Univerzita Palackého v Olomouci Přírodovědecká fakulta Katedra optiky

BAKALÁŘSKÁ PRÁCE

Měření závislosti polarizační charakteristiky prostorového modulátoru světla na geometrii experimentálního uspořádání

Vypracoval: Studijní program: Studijní obor: Forma studia: Vedoucí bakalářské práce: Termín odevzdání práce: Jaroslav Žádník B1701 Fyzika 1701R054 Digitální a přístrojová optika Prezenční Mgr. Michal Baránek, Ph.D. květen 2019

Prohlášení

Prohlašuji, že jsem předloženou bakalářskou práci vypracoval samostatně pod vedením Mgr. Michala Baránka, Ph.D. a že jsem použil zdrojů, které cituji a uvádím v seznamu použitých pramenů.

V Olomouci dne 16. května 2019

Jaroslav Žádník

Bibliografická identifikace

Jméno a příjmení autora	Jaroslav Žádník
Název práce	Měření závislosti polarizační charakteristiky
	prostorového modulátoru světla na geometrii
	experimentálního uspořádání
Typ práce	Bakalářská
Pracoviště	Katedra optiky
Vedoucí práce	Mgr. Michal Baránek, Ph.D.
Rok obhajoby práce	2019
Abstrakt	Odrazné prostorové modulátory světla před-
	stavují optoelektrické přístroje, které nachází
	řadu aplikací v modení optice. V experimentál-
	ních uspořádáních je displej z kapalných krys-
	talů, který tvoří aktivní část modulátoru, běžně
	osvětlen šikmo dopadajícím světelným svazkem.
	Cílem bakalářské práce je měření polarizačních
	vlastnostní prostorového modulátoru světla v
	závislosti na úhlu dopadu vstupního svazku.
Klíčová slova	prostorový modulátor světla, kapalné krystaly,
	polarizace
Počet stran	30
Počet příloh	0
Jazyk	český

Bibliographical identification

Autor's first name and surname Title	Jaroslav Žádník Measurement of the polarization properties of spatial light modulator in dependence on the experimental setup geometry
Type of thesis	Bachelor
Department	Department of Optics
Supervisor	Mgr. Michal Baránek, Ph.D.
The year of presentation	2019
Abstract	Spatial light modulators are optoelectronic devices with many applications in a modern optics. The aim of this work is to measure the polarization properties of spatial light modu- lator in dependence on the incident angle of light beam.
Keywords	spatial light modulator, liquid crystals, pola- rization
Number of pages	30
Number of appendices	0
Language	czech

Obsah

11		
L • T	Prosto	prový modulátor světla
	1.1.1	Využití
	1.1.2	LCOS
	1.1.3	Geometrie experimentu s PMS
1.2	Polariz	zace
	1.2.1	Polarizační elipsa
	1.2.2	Jonesův formalismus
	1.2.3	Stokesův formalismus
	1.2.4	Měření polarizace
Exp	erimei	nt
2.1	Promě	eření polarizačních prvků
	2.1.1	Polarizátor
	2.1.2	Fázová destička
2.2	Opako	vatelnost měření
2.3	Popis	experimentu
2.4	Výsled	lky
	v	
	2 Exp 2.1 2.2 2.3 2.4	 1.1.1 1.1.2 1.1.3 2 Polariz 1.2.1 1.2.2 1.2.3 1.2.4 Experiment 2.1 Promě 2.1.1 2.1.2 2.2 Opako 2.3 Popis 2.4 Výsleo

Úvod

Prostorové modulátory světla (PMS) představují v optických aplikacích víceúčelový prvek, využívající elektrooptický jev k modulování elektromagnetické vlny. Aktivní plocha displeje je složena z pixelů, které obsahují kapalné krystaly. Vlivem přivedeného elektrického pole dochází ke změně orientace kapalných krystalů a tím pádem i k modulaci dopadající elektromagnetické vlny.

Dle způsobu modulace můžeme PMS rozdělit na amplitudové a fázové. Další dělení závisí na konstrukci PMS, kdy je dělíme na průchozí a odrazné. Zaměříme-li se na odrazný fázový PMS, nabízí se nám dva způsoby, jak jej zakomponovat do experimentu. U prvního způsobu dopadá na PMS svazek světla kolmo, odráží se a dále se pomocí dělícího prvku vede optickou soustavou. Druhá možnost pracuje s dopadem světelného svazku na PMS pod určitým úhlem. Zde je třeba brát v potaz úhel, pod jakým svazek světla na PMS dopadá. V této bakalářské práci budeme pracovat s fázovým odrazným PMS Hamamatsu X10468 [1]. Výrobce udává maximální úhel, pod kterým může svazek světla dopadat na PMS. Blíže ale nespecifikuje, co se stane, pokud bude úhel větší. Předmětem této práce je měření polarizačního stavu modulovaného světla v závislosti na hodnotě signálu přivedeného na PMS a velikosti úhlu, pod kterým svazek světla dopadá na PMS.

Kapitola 1

Teorie

1.1 Prostorový modulátor světla

Prostorové modulátory světla (PMS) jsou dynamické elektrooptické prvky, díky kterým můžeme ovlivňovat amplitudu i fázi elektromagnetického vlnění. PMS tak dělíme na amplitudové a fázové, dále také na propustné a odrazné.

Změna amplitudy nebo fáze je způsobena změnou optických vlastností jednotlivých pixelů, ze kterých je aktivní plocha PMS složena. Každý pixel je tvořen kapalnými krystaly, přičemž každý pixel můžeme ovládat nezávisle na ostatních pixelech.

Optické vlastnosti kapalných krystalů lze měnit změnou přiloženého elektrického pole, magnetického pole, mechanickou vlnou, nebo jinou elektromagnetickou vlnou. Kapalné krystaly mají doutníkový tvar a vlivem působení výše zmíněných vnějších sil mohou měnit svou orientaci a tím i prošlé elektromagnetické vlnění. Pokud je k pixelům přiloženo elektrické pole, kapalné krystaly změní svou orientaci a tím i index lomu. V tomto případě mluvíme o elektrooptickém jevu.

1.1.1 Využití

PMS nachází široké spektrum využití v moderní optice, a to hlavně díky schopnosti dynamicky měnit zobrazované mapy na aktivním displeji. Jelikož může být každý pixel ovládán zvlášt, můžeme toho využít například při korekci aberací [2]. Pomocí určitých algoritmů jsou pixely nastaveny tak, aby se modulovaná vlnoplocha co nejvíce blížila ideální vlnoploše.

Významnou a novou aplikací v oblasti optiky je použití PMS při optických manipulacích, mluvíme o optické pinzetě (Obr. 1.1) [3]. Pomocí PMS můžeme laserový svazek zaměřit do konkrétního místa v prostoru. Vlivem silového působení laserového svazku dokážeme manipulovat s mikročásticemi a nanočásticemi.

Další využití můžeme nalézt při tvorbě atypických světelných polí nebo difrakčních mřížek, kdy pomocí jednotlivých pixelů můžeme rozdělit aktivní plochu displeje [4, 5]. Toho se využívá také k rozdělení vstupní vlny do několika jednotlivých vln s určitými vlastnostmi.

PMS může také nahradit klasické optické prvky, popřípadě jejich kombinace [6]. PMS tak může pracovat jako spojná nebo rozptylná čočka.

1.1.2 LCOS

LCOS (Liquid Crystal On Silicon) PMS je elektricky adresovaný odrazný fázový PMS založený na technologii kapalných krystalů umístěných na křemíku (Obr. 1.2). Vlivem přiloženého napětí na pixely nastává elektrooptický jev, při kterém se mění index lomu pixelů a následně dochází k modulování procházející vlny. V této bakalářské práci budou veškerá měření prováděna na modulátoru Hamamatsu X10468, který je ovládán pomocí PC a je s ním propojen přes DVI rozhraní (Obr. 1.3). Velikost aktivního displeje je 800 x 600 pixelů, a velikost jednoho pixelu je $20 x 20 \mu m$ [1]. Hlavními výhodami oproti průchozím modulátorům jsou jemné prostorové rozlišení a velký faktor zaplnění.

Obrázek 1.2: Průřez aktivním displejem LCOS [1].

Obrázek 1.3: Fázový prostorový modulátor světla Hamamatsu X10468. Řídící jednotka (vlevo) je propojena s částí obsahující aktivní displej (vpravo) [1].

1.1.3 Geometrie experimentu s PMS

Odrazný fázový modulátor světla můžeme do experimentu zakomponovat dvěma způsoby. První možnost je s použitím dělícího prvku, například dělící kostky (Obr. 1.4). V tomto případě dochází k velkým ztrátám energie a mohou také nastat parazitní odrazy.

Ve druhém případě svazek světla dopadá pod určitým úhlem θ na PMS (Obr. 1.5). Nastává zde však otázka, jak velký úhel θ zvolit. Výrobcem doporučovaná maximální velikost je 5°. Dále ale neudává, co se stane s modulovaným světlem. Tento problém je předmětem bakalářské práce, kdy bude měřena polarizace modulovaného světla v závislosti na velikosti úhlu θ a hodnotě signálu přivedeného na PMS.

Obrázek 1.4: PMS zakomponovaný v soustavě s dělící kostkou DK, D značí detektor. Soustavou prochází svazek světla s definovanou polarizací P.

Obrázek 1.5: Svazek světla dopadající na PMS pod úhlem θ . Detektor je označen D. Soustavou prochází svazek světla s definovanou polarizací P.

1.2 Polarizace

Polarizace je vlastnost monochromatického elektromagnetického vlnění, která vyjadřuje časovou i prostorovou závislost vektoru elektrické intenzity \mathbf{E} [7]. Podíváme-li se proti směru šíření elektromagnetické vlny a koncový bod vektoru \mathbf{E} se pohybuje neuspořádaně, mluvíme o nepolarizovaném světle. Pohybuje-li se však po definované křivce, jedná se o polarizované světlo.

V obecném případě koncový bod vektoru **E** opisuje elipsu. Mohou však nastat dva speciální případy. V prvním případě tvar elipsy přechází na úsečku, mluvíme o lineární polarizaci. Ve druhém případě tvar elipsy přechází na kružnici, mluvíme o kruhové polarizaci, která může být levotočivá nebo pravotočivá. Pokud se podíváme proti směru šíření elektromagnetické vlny a koncový bod vektoru **E** se pohybuje ve směru otáčení hodinových ručiček, jedná se o pravotočivou kruhovou polarizaci. U levotočivé kruhové polarizace je směr otáčení vektoru **E** opačný.

1.2.1 Polarizační elipsa

Zjistěme rovnice polarizační křivky elementární elektromagnetické vlny. Uvažujme vlnu, šířící se ve směru osy z v kladném směru fázovou rychlostí c. V reálném vyjádření jsou složky vektoru $\mathbf{E} = (E_x, E_y, E_z)$, potom

$$E_x = A_x \cos(\omega t - kz + \delta_x)$$
$$E_y = A_y \cos(\omega t - kz + \delta_y)$$
(1.1)

 $E_z = 0$

kde A_x a A_x značí reálné amplitudy, $\omega = kc$ je úhlová frekvence a δ_x , δ_y vyjadřují počáteční x-ovou a y-ovou složku vektoru **E** [8].

Vyloučíme-li výraz $\omega t - kz$ z rovnice (1.1), získáme tak rovnici polarizační elipsy ve tvaru

$$\left(\frac{E_x}{A_x}\right)^2 + \left(\frac{E_y}{A_y}\right)^2 - 2\frac{E_x E_y}{A_x A_y}\cos\delta = \sin^2\delta,\tag{1.2}$$

kde $\delta = \delta_y - \delta_x$ značí fázový rozdíl mezi x-ovou a y-ovou složkou vektoru **E** [8].

