

Czech University of Life Sciences Prague

Faculty of Economics and Management

Department of Information Technology

Master's Thesis

A Comparative Study between Manual and

Automation Methods & Tools for Software Testing

Vijayalakshmi Anandaiah

© 2024 CZU Prague

Declaration

I affirm that, I have independently completed my master’s thesis entitled "A

Comparative Study between Manual and Automation Methods & Tools for Software

Testing" and have solely utilized the references cited in the thesis. As the Author of the

master’s thesis, I assert that it does not infringe upon any copyright laws.

In Prague on 27-03-2024 ___________________________

 Vijayalakshmi Anandaiah

Acknowledgement

I would like to extend my sincere gratitude to Ing. Václav Lohr, Ph.D., my thesis

advisor, for his invaluable guidance, unwavering assistance, and insightful feedback

throughout this research project. As a result of the expertise and capabilities possessed by

these individuals, the direction and quality of this thesis have been significantly enhanced.

It is my pleasure to extend my sincere thanks to my esteemed professors, dear

classmates, and the dedicated academic staff of the Global Information Security

Management (GISM) department at the Czech University of Life Sciences, Prague. During

the past two years, their consistent support has played a significant role in shaping and

enriching my academic journey. As a result of the encouragement, guidance, and shared

knowledge, I have been able to deepen my understanding of the subject matter and have also

created a collaborative and enriching learning environment. My sincere gratitude goes out

to the entire academic community for their invaluable contributions to my educational

journey, and I sincerely appreciate the collective efforts that have contributed to my personal

growth and development.

Lastly, I wish to express my thanks to my family and friends for their understanding,

perseverance, and support throughout my academic journey.

A Comparative Study between Manual and Automation

Methods & Tools for Software Testing

Abstract

This thesis focuses on software testing methodologies, and manual versus automation

testing is particularly compared. The main aim is to identify how each method detects defects

and assures software quality. Using a research method, which combines qualitative and

quantitative analyses, the aspects of resource utilization, time efficiency, and test coverage

are examined to highlight the pros and cons of the manual and automated testing.

In addition, the performance of leading automation testing tools and frameworks is

reviewed to establish their suitability in various testing contexts. The issues of automation

testing, which include maintenance of test cases, data management, and necessary skill sets

for testers, are discussed. The case studies from the real world provide knowledge on manual

and automation testing implementation in different software development fields.

Taking from the results, suggestions are made for improving testing speed and

obtaining a complete test coverage through the balanced use of both manual and automated

testing approaches. Furthermore, future directions of the area of software testing, including

the development of automated testing, the application of AI and ML, and the changing role

of Agile and DevOps methodologies are considered.

In this respect, this thesis adds to the understanding of the software testing lifecycle

within the wider context of software development by demanding respect for both manual

and automation testing in guaranteeing software functionality, security, performance, and

usability. It provides those in practice with practical ideas that let them choose correctly by

requirements of their project.

Keywords: Functionality, Performance, GUI testing, Manual and Automation testing tools

& techniques, SDLC, STLC, Selenium WebDriver, Test Cases, Quality Assurance.

Srovnávací studie mezi manuálními a automatizačními

metodami a nástroji pro testování softwaru

Abstrakt

Tato práce se zaměřuje na metodiky testování softwaru a srovnává zejména manuální

versus automatizační testování. Hlavním cílem je identifikovat, jak jednotlivé metody

detekují defekty a zajišťují kvalitu softwaru. Pomocí výzkumné metody, která kombinuje

kvalitativní a kvantitativní analýzy, jsou zkoumány aspekty využití zdrojů, časové efektivity

a pokrytí testem, aby se zdůraznily výhody a nevýhody manuálního a automatizovaného

testování.

Kromě toho je přezkoumán výkon předních nástrojů a rámců pro automatizaci

testování, aby se zjistila jejich vhodnost v různých testovacích kontextech. Diskutovány jsou

otázky automatizačního testování, které zahrnují údržbu testovacích případů, správu dat a

nezbytné sady dovedností pro testery. Případové studie z reálného světa poskytují znalosti o

implementaci manuálního a automatizačního testování v různých oblastech vývoje softwaru.

Na základě výsledků jsou předloženy návrhy na zlepšení rychlosti testování a získání

úplného pokrytí testováním prostřednictvím vyváženého používání manuálních i

automatických testovacích přístupů. Dále jsou zvažovány budoucí směry v oblasti testování

softwaru, včetně vývoje automatizovaného testování, aplikace AI a ML a měnící se role

metod Agile a DevOps.

V tomto ohledu tato práce přispívá k pochopení životního cyklu testování softwaru

v širším kontextu vývoje softwaru tím, že vyžaduje respektování manuálního i

automatizačního testování při zaručení funkčnosti, bezpečnosti, výkonu a použitelnosti

softwaru. Praktikujícím poskytuje praktické nápady, které jim umožňují správně si vybrat

podle požadavků jejich projektu.

Klíčová slova: Funkčnost, výkon, testování GUI, ruční a automatizační testovací nástroje a

techniky, SDLC, STLC, Selenium WebDriver, testovací případy, zajištění kvality.

