o u n t e r 2 hardware clock module on A V R Raven

compare register OCR2A defines the m a x i m u m value of the counter register. A compare
match between the counter register and the compare register sets the Output Compare
F l a g OCF2A and resets the counter register to zero []. Th is behaviour is i l lustrated in
figure 4.3 - the TOP value is equal to the value in the compare register and the BOTTOM
value is equal to zero.

Addi t ional ly , when the compare match occurs, an interrupt is raised and the inter
rupt service routine is executed. The flag indicat ing occurred match OCF2A is cleared
automatical ly by hardware when executing the interrupt service routine i n this case [3].

The interrupt service routine can be further used for updat ing the value i n the OCR2A
compare register. However, changing OCR2A to a value closer to zero while the counter is
running must be done w i t h care because the C T C mode does not have a double buffering
feature. If the new value wri t ten to OCR2A is lower than the current value of TCNT2, the
compare match w i l l be missed [3].

4.2 Contiki clock interface

A s described i n section 2.5, C o n t i k i provides a basic clock interface part icular ly for use of
timers w i th a simple goal - measuring t ime. This interface is common for a l l supported
hardware platforms, but the part icular implementat ion is platform-specific. The definition
of the common interface is located in the core/sys/clock.h file and the specific implemen
tations can be found i n the clock, c file i n the cpu/ directory of the C o n t i k i source code.

The clock interface provides the clock-init cal l for ini t ia l is ing the hardware clock, that is

18

CLK.

CLK-,.

TCNT2 2 TOP - 1

OCR2A

0CF2A

1

TOP ~ ^ BOTTOM ^

TOP

BOTTOM + 1

Figure 4.3: T i m i n g diagram in C T C mode wi th prescaler 8 (source: [3])

automatical ly called during the boot sequence of C o n t i k i . O n A V R Raven, the clock-init cal l
sets up appropriate registers and the interrupt service routine as described i n section 4.1.

This cal l is implemented as a C macro and is defined for A V R C P U s i n the file
cpu/avr/dev/clock-avr.h. Th is macro evaluates to a specific setup code for each differ
ent A V R C P U during the compile t ime. The setup code is not common to a l l A V R C P U s
because of differences among them - e.g. there are usually only three T imer /Coun te r mod
ules, but A V R A T m e g a l 2 8 4 P has four T i m e r / C o u n t e r modules [3].

The hardware clock interrupt, described in section 4.1, is called clock tick, or timer tick.
A t each clock tick, the interrupt service routine increments a system clock value stored in
the memory. O n A V R C P U s , there is a variable counting these clock ticks, called scount,
and a variable counting seconds, called seconds. These variables are defined together w i th
the interrupt service routine i n the cpu/avr/dev/clock, c file. A s described in section 2.5,
there are exactly CLOCK-SECOND ticks in one second. W h e n the scount variable reaches
the CLOCK-SECOND value, the seconds variable is incremented and the scount variable
is reset. The seconds variable is used by the C o n t i k i stimers, discussed i n section 2.5.

To obtain CLOCK-SECOND interrupts per second, there must be CLOCKTSECOND

counter register increments between two successive interrupts. O n compare match in C T C
mode, the TCNT2 counter register is reset to zero as shown i n figure 4.3. The value zero
is also included in the counting - the Oth count of the t imer also takes one tick. Therefore
the value of the OCR2A compare register must be CLOCKTSECOND — 1 m C T C mode. The
default value of CLOCK-SECOND for A V R Raven i n Con t ik i is 128, which implies the
default value of the compare register ^ - 1 = 31. The CLOCK-SECOND value is defined
in the platform/avr-raven/contiki-conf.h file. The value of the compare register is specified
in the clock-init ca l l and is computed during the compile time.

4.3 Time interface

The low-level clock interface described i n the previous section is used by C o n t i k i to provide
the system t ime through the t ime interface. Because the value of the seconds variable
is zero after the system booted, it actually represents the system uptime. The seconds
variable is of the long data type and its value can be obtained using the clock-seconds cal l
by the applicat ion. However, there is no ca l l for setting this variable i n C o n t i k i 2.5. In the

19

current G i t version at the t ime of wri t ing, a new cal l clock.seLseconds can be used for this
purpose. Because this cal l s imply rewrites the seconds variable, it breaks the stimer library,
and should therefore be avoided by the N T P client. Similarly, setting the scount variable
would cause unbalanced increments of the seconds variable.

The precision of one second is also not adequate for the N T P client. Further precision
can be acquired by reading the scount variable, as it provides a resolution of CLOCK SECOND

seconds. Moreover, the hardware counter can be also queried, as it includes the t ime passed
since the last update of the scount variable. Two read operations are needed then - read
scount and read TCNT2. Because the scount variable depends on asynchronous interrupts
produced by the clock module, the followed query of the counter register causes a race
condit ion. The clock module runs asynchronously from the C P U clock and the result may
be unpredictable i f read while the module is running. To provide consistent t ime values, a
proper solution must be designed.

If stimers should not be broken by setting the seconds or scount variable, and C o n t i k i
should be able to provide the current t ime i n a higher precision, a new cal l interface must
be designed. This cal l interface shall use the timescale and the t ime specification structure
in compliance wi th the P O S I X standard []. Such a structure for representing the time
values is also not present i n Con t ik i .

Similarly, there is no ca l l for adjusting the t ime in C o n t i k i . Because of memory con
straints, software structures controll ing the t ime adjustments are too heavyweight for use
i n an embedded operating system on 8-bit C P U s . Because of low C P U frequencies, the
code of an interrupt service routine can not be complex and sophisticated clock discipline
algorithms should be avoided. A cal l for adjusting the t ime should therefore use abilities
provided by the hardware clock as much as possible.

Upda t ing the value i n the OCR2A compare register can be used to adjust the t ime,
because decrementing the compare register value causes a faster increment of the scount
variable, which i n t u r n causes a faster increment of the seconds variable and vice versa.
Such changes would influence the system time and the dependent C o n t i k i timers. How
ever, applications requiring uninfluenced timers could use the Con t ik i rtimers, described
i n section 2.5, because they use a separate hardware clock unaffected by these changes
(T imer /Counte r 3 i n case of the A V R Raven platform).

4.4 NTP client application

Apar t from the t ime interface, the N T P client applicat ion also needs to use the operating
system network interface. Thanks to the uIP stack, described i n section 2.3, the U D P
network communicat ion is not an issue for C o n t i k i O S . The N T P client needs server asso
ciations i n the N T P unicast communicat ion mode. However, too many server associations
complicate the client design. In fact, i n the most common case, there can be only a single
N T P master server i n the whole network []. A single server association requires only a
simple calculation of the local clock offset 9, whereas more server associations require the
intersection algori thm described in section 3.4. Implementation of such an algori thm, re
quir ing advanced data structures, should be avoided i n a memory constrained environment.

The N T P broadcast communicat ion mode, on the other hand, requires no server as
sociations and no packet filling process on the client side. Moreover, because the client
does not have to actively send any N T P packets, an energy consumption of the client is
reduced. Con t ik i supports broadcast packets as well as sending multicast packets []. A n
implementation of N T P broadcast mode is therefore also possible. Joining multicast groups

20

through Internet Group Management Pro toco l (I G M P) and receiving non-local multicast
packets was not supported at the t ime of wr i t ing [].

The N T P client should be able to communicate over both IPv4 and IPv6 . Thanks to
the u IP stack, this is not an issue for Con t ik i . The only constraint is that both IP versions
can not be used simultaneously and the decision must be made during the compilat ion [7].
A l though the UIP_CONF_IPV6 macro can be used to determine what IP version support is
being compiled, the N T P client application should be wri t ten IP-version agnostic. C o n t i k i
is also able to use the D o m a i n Name System for the resolution of IPv4 addresses. D N S
resolution of IPv6 addresses was not implemented i n Con t ik i O S at the t ime of wr i t ing [].