Elipsu můžeme vepsat do obdelníku, jehož strany mají velikost právě dvojnásobku hodnot A_x a A_y . Pomocí δ můžeme zjistit tvar i natočení polarizační elipsy. Fázový rozdíl nabývá hodnot $\delta \in \langle 0, 2\pi \rangle$. Zde mohou nastat dva speciální případy. Pokud je $\delta = \pm \pi/2$ a zároveň $A_x = A_y$, z elipsy se stává kružnice. Pokud je sin $\delta > 0$, pak po elipse obíhá koncový bod vektoru **E** ve směru hodinových ručiček. Jedná se o vlnu pravotočivě polarizovanou.V opačném případě, kdy sin $\delta < 0$, obíhá koncový bod vektoru **E** proti směru hodinových ručiček, mluvíme o vlně levotočivě polarizované. Nastene-li případ, kdy $\delta = 0$ nebo $\delta = \pi$, polarizační elipsa se změní na lineární

polarizaci.

1.2.2 Jonesův formalismus

Polarizované světlo můžeme popsat pomocí Jonesova formalismu. Pro popis využijeme maticovou reprezentaci polarizace vyjádřenou Jonesovým vektorem \mathbf{J} . Jonesovy vektory jsou normované, tím pádem mají jednotkovou velikost. Udávají pouze směr vektoru

E, nikoliv velikost. Obecný tvar normovaného Jonesova vektoru je dán vztahem

$$\mathbf{J} = \frac{1}{\sqrt{A_x^2 + A_y^2}} \begin{pmatrix} A_x \\ A_y \exp(i\delta) \end{pmatrix}.$$
 (1.3)

Pro $\delta = m\pi$, kde $m \in \mathbb{Z}$ a $A_y/A_x = \tan \alpha = \sin \alpha / \cos \alpha$ přechází vztah (1.3) na

$$\mathbf{J} = \begin{pmatrix} \cos \alpha \\ \pm \sin \alpha \end{pmatrix},\tag{1.4}$$

kde "+" platí pro sudá celá čísla a "–" pro lichá celá čísla. Za těchto podmínek hovoříme o Jonesově vektoru pro lineární polarizaci. Pro $\delta = (2m+1)(\pi/2)$, kde $m \in \mathbb{Z}$ a zároveň $A_x = A_y$, přechází vztah (1.3) na

$$\mathbf{J} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ \pm i \end{pmatrix},\tag{1.5}$$

kde "+" platí pro sudá celá čísla a "–" pro lichá celá čísla. Vzhledem k těmto podmínkám hovoříme v prvním případě o pravotočivé kruhové polarizaci. Ve druhém případě se jedná o levotočivou kruhovou polarizaci.

Zaveďme Jonesovy matice optických prvků, s jejichž pomocí můžeme popsat průchod světla optickou soustavou. Pro lineární polarizátory orientované horizontálně ve směru osy x a vertikálně ve směru osy y platí

$$\mathbf{P}_x = \begin{pmatrix} 1 & 0\\ 0 & 0 \end{pmatrix}, \quad \mathbf{P}_y = \begin{pmatrix} 0 & 0\\ 0 & 1 \end{pmatrix}. \tag{1.6}$$

Jako další optický prvek můžeme definovat fázovou destičku. Fázová destička zavádí fázové zpoždění Δ mezi složky E_x a E_y . Pokud je $\Delta = \pi/2$, pak hovoříme o čtvrtvlnné fázové destičce

$$\mathbf{FD}\,\lambda/4 = \begin{pmatrix} 1 & 0\\ 0 & -i \end{pmatrix}.\tag{1.7}$$

V případě, kdy je $\Delta=\pi,$ mluvíme o půlvlnné fázové destičce

$$\mathbf{FD}\,\lambda/2 = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}.\tag{1.8}$$

Na předešlé Jonesovy matice nyní můžeme aplikovat transformační matici R, abychom získali Jonesovy matice optických prvků natočených vůči horizontální ose x o úhel σ

$$\mathbf{R}(\sigma) = \begin{pmatrix} \cos\sigma & \sin\sigma \\ -\sin\sigma & \cos\sigma \end{pmatrix}.$$
 (1.9)

Nyní můžeme na vztahy (1.6),(1.7) a (1.8) aplikovat transformační matici.

Pro lineární polarizátor natočený o úhel α vůči horizontální osex

$$\mathbf{LP}(\alpha) = \mathbf{R}(-\alpha)\mathbf{P}_{x}\mathbf{R}(\alpha) = \begin{pmatrix} \cos^{2}\alpha & \sin\alpha\cos\alpha\\ \sin\alpha\cos\alpha & \sin^{2}\alpha \end{pmatrix}.$$
 (1.10)

Čtvrtvlnná fázová destička natočená o úhel β vůči horizontální osex

$$\mathbf{FD}\,\lambda/4\,(\beta) = \mathbf{R}(-\beta)\,\mathbf{FD}\,\lambda/4\,\mathbf{R}(\beta) = \begin{pmatrix} \cos^2\beta - i\sin^2\beta & (1+i)\cos\beta\sin\beta\\ (1+i)\cos\beta\sin\beta & \sin^2\beta - i\cos^2\beta \end{pmatrix}.$$
(1.11)

Půlvlnná fázová destička natočená o úhel γ vůči horizontální osex

$$\mathbf{FD}\,\lambda/2(\gamma) = \mathbf{R}(-\gamma)\,\mathbf{FD}\,\lambda/2\,\mathbf{R}(\gamma) = \begin{pmatrix} \cos^2\gamma - \sin^2\gamma & 2\cos\gamma\sin\gamma\\ 2\cos\gamma\sin\gamma & \sin^2\gamma - \cos^2\gamma \end{pmatrix}.$$
 (1.12)

Pomocí těchto optických prvků a jejich kombinací, můžeme definovat libovolný polarizační stav.

1.2.3 Stokesův formalismus

Popis polarizace pomocí Stokesova formalismu, můžeme použít i pro částečně polarizované světlo, a následně určit jeho míru polarizace [9]. Míru polarizace q vyjadřujeme stupněm polarizace

$$q = \sqrt{\frac{P_1^2 + P_2^2 + P_3^2}{P_0}},\tag{1.13}$$

kde P_0, P_1, P_2, P_3 jsou Poincarého parametry, které zjistíme následovně

$$P_0 = I_H + I_V, \qquad P_1 = I_H - I_V, \qquad P_2 = I_D - I_A, \qquad P_3 = I_L - I_P, \qquad (1.14)$$

kde $I_H, I_V, I_D, I_A, I_L, I_P$ jsou hodnoty intenzit patřící horizontální (H), vertikální (V), diagonální (D), antidiagonální (A), levotočivé kruhové (L) a pravotočivé kruhové (P) polarizaci. Stupěň polarizace nabývá hodnot $q \in \langle 0, 1 \rangle$, přičemž q = 0 pro nepolarizované světlo a q = 1 pro polarizované světlo.

Zaveďme Stokesovy parametry

$$S_0 = \frac{P_0}{P_0} = 1, \qquad S_1 = \frac{P_1}{P_0}, \qquad S_2 = \frac{P_2}{P_0}, \qquad S_3 = \frac{P_3}{P_0}.$$
 (1.15)

Mezi Stokesovými parametry a parametry polarizační elipsy A_x, A_y a δ lze najít převodní vztah. Rozložme normovaný Jonesův vektor (1.3), kde $A_x + A_y = 1$ do bází a následně vyjádřeme relativní intenzitu a dosaď me do (1.14). Stokesovy parametry tak můžeme vyjádřit vztahy

$$S_0 = A_x^2 + A_y^2, \quad S_1 = A_x^2 - A_y^2, \quad S_2 = 2A_x A_y \cos \delta, \quad S_3 = -2A_x A_y \sin \delta.$$
(1.16)

Dále je můžeme převést na parametry polarizační elipsy

$$A_x = \sqrt{\frac{S_0 + S_1}{2}}, \qquad A_y = \sqrt{\frac{S_0 - S_1}{2}}, \qquad \delta = -\arctan\frac{S_3}{S_2}.$$
 (1.17)

U Stokesovy metody je vhodné uvést Müellerovu matici \mathbb{M} , což je transformační matice, která nám popisuje, jak optický prvek působí na světlo s definovanou polarizací. Mezi vstupním Stokesovým vektorem **S** (ve vztahu 1.18 počítáme s inverzním vstupním Stokesovým vektorem **S**⁻¹) a výstupním Stokesovým vektorem **S**' lze najít vztah

$$\mathbb{M} = \mathbf{S}^{\prime}\mathbf{S}^{-1} = \begin{bmatrix} S_{0}^{\prime} \\ S_{1}^{\prime} \\ S_{2}^{\prime} \\ S_{3}^{\prime} \end{bmatrix} \begin{bmatrix} S_{0} \\ S_{1} \\ S_{2} \\ S_{3} \end{bmatrix}^{-1} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44} \end{bmatrix}.$$
 (1.18)

Oproti Jonesovu formalismu má Stokesuv formalismus dvě značné výhody. Pomocí Stokesovy metody můžeme určit stupeň polarizace světla.

Druhou výhodou ve srovnání s Jonesovým formalismem je fakt, že Stokesovy vektory jsou vyjádřeny pomocí intenzity světla, kterou přímo měříme.

Z pohledu fyzikální interpretace je vhodnější Jonesův formalismus, neboť přímo obsahuje parametry polarizační elipsy A_x , $A_y a \delta$, se kterými můžeme přímo pracovat nebo je vykreslovat.

1.2.4 Měření polarizace

Pro měření polarizace v experimentu, byla zvolena Stokesova metoda. U neznámé polarizace změříme průmět jejich intenzit do bází I_H , I_V , I_D , I_A , I_L , I_P . Tento roklad provádíme pomocí čtvrtvlnné a půlvlnné fázové destičky a lineárního polarizátoru. Jednotlivé bázové složky polarizace rozložíme na lineární polarizaci, jejíž intenzitu následně měříme. Natočením polarizátoru o určitý úhel oddělíme ostatní složky. Následně určíme Stokesovy parametry podle (1.14) a (1.15). Parametry polarizační elipsy A_x , A_y a δ zjistíme dle (1.17). Na (Obr. 1.6) můžeme vidět schéma měření.

Obrázek 1.6: Definice a měření polarizace.

Laserový svazek vyvedeme pomocí optického vlákna V na kolimační čočku K. Následně v definiční soustavě, která se skládá z linearního polarizátoru, čtvrtvlnné fázové destičky a půlvlnné fázové destičky definujeme polarizační stav. Pomocí měřící soustavy rozložíme polarizaci do průmětů bází a následně měříme výkon jednotlivých bází na detektoru D.

Pro rozklad neznámé polarizace do bází je nutné znát úhly natočení vůči horizontální ose x všech optických prvků, ty jsou uvedeny v (Tab. 1.1).

Natočení optických prvků	FD $\lambda/4$	FD $\lambda/2$	LP
Horizontální	0°	0°	0°
Vertikální	90°	45°	0°
Diagonální	45°	22.5°	0°
Antidiagonální	-45°	-22.5°	0°
Levotočivá	0°	-22.5°	0°
Pravotočivá	0°	22.5°	0°

Tabulka 1.1: Hodnoty natočení optických prvků pro rozklad neznámé polarizace do bází [10].

Kapitola 2

Experiment

Před měřením polarizačních vlastností PMS, musíme provést proměření polarizačních prvků se kterými budeme pracovat. Proměření je nutné z toho důvodu, abychom mohli přesně definovat polarizační stav a následně ho změřit. Získáme tak osy polarizačních prvků, které zjistíme z pozic maxim a minim u detekovaného výkonu.