Table of Contents

1. Introduction .. 1

2. Objectives and Methodology .. 4

2.1 Main Objective ... 4

2.2 Supportive Goals .. 4

2.2.1 Resource Utilization, Time Efficiency, and Test Coverage 5

2.2.2 Evaluation of Automation Testing Tools and Frameworks 5

2.2.3 Challenges and Limitations of Automation Testing ... 6

2.2.4 Real-world Case Studies ... 6

2.2.5 Best Practices for Manual and Automated Testing .. 7

2.2.6 Future Trends in Software Testing ... 7

3. Literature review .. 17

3.1 Overview of Manual Testing ... 17

3.1.1 Types of Manual Testing .. 18

3.1.2 Black box testing .. 18

3.1.3 White box testing .. 19

3.1.4 Gray box testing ... 20

3.1.5 Exploratory testing ... 20

3.1.6 Usability Testing .. 21

3.1.7 Ad-hoc Testing ... 21

3.1.8 Regression Testing ... 22

3.1.9 Acceptance testing .. 22

3.1.10 Compatibility Testing ... 23

3.1.11 Performance testing .. 23

3.1.12 Automated GUI Testing ... 24

3.1.13 Generations of Automated GUI Testing ... 26

3.2 Overview of Automation Testing ... 32

3.3 Benefits and Drawbacks of Each Testing Approach .. 34

3.4 Automation Testing Tools and Frameworks .. 35

3.5 Challenges and Limitations in Automation Testing ... 36

3.6 Case Studies on Manual and Automated Testing Implementation 37

3.7 Best Practices in Combining Manual and Automated Testing 38

3.8 Trends in Software Testing .. 39

3.9 Research Gap ... 48

3.10 Summary of Literature Reviewed .. 52

4. Practical Implementation ... 55

4.1 Research Design and Approach ... 55

4.1.1 Overview and Rationale ... 55

4.1.2 Mixed-Methods Approach .. 56

4.1.3 Survey Result .. 59

4.1.3.1 Descriptive Statistics Frequency and Percentage of Data 59

4.1.4 Interview Schedule ... 69

4.2 Comparative Analysis Framework ... 73

4.2.1 Criteria for Comparison .. 73

4.2.2 Metrics for Effectiveness and Efficiency ... 74

4.3 Testing Processes and Techniques ... 77

4.3.1 STLC and SDLC Integration .. 77

4.3.2 Comparative Analysis of Testing Processes ... 83

4.4 Tools and Technologies Implementation ... 87

4.4.1 Automation Testing Tools Overview ... 87

4.4.2 Criteria for Tool Selection .. 89

4.4.3 Comparative Evaluation of Tools ... 91

4.5 Test Case Design and Execution .. 92

4.5.1 Importance of Test Cases ... 92

4.5.2 Manual and Automation Test Case Design .. 93

4.5.3 Challenges in Test Case Maintenance .. 104

4.6 Real-world Case Studies Implementation .. 105

4.6.1 Case Study Selection Criteria ... 105

4.6.2 Implementation Insights ... 106

4.6.3 Practical Outcomes ... 107

4.7 Best Practices Integration ... 110

4.7.1 Synergies Between Manual and Automation Testing 110

4.7.2 Recommendations for Optimal Efficiency ... 112

4.8 Future Trends in Software Testing Impact ... 113

4.8.1 Emerging Trends in Test Automation .. 113

4.8.2 AI, ML, Agile, and DevOps Impact ... 113

5. Results and Discussion.. 115

5.1 Analysis of Manual Testing Results .. 115

5.2 Analysis of Automation Testing Results .. 116

5.3 Comparison of Results ... 116

5.4 Implications of Findings .. 117

5.5 Practical Insights from Case Studies .. 118

6. Conclusion ... 119

6.1 Summary of Key Findings ... 119

6.2 Recommendations for Future Research ... 122

6.3 Closing Remarks .. 123

7. References .. 125

8. List of Tables, Figures and Abbreviations.. 130

8.1 List of Table ... 130

8.2 List of Figure .. 130

8.3 List of Abbreviations .. 131

Appendix .. 133

1

1. Introduction

Software testing is a crucial step in the SDLC that guarantees the quality,

dependability, and performance of the application. Before use, the application is

carefully analyzed against specified requirements to find and eliminate any errors. In

the past, human testers performed this process manually, carefully following test

protocols and recording results. However, due to the complexity and proliferation of

current software applications, manual testing has become progressively less sufficient.

As a result, testing machines have become popular. This approach uses scripts and

specialized tools to automatically execute the test case.

When it comes to quality assurance in the ever-changing world of software

development, the choice of people and automated testing methods is important by

comparing these two methods, this review aims to clarify their differences and

similarities as well as their advantages and disadvantages. The traditional mainstay of

quality assurance, manual testing, relies on human interaction to carefully navigate

software systems, find bugs, and guarantee functionality because it is flexible, it can

be consumed role for survey research, ad-hoc testing, and evaluation experience. This

makes it extremely valuable in situations where human emotion and creativity are

critical. However, scalability, reproducibility, and speed issues can arise with the

manual approach, especially as software projects become larger and more

sophisticated. (Singh 2023)

However, the advent of automated testing introduced a paradigm shift in the

testing industry. Automated testing improves coverage, performance, and repeatability

by using specialized tools and scripting to execute predefined test cases. Regression

testing, performance testing, and repetitive tasks are some of the situations where this

approach comes in handy. Teams can identify issues early in the development cycle

and accelerate test execution. But because it can miss out on the richness of the user

experience and requires a huge upfront investment to set up, automation isn’t a solution

for everyone.

2

The human factor is one of the key elements in this comparative study. Manual

testing to find minor faults and confirm the user experience relies on the sensory

awareness, instinct, and domain knowledge of the tester. This approach works

especially well for exploratory testing, as it allows human testers to simulate real-

world scenarios, adapt to changing needs, and evaluate software from the users’

perspective. It is critical to strike a balance between automatic and manual testing,

since each approach has its own set of pros and cons. (Kumari, Chauhan, Vedpal 2018)

Scalability is important in the world of software testing, especially as projects

become larger and more complex. Due to its resource consumption, manual testing can

become cumbersome as the number of test cases and iterations increases. It can be

difficult to manage and coordinate large groups of manual testers, which can lead to

testing delays. Scalability issues are best addressed through automation because it can

run multiple test cases in a short amount of time. Automated testing frameworks allow

for parallel execution, helping teams manage large test suites faster and providing

developers with timely feedback.

While automated testing increases performance, there are situations where

manual testing—which involves human intervention—is necessary. Manual testing

excels in functional testing, access testing, and situations that require subjective

review. Testers can identify problems that automated scripts have missed, analyse the

overall user experience, and even spot abnormalities visually. Furthermore, human

intelligence and adaptability are essential for exploratory research, in which testers

actively search the application for hidden bugs (Enoiu 2017)

The cost-effectiveness of the two test methods is an important aspect of the

comparative analysis. Although labour-intensive, manual testing can be expensive for

smaller companies with simple requirements. The time and effort required to develop

scripts can stack up, as can the initial investment in automated testing tools and

frameworks. However, automated testing is more economical in the long run when

projects are large and test requirements are repetitive. Regression testing can be

performed quickly and reliably, reducing overall testing effort and speeding delivery.

3

Effective software testing requires collaboration and communication between

development teams. Collaboratively, where feedback is quick and relevant, manual

testing encourages a direct relationship between developers and testers. Testers can

communicate with developers in real time, generate comprehensive reports, and

simulate on-site issues. While automated testing speeds up testing, it creates a barrier

to separation between developers and testers. Balancing the rigor of automated testing

with the detailed perspective that manual testing provides requires effective teamwork.

In summary, a comparison of software testing tools and methods manual and

automated reveals a complex situation in which each method has its own advantages

Unlike manual testing in conditions that require empirical research, diagnostic testing,

and usability evaluation, especially in developing regression testing and performance

testing. It is important to find an ideal mix of manual and automated testing,

considering the size, complexity, and specialized testing requirements of the project.

Knowing the pros and cons of manual and automated testing enables teams in an ever-

evolving software development process to make informed decisions that ultimately

result in better software products. (Daniel Sundmark 2019)

4

2. Objectives and Methodology

2.1 Main Objective

This thesis delves into the important issue of effective software testing. The main

objective is to differentiate between two well-known testing methods, automation

testing and manual testing. This study attempts to address the central issue: What is

the best method for finding defects and guaranteeing high-quality software?

To achieve this primary objective, the thesis will explore several other objectives:

• To analyze the strengths and weaknesses of each testing approach in terms of

resource utilization, time efficiency, and test coverage.

• To explore and evaluate popular automation testing tools and frameworks to

understand their suitability for different testing scenarios.

• To identify the challenges and limitations associated with automation testing,

including test case maintenance, test data management, and skill requirements

for testers.

• To provide real-world case studies illustrating the practical implementation of

manual and automation testing in different software development environments.

• To propose best practices for combining manual and automated testing to

maximize testing efficiency and achieve optimal test coverage.

• To highlight future trends in software testing, such as advancements in test

automation, the integration of AI and ML, and the impact of Agile and DevOps

on testing methodologies.

