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ABSTRACT
Graphomotor abilities (GA) represent a set of psychomotor activities that are executed
during drawing and writing. The GA are prerequisites for mastering of elementary school
skills, particularly writing. Children in 1 st and 2 nd grade can experience difficulties in
execution of simple graphomotor tasks (GD) and later in 3 rd and 4 th grade even in
handwriting tasks (HD). The disruption of processes involved in handwriting is generally
called Developmental Dysgraphia (DD). The prevalence of DD in the Czech Republic
is 3 –5 %. To this day the DD is evaluated subjectively by teams of psychologists and
special educationalist. Currently, an objective measuring tool that asses the properties
of GD or HD is missing in practice. Consequently, this thesis is aiming to identify
symptoms associated with graphomotor disabilities in school-aged children and design
new parameters quantifying them. For this purpose, a new complex GA protocol was
proposed (36 tasks), which represents an environment, where the identified symptoms
can be manifested (24 symptoms). Moreover, 76 quantifying features were introduced.
A new graphomotor difficulties rating scale (GDRS) was designed based on computerised
analysis of handwriting. Finally, new online handwriting parameters based on advanced
signal processing techniques were designed and tested, which can assess poor dexterity
or unspecified motor clumsiness. The GDRS represents a novel and modern objective
measurement tool, that is not yet available in the Czech Republic or in other countries. Its
utilization will help in the modernization of DD diagnosis and in the remediation process.
With proper research, it could be adapted into other languages as well. Moreover, the
methodology can be used and optimized for other diseases, which affects GA, such as
Autism, Attention Deficit Coordination Disorder (ADHD) or Developmental Coordination
Disorder (DCD).

KEYWORDS
Developmental dysgraphia, handwriting difficulties, graphomotor abilities, graphomotor
difficulties, online handwriting, in–air/on–surface movement, quantitative analysis, ob-
jective evaluation, machine learning, advanced parametrization techniques, Tunable Q
Factor Wavelet Transform.



ABSTRAKT
Grafomotorické dovednosti (GA) představují skupinu psychomotorických procesů, které
se zapojují během kreslení a psaní. GA jsou nutnou prerekvizitou pro zvládání základních
školních schopností, konkrétně psaní. Děti v první a druhé třídě mohou mít potíže s prová-
děním jednoduchých grafomotorických úkolů (GD) a později ve třetí a čtvrté třídě také se
samotným psaním (HD). Narušení procesů spojených se psaním je obecně nazýváno jako
vývojová dysgrafie (DD). Prevalence DD v České republice se pohybuje kolem 3–5 %. V
současné době je DD hodnocena subjektivně týmem psychologů a speciálních pedagogů.
V praxi stále chybí objektivní měřicí nástroj, který by umožňoval hodnocení GD a HD.
Z tohoto důvodu se tato disertační práce zabývá identifikováním symptomů spojených
s grafomotorickou neobratností u dětí školního věku a vývojem nových parametrů, které
je budou kvantifikovat. Byl vytvořen komplexní GA protokol (36 úloh), který představuje
prostředí, ve kterém se mohou projevit různé symptomy spojené s GD a HD. K těmto
symptomům bylo přiřazeno 76 kvantifikujících parametrů. Dále byla navrhnuta nová škála
grafomotorických obtíží (GDRS) založena na automatizovaném zpracování online píma.
Nakonec byla prezentována a otestována nová sada parametrizačních technik založených
na Tunable Q Factor Wavelet Transform (TQWT). Parametry TQWT dokážou kvanti-
fikovat grafomotorickou obratnost nebo nedostatečný projev v jemné motorice. GDRS
přestavuje nový, moderní a objektivní měřící nástroj, který doposud chyběl jak v České
republice, tak v zahraničí. Použití škály by pomohlo modernizovat jak diagnostiku DD,
tak reedukační/remediační proces. Další výzkum by tento nástroj mohl adaptovat i do
jiných jazyků. Navíc, tato metodologie může být použita a optimalizována pro diagnos-
tiku dalších nemocí a poruch, které ovlivňují grafomotorické dovednosti, například pro
autismus, poruchu pozornosti s hyperaktivitou (ADHD) nebo dyspraxii (DCD).
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Introduction
Handwriting is a complex skill, which includes cohesion of sensory, motor and cog-
nitive processes. The process involves several muscles that act in various directions.
Also, it is a relatively challenging cognitive activity, that is highly demanding in at-
tention, planning, memory, and self–regulation. Moreover, it can be categorized as
one of multitasking skills, that is challenging particularly for the working memory.
Children with fully automated handwriting and spelling have their working memory
freed for more complex cognitive procedures, such as composition or grammar. The
automation level of handwriting is increasing as the child matures and it is also
very individual. Even in the current digital era, the handwriting skills are still ob-
served as a sign of school readiness and later their level is in relationship with child’s
grades. From child with handwriting difficulties, teachers may have an impression,
that she/he is unmotivated, bored, or even less intelligent individual. This status
can influence the child’s frustration, motivation or can negatively impact her/his
school performance and wellbeing.

Currently, the definition of Developmental Dysgraphia (DD) by the manuals
DSM–V, ICD 10 (or the Czech translation MKN 10) is specified as a lack of ability
to acquire proficient handwriting, or inadequate effort to attain it. The lack of con-
sensus on the definition at expert level is having a negative effect on the community,
where experts may not always be in agreement with each other on the diagnosis of
DD, or on the degree of it. Even scientific literature is concerned, that the disease is
not researched enough. The prevalence in the Czech Republic is around 3–5 %. The
DD can negatively influence several aspects of handwriting and the natural develop-
ment of the automatization process. It negatively affects the handwritten product,
which has than a disproportionate size, inappropriate shape of letters, abnormal
spacing, unsteady writing trace, etc. Also, it disturbs the process of handwriting,
such as speed and duration, fine motor tremor, hesitation, and pen tip pressure. To
clear up definitions, handwriting and drawing are defined to be part of graphomotor
abilities (GA). The Graphomotor Difficulties (GD) are identified as problems with
execution of basic graphomotor elements (starting in 1 st or 2 nd grade of primary
school). Handwriting Difficulties (HD) are identified in 3 rd and 4 th grade, where
the children are starting to write cursive letters.

The diagnosis and rating of DD is a complex task and in the Czech Republic it
mostly relies on experience of psychologists (PS) and special educationalists (SE).
Teams of PS and SE work together on anamnesis, testing memory and intelligence.
Further diagnosis of DD is carried out by SE. Moreover, the DD diagnosis is based
upon family anamnesis, school overall status, determination of intellect, working
memory and visual–spatial ability. Generally, there is no standardized tool for DD
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diagnosis. It is up to the teams of PS and SE which tool will be a part of their test
battery. Also, the validation criteria are mainly derived either from questionnaires
or from analytic scales, that are either subjective or they measure the handwriting
product/process manually and consequently inadequately. Moreover, the evaluation
process is highly dependent on the physical state of the sight of the evaluator, as
she/he is observing/counting specific properties of handwriting.

The identified limitation of the current state of DD diagnosis revealed a research
gap. For this reason, the individual aims of this dissertation thesis are:

1. To identify symptoms associated with GD in school–aged children and design
new parameters quantifying them.

2. To design new graphomotor disabilities rating scale based on computerized
analysis of handwriting.

3. To design new online handwriting parameters based on advanced signal pro-
cessing techniques.

The thesis is structured as follows. Chapter 1 provides detailed description of
physiological and psychological mechanisms engaged during handwriting. Next, it
introduces the DD and other related diseases, that affect the developmental hand-
writing. The symptoms linked with DD are listed. The summary is provided, where
the graphomotor abilities (GA), graphomotor disabilities (GD) and handwriting dif-
ficulties (HD) are specified. Also, the DD diagnosis in the Czech Republic and its
limitations are identified. The online handwriting is briefly described and consequent
thorough review of the state of the art of GD analysis is reported. Chapter 2 in-
troduces new graphomotor ability protocol. Next, symptoms related to the product
and process are listed. Moreover, for each symptom several quantifying features are
provided. Chapter 3 refers to the design of new graphomotor difficulties rating scale.
Firstly, the methodology design is described. Afterwards, a preliminary analysis of
the designed features is provided. Chapter 4 introduces a new advanced parametriza-
tion technique based on the Tunable Q Factor Wavelet Transform (TQWT). The
TQWT features are tested in terms of ability to discriminate HD and GD from
a proficient performance. The results from both analyses are discussed in detail.
Chapter 5 provides a detailed discussion of the outcomes of this work, and finally
Chapter 6 summarizes the thesis.

12



1 Handwriting difficulties in school-aged chil-
dren and approaches of its diagnosis

1.1 Handwriting and difficulties
Handwriting is a complex skill, which expresses itself in a cohesion of sensory, motor
and cognitive processes [138, 179]. The fact, that handwriting in not just a product
of the motor mechanism, can be observed in children, that can write well, but have
difficulties with drawing and vice versa [17].

Although in the global population of children is a prevalence of Developmental
Dysgraphia (around 7–30 %), it is still a not widely researched topic and its un-
derlying principle is still not clearly understood [39, 67]. The prevalence of DD in
the Czech Republic is 3–5 % [77]. DD is a relatively neglected science field in the
comparison with the developmental dyslexia [39] and the numbers of the prevalence
are highly language dependent (i.e. orthographic depth, grammar etc.). The early
detection of DD is crucial for successful intervention and therapy [72].

In current digital era, the need of handwritten text in elementary school teaching
is slowly disappearing [50, 91]. Nevertheless, handwriting skills are still observed by
experts to establish school readiness [115, 149]. The level of handwriting skills is in
relationship with children’s school grades [48, 80]. Children with poor handwriting
can make an impression on teachers that he/she is an unmotivated, bored or even
less intelligent individual [32, 92]. This bias can lead to frustration, demotivation or
low self–esteem, which all can negatively impact children’s school performance [92].

1.1.1 Mechanisms related to the handwriting

In the process of handwriting several muscles and even forces operate, that act in
various directions [84]. In literature, the topic of mature pencil grasp was extensively
researched [6, 84, 130, 136, 147, 149]. To summarize the theory of pencil grasp, the
mature grasp is characterized by the usage of inner muscles of the hand for the
pencil movement. On the contrary in the immature grasp, even if the children are
holding the pen with fingers, the motor movement is carried out mainly by outer
muscles of the hand [149, 152]. Many studies have suggested that the variation in
grasp during handwriting does not influence legibility or speed of writing [61].

Handwriting is a relatively challenging cognitive activity, that is highly demand-
ing on attention, planning, memory and self–regulation [78]. With handwriting
there are connected meta–cognitive processes, such as revising, translation (trans-
fer from thought to written product), spacing and orientation of letters on pa-
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per [66, 122, 131]. It can be viewed as an example of one of our multitasking
skills, that is particularly challenging for working memory [78, 85, 94]. The children
with fully automated handwriting and spelling have their working memory freed for
more complex cognitive procedures, such as composition or grammar [75, 85, 92, 94].
Finally, with fully automated handwriting in adulthood, attention is focused on lin-
guistic and semantic aspects of writing instead of motor processes [112, 166]. The
level of automaticity of handwriting is changing as children mature and it is also
very individual [85, 93, 95, 116, 165, 174].

1.1.2 Origin of Developmental dysgraphia

Various authors have different opinions on the etiology of the DD. One view is, that
DD is the consequence of underdeveloped areas of the language, such as phonetics,
phonology, morphology, or syntax [179]. It was also discovered that DD co–occurs
more frequently with other diseases, such as Attention Deficit Hyperactivity Disorder
(ADHD), Developmental Coordination Disorder (DCD), or autism [18, 110]. Similar
brain activity was observed in children with DD and ADHD only [19, 127].

DD is generally described by the DSM–V [5] as a Specific Learning Disorder
(SLD) with impairment in written expression, that is lacking in spelling accuracy,
grammar and punctuation accuracy and organization or clarity of written expres-
sion. In the ICD–10 [175] DD is described as a Specific Developmental Disorder of
Scholastic Skills with Specific Spelling Disorder, where the ability to spell orally and
to write out words correctly are both affected (the Czech translation of ICD–10 is
called MKN–10 [176]). Children with DD are not identified as having neurological
problems or mental retardation [144]. DD is a subtype of SLD.

Overall, we can sum up that DD manifests itself in the lack of ability to acquire
proficient handwriting, or with inadequate effort to attain it. As can be seen from
previous taxonomies, DD is not specifically mentioned and defined. Even various
authors are concerned, that this disorder isn’t researched enough [30, 39, 93]. This
led the authors to call Dysgraphia by different names, such as: poor handwrit-
ing, handwriting difficulties (HD), or even having special learning disorder SLD or
disability (which is in agreement with ICD–10 and DSM–IV).

The diagnosis and rating of DD is a complex task and mostly relies on experience
of teachers, psychologists and occupational therapists [144].

1.1.3 Symptoms of Developmental dysgraphia

The DD negatively influences one or several aspects (see Section 1.1.1) of handwrit-
ing. In the majority of cases, DD exhibits itself in lower speed of writing and legibil-
ity, which than limits the individual in school performance [92, 115, 140, 149, 152].
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DD can also slow down natural development of automatization of handwriting, which
can lead children to be less self–sufficient, less conscientious and more stressed writ-
ers [45, 72]. Also, the influence of DD can severely impact the graphomotor aspect
of handwriting, where children are experiencing exhaustion [84]. The underlying
mechanism behind DD is still unknown [39, 49, 93]. DD manifests itself generally
in two domains: in the handwritten product and in the process of handwriting.

Symptoms in handwritten product

• Disproportionate size of letters: the letters are too big or too small or even
are perpetually changing size [130, 132, 133].

• Shape of letters: children are drawing curves, that are less curved and more
pointy [141, 157].

• Abnormal spacing: too wide, too narrow or high variability of spacing between
letters or words [8, 134].

• Nonlinear vector of writing: children are unable to follow straight path during
writing [45, 133].

• Text content error: low level of grammatical development corresponding to
the age, similar letter confusion, excessive correction of handwritten text [39,
45, 74, 130, 133].

Symptoms affecting process of handwriting

• Speed and duration of writing: children with poor handwriting need more time
to complete the given task due to additional effort, error correcting and poor
planning [114]. Also, they have lower average speed of the strokes [79], but at
the same time they have larger differences of speed between each stroke [9].
This disturbed fluency of handwriting can be also quantified by the time seg-
ments between strokes or differences of speed within each stroke [74, 110, 123,
174].

• Motor tremor: handwritten product can be affected by high level of fine-motor
tremor [8].

• Hesitation: children with handwriting difficulties tent to stay longer with the
pencil in trajectories hovering above the surface [8, 96, 133].

• Pen tip pressure: children with handwriting difficulties have more variability
in the level of the pen tip pressure [79, 133].
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1.1.4 Diagnosis of Developmental dysgraphia

Several approaches of DD diagnosis can be identified [45, 47, 140]. We can see a
progress, that can be defined as a transition from the subjective evaluation by the
examiner to the objective evaluation executed on the basis of quantitative analysis of
handwriting signals [115, 141]. Abroad DD diagnosis is in the hands of occupational
therapists (OT), who are responsible for assessment, diagnosis and remediation.

In the Czech Republic (CZR) the process of diagnosis is distributed among teams
of psychologists (PS) and special educationists (SE). PS and SE work together on
anamnesis, testing memory and intelligence. The further diagnosis (SLD such as
dyslexia, dysgraphia etc.), are diagnosed by SE. The DD diagnosis is based on sev-
eral diagnostic tools and the following information: family anamnesis, school overall
status (grades, handwriting evaluation based on exercises or homeworks, behav-
ior) and determining intellect, working memory and visual–spatial ability. Another
part of the diagnostic process is an examination of laterality and handwriting pro-
cess [73]. But generally, there is no standardized tool for DD diagnosis and it is
up to the occupational therapist or psychologist which tools will be part of hers/his
test battery [167].

Nowadays, the primary aim of DD researchers is to develop a standardised eval-
uation tool. For this purpose, Rosenblum et. all [140] outlined the following evalua-
tion types: product evaluation and process evaluation. Product evaluation, executed
by the experts, is based on two scales - global and analytic. The global scale is evalu-
ated with the goal to describe global legibility. The analytic tests are tools, that are
scoring handwriting in the terms of shape of letters, spacing, speed etc. In practice,
there are lots of these analytic tests. Unfortunately, high percentage of them are
lacking psychometric qualities [20, 47, 142].

The process evaluation is a new approach, that started with the advent of tech-
nology and particularly with the accessibility of digitizers. This approach is the next
step after the product evaluation process. It offers precise measurements techniques
(see Figure 1.2), that the human sight can’t comprehend (stroke differentiation, fine
tremor, pressure, in–air movement etc.). For this reason, quantitative analysis is
regarded as more precise and objective.

The last evaluation type is an evaluation using questionnaires, where the chil-
dren evaluate themselves or are assessed by others (teachers, occupational ther-
apists etc). Several handwriting protocols exist [20], such as Concise Evaluation
Scale for Children’s Handwriting (BHK) [65], The Minnesota Handwriting Assess-
ment (TMHA) [125], Handwriting Proficiency Questionnaire for Children (HPSQ-
C) [135], Handwriting Proficiency Questionnaire (HPSQ) [129] and Drawing Pro-
ficiency Screening Questionnaire (DPSQ) [156]. In the BHK children are required
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to copy a text, which is evaluated with two scores by the therapist. The scores
are related to the speed of the writing and to the legibility of the product. TMHA
requires the children to copy a sentence in which all the letters from the alphabet
are used. The task of the therapist is to determine the speed and quality score (leg-
ibility, form, alignment, size, spacing). HPSQ–C is ten–item questionnaire, where
children are asked to evaluate themselves on the 5–point Likert scale. The HPSQ–C
is designed to describe three factors of handwriting: performance time, legibility and
well-being. The maximum (the worst) score that children can achieve is 40 points.
HPSQ is the original questionnaire, from which HPSQ–C was derived. It has a
similar structure of items. The difference is in the design, where the child related
questions are evaluated by the teacher. Finally, DPSQ follows the item structure
of HPSQ/HPSQ–C. It was designed to evaluate possible difficulties with drawing of
children between 4-7 years of age. The assessment in this questionnaire is done by
the occupational therapist or the teacher.

1.1.5 Summary of Developmental dysgraphia analysis

Dysgraphia Dyspinxia

Fine Motor 
Processes

Gross Motor 
Processes

Cognitive 
Processes

Handwriting Drawing

Graphomotor abiilities

Symptoms Symptoms

P
ro

du
ct

P
ro

ce
ss

E
va

lu
at

io
n

Fig. 1.1: The graphomotor abilities – processes, evaluation, and diagnosis.

This section represents a summary of the theory and possible innovation in the
diagnosis of DD in the area of CZR 1.

1For this reason the disease names in Figure 1.1 differ from the abroad scientific literature:
Artistic Expression Disorder is called Dyspinxia and similary SLD is called Dysgraphia (see Sec-
tion 1.1.2).
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Handwriting and drawing are parts of the graphomotor abilities (GA). The in-
terconnected and underlying processes of GA are fine motor (FMP), gross motor
(GMP) and cognitive processes (CP). The focus of this thesis is more on GA, which
represents a set of psychomotoric activities that are executed during the graphical
expression (writing, drawing, dictation, copying etc.). GA are the prerequisites for
the adoption of the elementary school skills, and particularly for writing.

GMP represents overall activities, such as walking, running, jumping, balance,
coordination, dancing, etc. GMP issues can possibly negatively influence FMP. The
preschoolers have their joints gradually released with the development of GMP [14].
This enables further development of FMP.

To the domain of FMP belongs all activities, which are performed by the small–
scale muscle groups, such as movement of hands, GA, mimicry, visual motorics,
mouth, feeds etc. [70].

The final domain is CP, which incorporates symbolic and abstract thinking,
attention, ideas, concepts, syntactical construction, spelling and also verbal lexicon,
working memory, episodic memory, procedural memory etc. [10, 58, 111, 164, 168,
171].

Disruption of processes involved in handwriting is called DD as well as disruption
of processes involved in drawing is called Dyspinxia. To this day the DD assessment
is executed manually by the OT (abroad) or by the teams of PS and SE (in the
Czech Republic).

The measurement of GA proceeds on three levels: product, process and evalu-
ation (scoring). For the assessment of the product there exist global and analytic
scales (see Section 1.1.4). For the evaluation there exist questionnaires, such as
HPSQ–C/HPSQ. Quantified measurements of the online handwriting signals (pro-
cess) are called features, which alone or in groups can represent different symptoms
of DD (see Section 2.2). The outcome of the computational analysis of GA can be
a part of the diagnosis of DD and bring significant improvements, such as lowering
costs, higher objectivity, higher accuracy and efficient remediation.

1.1.6 Limitations of current approaches to the diagnosis of DD
and motivation to introduce a new solution

At present, occupational therapists examine DD based on the following criteria [48]:
legibility and speed of writing, performance time, quality of letter formation, align-
ment, number of errors, spacing and sizing of letters, etc. Although the clinical
assessment of DD provides valuable information about handwriting, it is still lim-
ited to a visual inspection of the written product, which does not provide complete
information about the process itself. Besides, such assessment is also dependent

18



on the examiner’s experience, level of expertise, physical and emotional state, etc.
These factors result in an inter-rater variability and less objectivity of the examina-
tion [128]. The major drawbacks of current diagnosis of DD [140] are listed in the
next paragraphs.

Evaluator

In the evaluation process of the children’s handwriting an educational therapist is
marginally involved. The reliability of the therapist’s judgment is influenced by
several factors: current level of experience in the field, physical state of the sight,
clarity of precise instructions to the children, etc. For this reason, the final decision of
the therapist is more or less subjective. To ensure the objectivity of the assessment,
more evaluators should be involved in the procedure, but it is not a cost–effective
solution.

Grading

There is a still ongoing discussion regarding measurements of readability (height,
width, slant, spacing, degree of line straightness, shape, merit of writing [125]). Also
in the matter of criteria such as legibility the evaluation is executed differently: BHK
scale is using only binary classification, but HPSCQ–C uses 5-point Likert scale, etc.

Assignment

Examiners can choose various handwriting tasks with different level of complexity
and rationale behind them. It is a known fact, that the type of assignment affects
the performance outcome [178].

Instructions

The final handwriting performance is also affected by the precise instructions given
by the evaluator to the child. Instructions of such kind as: “write as you usually
do” or “try to write as you are used to, when you try to write well”, could lead
to significantly different handwriting performances. So, it is up to the evaluator’s
integrity, to hold to the same sentences. Also, it is up to the children’s previous
experience, how it will carry out the instructions.

Writing environment

In some cases children are writing on lined paper, in other on unlined one. Also they
can use an inking pen as well as a pencil. As common sense dictates, these various
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combinations create different environments, where handwriting performance can be
also very different.

Writing style

Individuals have different writing styles. They can slightly change during the day
or even during the same written passage. Developmental scales need to be sensitive
enough to not falsely evaluate children handwriting as problematic. Children with
handwriting difficulties may express behavior such as stress, fatigue, or tendency to
take breaks during handwriting. These factors need to be also properly observed
and quantified.

System of scoring

The whole process and administration of handwriting evaluation should be less time-
consuming. Now educational therapists make all processes subjectively and indepen-
dently on any scales. Due to this fact, the evaluation is still costly, time–consuming,
less efficient and child could be misjudged.

Measurements

Time is most commonly measured physical variable in the commonly used handwrit-
ing evaluation tools. The normal handwriting without any difficulties is performed
in an adequate amount of time and is legible at the same time. Other measurements
are performed by the evaluator, who assess attributes of handwriting (number of let-
ters per minute, overall time etc. ). This subjective approach lacks accuracy and is
unable to measure the time–dependencies of particular strokes of handwriting.

1.2 Online handwriting
The online handwriting (OH) represents a transformation of a regular handwriting
process into quantified signals. This transformation is accomplished by the elec-
tronic equipment called digitizer/tablet and stylus. The digitizer contains a surface
area, on which the handwriting is executed, and the stylus that substitutes a clas-
sical writing pen. Moreover, the electronic stylus has an inking tip, which offers
almost the same feedback to the writer as a regular pen. This hardware is able to
assess several physical variables and convert them into the signals with the sam-
pling frequency around 133 Hz. The digitizers were primarily made for artists, but
the several vendors offer open–source libraries for their products, which enable to
program unique interfaces specifically designed for the research [108].

20



During writing an A4 paper is laid down and fixed on the surface of the digitizer.
Extracted signals are the following: position of the pen on the digitizer surface
(𝑥−axis/𝑦−axis of on–surface position), position of the pen in air above the digitizer
surface as well (𝑥−axis/𝑦−axis of in–air position), azimuth and tilt of the pen (see
Figure 1.2), binary signal denoting on–surface/in–air trajectory (maximal distance
between pen and the digitizer surface is 1.5 cm) and pressure of the pen tip on the
surface of the digitizer. Since each sample of the trajectory is marked with a time
stamp, the sum of signals is called online handwriting.

0

180

90

270

90

       tilt (    -       )0 90
azimuth (    -        )3590

Fig. 1.2: The online handwriting signals assessed by the digitiser: 𝑥−axis/𝑦−axis
position, azimuth and tilt.

The quantification of the handwriting process into OH signals enables objective
analysis of the process and partially of the product (see Section 1.1.3) of handwrit-
ing. The raw, unprocessed signals of OH can have some minor informative value,
but advanced mathematical modelling of these signals to create specific features is
needed. The derived features describe temporal, spatial, kinematic and more sophis-
ticated characteristics of handwriting (see Section 1.3). These features are analysed
either at the exploratory level to determine the strength of relationships to various
validation criteria (see Section 1.1.4) or at a more advanced level involving machine
learning (ML) algorithms. The ML techniques are able to train models of symp-
toms on the basis of these features and subsequently, differentiate between typically
developed handwriting and handwriting affected by graphomotor difficulties (GD).
Moreover, ML models can bring a broader perspective into the identification of GD,
because they are trained across the cases of the whole dataset.

Since DD cannot be diagnosed from handwriting alone, the ML models cannot
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fully substitute PS and SE. Nevertheless, PS and SE need an objective diagnostic
tool, which will be able to measure GD which will help with further diagnostic pro-
cess of preschoolers, children attending the 1 st and 2 nd class or with DD diagnosis
in children attending 3 rd and 4 th grade.