2.1 Proměření polarizačních prvků

Používáme He-Ne laser o vlnové délce 632,8 nm a výkonu 20 mW a detektor Thorlabs PM 100 se senzorem S120A. Měření probíhalo pro hodnoty od 0° do 360° s krokem 10°. Vzhledem k manuálnímu odečítání hodnot jsou úhlové pozice stanoveny s přesností 0,5°. Budeme proměřovat polarizátor, čtvrtvlnnou fázovou destičku a půlvlnnou fázovou destičku pro definiční sestavu a stejné prvky také pro měřící sestavu. Pro zpracování naměřených hodnot byl použit program MATLAB.

2.1.1 Polarizátor

K proměření lineárního polarizátoru (LP) byl použit kolimovaný svazek, procházející polarizačním děličem, který oddělil vertikální složku polarizace. Prošlý svazek s lineární horizontální polarizací dopadal na měřený LP.

Naměřené hodnoty pro LP jsou proloženy křivkou $\cos^2(\alpha - s)$, kde je lineární polarizátor natočen o úhel α a *s* udává posunutí křivky vůči naměřeným hodnotám (Obr. 2.1, 2.2). Zjištěné hodnoty úhlů *s* udávají orientaci osy LP, která je totožná s osou *x*.

$$LP(1) = 10^{\circ}, 190^{\circ}, \qquad LP(2) = 136^{\circ}, 316^{\circ}.$$
 (2.1)

Obrázek 2.1: Detekovaný výkon lineárního polarizátoru 1 v závislosti na úhlu α . Maximalní hodnoty výkonu jsou při 10° a 190°.

Obrázek 2.2: Detekovaný výkon lineárního polarizátoru 2 v závislosti na úhlu α . Maximalní hodnoty výkonu jsou při 136° a 316°.

2.1.2 Fázová destička

Při měření byla fázová destička (FD) umístěna mezi dva lineární polarizátory, přičemž oba polarizátory byly natočeny v horizontálním směru. Na FD tak dopadal svazek s horizontální polarizací. FD zavedla definovaný fázový posun Δ mezi složky A_x a A_y .

Čtvrtvlnná fázová destička

Čtvrtvlnná fázová destička zavádí mezi složky A_x a A_y fázový posun $\Delta = \pi/2$. Používá se k transformaci kruhově polarizované světla na světlo lineárně polarizované a naopak.

Čtvrtvlnná fázová destička tak vstupní horizontální polarizaci postupně mění na

kruhovou s periodou $\pi/2$. Pokud by polarizátory, mezi nimiž je umístěna FD $\lambda/4$ na sebe byly kolmé, pohybovaly by se naměřené hodnoty v intervalu normované intenzity $j \in \langle 0; 0, 5 \rangle$ (Obr. 2.3, 2.4). Naměřené hodnoty jsou proloženy křivkou ve tvaru $0,5 + 0.5 \cdot \cos^2(2[\beta - s])$

Obrázek 2.3: Detekovaný výkon čtvrtvlnné fázové destičky 1 v závislosti na úhlu β . Maximalní hodnoty výkonu jsou při 6°, 96°, 186° a 276°

Obrázek 2.4: Detekovaný výkon čtvrtvlnné fázové destičky 2 v závislosti na úhlu β . Maximalní hodnoty výkonu jsou při 28°, 118°, 208° a 298°

Nulové hodnoty úhlů, při nichž mají FD $\lambda/4$ maximální intenzitu jsou

$$FD \ \lambda/4(1) = 6^{\circ}, 96^{\circ}, 186^{\circ} a \ 276^{\circ}, \qquad FD \ \lambda/4(2) = 28^{\circ}, 118^{\circ}, 208^{\circ} a \ 298^{\circ}.$$
 (2.2)

Půlvlnná fázová destička

Půlvlnná fázová destička zavádí mezi složky A_x a A_y fázový posun $\Delta = \pi$. Toho se využívá pro stočení úhlové orientace lineární polarizace nebo ke změně orientace kruhově polarizovaného světla.

Obrázek 2.5: Detekovaný výkon půlvlnné fázové destičky 1 v závislosti na úhlu γ . Maximalní hodnoty výkonu jsou při 14,5°, 104,5°, 194,5° a 284,5°

Obrázek 2.6: Detekovaný výkon půlvlnné fázové destičky 2 v závislosti na úhlu $\gamma.$ Maximalní hodnoty výkonu jsou při 41°, 131°, 221° a 311°

Nulové hodnoty úhlů, při nichž mají FD $\lambda/2$ maximální intenzitu jsou

$$FD \ \lambda/2 (1) = 14,5^{\circ}, 104,5^{\circ}, 194,5^{\circ} a \ 284,5^{\circ}, \qquad FD \ \lambda/2 (2) = 41^{\circ}, 131^{\circ}, 221^{\circ} a \ 311^{\circ}.$$
(2.3)

2.2 Opakovatelnost měření

Pro zjištění opakovatelnosti měření polarizace, byla nastavena kruhová polarizace, pro kterou probíhalo pět měření. Vedle grafického vyhodnocení můžeme vidět zjištěné parametry polarizační elipsy (Tab. 2.1).

Obrázek 2.7: Teoretická kruhová polarizace porovnaná s pěti naměřenými hodnotami a průměrem naměřených hodnot.

Parametry	A_x	A_y	δ [°]
Měření 1	0,7133	0,7008	-88,71
Měření 2	0,7158	0,6982	-88,18
Měření 3	0,7184	$0,\!6955$	$-88,\!67$
Měření 4	0,7221	0,6917	-88,05
Měření 5	0,7205	0,6934	-88,05
Průměr	0,7180	$0,\!6959$	-88,33
Směrodatné odchylky	0,0031	0,0032	0,30

Tabulka 2.1: Parametry polarizační elipsy pro jednotlivá měření, včetně průměru a směrodatných odchylek.

2.3 Popis experimentu

V experimentu měříme polarizační stav modulovaného světla po odrazu od PMS v závislosti na hodnotě signálu zobrazovaném na aktivním displeji a na úhlu dopadu laserového svazku s určitou plarizací. Pro experiment bylo vybráno 6 hodnot signálu zobrazovaných na PMS: 0, 64, 128, 192, 255 a OFF (vypnutý PMS). Úhly dopadu světla na fázový modulátor $\theta = 5^{\circ}, 10^{\circ}, 20^{\circ} a 30^{\circ}$. Pro předešlé hodnoty jsou měřeny čtyři vstupní polarizace: lineární horizontální, lineární vertikální, kruhová levotočivá a lineární diagonální.

Obrázek 2.8: Schéma experimentu, kde V značí optické vlákno a K kolimační čočku. Detektor je označen D.

Uveďme Stokesovy vektory pro vstupní polarizace, které budeme měřit

$$\mathbf{LP} \mathbf{X} = \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \quad \mathbf{LP} \mathbf{Y} = \begin{bmatrix} 1\\-1\\0\\0 \end{bmatrix}, \quad \mathbf{KP} = \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}, \quad \mathbf{DP} = \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \quad (2.4)$$

kde LP X značí lineární polarizaci ve směru x, LP Y značí lineární polarizaci ve směru osy y, KP značí kruhovou levotočivou polarizaci a DP znázorňuje diagonální polarizaci natočenou vůči ose $x \circ +45^{\circ}$.

2.4 Výsledky

Nejprve uveď
me naměřené Stokesovy vektory pro všechny hodnoty signálů přivedené na PMS a velikosti úhl
ů $\theta.$