A problem might be a possible packet loss when communicat ion uses U D P on the trans
port layer. The reason, why this can happen often i n Con t ik i , is explained i n section 2.3.
In N T P unicast mode, the packet loss might occur either for the client's query to the server
or for the server's response to the client. If the client's query loss occurs, no server response
w i l l be sent. Similarly, i f the server's response loss occurs, no message w i l l be received by
the client. Not to block the whole system t i l l the response arrives is therefore a desired
behaviour of the client.

The N T P client w i l l further calculate the local clock offset using the N T P timestamps,
as described in section 3.4. A s mentioned i n section 3.2, the N T P timescale is not coincident
w i th the P O S I X timescale. If the new calls in the t ime interface use the standard P O S I X
timescale, conversion between the N T P and P O S I X timestamps w i l l have to be calculated.

The client can set the Transmit Times tamp in its query to any arbitrary value. This is
in compliance wi th the N T P v 4 specification [26]. It is important for the client to store the
sent t imestamp, because it is later used by the client to check the server response. Tha t
practically means, that the conversion from the P O S I X t imestamp to the 64-bit long N T P
t imestamp is not needed when the client sends the request. However, the conversion vice
versa is needed when the client calculates the local clock offset from the received timestamps.

Since both timescales reckon the t ime in seconds, the conversion between the seconds
fields of the timestamps is simple. However, the conversion from the N T P fraction field
value (2 - 3 2) to the P O S I X fraction field value (microseconds or nanoseconds) is problematic.
The relation between the P O S I X fraction field and the N T P fraction field is given by
POSIX.frac = NTP.frac x POSIX.res -=- 2 3 2 , where POSIX.frac is the P O S I X
fraction field value, NTP.frac is the N T P fraction field value and POSIX.res is the P O S I X
t imestamp resolution (10 6 or 10 9) . The problem is that there is no portable solution for the
operation of type int-64 := int_32 x int_32 []. Therefore, the conversion requires either
floating point operations or operations including 64-bit numbers. These operations can be
memory expensive, especially on 8-bit microcontrollers, and their use must be considered
carefully or another suitable solution must be designed.

21

Chapter 5

Design

The analysis showed, that just an implementat ion of the N T P client appl icat ion is not
sufficient, because of missing calls i n the t ime interface. Analys is further described the
necessary components of the N T P client.

The uIP stack, described i n section 2.3, provides a feature-rich communicat ion interface
for the N T P client applicat ion. The communicat ion interface is therefore not an issue.
However, the t ime interface must be extended wi th new calls, that must be further im
plemented i n the clock library. Figure 5.1 shows the overview of the N T P client on A V R
Raven.

Conti ki
NTP cl ient

T ime inter face

J L
Clock l ibrary

li IP

Conti ki OS

*
©

Timer /Counter 2

ft
NTP server

AVR Raven

Figure 5.1: N T P client design overview

5.1 Time interface extension

Section 4.3 described, that there is no proper way of setting, getting and adjusting the
t ime for an N T P client i n C o n t i k i O S . A new interface for setting, getting and eventually
adjusting the t ime must therefore be developed.

Setting the t ime should not cause the misbehaviour of the Con t ik i timers, described
in section 4.3. A modification of the scount and the seconds variable must be therefore
avoided. Th is can be achieved using an addit ional variable, containing the system boot
time, and modifying only this variable by a cal l for setting the t ime. This way, the seconds

22

variable w i l l be further representing the system uptime and the current real t ime can be
obtained by boottime +seconds. Since the scount also can not be changed, setting the time
is only possible wi th in a resolution of one second. The ca l l for adjusting the t ime takes one
parameter - the t ime to set, that is, the current real t ime in seconds since the P O S I X prime
epoch (1 January 1970). Because the current real t ime can not be negative, the parameter
is of the unsigned data type. L i s t ing 5.1 shows the cal l interface for setting the time.

void c lock_set _t ime (unsigned long sec) ;

L i s t ing 5.1: C a l l interface for setting the time

B y contrast, a ca l l for getting the current t ime must be able to provide a higher precision.
The one second resolution is also not adequate for adjusting the t ime. Therefore, a new time
specification structure must be introduced. To conform to the P O S I X standard [29], this
structure consists of two parts. The structure definition is shown i n l is t ing 5.2. The struc
ture name was chosen timespec to avoid collisions w i th existing P O S I X - c o m p l i a n t systems.
This structure consists of two signed long values representing seconds and nanoseconds. The
nanosecond precision was chosen because modern systems also a im towards this precision
and the microsecond precision would require at least the same data w i d t h [29, 24]. The
value 0 seconds and 0 nanoseconds is equal to the P O S I X prime epoch (1 January 1970).
In case of the seconds part, the long data type was chosen because the already present
value seconds is also of the long type in Con t ik i . To conveniently represent real-time values
as well as local clock adjustment values, which may also be negative, the type was chosen
to be signed. In case of the nanoseconds part, the signed long data type was chosen to
conform to the P O S I X standard [] and to be able to represent positive as well as negative
values for local clock adjustments.

s t ruc t time_spec {
long sec ;
long nsec;

};

L i s t ing 5.2: T i m e specification structure

Lis t ing 5.3 shows the ca l l interface for getting the t ime. The ca l l for getting the time
fills the t ime specification structure pointed to by the ts parameter. The part representing
seconds is s imply filled w i th the value of boottime + seconds, while the part representing
nanoseconds should be filled w i th the m a x i m u m precision the clock model allows. A s
described i n section 4.3, this can be achieved by reading the scount variable and by querying
the hardware counter that is used for interrupt generation and includes the t ime passed since
the last update of the scount variable. Th i s way, a resolution of C L O C K SECOND X counts =

1 2 8 ^ 3 2 = 0.000244140625 seconds can be acquired, where counts is the number of counter
register increments between two successive interrupts, which is 32 by default on A V R Raven,
as explained i n section 4.2.

vo id c l o c k . g e t _t ime (st ruet t ime.spec *ts"

L is t ing 5.3: C a l l interface for getting the time

Since setting the current t ime is possible only wi th in one second precision, finer time
setting must be made using the t ime adjustments. Section 4.3 explained, that adjusting
the t ime should use the hardware clock as much as possible. Therefore, adjusting the time
changes the value i n OCR2A compare register to delay or shorten the clock t ick interval,

23

•— Read > TCNT2

Compare Read > scount

I— Read > TCNT2

Figure 5.2: M u l t i p l e read and result comparison

which i n turn speeds up or slows down the system time. To comply wi th other operating
systems, the amount of required adjustments is specified by the t ime specification structure.
If the amount of required adjustments is positive, then the system clock is speeded up unt i l
the adjustment has been completed. If the amount of required adjustments is negative,
then the clock is slowed down in a similar fashion. Because the application specifies the
amount of adjustments by the t ime specification structure, a new cal l must be introduced
to determinate how many clock ticks w i l l be delayed or shortened, respectively. L i s t ing 5.4
shows the cal l interface for adjusting the time.

vo id c l o c k . a d j u s t . t i m e (s t r u c t t ime.spec * d e l t a) ;

L i s t ing 5.4: C a l l interface for adjusting the time

A s a result of this design, a leap second occurrence w i l l be handled like an unexpected
change of t ime - the operating system w i l l continue wi th the wrong system time for some
time, but the N T P client w i l l set or adjust the system time. This w i l l effectively cause the
leap second correction to be applied too late [], which is a trade-off for smaller memory
requirements.

5.2 Clock library extension

The previous section described how the ca l l for getting the t ime acquires the max imum
precision the clock model allows. Section 4.3 showed that there can be unpredictable results
caused by a race condit ion when reading the scount variable and the counter register TCNT2
afterwards. A l though the read could be wrapped wi th an interrupt disable, the common
solution on A V R C P U s i n C o n t i k i is to perform more read operations, compare the results
and perform read operations again if the results are not consistent. Figure 5.2 shows such
a solution.

The ca l l for adjusting the t ime computes the number of clock ticks wi th a longer or
shorter tick interval . To store the result, a new variable must be introduced. If the value
of this variable is zero, no adjustments are i n progress. Otherwise, the default value of the
compare register is incremented or decremented by 1 and wri t ten to OCR2A. This effectively
causes adjusting the time, as described i n section 4.3. W h e n the t ime was adjusted enough,
the default value of the compare register is wr i t ten back to OCR2A.