For this purpose, the graphomotor difficulties rating scale (GDRS) was proposed
which can bring an objective measurement of GD difficulties. To this day there do
not exist any objective criteria, how to measure GD in the Czech Republic or in any
other country. The design of the proposed GDRS consists of:

• Identification of GD symptoms in the handwriting from PS and SE (see Chap-
ter 2).

• Mathematical modeling of features (see Chapters 2 and 4).
• Development of the objective scale, which can incorporate all the GD symp-

toms (see Chapter 3).

1.3 State of the art
The advance of technology enables the use of digitisers in DD diagnosis, which allows
the acquisition of features that describe online handwriting signals. Handwriting
features can be classified as temporal (e.g. duration), spatial (e.g. width/height),
kinematic (e.g. velocity, acceleration, jerk), dynamic (e.g. pressure, azimuth, al-
titude). This list of features is not complete, but those mentioned above can be
identified as the elementary features. In addition, more advanced and sophisti-
cated features can be derived, e.g. based on Tunable Q–Factor Wavelet Transform
(TQWT), fractional–order derivatives (FD), power spectrum, entropy, etc. Each
child that is examined performs various handwriting tasks, that can be divided into:
graphomotor elements (Archimedean spiral, rainbow, saw), cognitive tasks (complex
figures, recall of complex figures from memory) and handwriting (based on dictation
or transcription). This list is also not exhaustive, but the goal is to show that for
assessing every aspect of handwriting different tasks are needed.

In the following summary the newest studies are presented. They cover the quan-
titative analysis of developmental handwriting (2016–2020) based on digitisers, and
the focus of this review is mainly on the usage of various parametrization techniques,
methods used for analysis and the results that were reported. The relevant topics
included in this selection are DD, handwriting and graphomotor difficulties. The
detailed summary of metadata from mentioned articles is compiled in Table 1.1.
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Acquisition of handwriting in children with and without dysgraphia: A compu-
tational approach

Gargot et al. (2020)[57] assessed dysgraphia among French–speaking children who
were scored with the BHK test. They collected a large dataset of 280 children, that
consisted of healthy individuals and individuals with developmental dysgraphia, ex-
cluding comorbidities (DCD, ADHD, etc.). Together 12 features (static, kinematic,
pressure, and tilt related) were extracted from online handwriting signals. The
significant relationship with BHK scores expressed all the extracted features. Nev-
ertheless, dysgraphic children (as diagnosed by a psychomotor therapist) did not
differ from children with typical handwriting in the terms of BHK scores or fea-
tures. The authors were also able to split cases into three clusters using K–means
clustering. The groups can be described as the first containing children with mild
dysgraphia, the second containing severe dysgraphia with symptoms related to the
kinematic and pressure, and last containing children with severe dysgraphia display-
ing abnormalities in tilt.

Extending the Spectrum of Dysgraphia: A Data Driven Strategy to estimate
Handwriting Quality

Asselborn et al. (2020) [7] used the BHK test in this study to evaluate a sample of
children’s handwriting. With the use of online handwriting features together with
PCA (Principal Component Analysis) and Unsupervised learning (K–Means), they
were successful in creating a new global score and four specific scores for evaluat-
ing the severity of dysgraphia. Nevertheless, the score thresholds were empirically
estimated and not based upon analytic approach. The scale is based on kinematic,
pressure, tilt and static (i.e. handwriting size, handwriting density, etc.) features.

Fractional Order Derivatives Evaluation in Computerized Assessment of Hand-
writing Difficulties in School–aged Children

In this study the goal of Mucha et al. (2019) [183] was to investigate the possibilities
of using FD in the computerized assessment of HD (alphabet task) in school–aged
children. FD based features brought the benefit of more robust quantification of
in-air movements as opposed to the conventionally used ones. These movements
are likely to include hesitation/s, uncertainty during writing, stiffness of fingers,
etc., which can definitely be linked with HD and are imperceptible to an examiner
that sees only a plain written product. The FD and conventional sets consisted of
kinematic (velocity, acceleration, jerk), temporal (duration), and dynamic (azimuth,
altitude) features. The FD feature derived from vertical velocity demonstrated the
strongest relationship in the study with HPSQ–C scores (𝜌 = −0.34, 𝑝 < 0.05).
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Computerised Assessment of Graphomotor Difficulties in a Cohort of School–
aged Children

Mekyska et al. (2019) [98] were trying to explore the impact of specific elementary
graphomotor tasks analysis on the accuracy of computerized diagnosis and assess-
ment of GD. A sample of 76 children were enrolled, who attended 1 st up to 4 th
class in an elementary school. Authors employed a state–of–the–art machine learn-
ing (ML) algorithm called XGBoost [29], which can work well in small datasets and
is able to capture non–linear relationships in the data. They identified the combined
loops task as the most discriminative on the basis of classification analysis (accuracy
(ACC) was equal to 79 %, sensitivity (SEN) was equal to 50 % and specificity (SPE)
was equal to 89 %). The validation criteria was the HPSQ–C score in this case.
Also, all graphomotor tasks (see Figure 2.1) were included in the differential and
regression analysis. The feature set included mainly conventional features, such as
spatial (width, height, etc.), temporal, kinematic, dynamic, and others (e.g. number
of interruptions). Although the study showed a poor trade–off between sensitivity
and specificity in multivariate analysis, this could have been caused by the incorrect
classification made by the special educational counselor.

Automated Detection of Children at Risk of Chinese Handwriting Difficulties
Using Handwriting Process Information: An Exploratory Study

In this exploratory study, Wu et al. (2019) [177] were developing classification
models for handwriting process data to detect Chinese HD in children (300 cases,
aged 6–7). They were able to achieve ACC equal to 77 % and SEN equal to 77 %
when predicting HD using SVM classifier. The best ML model contained 7 features
(dynamic, kinematic, temporal). The assessed task included 49 Chines characters.
The HPSQ by teachers was chosen as a validation criteria. This was the first study
introducing ML techniques into identification of HD based on the online handwriting
in Chinese children.

Analysis of Kinematic Parameters Relationships in Normal and Dysgraphic Chil-
dren

Authors Morello et al. (2019) [100] were analyzing kinematic and temporal param-
eters extracted from the handwriting movement of Italian children (68 cases, 2 nd
up to 5 th grades of primary school). The children completed a sequence of “lelele”,
and copied as accurately as possible (A test) and as fast as possible (F test) a sen-
tence containing all letters of Italian alphabet. Clear differences were found between
normal and dysgraphic children in the relationship between the duration of stroke
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and amplitude of stroke features. This mutual relationship was observed in all used
tasks.

Effect of Stroke–level Intra–writer Normalization on Computerized Assessment
of Developmental Dysgraphia

Authors Zvoncak et al. (2018) [180] were investigating new intra–writer normal-
ization methods (IWN) in the direction of improving computerized DD assessment
based on the quantitative analysis of online handwriting. Altogether 97 children
were enrolled in this study, who attended 3 rd and 4 th grades of primary school.
The handwriting (copy of paragraph) was parametrized using a conventional set of
features (spatial, kinematic, temporal) that were consequently normalized by four
newly designed IWN. Autors employed regression analysis with an ML algorithm
named XGBoost [29]. The analysed validation criteria were the HPSQ–C and HPSQ
questionaires. The analysis was performed separately for each IWN technique, and
also for each trajectory (altogether 20 scenarios). With the use of stroke level 𝑙2 norm
normalization of in–air features they were able to decrease the computerized DD as-
sessment error from 22.6 % to 17.8 %. The best IWN–based ML model contained 4
more features than the conventionally–based ML model (4 features).

Inter–relationships between objective handwriting features and executive con-
trol among children with developmental dysgraphia

In this study Rosenblum et al. (2018) [130] were aiming to describe handwriting and
executive functions and their inter–relationships among children with DD in com-
parison to controls (64 cases, aged 10–12 years, native Hebrew speakers and writers).
Results indicate that children who were identified by their teachers as having DD
based on HPSQ indeed showed significantly inferior writing abilities related to the
performance time and global legibility. Also, children with DD had significantly
higher BRIEF scores [60] than children with typical development. This indicates
a lower executive function control. The only features extracted from handwriting
were total time, pressure and mean of the stroke height. The relationships between
features and validation criteria were discovered by employing MANOVA.

Improvement of handwriting automaticity among children treated for grapho-
motor difficulties over a period of six months

Wicki et al. (2018) [173] investigated the development of handwriting automaticity
in young Swiss children employing a longitudinal design, including monthly mea-
surements over six months (48 cases, aged 5 to 10 years). The study reveals a poor
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automaticity of handwriting movements among young children attending psycho–
motor therapy, with steady improvement over time. The authors observed a persis-
tent lack of automaticity in some children even after attending graphomotor therapy
after several months. The analysed tasks were garlands, arcades, double loops and
simple words. The validation criteria included fine motor skills measurements and
visual perception tests. The only investigated online handwriting feature was the
avarage number of velocity changes while writing (NIV). The employed analysis
included Spearman’s correlation coefficient and t–tests.

Automated human–level diagnosis of dysgraphia using a consumer tablet

In this study Asselborn et al. (2018) [8] developed a diagnostic methodology for
assessing developmental dysgraphia. They extracted 53 handwriting features on the
dataset of 298 children from France (attending 1 st up to 5 th grades of primary
school), that were all scored by the BHK test. The feature set included kinematic,
pressure, static (e.g. space between words, etc.), and tilt related features. The
children copied a paragraph of text for 5 minutes. Deploying the Random forest
classifier, they were able to achieve 96.6 % sensibility and 99.2 % specificity of the
trained model. The median of power spectral of speed frequencies was selected as
the most discriminative feature with the importance of 15.71 % in the trained model.

Understanding handwriting difficulties: A comparison of children with and with-
out motor impairment

Prunty et al. (2017) [123] examined handwriting in children with dysgraphia, chil-
dren with dysgraphia and DCD (Developmental Coordination Disorder), compared
to children without handwriting difficulties or any significant movement difficul-
ties (altogether 42 cases, aged 8 to 14 years, enrolled in United Kingdom). They
were considering aspects of both the product and process of handwriting and also
temporal and kinematic features (execution speed, percentage of pausing). More
precisely, the validation criteria assessed legibility, quality of letter formation, num-
ber of words per minute, spacing, etc. The writing tasks included alphabet writing
and free writing. The results were carried out by employing ANOVA. Despite the
extensive range of measures, the authors in this study were unable to clearly distin-
guish between the dysgraphia and DCD groups. On the other hand, both DCD and
dysgraphia groups displayed difficulties across the range of measures in comparison
to the typical development controls, including handwriting speed, legibility, and the
handwriting process measures.
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Identifying Developmental Dysgraphia Characteristics Utilizing Handwriting
Classification Methods

In this study, Rosenblum et al. (2017) [133] focused on identifying and character-
izing dysgraphia among Hebrew writing children (99 cases, aged 8 to 9 years, 3 rd
graders). Their goal was to use mainly language–independent feature extraction
methods (i.e. temporal, spatial, dynamic and static features). Nevertheless, some
of the proposed features were highly task dependent (e.g. number of loops, negative
curvature fraction, etc.). The executed task consisted of a six–word sentence (A),
repeating a single letter (B) and lower loops drawing (C). With the use of ML, they
were able to train the SVM model with 90 % accuracy to identify HD. Results of
correlation analysis showed features related to the total time of writing as the most
significant (task A, 𝑟 = 0.57, 𝑝 < 0.01). The children were identified as having HD
by the scores on the HPSQ questionnaire.

Identification and Rating of Developmental Dysgraphia by Handwriting Anal-
ysis

In this study, Mekyska et al. (2017) [96] were dealing with the automatic rating of
DD in children using advanced parametrization techniques and the intrawriter nor-
malization approach. All children (27) were writing in Hebrew language and were
aged between 8 and 9 years. The dysgraphic children were identified via HPSQ
questionnaire. The executed task included sequential cursive writing of a Hebrew
letter (similar to the rainbow task – see Figure 2.1). They were able to introduce
51 new features, such as kinematic (e.g. jerk), temporal (e.g. std of duration of
the on–surface/in–air strokes), spatial (e.g. length of in–air trajectory), dynamic
(e.g. index of dispersion of pressure) and advanced (e.g. features based on entropy).
Authors observed that features based on altitude/tilt/pressure had significant dis-
crimination power. More importantly, the discrimination power of the proposed
diagnostic methodology achieved 96 % sensitivity, and specificity (ML model CART
(Classification and Regression trees); 7 features). When employing regression anal-
ysis with the ML model based on the CART algorithm, the lowest estimation error
of HPSQ scores was 10 % (13 features).
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2 Symptoms of GD and their quantification
As previously stated, there is a great need for precise and objective measurement
methods, which would bring clarity, modernization, lowered the cost, and support
the current diagnosis of DD. The online handwriting analysis provides an ideal
instrument, that should be utilized and taken advantage of. The previous section
provided a review of the current state of the art in the diagnosis of HD and GD
based upon online handwriting analysis. The majority of newly designed features
are either based upon the mentioned research or were specifically tuned for the
purpose of this work. The comprehensive list of features in this chapter presents a
robust mathematical model, which is utilized to assess complex symptoms of GD
(see Figure 1.1). Moreover, the symptoms were identified by psychologists (PS) and
special educationalists (SE). To prepare an environment where the symptoms of GD
can be manifested, an extensive handwriting protocol was designed in cooperation
with PS and SE.

This chapter presents altogether 76 newly designed features to assess 8 symp-
toms of the handwriting product and 16 symptoms of the handwriting process. The
new GD assessment protocol consists of 36 different tasks which is the most detailed
protocol in the field. This new approach of quantification of GD, where the combina-
tion of identified symptoms, specific handwriting/graphomotor tasks, and advanced
signal processing techniques are applied, represents one of the main outcomes of this
thesis.

The description of the designed protocol can be seen in Section 2.1. The next
Section 2.2 provides details of the outlined quantitative methods assessing identified
symptoms of GD.

2.1 The new protocol
As already mentioned in Section 1, the GA represents a coordination of complex
psychomotor activities, that are in action during graphical performance, such as:
handwriting, drawing, copying, painting, drafting, etc. The GA level is gradually
increasing with the periodic use, but the speed of its development is individual.
Nevertheless, children of the same age have their GA development usually at the
same level [170].

The level of GA is used as the marker of school readiness for the preschoolers.
At this age the ability to draw specific graphomotor elements, or ability to draw in
general, is often observed. The level of GA can also inform about the level of the
fine motor movement, visuomotorics or visio–spatial ability of the child. [15].
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The important aspect of GA is also the visual feedback, which controls the
spacing and orientation of the handwritten product on the page and also monitors
its adequate shape. This visual feedback is a key activity in the process of copying
or imitating of graphomotor elements and in a painting process as well [93].

The first graders (around the age of 6–7) should be able to draw triangle, rhom-
bus, circle, cross, square [143, 164]. As building blocks of handwriting, several
graphomotoric elements can be named: Archimedean spiral, upper loops, lower
loop, combined loops, saw and rainbow. The child should be able to draw all these
elements when attending the first grade at the elementary school [13].

With the maturing of handwriting other cognitive processes are also connected,
such as phonological memory, range of visual attention, visual memory and adequate
sequencing of individual handwritten products [93].

Individual tasks were designed with the aim to assess GA among preschoolers
and also among children from the 1 st to the 4 rd grade of primary school. Therefore,
the actual set of tasks for each grade is different to some extend and reflects the
appropriate complexity and difficulty. To this day, such a complex protocol as
this one there was not yet published. State of the art scientific literature reports
researched tasks, such as writing [7] or graphomotor elements [98]. Next, all tasks
of the protocol will be described with the actual template examples.

The whole protocol can be divided into three groups of tasks. The first group
involves the 7 basic graphomotor tasks (see Table 2.1). Namely: Archimedean
spiral (TSK1), Small Archimedean spiral (TSK2), Upper loops (TSK3), Lower
loops (TSK4), Saw (TSK5), Rainbow (TSK6) and Combined loops (TSK7). The
tasks were ordered from the simplest to the hardest following the developmental
stages of writing. The actual tasks template can be seen in Figure 2.1.

Fig. 2.1: The template for graphomotoric tasks (numbered): Archimedean spiral (1),
smaller Archimedean spiral (2), upper loops (3), lower loops (4), saw (5), rainbow (6)
and combined loops (7).

The tasks TSK1 and TSK2 are designed in order to compare the handwriting
execution of each one of them. The smaller version (TSK2) is harder to perform
due to the tighter space between each line, thus requiring a fine–motor movement
activation.
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Next, the tasks TSK3 and TSK4 should be executed from left to right with
a single stroke. For children it is less difficult to perform TSK3, as its execution
is involving counterclockwise rotation of the hand. Similarly, the TSK4 is more
difficult to execute for children, as it involves clockwise rotation [14].

In order to successfully execute TSK5, the child has to be able to draw a skew
line and also, to change the direction of the line. If not, the sharp edges will be
rounded due to the inability of the child to properly end the drawing of the line [16].

The TSK6 can be executed by the child, when the tasks TSK3 and TSK4 have
been mastered at some level. This task involves the movement, when the child has to
end one curve and in the next move follow the already written line to start another
curve (so–called “reverse movement”) [21].

Finally, TSK7 represents the combination of TSK3 and TSK4. Its goal is to test
the children’s spatial abilities.

The second group of tasks was placed into the protocol with the aim to assess
the cognitive processes that engage during handwriting. These tasks can be called
Recognition and recall of basic figures (TSK8–TSK17), Advanced recall of basic
figures (TSK18–TSK21), Horizontal reflection of basic figures (TSK22–TSK26) and
Recognition and recall of complex figures (TSK27, TSK28). The collection of all
27 tasks is described in Table 2.2 and the template examples are illustrated in
Figures 2.2 and 2.3.

The steps to complete tasks TSK8–TSK17 are the following: first the child is
copying the figure (i.e. TSK8) and then the template and the drawing are covered.
The child is then asked to draw the particular task from memory (i.e. TSK9). The
rest of the tasks are filled in the same way, but with little differences in the templates.
The dots serves as the guides for drawing a line. These tests aim to assess the
visuomotor coordination (cooperation of fine motor movement together with visual
perception) [90].

The tasks TSK18–TSK21 are more advanced version of previous tasks. Here the
child has no dots, that would help with the guiding of the lines and also the template
examples represent different sets of angles between lines that are harder to grasp.

The child’s assignment in tasks TSK22–TSK26 is to draw the tasks in mir-
rored/reversed version around the horizontal line. In this group the guiding dots
are also present.

And finally, the TSK27 represents a unique complex figure, that the child has to
redraw onto a blank paper. It is inspired by the Rey–Osterreith complex figure [126].
After 3 minutes the child has to draw the figure from memory (TSK28). In the
meantime, the child is asked to fill the HPSQ–C questionnaire (which saves the
total time of the protocol completion).

The last group of tasks includes writing tasks. Namely: Signature (TSK29),
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Tab. 2.1: The graphomotor tasks TSK1–TSK7

TSK Task Grade Description
1 Big Archimedean spiral 0–4 Archimedean spiral (left threads)

approximately 15 cm high/wide
with 4 loops.

2 Small Archimedean spiral 0–4 Archimedean spiral (left threads)
approximately 7.5 cm high/wide
with 5 loops.

3 Upper loops 0–4 Six consecutive connected loops
approximately 6 cm high and 22
cm wide.

4 Lower loops 0–4 Six consecutive connected loops
flipped upside down (approxi-
mately 6 cm high and 22 cm
wide).

5 Saw 0–4 A saw with 4 teeth approximately
6 cm high and 24 cm wide.

6 Rainbow 0–4 Seven consecutive connected rain-
bows approximately 6 cm high
and 20 cm wide.

7 Combined loops 0–4 Eight combined loops approxi-
mately 9 cm high and 24 cm wide.

TSK represents the abbreviation of the task; Task denotes the task name; Grade
informs about the usage of the task among grades; Description denotes the physical
description of the task.

Copy of a sentence written in cursive letters (TSK30), Copy of a paragraph/sen-
tence written in capital letters (TSK31, TSK33 and TSK35 respectively), and finally
Dictation(TSK32, TSK34, TSK36). The description of tasks and their content is
shown in Table 2.3.

The signature task (TSK29) is not widely used in the quantitative analysis of
children’s online handwriting (see Table 1.1). Nevertheless, it is a well–known task
used in the recognition of the health condition, such as the presence of Parkinson’s
disease [161] or in the identity identification [87].

The content of the sentences and paragraphs were designed by the SE specifically
for each grade of the primary school and also for preschoolers. Firstly, the child is
copying a sentence from a cursive writing template into the cursive writing on the
paper (TSK30). In the next step the child is copying block letters into the cursive
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8 10 12 14 169 11 13 15 17

18 19 20 21

Fig. 2.2: In all the tasks above the child has to copy the figures to the lower boxes.
The difference between tasks TSK8 – TSK17 and TSK18 – TSK21 is in the dots,
which are helping with the guidance of the line and also in the overall difficulty.
Detailed information about numbered tasks can be found in Section 2.1

writing too (TSK31, TSK33, TSK35). The last task of the protocol is a dictation
(TSK32, TSK34, TSK36). It has been proved, that the dictation and the copying
tasks differ, for the stimulus in dictation is auditory and in the copying task it is
visual [119].
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22

23

24

25

26

28

27

Fig. 2.3: In the tasks TSK22 – TSK26 the child has to mirror/reverse the image
around the horizontal axis to the other box. Task TSK27 represents the template
of the complex figure, that the child has to copy to the blank paper. After three
minutes the child is asked to draw the figure from memory (TSK28). Detailed
information about the numbered tasks can be found in Section 2.1

2.2 Quantitative methods and GD symptoms assess-
ment

The following paragraphs summ up the possible symptoms of GD (see Section 1.1.3)
that can be assessed by the proposed protocol and consequently by the proper
quantitative analysis.

To recapitulate general symptoms that are manifested in children’s handwriting
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Tab. 2.2: The complex graphomotor tasks TSK8–TSK28

TSK Task Grade Description
8–16a COG of basic figs. 0–4 COG of a basic fig. which is con-

structed as a connection in a net of 9
points (placed in a 4.5/4.5 cm square).

9–17b CALL of basic figs. 0–4 CALL of a basic fig. (immediately af-
ter the COG) which is constructed as a
connection in a net of 9 points (placed
in a 4.5/4.5 cm square).

18—21 COG of basic figs. 0–4 COG of a basic fig. placed in a 5.5/5.5
cm square.

22—26 Horizontal FLE of
basic figs.

2–4 Horizontal FLE of a basic fig. which is
constructed as a connection in a net of 9
points (placed in a 4.5/4.5 cm square).

27 COG of a complex
fig.

2–4 COG of a complex fig. of a ship
(printed on A4 paper).

28 CALL of a complex
fig.

2–4 CALL (after 3 minutes) of a complex
fig. of a ship.

TSK represents the abbreviation of the task; Task denotes the task name; Grade
informs about the usage of the task among grades; Description denotes the physical
description of the task; COG denotes recognition; CALL denotes recall; FLE denotes
reflection; fig./figs. means figure / figures; a means tasks 8, 10, 12, 14, 16; b means
tasks 9, 11, 13, 15, 17.

suffering from GD, as identified by SE and PS: the line in drawings is often uneven,
hesitant and disproportional or consists of interceptions. The GD is also manifested
in the higher pressure on the tip of the pen, and also in the variation of the tilt
or azimuth angle of the pen. The pressure can be also deficient, which results in
thinner lines. The overall handwriting strokes are executed with a wavering flow
and the handwritten product contains a higher number of mistakes. The speed of
writing is lower in general when maintaining the handwritten form. Moreover, the
child has problems with harmonization of processes connected with fine motor move-
ments, which leads to unnecessary movements. Also, the children have problems to
incorporate the proper shapes of graphomotor elements or letters [16, 21, 86].

To assess the mentioned symptoms, several quantitative methods there were
designed. Before they can be described, there has to be stated information about
signal pre–processing. Section 1.1.4 introduced the online handwriting signals (see
Figure 1.2). These signals are firstly divided into the on–surface strokes (a section of
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Tab. 2.3: The writing tasks TSK29–TSK36

TSK Task Grade Description
29 Signature 1, 3, 4 If a child is not able to sign using

CU, she/he tries to perform it with
the capital ones.

30 Copy of a sentence
written in CU

1 “Zajíc žije v lese.” – The child is using
CU.

31 Copy of a paragraph
written in CP

1 “Hana ráda maluje. Banány vybarví
žlutě.” – The child is using CU.2

32 Dictation 1 “Radek jede na kole. Sestra se
jmenuje Katka.”2

33 Copy of a paragraph
written in CP

2 “Brzy bude jaro. Sluníčko již hřeje.
Gusta a Hana tancují.” – The child is
using CU.2

34 Dictation 2 “Eva má malého psa. Lenka je na
houpačce. Adámek leze do koruny
stromu.”2

35 Copy of a sentence
written in CP

3, 4 “Gusta, Lenka, Hana a Stáňa jsou
spolužáci. Brzy je čeká vysvědčení.
Po prázdninách budou chodit do
čtvrté třídy.” – The child is using
CU.1.5

36 Dictation 3, 4 “Zítra přijede strýček David popřát
Evičce k svátku. Spolu s ním při-
jede i bratranec František. Maminka
Karolína připravuje pohoštění."1.5

TSK represents the abbreviation of the task; Task denotes the task name; Grade
informs about the usage of the task among grades; Description denotes the descrip-
tion of the task; CU denotes cursive letters; CP denotes capital letters; All tasks are
performed on lined paper: 2 denotes 2 cm between lines, 1.5 denotes 1.5 cm between
lines.

uninterrupted on–surface trajectory), in–air strokes (sections of the in–air trajectory
between on–surface strokes), or they are analysed as a whole. From these sections
or from the whole signals individual features are than further derived.

The naming convention of features is INF:DIR–FN (HL). The INF represents in-
formation about the feature: on–surface (ON)/ in–air (AIR) trajectory, tilt (TILT),
azimuth (AZIM) or pressure (PRESS). DIR stands for direction in which the move-
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ment is analysed, such as: global (G), horizontal (H) or vertical (V). The mark FN
represents the actual feature name. And finally HL stands for the statistic, which
was used to convert the vector into a scalar value (optional).