2.2 Supportive Goals

 To support this comparison of manual and automated testing techniques and

technologies, the following supporting objectives are examined in further detail:

5

2.2.1 Resource Utilization, Time Efficiency, and Test Coverage

Evaluate the economic impact of humans and laboratories to quantify the impact

on resources. Determine the number of human testers required for various testing

scenarios of the resources required to maintain automation tools and scripts.

Time Efficiency Benchmarking:

Determine the time difference between typical test cases and execution using

automation scripts. This will measure how much time automation saves and how it

affects testing processes.

Test Coverage Analysis:

Examine how well automation and manual testing work together to achieve

adequate test coverage. Examine how each method distinguishes between types of

errors (e.g., functional vs. functional). Find out how the two methods can be combined

to create a comprehensive test plan. (Hamilton 2024)

2.2.2 Evaluation of Automation Testing Tools and Frameworks

Functional Deep Dive:

Open major automation frameworks (like Cypress, Selenium, Katallon Studio)

and tools (like Appium, Katallon Studio) and explore their capabilities in depth.

Required features such as detectors, data-driven testing capabilities, reporting features

and device integration are all part of this.

Comparative Analysis Matrix:

Create a comparative analysis matrix showing the advantages and disadvantages

of different automation frameworks. Factors to consider include community support,

scalability for large test suites, supported programming languages, ease of use, and

learning curve.

Selection Criteria:

Provide software development teams with a decision-making process so they can

choose the best automation solution for their unique testing needs. This design should

6

take into account variables such as project complexity, funding availability, level of

technical expertise, and type of application being tested (K. 2022)

2.2.3 Challenges and Limitations of Automation Testing

Script maintenance methods:

Discuss various methods used to handle the ongoing maintenance of automation

scripts, such as automated regression testing tools, refactoring methods, and version

control to assess script reliability, script clarity, or incompressibility never show -Look

for best practices to reduce failure.

Non-experimental areas:

Look at tests that, such as exploratory testing, user interface (UI) testing, and

testing that require humans to make judgments or measurements self-inadequate for

automated testing. (Adil 2024)

2.2.4 Real-world Case Studies

Appropriate Case Analysis:

Identify real case studies where software development teams have successfully

applied a balanced approach to both manual and automated testing. Prepare test cases,

test methodologies and consumption tools role, and quantifiable results.

Measurable Outcomes:

Focus on the measurable results obtained in the case studies, such as increased

test payment percentages, shorter test times, and error detection a it goes upwards.

Generalizable learning:

Draw conclusions from case studies that are relevant in experimental

approaches. This may involve identifying the best ways to integrate humans and

laboratories or adopting solutions to specific experimental problems. (Dilmegani

2024)

7

2.2.5 Best Practices for Manual and Automated Testing

Effective manual testing strategies:

Define best practices for manual testing. Attention should be paid to techniques

such as exploratory testing, in which testers use their experience to build test cases on

the fly, and functional testing, which focuses primarily on the user’s interaction with

the application.

Creating automation scripts:

Provide documentation for reliable and maintainable creation of automation

scripts. This includes best practices for writing reusable and modular code, how to use

data-driven testing methods to improve scripts, and how to set up reporting and logging

systems to analyse test results.

Collaborative Testing Approach:

Encourage collaboration in which automation and manual testing are viewed as

complimentary capabilities of one common testing process rather than two separate

entities. To ensure a seamless testing process, it includes developing seamless

communication channels between manual and automated assessors. (Bot play

automation 2022)

2.2.6 Future Trends in Software Testing

Software testing is a procedure that includes examining and confirming that each

component of a software program is functioning in the acceptable manner. In order to

do this, it may be necessary to assess the functionality of a software in addition to its

accessibility, usability, and security characteristics. It can be necessary to test the

program in several environments to guarantee it works with Windows, Linux, iOS,

Android, and a plethora of other devices and operating systems. Smartphones, laptops,

notepads, and desktop workstations are all examples of settings that fall under this

category.

8

The process of testing software also involves deciding whether or not an

application will be of use to a corporation in accomplishing its goals. Although UI is

an abbreviation for "user interface," UX is an abbreviation for "user experience." For

example, if a company that specializes in e-learning wants to launch a web-based

application (one that is more user-friendly than the application they are now using),

then the process of developing software will contain both of these concepts. Also

known as KPIs, or Key Performance Indicators, for short. With the use of these key

performance indicators (KPIs), the team will be able to evaluate the program’s

usability and accessibility. For example, they will be able to determine how easy it is

to navigate the application and find the information or features that are

required.(Rajesh Kumar Mishra 2017)

Functional testing, unit testing, performance testing, and regression testing are

some of the several types of software testing that are available. There is a vast range

of software testing, which encompasses a number of testing methods. The objective of

every kind of examination is to evaluate a distinct group of elements and to provide a

distinct collection of outcomes. As an example, unit testing is used to ensure that each

and every component of a software program performs properly, while performance

testing is used to examine how efficiently an application runs when it is exposed to

various quantities of labor. Using the proper testing techniques in order to test the

relevant criteria is very vital if you want to get the most out of the testing experience.

This is because you want to get the most out of the testing experience.(Desikan 2006)

Integrating AI and Machine Learning:

There have been decades of progress in the subject of automation testing, which

includes the construction of test scripts that can be repeated automatically. In recent

years, this topic has received considerable attention. Nevertheless, despite the fact that

this approach offers a number of benefits, such as the automation of testing scenarios

that are repetitive, time-consuming, and prone to mistakes, a considerable amount of

human work is still required from the users. In the first place, it is necessary for testers

to manually update their test scripts whenever there is a modification made to an

application software. This is due to the fact that the parameters, which are nothing

more than a collection of actions performed by the user, could no longer correlate to

9

the functioning of the software. This is an activity that takes a significant amount of

time and is characterized by it being repetitive.

Because of the contributions made by artificial intelligence and machine

learning, it is possible that the amount of manual labor that is associated with test

automation technologies might be decreased. Through the provision of training data to

a machine learning model, testers are able to automatically generate, audit, and carry

out test cases. It is possible that logs, test cases, and documentation are included in this

training data.(Drusinsky 2017)

The machine learning model will get cleverer as a result of frequent training. It

will also become better able to grasp how the application program works and will be

more able to determine what the user experience should be like. When this is finished,

the machine learning model will be able to produce data that is more accurate and

insightful, which developers may use to find solutions to issues and make adjustments.

An additional benefit of machine learning models is that they may be trained to

develop and run test cases that are representative of the most current version of an

application software. This is a significant advantage. As a result, the problem of

incompatibility between versions is resolved.

Impact of Test Design:

Discuss how these trends may affect the future of both human and automated

testing. Consider how AI can automate many testing scenarios, thereby reducing the

need for human testing of specific functionality. However, strategic decision-making

and complex experimental situations may always require human skills.

Adapting to Change:

Explain how software teams can prepare for and adapt to these rapidly changing

test industry trends.(Jackson-Barnes 2024)

Latest Trends in Software Testing:

Below is a complete study of the trends in software testing that are now occurring

and those that are expected to occur in the near future. These patterns will have a big

10

influence on the future. On the other hand, some of these tendencies are already being

put into practice, while others are on the approach of becoming mainstream. It is useful

to be aware of these patterns regardless of the conditions since it gives a method of

knowing how different software development businesses test their applications, both

in the present and in the future. This awareness may be valuable.