Section 4.2 explained, that the default value of the compare register for A V R Raven
in C o n t i k i is 31, but the number of counter register increments between two successive
interrupts is 32. Incrementing the compare register value causes one real second to be
experienced as CLOCK S E C O N D * . (32+i) = i28°x 633 = ^-96 seconds by the operating sys
tem. Decrementing the compare register value causes one real second to be experienced as

24

cLOCK.sECONDX(32-1) = i 2 ^ 3 i = 1 • 0 3 2 2 5 8 seconds by the operating system.
Each increment of the counter register TCNT2 takes 1 2 8

1

x 3 2 = 0.000244140625 seconds.
This is also the min ima l possible clock adjustment, that can be achieved by changing the
compare register value just for one clock t ick. The fastest possible adjustment is approx
imately 0.03 | . If faster adjustments were needed, the compare register would have to be
updated wi th different values. However, updat ing the compare register w i th more differ
ent values would require a more complicated software design and lower values could cause
missing of the compare match as described i n section 4.1.

5.3 Contiki NTP client

The client applicat ion itself is a C o n t i k i process, which uses the designed operating system
interface from the previous sections and the u IP communicat ion stack.

The client is able to use both N T P communicat ion modes, the N T P broadcast mode
and the N T P unicast mode. If the client w i l l use only the broadcast mode, the structures
and code related to the unicast mode should not be included i n the resulting program.
N T P broadcast mode packets can be received and processed from any N T P server i n the
network. To avoid a complicated design when the N T P unicast mode is used, the client is
able to communicate only wi th one specified N T P server.

The N T P client fills and checks only the seconds part of the N T P timestamp, because
the conversion to the N T P format would increase the interval between the t imestamp
determination and the dispatch of the filled packet. After the filled N T P packet is sent, the
client schedules sending the next N T P packet in 2T seconds by using the event t imer library.
In N T P v 4 , r ranges from 4, resulting i n N T P po l l interval of 16 seconds, to 17, resulting
in N T P pol l interval of 36 hours. However, the event timer l ibrary imposes a l imi t on
the scheduled time. This l imi t is platform specific and depends on the CLOCK_SECOND
value, e.g. the r value can not be greater than 8 on A V R Raven assuming 128 interrupts
per second. U p o n scheduling the event timer, the client process yields and another process
could be run. The client process is later invoked either by an event announcing the server
response or by the event t imer in case no server response arrived.

For the lack of a simple solution for IPv4 communicat ion over I E E E 802.15.4 l ink layer,
only IPv6 communicat ion w i l l be tested on the A V R Raven platform. D N S resolution is
not supported by the N T P client for this reason and the remote server must be specified
by address.

The packet loss problem was described i n section 4.4. However, a packet loss is not an
issue i f the client process uses the event t imer library. In broadcast mode, a lost server
packet causes no setting or adjusting the system time. The client s imply waits without
disruption for the next N T P broadcast message. If the client needs to figure out its local
clock offset at the moment, it can query the server by using the N T P unicast mode. In
unicast mode, the client process is invoked i n response to the expired event t imer and
queries the server again.

W h e n the server response arrives, the destination t imestamp determination is one of the
first tasks the client does. After that, the client makes packet sanity tests, such as checking
whether the response is from a synchronised server. In unicast mode, the Originate Times
tamp is compared wi th the stored sent t imestamp. The received packet is considered bogus
in case of mismatch and further processing is stopped. Otherwise, the N T P timestamps are
converted to the local t imestamp format and the local clock offset is computed as described

25

in section 3.4. After the local clock offset is computed, the stored transmit ted t imestamp
is immediately set to zero to protect against a replay of the last t ransmit ted packet. In
broadcast mode, the received packet is always considered correct and the local clock offset
is computed as the difference between the local stored t imestamp and the received Transmit
Timestamp. The local clock offset determined from the broadcast mode is influenced by
the network propagation delay and therefore less accurate. The N T P client could exchange
several packets w i th the server to calibrate the propagation delay. B u t since local variables
can not be reused i n the C o n t i k i process when the process yields, this would cause either
an extra memory overhead or a complicated client design.

Dynamic increasing or decreasing the client's P o l l interval in response to Kiss -o ' -Death
packets, described in section 3.3, would also require a complicated design. The client
instead assumes, that an exhausted N T P server rather drops the incoming client's query
than sending a response wi th the K o D code.

Section 5.1 described that the client uses the P O S I X timescale, whereas N T P uses the
N T P timescale. Since both timescales reckon the time i n seconds, the number of seconds
between the N T P epoch and the P O S I X epoch can be s imply subtracted from the seconds
part of the N T P timestamp. B u t the conversion from the fraction part of the long 64-bit
N T P t imestamp to nanoseconds, used in the local t imestamp structure, is one of the most
problematic tasks for memory constrained systems. A n accurate conversion requires either
floating point operations or operations including 64-bit numbers [17]. The conversion is
given by nsec = fractionl x 10 9 2 3 2 , where nsec is the nanoseconds part of the local
t imestamp and fractionl is the fraction part of the long 64-bit N T P timestamp.

Because there is no native hardware support for floating point nor 64-bit arithmetic
operations, the compiler supplies these operations in form of a library, called libgcc i n case
of the G C C compiler. Th is causes a significantly bigger resulting binary file (kilobytes in
case of floating point operations and hundreds of bytes i n case of 64-bit operations). The
greatest common divisor of 10 9 and 2 3 2 is 2 9 , so in fact, a relatively simple mul t ip l ica t ion
of fractionl by ^ must be computed. Th is could be computed on 32 bits using sequential
divisions by the power of 2 and mult ipl icat ions by the power of 5. In the standard C
programming language, the bitwise right shift operator divides the unsigned data type by
the power of 2 and the bitwise left shift operator multiplies the unsigned data type by the
power of 2 [17]. Therefore, the mul t ip l ica t ion by 5 can be done using two left shifts and
adding the original value (5x = 4x + x). The only constraint is that the overall coefficient
of these operations must not be greater than 1, that is, the value must be i n the range from
0 to 2 3 2 - 1 i n every step. Otherwise, the value could overflow and the result would be
incorrect. D iv i s ion can not cause such a si tuation but mul t ip l ica t ion could. The original
value could be divided by a greater divisor, but this would lead to a greater inaccuracy
because of loosing the least significant bits. Because of this, the mul t ip l ica t ion done as soon
as possible provides more accurate results. The ideal conversion sequence is therefore given
by formula 5.1.

. , 5 5 5 5 2 5 5 5 2 1 „.
nsec = fractionl x ^ x ^ x ^ x ^ x ^ x ^ x ^ x ^ (5 J)

It must be noted, that the above presented conversion is not exactly accurate, because the
least significant bits are lost because of right shifting. The accuracy can be determined
by i terating over a l l the possible values of fractionl and comparing the results w i th the
reference algori thm that uses the floating point operations. Such a measurement reports
the m a x i m u m error of 5 nanoseconds, which is total ly adequate for most platforms without

26

the floating point unit or for platforms where 64-bit mult ipl icat ions are expensive. The
implementation of the above as well as the program used for the error determination can
be found on the C D attached to this thesis. The table of C D contents is listed in appendix E .

After the timestamps were converted, the local clock offset is computed as given in
section 3.4. Depending on the absolute value of the local clock offset, the system time is
either set or adjusted using the clock.setMme or clock-adjust-time cal l , respectively. The
clock is set i f the t ime difference is greater than or equal to the offset threshold value. The
N T P specification suggests 0.125 seconds as the default offset threshold value [26]. Because
the designed cal l for setting the time, described i n section 5.1, can set the t ime only wi th in
a resolution of one second, the threshold value must be at least one second.

27

Chapter 6

Implementation

This chapter describes the implementat ion of the designed interface extensions and the
implementation of the designed N T P client applicat ion. The following software was used for
the development: U b u n t u 10.10, G C C 4.3.5, Binut i l s 2.20.1, A V R L i b c 1.6.8 and C o n t i k i 2.5.
The A V R Dragon programmer and A V R D U D E 5.10 were used for flashing the A V R Raven
hardware.