Identified symptoms of GD and their quantifying features were further divided
into two groups following categorization of developmental handwriting difficulties in [140]:

• Symptoms related to the product of handwriting (see Section 2.2.1).
• Symptoms related to the process of handwriting (see Section 2.2.2).

2.2.1 Symptoms related to the product of handwriting

This category contains the symptoms related to the handwriting product (see Sec-
tion 1.1.3) itself, such as: spatial properties, smoothness of the written line, number
of errors, etc. Altogether 8 symptoms were identified. Each symptom can be man-
ifested in several tasks and it is adequately quantified by various features. The
quantifying features are described in detail in the following section.

Dysfluency in line

This symptom was identified in all graphomotor and writing tasks (TSK1–TSK7;
TSK29–TSK36). The symptom’s manifestation is connected with a leading of
the line, which can be disturbed by stuttering, freezing, tremor or by unevenness.
Several advanced processing techniques were employed to assess this noise–like be-
havior of the handwriting signal. Each one of them was computed in horizontal
(𝑥−axis component) and in vertical (𝑦−axis component) movement. As this symp-
tom is influencing mainly the handwritten product, only on–surface strokes were
selected. The computation sequence is as follows:

1. Separation to strokes (see beginning of Section 2.2).
2. Selection of on–surface strokes only.
3. Calculation of an advanced processing technique for 𝑥−axis and 𝑦−axis com-

ponents.
Regarding the advanced parameters, the first one is based upon the Lempel–Ziv
complexity measuring technique [1] and it is estimating the complexity of the sam-
pled signals (ON: {H,V}–LZC). The second one is utilizing the well–known Shannon
entropy, which represents a numerical measure of the randomness of a sampled sig-
nal [41] (ON:{H,V}–SHE). The next one is based on the Tunable Q–factor wavelet
transform (see Section 4), which is measuring the irregularity and hidden complex-
ity of the sampled signal by a residual of the decomposition (ON: {H,V}–SNRX).
The last technique aims to assess the shaky/tremor aspect of the drawn line, by
transforming a sample deviation from a global path of a line into a frequency spec-
trum [9]. In the next step the median of the power spectral density is calculated,
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where the higher values should indicate less proficient writers. This feature is called
Median of power spectrum of tremor frequencies – ON: MPSTF (see Figure 2.4).

Fig. 2.4: Power spectrum density (PSD; logarithmic scale) of a sample deviation
from a global path of the drawn line of the dictation task (TSK36 – text in cursive
letters below the graphs represents a portion of the recorded handwriting). The left
part represents a data sample from a school girl attending the 4 th grade, without GD
(HPSQ–C = 5), right-handed. The green point represents the median frequency of
the PSD = 8.9 Hz. The right part’s data belong to the girl attending the 4 th grade
(different school), right–handed, diagnosed with dysgraphia (HPSQ–C = 18). The
shaky movement is manifested in the higher value of ON: MPSTF = 13.0 Hz.

The Archimedean spiral (TSK1, TSK2) is a widely used task in the identifica-
tion of the severity of the Parkinson’s Disease based on the quantitative analysis of
online handwriting. Based on the current state of the art literature in the mentioned
field [88, 124, 145] several features were employed in order to assess the Archimedean
spiral and it’s dysfluency in line. Firstly, the 𝑥−axis and 𝑦−axis components were
transformed from Cartesian coordinates into the polar expression to have a linear
relationship 𝑎 = 𝑟

𝜃
, where r denotes the radius [cm] and 𝜃 represents the angle [radi-

ans]. On the basis of this equation, the feature called First order zero–crossing rate
(1stZC) was formed, which measures how frequently this linear transform crosses
its own mean (higher number indicates higher irregularity). On the other hand,
the next feature called Second–order smoothness (2ndSm) measures how close this
linear transform remained to its own mean. Both 1stZC and 2ndSm measures the
spiral irregularity. The last feature is called Degree of spiral drawing severity (DoS),
which is a 0–4 rating scale based upon the derivative of the First–order smoothness
(from which the 2ndSm is derived), 2ndSm and the derivative of 1stZC. This feature
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measures the overall spiral execution and its irregularity on the scale as: normal –
<0,1>, mild – <1,2>, moderate – <2,3> and severely abnormal – <3,4>.

Instability in amplitude of letters

Children with GD can have problems with keeping the same amplitude of particular
graphomotor tasks (TSK3–TSK5). With the vertical projection of the task around
the 𝑦−axis, there can be identified local maxima of a periodic character of the
𝑦−axis component. To assess the differences between each local maximum position
in the 𝑦−axis component, the feature Non-parametric coefficient of variation (i.e.
ratio between interquartile range and median) of local maxima in vertical projection
– ON: V–LMAX (ncv) was employed. This parameter can describe the degree of
variation in the differences between y–positions of the local maxima, where the
degree should be higher for children experiencing GD in their handwriting (see
Figure 2.5). To assess this symptom in the writing tasks, the feature Non–parametric
coefficient of variation of stroke height – ON: SHEIGHT (ncv) was employed. The
computation sequence is as follows:

1. Separate handwriting signals into strokes.
2. Select only on–surface strokes.
3. Compute height of each stroke.
4. Calculate ncv of the stroke’s height.

Instability in inclination of letters

Healthy children have a more stable and firm position of the hand on the paper
during writing, where they tend to fluently transition in both horizontal and vertical
direction. On the other hand, children suffering from GD can exert more movement
of the hand which is reflected in the change of the azimuth elevation. For this reason,
the feature Non–parametric coefficient of variation of azimuth – AZIM (ncv) was
extracted from writing tasks, which can assess the degree of variation of the azimuth
(see Figure 2.6). Also, similarly to the ON: NCV (see the symptom: Dysfluency
in time 2.2.2), the feature Number of changes in azimuth profile – AZIM: NC was
extracted. In this case the analysed signal was the azimuth and any velocity wasn’t
calculated.

Unstable density

As the child is writing, he/she can control the same spaces between letters, words
or threads of a spiral. On the other hand, a child suffering from GD is unable to
preserve equal spacing and tends to have a higher variability in those distances. For
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Fig. 2.5: The top row represents the TSK3 record and its adequate 𝑦−axis compo-
nent (vertical projection) which is filtered by Gaussian filter. The red points on the
right graph represents the local maxima values. The feature ON: V–LMAX (ncv)
calculates their degree of spread, which is in this case 0.01. The upper part data
belongs to a school boy attending the 3 th grade with no GD (HPSQ–C = 7),
right–handed. The lower part belongs also to a boy attending the 3 th grade (right–
handed), but in a different school. He was diagnosed to have a dysgraphia (HPSQ–
C = 23). The value of ON: V–LMAX(ncv) is in this case 0.07, which indicates an
instability in the amplitude peaks alignment.

this reason a feature from all graphomotor and writing tasks called Density of path
– ON: PDEN [7, 9] was extracted. The computing sequence is as follows:

1. Select only on–surface trajectories of 𝑥−axis and 𝑦−axis components.
2. In the area around the task create a grid of cells with a dimension of 1 mm×1 mm.
3. Detect the number of samples that are present in the area of each cell and

save the results into a matrix of the dimension equal to the grid.
4. Select only non–zero cells of the matrix and obtain a vector (V).
5. Calculate the mean of V.
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Fig. 2.6: Both graphs depict azimuth signals, which are oscillating around 90 ∘. A
digitizer is assessing the pen azimuth in degrees from 0–359 in clockwise direction,
where 12 o’clock represents 0∘. The peaks are caused by the transition from low to
extremly high degree’s values (e.g. 0 to 350∘). For this reason, the feature AZIM
(ncv) was used, which is calculating the degree of spread of the azimuth values, and
also its non–parametric version is more resistant to outliers. Both writing recordings
belong to school boys attending the 4 th grade at the same primary school (both
right-handed). The first one had no diagnosed problems with handwriting (left
graph, HPSQ–C = 7, AZIM (ncv) = 0.05) and the second one was diagnosed with
dysgraphia (right graph, HPSQ–C = 19, AZIM (ncv) = 0.1). The azimuth signals
were extracted from the signature task (TSK29, name and surname).

In order to calculate the density of the samples in the created grid, a feature named
Density in rectangular area around the handwriting – ON: ADEN was computed.
This parameter calculates the average number of samples per grid cell (i.e. it calcu-
lates the mean of the matrix in step 3 above).

The variation of density during handwriting can be also observed in upper and
lower loops tasks (TSK3, TSK4). The distances between the peaks in the horizontal
movement can vary more significantly in children with GD handwriting. The de-
scribed feature is called Non–parametric coefficient of variation of distance between
neighbouring local maxima in vertical projection – ON: V–DLMAX (ncv). The
computational sequence is as follows:

1. Select only on–surface signals.
2. Filter the 𝑦−axis component by a Gaussian filter.
3. Identify local maxima values.
4. Identify 𝑥 positions of local maxima values.
5. Compute differences between 𝑥 positions.
6. Calculate ncv of the vector of differences.
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To describe the symptom in the area of the Archimedean spiral task (TSK1,
TSK2) the feature called Spiral precision index (ON: SPI) implemented according
to [26] was employed. This parameter is calculated for each spiral position (𝑥 and
𝑦) and angle 𝛽 between the vector originating in the centroid of the spiral and the
vector of movement direction. The ON: SPI is calculated as the std of the 𝛽 values.
The next feature used to describe density of the spiral is called Spiral tightness –
TGHTNS [88]. It is computed from the polar expression of 𝑥−axis and 𝑦−axis
components as the number of loops per 1 cm. The last feature is called Variability
of spiral width – SWVI [88]. The computational sequence is the following:

1. Convert Cartesian coordinates in to the polar expression.
2. Separate polar data into individual loops (length of 2𝜋 radians).
3. Compute the width between each loop (N) for all degrees (matrix 360×N-1).
4. Compute the median of the spaces between loops for all degrees.
5. Calculate ncv from the previous vector.

The mentioned features were calculated (see Table 2.4) for two kids from the Archimedean
spiral task (see Figure 2.7).

Tab. 2.4: Features related to the spiral density.

Status ON: SPI [∘] TGHTNS [loops/cm] SWVI [–] Loops [N]
HC 20.27 0.82 0.05 3.7
DD 28.3 0.6 0.4 3.87

Status denotes healthy (HC) or diagnosed children with developmental dysgraphia
(DD); features abbreviations: Spiral precision index (ON: SPI), Spiral tightness
(TGHTNS), Variability of spiral width (SWVI); N stands for the number of loops.

The quick analysis shows, that even though both children drew almost the same
number of loops, the variability of the width of the spiral was higher for the child
suffering from GD and she also had a lower ratio of loops per centimeter. The high
value of ON: SPI parameter indicates higher variety of movement compared to the
healthy girl.

The last parameter, that can be extracted from specific graphomotor tasks
(TSK1 – TSK4, TSK7) and from written tasks is named Number of on–surface intra–
stroke intersections (ON: NIAI). First, this feature separates the task into strokes.
Then, in each stroke it simply finds those spots where lines are crossing each other
and calculates the occurrences. For example, children experiencing GD can make a
mistake in the spiral task and upper loops together on some places. On the other
hand, healthy children will perform these tasks without any interceptions. In the
written tasks it is convenient to divide ON: NIAI by the duration of the task to ob-
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Fig. 2.7: On this figure is bigger version of the Archimedean spiral (TSK1, left part)
is drawn together whit its transformation into the polar expression (right part). The
red dot in the middle of the spiral marks the starting point of drawing. The top line
data were derived from a school girl attending 2 nd grade with no GD (HPSQ–C = 9,
right–handed). The bottom line also belongs to a school girl attending the 2 nd grade
at primary school. But she experiences GD in her handwriting (HPSQ–C = 23,
right–handed). The 𝑥−axis of the polar expression is in 𝜋 radians, meaning that at
𝑥 = 6 3 loops were already drawn (6𝜋/2𝜋).

tain the number of intersections per second. This feature is called Relative number
of on–surface intra–stroke intersections – ON:RNIAI.

Inability to maintain handwriting on a line

Children suffering from GD are often unable to maintain an imaginary horizontal
line, on which the task should be performed. The tasks that are hard for children
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with GD to perform this way are upper loops, saw and rainbow (TSK3, TSK5,
TSK6). In order to assess this symptom, the feature named Non–parametric co-
efficient of variation of local minima in vertical projection – ON: V–LMIN (ncv)
was extracted. Again, this parameter is utilising the vertical projection of the task
(𝑦−axis component). After the identification of the local minima in this periodic sig-
nal, the vector of 𝑦−axis position values is acquired. Consequently, the ncv statistic
is calculated with the aim to estimate the degree of the variation of this vector.

Inability to return back in line

This symptom is specific for the rainbow task (TSK6). This task is characterized
by the so–called “reverse movement”, which is occurring when the child ends one
curve of the rainbow and starts to draw another one. For some distance she/he has
to follow the line of the previous curve and then finish the new one. Also, the child
is instructed to perform the whole task in one stroke, which is difficult for children
with severe GD. To assess these interruptions the feature Number of interruptions –
NINT was used. It simply calculates the number of transitions between on–surface
and in–air trajectories, and vice versa. The next computed feature is called Median
distance between the forward and backward lines (on a line going through the middle
of the task) – ON: DFB (median). The computation sequence is as follows:

1. Select only on–surface trajectory.
2. Identify peaks (P) and valleys (V).
3. From P and V compute height of each curve (forward + backward movement).
4. Calculate threshold as 50 % of mean heights of all curves.
5. Compute width of each curve between points, that are intersected by the

threshold line.
6. Calculate median value of curve’s widths.

Children who are suffering from GD are unable to stick the curves of the TSK6
together and thus when the rainbow is intersected in the middle with a line, the
corresponding widths of the curves will be a little bit narrower than the curves
drawn by healthy children. The example of this feature is provided in Figure 2.8
where the actual widths of the curves, from which the median value is calculated
are illustrated. The feature ON: DFB (median) is highly dependent on the child’s
style of writing, meaning that as the child is advancing in years, she/he can draw
the task smaller. For this reason, a normalised version of ON: DFB (median), which
is dividing the widths of the curves in the middle by the widths of the curves at the
bottom (distance between local minima) was also calculated . From the figures and
normalised values of ON: DFB (median) it can be derived (see Table 2.5), that the
child experiencing GD is unable to correctly perform TSK6, where the width of the
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curve should be of constant value from the middle to the bottom.

Fig. 2.8: The upper part of the picture is drawn by a healthy schoolboy
(HPSQ–C = 12, right-handed) without any GD and attending 4 th grade of primary
school. The lower part of the picture is also performed by a 4 th grader schoolboy,
but from a different school. He was diagnosed to have DD (but the HPSQ–C = 13
is not indicating that) and he was right–handed. The drawn task is rainbow (blue
curves). The red and orange dots are denoting detected local maxima and minima.
The horizontal lines are symbolizing width of the specific curve at the mean height
of all the curves. The numbers represents the actual calculated width in millimeters.
Both pictures are drawn in a different ratio, thus the width lengths do not match.
Also, the widths values are rounded.

Uncertainty in leading a line in space

The graphomotor tasks are effective particularly in assessing temporal and fine–
motor movement aspects of the writing. Regarding the loop–related tasks (TSK3,
TSK4, TSK7), the performance of a healthy child is marked by precise, unwavering,
and continuous movement. On the other hand, children suffering from GD can often
make mistakes of additional “loops”. To calculate all the changes in the horizontal
and vertical projection, the feature Number of changes in horizontal/vertical pro-
jection (ON: {H,V}–NC) was employed. It computes all extreme values in 𝑥−axis
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Tab. 2.5: Median distance between forward/backward lines in TSK6.

Status ON: DFB (median)[mm] ON: NDFB (median)[–]
HC 8.52 1.03
DD 10.81 0.62

Status denotes healthy (HC) or diagnosed children with developmental dysgraphia
(DD); features abbreviations: Median distance between the forward and backward
lines (on a line going through the middle of the task) – ON: DFB (median), Nor-
malised version stands for ON: DFB which is normalised by the width of each curve.

and 𝑦−axis components (firstly filtered by a Gaussian filter). The handwriting per-
formance of children experiencing GD is often accompanied by inability to perform
sudden changes of direction in the saw task (TSK5), which results in blunt tips of
the saw. For this reason, the feature Median velocity at local maxima in vertical
projection – ON: V–VLMAX (median) was extracted. The computational sequence
is as follows:

1. Select on–surface trajectory of the task.
2. Filter the 𝑦−axis component (Y) by Gaussian filter.
3. Identify local maxima of Y.
4. Compute velocity vector for the whole task.
5. Identify velocity values at the Y peaks.
6. Calculate median of the peak’s velocity vector.

Actual differences in the values of ON: V–VLMAX (median) for healthy and children
suffering from GD can be seen in Figure 2.9. The child who has no problems with
the execution of the saw task can start and stop drawing to make sharp edges which
results in almost zero velocity at the local maxima samples of the 𝑦−axis component.
On the other hand, the child that is experiencing GD is unable to make immediate
changes in direction of the line, so it executes the peaks without stopping. This
leads to the high velocity values at the local maxima points.

To describe the spatial properties of the saw’s tips, the feature Median of width of
teeth (on a line going through 95 % of particular tooth height) – ON: DFB (median)
was employed. This feature was already used in the symptom Inability to return
back in line for the TSK6. The difference is in the threshold value. As the children
with GD tend to draw blunt teeth of the saw, the width of the tooth at the 95 %
height of the particular tooth should be wider than the sharp tooth’s width drawn
by healthy children. Also, this feature was normalised by the mean width of all
teeth in the saw. This version is called Median of normalised width of teeth (on a
line going through 95 % of particular tooth height) – ON: NDFB (median).
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Fig. 2.9: Figure of records of saw tasks (TSK5) from two school boys attending 3 rd
grade at different primary schools (both right–handed). The left part of the picture
are the actual handwriting records and the right part represents the relationships
of a raw 𝑦−axis components (vertical projection) on time. The circle points repre-
sent the velocity at given samples in millimeters per second. The position of the
sample was identified as a local maximum value of the 𝑦−axis component. The
upper line belongs to a boy who has no problems with handwriting (HPSQ–C = 5;
ON: V–VLMAX (median) = 0mm/s). The lower part is extracted from recordings
of a boy, who was identified as having DD (HPSQ–C = 24; ON: V–VLMAX (me-
dian) = 21.17mm/s).

Frequent overwriting

It is a common symptom among children experiencing GD in their handwriting
(TSK29–TSK36), as they make more mistakes and are trying to correct them. To
quantify this symptom, the feature called Number of on–surface inter–stroke inter-
sections – ON: NIEI was extracted. The computation sequence is as follows:

1. Select only on–surface strokes.
2. Compute positions (S) of intersections (line crossings) within each stroke.
3. Compute positions (W) of intersections within the whole task.
4. Discard those positions, that are present both in S and W. Select positions
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that are left – unique occurrences (U).
5. Count the number of Us.

The Czech cursive writing is organized in such a way, that generally there is almost
no need to make intersections between different strokes (even when writing hooks
and commas above characters, there is no intersection between them). So when an
intersection between strokes occurs, it is a sign of overwriting, which can be assessed
by the mentioned parameter (see Figure 2.10). Also a relative version of this feature
called Relative number of on–surface inter–stroke intersections – ON: RNIEI was
computed. It simply calculates the number of inter–stroke intersections per second.

Fig. 2.10: This figure shows recordings of the dictation task (TSK34) for 2 nd
graders. Each stroke is visualized with a different color, which should help with
optical separation. If any distinctive strokes are intersected, these spots are circled
around by a black marker. The upper part belongs to a schoolboy who has no prob-
lems with handwriting (HPSQ–C = 5, ON: NIEI = 2, right-handed). The lower
part belongs to a boy who was diagnosed with DD (HPSQ–C =18; ON: NIEI = 21,
left–handed). They both are attending the same primary school. The duration of
the upper recording lasted 128.5 seconds and the lower lasted around 112 seconds.
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2.2.2 Symptoms related to the process of handwriting

These symptoms are related to the process of handwriting (see Section 1.1.3) and
can negatively affect performance time, speed of writing, fine-motor tremor, pressure
and handwriting fluency (hesitation). 16 symptoms were identified in this category.

Higher duration of writing

This symptom can be manifested in all graphomotor tasks and also in all written
tasks. The first extracted feature is called Overall duration (DUR) and it is com-
puted as the difference between values of the last and the first time stamp. The
second one is called Duration of on–surface movement (ON: DUR). The computa-
tion sequence is as follows:

1. Separation to strokes.
2. Selection of on–surface strokes only.
3. Computation of the duration of each individual stroke (difference between the

last and the first time stamp).
4. Sum of all on–surface strokes durations.

The last feature is named Median duration of on–surface strokes – ON: SDUR (me-
dian). The sequence of computation is the same as for the ON: DUR. In the 3 rd
step a duration vector of all on–surface strokes is computed. The difference in this
last feature is the 4 th step, where the median value of the vector is obtained.

Visuospatial deficits

This symptom’s analysis is primarily aimed at assessing the children’s hesitation to
write a text (TSK29–TSK36), as she/he spends less time writing and more time
thinking, contemplating or hesitating. The first feature is called Duration of in–air
movement (AIR: DUR) and the computational sequence is the same as for ON: DUR,
with the difference in in–air strokes selection in the 2 nd step. In the next step
the ratio between ON: DUR and AIR: DUR called Ratio of the on–surface/in–
air duration (DURR) was calculated. And finally, the last feature called Median
duration of in–air strokes – AIR: SDUR (median) was calculated in the same way as
the ON: SDUR (median). The only difference was in the selection of in–air strokes.

The summary of symptoms of higher duration of writing and visuospatial deficits
can be seen in Figure 2.11 and Table 2.6. It should be noticed that the two boys are
from different primary schools. When comparing feature values extracted from the
recordings of a healthy child and a child suffering from GD, major differences can
be observed. The child suffering from GD needed almost a minute more to finish
the dictation, nevertheless they both spent approximately the same time writing
on the surface of the digitizer. But still, the healthy child had a lower duration of
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the median of the on–surface strokes. When observing the visuospatial deficits, it
can be seen, that the child experiencing GD spent at least twice as much time with
the pen above the surface of the digitizer. The ratio between on–surface and in–air
trajectories durations shows that the child with DD spends almost the same time
in both trajectories, but the healthy child doesn’t need that much time to spend
in–air to finish the task. The median value of in–air stroke duration is also a little
bit lower for the healthy child.

Tab. 2.6: Features related to the symptoms: higher duration of writing and visu-
ospatial deficits.

Higher duration of writing Visuospatial deficits
Status DUR ON: DUR ON: SDURm AIR: DUR DURR AIR: SDURm

HC 136.44 93.51 0.29 38.26 2.45 0.42
DD 195.67 98.71 0.43 91.79 1.08 0.64

Feature abbreviations: DUR [s] – duration, where s stands for seconds;
ON: DUR [s] – on–surface movement duration; ON: SDURm [s] – on–surface stroke
duration, where m denotes median; AIR: DUR [s] – duration of in–air trajectory;
DURR [–] – ratio between ON: DUR / AIR: DUR; AIR: SDURm [s] – stroke duration
of in–air trajectories.

Dysfluency in time

The characteristics of this symptom was identified as the abnormal variation in the
velocity profile values. As analysed tasks for this symptom all graphomotor tasks
and all written tasks were selected. The first parameter to measure this symptom
is called Number of changes in velocity profile (ON: NCV). The computational
sequence is as follows:

1. Filtering 𝑥−axis and 𝑦−axis components with a low-pass filter [148].
2. Separating signals into strokes and selection only on–surface trajectories.
3. Filtering each stroke with a Gaussian filter.
4. Computing velocity vector.
5. Calculating local maxima/minima of velocity in each stroke.

Also, the Relative number of changes in velocity profile (ON: RNVC) was calculated
as the ratio between ON: NCV and the duration of the selected task. The next fea-
ture is called Median of power spectrum of speed frequencies (ON: MPSSF) [7],
which is assessing the rapid changes in the velocity profile. The computation se-
quence is the following:

1. Segmentation of 𝑥−axis, 𝑦−axis components and the time stamp.
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Fig. 2.11: In this figure records of dictation task (TSK36) from two schoolboys
attending 4 th grade are presented. The upper part was written by the healthy
boy (HPSQ–C = 17; right–handed). The lower part was performed by the boy
diagnosed with DD (HPSQ–C = 19; left–handed). The blue color of characters
represents on–surface movement and the magenta color denotes in–air trajectories.

2. Computing velocity vector and its Fourier transform for each segment.
3. Calculating averaged spectrum and selecting the median frequency.

These fast changes in velocity (jerks) are manifesting itself in the higher frequencies
of the Power spectrum, which results in the shift of the median frequency of the
power spectrum. The next feature aims to calculate the actual duration of pen
stops during handwriting [120] – Number of pen stops (ON: NPS). The task is
analysed as follows:

1. Calculate velocity profile.
2. Identify samples that are of zero speed or lower than 1 mm/s.
3. Pauses has to be at least 15 ms.
4. Time between the two stops cannot be shorter than 30 ms.
5. The smallest stroke duration is 100 ms [68, 168].
6. Count identified pauses.
An example of pen stops as defined in the previous paragraph is shown in Fig-

ure 2.12. The figure shows a part of the TSK35, where both healthy and child with
GD are copying a sentence written in capital letters. They both had written the
same amount of text, but the healthy child was able to perform it more quickly and
with fewer pen stops.

Due to the periodic nature of the graphomotor tasks TSK3–TSK7, we can obtain
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Fig. 2.12: This figure shows a part of the TSK35 (a copy of a sentence written
in capital letters) executed by two schoolboys attending different primary schools
at 4 th grade. The upper part belongs to the healthy boy, who has no problems
with handwriting (HPSQ–C = 11; right–handed). The lower part is a record of
handwriting performed by a boy who was diagnosed with DD (HPSQC–C = 22;
right–handed). On the right part of the figure are graphs describing the velocity of
writing in time in both trajectories (on–surface/in–air). The peaks in the velocity
graphs are caused by the transitions between on–surface/in–air trajectories (some-
times the pen is lifted so high, that it can’t be detected anymore – the maximum
is around 1.5 cm above the surface of the digitizer). The points are denoting actual
pen stops. The healthy child produced 14 and the child with GD 43 pen stops.
The blue colored lines on the left represent the on–surface movement and the in–air
movement is drawn by a line in magenta color.

a periodic function similar to a harmonic function when observing the task in the ver-
tical projection (𝑦−axis component). If we identify local maxima, we can calculate
the duration between each one of them. This vector of intervals between neighbours
(vin) can be described by the scalar value, such as a non–parametric version of
the coefficient of variation, which is calculated as: iqr(vin)/median(vin), where iqr
denotes the interquartile range. This coefficient is able to determine the degree at
which the data varies and this particular version should be more resistant to outliers.
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The name of the new feature is Non–parametric coefficient of variation of duration
between neighbour local maxima in vertical projection – ON: V–DURLMAX (ncv).