	PMS:	OFF,	$ heta=5^\circ$			PMS:	OFF,	$ heta=10^\circ$		
		LP X	LP Y	KP	DP		LP X	LP Y	KP	DP
	S_0	1	1	1	1	S_0	1	1	1	1
	S_1	$0,\!99$	-0,97	-0,02	-0,14	S_1	$0,\!99$	-0,99	-0,02	-0,15
	S_2	-0,14	$0,\!15$	-0,56	$-0,\!67$	S_2	-0,13	$0,\!11$	$-0,\!62$	$-0,\!61$
	S_3	-0,10	$0,\!09$	$0,\!66$	-0,58	S_3	-0,12	$0,\!10$	$0,\!61$	$-0,\!65$
	PMS:	OFF,	$ heta=20^\circ$			PMS:	OFF,	$ heta=30^\circ$		
		LP X	LP Y	KP	DP		LP X	LP Y	KP	DP
	S_0	1	1	1	1	S_0	1	1	1	1
	S_1	$0,\!99$	-0,98	-0,02	-0,08	S_1	0,99	-0,99	-0,01	-0,05
	S_2	-0,08	$0,\!09$	-0,87	-0,14	S_2	$0,\!03$	-0,01	-0,80	0,49
	S_3	-0,14	$0,\!14$	$0,\!13$	-0,91	S_3	-0,13	$0,\!12$	-0,51	-0,74
	PMS:	0,	$ heta=5^\circ$			PMS:	0,	$ heta=10^\circ$		
		LP X	LP Y	KP	DP		LP X	LP Y	KP	DP
	S_0	1	1	1	1	S_0	1	1	1	1
	S_1	0,99	-0,99	0,04	-0,03	S_1	0,99	-0,99	0,11	-0,01
	S_2	-0,03	0,02	-0,18	-0,91	S_2	-0,01	0,02	-0,50	-0,84
	S_3	$0,\!01$	$0,\!05$	-0,93	$0,\!13$	S_3	-0,01	0,01	-0,90	$0,\!36$
	PMS:	0,	$ heta=20^\circ$			PMS:	0,	$ heta=30^\circ$		
]	PMS:	0 , LP X	$ heta=20^\circ$ LP Y	KP	DP	PMS:	0 , LP X	θ = 30° LP Y	KP	DP
	PMS:	0 , LP X 1	$\theta = 20^{\circ}$ LP Y 1	KP 1	DP 1	PMS: <i>S</i> ₀	0, LP X 1	θ = 30° LP Y 1	KP 1	DP 1
	$\frac{\text{PMS:}}{S_0}$	0, LP X 1 0,99	θ = 20° LP Y 1 -0,99	KP 1 0,02	DP 1 0,04	$\begin{array}{c} \text{PMS:} \\ \hline \\ S_0 \\ \hline \\ S_1 \end{array}$	0, LP X 1 0,99	$\theta = 30^{\circ}$ LP Y 1 -0,99	KP 1 0,05	DP 1 0,05
	PMS: S_0 S_1 S_2	0, LP X 1 0,99 -0,01	$\theta = 20^{\circ}$ LP Y 1 -0,99 0,01	KP 1 0,02 -0,85	DP 1 0,04 -0,43	$\begin{array}{c} \text{PMS:} \\ \hline \\ S_0 \\ \hline \\ S_1 \\ \hline \\ S_2 \end{array}$	0, LP X 1 0,99 -0,01	$\theta = 30^{\circ}$ LP Y 1 -0,99 -0,01	KP 1 0,05 -0,70	DP 1 0,05 0,63
	$\frac{S_0}{S_1}$ $\frac{S_2}{S_3}$	0, LP X 1 0,99 -0,01 -0,04	$\theta = 20^{\circ}$ LP Y 1 -0,99 0,01 0,04	KP 1 0,02 -0,85 -0,40	DP 1 0,04 -0,43 0,82	PMS: S_0 S_1 S_2 S_3	0, LP X 1 0,99 -0,01 -0,10	$\theta = 30^{\circ}$ LP Y 1 -0,99 -0,01 0,07	$\begin{array}{c} {\rm KP} \\ 1 \\ 0.05 \\ -0.70 \\ 0.60 \end{array}$	DP 1 0,05 0,63 0,71
	PMS: S_0 S_1 S_2 S_3 PMS:	0, LP X 1 0,99 -0,01 -0,04 64 ,	$\theta = 20^{\circ}$ LP Y 1 -0,99 0,01 0,04 $\theta = 5^{\circ}$	$\begin{array}{c} {\rm KP} \\ 1 \\ 0,02 \\ -0,85 \\ -0,40 \end{array}$	DP 1 0,04 -0,43 0,82	PMS: S_0 S_1 S_2 S_3 PMS:	0, LP X 1 0,99 -0,01 -0,10 64 ,	$\theta = 30^{\circ}$ LP Y 1 -0,99 -0,01 0,07 $\theta = 10^{\circ}$	$\begin{array}{c} {\rm KP} \\ 1 \\ 0.05 \\ -0.70 \\ 0.60 \end{array}$	DP 1 0,05 0,63 0,71
	PMS: $ \frac{S_0}{S_1} $ $ \frac{S_2}{S_3} $ PMS:	0, LP X 1 0,99 -0,01 -0,04 64 , LP X	$\theta = 20^{\circ}$ LP Y 1 -0,99 0,01 0,04 $\theta = 5^{\circ}$ LP Y	KP 1 0,02 -0,85 -0,40 KP	DP 1 0,04 -0,43 0,82 DP	PMS: S_0 S_1 S_2 S_3 PMS:	0, LP X 1 0,99 -0,01 -0,10 64 , LP X	$\theta = 30^{\circ}$ LP Y 1 -0,99 -0,01 0,07 $\theta = 10^{\circ}$ LP Y	KP 1 0,05 -0,70 0,60 KP	DP 1 0,05 0,63 0,71 DP
	$ PMS: \frac{S_0}{S_1} \\ \frac{S_2}{S_3} \\ PMS: \\ \frac{S_0}{S_0} $	0, LP X 1 0,99 -0,01 -0,04 64 , LP X 1	$\theta = 20^{\circ}$ LP Y 1 -0,99 0,01 0,04 $\theta = 5^{\circ}$ LP Y 1	KP 1 0,02 -0,85 -0,40 KP 1	DP 1 0,04 -0,43 0,82 DP 1	PMS: S_0 S_1 S_2 S_3 PMS: S_0	0, LP X 1 0,99 -0,01 -0,10 64 , LP X 1	$\theta = 30^{\circ}$ LP Y 1 -0,99 -0,01 0,07 $\theta = 10^{\circ}$ LP Y 1	KP 1 0,05 -0,70 0,60 KP 1	DP 1 0,05 0,63 0,71 DP 1
	PMS: S_0 S_1 S_2 S_3 PMS: S_0 S_1	0, LP X 1 0,99 -0,01 -0,04 64 , LP X 1 0,99	$\theta = 20^{\circ}$ LP Y 1 -0,99 0,01 0,04 $\theta = 5^{\circ}$ LP Y 1 -0,99	KP 1 0,02 -0,85 -0,40 KP 1 0,08	DP 1 0,04 -0,43 0,82 DP 1 0,03	PMS: S_0 S_1 S_2 S_3 PMS: S_0 S_1	0, LP X 1 0,99 -0,01 -0,10 64 , LP X 1 0,99	$\theta = 30^{\circ}$ LP Y 1 -0,99 -0,01 0,07 $\theta = 10^{\circ}$ LP Y 1 -0,99	KP 1 0,05 -0,70 0,60 KP 1 0,08	DP 1 0,05 0,63 0,71 DP 1 0,02
	PMS:	0, LP X 1 0,99 -0,01 -0,04 64 , LP X 1 0,99 0,08	$\theta = 20^{\circ}$ LP Y 1 -0,99 0,01 0,04 $\theta = 5^{\circ}$ LP Y 1 -0,99 -0,07	KP 1 0,02 -0,85 -0,40 KP 1 0,08 -0,92	DP 1 0,04 -0,43 0,82 DP 1 0,03 0,18	$\begin{tabular}{ c c c c c } \hline PMS: & \\ \hline S_0 \\ \hline S_1 \\ \hline S_2 \\ \hline S_3 \\ \hline $PMS: $ \\ \hline S_0 \\ \hline S_1 \\ \hline S_2 \\ \hline S_2 \\ \hline \end{tabular}$	0, LP X 1 0,99 -0,01 -0,10 64 , LP X 1 0,99 0,06	$\theta = 30^{\circ}$ LP Y 1 -0,99 -0,01 0,07 $\theta = 10^{\circ}$ LP Y 1 -0,99 -0,05	KP 1 0,05 -0,70 0,60 KP 1 0,08 -0,84	DP 1 0,05 0,63 0,71 DP 1 0,02 0,38
	PMS: S_0 S_1 S_2 S_3 PMS: S_0 S_1 S_2 S_3	0, LP X 1 0,99 -0,01 -0,04 64 , LP X 1 0,99 0,08 -0,04	$\theta = 20^{\circ}$ LP Y 1 -0,99 0,01 0,04 $\theta = 5^{\circ}$ LP Y 1 -0,99 -0,07 0,04	KP 1 0,02 -0,85 -0,40 KP 1 0,08 -0,92 0,15	DP 1 0,04 -0,43 0,82 DP 1 0,03 0,18 0,90	$\begin{tabular}{ c c c c } \hline PMS: & \\ \hline S_0 \\ \hline S_1 \\ \hline S_2 \\ \hline S_2 \\ \hline S_3 \\ \hline $PMS: $ \\ \hline S_0 \\ \hline S_1 \\ \hline S_2 \\ \hline S_2 \\ \hline S_3 \\ \hline \end{tabular}$	0, LP X 1 0,99 -0,01 -0,10 64 , LP X 1 0,99 0,06 -0,06	$\theta = 30^{\circ}$ LP Y 1 -0,99 -0,01 0,07 $\theta = 10^{\circ}$ LP Y 1 -0,99 -0,05 0,07	$\begin{array}{c} {\rm KP} \\ 1 \\ 0,05 \\ -0,70 \\ 0,60 \\ \hline \\ {\rm KP} \\ 1 \\ 0,08 \\ -0,84 \\ 0,36 \\ \end{array}$	DP 1 0,05 0,63 0,71 DP 1 0,02 0,38 0,86
	PMS: S_0 S_1 S_2 S_3 PMS: S_0 S_1 S_2 S_3 PMS:	0, LP X 1 0,99 -0,01 -0,04 64, LP X 1 0,99 0,08 -0,04 64,	$\theta = 20^{\circ}$ LP Y 1 -0,99 0,01 0,04 $\theta = 5^{\circ}$ LP Y 1 -0,99 -0,07 0,04 $\theta = 20^{\circ}$	KP 1 0,02 -0,85 -0,40 KP 1 0,08 -0,92 0,15	DP 1 0,04 -0,43 0,82 DP 1 0,03 0,18 0,90	$\begin{tabular}{ c c c c c } \hline PMS: & \\ \hline S_0 \\ \hline S_1 \\ \hline S_2 \\ \hline S_3 \\ \hline $PMS: $\\ \hline S_0 \\ \hline S_1 \\ \hline S_2 \\ \hline S_2 \\ \hline S_3 \\ \hline $PMS: $\\ \hline $PMS: $\\ \hline \end{tabular}$	0, LP X 1 0,99 -0,01 -0,10 64, LP X 1 0,99 0,06 -0,06 64,	$\theta = 30^{\circ}$ LP Y 1 -0,99 -0,01 0,07 $\theta = 10^{\circ}$ LP Y 1 -0,99 -0,05 0,07 $\theta = 30^{\circ}$	$\begin{array}{c} {\rm KP} \\ 1 \\ 0,05 \\ -0,70 \\ 0,60 \\ \\ \\ {\rm KP} \\ 1 \\ 0,08 \\ -0,84 \\ 0,36 \\ \end{array}$	DP 1 0,05 0,63 0,71 DP 1 0,02 0,38 0,86
	PMS: S_0 S_1 S_2 S_3 PMS: S_0 S_1 S_2 S_3 PMS:	0, LP X 1 0,99 -0,01 -0,04 64 , LP X 1 0,99 0,08 -0,04 64 , LP X	$\theta = 20^{\circ}$ LP Y 1 -0,99 0,01 0,04 $\theta = 5^{\circ}$ LP Y 1 -0,99 -0,07 0,04 $\theta = 20^{\circ}$ LP Y	KP 1 0,02 -0,85 -0,40 KP 1 0,08 -0,92 0,15 KP	DP 1 0,04 -0,43 0,82 DP 1 0,03 0,18 0,90 DP	$\begin{tabular}{ c c c c c } \hline PMS: & \\ \hline S_0 \\ \hline S_1 \\ \hline S_2 \\ \hline S_3 \\ \hline $PMS: $\\ \hline S_0 \\ \hline S_1 \\ \hline S_2 \\ \hline S_3 \\ \hline $PMS: $\\ \hline $PMS: $\\ \hline $PMS: $\\ \hline S_1 \\ \hline S_2 \\ \hline S_3 \\ \hline $PMS: $\\ \hline S_1 \\ \hline S_2 \\ \hline S_3 \\ \hline $PMS: $\\ \hline S_1 \\ \hline S_2 \\ \hline S_3 \\ \hline $PMS: $\\ \hline S_1 \\ \hline S_2 \\ \hline S_3 \\ \hline $PMS: $\\ \hline S_1 \\ \hline S_2 \\ \hline S_3 \\ \hline S_1 \\ \hline S_2 \\ \hline S_3 \\ \hline S_1 \\ \hline S_2 \\ \hline S_3 \\ \hline S_3 \\ \hline $PMS: $\\ \hline S_1 \\ \hline S_2 \\ \hline S_3 \\ \hline S_3 \\ \hline S_3 \\ \hline S_3 \\ \hline S_4 \\ \hline S_5 \\ \hline \ S_5 \\ \hline \hline \ S_5 \\ \hline \ \ S_5 \\ \hline \hline \ \ S_5 \\ \hline \ \ \ S_5 \\ \hline \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	0, LP X 1 0,99 -0,01 -0,10 64 , LP X 1 0,99 0,06 -0,06 64 , LP X	$\theta = 30^{\circ}$ LP Y 1 -0,99 -0,01 0,07 $\theta = 10^{\circ}$ LP Y 1 -0,99 -0,05 0,07 $\theta = 30^{\circ}$ LP Y	KP 1 0,05 -0,70 0,60 KP 1 0,08 -0,84 0,36 KP	DP 1 0,05 0,63 0,71 DP 1 0,02 0,38 0,86 DP
	PMS: S_0 S_1 S_2 S_3 PMS: S_0 S_1 S_2 S_3 PMS: S_0	0, LP X 1 0,99 -0,01 -0,04 64, LP X 1 0,99 0,08 -0,04 64, LP X 1	$\theta = 20^{\circ}$ LP Y 1 -0,99 0,01 0,04 $\theta = 5^{\circ}$ LP Y 1 -0,99 -0,07 0,04 $\theta = 20^{\circ}$ LP Y 1	KP 1 0,02 -0,85 -0,40 KP 1 0,08 -0,92 0,15 KP 1	DP 1 0,04 -0,43 0,82 DP 1 0,03 0,18 0,90 DP 1 DP	$\begin{array}{c} {\rm PMS:} \\ \hline \\ S_0 \\ S_1 \\ \hline \\ S_2 \\ S_3 \\ \hline \\ {\rm PMS:} \\ \hline \\ \\ S_0 \\ \hline \\ S_1 \\ \hline \\ S_2 \\ \hline \\ S_3 \\ \hline \\ {\rm PMS:} \\ \hline \\ \\ \\ S_0 \\ \hline \\ \\ S_0 \\ \hline \end{array}$	0, LP X 1 0,99 -0,01 -0,10 64, LP X 1 0,99 0,06 -0,06 64, LP X 1 LP X	$\theta = 30^{\circ}$ LP Y 1 -0,99 -0,01 0,07 $\theta = 10^{\circ}$ LP Y 1 -0,99 -0,05 0,07 $\theta = 30^{\circ}$ LP Y 1	KP 1 0,05 -0,70 0,60 KP 1 0,08 -0,84 0,36 KP 1	DP 1 0,05 0,63 0,71 DP 1 0,02 0,38 0,86 DP 1 DP
	PMS: S_0 S_1 S_2 S_3 PMS: S_0 S_1 S_2 S_3 PMS: S_0 S_0 S_1	0, LP X 1 0,99 -0,01 -0,04 64 , LP X 1 0,99 0,08 -0,04 64 , LP X 1 0,99	$\theta = 20^{\circ}$ LP Y 1 -0,99 0,01 0,04 $\theta = 5^{\circ}$ LP Y 1 -0,99 -0,07 0,04 $\theta = 20^{\circ}$ LP Y 1 -0,99 -0,07 0,04 $\theta = 20^{\circ}$ LP Y 1 -0,99	KP 1 0,02 -0,85 -0,40 KP 1 0,08 -0,92 0,15 KP 1 0,10	DP 1 0,04 -0,43 0,82 DP 1 0,03 0,18 0,90 DP 1 0,05	$\begin{array}{c} {\rm PMS:} \\ \hline \\ S_0 \\ S_1 \\ S_2 \\ S_3 \\ \hline \\ {\rm PMS:} \\ \hline \\ S_0 \\ S_1 \\ S_2 \\ S_3 \\ \hline \\ {\rm PMS:} \\ \hline \\ S_0 \\ \hline \\ S_0 \\ S_1 \\ \hline \\ \\ S_0 \\ S_1 \\ \hline \end{array}$	0, LP X 1 0,99 -0,01 -0,10 64, LP X 1 0,99 0,06 -0,06 64, LP X 1 0,99 0,06 -0,06 64, 1 0,99 0,06 -0,01 0,99 0,01 0,99 0,01 0,99 0,01 0,99 0,01 0,99 0,01 0,99 0,01 0,99 0,01 0,99 0,01 0,99 0,01 0,99 0,01 0,99 0,01 0,99 0,01 0,99 0,01 0,01 0,99 0,01 0,00 0,01 0,00	$\theta = 30^{\circ}$ LP Y 1 -0,99 -0,01 0,07 $\theta = 10^{\circ}$ LP Y 1 -0,99 -0,05 0,07 $\theta = 30^{\circ}$ LP Y 1 -0,99 -0,05 0,07	KP 1 0,05 -0,70 0,60 KP 1 0,08 -0,84 0,36 KP 1 0,14	DP 1 0,05 0,63 0,71 DP 1 0,02 0,38 0,86 DP 1 0,03
	PMS: S_0 S_1 S_2 S_3 PMS: S_0 S_1 S_2 S_3 PMS: S_0 S_1 S_0 S_1 S_2	0, LP X 1 0,99 -0,01 -0,04 64 , LP X 1 0,99 0,08 -0,04 64 , LP X 1 0,99 0,99 0,01	$\theta = 20^{\circ}$ LP Y 1 -0,99 0,01 0,04 $\theta = 5^{\circ}$ LP Y 1 -0,99 -0,07 0,04 $\theta = 20^{\circ}$ LP Y 1 -0,99 -0,07 0,04	KP 1 0,02 -0,85 -0,40 KP 1 0,08 -0,92 0,15 KP 1 0,10 -0,49	DP 1 0,04 -0,43 0,82 DP 1 0,03 0,18 0,90 DP 1 0,90 1 0,05 0,82	$\begin{array}{c} {\rm PMS:} \\ \hline \\ S_0 \\ S_1 \\ \hline \\ S_2 \\ S_3 \\ \hline \\ {\rm PMS:} \\ \hline \\ \\ S_0 \\ \hline \\ S_1 \\ \hline \\ S_2 \\ \hline \\ \\ S_3 \\ \hline \\ {\rm PMS:} \\ \hline \\ \\ \hline \\ \\ S_0 \\ \hline \\ \\ S_1 \\ \hline \\ \\ S_2 \\ \hline \\ \\ S_1 \\ \hline \\ \\ S_2 \\ \hline \\ \\ \\ S_2 \\ \hline \\ \\ \\ S_2 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	0, LP X 1 0,99 -0,01 -0,10 64 , LP X 1 0,99 0,06 -0,06 64 , LP X 1 0,99 -0,10	$\theta = 30^{\circ}$ LP Y 1 -0,99 -0,01 0,07 $\theta = 10^{\circ}$ LP Y 1 -0,99 -0,05 0,07 $\theta = 30^{\circ}$ LP Y 1 -0,99 0,08	KP 1 0,05 -0,70 0,60 KP 1 0,08 -0,84 0,36 KP 1 0,14 0,14 0,54	DP 1 0,05 0,63 0,71 DP 1 0,02 0,38 0,86 DP 1 0,03 0,80