How to get a working setup wi th Con t ik i on the A V R Raven platform is described in
the documents on the C D enclosed to this thesis. The table of C D contents is listed in
appendix E .

6.1 Time interface extension

Since there is no proper way of setting, getting and adjusting the t ime i n C o n t i k i O S , the
interface for setting, getting and adjusting the t ime must have been developed. The imple
mentation uses the designed cal l interface and time specification structure from section 5.1.

6.1.1 T i m e specif icat ion s tructure

A new structure for expressing t ime values was implemented. This structure is shown in
l is t ing 6.1. Section 5.1 described the reasons for the chosen data types in this structure.
The impl ic i t assumption is that the compiler chooses at least 32-bit data wid th for the long
data type. Accord ing to ISO C99 standard [7], the m a x i m u m value for an object of type
signed long shall be greater or equal 2 3 1 -1 (2 147 483 647) []. Th is i n fact results i n at
least a 32-bit variable unless the compilat ion setting is changed. Such a t ime representation
w i l l wrap around in the year 2038.

s t ruc t time_spec {
long sec ;
long nsec;

h

Lis t ing 6.1: T i m e specification structure

6.1.2 Se t t ing the t ime

Setting the t ime is only possible wi th in one second precision - finer t ime setting must
be made using the t ime adjustments. The implemented clockset-time function computes

28

when the system booted in seconds since the P O S I X epoch and saves the result i n the newly
implemented boottime variable. This avoids the misbehaviour of Con t ik i stimers, described
in section 5.1.

Thanks to the implemented clockset-time function and boottime variable, the running
Con t ik i system is able to tel l the uptime, the current real t ime and the t ime when the
system was booted. L i s t i ng 6.2 shows the function for setting the time.

v o l a t i l e unsigned long boot t ime;

void c lock_set _t ime (unsigned long sec)
{

boottime = sec — seconds ;
}

L i s t ing 6.2: Funct ion for setting the time

6.1.3 G e t t i n g the t ime

Get t ing the correct current real t ime is only possible i f it was set using the clockset-time
function before. The implemented clock-get-time function is then able to tel l the current
t ime in seconds since the P O S I X epoch by s imply adding boottime and seconds.

The nanoseconds part is filled by reading the scount variable and the hardware counter
register. The comparison avoids the need to disable clock interrupts to prevent unexpected
results. Th is is a common practice on the A V R C P U s i n C o n t i k i , as described i n 5.2. In
order to minimise the possible comparison mismatch, the consistent values are obtained first
and used for computat ion afterwards. The seconds part is compared i n a similar manner
- if the seconds part is not consistent, the other values might not be consistent as well.
L i s t ing 6.3 shows the function for getting the time, where CLOCK-CTC-MODE equals 1
and CLOCK_COMPARE_DEFAULT_VALUE is equal to the value of the compare register
when no t ime adjustments are in progress.
vo id clock_get _t ime (s t rue t time_spec *ts)
{

uint8_t counter , tmp_scount ;
do {

ts—>sec = boottime + seconds;
do {

counter = (XO(^_COUNTER_REGISTER;
tmp.scount = scount ;

} while (counter != (XO(^_COUNTER_REGISTER) ;
ts->nsec = tmp.scount * (1000000000 / CLOCK^ECOND) +

counter * (1000000000 / (CLOCK^ECOND *
(CLOCK.CO]VIPARE_DEFAULT_VALUE + CIXX^CTCJVIODE))) ;

} while (ts—>sec != (boott ime + seconds)) ;
}

Lis t ing 6.3: Funct ion for getting the time

Because both 1000000000 and CLOCK_SECOND are constants, the compiler is able to
calculate the result of the divis ion during the compile t ime. Furthermore, as both numbers
are integers, the result is integer as well []. Mos t of the C P U t ime is therefore spent
on the mult ipl icat ions where the variables counter and tmpscount are involved. If the
code is compiled using G C C version 4.3.5, one such a mul t ip l ica t ion of two 32-bit variables

29

takes 33 instructions including the call and ret instructions for entering and returning
from the —mulsiS routine, which computes the result. Th is results i n 48 clock cycles of
overhead, which takes 6 000 nanoseconds wi th an 8 M H z C P U clock, according to the
A V R Instruction Set manual []. The t imestamp provided is therefore not exact. Because
the t ime consumed strongly depends on the architecture and compiler specifications, no
correction was implemented to remove this inaccuracy. The application must be instead
aware that the t imestamp is not exactly accurate.

6.1.4 A d j u s t i n g the t ime

A new function computing the amount of required adjusted ticks was implemented. The
clock-adjust-time function stores the computed result i n a new variable called adjcompare,
which is further discussed i n section 6.2. If the amount of required adjustments is positive,
then the system time is speeded up un t i l the adjustment has been completed and vice versa.
If the amount of required adjustments is 0 seconds and 0 nanoseconds, then are the eventual
adjustments i n progress stopped, but any already completed part is not undone. The time
values that are between two successive multiples of the clock resolution are truncated.
L i s t ing 6.4 shows the function for adjusting the time.

void c l o c k . a d j u s t . t i m e (s t r u c t t ime.spec *de l ta)
{

i f (de l ta->sec = 0L) {
i f (delta—>nsec = 0L) {

adjcompare = 0 ; / / stop adjustments
re turn ;

} else {
adjcompare = -de l t a ->nsec / (1000000000 / ((XOCKJ3ECOND *

(CLOCK_COMPARE_DEFAULT_VALUE + CLOCKLCTCJVfODE))) ;
}

} else {
adjcompare = -de l t a ->sec * (CLOCK_SECOND *

(CLOCK_COMPARE_DEFAULT_VALUE + CLOCKLCrCJViODE)) +
-de l t a ->nsec / (1000000000 / ((XOCKJ3ECOND *
(CLOCK.COMPAREJDEFAULT.VALUE + CLOCK.CrCJVfODE))) ;

}
}

Lis t ing 6.4: Funct ion for adjusting the time

6.2 Clock library extension

Section 4.2 described, that the clock-init cal l evaluates to a specific setup code for each
different A V R C P U during the compilat ion. Other A V R C P U s can be using a different
hardware clock. However, the t ime interface is common for a l l A V R C P U s . Therefore, new
general names for each part of the hardware clock must be defined i n the clock-init cal l .

The compare register OCR2A is defined by macro as CL O CK_ COMPA REREGISTER,
the counter register TCNT2 is defined as CLOCK-COUNTER-REGISTER, the default
value of the clock compare register, when no t ime adjustments are i n progress, is defined
as CLOCK-COMPARE-DEFAULT-VALUE and CLOCK-CTC-MODE is defined as 1, be
cause the hardware clock is used i n C T C mode, as described in section 4.1. So i n fact, the
code presented in the previous section is not a pseudocode. Such an extension also makes
port ing the code to other platforms simple.

30

The clock.adjust.time function uses the new adjcompare variable, as described i n the
previous section. The data type of this variable was chosen to be of the signed 16-bit
type. The l imi t imposed on t ime adjustments is therefore 2 1 5 counter register incre
ments for slowing down the clock and 2 1 5 — 1 for speeding up the clock. Th is equals
to 2 1 5 x 0.000244140625 = 8 seconds and (2 1 5 - 1) x 0.000244140625 = 7.999756 seconds,
respectively. A wider data type of the adjcompare variable would cause greater scope, but
also an addit ional memory overhead. Since it has to be possible to adjust the t ime at least
wi th in one second, a smaller data wid th of adjcompare would cause too smal l scope. The
volatile modifier must be used i n conjunction wi th this variable, because the variable may
be updated i n the interrupt service routine. L i s t ing 6.5 shows the variable definition and
its use i n the interrupt service routine for adjusting the time.

v o l a t i l e i n t l 6 _ t adjcompare;

ISR (AVR_OUTPUT_COMPAREJNT)
{

i f (adjcompare = 0) { / / i f not ad jus t ing
CLOCK_COMPARE_REGISTER = CLOCKLCOMP ARE_DEFAULT_VALUE;

} else i f (adjcompare > 0) { / / i f s lowing down
adjcompare ;
CLOCK_COMPARE_REGISTER = CLOCK_COMPARE_DEFAULT_VALUE + 1;

} else { / / i f speeding up
adjcompare++;
CLOCK_COMPARE_REGISTER = CLOCK_COMPARE_DEFAULT_VALUE - 1;

}

}
Lis t ing 6.5: Pseudocode of adjustments in interrupt service routine

31

6.3 Contiki NTP client

The structure representing an N T P message was borrowed from the O p e n N T P D daemon
and the Dragonfly N T P daemon. This structure is not using the G C C extension for rep
resenting a bit field, instead it uses a single 8-bit integer called status for Leap Indicator,
Version Number and M o d e fields of the N T P packet structure, described in section 3.3.
Accessing each field of the status byte is done using the bitmasks. Unl ike using the bit field
extension, this is compliant w i th the standard C language [17].