Progressing fatigue

As the children suffering from GD experience higher cognitive demand and their
handwriting is not fully automated, their ability to maintain stable performance is
decreasing with time. This symptom was assessed in the writing tasks TSK29–TSK36.
All features were describing mainly the temporal domain of this symptom. The first
feature is named Slope of duration of strokes on–surface – ON: SDUR (slope). The
computational sequence is as follows:

1. Separate writing into strokes.
2. Select on–surface strokes.
3. Compute duration of each stroke.
4. Compute the slope of the regression line that fits the vector durations.

The next feature is called Slope of duration of strokes in–air (AIR: SDUR (slope))
and it is computed in the same way as ON: SDUR (slope) with the change of the
analysed trajectory. The last feature expresses the ratio between ON: SDUR (slope)
and AIR: SDUR (slope) and it is called Slope of ratio of the on–surface/in–air stroke
duration – SDURR (slope).

Low tempo

The progressing fatigue is also accompanied by low tempo of handwriting when
maintaining the legibility or neatness. The low tempo can be observed also in
written tasks TSK29–TSK36. The first feature assessing this symptom is called
Number of on–surface strokes normalised by on–surface duration (ON: TEMPO),
which can be divided into following steps:

1. Separate writing into strokes.
2. Select only on–surface trajectories.
3. Compute the number of on–surface strokes.
4. Compute the duration of all on–surface strokes.
5. Calculate the fraction of the number of strokes and the duration.

The next feature called Number of in–air strokes normalised by in–air duration
(AIR: TEMPO) is almost the same. As can be seen from the name, the difference
is in the analysis of in–air trajectories.

Manifestation of both mentioned symptoms can be seen in Figure 2.13 and cor-
respondingly in Figure 2.14. On the first figure recordings of TSK35, seperated
into in–air and on–surface trajectories with adequate colors are drawn. The colors
were chosen with the aim to get a grasp of individual stroke durations and also
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of their alternation as well. The coloring was transformed into the graphs, where
these stroke durations are plotted against their rank within the movement trajec-
tory. Also, to show the possible fatiqge during this particular task, a line was drawn
to fit the trend of the particular movement. Negative slopes for the boy suffering
from DD (see Table 2.7) can be seen, indicating that the task execution is for him
more challenging than for the healthy boy. Also, the healthy child had a little bit
higher tempo when writing on–surface, or when hovering with the pen above the
surface of the digitizer.

Tab. 2.7: Features related to the symptoms progressing fatigue and low tempo.

Status ON: SDURs [–] AIR: SDURs [–] ON: TEMPO [–] AIR: TEMPO [–]
DD −5 · 10−3 −6 · 10−3 1 1
HC 4 · 10−4 6 · 10−4 1.2 1.3

Feature abbreviations: ON: SDURs – Duration of strokes on–surface, where s de-
notes its slope; AIR: SDURs – Slope of duration of strokes in–air; ON: TEMPO –
Number of on–surface strokes normalised by on–surface duration; AIR: TEMPO –
Number of in–air strokes normalised by in–air duration. HC indicates the healthy
child and DD describes the child diagnosed with developmental dysgraphia.

Low velocity

The low velocity symptom can be assessed in all graphomotor tasks (TSK1–TSK7)
and also in all written tasks (TSK29–TSK36). The velocity can be measured in
several directions and for this reason the feature Median velocity is computed in all
projections (horizontal, vertical, and global) – ON: {G,H,V}–VEL(median). The se-
quence of computing is as follows:

1. Separate handwriting signal into strokes.
2. Select only on–surface strokes.
3. Compute velocity in all projections and for all strokes.
4. For each projection vector of velocity compute its median.

The next feature is similar to the previous one. The difference is in the final trans-
formation from vector into scalar values, where the 95 th percentile was used in order
to identify the velocity threshold, below which 95 % of values may be found. The
feature name is 95 th percentile of velocity – ON: G,H,V–VEL(95p). In the next
step the Archimedean spiral (TSK1, TSK2) was also analysed in order to assess its
Mean drawing speed (MDS) [88]. Again, the computation sequence is as follows:

1. Convert 𝑥−axis and 𝑦−axis components into cm units.
2. Calculate precise duration of each segment in absolute values.
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Fig. 2.13: This picture shows the recording of a copying of paragraph (TSK35),
where children had to transcribe a capital text to a cursive one. Both children
are 4 th graders from the same primary school. The first one (upper part) is a
boy, that has no problems with writing (HPSQ–C = 11; right–handed). The sec-
ond one is also a boy, but he was diagnosed to have dysgraphia (HPSQ–C = 17;
right–handed). Each trajectory is drawn in two colors, that are rotating in each
stroke. The on–surface trajectory is represented by blue shades and the in–air tra-
jectory is represented by red shades.

3. For each duration segment calculate adequate traveled distance of a line.
4. From both vectors calculate their means.
5. Calculate fraction of mean length and mean duration.

Low acceleration

As mentioned already in several previous symptoms, children with GD are gener-
ally slower during writing/drawing. This can be exhibited also in lower acceler-
ation of hand movements. Similarly to the previous symptom, even in this one
graphomotor and drawing tasks (TSK1–TSK7; TSK29–TSK36) were selected as
assessing tasks. Even the extracted features were the same, the only difference
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Fig. 2.14: These figures represent the relationship between the individual stroke
duration and its rank in time. The blue shaded points represents durations of
individual on–surface strokes with alternating color. Also, the in–air strokes have
an alternating color, which has the red shade. The stroke number corresponds
to the rank within each stroke’s trajectory. The stroke duration trend for both
trajectories is estimated by the regression line with adequate color. The upper part
represents healthy writing and the lower part is a writing affected by GD. The lower
graph shows, that not even is the writing performed by strokes with overall lower
duration, but also, the trend indicates that the stroke span is slowing down with
time.

being the analysed signal (point 4 in previous computation sequence for the param-
eter ON: {G,H,V}–VEL(median)), which was acceleration. The new features were
called Median acceleration – ON: {G,H,V}–ACC(median) and 95th percentile of
acceleration – ON: {G,H,V}–ACC(95p).
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Low variability of velocity

Children with GD can write slowly, but also their writing tends to be less dynamic
and monotonous and of lower variability in velocity. To assess this symptom which
effects writing (TSK29–TSK36), the very same feature as ON: {G,H,V}–VEL(median)
was extracted only with a difference in the descriptive time series statistic. In this
case, the chosen iqr statistic was chosen, which should estimate the range of velocity
excluding some outliers/extreme values – ON: {G,H,V}–VEL(iqr).

Low variability of acceleration

As it was with the lower variability of velocity, so it is with the acceleration. The
less dynamic/monotonous movement can be also of low variability in acceleration.
So the extracted feature is the same as ON: {G,H,V}–VEL(iqr), but the change is
in the analysed signal, which is acceleration – ON: {G,H,V}–ACC(iqr).

These four mentioned symptoms are displayed in Figure 2.15, where for each
symptom one feature in three different movements (vertical, horizontal, global) was
selected. The analysed task was copying of a paragraph written in capital letters into
cursive letters (TSK35) – an example of recordings can be seen in Figure 2.13. The
source data for the radar plots [101] are put forward in Table 2.8. It can be seen that
the boy suffering from DD had lower values in maximal velocity and acceleration
in all directions. Also, he was not able to execute his writing in such a variability
of speed and acceleration as the healthy boy (also in all directions). This overall
reduced quickness of movements can be observed on the mentioned radar graphs,
where the lower values of features for the boy with DD are covering a smaller area
than the features for the healthy boy.

Gradually decreasing velocity

As handwriting of children suffering from GD is more cognitively and physically
demanding, also a gradual decrease in velocity in time can be observed. To asses this
symptom in writing (TSK29–TSK36), similarly to the ON: {G,H,V}–VEL(median),
a velocity profile for all strokes in all directions was calculated. To describe the
gradual decrease of velocity, the slope of the regression line was selected. Thus the
new feature was named as Slope of velocity profile – ON: {G,H,V}–VEL(slope).

Gradually decreasing acceleration

As can be expected, a gradual decrease of acceleration of handwriting affected by
GD can be also observed. Similarly to the previous symptom, even in this one
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Tab. 2.8: Symptoms related to the velocity profile and corresponding feature values
– TSK35.

Vertical trajectory
Status ON: V–VEL(95p) ON: V–ACC(95p) ON: V–VEL(iqr) ON: V–ACC(iqr)
HC 64.29 1696.43 31.88 1049.11
DD 33.76 803.58 17.51 452.81

Horizontal trajectory
Status ON: H–VEL(95p) ON: H–ACC(95p) ON: H–VEL(iqr) ON: H-ACC(iqr)
HC 43.76 1071.43 20.72 535.72
DD 32.86 714.29 15.01 369.9

Global trajectory
Status ON: G–VEL(95p) ON: G–ACC(95p) ON: G–VEL(iqr) ON: G–ACC(iqr)
HC 74.61 1746.68 31.94 1072.51
DD 44.21 948.78 18.16 616.84

Abbreviations: V, H, G – vertical, horizontal and global movement; VEL – ve-
locity; ACC – acceleration; ON – on–surface trajectory; 95p – 95th percentile;
iqr – inter–quartile range; all parameters are in units of millimeters per second;
HC indicates healthy child and DD describes a child diagnosed with developmental
dysgraphia.

the writings (TSK29–TSK36) were selected as analysed tasks. The describing pa-
rameter is the same as ON: {G,H,V}–VEL(slope), but the only difference is in the
analysed signal. The resulted name of the feature is Slope of acceleration profile –
ON: {G,H,V}–ACC(slope).

Too high/low pressure on pen tip

Some children who are suffering from GD are putting too high or too low pressure
on the pen during handwriting. This can be assessed in the graphomotor tasks
(TSK1–TSK7) and in the writing (TSK29–TSK36) as well. The computation is
fairly straightforward, where from the pressure signal of the tasks its median value
is computed. The new feature is then called Median pressure – PRESS (median).

An unstable pressure on pen tip

As children suffering from GD are hesitating when writing, they can also vary in the
exert of pressure on the pen tip more often, where the healthy children express a
more stable pressure. To assess this symptom, all graphomotor tasks (TSK1–TSK7)
and all writing tasks (TSK29–TSK36) were used. The first employed feature is
called Slope of pressure profile – PRESS (slope). It is calculated as the slope of the
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Fig. 2.15: These radar charts are describing handwriting movements from three
different angles: vertical, horizontal and global (V, H, G). From each movement
velocity (VEL) and acceleration (ACC) are extracted as well as adequate statistics:
95th percentile (95p) and inter–quertile range (iqr). These features were acquired
from two schoolboys, who were performing TSK35 (copying paragraph written in
capital letters into cursive writing). They both attended at the time the 4 th grade
at different primary schools (both right–handed). The healthy boy (represented by
blue color) had no problems with handwriting (HPSQ–C = 11). The other boy
was diagnosed with DD (HPSQ–C = 22; red color). All axes values of features
(and also of the HPSQ–C scale – which are in reversed order) were obtained from
the minimal and maximum values of the analysed dataset. As these symptoms of
low acceleration/velocity and their low variability are manifested in lower values of
the stated parameters (but in higher values of HPSQ–C), the boy experiencing DD
covers a smaller area of the radar graphs in comparison with the healthy boy.

linear regression of the pressure signal. To calculate the degree of variation of the
pressure, the feature Non–parametric coefficient of variation of pressure was deployed
– PRESS(ncv). Also, to count the biggest changes in the values of pressure, the
Number of changes in pressure profile was calculated – PRESS: NC. The computing
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sequence was the same as in the feature ON: NCV, where the only differences were:
1) analysing the pressure signal; 2)the velocity was not computed.

Disability to perform longer strokes

One of the most common symptoms of GD in children’s handwriting are frequent
interruptions of the fluent on–surface movement and also frequent pen elevations.
It can be observed in all graphomotor tasks and also in the writing tasks. The
describing feature is called Number of interruptions (NINT) and it can be easily im-
plemented as the number of transitions between 1/0 values in the on–surface/in–air
state signal.

The example of symptoms related to the pressure and long strokes can be seen
in Figure 2.16. In the mentioned example there is a recording of a boy with DD,
who is not able to execute a combined loop (TSK7) in one stroke (NINT > 0). Also,
another recording in the figure shows, that the healthy boy was able to finish loops
without moving the pen in the air. Even though both boys took the same amount
of time to complete the tasks, the boy with DD had twice as much changes in the
pressure profile than the healthy boy (see Table 2.9). Also, his writing was executed
with a smaller overall pressure – PRESS (median).

Tab. 2.9: Features related to the symptoms: An unstable pressure on pen tip and
Disability to perform longer strokes.

Status PRESS (median) [–] PRESS: NC [–] NINT [–]
HC 0.44 25 0
DD 0.24 56 2

Feature abbreviation: PRESS – pressure profile; NC – number of changes;
NINT – number of interruptions; HC indicates healthy child and DD describes
a child diagnosed with developmental dysgraphia.

Unstable tilt of pen

Children who are experiencing GD in their handwriting tend to change the elevation
of the pen more often than the healthy children. This symptom can be observed
in all graphomotor tasks as well as in all written tasks. To assess the degree of
variation of the elevation in the tilt signal, a Non–parametric coefficient of variation
of tilt – TILT (ncv) was calculated. Also, to count the number of biggest changes
in the tilt elevation, the feature Number of changes in tilt profile (TILT: NC) was
extracted. The computing sequence was the same as in PRESS: NC with the only
difference in the analysed signal.
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Fig. 2.16: This figure shows recordings of the task combined loops (TSK7). The
upper part belongs to a healthy boy (HPSQ–C = 13; right–handed) with no hand-
writing difficulties. The lower part is acquired from a boy, who was diagnosed to
have DD (HPSQ–C = 23; right–handed). Both boys attended the 3 rd grade at the
same primary school. On the left side of the picture there are recordings of the
task, where the different pressure levels are marked with a different color: from blue
as the lowest to the red one as the highest. The pressure level range was derived
from a pressure profile of each kid. On the right side there is plotted the pressure
signal level plotted over time. The orange and the red points represent local maxima
and minima of the pressure signal. On the handwriting record from the boy with
DD a short in–air trajectory, which is drawn with magenta color can be seen. The
pen–lift can be also seen in the pressure profile at the time around 10 seconds.

Writing under hand

Some children, who are experiencing GD have the habit of staying with the hand
on one spot during handwriting. Moreover, they don’t move the pen simultaneously
with their hand, but instead “slide down” with the pen under their palm. To assess
this symptom the feature Non–parametric coefficient of variation of tilt – TILT (ncv)
was employed. As the movement of the pen is executed mainly by two fingers,
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the tilt angle values achieve higher variation. Also, the pressure of a tip of the
pen can gradually increase/decrease, which can be assessed by the feature Slope of
a pressure profile – PRESS (slope). This parameter selects the pressure signal and
fits the pressure curve by line, where the slope estimates the trend in the curve.
The next parameter Number of on–surface intra–stroke intersections – ON: NIAI
identifies possible intersections within each stroke and counts them. Also, a relative
version of this feature called Relative number of on–surface intra–stroke intersections
– ON: RNIAI was employed. This features calculates the number of intersections per
second. In this case, there can be estimated, that as the writing will be more dense,
there will be more intersections per second within strokes. The last parameter is
called Slope of stroke width – ON: SHEIGHT (slope). As the children write closer
to the hand, their maneuver space is getting smaller and the width of the stroke is
also getting shorter. This feature is estimating this trend by a slope of the regression
line.
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3 The graphomotor difficulties rating scale
In previous chapters the DD symptoms were identified with different quantifying
features that can assess them. Following task, described in this chapter, is to design
a scale, that can comprise the previous analytical methods and provide a measure-
ment of the current degree of the child’s GD severity. As mentioned in the chapter
State of the art 1, there are no described approaches in literature, which would
explain how to create a scale on the basis of extracted features and corresponding
symptoms. The possible designs of graphomotor difficulties rating scale (GDRS)
will be described, which have a preliminary character and it is currently the object
of ongoing research funded by Czech science foundation (18–16835S: Research of
advanced developmental dysgraphia diagnosis and rating methods based on quanti-
tative analysis of online handwriting and drawing).

As previously mentioned, GDRS is mainly in a theoretical stage of the research
design, but it is already ahead in several steps and its completion could lead to
promising results.

3.1 Symptoms identification
In the first step general symptoms of developmental dysgraphia were identified in
cooperation with special educationalists (SE) and psychologists (PS) in the Czech
Republic. This different approach benefits from the acquired practical knowledge
and experience of the PS and SE, who identified possible GD symptoms. Next,
parameters were designed, that can describe individual manifestation of identified
symptoms (see Chapter 2). This selection of analysed data enables a clearer inter-
pretability and reduces the complexity of the designed scale.

3.2 Simulations
First, each symptom should be quantified to obtain its severity. It means, the
severity could be expressed as a deviation from the normal value of a healthy child
(norm). But, as will be seen from the normality tests of the related features, most
of them does not have a normal distribution in analysed dataset. Also, it could be
expected, that features related to the a praticular symptom can be highly cross–
correlated and that the individual features will be dependent on the children’s grade
and sex.

To illustrate the non–normality of almost all designed features a preliminary
analysis was employed on tasks TSK3, TSK4 and TSK35, TSK36. The chosen tasks
serve as an examples of graphomotor and writing tasks. From the dataset of 340
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children only those attending 3 rd and 4 th grade of primary school were selected
(altogether 120 children). Furthermore, all selected tasks were explored and out-
liers were excluded from the analysis. The feature extraction included almost all
designed features with exception of computation–demanding algorithms (Intercep-
tions, Shannon Entropy, TQWT, Lempel-Ziv complexity etc). The chosen methods
to discover normal distribution of features were the following:

• Kolgomorov–Smirnov test (K–S)
• Shapiro–Wilk test (SH)
• Kurtosis (K)
• Skewness (S)

Tests K–S and SH indicate normal distribution of a feature, when their 𝑝–value
is not significant (𝑝–value > 0.05). As acceptable limits for K and S were chosen
±2 [63]. The results are shown in the Appendices A.1, A.2, A.3, and A.4. From the
tests results can be concluded, that no assessed feature has a normal distribution. As
these limits are very strict, the slightly lower thresholds were also considered: K and
S thresholds were chosen as ±3; SH test was omitted. The outcome of the analysis
with lower thresholds showed, that only around 30 % of features extracted from
writing tasks (TSK35 or TSK36) have a normal distribution. The second analysis
didn’t produce any improvements for the graphomotor tasks (TSK3, TSK4).

Furthermore, there is an agreement between PS and SE, that children diag-
nosed with DD manifest variable symptoms. In other words, there is no child with
manifesting DD through only one symptom. The GD symptoms have a transient
character that will mostly disappear around the 4 th grade (11 years of age). The
study showed that only 1 out 10 identified children with GD problems in the 1 st
year will have problems in the 4 th grade [43].

At this stage, two approaches are considered. Either manifestations of the symp-
toms will be examined in the whole dataset of the handwriting records, or individual
symptoms will be recorded again, separately. The second approach is considered to
be a less time consuming and more suitable to be controlled (i.e. the unsteady line
in the loop tasks can be recorded without any other contributing symptoms, such
as interruptions, or longer writing time). This step may be changed, if it turns out
to be invalid. For the mentioned reasons, individual symptoms have to be simu-
lated. Moreover, features extracted from simulations are named s–features. The
simulation process consists in recording of handwriting performance under certain
conditions, such as unsteady writing line, higher number of stops, changing of ac-
celeration, higher in–air time (see Section 1.1.3). For comparison, healthy records
will be recorded as well. The data will be simulated by several participants. Normal
healthy drawings and writings of individual tasks will be performed by the dominant
hand. The symptoms will be simulated by the non–dominant hand under specific

64



conditions (i.e. with tremor, longer stops, etc.).
After obtaining simulation records, they will be labeled as “healthy control” or as

“records with DD”. The newly extracted set of s–features can be further optimized
either by a genetic algorithm [46, 153, 155] or by the gradient descent algorithm.
Genetic algorithms will be able to find adequate weights of each s–feature within the
symptoms to obtain the final number (i.e., 1 for the DD case and 0 for the healthy
one). The resulting nonlinear function will predict the value of the symptom on
the basis of features (identified to be a part of the symptom) derived from real
handwriting records.

The gradient descent algorithm computes the degree to which a certain feature
contributes to the identification of the handwriting symptom. It identifies features
as more positive or more negative in contributing to the severity of the symptom
or to the normality of handwriting. The individual contributions of features can be
grouped into subscore values [69].

Newly designed symptoms from simulations can be further adapted to the specific
sex and age/class. Validation of the symptoms will be tested on real world data from
an already acquired dataset. With enough cases a certain degree of generalization
could be achieved, which can be tested on the real world data.

The simulation process ensures setting up of all identified symptoms, which could
be missing otherwise, because the number and variety of cases (healthy/DD) in
a dataset is limited.

The drawback of this approach is the amount of needed simulation records.
Also, not everything can be simulated. Especially the in–air movement can be
hardly simulated by healthy adult, even when they are experts in the field. For this
reason, the symptoms, that could not be easily simulated, will be extracted from
the whole dataset after a close examination of the recordings. Several validation
criteria exist, that were already used in the current research and will be applied to
identify children, who are considered as dysgraphic (HPSQ–C, special educationalist
assessment, etc.).

3.3 Features into symptoms
The next challenge is in combining symptoms in such a way, which can result in the
GDRS. As it was described in Chapter 2, the individual symptoms can be manifested
by different physical phenomena, which can be quantified by several features. For
example, the symptom of low velocity is quantified by the 95 % percentile of velocity
(ON: G–VEL (95p)), and by the median of the velocity (ON: G–VEL (median)).
A certain combination of these features represents the symptom. Consequently,
a scale, created by the number of accumulated symptoms, can describe the extent
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of dysgraphia. Thus, the final score of the scale will not be represented by only one
scalar value, but each symptom will represent a subscore of the GDRS.

The major fact to deal with is, that children (both healthy and with DD) differ
significantly in the level of severity of the symptoms, and even in the values of
individual features, but at the same time can be identified by the external validation
criteria with the same score. For example, children identified to be dysgraphic can
exert a high value of pressure on the surface of the tablet, and other dysgraphic
children can exert a normal pressure force. But the problem is, that both can be
identified with dysgraphia on the same level.

After the completion of the symptoms simulations (which are task–dependent),
correlation analysis of the new symptoms with all feature space will be computed to
exclude the possibility, that some of the significant correlated features are missing
in the set of the newly created symptoms. This approach assumes, that features,
which are part of the symptoms will be highly correlated with them. Furthermore,
any other highly correlated features can be added to the newly created symptoms
after consideration of their benefits.

To discover how the features should be summed into symptoms, measures of
cross–correlations should be considered. After applying correlations into sums for
each symptom, outcomes will be compared to the validation criteria obtained from
evaluation by special educationalists and psychologists. If the validity rates of the
new scale will be acceptable, it could be stated, that the scale based on objective
measurements of critically selected symptoms of DD represents a new GDS.

3.4 Issues of GDRS designs
There are two problems, that can negatively affect both GDRS designs, which are
based or validated on the real data recordings:

1. As the dataset consists of a limited number of cases of healthy and dysgraphic
handwritings, the derived clusters and their discriminating ability will be neg-
atively affected.

2. Even when the symptoms are simulated, they may prove invalid, as the recorded
dataset may be missing significant cases, which would otherwise support the
simulated symptoms.

Moreover, norms for sex and age will not be created because there are not enough
cases in the dataset. Nevertheless, the newly created symptoms should have a down-
grading trend, as the graphomotor abilities are getting better with age. The goal
of this scale is to create indexes, that can identify graphomotor difficulties, not the
norms for all grades.
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A possible solution is to remove the influence of the sex and grades by employ-
ing the linear regression. However, the symptoms can be manifested in a form of
a nonlinear relationship across grades, which makes the use of this analysis difficult.
Also, for this type of reduction of the contributing variables the size of the dataset
is too small.

From the psychological point of view, the simulated symptoms can be endorsed
as valid if they have an anticipated progress across grades or sexes. In other words,
if the overall duration of writing is getting lower across grades, or the occurrences
of symptoms are lower for girls, the newly designed symptoms can be considered
as valid. If the mentioned trends can be observed, the designed symptoms can be
adapted for further optimization.
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4 Design of new online handwriting param-
eters based on TQWT

Baseline features (velocity, acceleration, pressure, number of interruptions, etc.)
provide in some cases, enough information for clinical interpretation of common
symptoms of handwriting difficulties. But in other cases, with the use of the same
task, the more advanced features can shed light on observed symptoms and bring
better accuracy of quantitative analysis.

As mentioned in Section 1.3, there are already a few articles, that provide
new methods for the parametrization of developmental handwriting. For exam-
ple, Thibault Asselborn et al. [9] presented the Median of Power Spectral of Speed
Frequencies, which had 15.71 % overall importance in the trained model (96.6 % sen-
sibility and 99.2 % specificity). Jiří Mekyska et al. [96] presented in their study
a broad set of advanced features, where for example the Teager–Kaiser energy op-
erator [38] derived from pressure had the strongest negative relationship (r = -0.45,
p < 0.01) with the HPSQ total score. And also, Jano Mucha et al. [183] were
employing Fractional Order Derivatives together with conventional features in the
handwriting difficulties diagnosis, where they discovered benefits of more robust
quantification of in–air movements as opposed to the conventionally used ones.

As previous research confirmed, there is a significant profit from the usage of ad-
vanced parametrization techniques in quantitative analysis of developmental hand-
writing. But as can be seen from the current literature (see Table 1.1), the main
trend in the research is to use just conventional features. To fill this gap, new ad-
vanced parametrization techniques were researched, especially the Tunable Q–factor
wavelet transform method. In the next section, a general description of TQWT is
presented together with two experiments based on these studies.