Tabulka 2.2: Naměřené Stokesovy vektory pro PMS: OFF, 0 a 64 pro úhly $\theta = 5^{\circ}, 10^{\circ}, 20^{\circ} a 30^{\circ}$ pro čtyři vstupní polarizace LP X, LP Y, KP a DP.

PMS:	128 ,	$ heta=5^\circ$			PMS:	128 ,	$ heta=10^\circ$		
	LP X	LP Y	KP	DP		LP X	LP Y	KP	DP
S_0	1	1	1	1	S_0	1	1	1	1
S_1	0,99	-0,98	0,18	-0,06	S_1	0,99	-0,99	$0,\!16$	-0,05
S_2	0,01	-0,03	0,23	0,91	S_2	-0,01	0,02	0,36	0,88
S_3	-0,20	0,20	0,89	-0,21	S_3	-0,19	0,18	0,84	-0,32
PMS:	128 ,	$ heta=20^\circ$			PMS:	128 ,	$ heta=30^\circ$		
	LP X	LP Y	KP	DP		LP X	LP Y	KP	DP
S_0	1	1	1	1	S_0	1	1	1	1
S_1	0,99	-0,98	0,18	0,08	S_1	0,99	-0,99	0,14	-0,08
S_2	-0,12	0,11	0,77	$0,\!59$	S_2	-0,14	0,11	0,86	-0,34
S_3	-0,17	0,16	0,48	0,85	S_3	-0,05	0,09	-0,29	-0,91
PMS:	192,	$ heta=5^\circ$			PMS:	192,	$\theta = 10^{\circ}$		
	LP X	LP Y	KP	DP		LP X	LP Y	KP	DP
S_0	1	1	1	1	S_0	1	1	1	1
S_1	0,98	-0,97	0,12	-0,21	S_1	0,98	-0,97	0,13	-0,18
S_2	-0,19	$0,\!17$	0,86	-0,33	S_2	-0,22	0,18	0,81	-0,38
S_3	-0,18	0,20	-0,30	-0,88	S_3	-0,13	0,16	-0,38	-0,85
PMS:	192 ,	$ heta=20^\circ$			PMS:	192 ,	$ heta=30^\circ$		
PMS:	192 , LP X	$ heta=20^\circ$ LP Y	KP	DP	PMS:	192 , LP X	$ heta=30^\circ$ LP Y	KP	DP
PMS: 	192 , LP X 1	$\theta = 20^{\circ}$ LP Y 1	KP 1	DP 1	PMS: 50	192 , LP X 1	θ = 30° LP Y 1	KP 1	DP 1
$\frac{\text{PMS:}}{S_0}$	192, LP X 1 0,98	$\theta = 20^{\circ}$ LP Y 1 -0,98	KP 1 0,14	DP 1 -0,15	$\begin{array}{c} \text{PMS:} \\ \hline \\ S_0 \\ \hline \\ S_1 \end{array}$	192 , LP X 1 0,99	$\theta = 30^{\circ}$ LP Y 1 -0,99	KP 1 0,07	DP 1 -0,09
$\begin{array}{c} \text{PMS:} \\ \hline \\ S_0 \\ \hline \\ S_1 \\ \hline \\ S_2 \end{array}$	192 , LP X 1 0,98 -0,21	$\theta = 20^{\circ}$ LP Y 1 -0,98 0,20	KP 1 0,14 0,49	DP 1 -0,15 -0,77	$\begin{array}{c} \text{PMS:} \\ \hline \\ S_0 \\ \hline \\ S_1 \\ \hline \\ S_2 \end{array}$	192 , LP X 1 0,99 -0,10	$\theta = 30^{\circ}$ LP Y 1 -0,99 0,12		DP 1 -0,09 -0,86
$\begin{array}{c} \text{PMS:}\\ \hline\\ S_0\\ \hline\\ S_1\\ \hline\\ S_2\\ \hline\\ S_3 \end{array}$	192 , LP X 1 0,98 -0,21 -0,02	$\theta = 20^{\circ}$ LP Y 1 -0,98 0,20 0,04	$\begin{array}{c} {\rm KP} \\ 1 \\ 0.14 \\ 0.49 \\ -0.78 \end{array}$	$\begin{array}{c} DP \\ 1 \\ -0.15 \\ -0.77 \\ -0.54 \end{array}$	PMS: S_0 S_1 S_2 S_3	192 , LP X 1 0,99 -0,10 0,07	$\theta = 30^{\circ}$ LP Y 1 -0,99 0,12 -0,02		DP 1 -0,09 -0,86 0,18
PMS: S_0 S_1 S_2 S_3 PMS:	192 , LP X 1 0,98 -0,21 -0,02 255 ,	$\theta = 20^{\circ}$ LP Y 1 -0,98 0,20 0,04 $\theta = 5^{\circ}$	$\begin{array}{c} {\rm KP} \\ 1 \\ 0,14 \\ 0,49 \\ -0,78 \end{array}$	$\begin{array}{c} \text{DP} \\ 1 \\ -0.15 \\ -0.77 \\ -0.54 \end{array}$	PMS: S_0 S_1 S_2 S_3 PMS:	192 , LP X 1 0,99 -0,10 0,07 255 ,	$\theta = 30^{\circ}$ LP Y 1 -0,99 0,12 -0,02 $\theta = 10^{\circ}$	$\begin{array}{c} {\rm KP} \\ 1 \\ 0.07 \\ -0.24 \\ -0.90 \end{array}$	DP 1 -0,09 -0,86 0,18
$\begin{array}{c} \text{PMS:} \\ \hline \\ S_0 \\ \hline \\ S_1 \\ \hline \\ S_2 \\ \hline \\ S_3 \\ \hline \\ \text{PMS:} \\ \hline \end{array}$	192, LP X 1 0,98 -0,21 -0,02 255, LP X	$\theta = 20^{\circ}$ LP Y 1 -0,98 0,20 0,04 $\theta = 5^{\circ}$ LP Y	KP 1 0,14 0,49 -0,78 KP	DP 1 -0,15 -0,77 -0,54 DP	PMS: S_0 S_1 S_2 S_3 PMS:	192, LP X 1 0,99 -0,10 0,07 255, LP X	$\theta = 30^{\circ}$ LP Y 1 -0,99 0,12 -0,02 $\theta = 10^{\circ}$ LP Y	KP 1 0,07 -0,24 -0,90 KP	DP 1 -0,09 -0,86 0,18 DP
$\begin{array}{c} \text{PMS:} \\ \hline \\ S_0 \\ S_1 \\ S_2 \\ S_3 \\ \hline \\ \text{PMS:} \\ \hline \\ S_0 \\ \end{array}$	192 , LP X 1 0,98 -0,21 -0,02 255 , LP X 1	$\theta = 20^{\circ}$ LP Y 1 -0,98 0,20 0,04 $\theta = 5^{\circ}$ LP Y 1	KP 1 0,14 0,49 -0,78 KP 1	DP 1 -0,15 -0,77 -0,54 DP 1	PMS: S_0 S_1 S_2 S_3 PMS: S_0	192 , LP X 1 0,99 -0,10 0,07 255 , LP X 1	$\theta = 30^{\circ}$ LP Y 1 -0,99 0,12 -0,02 $\theta = 10^{\circ}$ LP Y 1	KP 1 0,07 -0,24 -0,90 KP 1	DP 1 -0,09 -0,86 0,18 DP 1
$\begin{array}{c} \text{PMS:} \\ \hline \\ S_0 \\ S_1 \\ \hline \\ S_2 \\ \hline \\ S_3 \\ \hline \\ \text{PMS:} \\ \hline \\ \\ \hline \\ S_0 \\ S_1 \\ \end{array}$	192 , LP X 1 0,98 -0,21 -0,02 255 , LP X 1 0,98	$\theta = 20^{\circ}$ LP Y 1 -0,98 0,20 0,04 $\theta = 5^{\circ}$ LP Y 1 -0,98	$\begin{array}{c} {\rm KP} \\ 1 \\ 0,14 \\ 0,49 \\ -0,78 \\ \hline {\rm KP} \\ 1 \\ -0,01 \\ \end{array}$	$\begin{array}{c} DP \\ 1 \\ -0,15 \\ -0,77 \\ -0,54 \\ \end{array}$ $\begin{array}{c} DP \\ 1 \\ -0,17 \\ \end{array}$	PMS: S_0 S_1 S_2 S_3 PMS: S_0 S_1	192 , LP X 1 0,99 -0,10 0,07 255 , LP X 1 0,99	$\theta = 30^{\circ}$ LP Y 1 -0,99 0,12 -0,02 $\theta = 10^{\circ}$ LP Y 1 -0,98	KP 1 0,07 -0,24 -0,90 KP 1 0,01	DP 1 -0,09 -0,86 0,18 DP 1 -0,18
$\begin{array}{c} \text{PMS:} \\ \hline \\ S_0 \\ S_1 \\ S_2 \\ S_3 \\ \hline \\ \text{PMS:} \\ \hline \\ S_0 \\ S_1 \\ S_2 \\ \end{array}$	192 , LP X 1 0,98 -0,21 -0,02 255 , LP X 1 0,98 -0,19	$\theta = 20^{\circ}$ LP Y 1 -0,98 0,20 0,04 $\theta = 5^{\circ}$ LP Y 1 -0,98 0,21	$\begin{array}{c} {\rm KP} \\ 1 \\ 0,14 \\ 0,49 \\ -0,78 \\ \hline \\ {\rm KP} \\ 1 \\ -0,01 \\ -0,40 \\ \end{array}$	$\begin{array}{c} DP \\ 1 \\ -0,15 \\ -0,77 \\ -0,54 \\ \end{array}$ $\begin{array}{c} DP \\ 1 \\ -0,17 \\ -0,83 \\ \end{array}$	PMS: S_0 S_1 S_2 S_3 PMS: S_0 S_1 S_0 S_1 S_0 S_1 S_2	192 , LP X 1 0,99 -0,10 0,07 255 , LP X 1 0,99 -0,17	$\theta = 30^{\circ}$ LP Y 1 -0,99 0,12 -0,02 $\theta = 10^{\circ}$ LP Y 1 -0,98 0,18	$\begin{array}{c} {\rm KP} \\ 1 \\ 0,07 \\ -0,24 \\ -0,90 \\ \hline \\ {\rm KP} \\ 1 \\ 0,01 \\ -0,52 \\ \end{array}$	DP 1 -0,09 -0,86 0,18 DP 1 -0,18 -0,78
$\begin{array}{c} \text{PMS:}\\ \hline\\ S_0\\ S_1\\ \hline\\ S_2\\ \hline\\ S_3\\ \hline\\ PMS:\\ \hline\\ S_0\\ \hline\\ S_1\\ \hline\\ S_2\\ \hline\\ S_3\\ \hline\end{array}$	192 , LP X 1 0,98 -0,21 -0,02 255 , LP X 1 0,98 -0,19 0,04	$ \begin{array}{l} \theta = 20^{\circ} \\ LP Y \\ 1 \\ -0,98 \\ 0,20 \\ 0,04 \\ \hline \theta = 5^{\circ} \\ LP Y \\ 1 \\ -0,98 \\ 0,21 \\ -0,01 \\ \end{array} $	$\begin{array}{c} {\rm KP} \\ 1 \\ 0,14 \\ 0,49 \\ -0,78 \\ \hline \\ {\rm KP} \\ 1 \\ -0,01 \\ -0,40 \\ -0,85 \\ \end{array}$	$\begin{array}{c} DP \\ 1 \\ -0,15 \\ -0,77 \\ -0,54 \\ \end{array}$ $\begin{array}{c} DP \\ 1 \\ -0,17 \\ -0,83 \\ 0,38 \\ \end{array}$	$\begin{tabular}{ c c c c c } \hline PMS: & \\ \hline S_0 \\ \hline S_1 \\ \hline S_2 \\ \hline S_2 \\ \hline S_3 \\ \hline $PMS: $ \\ \hline S_0 \\ \hline S_0 \\ \hline S_1 \\ \hline S_2 \\ \hline S_3 \\ \hline S_3 \\ \hline \end{tabular}$	$\begin{array}{c} 192,\\ \mathrm{LP \ X}\\ 1\\ 0,99\\ -0,10\\ 0,07\\ \hline 255,\\ \mathrm{LP \ X}\\ 1\\ 0,99\\ -0,17\\ 0,07\\ \end{array}$	$\theta = 30^{\circ}$ LP Y 1 -0,99 0,12 -0,02 $\theta = 10^{\circ}$ LP Y 1 -0,98 0,18 -0,06	$\begin{array}{c} {\rm KP} \\ 1 \\ 0,07 \\ -0,24 \\ -0,90 \\ \\ \\ {\rm KP} \\ 1 \\ 0,01 \\ -0,52 \\ -0,81 \\ \end{array}$	$\begin{array}{c} DP \\ 1 \\ -0,09 \\ -0,86 \\ 0,18 \\ \end{array}$ $\begin{array}{c} DP \\ 1 \\ -0,18 \\ -0,78 \\ 0,46 \\ \end{array}$