In light of this, if you are going to hire a software development team in the near

future, then knowing this knowledge will be of great assistance to you in picking a

team that puts a high focus on testing.

Robotic Process Automation (RPA):

RPA, which stands for robotic process automation, is a method that incorporates

the use of software robots for the purpose of automating business procedures that are

repetitive and time-consuming due to the repetitive nature of the operations

themselves. Despite the fact that it is not the same as test automation, it may be used

to complement traditional test automation, which will result in it being more adaptable

and flexible.

The RPA testing method involves finding processes that are repetitive and prone

to mistakes, and then automating those jobs. This process is known as "repetitive

process automation." RPA allows developers to execute tests concurrently, which

eliminates the need for them to manually test each and every feature of an application

software individually, which might take several weeks to complete. They no longer

have to rely on human validation as a result of this(Binder 2018).

Script less Test Automation:

There is a method of automating tests known as scriptless test automation, which

does away with the need that human engineers be responsible for writing coded scripts.

The term "no-code" or "codeless" test automation is another name for this kind of test

automation. All of this is accomplished via the use of automation testing tools, which

provide an abstraction from the code that is utilized for test automation. The writing

and execution of automated tests is made easier for testers who are not technically

aware as a result of this simplicity.

11

A significant number of individuals are of the opinion that scriptless test

automation will be the method of choice in the testing process in the years to come.

The key way by which the objective is to make testing more accessible, streamlined,

and error-prone is to eliminate scripting, which is described as the use of programmed

instructions that duplicate human behaviors. Scripting is the primary means by which

the aim is to make testing more error-prone.

Shift-Left Testing:

The notion of "testing first-first" rather than "testing last" lies at the heart of the

shift-left testing methodology. According to this definition, testers will have a greater

role in the process of developing software from an early stage forward.

In this manner, testing is not an afterthought but rather an essential component

of the methodology that is being developed. By moving to the left, development teams

are able to identify problems early and handle them in a more effective manner, which

eventually results in the saving of time and money while also ensuring that the software

is of a high quality.

IoT Testing:

The number of Internet of Things (IoT) devices that are now in circulation is

estimated to reach around 15.4 billion by the year 2023, as stated by Statista. The

gadgets in question are actual computers that communicate wirelessly over the internet

in order to collect and transmit data. When everything is said and done, it is expected

that this number will ultimately rise. Not only that, but there is a reasonable

explanation for this.

IoT devices have increased their capabilities, so people are now able to monitor

and manage the health and status of their smart gadgets in real time, no matter where

they are located. This is possible because of the enhanced capabilities of these devices.

Smart refrigerators that read out recipes while you cook, smart sensors that monitor

the operating temperature of industrial equipment, and smart GPS devices with

12

geofencing to keep high-value assets within their designated zones are some examples

of the sorts of devices that fall under this category.

As the number of software development teams continues to rise, more and more

of them will need to include Internet of Things (IoT) testing into their SDLC. This is

because the number of businesses that use Internet of Things technology into their

products will definitely expand. Is that to be expected? The testing of the several

components that make up an Internet of Things system, including the network layers,

the operating system, the communication protocols, the hardware, and the software. In

addition, it is vital to conduct security testing for the Internet of Things in order to

prevent threat actors from gaining unauthorized access to test data. This is due to the

fact that the majority of devices connected to the Internet of Things collect and transmit

data that is significant to both individuals and businesses.(Tian 2005)

Cloud Testing:

The process of evaluating the functioning of an application program by using

resources that are hosted in the cloud is referred to as cloud testing. Permitted testers

from all over the globe are able to carry out a variety of testing activities, including

performance, usability, integration, regression, and functional testing, via the internet

in the cloud. This eliminates the requirement for on-premises infrastructure.

Additionally, testers have the ability to expand their test coverage by altering their

virtual environment in order to imitate a variety of desktop and mobile devices.

The use of this strategy eliminates the need to be concerned about the availability

of hardware, and it is an excellent method for ensuring operation on a variety of

devices and web browsers, both new and old simultaneously. Because cloud testing is

quicker than testing on conventional on-premises infrastructure, it may also assist

speed up the software development life cycle (SDLC). Additionally, cloud testing can

help save money for both the customer and the development team by reducing the cost

of ownership for testing tools. This arrangement is very beneficial to both of the

persons involved.

13

Virtual and Augmented Reality Testing:

The global market for virtual reality (VR) is expected to grow to more than 22

billion USD by the year 2025, despite the fact that virtual and augmented reality are

still considered to be relatively niche. The release of new devices, such as the Sony

PlayStation VR2 and the Meta Quest 2, continues to push gaming forward by

providing higher resolution displays, wider FOVs (Fields of View), and controllers

that provide haptic feedback. Apple Vision Pro, which was only recently revealed and

is scheduled to be released in 2024, is the company’s first effort into mixed reality. It

gives customers the ability to manage the device using hand tracking and does not need

controllers during operation.

There is reason to be optimistic about the future of the virtual and augmented

reality industry, as these encouraging developments reveal. These findings also shed

light on the growing significance of testing software using virtual and augmented

reality in the software development process. Due to the extreme complexity of the two

areas, it is necessary to conduct exhaustive testing on a variety of components. Among

them are the user experience, the performance of the device, compatibility with a

variety of hardware and software combinations, audio testing, and a great deal more.

In addition, developers are required to do environmental testing in order to guarantee

that the virtual experience is comparable to what a user would anticipate in the actual

world.(Copeland 2004)

Automated Mobile Testing:

The term "mobile testing" refers to the use of mobile testing technologies for the

purpose of automatically evaluating the functionality, reliability, security, and

accessibility of a mobile application. Automated mobile testing may be accomplished

with the help of certain technologies that are now accessible. These include

LambdaTest, which allows users to do cross-platform testing by using Android and

iOS emulators, and Appium, which is an open-source automation testing framework

that enables users to write automation scripts in Python, Java, Perl, and other

programming languages. Both of these tools are intended to facilitate testing across

several platforms. These two options both provide the capability to test across a variety

of platforms. If it is carried out correctly, automated mobile testing has the potential to

14

deliver faster feedback and early problem discovery. Additionally, it has the capability

of increasing test coverage to a bigger number of devices than was previously

achievable with human testing.

API and Service Test Automation:

Since the introduction of what many people consider to be the first modern

application programming interface (API) by Salesforce at the IDG Demo Conference

on February 7, 2000, APIs have been extensively used by companies not just in the

United States but also in other countries across the world. Businesses have been using

these application programming interfaces (APIs) to connect third-party services and to

monetize the content and functionality of their websites. However, despite the fact that

application programming interfaces (APIs) have been around for quite some time, the

testing process for them is always being refined. When it comes to evaluating the

quality assurance of application programming interfaces (APIs) and making certain

that they meet predefined requirements for performance, security, and compatibility,

automation has become more common over the course of the years.