4.1 Tunable Q–Factor Wavelet Transform
Usually, the Q–factor of a wavelet transform is chosen according to the oscillatory
behavior of the analysed signal. Either it is set to have the high Q–factor for
oscillatory signals (e.g. EEG, speech, etc.) or the low Q–factor for non–oscilatory
signals (e.g. images). For this purposes, the continuous wavelet transform is suitable,
however continuous–time integral transforms are highly overcomplete and not always
easily invertible (i.e. having an inverse transform) [33], or they cannot achieve the
constant–Q property [83].

The Wavelet Transform with Tunable Q–factor (TQWT) was first published by
Ivan W. Selesnick [150]. The TQWT is a modification of the Rational–dilatation
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wavelet transform (RADWT) [12]. The standard wavelet transform has its Q–factor
fixed, and set according to the processed signal behavior [35]. The Q–factor is a
measure of the oscillatory behavior of an input signal [159]. When using wavelets
for analysis of oscillatory signals the Q–factor is relatively high. When processing
signals with little oscillatory behavior the Q–factor is relatively low [150].

TQWT is based on two–channel filters with low–pass and high–pass stages, that
are concatenated on their low–pass output [151]. This multirate filter bank can be
described by the following factors:

• 𝑓s Input signal sampling rate.
• 𝑁 Length of the input signal.
• 𝐽 𝐽-level transform (number of subbands - 1).
• 𝛼, 𝛽 Scaling factors (filter bank parameters).
• 𝑟 = 𝛽

1−𝛼
Redundancy of the wavelet transform (oversampling rate).

• 𝑄 = 2−𝛽
𝛽

Q–factor.
• 𝑓c = 𝛼𝑗 2−𝛽

4𝛼
𝑓s Center frequency 𝑓c of the 𝑗–th subband.

By changing 𝑄, 𝐽 and 𝑟 we can make various representations of the input signal
in the wavelet domain [159] (TQWT enables easy continuous Q–factor tunning). As
can be seen from the definition of 𝑄, the Q–factor is independent of the level 𝑗,
meaning that the wavelet transform is a constant–Q transform [151]. The TQWT
satisfies the Parseval’s theorem, which means that the total energy of the wavelet
coefficients equals to the energy of the signal [159].

TQWT is conceptually simple, can be efficiently implemented using radix–2
FFTs [150], and its parameters are more clearly related to the Q–factor trans-
form [12, 151]. Moreover, a recent study reported successful utilisation of TQWT
for reduction of noise in the multi–talker bubble [159]. The sparsification using an
oversampled wavelet transform (TQWT) was successful in minimizing the overlap-
ping between the signal (voice) and noise coefficients. As handwriting also exhibits
periodic/oscillating character, a decomposed noise component of a handwriting sig-
nal could be linked with an unspecified clumsiness, deficient fine motor skills as well
as higher complexity/entropy. This hypothesis is further tested in this thesis.

To illustrate properties of the TQWT transform, an analysis of online handwrit-
ing signal in two basic scenarios was performed. The analysis setup for the first
scenario was the following: 𝑟 = 3, 𝐽 = 9, 𝑄 = 1, 𝑓s = 150Hz, 𝑁 = 1024. The origi-
nal 𝑥−axis component was extracted from the task called “rainbow”. The outcome
of the first scenario can be seen in Figure 4.1a, where in the upper part there is the
original signal and below are the computed ten components of TQWT, where the
first line belongs to the high frequency subband of the wavelet coefficients and the
last line represents wavelet coefficients of the last (10 th) low–pass subband. The
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distribution of the signal through all subbands is drawn in Figure 4.1b, where the
indexes of subbands correspond to their 𝑓c in reverse order (i.e. the first has 𝑓c = 𝑓s

2 ).
Also, we can see in Figure 4.1b, that the distribution of the signal’s energy through
subbands is concentrated around the 7 th and 8 th subband.

(a) The blue line represents the 𝑥−axis component from a “rainbow”
task. The subbands are ordered from the highest 𝑓c to the lowest. The
small vertical lines correspond to the volume of each wavelet coefficient
for the 𝑗–subband. Settings: 𝑄 = 1, 𝐽 = 9.

(b) Distribution of the signal energy across the all subbands.

Fig. 4.1: The subbands of the signal and distribution of the signal energy
(𝑄 = 1; 𝐽 = 9)

The frequency response of the 10–level wavelet transform can be seen in Fig-
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ure 4.2a, where central frequencies 1 of each subband are displayed on the logarith-
mic 𝑥−axis and on the 𝑦−axis normalized gain. The synthesized 𝑗–level wavelets
can be seen in Figure 4.2b.

(a) Each red line corresponds to the subband’s 𝑓c. The 𝑓c is approxi-
mately calculated, and its accuracy is getting worse, when approaching
𝑄 = 1. The 𝑥−axis is in the logarithmic scale. The gain is in normal-
ized values.

(b) Each line corresponds to only one synthesized wavelet from a 𝑗-
subband.

Fig. 4.2: The frequency response of the transform and the wavelets (𝑄 = 1; 𝐽 = 9)

The analysis setup for the second scenario is almost the same, the only difference
is in the value of 𝑄 and 𝐽 : 𝑟 = 3, 𝐽 = 14, 𝑄 = 2, 𝑓s = 150Hz, 𝑁 = 1024, the

1The approximation equation is 𝑓c = 0.25𝛼𝑗−1(2 − 𝛽) and its accuracy increases for 𝑄 > 3.
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“rainbow” task. The graphs are similarly organized as in scenario 1. The spread of
energy across all the subbands can be seen in Figure 4.3a and in Figure 4.3b. We can
conclude that again the mass of energy is concentrated around lower frequencies –
more than 50 % of the subband energy is at the central frequencies 1.91 Hz and
2.45 Hz. Frequency response of the wavelet transform is plotted on the Figure 4.4a
and finally the characteristic synthesized wavelet for each 𝑗-level subband is drawn
on the Figure 4.4b.

(a) The blue line represents the 𝑥−axis component from a “rainbow”
task. The subbands are ordered from the highest 𝑓c to the lowest
one. The small vertical lines correspond to the volume of each wavelet
coefficient for the 𝑗–subband.

(b) Distribution of the signal energy across all subbands.

Fig. 4.3: The subbands of the signal and distribution of the signal energy
(𝑄 = 2; 𝐽 = 14).
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(a) Each red line corresponds to the subband’s 𝑓c. The 𝑓c is approxi-
mately calculated, and its accuracy is getting worse, when approaching
𝑄 = 1. The 𝑥−axis is in the logarithmic scale. The gain is in normal-
ized values.

(b) Each line corresponds to only one synthesized wavelet from a 𝑗-
subband.

Fig. 4.4: The frequency response of the transform and the wavelets (𝑄 = 2; 𝐽 = 14).

We can see, that with the higher value of 𝑄 the synthesized wavelets tend to
express a more oscillatory behavior, but on the other hand with 𝑄 = 1 the wavelets
are almost non-oscillatory. This notion together with a sparse set of wavelet coeffi-
cients is further expanded. In the following chapters two studies, that are utilizing
TQWT transform in the identification of HD based on the quantitative analysis of
handwriting are described in detail.
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4.2 New Approach of Dysgraphic Handwriting Analy-
sis Based on the Tunable Q–Factor Wavelet Trans-
form

Reference: Zvoncak, V.; Mekyska, J.; Safarova, K.; Smekal, Z.; Brezany, P.: New Ap-
proach of Dysgraphic Handwriting Analysis Based on the Tunable Q-Factor Wavelet
Transform. In 2019 42nd International Convention on Information and Commu-
nication Technology, Electronics and Microelectronics (MIPRO), IEEE, 2019, pp.
289–294, doi: 10.23919/MIPRO.2019.8756872.
URL https://doi.org/10.23919/MIPRO.2019.8756872

This work [181] proposes a new approach of HD (see Section 1.1.2) assessment
utilizing newly designed online handwriting features based on TQWT. This is the
first study introducing the TQWT transform in the field of online handwriting anal-
ysis. The majority of up–to–date scientific work is based on basic handwriting
features, which offer an advantage of a rather easy clinical interpretability. But the
DD is associated with higher complexity of handwriting, such as deficient fine motor
skills or unspecified motor clumsiness, where conventional features are not sufficient
for quantification of these complexities. The tested hypothesis was, that features
based on TQWT should better quantify the hidden complexities of handwriting by a
residual of the decomposition, where the residual signal should be of a higher energy
for the dysgraphic handwriting, as it is more irregular and complex.

This study enrolled altogether 65 Czech pupils attending the 3 rd and 4 th grades
of an elementary school. All the children filled the self–scoring questionnaire HPSQ–C
(see Section 1.1.4) and performed a copy of a short paragraph (see Figure 4.5), which
was selected from a book for the 3 rd grade. As the acquisition tool the Wacom In-
tous Pro L (PTH–80) (sampling frequency 𝑓s = 133 Hz) with Wacom Inking pen
was used. Children were writing on a lined A4 paper, which was laid down and
fixed to the digitizer. The electronic inking pen provides a valuable visual/physical
feedback which is the same as with an ordinary pen.

The feature extraction was as follows: all raw online handwriting signals (see
Figure 1.2) were parametrized in segments according to each stroke and also for
the whole paragraph. Then for features represented by a vector the time series
statistics (mean, standard deviation, median, relative standard deviation, etc.) [96]
were calculated. The subset of baseline features consisted of: kinematic (velocity,
acceleration, jerk), temporal (duration), spatial (width, height, length of a stroke)
and dynamic (pressure, azimuth, altitude).

As mentioned in the preface to the TQWT (see Section 4.1), the wavelet trans-
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Fig. 4.5: The copy of paragraph written by the children with HD (HPSQ–C = 35).
The color of letters represents the tip pressure of the pen (cyan: 0 – 25 %, blue: 25 –
50 %, purple: 50 – 75 %, black: 75 – 100 %). Green strokes around letters represent
the in–air trajectories.

form enables us to model an online handwriting signal 𝑥[𝑛] into sparse representa-
tions, where each representation describes a different oscillatory behavior of 𝑥[𝑛].
With fine tuning 𝑥[𝑛] can be jointly decomposed into the high Q–factor compo-
nent 𝑥HG[𝑛] and the low Q–factor component 𝑥LQ[𝑛] utilising the Morphological
component analysis (MCA) [160]. The TQWT and its decomposition methodol-
ogy together with Matlab libraries were invented and implemented by Ivan Se-
lesnick [150] and were used in this study. The sparse nature of TQWT (utilising
the split augmented Lagrangian shrinkage algorithm–SALSA [4]) together with the
joint decomposition into 𝑥HG[𝑛] and 𝑥LQ[𝑛] produce also a third–residual component
𝑥RES[𝑛], which expresses noise–like behavior and is not present in either mentioned
components. The 𝑥RES[𝑛] can be calculated as:

𝑥RES[𝑛] = 𝑥[𝑛] − 𝑥HQ[𝑛] − 𝑥LQ[𝑛]. (4.1)

This residual component may be linked with the poor dexterity, deficient fine motor
skills and unspecified motor clumsiness. Therefore a signal–to–noise ratio (SNR)
measure based on 𝑥𝑅𝐸𝑆 could hypothetically differentiate between handwriting with
and without difficulties. For the purpose of SNR the clean signal 𝑥CL (i.e. an
online handwriting signal without the effect of possible negative complexities) was
calculated as follows:

𝑥CL[𝑛] = 𝑥[𝑛] − 𝑥RES[𝑛]. (4.2)

In the next step three different approaches of calculating SNR, which are published
in [41] were utilized: SNR based on the Teager–Kaiser Energy Operator (SNRTEO),
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SNR based on the Squared Energy Operator 𝐸 (SNRCON), and SNR as the energy
ratio of 𝑥RES[𝑛] and 𝑥CL[𝑛], i.e.:

SNRE = 10 · log10

(︃
𝐸(𝑥CL[𝑛])
𝐸(𝑥RES[𝑛])

)︃
[dB]. (4.3)

The TQWT was applied on all raw online handwriting signals and on the temporal
features (velocity, acceleration, jerk) as well.

In the following step a thorough statistical analysis, which was divided into three
scenarios on the basis of used feature subsets was performed: conventional handwrit-
ing features (81 in total) - Baseline; TQWT features only (665 in total) - Scenario 1;
combination of conventional and TQWT features (774 in total) - Scenario 2.

In exploratory analysis the Pearsons’s and Spearman’s correlation between fea-
tures and HPSQ–C scores was used. To evaluate the discrimination power of each
feature, the univariate classification analysis using the Support Vector Machine
(SVM, linear kernel) [162] and Random Forest [24] (RF, 40 trees) classifiers was
employed. The model training and evaluation were performed using the strati-
fied 10–fold cross–validation with 100 repetitions and with the following metrics:
accuracy (ACC), sensitivity (SEN), specificity (SPE), Matthew correlation coeffi-
cient (MCC) [89].

In the multivariate analysis the machine learning setup was the same. The
final model was trained utilizing the sequence floating forward selection algorithm
(SFFS), which is gradually searching for the most discriminant features in the subset.
In addition to the last scenario, the feature set was firstly filtered by the minimum
Redundancy and Maximum relevance (mRMR) method to lower the dimensionality
of the feature space.

The results of the Scenario 1 scenario are shown in Table 4.1, for the Scenario
2 in Table 4.2 and for the baseline scenario in Table 4.3. The best results for each
scenario are highlighted in the tables.
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Tab. 4.3: Baseline scenario

COR / feature name Spearman’s 𝑟 Pearson’s 𝜌

M of velocity†† −0.36** −0.38**

M of height of stroke‡‡ 0.37** 0.34**

Duration of writing†† 0.31* 0.28*

C UCA / feature name ACC [%] SEN [%] SPE [%] MCC [-]

S M of velocity†† 64.1±17.4 70.6±25.7 59.3±28.9 0.3±0.4
S M of height of stroke‡‡ 63.5±18.2 65.0±28.1 63.7±28.2 0.3±0.4
S M of jerk†† 61.6±17.2 84.3±20.9 40.7±28.5 0.3±0.4

R Std of altitude 66.7±17.6 69.6±27.4 65.0±28.1 0.3±0.4
R Length of writing‡‡ 65.2±18.5 59.8±28.5 71.7±27.7 0.3±0.4
R M of vertical jerk‡‡ 63.8±18.0 59.0±28.7 70.5±28.1 0.3±0.4

MCA / feature name ACC [%] SEN [%] SPE [%] MCC [-]

S
SHOS 66.7±17.4 75.6±26.0 58.1±29.3 0.3±0.4
M of velocity†† 66.6±18.9 76.1±26.4 59.1±29.8 0.3±.4
M of duration of stroke‡‡ 73.5±17.1 80.8±23.5 68.8±27.4 0.5±0.3

R
Std of altitude 66.7±17.9 69.1±27.3 65.4±29.0 0.3±0.4
SVnJ†† 65.6±18.4 69.2±27.7 64.3±29.3 0.3±0.4
Std of length of stroke‡‡ 69.5±17.7 71.8±27.2 68.3±27.9 0.4±0.4

COR – Correlation analysis, C – Classificator, UCA – Univariate Classification Analysis, MCA – Multivariate
Classification Analysis, †† – In-air, ‡‡ – On–surface, R – Random Forest Classifier, S – Support Vector Machine,
M – Mean, Std – Standart deviation, SHOS – Std of height of the stroke ‡‡, SVnJ – Std of the vertical normalized
jerk, * – 𝑝 < 0.05, ** – 𝑝 < 0, 01, *** – 𝑝 < 0.001.

From the correlation analysis, where SNRE of the vertical normalized jerk ex-
pressed a strong positive relationship with HPSQ–C scores (𝜌 = 0.37, 𝑝 = 0.0022),
we can approve the hypothesis, that HD manifests itself even in higher energies of
the residual component of TQWT. If we compare the trained models in the baseline
and Scenario 1, we can conclude that, for the task (copy of paragraph) the TQWT
features performed slightly better than the conventional ones (best model in Scenario
1 had MCC = 0.58 as opposed to the best model in baseline with MCC = 0.49).
The trained model with combination of TQWT and conventional features showed
the best performance (MCC = 0.7). This confirms the notion, that even simple
conventional features perform well in the environment of the writing tasks. And
also, that to further improve the classification accuracy, advanced parametrization
techniques are needed.

If we perform a comparison of these results with other studies, those presenting
performances of SVM classifiers, authors Zhimming et al. [177] were identifying HD
in the children’s handwriting with slightly worse results of ACC = 75 %. On the
other hand, Mekyska et al. [96] were able to achieve ACC = 96.4 %, when identifying
DD on the bases of HPSQ scale utilising the RF (this study had the best performance
RF–based model with ACC = 80.3 %). But these publications cannot be precisely
compared, because each team used a different set of parameters, different tasks,
different cohort and language.

If we take a closer look at the most relevant features in the best discriminative
models (see Table 4.1 and 4.2), the features related to the azimuth or tilt are missing.
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From that we can conclude, that the complexities of handwriting linked with HD are
manifested mainly in on–surface/in–air x and y trajectories, pressure and velocity
profile features.

The goal of this study was to introduce new TQWT based features in the field
of the quantitative analysis of online handwriting. The results confirmed, that the
residual component of TQWT contains some information about irregularities as-
sociated with the HD. Another finding was, that a model trained with TQWT
features–only improves the HD identification accuracy by around 5 % in comparison
with the model based only on baseline features. The combination of both subsets
performed even better, where the trained model achieved ACC = 84.7 %. The com-
parison of results with other studies couldn’t be done, as no other research was
published on this dataset. But the aim of this study was to compare TQWT and
baseline features and this was achieved.

The limitations of this article are as follows. The first one is the small number
of participants in the dataset, which hinders the possibility of generalization of the
results. The second one is related to the TQWT, because further optimisation of the
transformation could increase it’s capabilities to differentiate HD (in this study just
recommended settings were used [150]). And the last limitation was the subjectivity
of the trained models, which is caused by the nature of HPSQ–C, where the children
are subjectively assessing themselves.

4.3 Advanced Parametrization of Graphomotor Diffi-
culties in School-aged Children

Reference: Galaz, Z.; Mucha, J.; Zvoncak, V.; Mekyska, J.; Smekal, Z.; Safarova,
K.; Ondrackova, A.; Urbanek, T.; Havigerova, J. M.; Bednarova, J.; et al.: Advanced
Parametrization of Graphomotor Difficulties in School-Aged Children. IEEE Access,
vol. 8, 2020: pp. 112883–112897, doi: 10.1109/access.2020.3003214.
URL https://doi.org/10.1109/access.2020.3003214

Section 1.1.2 briefly introduced the complexity of DD and its various stages/symp-
toms. The DD can manifest itself in the difficulty of writing of a text (HD), but also
in the difficulties of drawing a simple graphomotor element, which represents the
basic building blocks of cursive writing (graphomotor difficulties–GD). The thera-
peutic intervention and timely diagnosis of GD in school–aged children is of great
importance. For this reason this study presented a computerized decision support
system for the identification and assessment of GD in school-aged children. Cur-
rently, in the Czech Republic this kind of objective methodology is still missing.
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The improvement of identification of GD in online handwriting was achieved us-
ing novel advanced parametrization techniques based on modulation spectra (MS),
fractional order derivatives (FD) and TQWT. In this study [54] 53 Czech–speaking
children attending 3 rd and 4 th grades were enrolled. They attended several differ-
ent schools in the Czech Republic. During the acquisition the children were asked
to copy altogether 7 elementary graphomotor tasks (TSK). The tasks are numbered
from 1 to 7 as follows: Archimedean spiral, smaller Archimedean spiral, upper loops,
lower loops, sawtooth, rainbow and a combined loops. The actual tasks from the
template, that the children were copying can be seen on in Figure 2.1. The chil-
dren were drawing on A4 paper, that was laid down and fixed to the Wacom Intous
Pro L (PTH–80) digitiser. Similarly to the previous study, even here the Wacom
Inking Pen was used.

The participating children filled the ten–item, language independent, screening
questionnaire HPSQ–C. The used protocol (TSK with HPSQ–C) was designed in
cooperation with psychologists (PS) and special educationalists (SE). For the pur-
pose of this study, the children were divided into two groups: the healthy controls
(HC) and the children with graphomotor difficulties (GD). To overcome the possible
subjectivity of children’s self–assessment (HPSQ–C), the children were divided into
these two groups by an expert (remedial teacher), who was examining the handwrit-
ten product on the PC after the examination. She/he had no information about
the HPSQ–C score, sex or any sociodemographic information about the examined
child. The drawing performance in all tasks from randomly selected children from
both groups can be seen in Figure 4.6.

Various types of handwriting features that could be separated into the following
subsets were extracted: conventional features (CONV), modulation spectra features
(MS), fractional order derivative features (FD) and TQWT features. As can be
seen from Figures 2.1 and 4.6, all the tasks should be performed in a single stroke.
The quantitative analysis showed, that multi–stroke signals occurrence was only
marginal. Thus, in the feature extraction procedure in–air trajectories were omitted.
All vector–valued features were transformed to scalar values using standard time se-
ries statistical methods: mean, coefficient of variation estimates (cv) and other (some
TQWT features used additional statistical functions, that will be explained further).
Also, all features were named by following convention: TSK INF: DIR-FN (HL),
where TSK stands for a specific numbered task, INF specifies on–surface/in–air
movement (ON/AIR) or dynamic features (see below), DIR denotes vertical (V) or
horizontal (H) projection, FN represents the feature name and HL stands for the
statistical function (optional). As all features are related only to the on–surface
trajectories, the ON is redundant and thus not mentioned.

The CONV subset can be further categorized into: a) spatial features - width
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Fig. 4.6: The recordings of drawings of randomly selected children from groups HC
(blue lines) and GD (red lines). The units are in millimeters.

(WWIDTH), height (WHEIGHT), length (WLEN), of the whole writing and also of
the strokes (i.e. SWIDTH, SHEIGHT and SLEN); b) kinematic features - velocity
(VEL), acceleration (ACC), jerk (JERK), in both horizontal and vertical projections;
c) dynamic features - pressure (PRESS), azimuth (AZIM) and tilt (TILT). This
subset of features was considered as the baseline.

The next two subsets of features, namely FD and MS, are described in detail
in [54]. Here the FD and MS features are mentioned only briefly, for they are the
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main contribution of other authors.
And finally, the last subset of features was based on TQWT. In the previous

study it was proved that the HD manifests itself in the higher energies of the resid-
ual component of the decomposed signal computed by TQWT. In this study the
hypothesis is, that TQWT could also describe limited motor skills, poor dexterity
and muscle tone or unspecified motor clumsiness in handwriting of children suffering
from GD.

The parameter settings of TQWT was based on recommended settings [150] and
on the analysis of graphomotor signals mentioned in the Section 4.1. The equations
for computing the clean signal, the residual component and the SNR were the same
as in the previous study (see Equations 4.1, 4.2, 4.3). With the aim to quantify and
describe the residual component in more detail, additional statistics was provided.

The energy 𝐸 of the residual component was computed as

𝐸(𝑥RES[𝑛]) =
𝑁−1∑︁
𝑛=0

𝑥RES[𝑛]2. (4.4)

Next, absolute value of the first order derivative of 𝐸(𝑥RES[𝑛]) was computed as
𝐸𝑑(𝑥RES[𝑛]) = |𝐸 ′(𝑥RES[𝑛])|. To describe the variability of 𝐸𝑑(𝑥RES[𝑛]), the slope of
its cumulative sum was computed as

𝐸Δ = Δ𝐶(𝐸𝑑)[𝑛], (4.5)

where 𝐶(𝐸𝑑)[𝑛] for 𝑛 = 0, 1, . . . , 𝑁 − 1 stands for the cumulative sum of the 𝐸𝑑,
and Δ refers to the slope of a function. In other words, the 𝐸Δ should express
the higher values of residual components with high value variability. And finally,
to count significant changes in 𝐸𝑑(𝑥RES[𝑛]), the number of peaks of 𝐸𝑝 above the
median value is computed.

The naming convention for TQWT–based features is 𝐹𝑁 and can be described
as follows: 𝐹 stands for the name of the feature, 𝑁 stands for the specific type of
TQWT feature: Signal–to–noise ratio (SNR), RES (csum) for 𝐸Δ, and RES (npeaks)
for 𝐸𝑝.

Regarding the statistical analysis, all features with missing values were discarded.
The whole feature space was tested for normality using the Shapiro–Wilk test [154].
Consequently, all non–normally distributed features were transformed utilising the
Box–Cox method [22]. After the re–inspection of adjusted features, it was decided,
that not all features were fully–normalized. For this reason, the whole feature space
was considered as non–normally distributed. This notion resulted in the usage of
non–parametric statistical methods in the subsequent analysis. After the consul-
tation with psychologists and special educational counsellors, as the possible con-
founding factors in the analysis the following were selected: age, gender and grade.
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The Spearman’s correlation applied to the mentioned characteristics together with
all features showed that the gender was not a statistically significant covariate. For
this reason, only the effect of age and grade was considered. As the number of
features in each feature set (i.e. CONV, FD, MS and TQWT feature set) was rela-
tively high and not the same, the pre–selection filter method mRMR was employed.
Selecting a relevant subset in each feature set with minimum redundancy and cross–
correlation among the features is important especially in the classification analysis,
thus ensuring the same starting complexity of feature space for each model.

In the next step the Mann–Whitney U–test with the significance level 𝛼 of 0.05
was performed to compare the distributions of all features between HC and GD
children groups. To discover the strength of the relationship between features and
children’s group status (HC/GD), the Spearman’s correlation coefficient with 𝛼 of
0.05 was computed. The p–values in both methods were adjusted using the False
Discovery Rate (FDR) to control the influence of the multiple comparisons issue.

Next, the binary classification model to identify children with GD utilizing RF
classifier was trained. To increase the prediction power of the model [64] and to
ensure that the model will be trained using only the information–rich subset of
the features, which will reduce the risk of overfitting, the feature selection method
SFFS was used. Before the classification, all processed features were standardized
to have mean = 0 and standard deviation = 1. The trained models were evaluated
employing a stratified 5-fold cross-validation with 20 repetitions. The classification
performance was measured using: ACC, SEN, SPE and MCC. MCC was also used
during the feature selection to control addition/removal of the features. To evaluate
the statistical significance of the prediction performance of the trained models, a
non–parametric statistical method called permutation test was conducted. It used
the same ML testing settings as in the training phase, and was set to perform 1000
permutations at the significance level of 0.01.