$\begin{tabular}{ c c c c } \hline PMS: \\ \hline S_0 \\ \hline S_1 \\ \hline S_2 \\ \hline S_2 \\ \hline S_3 \\ \hline PMS: \\ \hline S_2 \\ \hline S_2 \\ \hline S_3 \\ \hline PMS: \\ \hline \end{tabular}$	192, LP X 1 0,98 -0,21 -0,02 255, LP X 1 0,98 -0,19 0,04 255,	$\theta = 20^{\circ}$ LP Y 1 -0,98 0,20 0,04 $\theta = 5^{\circ}$ LP Y 1 -0,98 0,21 -0,01 $\theta = 20^{\circ}$	$\begin{array}{c} {\rm KP} \\ 1 \\ 0,14 \\ 0,49 \\ -0,78 \\ \hline \\ {\rm KP} \\ 1 \\ -0,01 \\ -0,40 \\ -0,85 \\ \end{array}$	$\begin{array}{c} {\rm DP} \\ 1 \\ -0,15 \\ -0,77 \\ -0,54 \\ \end{array} \\ \begin{array}{c} {\rm DP} \\ 1 \\ -0,17 \\ -0,83 \\ 0,38 \\ \end{array}$	$\begin{tabular}{ c c c c c } \hline PMS: & \\ \hline S_0 \\ \hline S_1 \\ \hline S_2 \\ \hline S_3 \\ \hline $PMS: $ \\ \hline S_0 \\ \hline S_1 \\ \hline S_2 \\ \hline S_2 \\ \hline S_3 \\ \hline $PMS: $ \\ \hline $PMS: $ \\ \hline \end{tabular}$	192, LP X 1 0,99 -0,10 0,07 255, LP X 1 0,99 -0,10 0,07 255, LP X 1 0,99 -0,17 0,07 255,	$\theta = 30^{\circ}$ LP Y 1 -0,99 0,12 -0,02 $\theta = 10^{\circ}$ LP Y 1 -0,98 0,18 -0,06 $\theta = 30^{\circ}$	$\begin{array}{c} {\rm KP} \\ 1 \\ 0,07 \\ -0,24 \\ -0,90 \\ \hline \\ {\rm KP} \\ 1 \\ 0,01 \\ -0,52 \\ -0,81 \\ \end{array}$	$\begin{array}{c} {\rm DP} \\ 1 \\ -0,09 \\ -0,86 \\ 0,18 \\ \end{array} \\ \begin{array}{c} {\rm DP} \\ 1 \\ -0,18 \\ -0,78 \\ 0,46 \\ \end{array}$
$\begin{tabular}{ c c c c } \hline PMS: \\ \hline S_0 \\ \hline S_1 \\ \hline S_2 \\ \hline S_3 \\ \hline $PMS: $\\ \hline S_0 \\ \hline S_1 \\ \hline S_2 \\ \hline S_3 \\ \hline $PMS: $\\ \hline $PMS: $\\ \hline $PMS: $\\ \hline S_1 \\ \hline S_2 \\ \hline S_3 \\ \hline $PMS: $\\ \hline S_1 \\ \hline S_2 \\ \hline S_3 \\ \hline $PMS: $\\ \hline S_1 \\ \hline S_2 \\ \hline S_3 \\ \hline $PMS: $\\ \hline S_1 \\ \hline S_2 \\ \hline S_3 \\ \hline $PMS: $\\ \hline S_1 \\ \hline S_2 \\ \hline S_3 \\ \hline $PMS: $\\ \hline S_1 \\ \hline S_2 \\ \hline S_3 \\ \hline $PMS: $\\ \hline S_1 \\ \hline S_2 \\ \hline S_3 \\ \hline S_3 \\ \hline S_4 \\ \hline S_5 \\ \hline \ \ S_5 \\ \hline \ \ S_5 \\ \hline \ \ \ S_5 \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	192 , LP X 1 0,98 -0,21 -0,02 255 , LP X 1 0,98 -0,19 0,04 255 , LP X	$\theta = 20^{\circ}$ LP Y 1 -0,98 0,20 0,04 $\theta = 5^{\circ}$ LP Y 1 -0,98 0,21 -0,01 $\theta = 20^{\circ}$ LP Y	KP 1 0,14 0,49 -0,78 KP 1 -0,01 -0,40 -0,85 KP	DP 1 -0,15 -0,77 -0,54 DP 1 -0,17 -0,83 0,38 DP	PMS: S_0 S_1 S_2 S_3 PMS: S_0 S_1 S_2 S_3 PMS: S_2 S_3 PMS: S_2 S_3 PMS:	192, LP X 1 0,99 -0,10 0,07 255, LP X 1 0,99 -0,10 0,07 255, LP X 1 0,99 -0,17 0,07 255, LP X	$\theta = 30^{\circ}$ LP Y 1 -0,99 0,12 -0,02 $\theta = 10^{\circ}$ LP Y 1 -0,98 0,18 -0,06 $\theta = 30^{\circ}$ LP Y	KP 1 0,07 -0,24 -0,90 KP 1 0,01 -0,52 -0,81 KP	DP 1 -0,09 -0,86 0,18 DP 1 -0,18 -0,78 0,46 DP
$\begin{tabular}{ c c c c c } & PMS: \\ \hline & S_0 \\ \hline & S_1 \\ \hline & S_2 \\ \hline & S_3 \\ \hline & PMS: \\ \hline & S_2 \\ \hline & S_1 \\ \hline & S_2 \\ \hline & S_3 \\ \hline & PMS: \\ \hline & S_0 \\ \hline \end{tabular}$	192, LP X 1 0,98 -0,21 -0,02 255, LP X 1 0,98 -0,19 0,04 255, LP X 1 LP X 1	$\theta = 20^{\circ}$ LP Y 1 -0,98 0,20 0,04 $\theta = 5^{\circ}$ LP Y 1 -0,98 0,21 -0,01 $\theta = 20^{\circ}$ LP Y 1	$\begin{array}{c} {\rm KP} \\ 1 \\ 0,14 \\ 0,49 \\ -0,78 \\ \hline \\ {\rm KP} \\ 1 \\ -0,01 \\ -0,40 \\ -0,85 \\ \hline \\ {\rm KP} \\ 1 \\ 1 \\ \end{array}$	DP 1 -0,15 -0,77 -0,54 DP 1 -0,17 -0,83 0,38 DP 1	$\begin{tabular}{ c c c c c } \hline PMS: & \\ \hline S_0 \\ \hline S_1 \\ \hline S_2 \\ \hline S_3 \\ \hline $PMS: $\\ \hline S_0 \\ \hline S_1 \\ \hline S_2 \\ \hline S_3 \\ \hline $PMS: $\\ \hline S_0 \\ \hline \ \ \ S_0 \\ \hline \ \ \ \ \ S_0 \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	192, LP X 1 0,99 -0,10 0,07 255, LP X 1 0,99 -0,17 0,07 255, LP X 1 N X	$\theta = 30^{\circ}$ LP Y 1 -0,99 0,12 -0,02 $\theta = 10^{\circ}$ LP Y 1 -0,98 0,18 -0,06 $\theta = 30^{\circ}$ LP Y 1	KP 1 0,07 -0,24 -0,90 KP 1 0,01 -0,52 -0,81 KP 1	DP 1 -0,09 -0,86 0,18 DP 1 -0,18 -0,78 0,46 DP 1
$\begin{tabular}{ c c c c c } & PMS: \\ \hline & S_0 \\ \hline & S_1 \\ \hline & S_2 \\ \hline & S_3 \\ \hline & $PMS:$ \\ \hline & S_2 \\ \hline & S_1 \\ \hline & S_2 \\ \hline & S_3 \\ \hline & $PMS:$ \\ \hline & S_0 \\ \hline & S_1 \\ \hline & S_1 \\ \hline \end{tabular}$	192 , LP X 1 0,98 -0,21 -0,02 255 , LP X 1 0,98 -0,19 0,04 255 , LP X 1 0,99	$\theta = 20^{\circ}$ LP Y 1 -0,98 0,20 0,04 $\theta = 5^{\circ}$ LP Y 1 -0,98 0,21 -0,01 $\theta = 20^{\circ}$ LP Y 1 -0,01 $\theta = 20^{\circ}$ LP Y 1 -0,99	$\begin{array}{c} {\rm KP} \\ 1 \\ 0,14 \\ 0,49 \\ -0,78 \\ \hline \\ {\rm KP} \\ 1 \\ -0,01 \\ -0,40 \\ -0,85 \\ \hline \\ {\rm KP} \\ 1 \\ 0,05 \\ \end{array}$	DP 1 -0,15 -0,77 -0,54 DP 1 -0,17 -0,83 0,38 DP 1 -0,13	$\begin{tabular}{ c c c c c } \hline PMS: & \\ \hline S_0 \\ \hline S_1 \\ \hline S_2 \\ \hline S_3 \\ \hline $PMS: $ \\ \hline S_0 \\ \hline S_1 \\ \hline S_2 \\ \hline S_3 \\ \hline $PMS: $ \\ \hline S_0 \\ \hline S_1 \\ \hline \ \ S_1 \\ \hline \ S_1 \\ \hline \ \ S_1 \\ \hline \ \ \ S_1 \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	192, LP X 1 0,99 -0,10 0,07 255, LP X 1 0,99 -0,17 0,07 255, LP X 1 0,99 10,07	$\theta = 30^{\circ}$ LP Y 1 -0,99 0,12 -0,02 $\theta = 10^{\circ}$ LP Y 1 -0,98 0,18 -0,06 $\theta = 30^{\circ}$ LP Y 1 -0,99	KP 1 0,07 -0,24 -0,90 KP 1 0,01 -0,52 -0,81 KP 1 0,06	DP 1 -0,09 -0,86 0,18 DP 1 -0,18 -0,78 0,46 DP 1 -0,05
$\begin{array}{c} {\rm PMS:} \\ S_0 \\ S_1 \\ S_2 \\ S_3 \\ \hline \\ {\rm PMS:} \\ \\ \hline \\ S_0 \\ S_1 \\ \hline \\ S_2 \\ S_3 \\ \hline \\ {\rm PMS:} \\ \hline \\ \\ \hline \\ \\ S_0 \\ \hline \\ \\ S_1 \\ S_2 \\ \hline \\ \\ S_1 \\ S_2 \end{array}$	192, LP X 1 0,98 -0,21 -0,02 255, LP X 1 0,98 -0,19 0,04 255, LP X 1 0,99 -0,08	$\theta = 20^{\circ}$ LP Y 1 -0,98 0,20 0,04 $\theta = 5^{\circ}$ LP Y 1 -0,98 0,21 -0,01 $\theta = 20^{\circ}$ LP Y 1 -0,99 0,09	$\begin{array}{c} {\rm KP} \\ 1 \\ 0,14 \\ 0,49 \\ -0,78 \\ \hline \\ {\rm KP} \\ 1 \\ -0,01 \\ -0,40 \\ -0,85 \\ \hline \\ {\rm KP} \\ 1 \\ 0,05 \\ -0,77 \\ \end{array}$	DP 1 -0,15 -0,77 -0,54 DP 1 -0,17 -0,83 0,38 DP 1 -0,13 -0,59	$\begin{tabular}{ c c c c c } \hline PMS: & \\ \hline S_0 \\ \hline S_1 \\ \hline S_2 \\ \hline S_3 \\ \hline $PMS: $\\ \hline S_0 \\ \hline S_1 \\ \hline S_2 \\ \hline S_3 \\ \hline $PMS: $\\ \hline S_0 \\ \hline S_1 \\ \hline S_2 \\ \hline S_2 \\ \hline S_1 \\ \hline S_2 \\ \hline \ S_2 \\ \hline \hline \ \ S_2 \\ \hline \hline \ \ S_2 \\ \hline \hline \ \ \ \ S_2 \\ \hline \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	192, LP X 1 0,99 -0,10 0,07 255, LP X 1 0,99 -0,17 0,07 255, LP X 1 0,99 -0,17 0,07 255, LP X 1 0,99 0,99 0,03	$\theta = 30^{\circ}$ LP Y 1 -0,99 0,12 -0,02 $\theta = 10^{\circ}$ LP Y 1 -0,98 0,18 -0,06 $\theta = 30^{\circ}$ LP Y 1 -0,99 -0,01	$\begin{array}{c} {\rm KP} \\ 1 \\ 0,07 \\ -0,24 \\ -0,90 \\ \hline \\ {\rm KP} \\ 1 \\ 0,01 \\ -0,52 \\ -0,81 \\ \hline \\ {\rm KP} \\ 1 \\ 0,06 \\ -0,93 \\ \end{array}$	DP 1 -0,09 -0,86 0,18 DP 1 -0,18 -0,78 0,46 DP 1 -0,05 0,05