Karate DSL, which combines automated testing, mock-ups, and performance

testing into a single platform, and SoapUI, which enables automated testing for REST

and SOAP applications inside a DevOps framework, are two of the most popular

automated API testing solutions. Karate DSL incorporates all three types of testing as

well as performance testing. Karate DSL is also one of the most often used tools for

evaluating application programming interfaces (APIs).

Big Data Testing:

Big data testing is the process of ensuring a big data application is processing its

data properly.

Different from the testing of conventional software, which evaluates practically

every component of a software program, the testing of big data involves analyzing the

characteristics that are directly relevant to data collection and processing. This is in

contrast to the testing of regular software. As a consequence of these checks, it is

15

guaranteed that the data is not corrupted, and that it is also clean and well-organized.

In addition to this, the tests uncover instances of data that has been misplaced or stolen.

What is the significance of testing using a large amount of data data? The reason

for this is because it instills confidence in organizations, which enables them to trust

their data and employ it to make choices that are based on correct information. When

taking into consideration the fact that it is projected that the market for big data

analytics will reach 68 billion USD by the year 2025, it is clear that the need for big

data testing is only going to increase.(Cem Kaner, Jack Falk 2008)

DevSecOps:

When it comes to the development of software, the concept of making security

a high priority throughout the whole process is not a new one. What is the reason why

DevSecOps, which is an acronym that stands for development, security, and

operations, is featured on this list? mainly due to the fact that a significant percentage

of companies are still struggling with it. According to the findings of the study

conducted on the 2021 State of DevSecOps, sixty percent of respondents

acknowledged that they had encountered technical problems or difficulties with

DevSecOps, while forty percent of respondents confessed to having encountered

financial difficulties.

In the future, it is feasible that artificial intelligence and machine learning may

be able to aid enterprises in attaining compliance with DevSecOps. The way is it?

Automating the process of writing test scripts, delivering them, and auditing them is

the means by which this objective is achieved. Additionally, the process of updating

test scripts whenever there is a modification to the application need to be automated.

This is something that should follow. Furthermore, artificial intelligence and machine

learning may be of aid in continuous monitoring by discovering security

vulnerabilities, flaws, and blunders at an early and frequent stage. This may be

accomplished via the use of machine learning and AI.

16

QAOps:

The term "QAOps," which literally translates to "Quality Assurance and

Operations," is used to describe the process of incorporating quality assurance into the

DevOps methodology. Because of this link, it is now feasible for teams to

simultaneously construct and test operating systems. The objective of Quality

Assurance Operations, also known as QAOps, is to detect defects as soon as they are

discovered. This is accomplished by conducting automated testing and locating issues

before the products are delivered to the manufacturing line.

However, how does QAOps differ from other methods of quality assurance that

are more historically accepted? When using QAOps, testing is not only carried out at

the end of the development cycle, but it is also carried out constantly throughout the

whole of the process of development and deployment. The speed at which feedback

loops are closed is increased as a result of this, and the efficiency with which bugs are

identified and fixed is improved.(Anne Mette Jonassen Hass 2016)

17

3. Literature review

3.1 Overview of Manual Testing

Software developers utilize a variety of test design testing methodologies to

locate and fix errors. Software testing is a procedure used to make sure software acts

as intended and only accomplishes what it was intended to do. Software ought to be

dependable and unwavering, presenting users with no unexpected situations. A crucial

step in the software development process is software testing. Even though testing is

widely used and beneficial, the design phase is among the costliest in software

development, carrying out, and maintaining the tests Software must be tested to

guarantee a specific quality level, find errors, and confirm that it is correct. Software

firms are always looking for methods to improve and maximize the efficacy and

efficiency of their testing procedures. Writing and running tests by hand without the

use of automation tools is referred to as "manual testing." Traditionally, software

developers write these tests. High-quality test creation requires a lot of human labour,

which in turn requires.

Big initiatives that require further testing may cause obstacles. Over the years, a

few methods for automating the creation of test cases have been put forth, due in part

to the difficulty and time-consuming nature of developing and specifying manual tests.

Software organizations have already embraced the first step toward automation:

automatic test execution. This usually implies that manual test writing is still required,

but the tests are compiled into executable programs that are used to automatically test

the system. A more sophisticated variation involves using test automation tools to

automatically generate executable tests based on models or source code. The standard

of the automatically produced tests differ, and it’s not apparent how these tests stack

up against the ones that were created by hand. (Pai 2023)

When given enough time and resources, developers frequently provide high-

quality tests; nevertheless, the focus of the tests varies depending on the software

developer, the project’s goal, and the specifications that were developed by the

community or company. Different developers and testers write different tests; some

want to cover more ground, primarily by covering specific statements or branches;

18

others concentrate on strengthening code that is prone to errors or verifying that it

complies with various standards. However, as software complexity and anticipated

quality rise, so does the cost of developing the tests by hand.

Nevertheless, there are still not many sophisticated tools available for automated

test generation, and as a result, there is little data comparing automated test generation

to manual testing. A meta-analysis that organizes this data and offers a comprehensive

comparison is required. (Ted Kurmaku 2020)

3.1.1 Types of Manual Testing

A wide variety of manual testing methodologies exist, each tailored to a certain

set of needs and applications. Many of the most popular varieties are listed here:

3.1.2 Black box testing

The goal of this testing is to assess the software’s behavior and functioning

without delving into its underlying workings or rules. The tester treats an application

as a black box and demonstrates how it handles multiple inputs and delivers significant

output. It is used to find out the behaviour& how the software works from the end

user’s point of view. In order to understand how it works, let's take a look at a simple

example.

For example, if you want to test a social application using black box testing, it

will accept a username & password, and the expected result is access to the application

multiple black box testing techniques validate the system against predefined

requirements. Black box testing encompasses both functional and non-functional

testing at various levels.

Functional Testing:

During functional testing, the quality engineer confirms whether the application

components work based on specific requirements. This test can be done manually or

with automated tools, depending on the specific test.

19

Non-Functional Testing:

Passive testing evaluates the functionality, reliability, usability, and other static

characteristics of a software application.

Regression tests:

These software tests are performed after code updates to ensure that there are no

bugs left in the updated code. New code may have new meanings that subsequently

conflict with existing code and cause errors. This is why the QA team creates a series

of regression test cases that will be repeated every time the code changes to save time

and improve the testing efficiency. (Jorgensen 2002)

3.1.3 White box testing

Testing the architecture and internal code of software is known as white box

testing or glass box testing. The default input is compared to the intended output in the

test. To get this test, QA testers need to understand programming skills that focus on

coding processes.

The primary goal of this testing is to strengthen the software’s security by

examining the software’s output and production processes. Every line of code has been

checked. After executing the white box methods, the developer submits the software

to the testing team to conduct black box testing & validate the software with specific

requirements. Here are examples of white box testing techniques:

Rules of coverage:

Code coverage is a test that helps understand how much testing is being done on

sources. It is a useful metric that helps assess the quality of a testing program.

Road testing:

Method testing is a white box method based on system management. The

program’s settings provide the basis for testing.