The results of the analysis can be seen in the following paragraphs. After filter-
ing each subset of the feature–type (mRMR), cross–correlation matrices using the
Pearson’s correlation coefficient were evaluated. As can be seen from Figure 4.7,
each matrix has 15 features and some of them are highly correlated between each
other. Nevertheless, it was decided, that the feature space complexity will be not re-
duced any further, so that with the threshold 15 features in each subset, all relevant
features can be preserved.

The comparison of results of the correlation analysis (Spearman’s correlation
coefficient) and Mann–Whitney U–test method can be seen in Table 4.4. The top
5 features were selected from each feature–type subset according to the MCC value
(from high cross–correlated pairs only one of them was selected). The significant
features (p–value = 0.05) according to the MCC were: a) CONV subset–5/5 prior
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Fig. 4.7: Cross-correlation matrices for feature sets TQWT and CONV (Pearson’s
correlation coefficient (r), 15 features per feature-type) computed after pre-selection
(mRMR). The strength of the relationship is on the linear scale <-1,1> with corre-
sponding colors: blue at minimum and red at maximum. Explenation of abbrevia-
tions can be found in Section 4.3.

adjustment, 1/5 after adjustment; b) TQWT subset–3/5 prior adjustment, 1/5 after
adjustment. The strongest relationship between a feature and the HC/GD status
according to the Spearman’s correlation coefficient revealed the following features:
a) CONV: TSK1 TILT (mean), 𝜌 = −0.42, p < 0.01; b) TQWT: TSK6 V–VELSNR,
𝜌 = −0.39, p < 0.01 (after the adjustment, the TQWT feature was marked as not
significant with p = 0.07). In Figure 4.8 the most discriminating features for each
feature–type can be seen as violin plots.

The achieved results regarding the classification analysis are mentioned in Ta-
ble 4.5, where for each trained model values of evaluating metrics and their p–values
(1000 permutations, ** denotes a p–value < 0.01) are specified. To obtain the
most significant features across the whole feature–space (i.e. CONV, TQWT, FD,
MS), a model on all analysed features (ALL, together 60 features) was trained and
tested. The best models were as follows: a) CONV: ACC = 0.74**, 7 features;
b) TQWT: ACC = 0.71**, 2 features; C) ALL: ACC = 0.84**, 10 features. The
features selected by SFFS for each model are mentioned in Table 4.6.

This study introduced 3 novel types of features to improve quantification and
identification of GD, namely features based on modulation spectra, fractional order
derivatives and features based on the tunable Q–factor wavelet transform. For the
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Fig. 4.8: Violin plots of the best discriminating features according to the MCC and
Spearman’s correlation coefficient selected from subsets CONV and TQWT. The
colored background of the boxplots represents horizontally–mirrored kernel density
estimations with feature values printed as points. The violin plots are plotted sep-
arately for HC and GD groups, where the stars represent a p–value < 0.01 of the
Mann–Whitney U–test. The dashed lines represent medians.

Tab. 4.4: Results of the statistical analysis.

feat. TSK 𝜌 p(𝜌) p(𝜌)* p(U) p(U)*

CONV features
TILT (mean) TSK1 -0.42 0.001 0.027 0.001 0.019
TILT (mean) TSK6 -0.32 0.017 0.129 0.009 0.072
SHEIGHT (mean) TSK5 -0.31 0.028 0.142 0.015 0.076
WLENGTH TSK6 -0.25 0.074 0.190 0.038 0.096
WHEIGHT TSK5 -0.25 0.074 0.190 0.038 0.096

TQWT features
V-VELSNR TSK6 -0.39 0.004 0.070 0.003 0.044
V-ACCRES (csum) TSK6 -0.26 0.061 0.345 0.031 0.177
ACCSNR TSK5 -0.26 0.069 0.345 0.035 0.177
TILTSNR TSK2 -0.23 0.110 0.409 0.055 0.206
V-VELSNR TSK1 -0.21 0.136 0.409 0.068 0.206

1 feat – feature; TSK – graphomotor task; 𝜌 – Spearman’s correlation coeffi-
cient; p(𝜌) – p–value of 𝜌; p(𝜌)* – adjusted p(𝜌); p(U) – p–value of Mann–
Whitney U–test; p(U)* – adjusted p(U); for the feature naming convention,
see Section 4.3.

purpose of this thesis, only TQWT and CONV features were mentioned. The feature
complexity was reduced using filtering methods to the level, where the number
of observations was of the same order as the number of features. This approach
minimized the effect of the curse of dimensionality and resulted in 15 features for
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Tab. 4.5: Results of the classification analysis.

type MCC ACC SEN SPE N p
CONV 0.50 (0.26) 0.74 (0.12) 0.80 (0.19) 0.71 (0.21) 7 **
TQWT 0.42 (0.29) 0.71 (0.14) 0.74 (0.19) 0.68 (0.23) 2 **
ALL 0.65 (0.25) 0.84 (0.13) 0.83 (0.17) 0.81 (0.18) 10 **

1 the results are shown as mean (standard deviation); type – specific type
of graphomotor feature; MCC – Matthew’s correlation coefficient; ACC –
accuracy; SEN – sensitivity; SPE – specificity; N – Number of selected features;
p – p-values computed by the permutation test (1 000 permutations); ALL
(combination of all feature-types, i. e. 60 features); for the feature naming
convention, see Section 4.3.

Tab. 4.6: Features selected for the trained classification models.

CONV TQWT ALL
TS6 V-ACC (cv) TS2 YPOSSNR TSK1 H-VEL (cv)
TS1 H-VEL (cv) TS1 VELRES (csum) TSK1 TILTVEL0.35 (mean)
TS7 VEL (mean) TSK2 JERKR5
TS2 V-ACC (mean) TSK3 JERKR3
TS1 TILT (mean) TSK2 V-VEL (mean)
TS5 WHEIGHT TSK6 V-ACC (cv)
TS2 JERK (mean) TSK1 V-VELSNR

TSK3 PRESSACC0.1 (cv)
TSK7 TILTACC0.85 (cv)
TSK5 TILTRES (csum)

1 TSK – graphomotor task. For the feature naming convention, see Section 4.3.

each feature–type with minimal cross–correlation. From the pre–selected features
it can be seen, that not all graphomotor tasks (TSK1–TSK7) are covered by them
(TSK3 and TSK4 are missing) and that the distribution of tasks per feature–type is
varying. This supports the notion, that different feature types are potentially more
suitable to quantify task-specific demonstrations of GD, which are experienced by
school–aged children.

Regarding the statistical analysis and its results in the CONV subsets, the most
significant features were basic parameters, namely tilt, stroke height, length and
height of writing (drawing). In detail, in the tasks Archimedean spiral and rain-
bow had the strongest relationship between the mean of the overall tilt and the
HC/GD status. This indicates, that in these tasks the children affected by the GD
held the pen less steeply than the children from the HC group. Another significant
observation can be found when comparing HC/GD groups by length of the line in
rainbow tasks and the height of the whole saw task. The difference in the perfor-
mance underlines the difficulties associated with these tasks. Moreover, the children
suffering from GD tend to draw the saw task with a smaller stroke height. If we
compare top–ranking features from CONV and TQWT sub–sets, we can see that
conventional features were derived mainly from the spatial (height, length) and dy-
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namic (tilt) types. On the other hand, TQWT features consisted mainly kinematic
features, such as velocity and acceleration. This fact is in agreement with previous
studies [2, 27, 139], which were identifying HD/DD on the basis of quantitative anal-
ysis of online handwriting and utilizing kinematic features. From this notion we can
conclude, that kinematic features are important in quantifying of drawing as well
as handwriting. The importance of kinematic features highlights the advantages of
computerized analysis of handwriting, where additional information about the hand-
written product/process (which is very unlikely to precisely measure manually) is
made available to research and diagnoses.

In the results of statistical analysis done on TQWT sub–sets, as the most signifi-
cant feature, signal–to–noise ration of vertical velocity of the rainbow task (TSK6) in
both methods (Spearman’s correlation coefficient and Mann–Whitney U–test) was
identified. This observation probably indicates, that children suffering from GD had
difficulties with maintaining steady/continuous velocity of strokes in vertical move-
ments of handwriting in this task as opposed to the healthy children, who performed
this task without problems. This phenomenon was previously reported in [84], where
children with DD experienced problems in vertical movements during handwriting
caused by the psychological load and muscular fatigue in the finger system. During
handwriting the vertical movement requires a coordinated motion and finer flexion-
s/extensions of more joints and therefore it is more complex than ulnar abductions
of the wrist (which plays a key role in the horizontal movement) [40, 168]. In other
words, the GD is more manifested in vertical projections of handwriting/drawing.
The handwriting of healthy children is more fluent and more automatic and there-
fore they are able to accelerate/decelerate almost effortlessly. On the other hand,
children experiencing GD haven’t their handwriting expression fully automated, and
therefore have problems to write fluently and in the faster tempo while maintaining
legibility. Thus the dexterous handwriting of healthy children can indirectly cause
an increase in the noise-level of the residual component of the vertical acceleration
(TSK6). Although, the mentioned feature is the second most significant in the
TQWT sub–set, it became non–significant after the FDR correction.

Regarding the classification analysis, CONV and TQWT feature subsets achieved
similar results (CONV feature–set achieved MCC = 0.5 with 7 features in contrary
to the TQWT feature–set, which achieved MCC = 0.42 only with 2 features). This
comparison shows, that a single type feature (even when more complex) is not likely
to significantly improve the identification of GD that is provided by the conventional
features only. However, when all feature types are combined (i.e. CONV, MS, FD,
TQWT), the classification performance can be increased by approximately 10 %
in terms of accuracy, 3 % in terms of sensitivity and 10 % in terms of specificity,
while maintaining almost the same number of features. Recent studies are reporting
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sensitivity over 90 % [8, 96, 133], which might at first seem be way better, than
the results in this study. However, the mentioned studies were identifying HD in
children with DD using a complex acquisition protocol comprising writing. The
results reported in this study are solely based on the analysis of drawing signals of
graphomotor tasks and aim at predicting the presence of GD, which can lead to
HD and possibly to DD. The focus on simple graphomotor movements is of a great
importance as they represent the building blocks of proficient handwriting, and thus
the robust parametrization of GD can be used in the future as an early marker of
possible HD/DD in children in pre–school or first–grader age. When training the
combining model (ALL), conventional as well as all advanced features were selected.
Also, almost all tasks were participating in the combined model (except the lower
loops - TSK4). This examination showed, that all features extracted from almost
all graphomotor tasks contributed to an improvement in the identification of GD
to some extent. Hence, the combination of selected tasks and features advanced
the capabilities of ML models to model relationships between the characteristics of
online handwriting signals and the presence of GD in school–aged children. It is
important to note, that all models were properly tested by a permutation method
with the significance level below 𝛼 < 0.01 and thus ensured the statistical significance
and validity of ML results.

This study has several limitations. First of all, the size of the dataset is relatively
small (53 children), thus the statistical strength of the result’s inference is restricted.
Also, the analysed cohort is from children attending the 3 rd and 4 th grades of the
primary school. To obtain a complex understanding about the relationship between
the performance of graphomotor features and children’s grade, age, etc., handwriting
signals of pre–school children as well as of children attending the 1 st up to the 4 th
grade should be analysed. Nevertheless, in the current cohort, children from 3 rd
and 4 th grades were observed, where the handwriting should be automatic. At this
age, the possibility to identify GD is crucial for the following diagnosis of DD and
therapeutic care. Therefore, reported results in this study stand as a baseline for
future studies, that should research more information about GD and its longitudinal
characteristics. Future studies should also include a diagnosis of enrolled children by
several special educational therapists/psychologist to ensure, that the variability in
the diagnosis of GD will be addressed. Regarding the ML methodology, various other
ML models should be employed and tested in order to obtain general information
about the performance of proposed features and to obtain the most robust models for
GD identification. Finally, concerning the mentioned limitations, this study should
be considered as an exploratory/pilot study, and its results should be confirmed by
the following scientific research.

To conclude, in this study three novel feature types were proposed with the goal
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to provide a complex quantification of GD in school–aged children’s handwriting.
In each feature type (namely TQWT and CONV) several features that are able to
differentiate between healthy children and children suffering from GD were selected.
In detail, the significant TQWT features were derived mostly from the velocity
profile, which is impossible to grasp by human examiners when simply observing
the handwriting process or final handwritten product. Also, the importance of
a combination of advanced as well as conventional features over only one feature type
was proved, when the performance of the classification model based on all features
was significantly improved. In the classification combined model (CONV, MS, FD,
CONV) all graphomothor tasks were present (except the lower loop). This confirms
the fact, that in order to assess subtle and rather imperceptible manifestations of GD
in children’s handwriting, various basic graphomotor tasks are needed (which compel
coordinated movement of fingers/wrist/elbow/etc. as well as visuospatial cognitive
functions). This work was the first one exploring possibilities of TQWT, FD, MS
in order to extract advanced graphomotor features with the aim of identification of
GD in the handwriting of school–aged children. On the basis of the achieved results,
the proposed features are of a great importance in the assessment and identification
of GD. Nevertheless, to generalize the obtained results, these findings should be
further confirmed by additional scientific research.

89



5 Discussion and Future directions
This dissertation thesis describes the research of objective diagnostic approach of
graphomotor difficulties (GD) on a sample of school–aged children, with the aim
to help psychologists and special educationalists in the Czech Republic. The devel-
opment of the tool is currently focused mainly on identification of GD in children
attending 1 st and 2 nd grade of primary school and also as a support of the Devel-
opment Dysgraphia (DD) diagnosis in children attending 3 th and 4 th grade. The
DD is a serious developmental disorder with the prevalence around 3–5 % in the
Czech Republic. Moreover, there do not exist any objective diagnostic methods for
assessing DD yet and the current diagnosis of GD or DD is based on subjective
observation of the handwriting process by an expert evaluator.

The whole chapter is divided into three sections, where the first one (see Sec-
tion 5.1) aims to compile in detail the whole dissertation thesis and individual aims.
Next, Section 5.2 is discussing achieved results of particular aims and provides
a broader view of them. Finally, the last Section 5.3 is trying to outline identi-
fied limits of this work and potential future topics of research.

5.1 Summary
In the beginning of the first chapter (see Chapter 1), physiological and psychological
processes linked to handwriting were described in detail, just as their continuous
development from childhood to adulthood. The next part of the chapter was devoted
to the etiology of Developmental Dysgraphia (DD) and its description according to
two diagnostic manuals (DSM–V, ICD–10). All known symptoms of DD affecting
the handwritten product as well as its process were described using with adequate
scientific literature. Also, actual methods of diagnosis of DD in the Czech Republic
were stated.

Special focus was dedicated to the specification of the most common validation
criteria used in diagnosis of DD. To support the understanding of the DD diagnosis,
a summary with simplifying graphics was provided. Next, the major limitations
of the DD diagnosis were identified: 1) there are no objective methods for DD
diagnosis; and therefore, 2) the diagnosis is based on the observation skills of the
evaluator. The state–of–the–art of research in the field of DD diagnosis based on
online handwriting analysis was reported in detail. Finally, the online handwriting
analysis summary was presented.

In the next Chapter 2, symptoms of GD identified by the PS and SE were
described. Each symptom had to be discussed with the PS and SE to properly
understand its manifestation across the grades of the children. The quantification of
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these symptoms via parameters is one of the main contributions of the thesis. Several
parameters were uniquely designed for this research and have not been published yet.
Others are the following state–of–the–art literature in the field of online handwriting
analysis.

Moreover, the cooperation with PS and SE included the design of the proper
handwriting environment, where the identified symptoms can be manifested. For
this purpose, 36 tasks were constructed. Each one aimed to assess a specific char-
acteristics of GD. These tasks were logically grouped into three types:

• Seven graphomotor tasks (GT)
• Twentyone tasks assessing cognitive processes (CT)
• Eight writing tasks (WT)

The GT represent building blocks of cursive letters. Children in the 1st grade should
be able to draw them properly and so, abnormalities can be objectively measured.
The CT were constructed to test working memory, cognitive load and visual memory.
Finally, the WT consist of different types of writing tasks (e.g. dictation, copying
sentences etc.), where the fatigue, spacing, alignment and automation can be fully
manifested and measured. To this day, a complex protocol assessing GD such is this
one has not been published yet.

Every task of the new protocol addresses a specific set of symptoms. For each
symptom, several features based on mathematical modeling and advanced signal
processing techniques were designed. Each feature/parameter was programmed with
the aim to adequately describe a diagnostic trait within the symptom. Following
the literature [141], the symptoms were divided into two groups:

• Symptoms of the handwriting product – 8 symptoms; 28 parameters.
• Symptoms of the handwriting process – 16 symptoms; 49 parameters.

Together, twenty–four symptoms of GD were identified and assessed by 77 unique
features. For better understanding, each of the quantifying features was defined,
properly described and some of them were also illustrated. The complete list of
features and symptoms is mentioned in Appendices A.5, A.6, and A.7.

The summarizing list of symptoms with tuned quantifying features represents a
new analytical model of GD, which has never been published before. It can signifi-
cantly contribute to the diagnostic process of GD and also to get a new perspective
of understanding the complex symptomatology of DD.

Another benefit of this thesis is outlined in Chapter 3, where a design of the new
graphomotor difficulties rating scale (GDRS) is described. This GDRS is a logical
outcome of the whole presented work so far. Firstly, a GD protocol with symptoms
identified by experts was designed. The next step was to comprise designed features,
that quantify the identified symptoms, into GDRS, which can measure the current
level of the child’s GD.
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After checking the dataset content (in which, to some extent, identified dys-
graphic children by practicians are lacking), it was decided that there is a real possi-
bility, that not all degrees of GD will be present in the dataset. Thus, it was decided,
that individual symptoms will be simulated, to exclude the influence of other symp-
toms. For presentation of the analysis outcomes, two graphomotor tasks and two
writing tasks were selected (see Appendices A.1, A.2, A.3, and A.4). Furthermore,
the search for the optimal combination of sets of features that will represent the
identified symptom was conveyed to the genetic algorithm and the gradient descent
algorithm. Turning now to the values of GDRS, the current progress suggests, that
each symptom will represent a sub–score of the scale. This step was supported
by the notion, that number of accumulated symptoms will describe the extent of
the GD. Finally, the optimization and validation processes were described in detail
together with possible issues of the GDRS design.

This newly constructed GDRS scale represents a major benefit to the diagnosis
of GD and DD in the matter of modernization, cost-effectiveness, and objectivity.
Its utilization can transfer the tacit knowledge from PS and SE and offer it as
an analytical tool to other practicians, which can compare their diagnosis to the
objective measurements.

The last Chapter 4 is devoted to the integration of the Tunable Q–Factor Wavelet
Transform (TQWT) into the online handwriting analysis and its application to GD
identification. The TQWT models online handwriting signals 𝑥[𝑛] into sparse rep-
resentations, where each representation describes a different oscillatory behavior of
𝑥[𝑛]: high Q–factor component 𝑥HG[𝑛] and low Q–factor component 𝑥LQ[𝑛]. An-
other product of the decomposition is the residual component 𝑥RES[𝑛], which express
noise–like behavior and it is not present in either 𝑥HG[𝑛] or 𝑥LQ[𝑛]. This residual
component may be linked with the poor dexterity, inadequate fine motor skills and
unspecified motor clumsiness. Therefore, the higher levels of the energy in 𝑥RES[𝑛]
can be found in handwriting affected by the GD.

In the next part of the chapter, a detailed summary of two published studies
from the author of the thesis were presented. First of them was a conference paper
with the title: “New Approach of Dysgraphic Handwriting Analysis Based on the
TQWT” [181]. The article reported the use of the TQWT in the analysis of online
handwriting, more specifically on writing tasks. Three different approaches to cal-
culate the SNR between the clean signal and the residual component of the TQWT
(Teager-–Kaiser Energy Operator, Squared Energy Operator and SNR as the energy
ratio) were utilized. The analysed dataset consisted of 65 Czech pupils attending
3 rh and 4 th grades, who were evaluated by the HPSQ–C questionnaire. The exten-
sive exploratory analysis included the correlation analysis, univariate classification
analysis (ML) and multivariate classification analysis (ML). For the evaluation of the
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discrimination power of the features, Support Vector Machine (SVM) and Random
forest (RF) algorithms were employed. The results showed, that the TQWT brings
some information about the irregularities associated with GD. The model trained
with TQWT features improved handwriting difficulties (HD) classification accuracy
(ACC) approximately about 5 % in comparison with the model based solely on basic
features. Moreover, the combination of both subsets performed even better, where
the trained model achieved ACC equal to 84.7 %.

The second study with the title: “Parametrization of Graphomotor Difficul-
ties in School–aged Children”, dealt with advanced signal processing techniques
analysing online handwriting affected by GD on graphomotor tasks (TSK1–TSK7;
see Section 2.1). In this study, the TQWT was a part of the employed advanced
techniques, which produced a residual component 𝑥RES[𝑛] measured by SNR. More-
over, two newly designed features were used: slope of the cumulative sum of 𝐸𝑑 and
number of peaks above the median of 𝐸𝑑, where 𝐸𝑑 denotes a derivative of 𝑥RES[𝑛].
For the study, 53 Czech pupils attending 3 rd and 4 th grade were enrolled. All of
them filled the HPSQ—C questionnaire and also selection into groups by the expert
(remedial teacher) was used as the second validation criterion. The extracted fea-
tures were firstly filtered by a comprehensive methodology involving normality tests,
manual inspection, minimum Redundance Maximum Relevance method and Mann–
Whitney U–test. In the classification analysis RF algorithm which was evaluated by
the Matthew’s correlation coefficient (MCC). The model based on the conventional
feature set achieved MCC equal to 0.5 with 7 features in contrary to the TQWT fea-
ture set, which achieved MCC equal to 0.42 with only 2 features. Moreover, the best
trained model showed, that the combination of all advanced features (i.e. TQWT,
modulation spectra and fractional derivatives) with the conventional ones can sig-
nificantly increase the classification performance by approximately 10 % in terms of
accuracy, 3 % in terms of sensitivity and 10 % in terms of specificity. The significant
TQWT features were derived mostly from the velocity profile, which is impossible
to grasp by a human examiner when simply observing the handwriting process or
a final handwriting product. In the final classification model all graphomotor tasks
(except lower loops) were present. This confirms the fact, that in order to assess
subtle and rather imperceptible manifestation of GD in children handwriting, var-
ious basic graphomotor tasks are needed, which compel coordinated movement of
fingers/wrist/elbow/etc., as well as visuospatial cognitive functions.

5.2 Discussion of the conducted research
The comprehensive introduction into the diagnosis (see Section 1) of DD based
on online handwriting analysis was needed to provide a background for the fol-
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lowing chapters dealing with computerized analysis of online handwriting and its
advancement. It is important to point out, that DD is a relatively neglected
science field comparing to the amount of scientific research outcomes published
in other fields, such as ADHD, Autism or Parkinson’s disease. This could be
caused by the subtle nature of handwriting and a relatively short time frame when
the DD can be detected and treated. The recent acceleration of research in this
field [7, 54, 96, 98, 106, 177, 180, 181, 183] can be attributed to the explosive ad-
vancement in IT technologies, which enables new ways of exploration in handwriting
research.

The research gap was identified after considering the whole diagnostic process
of GD or DD respectively, in the Czech Republic. The design and implementation
of each step was realized in cooperation with experts in fields of signal processing,
psychology, and special education. The objective tool for measurement of GD sever-
ity was missing and its research and proper construction will be beneficial to the
children suffering from GD/HD/DD. To this day, several products recording and
analysing online handwriting of children exist at a certain level, but none of them
provides a robust and comprehensive measurement of the severity of GD, which
would be supported by profound scientific research [42, 71, 158].

Graphomotor ability protocol

As stated previously, the proposed GD assessment protocol is the most detailed and
complex protocol in the field. It was designed with the aim to assess all possible
symptoms of GD (see Section 2.2) and adapted to the state–of–the–art literature.
The various writing tasks are the most commonly used in research for the analysis of
online handwriting affected by GD or HD [3, 8, 85, 130, 133, 173, 180, 183]. In ad-
dition, analysis of the GD in basic graphomotor tasks (GT) is rather scarce [3, 100]
and different tasks, namely Archimedean spiral, rainbow, saw and upper loops, were
mostly introduced by studies co–authored by the author of this thesis [54, 98]. Very
similar to the rainbow task, a task with Hebrew word segment was already intro-
duced in the research of GD [96]. Lastly, the research of tasks assessing cognitive
processes (CP) were never published in the field of analysis of online handwrit-
ing affected by GD. There is only one related study with the hypothesis, that the
handwriting features can express a relationship between scores of Rey–Osterrieth
Complex Figure [137]. Moreover, the enrolled subjects were adults. Hence, newly
designed tasks assessing CP represent an innovation in the analysis of GD and can
bring insights into the mental processes of the analysed children, such as working
memory, visual memory, visuomotor coordination and extent of attention.

The design of a GD assessment protocol is undoubtedly a great asset but iden-
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tifying symptoms with corresponding features fits more to the scope of this work
and for this purpose will be discussed more in detail. Some of the proposed features
have already been used in previous GD analysis, some have been used with differ-
ent diseases such as analysis of handwriting affected by Parkinson’s disease (PD) or
have been newly developed entirely. Because the connection of groups of features
with specific names has been uniquely proposed in this work, it is unlikely that the
same symptom names or manifestations of the GD category naming convention will
be used in other scientific literature. For the purpose of the discussion, all features
are divided in three groups. The first group contains features, which have already
been tested on the samples with GD. The second one includes features tested on
data from different fields (i.e., PD). The newly designed features are described in
the third category.

Features tested on GD samples

Appendix A.5 provides a comparison of all 53 features from this category considering
relevant scientific research. Each feature is described with reference to published
articles, where it was used and with information about statistical significance of
used tests. Moreover, an information is given, whether the feature was defined
exactly as it is in this thesis or just in a similar way.