Parameters such as the remote N T P server address, the offset threshold value or the r
exponent of the N T P po l l interval can be configured by a standard C define macro in the
source code or in the Makefile. The default offset threshold value was chosen 3 seconds.
Approx . 1% of this amount can be adjusted i n 1 second. The unicast mode can be turned
off by specifying no remote host. In this case, a l l of the code related to the unicast mode
w i l l not be compiled.

The client is IP-version agnostic and the UIP-CONF-IPV6 macro is used only when
print ing the remote server address for debugging purposes. The remote N T P server ad
dress can be either IPv4 or IPv6 address, but can not be specified by a domain name.
Communica t ion over IPv4 was not tested though, for the lack of a simple solution for IPv4
communicat ion over I E E E 802.15.4.

The N T P client is wri t ten as an event-driven process, that never exits. U p o n sending
the N T P query, the N T P client process sets the event t imer, yields and waits for the next
event by using the PROCESS-WAIT-EVENT statement. Th is is comparable to the daemon
mode in other operating systems. The N T P process is later invoked either in response to the
incoming packet event or i n response to the t imer expirat ion event. The type of the event
is determined by the if statement. Th is way, no active wait ing blocks the whole system.
Before entering the main loop, the client sends its first N T P query after 6 seconds of uptime
to set the system time. Otherwise, the first set of the system time would happen after the
event t imer expires (2 r seconds). The value of 6 seconds should provide enough time for
Con t ik i to configure the network interface. If the network interface is not configured at that
time, the client enters the ma in loop and schedules sending the next packet as described
above.

If any other application wants the N T P client to query the server, it can send the
PROCESS-EVENT-MSG event to the N T P process at any t ime. However, no event is sent
to that application when the server response arrives or when the system time is changed.
The applicat ion can instead experience a change of the system time using the clock-get-time
call . L i s t ing 6.6 shows the C o n t i k i N T P client pseudocode.

32

PROCESS-THREAD (event)
{

for (;;) { / / main loop
P R O C E S S _ W A I T T ; V E N T () ;

i f (even t = t cp ip_even t) {
t cp ip_hand le r () ;

}
i fde f REMOTEJiOST / / un icas t mode support

else i f (e t i m e r . e x p i r e d ()) {
t imeout -handle r () ;
e t i m e r . r e s t a r t () ; / / set et imer to 2"TAU seconds

} else i f (event = PROCESS-EVENTJVISG) / / event from another a p p l i c a t i o n
{

t imeout -handle r () ;
}

#endif
}

}

t c p i p _ h a n d l e r (v o i d) / / process incoming server packet
{

c lock_get_t ime () ;
offset = compute .offset () ;
i f (abs(offset) > = AD JUST-THRESHOLD) {

c lock_set _time () ;
} else {

c lock_ad jus t_ t ime() ;
}

}

i fde f REMOTEJiOST
t imeout -handle r (vo id) / / send query to REMOTEJiOST
{

c l o c k - g e t - t i m e () ;
f i l l_and_send_ntp_packe t () ;

}
#endif REMOTE-HOST

Li s t ing 6.6: N T P client pseudocode

Lis t ing 6.7 shows the conversion from the N T P timestamp to the P O S I X timestamp,
as presented i n section 5.3. The conversion uses only shifts and additions, which makes the
resulting binary file significantly smaller. Because the current N T P E r a ends i n 2036, the
conversion between the seconds fields has to be changed in the future [25].

Accord ing to the output from the avr-size tool , the use of 64-bit ari thmetic operations
for the conversion takes 728 bytes more in the resulting binary file (G C C supplies routines
for mul t ip l ica t ion and shifting 64-bit integers) and the use of floating point operations
takes 3 358 bytes more than the developed algori thm. Besides significantly smaller memory
requirements, it was observed that this algori thm provides on A V R Raven more accurate
results than the libgcc floating point l ibrary supplied by G C C .

33

/ / nsec = nsec/2 + nsec/8 = (5*nsec
/ / nsec = (5*nsec) /8 = (2 5 * f r a c t i o n l
/ / nsec = f r a c t i o n l * 5~3/2~9

)/8
1/64

#define JAN.1970 2208988800UL /* 1970 - 1900 in seconds */

void ntp_to_ts (const s t ruc t l . f i x e d p t *ntp , s t ruc t time_spec *ts
{

ts->sec = n t p - > i n t _ p a r t l - JAN.1970;
ts—>nsec = f r a c t i o n l _ t o_nsec (ntp—>fract i o n l) ;

}

unsigned long f r a c t i o n l _ t o _ n s e c (u int32_t f r a c t i o n l)
{

unsigned long nsec ;
nsec = f r a c t i o n l ;
nsec = (nsec » 1) + (nsec » 3
nsec = (nsec » 1) + (nsec » 3
nsec = (nsec » 1) + (nsec » 3 /

/* Now we can m u l t i p l y by 5~2 because then the t o t a l
* m u l t i p l i c a t i o n c o e f f i c i e n t of the o r i g i n a l number f r a c t i o n l
* w i l l be: f r a c t i o n l * (5 " 5) / ((2 " 3) " 4) = f r a c t i o n l * 0.762939453,
* which is less then 1, so i t can not ove r f low.
*/

nsec = (nsec « 1) + nsec + (nsec » 3) ; / / nsec*3 + nsec/8 = (25*nsec)/8

nsec = (nsec » 1) + (nsec » 3) ;
nsec = (nsec » 1) + (nsec » 3) ;

/* Again we can m u l t i p l y by 5"2. The t o t a l c o e f f i c i e n t w i l l be
* f r a c t i o n l * (5 " 9) / ((2 " 3) " 7) = f r a c t i o n l * 0.931322575
*/

nsec = (nsec « 1) + nsec + (nsec » 3) ; / / nsec*3 + nsec/8 = (25*nsec)/8

/* Last sh i f t to agree wi th d i v i s i o n by 2"23 can not be done e a r l i e r
* because the t o t a l c o e f f i c i e n t would always be greater than 1.
*/

nsec = nsec » 2;
re turn nsec ;

L i s t ing 6.7: Conversion from N T P t imestamp to P O S I X timestamp

6.4 Code metrics

The developed N T P client and patches for C o n t i k i version 2.5 as well as the actual C o n t i k i
G i t version (at the t ime of writ ing) are provided on the C D attached to this thesis. The
N T P client application is common for both C o n t i k i versions. The code uses the C o n t i k i
indentation style.

The patch extending the C o n t i k i operating system version 2.5 inserts 72 new lines of
code and modifies 1 line of code. The modified line is a backport from the actual C o n t i k i
G i t version to prevent missing the compare match between the scount variable and the
CLOCK-SECOND value.

The patch extending the actual C o n t i k i G i t version (committed on 27 June 2012) inserts
78 new lines of code and modifies 1 line of code. The modified line fixes a reported bug,
which was not fixed at the t ime of wri t ing. Th is bug causes a wrong decision of the C
preprocessor whether the CLOCK-SECOND value is a power of two, which i n tu rn may
cause a divis ion operation in the clock interrupt service routine.

34

The N T P client applicat ion has 2 code files and 1 header file. The code file containing
the definition of the N T P process has 198 lines of code. The second code file contains
various conversions from N T P fraction part to nanoseconds. The user may choose by using
the C define macro which conversion w i l l be used by the N T P client application. This file
has 52 lines of code.