20

Loop testing:

This is one of the key assumptions built into many algorithms. The purpose of

this test is to reveal weaknesses in a particular loop. (Johnson 2019)

3.1.4 Gray box testing

This testing approach combines black box and white box techniques. Testing a

system’s functioning without understanding its fundamental setup is possible using the

black box testing approach. The internal rule structure of a system is examined during

white box testing.

Both integration and penetration tests often use gray box testing. As a whole, the

system’s components are tested during integration testing. Penetration testing involves

conducting multiple scenarios that could lead to malicious attack attempts and

identifying system vulnerabilities that resist such attacks. Testing techniques that can

be combined with gray box testing include matrix testing, model testing, regression

testing, and orthogonal array testing. (Sharma, A., & Gupta 2020)

3.1.5 Exploratory testing

A wide variety of manual testing methodologies exist, each tailored to a certain

set of needs and applications. Many of the most popular varieties are listed here the

term "exploratory testing" refers to software testing that is both unplanned and hands-

on. System testing is a kind of testing in which testers analyze systems without looking

at any test cases or having any prior experience with them. The personnel in question

do not follow to a certain testing procedure; rather, they enter the room on their own

and make a choice on the moment about what questions to test. The exploratory testing

methodology is yet another well-known agile technique. The key goals of this

methodology are to learn, discover, and explore.

In addition to the examiner’s responsibility, it lays a focus on the examiner’s

autonomous nature. In circumstances in which the essential documentation is either

not given at all or is only provided in part, testing may be of great assistance. The

21

process of testing requires identification, which allows you to find a bigger number of

flaws than you would be able to find using a standard test method. The quality

assurance team is able to uncover errors and flaws that are often overlooked by

traditional testing methods thanks to the use of this procedure. A variety of tests, as

well as a variety of various scenarios and challenges, are included in the testing

process. While the experiment is being carried out, it also generates new ideas from

the process. (Bach, J., & Bolton 2010)

3.1.6 Usability Testing

Usability testing is used to evaluate the usability of software by asking users to

perform and monitor specific tasks. Usability testing examines user behavior,

specifically whether users can effectively, efficiently, and successfully use a service

or software.

But UX experts use usability testing to explore experience beyond a practical

understanding of usability. Usability testing is a process of collecting feedback and

data about user experience that involves seeing testers engage with the product.

Functional testing allows you to perform functional testing at any stage of the design

or development process.

You can consider usability at the beginning, in design prototypes, later in the

development process, in web pages or applications. It is recommended that functional

testing be carried out during the development phase. Organizations need to focus on

usability testing to save significant time, improve savings, and reduce costs. Thereby

the organization ensures that the software release in the market delivers success.

(Tullis, T. S., & Albert 2013)

3.1.7 Ad-hoc Testing

Ad hoc testing is a type of testing that is done on applications because it does

not involve much preparation or planning. The purpose of post hoc testing is to identify

bugs and problems at different stages of software development. Because it is not

22

subject to any test protocols, there is no need for documentation or special procedures

for developing test cases.

Ad hoc testing that can be performed at any time throughout the development of

an application does not have a set schedule. However, it’s not as busy as it sounds.

Testers need to have a good grasp of this programming skill. One advantage of ad hoc

testing is that it takes less time than standard test methods.

You will save a lot of time because you didn’t follow a predetermined process

and document each step. If you want to make sure your product is completely bug-free

before it’s released to the public, ad hoc testing is a fantastic tool to use. Ad hoc

experiments included the friend experiment, the monkey experiment, and the pair

experiment. (Goyal, A., & Singhal 2018)

3.1.8 Regression Testing

It is a method of software testing that performs repeated functional and passive

testing & ensures that the software apps perform at a high level through code

modifications, software updates, enhancements, & optimizations. Regression testing

is an important part of the software development cycle as it allows developers to detect

unexpected errors in the app that are triggered due to growth & expansion of the

codebase.

Testing validates the entire software/application by tracking components of

existing functionality. It is an important step that should be implemented whenever an

organization makes regulatory changes to its software. Testing ensures the stability of

the system after repeated corrections. (Grigera, Pablo 2007)

3.1.9 Acceptance testing

The software’s acceptance is tested using this process. The goal of this testing is

to determine whether the system is ready for release and if it complies with certain

standards. Testing is done after the software is developed & before the release of the

23

software available in production. Acceptance test is divided into two parts one is

internal acceptance test & other is external acceptance test. Other types of acceptance

tests include:

User Acceptance Testing (UAT): This testing is done by end-users & customer

representatives to determine if the system meets the project requirements. This often

includes a real-world scenario & ensures the software is ready to be used.

Business Acceptance Testing (BAT): The purpose of the following testing is to

verify that the operating system and software meet user expectations and needs. In

other words, a software product in BAT is tested as. (Kumar, S., & Sharma 2021)

3.1.10 Compatibility Testing

Compatibility testing determines whether a program or product is compatible

with computer environments. It is part of the passive test. It evaluates the usability,

reliability, and performance of the application and product. Browser and software

compatibility testing is important because it allows organizations to develop

applications that work well on virtually any device. For example, cross-browser

compatibility testing ensures that Opera users get the same experience using Firefox

and other major browsers.

Compatibility testing can identify potential problems when using an operating

system or application in a particular environment. This allows you to resolve such

issues before the system application starts, saving time and resources. Compatibility

testing ensures that your application or system will work on different software and

hardware platforms, which can help you expand your market share and appeal to a

wider audience. (Bhatia, S., & Sharma 2018)

3.1.11 Performance testing

To ensure that software is secure, flexible, and functional, performance testing

is an important part of the testing process. Consequently, testers often use a wide range

24

of performance testing methodologies and instruments, tailored to the specific product

under scrutiny. The system’s resilience to heavy loads, data, and peak demands is

assessed during performance testing. This helps identify any technical issues or

performance problems in the system.

Verifying that the system can handle the workloads expected by end users is the

primary goal of performance testing. It helps to identify faults that may cause system

failure in a particular situation. Additionally, workload testing helps to determine the

capability of the system and its ability to handle different workloads. It is an important

part of software development because it ensures accuracy and efficiency.

Performance testing guidelines are essential to ensure a smooth user experience,

validate system reliability, prevent revenue loss, promote SEO rankings, and avoid

future performance issues Performance testing is essential to ensure the smooth

running of the systems and ensure a quality user experience. Identifying potential

concerns before the development phase can also help avoid major challenges in the

future. (Thakkar 2024)

3.1.12 Automated GUI Testing

When it comes to software, the system testing process includes GUI testing,

which is sometimes referred to as GUI-based testing. So that we may learn more about

the user-facing portion of the software, the tests are carried out. Inputs are accepted

from users via graphical user interface (GUI) events such as mouse clicks, selections,

and typing. These commands change the state of graphical user interface (GUI)

elements like buttons, drop-down menus, and text fields, and then they produce

graphical output, correspondingly. An outcome is produced by every event that may

be performed on graphical user interfaces (GUIs), and this result is dependent on the

GUI’s internal state as well as its external environment. Each event that is conducted

on graphical user interfaces (GUIs) results in a distinct effect depending on the state.