As all the studies are varying in the used language, sample size, validation cri-
teria, statistical analysis, tasks, age of people in cohorts, the precise comparison of
results is not possible. At least it can be stated, that almost half of all proposed
features already achieved significant results in identifying GD or HD in children
attending primary schools (1 st–4 th grade). The rest of the features were either
outperformed by others used in individual studies or their results (statistical signif-
icance, ACC etc.) were not mentioned.

Features tested on different disorders

The table in the Appendix A.6 is constructed akin as the table in the previous cat-
egory and consists of 7 PD features measuring the Archimedean spiral properties.
The difference is that the mentioned features had never been used in GD handwrit-
ing analysis before. Nevertheless, they prove to be significant in the cited studies
(significant statistical test of 5 features) and they measure physical characteristics of
the spiral. Those outcomes can be transferred to the analysis of online handwriting
affected by GD. For example, as can be seen in Figure 2.7, children identified with
DD were not able to complete the spiral without problems. The feature variability
of spiral width (SWVI) successfully showed, that a DD child changed the width
of individual loops a lot more than a child from the control group (see Table 2.4).
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Hence, the proposed features should be suitable for identification of GD in online
handwriting signals derived from spiral task. Their significance will be tested in
future analysis.

Newly designed features

In this work, 16 newly designed features are proposed (see Appendix A.7), assess-
ing mainly graphomotor tasks (loops, rainbow, saw). They provide detailed mea-
surements of spatial, temporal, and kinematic properties, which are necessary for
describing specific symptoms. Moreover, their complex intersection analysis which
can detect crossing of two different strokes was also introduced. Such measurement
was not yet introduced into the analysis of GD. It can bring clarity to automatic
errors counting, as children with HD tend to have more corrections of mistakes in
their handwriting [45]. Finally, a rhythmic structure of children handwriting was
already reported [118] explaining, that DD children can have deficits mediated by
the rhythm of their handwriting [117]. The newly designed features assessing the
tempo of handwriting as the number of strokes per duration in a specific trajectory
(on–surface/in–air) can prove to be a legitimate concept.

Selecting only specific features (in contrast to using the full set of features that
are available), has the advantage in preventing the curse of dimensionality in later
analysis, because the estimated size of the completed dataset will be around 500
observations. Also, the approach of tight cooperation with PS and SE during the
feature designing can take advantage of their tacit knowledge and experience [31,
62], which should result in more effectiveness and simplicity of designed features.
Moreover, the of the features is beneficial for their interpretation and later usage.

76 proposed features are precisely assessing both, graphomotor elements and
handwriting, taking into account temporal (ratio of the on–surface/in–air move-
ment, number of on–surface strokes normalized by on–surface duration etc.), kine-
matic (median of power spectrum of speed frequencies, median velocity in glob-
al/horizontal/vertical movement, etc.), dynamic (number of changes in tilt profile,
non–parametric coefficient of variation of azimuth, etc.), spatial properties of hand-
writing/drawing (spiral precision index, slope of stroke width, etc.) and utilizing ad-
vanced features such as measurement of complexity or noise–like behavior (TQWT,
Shannon entropy, etc.) of online handwriting signals.

Some features are analysing specific tasks from the general point of view (overall
duration, pressure, tilt, azimuth, number of interruptions, number of pen stops, etc.)
and others are analysing individual strokes separately (number of in–air strokes per
in–air duration, relative number of on–surface intra–stroke intersections, density of
path, slope of duration of strokes in–air, etc.).
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Due to the unique execution of graphomotor tasks, features specific to the tasks
had to be designed. Namely these are spiral specific features (degree of spiral drawing
severity, first order zero–crossing rate, etc.), loops specific features (distance between
neighbor local maxima in vertical projection, local minima in vertical projection,
etc.), saw specific features (median velocity at local maxima in vertical projection,
median of normalized width of teeth, etc.) and rainbow specific features (median
distance between forward/backward lines, duration between neighbor local maxima
in vertical projection, etc.).

This detailed quantification of online handwriting signals derived from the com-
prehend GA protocol will prepare a solid mathematical model, with which the symp-
toms will be constructed and the GDRS scale can be built on.

Graphomotor difficulties rating scale

The design of Graphomotor difficulties rating scale (GDRS) was outlined in Chap-
ter 3, with description of individual steps. The proposed design represents a novelty
in the field of GD handwriting analysis because an automated analytic scale based
on mathematical modelling of the product and the process of online handwriting
has never been published before. Moreover, this GDRS will contain approximately
500 individual GA expressions, which will ensure generalization of the outcomes.
The implementation of s–features, derived from simulated symptoms, together with
a genetic algorithm [46, 153, 155] and the gradient descent algorithm [69], ensures
optimal settings of the features for each symptom.

Presently, HD and GD are evaluated subjectively, either on global scales or on
analytical scales. The first ones give a general judgment of the written product,
but their usage is only minor [140]. They are time–consuming and consequently
expensive to complete. The other ones are nowadays dominantly used and de-
veloped [45, 47, 140, 142]. They assess several aspects of handwriting, such as
legibility, letter size, slant and spacing, line straightness, readability, velocity, etc.
These scales are less subjective than global scales, but they are still evaluated man-
ually and therefore expensive and cannot provide a detailed insight into the process
and the product of handwriting (i.e., accuracy, separation into strokes, fine motor
tremor, kinematic and dynamic measures, etc.) [177]. Countless number of new stud-
ies (e.g. [54, 96, 141, 169, 181]) prove immeasurable benefits of online handwriting
analysis and the GDRS is the next logical step in the research.

Some attempts to create broad automated analytical scales already exist. The
first study described [37] is the automation of the BHK scoring process. This im-
plementation only removes the manual aspect from assessing children handwriting.
The final BHK scores must be input manually. Also, the software neither informs
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about any feature values derived from the product/process of online handwriting,
nor delivers any measure of GD or HD based on those features.

The second one [7] involved a clustering analysis using PCA (Principal Compo-
nent Analysis) and K–Means clustering of various handwriting features with BHK
scale as a validation criterion. Children in this study were distributed to 5 groups
with different range of DD severity according to final BHK score. Authors conclude
that children with the same level of DD severity (final BHK score) manifested differ-
ent values of the same feature. One of the study limitations was setting thresholds
for the scores empirically. More methodological issues concerning the study could
be found in [36]. On the other hand, the GDRS scale will offer a more detailed
scoring system of each symptom. Also, the score of each symptom will be analyt-
ically computed by the gradient descent or a genetic algorithm, which will ensure
objectivity of the value.

From the extensive state–of–the–art review (see Section 1) it can be deducted,
that GD/HD are now dominantly researched either solely from the signal processing
point of view, or from the psychological point of view. However, this topic needs to
be researched by a wide range of experts from both fields, who cooperate as it is in
the matter of this newly designed GDRS scale.

Tunable Q–Factor Wavelet Transform utilization in GD analysis

In Chapter 4 an advanced signal processing technique of online handwriting based
upon Tunable Q–Factor Wavelet Transform (TQWT) was introduced. The features
derived from the TQWT were specifically designed for online handwriting analysis.
They have been already validated and published as a pilot study in the conference
paper [181] and later in the IEEE Access journal [54] by the author of this thesis.
The TQWT features showed a significant improvement in the HD identification on a
handwriting task (paragraph copying). Employing the SVM classification algorithm,
ACC was 79 %, in contrary to ACC equal to 75 % of an ML model trained with
the same algorithm on the conventional feature subset (CV) [181]. Moreover, the
combination of both subsets increased the classification performance of the ML
model to ACC equal to 85 % (9 features).

The benefit of TQWT features to the GD analysis was also tested on several
graphomotor tasks (TSK1–TSK7; see Section 2.2). The ML model achieved ACC
equal to 71 % (Random Forest classifier), where the significant features were derived
from the Archimedean spiral [54]. The combination of all features mentioned in
the study (i.e. Fractional derivative–FD, Modulation spectra–MS and CV) achieved
ACC equal to 84 % (10 features), where the TQWT features were derived from the
Archimedean spiral and saw tasks.
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The TQWT decomposes online handwriting signals 𝑥[𝑛] into components, from
which one is the clean signal 𝑥CL[𝑛] and the other is the residual component 𝑥RES[𝑛].
The 𝑥RES[𝑛] can be linked to poor dexterity, deficient fine motor skills or unspecified
motor clumsiness. For this reason, several techniques to measure the noise level were
in the mentioned studies presented, namely: signal–to–noise ratio (SNR) based upon
the Teager–Keiser Operator, Square Energy Operator, an energy ratio of 𝑥CL[𝑛] and
𝑥RES[𝑛] (see Equation 4.3), slope of the cumulative sum of 𝐸𝑑 and number of peaks
above the median of 𝐸𝑑, where 𝐸𝑑 denotes a derivative of 𝑥RES[𝑛] (see Equation 4.5).
Following the results, almost all techniques excluding Teager—Keiser operator and
Square energy operator, were selected as beneficial.

The analysis of TQWT features indicated, that the performance of classifica-
tion of GD in children could be increased and it could assess an unspecified motor
clumsiness and deficient fine motor skills linked with the DD.

The comparison of results with the state–of–the–art literature regarding GD
analysis based on machine learning algorithms showed, that TQWT conducted on
graphomotor tasks and on writing tasks was overcome by other advanced signal
processing techniques (see Table 5.1). Nevertheless, after considering the nationality
of enrolled children, the difference in ACC between ML models based upon MS and
TQWT features was only 2 %.

Tab. 5.1: Advanced signal processing techniques in literature

Author Feat Algo Results Num Task Subset NA
Mucha (2020) [106] FD XGBoost [28] ERR = 16 % 16 GT FD CZ
Galáž (2020) [54] MS RF ACC = 73 % 8 GT MS CZ
Asselborn (2018) [9] SP RF SEN = 97 %, SPE = 92 % 53 WT ALL FR
Mekyska (2017) [96] ZLC RF ACC = 79 % 1 GT ZLC IS

Feat – feature name, Algo – machine learning algorithm, Num – number of features in the trained model, Tasks – analysed
task, where GT denotes graphomotor task and WT denotes writing, FD – fractional derivative, MS – modulation spectra,
ZLC – Ziv-Lempel complexity, SP – Power spectral features, ERR – estimation error rate, ACC – classification accuracy,
SEN – sensitivity, SPE – specificity, RF – random forest, ALL – feature set containing advanced features and also
conventional ones, NA – denotes nationality: Czech (CZ), French (FR) and Israeli (IS).

5.3 Limits and future direction
The problems with the inaccurate definition of DD and description of symptoms,
mentioned in previous parts of this thesis (see Sections 1.1.3, and 2), may negatively
affect diagnostic professionals, such as psychologists (PS) and special educational-
ists (SE) and cause inconsistencies and disagreement in the final of a diagnosis.
Vague definitions of DD consist only of general statements and the important spec-
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ification of symptoms on the expert level is missing (see manuals DSM–V [5], ICD–
10 [175] and MKN–10 [176], which is a Czech translation of ICD–10).

In addition, the symptomatology of the DD depends onlanguage and nationality.
The explanation lays probably in orthographic depth of different languages (i.e. the
extent to which one phoneme corresponds to one grapheme and vice versa) [146]. For
example, it was reported that English children have a harder time to learn reading
compared to Czech children (opaque orthography) [25, 76]. Therefore, it can be
assumed, that children in England have more problems with learning to spell. This
spelling problem occurs as a symptom of DD in English–speaking countries. On the
other hand, in the Czech Republic DD is defined strictly as a motor disruption and
the language difficulties are linked to Dysorthography and to Dyslexia. Nevertheless,
the topic of the orthographic depth has not been yet examined on handwriting and
DD.

Regarding the practise, some manifestations of DD in handwriting are based on
direct observation and they are passed on from expert to expert via experienced
lore. Most of them correspond with the common symptoms but some of them were
proved invalid by scientific research. Good examples are laterality or grip [149],
which are partially still maintained in the experts’ practice.

Turning now to the online handwriting analysis, there is still need for more ac-
curate and symptom–optimized features. The proposed list is not complete (see Ap-
pendices A.5, A.6, and A.7) and presumably will be extended. The mathematical
models are able to describe almost all symptoms related to the process of hand-
writing. On the other hand, the analysis of the product of handwriting has some
limitations. Currently, there are missing on–line methods to measure symptoms
on the letter level, such as a precise measurement of space between letters/words,
determination of quality of letter forms in the handwritten product; or on the next
level, such as readability of the text or evaluation of the content.

The tasks assessing cognitive processes (CP) have not been quantified yet. Thanks
to their novelty and experimental design (they have never been analysed or used by
SE or PS before), it is not clear, how DD manifests itself in these types of tasks.
More precisely, which of the symptoms or how the symptoms should be simulated
(e.g. how to simulate drawing from memory in a child with DD). For this reason,
these tasks were left to the later exploration by using other validation criteria or by
the data driven approach.

Regarding the sample size at the time of writing of this thesis, data from children
were still being collected. The major drawback is the low number of cases identi-
fied as DD by SE. Also, inconsistency in external validation criteria has been found
between evaluations made by SE (information about diagnosis) and by children
themselves (final scores of HPSQ–C), which are not usually in agreement with each
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other. In some cases, the child obtains higher scores of HPSQ–C, which indicates
HD, but at the same time she/he has not been diagnosed with DD (by SE). On the
other hand, in some cases the HPSQ–C final scores were close to each other even if
one child was diagnosed with DD and the other was healthy (see Figures 2.8, 2.11,
and 2.13). Nevertheless, the selection of children records for feature presentations
was based on the feature differences, diagnosis, and if possible, on the most distinc-
tive HPSQ–C scores. Also, it was not possible to assess all aspects of all symptoms,
as between PS and SE is not a strong consensus, how exactly are different features
manifested (e.g. automation of handwriting). This problem is a clear example, why
the objective measurement (GDRS) of HD/GD is needed.

Moving on to the future work, proposed features will be tested, some of them can
be added to the symptoms, others can be optimized. For instance, the feature mea-
suring distance between the forward and backward lines of the rainbow (TSK 6; see
Figure 2.8) can be optimized as a measure of the “tightness” of forward and backward
lines, because children with GD are not able to draw the lines together. Also, other
advanced features could be deployed, based upon sigma–lognormal models, which
describe the velocity of planar movements as the summation of neuromuscular com-
ponents that have a weighted and time–shifted lognormal velocity profile [44, 113].
In this way a symptom dysfluency can be measured in time as a Signal–to–noise
ratio between the original velocity profile and the one reconstructed by the sigma–
lognormal model.

After the simulation of symptoms, the GDRS scale will be tested and optimized
on the recorded dataset. The GDRS will be validated by additional external criteria,
such as BHK (Hamstra–Bletz test) [65], HLS (Handwriting legibility scale) [11] etc.
The major benefit would be in providing a longitudinal study, which would observe
children outcomes of GDRS through progressing grades and could bring information
about typical and/or abnormal development of handwriting.

Also, to measure readability of the handwriting content, image processing tech-
niques based on neural networks should be tested, as it has been already proved in
analysis of Parkinson’s drawings (e.g. [99, 121, 163, 172]).

Besides, the GDRS could be tested in remediation process of children with DD
during their meetings with specialists. This application could objectively measure
the improvement of the child’s GA, which could be observed in the changes of
different subscale scores.

Finally, implementation of the GDRS into practice as an online supportive an-
alytic tool of GD/HD diagnosis is now in progress in the project founded by the
Technology Agency of the Czech Republic (TL03000287: Software for advanced di-
agnosis of graphomotor abilities). The final product will provide an online objective
measurement tool to the SE and PS, via processing actively recorded data of children
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by the Wacom Cintiq digitizer [59, 91]. The data will be sent to the cloud service
in real–time. Moreover, the software will report records of handwriting, analysis
of features and symptoms, GDRS subscores, and multimedia visualization of the
product and process to the evaluator.
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6 Conclusion
In Czech Republic, the prevalence of Developmental dysgraphia (DD) is approxi-
mately between 3–5 %. It is manifested by difficulties of graphomotor abilities (GA),
such as lower automaticity of handwriting, deficient fine motor skills, hesitation dur-
ing writing, etc. The possible manifestation of the DD can be identified early during
the first and second grades of primary school as graphomotor difficulties (GD) and
later during third and fourth grade as difficulties in handwriting (HD). The current
diagnosis is carried out by psychologists (PS) and special educationalists (SE), who
rely on their level of personal experience (tacit knowledge). Thus, the diagnostic
assessment performed by an expert evaluator and the final diagnosis is more or less
subjective. The accurate definition of GD, HD and DD on the expert level is miss-
ing in manuals DSM–V, ICD 10 and MKN 10 (Czech translation of ICD 10). This
produces inconsistencies in diagnoses between practicians. Moreover, the latest sci-
entific insights are not applied into practice (invalid effect of the laterality or the
type). Hence, the major limitations of the DD diagnosis were identified as: 1) miss-
ing objective methods for DD diagnosis; 2) diagnosis based on observation skills of
the evaluator. After the exploration of the mentioned research gap the Grapho-
motor difficulties rating scale (GDRS), which is built on advanced parametrization
techniques of online handwriting signals, was proposed as an objective, modern and
cost–effective solution. Moving to the individual aims of this thesis:

− The first aim was to identify symptoms associated with GD in school–aged
children and design new parameters quantifying them. Firstly, the new assess-
ment protocol was presented. It was uniquely designed in cooperation with
PS and SE in order to create tasks, where the symptoms of GD/HD could
manifest. The proposed GD assessment protocol is the most detailed and
complex protocol in the field and consists of 36 different tasks. Seventy–six
different features, which describe spatial, temporal, kinematic, dynamic, and
other properties of online handwriting were designed to measure the identified
symptoms. Some features were already tested on GD samples or on subjects
with different disorders/disabilities by other authors, which was proved by ad-
equate scientific literature. Also, 16 newly designed features were proposed.
Some examples: intersection analysis, tempo features, features based on the
vertical projection, etc. The robust mathematical modeling of symptoms has
laid solid foundations for construction of the GDRS.

− The second aim was to design a new graphomotor disabilities rating scale based
on computerised analysis of handwriting. The challenge of combining features
into symptoms was resolved by the symptom simulations. This approach en-
sures, that symptoms would be constructed via s–features (features extracted
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from simulations), that are not influenced by other co–occurring symptoms.
Moreover, in this way, different rates of GD severity can be simulated, which
would be not possible with the current dataset, that is lacking DD handwriting
records. Next, the search for the optimal combination of sets of features that
will represent identified symptoms was delegated to a genetic algorithm and
the gradient descent algorithm. The final scale will be represented by a set of
subscores produced by the symptoms. This step was supported by a notion,
that the number of accumulated symptoms will describe the extent of GD. The
GDRS has to be further tested by various external validation criteria. More-
over, the sets of features, that quantify identified symptoms may be slightly
changed and some features optimized on the basis of a consequent analysis of
the acquired dataset.

− The third aim was to design new online handwriting parameters based on ad-
vanced signal processing techniques. As shown by previous scientific research
in the field, a robust parametrization is needed in order to quantify perspic-
uous and also subtle/hidden complexities of handwriting. This led to the
design of parametrization techniques based on the Tunable Q Factor Wavelet
Transform (TQWT). The residual product of TQWT was identified to be as-
sociated with poor dexterity, deficient fine motor skills or unspecified motor
clumsiness. Several approaches were proposed to measure the noise–level of
the residual component. The TQWT features performance was tested when
identifying HD in a copying task utilizing machine learning (ML) techniques.
The achieved classification accuracy (ACC) was equal to 79.2 % employing
the SVM classifier, which was 5 % higher than for trained model based upon
conventional features only. The results of another analysis were published in
the IEEE Access journal, where TQWT features identified GD in graphomo-
tor tasks employing the Random forest classifier (RF). In this setting TQWT
features did not perform too well. The trained model achieved ACC equal to
71 %, which was around 3 % lower than the ACC of a model based on con-
ventional features only. Nevertheless, in both studies TQWT features were
beneficial to the most discriminating models and proved its importance in the
assessment of GD.

The GDRS represents a novel and modern objective measurement tool, that is
not yet available in the Czech Republic or in other countries. Its utilization will
help in the modernization of DD diagnosis and in the remediation process. With
proper research, it could be adapted into other languages as well. Moreover, the
methodology can be used and optimized for other diseases, which affect graphomo-
tor abilities, such as Autism, Attention Deficit Coordination Disorder (ADHD) or
Developmental Coordination Disorder (DCD).
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IWN Intra–writer normalization methods
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MANOVA Multivariate analysis of variance
MCA Morphological component analysis
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MKN–10 Mezinárodní klasifikace nemocí, 10. edice
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NIV Number of changes in velocity
OH Online handwriting
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PCA Principal Component Analysis
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TMHA The Minnesota Handwriting Assessment
TQWT Tunable Q–Factor Wavelet Transform
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TSK2 small Archimedean spiral
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TSK4 Lower loops
TSK5 Saw
TSK6 Rainbow
TSK7 Combined loops
TSK8–TSK28 Complex cognitive tasks
TSK29 Signature
TSK30 Copy of a sentence written in cursive letters
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TSK31 Copy of a paragraph written in cursive letters
TSK32 Dictation
TSK33 Copy of a paragraph written in capital letters
TSK34 Dictation
TSK35 Copy of a sentence written in capital letters
TSK36 Dictation
WT Writing task
XGBoost eXtreme Gradient Boosting
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A Appendix

A.1 Preliminary analysis: TSK3

SY Abbreviation Description K S K–S SH A B
1 ON: MPSTF Median of power spectrum of tremor frequencies 1.8 0.5 7.58×10−10 1.42×10−10 0 0
4 ON: ADEN Density in rectangular area around the handwriting 10 2.5 3.42×10−4 2.17×10−13 0 0
4 ON: PDEN Density of path 3.2 1 1.08×10−2 1.32×10−7 0 0
5 DUR Overall duration 5.5 1.5 5.27×10−2 2.78×10−8 0 0
5 ON: DUR Duration of on–surface movement 5.8 1.5 5.29×10−2 3.63×10−8 0 0
5 ON: SDUR(median) Median duration of on-surface’s strokes 5.3 1.3 1.55×10−1 4.29×10−6 0 0
7 ON: NCV Number of changes in velocity profile 8.7 2.1 3.43×10−3 5.56×10−11 0 0
7 ON: RNVC Relative number of changes in velocity profile 3.2 0.4 6.42×10−1 3.03×10−1 0 0
7 ON: MPSSF Median of power spectrum of speed frequencies 8.6 1.9 4.12×10−5 7.80×10−11 0 0

10 ON: {G}–VEL(median) Median global velocity on–surface 3.3 1.1 8.95×10−3 7.18×10−8 0 0
10 ON: {G}–VEL(95p) A 95th percentile of global velocity on–surface 3.2 0.9 1.59×10−1 2.19×10−6 0 0
10 ON: {V}–VEL(median) Median of vertical velocity on–surface 3.2 1 5.58×10−3 1.31×10−7 0 0
10 ON: {V}–VEL(95p) A 95th percentile of vertical velocity on–surface 3.5 1 6.01×10−2 9.38×10−7 0 0
10 ON: {H}–VEL(median) Median of horizontal velocity on–surface 3.5 1.2 6.72×10−3 1.45×10−8 0 0
10 ON: {H}–VEL(95p) A 95th percentile of horizontal velocity on–surface 3.4 1 1.33×10−1 1.92×10−6 0 0
11 ON: {G}–ACC(median) Median global acceleration on–surface 11.6 1.3 6.22×10−15 3.33×10−16 0 0
11 ON: {G}–ACC(95p) A 95th percentile of global acceleration on–surface 3.8 1.1 7.43×10−2 2.00×10−7 0 0
11 ON: {V}–ACC(95p) A 95th percentile of vertical acceleration on–surface 5.3 1.4 1.48×10−2 1.87×10−8 0 0
11 ON: {H}–ACC(95p) A 95th percentile of horizontal acceleration on–surface 4 1.2 6.49×10−2 1.12×10−7 0 0
17 PRESS: NC Number of changes in pressure profile 11.4 2.5 5.46×10−4 7.09×10−12 0 0
17 PRESS(ncv) Non-parametric coefficient of variation of pressure 3.9 1 1.25×10−1 3.68×10−5 0 0
18 NINT Number of interruptions 12.4 2.8 7.55×10−15 1.11×10−16 0 0
19 TILT: NC Number of changes in tilt profile 5.8 1.6 2.74×10−4 7.68×10−9 0 0
19 TILT (ncv) Non-parametric coefficient of variation of tilt 9.5 2 7.87×10−3 4.96×10−10 0 0
20 ON: {H}–NC Number of changes in horizontal projection 4.8 1.5 3.68×10−8 8.69×10−11 0 0
20 ON: {V}–NC Number of changes in vertical projection 8.9 2.2 8.06×10−8 7.27×10−13 0 0

Symptom numbers (SY): 1 – Dysfluency in line; 4 – Unstable density; 5 – Higher duration of writing; 7 – Dysfluency in time; 10 – Low
velocity; 11 – Low acceleration; 17 – An unstable pressure on the pen tip; 18 – Disability to perform longer strokes; 19 – Unstable tilt
of the pen; 20 – Uncertainty in leading of the line in space, Kurtosis (K), Skewness (S), Kolmogorov–Smirnov test (K–S) – 𝑝–value,
Shapiro–Wilk test (SH) – 𝑝–value, A – 1 denotes normal distribution of the features and 0 the opposite, B – denotes same as the A, but
the threshold of the normality tests were significantly lowered.
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A.2 Preliminary analysis: TSK4

SY Abbreviation Description K S K–S SH A B
1 ON: MPSTF Median of power spectrum of tremor frequencies 1.7 -0.1 2.98×10−7 1.59×10−9 0 0
4 ON: ADEN Density in rectangular area around the handwriting 17.9 3.4 3.52×10−5 2.44×10−15 0 0
4 ON: PDEN Density of path 7.2 1.7 2.22×10−2 2.46×10−9 0 0
5 DUR Overall duration 36.7 4.8 4.32×10−4 4.44×10−16 0 0
5 ON: DUR Duration of on–surface movement 4.5 1.3 3.51×10−2 2.17×10−7 0 0
5 ON: SDUR(median) Median duration of on-surface’s strokes 4 0.9 8.03×10−1 4.41×10−4 0 0
7 ON: NCV Number of changes in velocity profile 4.5 1.3 1.22×10−3 2.56×10−8 0 0
7 ON: RNVC Relative number of changes in velocity profile 3.9 -0.2 8.66×10−1 3.37×10−1 0 0
7 ON: MPSSF Median of power spectrum of speed frequencies 13.2 2.6 3.61×10−5 8.14×10−13 0 0

10 ON: {G}–VEL(median) Median global velocity on–surface 3.5 1 5.30×10−2 2.32×10−6 0 0
10 ON: {G}–VEL(95p) A 95th percentile of global velocity on–surface 4.6 1.2 7.11×10−2 4.14×10−6 0 0
10 ON: {V}–VEL(median) Median of vertical velocity on–surface 4.3 1.3 1.97×10−2 3.17×10−7 0 0
10 ON: {V}–VEL(95p) A 95th percentile of vertical velocity on–surface 3.5 1 5.23×10−2 1.30×10−5 0 0
10 ON: {H}–VEL(median) Median of horizontal velocity on–surface 3.4 1 1.09×10−1 2.86×10−6 0 0
10 ON: {H}–VEL(95p) A 95th percentile of horizontal velocity on–surface 4.8 1.3 8.74×10−2 1.16×10−6 0 0
11 ON: {G}–ACC(95p) A 95th percentile of global acceleration on–surface 4.5 1.2 1.68×10−2 4.98×10−7 0 0
11 ON: {V}–ACC(95p) A 95th percentile of vertical acceleration on–surface 4.4 1.2 6.56×10−2 9.25×10−7 0 0
11 ON: {H}–ACC(95p) A 95th percentile of horizontal acceleration on–surface 4.5 1.3 3.98×10−2 2.12×10−7 0 0
17 PRESS: NC Number of changes in pressure profile 10.2 2.4 7.60×10−4 6.69×10−12 0 0
17 PRESS(ncv) Non-parametric coefficient of variation of pressure 6.6 1.8 2.04×10−2 3.71×10−10 0 0
19 TILT: NC Number of changes in tilt profile 2.9 1 3.36×10−3 1.44×10−7 0 0
19 TILT (ncv) Non-parametric coefficient of variation of tilt 12 2.6 3.27×10−5 5.98×10−13 0 0
20 ON: {H}–NC Number of changes in horizontal projection 11 2.6 4.78×10−8 2.34×10−14 0 0
20 ON: {V}–NC Number of changes in vertical projection 8.8 2.4 1.55×10−7 1.83×10−14 0 0

Symptom numbers (SY): 1 – Dysfluency in line; 4 – Unstable density; 5 – Higher duration of writing; 7 – Dysfluency in time; 10 – Low
velocity; 11 – Low acceleration; 17 – An unstable pressure on the pen tip; 19 – Unstable tilt of the pen; 20 – Uncertainty in leading
of the line in space, Kurtosis (K), Skewness (S), Kolmogorov–Smirnov test (K–S) – 𝑝–value, Shapiro–Wilk test (SH) – 𝑝–value, A – 1
denotes normal distribution of the features and 0 the opposite, B – denotes same as the A, but the threshold of the normality tests were
significantly lowered.