Various code metrics of the N T P client application code shows l is t ing 6.8. These metrics
were acquired using the cloc program.

Language f i l e s blank comment code

C 2 52 122 198
C / G H - Header 1 19 54 52

SUM: 3 71 176 250

L i s t ing 6.8: N T P client application code metrics

35

Chapter 7

Measurements

There are several factors that can be measured. The clock interrupt frequency measure
ments show the influence of the clock adjustments on the number of clock ticks (interrupts)
per second. The clock offset measurements show the t ime difference between the reference
clock and the local clock. The clock phase measurements show the phase difference between
the reference clock and the local clock, that is, when each second is accounted. A l l of the
presented plots and their respective source values can be found on the C D attached to this
thesis. The table of C D contents is listed i n appendix E .

IPv6 Routing

aaaa::/f>4

eiowpan
AVR Raven
Contiki OS

RZ USB Stick

Linux PC

Ethernet
Meinberg
NTP Server

Figure 7.1: Network topology for measurements

Figure 7.1 shows the network topology used for the measurements. The reference clock
for a l l of the presented measurements was the Meinberg M600 N T P s t ra tum 1 server, which
was synchronised using the G P S . The N T P client was running on the A V R Raven platform
i n a room at 23 °C.

7.1 Clock interrupt frequency

The A V R Raven's bit 7 of Por t D and the ground p in were connected to the U N I - T 2 0 2 5 C E L
digi ta l oscilloscope to measure the clock interrupt frequency. A t the beginning of the
interrupt service routine a logic 1 was wri t ten to the bit 7 of Por t D , what caused a high
level of voltage. A t the end of the interrupt service routine a logic 0 was wri t ten to the bit
7 of Por t D , what caused a low level of voltage.

W h e n there are no clock adjustments i n progress, the value of the output compare
register is 31 by default. The clock interrupt frequency is supposed to be equal to the value
of the CLOCK-SECOND macro, which is 128 by default on A V R Raven and is given by

36

formula 7.1. Figure B . l in appendix B shows the oscilloscope output for this case.

fasy 32768
prescaler _ 8 _ -j^g /y j \
counts 32

Figure B.2 i n appendix B shows the oscilloscope output when slowing down the clock.
The clock interrupt frequency is supposed to be equal to 124.12 H z and is given by for
mula 7.2.

f*"v 32768
P r e s c a l e r = 8 = 1 2 4 J 2 (7 .2)

counts + 1 32 + 1

Figure B . 3 in appendix B shows the oscilloscope output when speeding up the clock.
The clock interrupt frequency is supposed to be approximately equal to 132.129 H z and is
given by formula 7.3.

fasy 32768
p r e s c a < e r = — = 132.129 (7.3)

counts - 1 32 - 1 v '

The measured values are not exactly equal to those expected. This is mostly because
of a room temperature influence on the clock source (32 768 H z quartz crystal oscillator),
but it could also be air pressure or magnetic fields, etc.

7.2 Clock offset

5e+07

0 100 200 300 400 500 600 700 800 900 1000

Uptime [s]

Figure 7.2: L o c a l clock offset without N T P client

Figure 7.2 shows the local clock offset i n case no N T P client runs on the device. The time
is set w i th the in i t i a l offset of about 45 milliseconds. However, the clock progresses faster
because of frequency errors. Th is compensates the in i t i a l clock offset at first, but then it
causes the offset increase. The clock is running faster w i th approximately 100 P P M , where
1 P P M is equal to 1 0 " 6 § (0.0001%). Tha t is, the clock error is about 9 seconds a day in

37

this case. The offset increase is not exactly linear because of the frequency ji t ter, which
can be also observed.

Figure 7.3 shows the local clock offset acquired from the serial output i n case the C o n t i k i
N T P client runs on the device. W h e n the developed N T P client receives a response from
the server, it calculates the local clock offset and prints its value to the serial output. The
N T P po l l interval was set to 16 seconds, that means, the local clock offset is calculated and
eventually corrected every 16 seconds.

3e+06

2e+06

le+06

0

£ - le+06

$ -2e+06
O

-3e+06

-4e+06

-5e+06

-6e+06

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Uptime [s]

Figure 7.3: L o c a l clock offset w i th adjustments and N T P po l l interval 16s

The blue line shows the mean local clock offset value, which should be equal to zero
in a perfect case. Th is is however not the case, because of the oscillator frequency error
shown i n figure 7.2. More figures showing the local clock offset measurements can be found
in appendix C .

7.3 Clock phase

The G P S based clock Meinberg G P S 167 and digi ta l oscilloscope U N I - T 2 0 2 5 C E L were
used for measuring the clock phase difference. Meinberg G P S clock rises an impulse when
each second is accounted. C o n t i k i on A V R Raven was configured to write a logic 1 to bit 7
of Por t D when each second is accounted and to write a logic 0 to the same bit after 25
clock ticks.

W h e n the N T P client uses the clock-adjust-time cal l , the local clock offset as well as the
phase is being adjusted. Figure 7.4 shows the phase while adjusting the clock. The yellow
line is the output signal from Meinberg G P S clock and the blue line is the output signal
from A V R Raven.

Mean

38

Figure 7.4: Second impulses when clock adjustments are i n progress

Figures showing the clock out of phase and i n phase wi th the reference clock can be
found in appendix D .

39

Chapter 8

Conclusion

A s of early 2012, the Network T ime Pro toco l has been operating for over 30 years and re
mains the longest running, continuously operating applicat ion protocol i n the Internet [25].
Th is thesis demonstrates, that its use can be further extended to a new platform of con
strained devices, such as embedded systems.

The developed time interface extends C o n t i k i O S towards the real-time support, while
requiring min ima l memory amounts. Th is interface provides new calls to get, set and adjust
the system time without any modification of the existing code. The clock l ibrary was
extended to provide a platform-agnostic hardware clock interface wi th a min ima l memory
overhead. The t ime interface could therefore be ported to different hardware platforms
easily. The cal l for getting the t ime provides the m a x i m u m precision the hardware clock
allows. Setting the t ime is only possible wi th in the precision of one second i n order to
avoid the misbehaviour of the existing t imer libraries. The t ime adjustments, that require
sophisticated clock discipline algorithms, were not implemented because of complicated
design and memory constraints.

The developed N T P client for C o n t i k i O S uses the developed time interface to keep
an accurate t ime on the device. The C o n t i k i N T P client is able to use the N T P unicast
and broadcast modes. The unique t imestamp conversion provides a portable solution to
avoid memory expensive floating point or 64-bit ari thmetic operations i n a constrained
environment. The measurements show that the C o n t i k i N T P client provides an accurate
t ime synchronisation mechanism to the Con t ik i operating system. The C o n t i k i N T P client
is a Simple Network T i m e Pro toco l client, that can send requests to only one specified
N T P server. N T P algorithms for the t ime determination from more server responses were
therefore not implemented.

The Network T ime Pro toco l is suitable for embedded systems and constrained devices,
forming the modern Internet and it w i l l arguably find its place among them i n the near
future.

40

Bibliography

[1] Internet Assigned Numbers Author i ty . Service Name and Transport P ro toco l Por t
Number Registry [online], h t t p : / / w w w . i a n a . o r g / a s s i g n m e n t s / p o r t - n u m b e r s , 2012
[cit. 2012-01-23].

[2] A t m e l Corporat ion. A V R Instruction Set manual,
www.a tmel . com/ Images /doc0856 .pdf , 2010.

[3] A t m e l Corporat ion. Datasheet A T m e g a l 6 4 A / P A / 3 2 4 A / P A / 6 4 4 A / P A / 1 2 8 4 / P
Complete. www . a tme l . com/ Images /doc8272 .pdf , 2011.

[4] A . Dunkels. Towards T C P / I P for Wireless Sensor Networks. Master 's thesis, Swedish
Institute of Computer Science, Stockholm, Sweden, 2005.
h t t p : / / w w w . s i c s . s e / ~ a d a m / d u n k e l s 0 5 t o w a r d s . p d f .