One last thing to consider is that the order in which an event occurs might also result

in varied results. Graphical user interface (GUI) testing is difficult and time-consuming

since every GUI event must be tested in different states and according to different

25

sequences based on these characteristics. It is essential for testers to have a

comprehensive grasp of the software’s requirements and functioning to guarantee that

GUI testing is carried out effectively. In addition to this, there must be a

comprehensive comprehension of the many states that the program can exhibit as well

as the conceivable sequences of graphical user interface events. A comprehensive test

coverage of a system may be achieved with the use of this information. When testing

software at the system level, graphical user interface testing is often a must. Its purpose

is to guarantee that the program functions appropriately in accordance with its

requirements. To do this challenging and intricate task, one must have an in-depth

understanding of the software’s requirements, capabilities, various states, possible

results, and GUI event sequences. (Saha, D., Roy, C. K., & Kim 2020)

First Generation:

In their first generation, researcher include a reference to the initial level of GUI-

based testing, which they refer to as the first generation. And so it is that this level is

also called "the tolerance of changes in the GUI." A method of testing that involves

creating changes to the graphical user interface (GUI) is called coordinate-based GUI-

based testing. With this form of testing, the SUT’s graphical user interface (GUI) is

interacted with by means of precise screen coordinates. In its early iterations, Capture

and Replay (C&R) applications could record user actions by using precise mouse

positions to build and run test regimens. This allowed the systems to capture user

activities. In addition to the fact that this method is no longer supported by the

instruments that are now accessible on the market, it is also categorized as having the

least amount of tolerance for changes. A simple change in the screen resolution would

result in the test scripts that were written being corrupted, which a substantial would

need amount of maintenance. This is the reason why this is the case. (Rashid, F.,

Mohamad, R. A., & AlSarayreh 2019)

Second Generation:

It is the components or widgets of the graphical user interface (GUI) that serve

as the foundation for the second generation of automated GUI testing. This kind of

testing represents an increased level of tolerance for changes in the GUI. A button, text

box, or drop-down menu are all examples of capabilities that fall under the category

26

of widgets in a graphical user interface (GUI). Widgets are defined as functionality

that allows for user input. A widget’s background color, size, and font are a few

examples of GUI components or attributes. Another example is the size of the widget.

One advantage this level of abstraction has over the coordinate-based method is that it

allows for the complete transformation of all recorded user interactions into widgets

that make up the GUI. There are strategies that are built on APIs that make up this

degree of abstraction. Because of this, the test scripts are more resistant to changes that

are made to the graphical user interface (GUI), which in turn minimizes the costs that

relate to updating the test scripts.

Third Generation:

VGT, which stands for visual graphical user interface testing, is the third

generation of GUI testing. Tolerance for change in the GUI is at its maximum with

this. To achieve the aims of identifying and interacting with the GUI, this specific

solution employs picture recognition on screen grabs. Through the use of this

particular kind of graphical user interface contact, which is also referred to as bitmap

interaction, it is feasible to imitate customer behavior. It is possible to do this by

supplying the SUT with automated instructions for the mouse and keyboard, seeing

the output, and then comparing it to the results that were predicted. Because of this,

VGT is more resistant to changes in layout when compared to the second generation.

It does, however, make the graphical user interface (GUI) more important, especially

for picture manipulation (e.g., resizing, cropping, and color correction). Attention in

the parts that follow will be focused on the horizontal axis of Figure, which indicates

the level of automation in the GUI testing procedures. Separating script-based GUI

testing from script-less GUI testing is an important first step toward this objective.

(Nguyen, T. T., & Kapfhammer 2021)

3.1.13 Generations of Automated GUI Testing

Automated graphical user interface testing has been around since the late 1980s

and continues from that point forward. A categorization system has been devised by

researchers for the many different computer-based graphical user interface testing

approaches. The currently available methods for evaluating graphical user interfaces

are separated into three generations by this categorization scheme, which are

27

temporally connected to one another. Figure shows the researchers’ more thorough

classification of the current GUI testing approaches; the vertical axis shows the

GUI/SUT tolerance for change, which is divided into four categories and is also called

GUI-based testing generation.

Despite being the fourth highest level described by the authors, "combining

visual and widget-based approaches" is considered the 3.5th generation as it does not

introduce any new approach to the area. In addition, the authors included this level.

The degree to which regression testing is automated via the usage of the graphical user

interface is shown along the horizontal axis. These testing methodologies are

investigated in more depth and explored in greater detail in the subsequent sections of

the literature study that are to follow. (Aals 2019)

By using script-based graphical user interface testing, Section 3.1.12 has

provided a taxonomy of automated GUI testing procedures. This taxonomy of testing

approaches has been supplied. A visual representation of the recommended

classification system that is being used by is shown in the figure. There was some

back-and-forth over the meaning of the vertical axis of this graph, which shows the

level of tolerance for GUI tweaks. Additionally, this degree of tolerance is also known

as generations of automated graphical user interface testing. In this part of the literature

study, we take a closer look at the graph’s horizontal axis, which shows the level of

automation in regression testing performed via the GUI. Annotated in the issue

description is the fact that this thesis differentiates between script-based and script-less

forms of GUI testing.

This part begins with the script-based processes that are stated by, and it

continues with the investigation of various GUI and script-based tests. One form of

automated testing technique, script-based testing may create test scripts in real-time

while test cases are running. This type of testing approach is often used in software

development. Keep in mind that a tool that doesn’t need any code at all is different

from a script-less tool. This is a very important distinction to get to. There is a chance

that a tool that does not need any code might also be script-based. This is because the

tool could create and run test scripts in a covert manner. A more comprehensive

28

analysis of the script-based GUI testing methods currently available in the literature is

presented in the sections that follow. (Nguyen, T.T., Memon 2017)

Figure 1: Automated GUI Testing Architecture.

[Source: This thesis specific diagram was developed by the author.]

Capture & Replay:

Figure 1 illustrates that the first degree of automation is referred to as Capture &

Replay (C&R), which is also referred to as Record & Play to certain people. When it

comes to automated regression testing, this technique is often regarded as being among

the first and most widely used approaches out there. As far as C&R techniques are

concerned, the instrument does exactly what its name suggests: it is a recorder that

keeps account of all the inputs, which are then carried out by a manual tester. These

inputs are saved as a test script, and they include a variety of graphical user interface

(GUI) events. Some examples of these inputs include a mouse click or a textual input.

For carrying out the automatic execution of the script, all that is necessary is to play

back the test script. These technologies provide two separate modes: the capture mode

and the replay mode. Both the modes include video capture. (Garousi, V., Khezrian,

M., Felderer 2018)

 During the time that the tool is in capture mode, it will record and preserve any

kind of input that is supplied by the tester. In order to determine the item that is being

evaluated, this input may be an event as well as the characteristics of an object, such

29

as its color, position, name, and so on. This is done in order to accurately identify the

item. In addition to the fact that the test script that includes all of these gathered

attributes is retained, the replay mode allows for the script to be replayed several times.

Within the context of C&R approaches, it is feasible to include the anticipated outcome

of a use case as checkpoints.

These checkpoints are responsible for carrying out a comparison between the

anticipated outcome and the actual output from the use case. To determine whether or

not the SUT is behaving in an acceptable manner, it performs this action. This happens

either while the capture mode is engaged or when the test script is being modified.