132



A.3 Preliminary analysis: TSK35

SY Abbreviation Description K S K–S SH A B
2 ON: SHEIGHT (ncv) Non–parametric coefficient of variation of stroke height 7.6 1.8 1.65×10−2 1.02×10−8 0 0
3 AZIM: NC Number of changes in azimuth profile 4.6 0.6 8.21×10−1 2.82×10−2 0 0
3 AZIM (ncv) Non–parametric coefficient of variation of azimuth 14.7 2.9 5.96×10−4 2.73×10−13 0 0
4 ON: ADEN Density in rectangular area around the handwriting 6.6 1.7 1.51×10−2 9.06×10−9 0 0
4 ON: PDEN Density of path 3.2 0.9 3.72×10−1 4.43×10−5 0 0
5 DUR Overall duration 7.2 1.8 3.17×10−2 3.70×10−9 0 0
5 ON: DUR Duration of on–surface movement 5.8 1.6 9.17×10−3 1.21×10−8 0 0
5 ON: SDUR(median) Median duration of on-surface’s strokes 5.6 1.3 1.76×10−1 2.60×10−6 0 0
6 DURR Ratio of the on–surface/in–air duration 5.7 1.3 1.11×10−1 1.84×10−6 0 0
6 AIR: DUR Duration of in–air movement 7.9 1.9 1.64×10−2 1.27×10−9 0 0
6 AIR: SDUR (median) Median duration of in–air strokes 10.6 2.3 4.00×10−3 3.91×10−11 0 0
7 ON: NCV Number of changes in velocity profile 3.9 0.8 5.46×10−1 3.88×10−3 0 0
7 ON: RNVC Relative number of changes in velocity profile 3.2 -0.5 3.98×10−1 1.04×10−1 0 0
7 ON: MPSSF Median of power spectrum of speed frequencies 12.3 2.6 1.24×10−4 1.94×10−12 0 0
8 SDURR (slope) Slope of ratio of the on–surface/in–air stroke duration 7.3 1 1.02×10−1 6.38×10−7 0 0
8 ON: SDUR (slope) Slope of duration of strokes on-surface 3.8 -0.6 1.05×10−1 3.26×10−3 0 0
8 AIR: SDUR (slope) Slope of duration of strokes in–air 12.1 0.9 5.57×10−4 1.64×10−11 0 0
9 ON: TEMPO Number of on-surface strokes normalised by on–surface duration 12.8 2.4 1.49×10−1 1.92×10−10 0 0
9 AIR: TEMPO Number of in-air strokes normalised by in–air duration 4.3 1 3.31×10−1 1.66×10−4 0 0

10 ON: {G}–VEL(median) Median global velocity on–surface 2.5 0.5 1.55×10−1 3.77×10−3 0 1
10 ON: {G}–VEL(95p) A 95th percentile of global velocity on–surface 2.4 0.4 1.19×10−1 9.17×10−3 0 1
10 ON: {V}–VEL(median) Median of vertical velocity on–surface 2.7 0.7 3.93×10−2 5.08×10−4 0 0
10 ON: {V}–VEL(95p) A 95th percentile of vertical velocity on–surface 2.9 0.5 2.56×10−1 4.50×10−3 0 1
10 ON: {H}–VEL(median) Median of horizontal velocity on–surface 2.7 0.7 1.03×10−1 4.10×10−4 0 1
10 ON: {H}–VEL(95p) A 95th percentile of horizontal velocity on–surface 2.7 0.6 1.49×10−1 1.90×10−3 0 1
11 ON: {G}–ACC(95p) A 95th percentile of global acceleration on–surface 2.6 0.5 1.59×10−1 2.85×10−3 0 1
11 ON: {V}–ACC(95p) A 95th percentile of vertical acceleration on–surface 3.2 0.7 1.19×10−1 6.88×10−4 0 0
11 ON: {H}–ACC(95p) A 95th percentile of horizontal acceleration on–surface 2.5 0.6 1.13×10−1 1.24×10−3 0 1
12 ON: {G}–VEL(iqr) Inter–quartile range global velocity on-surface 2.4 0.5 2.30×10−1 4.76×10−3 0 1
12 ON: {V}–VEL(iqr) Inter–quartile range vertical velocity on-surface 2.8 0.5 1.40×10−1 8.02×10−3 0 1
12 ON: {H}–VEL(iqr) Inter–quartile range horizontal velocity on-surface 3.2 0.8 7.87×10−2 7.06×10−4 0 0
13 ON: {G}–ACC(iqr) Inter–quartile range global acceleration on-surface 2.4 0.5 1.07×10−1 2.77×10−3 0 1
13 ON: {V}–ACC(iqr) Inter–quartile range vertical acceleration on-surface 3 0.8 1.20×10−1 3.59×10−5 0 1
13 ON: {H}–ACC(iqr) Inter–quartile range horizontal acceleration on-surface 2.9 0.7 1.50×10−1 2.06×10−4 0 1
14 ON: {G}–VEL(slope) Slope of global velocity on–surface 12.8 2.4 4.80×10−2 2.31×10−10 0 0
14 ON: {V}–VEL(slope) Slope of vertical velocity on–surface 15.2 2.6 1.15×10−2 2.66×10−11 0 0
14 ON: {H}–VEL(slope) Slope of horizontal velocity on–surface 5.7 1.4 1.87×10−1 3.92×10−7 0 0
15 ON: {G}–ACC(slope) Slope of global acceleration on–surface 11.4 2.3 9.70×10−4 1.25×10−12 0 0
15 ON: {V}–ACC(slope) Slope of vertical acceleration on–surface 12.5 2.5 1.60×10−4 5.43×10−13 0 0
15 ON: {H}–ACC(slope) Slope of horizontal acceleration on–surface 10.3 2.5 1.30×10−4 2.24×10−13 0 0
17 PRESS: NC Number of changes in pressure profile 4 0.7 1.76×10−1 5.29×10−3 0 0
17 PRESS(ncv) Non-parametric coefficient of variation of pressure 3.9 0.9 4.42×10−1 2.81×10−4 0 0
18 NINT Number of interruptions 8.8 2.1 1.70×10−2 1.06×10−10 0 0
19 TILT: NC Number of changes in tilt profile 7.1 1.5 1.55×10−1 5.43×10−7 0 0
19 TILT (ncv) Non–parametric coefficient of variation of tilt 6.1 1.9 5.95×10−4 7.01×10−12 0 0

Symptom numbers (SY): 2 – Instability in amplitude of letters; 3 – Instability in inclination of letters; 4 – Unstable density; 5 – Higher duration
of writing; 6 – Visuospatial deficits; 7 – Dysfluency in time; 8 – Progressing fatigue; 9 – Tempo; 10 – Low velocity; 11 – Low acceleration; 12 – Low
variability of velocity; 13 – Low variability of acceleration; 14 – Gradual decrease of velocity; 15 – Gradual decrease of acceleration; 16 – Too
high/low pressure on the pen tip; 17 – An unstable pressure on the pen tip; 18 – Disability to perform longer strokes; 19 – Unstable tilt of the pen,
Kurtosis (K), Skewness (S), Kolmogorov–Smirnov test (K–S) – 𝑝–value, Shapiro–Wilk test (SH) – 𝑝–value, A – 1 denotes normal distribution of
the features and 0 the opposite, B – denotes same as the A, but the threshold of the normality tests were significantly lowered.
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A.4 Preliminary analysis: TSK36

SY Abbreviation Description K S K–S SH A B
1 ON: MPSTF Median of power spectrum of tremor frequencies 1.6 0.6 6.66×10−16 7.44×10−14 0 0
2 ON: SHEIGHT (ncv) Non–parametric coefficient of variation of stroke height 6.6 1.6 5.20×10−2 1.02×10−7 0 0
3 AZIM: NC Number of changes in azimuth profile 3.4 0.6 3.44×10−1 9.75×10−2 0 0
3 AZIM (ncv) Non–parametric coefficient of variation of azimuth 14 2.9 5.00×10−3 1.30×10−13 0 0
4 ON: ADEN Density in rectangular area around the handwriting 4.5 1.3 1.71×10−2 1.00×10−7 0 0
4 ON: PDEN Density of path 3.6 1 2.17×10−1 4.59×10−6 0 0
5 DUR Overall duration 5.3 1.6 1.46×10−3 3.50×10−10 0 0
5 ON: DUR Duration of on–surface movement 6.2 1.7 7.71×10−3 4.97×10−9 0 0
5 ON: SDUR(median) Median duration of on-surface’s strokes 13.5 2.2 1.48×10−1 2.49×10−9 0 0
6 DURR Ratio of the on–surface/in–air duration 8.3 1.4 5.35×10−1 3.92×10−6 0 0
6 AIR: DUR Duration of in–air movement 7.5 2 4.66×10−3 8.93×10−11 0 0
6 AIR: SDUR (median) Median duration of in–air strokes 11.5 2.5 1.19×10−2 1.03×10−11 0 0
7 ON: NCV Number of changes in velocity profile 5 1.2 2.23×10−1 2.96×10−5 0 0
7 ON: RNVC Relative number of changes in velocity profile 3 -0.6 6.68×10−1 7.27×10−3 0 1
7 ON: MPSSF Median of power spectrum of speed frequencies 16.4 2.8 1.14×10−3 8.52×10−12 0 0
8 SDURR (slope) Slope of ratio of the on–surface/in–air stroke duration 12.2 2.1 6.77×10−3 1.62×10−11 0 0
8 ON: SDUR (slope) Slope of duration of strokes on-surface 46.4 5.1 2.20×10−4 2.22×10−16 0 0
8 AIR: SDUR (slope) Slope of duration of strokes in–air 13.6 2.2 4.51×10−3 1.20×10−11 0 0
9 ON: TEMPO Number of on-surface strokes normalised by on–surface duration 13.1 2.2 2.19×10−1 2.49×10−9 0 0
9 AIR: TEMPO Number of in-air strokes normalised by in–air duration 2.7 0.3 5.59×10−1 1.58×10−1 0 1

10 ON: {G}–VEL(median) Median global velocity on–surface 2.4 0.4 3.96×10−1 2.08×10−2 0 1
10 ON: {G}–VEL(95p) A 95th percentile of global velocity on–surface 2.3 0.3 4.09×10−1 1.98×10−2 0 1
10 ON: {V}–VEL(median) Median of vertical velocity on–surface 2.9 0.7 2.87×10−1 2.07×10−3 0 1
10 ON: {V}–VEL(95p) A 95th percentile of vertical velocity on–surface 2.8 0.5 3.58×10−1 3.17×10−2 0 1
10 ON: {H}–VEL(median) Median of horizontal velocity on–surface 2.1 0.4 1.55×10−1 7.64×10−4 0 1
10 ON: {H}–VEL(95p) A 95th percentile of horizontal velocity on–surface 2.4 0.5 4.19×10−1 2.99×10−3 0 1
11 ON: {G}–ACC(95p) A 95th percentile of global acceleration on–surface 2.5 0.4 3.04×10−1 1.79×10−2 0 1
11 ON: {V}–ACC(95p) A 95th percentile of vertical acceleration on–surface 3.1 0.6 9.80×10−2 4.74×10−3 0 0
11 ON: {H}–ACC(95p) A 95th percentile of horizontal acceleration on–surface 2.3 0.4 2.11×10−1 3.94×10−3 0 1
12 ON: {G}–VEL(iqr) Inter–quartile range global velocity on-surface 2.5 0.5 2.32×10−1 2.17×10−2 0 1
12 ON: {V}–VEL(iqr) Inter–quartile range vertical velocity on-surface 3 0.6 3.91×10−1 3.18×10−2 0 1
12 ON: {H}–VEL(iqr) Inter–quartile range horizontal velocity on-surface 2.6 0.5 1.57×10−1 3.74×10−3 0 1
13 ON: {G}–ACC(iqr) Inter–quartile range global acceleration on-surface 2.3 0.3 5.72×10−1 2.96×10−2 0 1
13 ON: {V}–ACC(iqr) Inter–quartile range vertical acceleration on-surface 3.1 0.8 1.47×10−1 2.91×10−4 0 0
13 ON: {H}–ACC(iqr) Inter–quartile range horizontal acceleration on-surface 2 0.4 1.80×10−1 3.30×10−4 0 1
14 ON: {G}–VEL(slope) Slope of global velocity on–surface 6.6 -0.7 2.15×10−2 2.41×10−7 0 0
14 ON: {V}–VEL(slope) Slope of vertical velocity on–surface 5.2 -0.3 6.70×10−2 9.54×10−5 0 0
14 ON: {H}–VEL(slope) Slope of horizontal velocity on–surface 12.8 -1.7 1.93×10−2 2.28×10−10 0 0
15 ON: {G}–ACC(slope) Slope of global acceleration on–surface 8.2 0.1 3.12×10−3 1.36×10−9 0 0
15 ON: {V}–ACC(slope) Slope of vertical acceleration on–surface 12.4 1.8 1.44×10−3 5.92×10−11 0 0
15 ON: {H}–ACC(slope) Slope of horizontal acceleration on–surface 9.5 -1.7 5.03×10−4 5.78×10−11 0 0
17 PRESS: NC Number of changes in pressure profile 4.1 0.8 3.42×10−1 3.10×10−3 0 0
17 PRESS(ncv) Non-parametric coefficient of variation of pressure 4.9 1 3.97×10−1 2.43×10−4 0 0
18 NINT Number of interruptions 7.4 1.7 3.31×10−2 3.22×10−8 0 0
19 TILT: NC Number of changes in tilt profile 5.7 1.4 9.77×10−2 1.68×10−6 0 0
19 TILT (ncv) Non–parametric coefficient of variation of tilt 13.8 2.8 7.15×10−4 2.83×10−13 0 0

Symptom numbers (SY): 1 – Dysfluency in line; 2 – Instability in amplitude of letters; 3 – Instability in inclination of letters; 4 – Unstable density;
5 – Higher duration of writing; 6 – Visuospatial deficits; 7 – Dysfluency in time; 8 – Progressing fatigue; 9 – Tempo; 10 – Low velocity; 11 – Low
acceleration; 12 – Low variability of velocity; 13 – Low variability of acceleration; 14 – Gradual decrease of velocity; 15 – Gradual decrease of
acceleration; 16 – Too high/low pressure on the pen tip; 17 – An unstable pressure on the pen tip; 18 – Disability to perform longer strokes;
19 – Unstable tilt of the pen, Kurtosis (K), Skewness (S), Kolmogorov–Smirnov test (K–S) – 𝑝–value, Shapiro–Wilk test (SH) – 𝑝–value, A – 1
denotes normal distribution of the features and 0 the opposite, B – denotes same as the A, but the threshold of the normality tests were significantly
lowered.
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A.5 Features validated on GD handwriting

Study Abbreviation Name Sig Sym T U
Mekyska (2017) [96] ZLC Lempel–Ziv complexity measuring

technique
* 1 P 1

Mekyska (2017) [96] SHE Shannon entropy \ 1 P 1
Zvoncak (2019) [181] TQWT Tunable Q–Factor Waveleth Transform * 1 P 1
Asselborn (2018) [9] MPSTF Med of power spectrum of tremor

frequencies
* 1 P 1

Rosenblum (2018) [130] ON: SHEIGHT (ncv) Ncv of local maxima in vertical projection * 2 P 0
Mekyska (2017) [96] AZIM (ncv) Ncv of azimuth * 3 P 0
Asselborn (2020) [7] AZIM: NC Num of changes in azimuth profile \ 3 P 1
Asselborn (2020) [7] ON: PDEN Density of path \ 4 P 0
Asselborn (2020) [7] ON: ADEN Density in rectangular area around the

handwriting
\ 4 P 1

Rosenblum (2017) [133] ON: NIAI Num of on–surface intra–stroke intersections * 4,24 P 0
Mekyska (2017) [96] NINT Num of interruptions \ 20,18P,S 1
Mekyska (2019) [98] DUR Overall duration \ 5 S 1
Zvoncak (2018) [180] ON: DUR Duration of on-surface movement \ 5 S 1
Morello (2019) [100] ON: SDUR(med) Med duration of on-surface’s strokes * 5 S 1
Asselborn (2020) [7] AIR: DUR Duration of in-air movement * 6 S 0
Zvoncak (2018) [180] AIR: SDUR (med) Med duration of in-air strokes * 6 S 0
Chang (2013) [27] DURR Ratio of the on-surface/in-air duration * 6 S 0
Danna (2013) [34] ON: NCV Num of changes in velocity profile * 7 S 1
Danna (2013) [34] ON: RNVC Rel num of changes in velocity profile * 7 S 0
Asselborn (2020) [7] ON: MPSSF Med of power spectrum of speed frequencies * 7 S 0
Paz–Villagrán
(2014) [120]

ON: NPS Num of pen stops * 7 S 1

Mekyska (2017) [96] AIR: SDUR (sl) Sl of duration of strokes in–air \ 8 S 1
Mekyska (2017) [96] ON: SDUR (sl) Sl of duration of strokes on-surface \ 8 S 1
Galaz (2020) [54] ON: {G,H,V}–VEL(med) Med velocity * 10 S 0
Asselborn (2020) [7] ON: {G,H,V}–VEL(95p) A 95th percentile of velocity \ 10 S 0
Galaz (2020) [54] ON: {G,H,V}–ACC(med) Med acceleration * 11 S 0
Mekyska (2017) [96] ON: {G,H,V}–ACC(95p) A 95th percentile of velocity \ 11 S 1
Mekyska (2017) [96] ON: {G,H,V}–VEL(iqr) Range of velocity excluding some

outliers/extreme values
\ 12 S 1

Mekyska (2017) [96] ON: {G,H,V}–ACC(iqr) Range of acceleration excluding some
outliers/extreme values

\ 13 S 1

Asselborn (2020) [7] ON: {G,H,V}–VEL(sl) Sl of velocity profile \ 14 S 0
Mekyska (2017) [96] ON: {G,H,V}–ACC(sl) Sl of acceleration profile \ 15 S 1
Rosenblum (2017) [133] PRESS (med) Med of pressure \ 16 S 1
Asselborn (2020) [7] PRESS: NC Num of changes in pressure profile * 17 S 0
Mekyska (2017) [96] PRESS (sl) Sl of pressure profile \ 17,24 S 1
Mekyska (2017) [96] PRESS(ncv) Ncv of pressure \ 17 S 0
Mekyska (2017) [96] TILT (ncv) Ncv of tilt * 19,24 S 0
Mekyska (2017) [96] ON: SHEIGHT (sl) Sl of stroke width \ 24 S 1

Study – main author; year of publication and citation, Abbreviation – abbreviation of the feature, where {G,H,V} denotes
global (G) or horizontal (H) or vertical (V) movement; ON denotes on–surface movement, AIR denotes in–air movement
if not specified in the name, Name – name of the feature, Sig – significance, where * or \ informs about significance/non–
significance of the feature in the cited study, T – type denotes if the feature was assigned to the product (P) or process (S) of
handwriting, U – unique denotes if the designed feature in this thesis is exactly the same (1) or is just similar (0) to the one
cited in the study, symptom numbers (Sym): 1 – Dysfluency in line; 2 – Instability in amplitude of letters; 3 – Instability in
inclination of letters; 4 – Unstable density; 5 – Higher duration of writing; 6 – Visuospatial deficits; 7 – Dysfluency in time;
8 – Progressing fatigue; 9 – Tempo; 10 – Low velocity; 11 – Low acceleration; 12 – Low variability of velocity; 13 – Low
variability of acceleration; 14 – Gradual decrease of velocity; 15 – Gradual decrease of acceleration; 16 – Too high/low
pressure on the pen tip; 17 – An unstable pressure on the pen tip; 18 – Disability to perform longer strokes; 19 – Unstable
tilt of the pen; 20 – Inability to maintain handwriting on a line; 21 – Inability to return back in line; 22 – Uncertainty in
leading a line in space; 23 – Frequent overwriting; 24 – Writing under hand, ncv – non–parametric coefficient of variation,
med – median, sl – slope, num – number, rel – relative.
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A.6 Features validated on PD handwriting

Study Abbreviation Name Sig Sym T U
Luciano (2016) [88] 1stZC First order zero–crossing rate \ 1 P 1
Luciano (2016) [88] 2ndSm Second order smoothness * 1 P 1
Luciano (2016) [88] DoS Degree of spiral drawing severity * 1 P 1
Cascarano (2019) [26] ON: SPI Spiral precision index \ 4 P 1
Luciano (2016) [88] TGHTNS Spiral tightness * 4 P 1
Luciano (2016) [88] SWVI Variability of spiral width * 4 P 1
Luciano (2016) [88] MDS Mean drawing speed * 10 S 1

Study – main author; year of publication and citation, Abbreviation – abbreviation of the feature,
Name – name of the feature, Sig – significance, where * or \ informs about significance/non–significance
of the feature in the cited study, T – type denotes if the feature was assigned to the product (P) or
process (S) of handwriting, U – unique denotes if the designed feature in this thesis is exactly the same
(1) or is just similar (0) to the one cited in the study, symptom numbers (Sym): 1 – Dysfluency in line;
4 – Unstable density; 10 – Low velocity, ncv – non–parametric coefficient of variation, med – median,
sl – slope, num – number.
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A.7 Newly designed GD features

Abbreviation Name Sym Task T
ON: V–LMAX(ncv) Ncv of local maxima in vertical projection 2 3–5 P
ON: V–DLMAX(ncv) Ncv of distance between neighbour local

maxima in vertical projection
4 3, 4 P

ON:RNIAI Rel num of on-surface intra–stroke
intersections

4,
24

1–4, 7;
29–36

P

ON: V–LMIN (ncv) Ncv of local minima in vertical projection 20 3, 5, 6 P
ON: DFB (med) Med distance between the forward and

backward lines
21 6 P

ON: {H,V}–NC Num of changes in horizontal/vertical
projection

22 3, 4, 7 P

ON: V–VLMAX (med) Med velocity at local maxima in vertical
projection

22 5 P

ON: NDFB (med) Med of normalised width of teeth 22 5 P
ON: NIEI Num of on-surface inter-stroke intersections 23 29–36 P
ON: RNIEI Rel num of on-surface inter–stroke

intersections
23 29–36 P

ON: V–DURLMAX (ncv) Ncv of duration between neighbour local
maxima in vertical projection

7 3–7 S

SDURR (sl) Sl of ratio of the on-surface/in-air stroke
duration

8 3–7 S

ON: TEMPO Num of on-surface strokes normalised by
on-surface duration

9 3–7 S

AIR: TEMPO Num of in-air strokes normalised by in-air
duration

9 3–7 S

TILT: NC Num of changes in tilt profile 19 1–7; 29–36 S

Study – main author; year of publication and citation, Abbreviation – abbreviation of the feature,
where {H,V} denotes horizontal (H) or vertical (V) movement; ON denotes on–surface movement,
AIR denotes in–air movement if not specified in the name, Name – name of the feature, Task –
denotes type of the task (see Section 2), T – type denotes if the feature was assigned to the product
(P) or process (S) of handwriting, symptom numbers (Sym): 2 – Instability in amplitude of letters;
4 – Unstable density; 6 – Visuospatial deficits; 7 – Dysfluency in time; 8 – Progressing fatigue;
9 – Tempo; 19 – Unstable tilt of the pen; 20 – Inability to maintain handwriting on a line; 21 –
Inability to return back in line; 22 – Uncertainty in leading a line in space; 23 – Frequent overwriting;
24 – Writing under hand, ncv – non–parametric coefficient of variation, med – median, sl – slope,
num – number.
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