[5] A . Dunkels . Programming Memory-Constrained Networked Embedded Systems. P h D
thesis, Swedish Institute of Computer Science, Stockholm, Sweden, 2007.
h t t p : / / w w w . s i c s . s e / ~ a d a m / d u n k e l s 0 7 p r o g r a m m i n g . p d f .

[6] A . Dunkels . Poster Abst rac t R i m e A Lightweight Layered Communica t ion Stack for
Sensor Networks [online], h t t p : / / w w w . s i c s . s e / ~ a d a m / d u n k e l s 0 7 r i m e . p d f , 2007
[cit. 2012-01-24].

[7] A . Dunkels . Con t ik i O S Documentat ion, 2011. Documentat ion can be generated
from the C o n t i k i source code.

[8] A . Dunkels . Con t ik i O S W i k i - Timers [online].
h t t p : / / w w w . s i c s . s e / c o n t i k i / w i k i / i n d e x . p h p / T i m e r s , 2011 [cit. 2012-04-13].

[9] A . Dunkels . Con t ik i O S W i k i - Processes [online].
h t t p : / / w w w . s i c s . s e / c o n t i k i / w i k i / i n d e x . p h p / P r o c e s s e s , 2011 [cit. 2012-04-23].

[10] A . Dunkels . Protothreads - Lightweight, Stackless Threads in C [online].
h t t p : / / d u n k e l s . c o m / a d a m / p t / , 2011 [cit. 2012-06-04].

[11] A . Dunkels, B . Gronval l , and T. Voigt . Con t ik i - a Lightweight and Flexible
Operat ing System for T i n y Networked Sensors [online].
h t t p : / / w w w . s i c s . s e / ~ a d a m / d u n k e l s 0 4 c o n t i k i . p d f , 2004 [cit. 2012-01-28].

[12] A . Dunkels, D . Kopf , and R . Wohlers. C o n t i k i O S W i k i - F A Q [online].
h t t p : / / w w w . s i c s . s e / c o n t i k i / w i k i / i n d e x . p h p / F A Q , 2011 [cit. 2012-01-20].

41

http://www.iana.org/assignments/port-numbers
http://www.atmel.com/Images/doc0856.pdf
http://www.atmel.com/Images/doc8272.pdf
http://www.sics.se/~adam/dunkels05towards.pdf
http://www.sics.se/~adam/dunkels07programming.pdf
http://www.sics.se/~adam/dunkels07rime.pdf
http://www.sics.se/contiki/wiki/index.php/Timers
http://www.sics.se/contiki/wiki/index.php/Processes
http://dunkels.com/adam/pt/
http://www.sics.se/~adam/dunkels04contiki.pdf
http://www.sics.se/contiki/wiki/index.php/FAQ

[13] A . Dunkels, O . Schmidt, T . Voigt , and M . A l i . Protothreads: Simplifying
Event -Dr iven Programming of Memory-Cons t ra ined Embedded Systems [online].
h t t p : / / w w w . s i c s . s e / ~ a d a m / d u n k e l s 0 6 p r o t o t h r e a d s . p d f , 2006 [cit. 2012-01-19].

[14] B . Esham. Network T ime Pro toco l servers and clients,
h t t p : / / c o m m o n s . w i k i m e d i a . o r g / w i k i / F i l e :
N e t w o r k _ T i m e _ P r o t o c o l _ s e r v e r s _ a n d _ c l i e n t s . svg , 2007 [cit. 2012-01-31].

[15] D . E x b . Marzu l lo example 1.
h t t p : / / e n . w i k i p e d i a . o r g / w i k i / F i l e : M a r z u l l o _ e x a m p l e - l . j p g , 2007
[cit. 2012-02-02].

[16] IPv6 Forum. IPv6 Ready Logo P rogram Approved Lis t [online].
h t t p s : / / w w w . i p v 6 r e a d y . o r g / d b / i n d e x . p h p / p u b l i c , 2012 [cit. 2012-01-27].

[17] B r i t i s h Standards Institute. The C Standard: Incorporating Technical Corrigendum
1. John W i l e y & Sons Publishers, 2002. I S B N 978-0-47-084573-8.

[18] D . M i l l s . Improved Algor i thms for Synchronizing Computer Network Clocks . ACM
SIGCOMM Computer Communication Review, 24, October 1994.
h t t p : / / d l . a c m . o r g / c i t a t i o n . c f m ? i d = 1 9 0 3 1 4 . 1 9 0 3 4 3 .

[19] D . M i l l s . A Br ie f His tory of N T P Time: Confessions of an Internet Timekeeper.
Technical report, E lec t r ica l and Computer Engineering Department, Univers i ty of
Delaware, Newark, U S A , 2003.
h t t p : / / w w w . e e c i s . u d e l . e d u / " m i l l s / d a t a b a s e / p a p e r s / h i s t o r y . p d f .

[20] D . M i l l s . Service Name and Transport P ro toco l Por t Number Registry [online].
h t t p : / / w w w . e e c i s . u d e l . e d u / " m i l l s / d a t a b a s e / b r i e f / o v e r v i e w / o v e r v i e w . p d f ,
2004 [cit. 2012-01-29].

[21] D . M i l l s . N T P Clock Discipl ine Mode l l ing and Analys is [online].
h t t p : / / w w w . e e c i s . u d e l . e d u / " m i l l s / d a t a b a s e / b r i e f / a l g o r / a l g o r . p d f , 2005
[cit. 2012-02-02].

[22] D . M i l l s . N T P Architecture, P ro toco l and Algor i thms [online].
h t t p : / / w w w . e e c i s . u d e l . e d u / " m i l l s / d a t a b a s e / b r i e f / a r c h / a r c h . p d f , 2007
[cit. 2012-02-03].

[23] D . M i l l s . The N T P Timescale and Leap Seconds [online].
h t t p : / / w w w . e e c i s . u d e l . e d u / ~ m i l l s / l e a p . h t m l , 2012 [cit. 2012-02-01].

[24] D . M i l l s . Precis ion T i m e Synchronizat ion [online].
h t t p : / / w w w . e e c i s . u d e l . e d u / ~ m i l l s / p r e c i s i o n . h t m l , 2012 [cit. 2012-05-10].

[25] D . M i l l s . The N T P E r a and E r a Number ing [online].
h t t p : / / w w w . e e c i s . u d e l . e d u / ~ m i l l s / y 2 k . h t m l , 2012 [cit. 2012-26-06].

[26] D . M i l l s , J . M a r t i n , J . Burbank, and W . Kasch . R F C 5905: Network T i m e Pro toco l
Version 4: P ro toco l and Algor i thms Specification,
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 5 9 0 5 . t x t , 2010.

42

http://www.sics.se/~adam/dunkels06protothreads.pdf
http://commons.wikimedia.org/wiki/File
http://en.wikipedia.org/wiki/File:Marzullo_example-l.jpg
https://www.ipv6ready.org/db/index.php/public
http://dl.acm.org/citation.cfm?id=190314.190343
http://www.eecis.udel.edu/%22mills/database/papers/history.pdf
http://www.eecis.udel.edu/%22mills/database/brief/overview/overview.pdf
http://www.eecis.udel.edu/%22mills/database/brief/algor/algor.pdf
http://www.eecis.udel.edu/%22mills/database/brief/arch/arch.pdf
http://www.eecis.udel.edu/~mills/leap.html
http://www.eecis.udel.edu/~mills/precision.html
http://www.eecis.udel.edu/~mills/y2k.html
http://www.rfc-editor.org/rfc/rfc5905.txt

[27] F . M o r a d i and A . Javaheri. Clock Synchronization in Sensor Networks for C i v i l
Security. Master 's thesis, Chalmers Univers i ty of Technology, Gothenburg, Sweden,
2009. h t t p : / / p u b l i c a t i o n s . l i b .Chalmers.se/records/fulltext / 1 1 2 0 2 2 . p d f .

[28] International Bureau of Weights and Measures. Coordinated Universal T ime [online],
h t t p : / / w w w . b i p m . o r g / e n / s c i e n t i f i c / t a i / t i m e _ s e r v e r . h t m l , 2011
[cit. 2012-02-01].