Tabulka 2.3: Naměřené Stokesovy vektory pro PMS: 128, 192 a 255 pro úhly $\theta=5^\circ,10^\circ,20^\circ\,a\,30^\circ$ pro čtyři vstupní polarizace LP X, LP Y, KP a DP.

Dle vztahu (1.18) můžeme ze Stokesových vektorů a vstupních polarizací zjistit Muellerovy matice. Pro výstupní matici **S'** jsou v jednotlivých sloupcích umístěny postupně naměřené Stokesovy vektory pro lineární horizontální polarizaci, lineární vertikální polarizaci, kruhovou levotočivou polarizaci a lineární diagonální polarizaci. Matice \mathbf{S}^{-1} je inverzní k matici **S** (2.5), ve které jsou v jednotlivých sloupcích Stokesovy vektory pro vstupní polarizace dle (2.4).

$$\mathbf{S} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
(2.5)

Pro příklad uveď me následující matici, která platí pro hodnotu signálu přivedeného na PMS: 0 a úhel $\theta = 30^{\circ}$.

$$\mathbb{M} = \mathbf{S}^{*}\mathbf{S}^{-1} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0.99 & -0.99 & 0.05 & 0.05 \\ -0.01 & 0.01 & -0.70 & 0.63 \\ -0.10 & 0.07 & 0.60 & 0.71 \end{bmatrix} \begin{bmatrix} 0.5 & 0.5 & -0.5 & -0.5 \\ 0.5 & -0.5 & -0.5 & -0.5 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0.01 & 0.99 & 0.05 & 0.05 \\ -0.01 & -0.01 & 0.64 & -0.70 \\ -0.01 & -0.09 & 0.73 & 0.62 \end{bmatrix}$$
(2.6)

Můžeme uvést další Muellerovu matici pro PMS: 255 a úhel $\theta = 30^\circ$

$$\mathbf{M} = \mathbf{S}^{*}\mathbf{S}^{-1} = \begin{bmatrix}
1 & 1 & 1 & 1 \\
0.99 & -0.99 & 0.06 & -0.05 \\
0.03 & -0.01 & -0.93 & 0.05 \\
0.03 & -0.07 & 0.02 & 0.94
\end{bmatrix}
\begin{bmatrix}
0.5 & 0.5 & -0.5 & -0.5 \\
0.5 & -0.5 & -0.5 & -0.5 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
-0.01 & 0.99 & -0.05 & 0.07 \\
0.01 & 0.02 & 0.04 & -0.94 \\
-0.02 & 0.05 & 0.95 & 0.04
\end{bmatrix}$$
(2.7)

Tímto způsobem zjistíme Muellerovy matice pro všechny hodnoty úhlů θ a hodnoty signálů přivedených na PMS.

Můžeme si všimnout, že se v prvním sloupci a zároveň v prvním řádku Muellerovy matice na transformaci podílí pouze člen m_{11} (členy m_{21} , m_{31} , m_{41} a m_{12} , m_{13} , m_{14} jsou nulové nebo blízké nule a při transformaci je tak můžeme zanedbat). Tuto skutečnost můžeme využít pro převedení námi získaných Muellerových matic na Jonesovy matice, které nám zajistí lepší fyzikální interpretaci. Zjištěné Muellerovy matice (2.6 a 2.7) odpovídají Muellerovy matici fázového prvku s optickou osou orientovanou v horizontálním směru (2.8). Tato skutečnost platí ve všech vyhodnocovaných případech.

$$M = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & \cos\phi & \sin\phi\\ 0 & 0 & -\sin\phi & \cos\phi \end{bmatrix}$$
(2.8)

Ze znalosti Stokesových parametrů můžeme dle vztahu (1.13) určit stupeň polarizace světla. Pro všechny naměřené hodnoty se míra polarizace pohybuje v intervalu $q \in \langle 0,87;1 \rangle$. Při takto vysoké míře polarizace můžeme pro zápis polarizace vedle Stokesova formalismu použít i formalismus Jonesův, a se světlem pracovat jako s plně polarizovaným. Dle vztahu (1.17) převedeme Stokesovy vektory (Tab. 2.2, 2.3) na parametry polarizační elipsy A_x , A_x a δ . Následně vykreslíme polarizační stavy pro všechny hodnoty signálu přivedené na PMS a hodnoty úhlů θ (Obr. 2.9 - 2.14).

Z vykreslených grafů (Obr. 2.9 - 2.14) je patrné, že u LP X a LP Y je změna minimální. Změna KP a DP je zde značná. Můžeme tedy říci, že změna polarizačního stavu závisí na velikosti signálu PMS a hodnotě úhlu θ .

Obrázek 2.9: Naměřené polarizační elipsy pro definované vstupní polarizace a úhly θ při hodnotě PMS: OFF.

Obrázek 2.10: Naměřené polarizační elipsy pro definované vstupní polarizace a úhly θ při hodnotě PMS: 0.

Obrázek 2.11: Naměřené polarizační elipsy pro definované vstupní polarizace a úhly θ při hodnotě PMS: 64.

Obrázek 2.12: Naměřené polarizační elipsy pro definované vstupní polarizace a úhly θ při hodnotě PMS: 128.

Obrázek 2.13: Naměřené polarizační elipsy pro definované vstupní polarizace a úhly θ při hodnotě PMS: 192.

Obrázek 2.14: Naměřené polarizační elipsy pro definované vstupní polarizace a úhly θ při hodnotě PMS: 255.

Mezi Muellerovou maticí a Jonesovou maticí existují převodní vztahy. Pro Jonesovu matici, ve tvaru $J = \begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix}$, můžeme její prvky vyjádřit jako $j = |r| \cdot e^{i\phi}$ [11]. Relativní fázi mezi jednotlivými členy ϕ můžeme vyjádřit jako $e^{i\phi} = \cos \theta + i \sin \theta$

$$r_{11} = \left[(m_{11} + m_{12} + m_{21} + m_{22})/2 \right]^{1/2}$$
(2.9)

$$r_{12} = \left[(m_{11} - m_{12} + m_{21} - m_{22})/2 \right]^{1/2}$$
(2.10)

$$r_{21} = \left[(m_{11} + m_{12} - m_{21} - m_{22})/2 \right]^{1/2}$$
(2.11)

$$r_{22} = \left[(m_{11} - m_{12} - m_{21} + m_{22})/2 \right]^{1/2}$$
(2.12)

$$\cos(\phi_{12}) = \frac{(m_{13} + m_{23})}{[(m_{11} + m_{21})^2 - (m_{12} + m_{22})^2]^{1/2}}$$
(2.13)

$$\sin(-\phi_{12}) = \frac{(m_{14} + m_{24})}{[(m_{11} + m_{21})^2 - (m_{12} + m_{22})^2]^{1/2}}$$
(2.14)

$$\cos(\phi_{21}) = \frac{(m_{31} + m_{32})}{[(m_{11} + m_{12})^2 - (m_{21} + m_{22})^2]^{1/2}}$$
(2.15)

$$\sin(-\phi_{21}) = \frac{(m_{41} + m_{42})}{[(m_{11} + m_{12})^2 - (m_{21} + m_{22})^2]^{1/2}}$$
(2.16)

$$\cos(\phi_{22}) = \frac{(m_{33} + m_{44})}{[(m_{11} + m_{22})^2 - (m_{21} + m_{12})^2]^{1/2}}$$
(2.17)

$$\sin(-\phi_{22}) = \frac{(m_{43} - m_{34})}{[(m_{11} + m_{22})^2 - (m_{21} + m_{12})^2]^{1/2}}$$
(2.18)

Uveď me nyní Jonesovy matice pro předešlé Muellerovy matice. Zjištěné fázové členy jsou uvedeny v radiánech. Jonesova matice pro hodnoty PMS: 0 a $\theta = 30^{\circ}$

$$J = \begin{bmatrix} 0.99 & 0.05 \cdot e^{-i \cdot 0.79} \\ 0.03 \cdot e^{-i \cdot 1.65} & 0.99 \cdot e^{-i \cdot 0.85} \end{bmatrix}.$$
 (2.19)

Jonesova matice pro hodnoty PMS: 255 a $\theta=30^\circ$

$$J = \begin{bmatrix} 0.99 & 0.04 \cdot e^{-i \cdot 2.23} \\ 0.06 \cdot e^{i \cdot 1.18} & 0.99 \cdot e^{-i \cdot 1.53} \end{bmatrix}.$$
 (2.20)

U členů Jonesovy matice r_{12} a r_{21} si můžeme všimnout velmi nízké amplitudy, která nijak zásadně neovlivňuje transformaci. Proto se budeme soustředit pouze na člen r_{22} .

Zároveň si můžeme všimnout Jonesovy matice pro fázovou destičku (2.21), která zavádí mezi x-ovou a y-ovou složku fázové zpoždění ϕ . Ta má stejný tvar jako zjištěné Jonesovy matice (2.19 a 2.20). PMS tak pracuje jako fázový prvek.

$$J = \begin{bmatrix} 1 & 0\\ 0 & e^{i\phi} \end{bmatrix}.$$
 (2.21)

Pro všechny Jonesovy matice uveď
me fázové rozdíly. Předpis můžeme napsat ve tvaru $j = |r| \cdot e^{i\phi}$, kd
erznačí reálnou amplitudu a člen $e^{i\phi}$ udává fázový rozdíl. V násle
dující tabulce je uveden člen ϕ pro všechny měřené situ
ace.

PMS:	OFF	0	64	128	192	255
$\theta = 5^{\circ}$	$-0,77\pi$	$-0,95\pi$	$-0,44\pi$	$0,07\pi$	$0,\!60\pi$	$-0,86\pi$
$\theta = 10^{\circ}$	$-0,75\pi$	$-0,85\pi$	$-0,36\pi$	$0,11\pi$	$0,\!63\pi$	$-0,82\pi$
$\theta = 20^{\circ}$	$-0,55\pi$	$-0,64\pi$	$-0,17\pi$	$0,31\pi$	$0,\!81\pi$	$-0,71\pi$
$\theta = 30^{\circ}$	$-0,32\pi$	$-0,26\pi$	$0,18\pi$	$0,\!60\pi$	$-0,92\pi$	$-0,48\pi$

Tabulka 2.4: Hodnota ϕ pro naměřené Jonesovy matice uvedena v násobcích $\pi.$

Ze zjištěných hodnot ϕ (Tab. 2.4) můžeme pozorovat, jak úhel θ , pod kterým dopadá svazek světla na PMS, ovlivňuje rozsah fázové modulace. Se zvětšujícím se úhlem θ , se zároveň zmenšuje rozsah fázové modulace.

Závěr

V teoretické části práce byl popsán prostorový modulátor světla (PMS), jeho princip činnosti, dělení, využití a možnosti zakomponování v experimentech. Byl zde také uveden předmět bakalářské práce, který spočíval v měření polarizačního stavu modulovaného světla. Tato část byla také věnována popisu polarizace, která byla stěžejní pro tuto bakalářskou práci. Uvedeny byly dva formalismy pro popis polarizace, jejich porovnání a následně také způsob měření polarizace.

Ve druhé části práce, která se zaměřovala na samotné měření a experiment, bylo uvedeno proměření polarizačních prvků, nezbytné pro definování a následné měření libovolného polarizačního stavu. Tímto způsobem bylo proměřeno celkem šest optických prvků (dva lineární polarizátory, dvě čtvrtvlnné fázové destičky a dvě půlvlnné fázové destičky), se kterými se pracovalo.

Následovalo vyhodnocení opakovatelnosti měření polarizace, pro které bylo provedeno pět měření. Směrodatné odchylky pro parametry polarizační elipsy A_x a A_y se lišili v řádech tisícin a fázový rozdíl δ v desetinách stupňů. Následoval popis samotného experimentu, u kterého byly uvedeny hodnoty přivedené na PMS, hodnoty úhlů θ , pod kterým dopadal svazek světla na PMS a také čtyři vstupní polarizace, pro které měření probíhalo.

Naměřené hodnoty, které byly ve formě intenzit jednotlivých bází, byly pomocí vztahů převedeny na Stokesovy vektory, které byly následně uvedeny v tabulce. Stokesovy vektory byly dále převedeny na transformační Muellerovy matice, které popisují působení optické komponenty na světlo s určitou polarizací.

Vzhledem ke stupni polarizace, který se pohyboval v intervalu $q \in \langle 0,87;1 \rangle$, jsme se světlem mohli pracovat jako s plně polarizovaným. Vzhledem ke skutečnosti, že se u Muellerovy matice na trasformaci z prvního sloupce a prvního řádku, podílel pouze člen matice m_{11} , mohli být Muellerovy matice převedeny na Jonesovy matice, což nám zajistilo lepší fyzikální interpretaci. Následně byly vykresleny polarizační elipsy pro definované vstupní polarizace, úhly θ a pro všechny signály přivedené na PMS.

S ohledem na vykreslené grafy polarizací, můžeme pozorovat změnu polarizačního stavu modulovaného světla v závislosti na hodnotě signálu PMS a úhlu θ , která se nejvíce projevovala u polarizace kruhové a lineární diagonální.

Vyhodnocení Muellerových a Jonesových matic ukázalo, že PMS funguje jako fázový polarizační prvek, jehož rozsah modulace ovlivňuje hodnota signálu přivedeného na PMS, a zároveň i úhel θ , pod kterým dopadá svazek světla na PMS.

Literatura

- [1] Manuál výrobce Hamamatsu. Phase spatial light modulator (Chapter 12).
- [2] A. Jesacher, A. Schwaighofer, S. Fürhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte. Wavefront correction of spatial light modulators using an optical vortex image. OPTICS EXPRESS 5801, Vol. 15, No. 9 (2007).
- [3] A. Jesacher, S. Fürhapter, Ch. Maurer, S. Bernet, and M. Ritsch-Marte. Holographic optical tweezers for object manipulations at an air-liquid surface. OPTICS EXPRESS 6342, Vol. 14, No. 13 (2006).
- [4] Q. Zhan. Cylindrical vector beams: from mathematical concepts to applications. Advances in Optics and Photonics 1, 1–57 (2009).
- [5] Z. Gongjian, Z. Man and Z. Yang. Wave front control with SLM and simulation of light wave diffraction. OPTICS EXPRESS 33543, Vol. 26, No. 26 (2018).
- [6] B. Katz, J. Rosen, R. Kelner and Gary Brooker. Enhanced resolution and throughput of Fresnel incoherent correlation holography (FINCH) using dual diffractive lenses on a spatial light modulator (SLM). OPTICS EXPRESS 9109, Vol. 20, No. 8 (2012).
- [7] I. Vyšín, J. Ríha. Paprsková a vlnová optika. 1.vyd., Olomouc: Univerzita Palackého v Olomouci, 2012, 123 s. ISBN 978-80-244-3334-9
- [8] J. Bajer. Optika 2. 1.vyd., Olomouc: chlup.net, 2018, 512 s. ISBN 978-80-907098-0-5
- [9] E. Collet. Field guide to polarization. SPIE, 2005, 134 s. ISBN 0-8194-5868-6
- [10] J. Běhal. Měření polarizačních vlastností prostorového fázového modulátoru světla. Olomouc: Univerzita Palackého v Olomouci, Bakalářská práce, 2013
- [11] D. Goldstein. Polarized Light. 2.vyd., Air Force Research Laboratory, Florida, U.S.A., 2003, ISBN 0-8247-4053-X