[29] I E E E Computer Society and Open Group . I E E E Std 1003.1-2008 (P O S I X . 1-2008)
[online], h t t p : / / p u b s . opengroup. o r g / o n l i n e p u b s / 9 6 9 9 9 1 9 7 9 9 / , 2008
[cit. 2012-02-01].

[30] J . Vasseur and A . Dunkels. Interconnecting Smarts Objects with IP: The Next
Internet. Morgan Kaufmann Publishers, 2010. I S B N 978-0-12-375165-2.

[31] U . W i n d l , D . Da l ton , M . Mar t inec , D . Worley, et a l . The N T P F A Q and H O W T O
[online], h t t p : / / w w w . n t p . o r g / n t p f a q / , 2006 [cit. 2012-06-16].

43

http://publications.lib.Chalmers.se/records/fulltext/112022.pdf
http://www.bipm.org/en/scientific/tai/time_server.html
http://pubs
http://www.ntp.org/ntpfaq/

Appendix A

Protothreads Example

Lis t ing A . l shows an example of delaying text on an L C D panel using Protothreads. It is
taken from A d a m Dunkels ' Protothreads website [10] and slightly modified. Protothreads
can be used to introduce delays inside a function without using a full threading model . The
example shows a function wr i t ing characters to an L C D panel. Suppose that each character
is shown for one second, then the next character replaces the previous.

inc lude " p t . h "
^ i n c l u d e " t imer , h"
inc lude < s t r i n g . h >

typedef unsigned short l c _ t ;
s t ruc t pt {

l c_ t lc ;
};

/* L o c a l c o n t i n u a t i o n */

s t ruc t pt s ta te ;
s t ruc t t imer t imer ;

PT.THREAD(d i s p l a y . t e x t (s t r u c t pt *pt , const char *msg))
{

PT_BEGIN(pt) ;
for (i n t i = 0; i < s t r l e n (m s g) ; i++) {

l c d _ d i s p l a y _char (msg [i]) ;
t imer_se t (&t imer , CLOCK^ECOND) ; /* Wait for one second. */
PT_WAIT_UNTIL(pt , t imer_exp i r ed (&t imer) ;

}
PT_END(pt) ;

}

in t main(void)
{

PT_INIT(& s ta te) ;
for (;;) {

d i s p l a y - t e x t (&state , " H e l l o w o r l d ") ;
/ * Here could be another thread run */

}
re tu rn 0;

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Lis t ing A . l : Example using Protothreads

The P T _ W A I T _ U N T I L macro actually causes the function to return. W h i l e the function is
wait ing for the t imer to expire another function could be called and run. W h e n the function

44

is entered again, the execution continues w i t h the P T _ W A I T _ U N T I L macro which causes
the function to check the condit ion it is wai t ing for (timer expired). If the condit ion is met,
the function resumes, and it returns again i f not. St r ic t ly speaking, the amount of time
between showing each character can be more than one second. This is because Protothreads
are not running simultaneously: if the t imer expired and another Protothread was running,
this Protothread would have to wait un t i l it is entered again. W h e n the condit ion specified
in P T _ W A I T _ U N T I L is met, the next i teration of the for loop (line 16) is started and the
next character is displayed.

How does it work? The macro P T _ B E G I N is expanded to a switch statement by the
preprocessor. The P T _ W A I T _ U N T I L macro expands to case and setting the local contin
uation to the value, so that the next t ime this function is run, it jumps to this case. The
structure holding the state is defined outside of the function, so its context is not lost when
the function returns. The simplest state structure would hold just the local continuation
variable. L i s t ing A . 2 shows the same example after a simplified preprocessing.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

#include " p t . h "
inc lude " t imer , h"
inc lude < s t r i n g . h >

typedef unsigned short l c _ t ;
s t ruc t pt {

lc_ t lc ; / * L o c a l c o n t i n u a t i o n */
};

s t ruc t pt s ta te ;
s t ruc t t imer t imer ;

in t d i s p l a y - t e x t (s t r u c t pt *pt , const char *msg) / * Expanded r^_THREAD */
{

swi tch (p t ->lc) { case 0: / * Expanded PT_BEGIN(pt) ; */
for (i n t i = 0; i < s t r l e n (m s g) ; i++) {

l e d . d i s p l a y . c h a r (msg [i]) ;
t i m e r . s e t (fetimer , CLOCK_SECOND) ; / * Wait for one second. */

/* The f o l l o w i n g two l i n e s are expanded */
p t - > l c = 31; case 31: / * PT_WAIT_UNTIL(pt , t imer_exp i red (fetimer)) ; */
i f (! (t i m e r _ e x p i r e d (& t i m e r))) { re tu rn PT.WAITING; } / * macro */

}

}
p t - > l c = 0; r e tu rn PT.ENDED; } / * Expanded PT.END */

int main(void)
{

s t a te -> lc = 0; / * Expanded P T J N I T */
for (;;) {

d i s p l a y - t e x t (&state , " H e l l o w o r l d ") ;
/* Here could be another thread run */

}
re turn 0;

}

Lis t ing A . 2 : Preprocessed example using Protothreads

45

Appendix B

Clock Interrupt Frequency
Measurements

Figure B . l : Interrupt frequency without clock adjustment

46

Figure B . 2 : Interrupt frequency when speeding up the clock

Figure B . 3 : Interrupt frequency when slowing down the clock

47

Appendix C

Clock Offset Measurements

The serial output from A V R Raven, the TechTools D i g i V i e w DV3100 logic analyser and the
Meinberg G P S 167 clock were used for measuring the local clock offset. Meinberg G P S 167
rises an impulse when each second is accounted. A V R Raven was configured to write a
logic 1 to bit 7 of Por t D when each second is accounted, and to write a logic 0 to the same
bit after 25 clock ticks.

Figure C . l shows the local clock offset from long-term uptime observation when N T P
client sets the t ime, but no adjustments are applied. A linear offset increase can be observed,
un t i l the threshold value for setting the t ime is reached. The offset threshold value was 3
seconds.

3e+09 | , , , , , , 1

Uptime [s]

Figure C . l : L o c a l clock offset w i th N T P client setting the t ime but without adjustments

Figure C.2 shows the local clock offset acquired from logic analyser when the C o n t i k i
N T P Client runs on the device. The logic analyser captures the rising and the falling edge
from the Meinberg G P S clock and from A V R Raven. The difference between the rising
edge from Meinberg G P S clock and the rising edge from A V R Raven gives the local clock
offset.

48

4e+06

3e+06 -

-5e+06 1 1 1 1 1 1 1 1 1

0 200 400 600 800 1000 1200 1400 1600

Uptime [s]

ure C.2 : L o c a l clock offset w i t h adjustments and N T P pol l interval 16s

49

Appendix D

Clock Phase Measurements

The following figures show the phase difference between the reference clock (Meinberg
G P S 167) and A V R Raven. The figures were acquired from the U N I - T 2 0 2 5 C E L digi ta l
oscilloscope. The yellow line on channel 2 shows the impulses from the G P S synchronised
clock Meinberg G P S 167. The blue line on channel 1 shows the impulses from A V R Raven
running C o n t i k i O S wi th the developed N T P client. The rising edge occurs when each
second is being accounted. Figure D . l shows the clock out of phase and figure D.2 shows
the clock i n phase.

M Pos: 0.00}jL

Chi 2.00V Ch2 1500mV M 500ms
• CHI J " O.OOmV

Figure D . l : Second impulses when the clock is out of phase

50

51

Appendix E

CD Contents

Directory Contents
docs/
docs/datasheets/
d o c s / i m g /
s w /
s w / n t p d /
sw /u t i l s / p lo t s /
sw/u t i l s / t es t s /
tex t /
t ex t / f ig /

Setup guides for running and debugging C o n t i k i O S on A V R Raven
Datasheets for used hardware
Images from Dopsy group laboratory at R h e i n M a i n Univers i ty
Software used i n this thesis including Con t ik i source code and patches
C o n t i k i N T P Client source code
Scripts and measured results for plots
Programs used for testing C o n t i k i N T P Client
L a T e X source files of this thesis
Figures used i n this thesis

52