Both scenarios are possible. In the event if a checkpoint in the test script discovers that

the actual result is not the same as the one that was planned, the test is regarded as

having failed. The behavior of the graphical user interface (GUI) may be recorded by

tools that are more sophisticated and up to date. Therefore, these tools can identify

modifications that have been made to the GUI in later versions.

The C&R methods are often the most convenient for regression testing since

they are simple to use, need less human intervention, and provide data more quickly.

The problem with these systems, on the other hand, is that they do not allow for

alterations to be made to the graphical user interface (GUI). Both the test script that

was recorded from earlier versions and the script that must be re-captured for the new

graphical user interface need to be kept. Both test scripts were recorded from earlier

versions. To maintain these scripts, there is an additional amount of human effort that

is that is necessary. Ranorex, QF-Test (QFS, 2023), and Squish (Squish, 2023) are just

a few examples of the many C&R tools that are now accessible. These tools are

available in both open source and commercial versions. In addition to enabling C&R

testing, these technologies also provide code-based testing, which will be covered in

further depth in the next portion of this thesis. (Huang, Y., Huang, G., Leung 2019)

30

Model-based Testing:

Model-based testing, which is also often referred to as MBT, is yet another way

that is used very regularly. This technique is separate from the ways that were

mentioned before since it automatically creates the test scripts. It is vital to note that

this strategy is distinct from the approaches. Additionally, it is conceivable for codeless

automation tools to generate test scripts in the background, in a manner that is

analogous to how MBT tools do their tasks. The fact that this is the case suggests that

not all script-free technologies are also code-free automation solutions at the same

time. To get a more profound understanding of the idea, it is necessary to place an

emphasis on all the many implications that are associated with MBT. “The phrase

"model-based testing" refers to a technique that, depending on the tests that are

generated by the technology that is being used, might be interpreted in a number of

different ways. Four various approaches are included into it, and these approaches may

be classified into the following categories:

• Generation of test input data from a domain model.

• Generation of test cases from an environment model.

• Generation of test cases with oracles from a behavior model.

• Generation of test scripts from abstract tests

The implementation of the first strategy places a main emphasis on the

automated synthesis of test inputs as its primary objective. To produce test input data,

this strategy involves selecting and combining a subset of the values that are provided.

This enables the generation of test input data. To focus on the development of test

inputs is the objective of the second strategy, which aims to accomplish this. It is

important to develop a model that contains data on the domains of the available input

values in order to carry out model-based testing. This is a prerequisite for the testing

process. This is done with the purpose of producing test input, which is also referred

to as test input generation in a more casual sense. Take into consideration that this

technique does not provide any information for test oracles, and consequently, it does

not generate a result for the test. This is something that you should keep in mind. Keep

in mind that this is a very important topic. (Arbon, J., & Burnett 2012)

31

This model is built as part of the second approach of MBT, which entails the

building of a model that offers a description of the environment that the SUT is

predicted to be contained inside. The next step is to utilize this model to generate

predictions about the environment that really exists. Since these environment models

are now available, it is now feasible to construct sequences of calls that are aimed at

the SUT. The SUT is the component that is accountable for the generation of call

sequences of this kind. It is not possible to determine whether the test is successful in

a manner that is analogous to the approach that was taken before it. This method is like

the one that was done before it. It is difficult to predict the values of the output since

the environment model does not include any information about the behavior of the

SUT. This is the reason why it is impossible to predict the output values. This is the

reason why things are the way they are.

The development of test cases via the use of oracles is the third way that is

utilized in MBT process. The output values that the SUT is expected to accomplish are

indicated by these oracles, which offer an indication of those values. This model is

referred to as the behavior model, and it is the name that is given to the model after it

has been completed. Oracles that define the behavior of the SUT, which is the relation

between the values that are input and those that are output, are included in the test

cases that are created. This is the reason why this is the case. This is the reason why

things are the way they are. However, in contrast to the other ways, it not only produces

the input but also provides the tester with entire test cases and a test result. This

differentiates it from the other approaches. An important benefit is that this is the case.

Comparatively speaking, this stands in stark contrast to the several other testing

methods.

A low-level test script that may be performed is at the heart of the last approach,

which is based on the abstraction of a description of a test case. Examples of this kind

of description include a sequence diagram or a uniform modeling language (UML).

The model that is presently being created includes a description of both the structure

of the SUT as well as the application programming interface (API). Tricentis, which

is an example of a test automation tool that is based on the model-based approach,

provides a detailed description of Tosca, which can be retrieved by the user.” It is

32

possible to read a comprehensive explanation here. The third strategy of MBT is the

method that is relevant to this research since it applies to the situation. This is because

the major focus of this thesis is on the creation of test cases as well as the overall test

design of automated testing. Model-based test cases may be developed using one of

two unique approaches. Both of these approaches are described here. Each of these

approaches is categorized in accordance with the category that was proposed by the

investigating researcher. A description of the process of creating test cases that is based

on models that were developed manually and those that were inferred automatically

using the models is provided in the following paragraphs. (Bell 2018).

3.2 Overview of Automation Testing

The testing and quality assurance of software-intensive systems accounts for

around 26% of IT expenditures, according to a 2014 industry poll of 1,543 executives

from 25 countries. However, the cost of not testing is significantly higher. According

to 2013 Cambridge University research, finding and fixing software vulnerabilities

now costs $312 billion worldwide. It accounts for half of the typical project’s

development time per year. Both automated and manual testing are important parts of

the testing process. By simulating real-world user actions, human testers do manual

testing to ensure that software under test (SUT) features work as expected. A

documented test plan with a series of test cases is frequently followed by the tester to

guarantee testing is thorough. The automation of software testing procedures is known

as automated software testing. To be more specific, test automation refers to the

process of independently testing software by use of specialized software that controls

test execution and compares actual results with projected outcomes. The relative merits

of automated and human testing are dependent on a variety of factors. When test

automation is used, the initial inclination is typically to use it for tasks that human

testers traditionally performed by hand. Still, (REHKOPF 2022)

While automation may reduce labor costs, it cannot fully replace human testers.

The success of automated testing depends on the proper and appropriate

implementation of test automation.

33

Test automation has the potential to significantly reduce testing costs and

improve software quality when used appropriately. A recent poll titled the "World

Quality Report 2014-2015" by the French business Sogeti found that just 28% of test

cases are now automated, despite managers’ hopes for an improvement in the future.

The decisions on what and when to automate become increasingly crucial as test

automation spreads throughout the software business. Making the wrong choices in

this regard might result in disappointments and significant mistakes in expenditures.

While many individuals envision fully automated testing in an ideal future, a

2012 poll found that only 6% of practitioners agreed with this viewpoint. It is

confirmed by further sources like and our surveys of test procedures in Turkey and

Canada that practitioners believe that time and money restrictions prevent them from

automating all tests. One frequently requested question is "what are the best times to

test certain parts of the system automatically?". As of this writing (March 2016), a

Google search for the subject "when to automate" software testing returns over 17,500

hits. Among these results is a plethora of online forums, conversations, and the sharing

of personal experiences.

Additionally, a practitioner-oriented book titled "Just enough software test

automation" emphasizes the significance of the subject and illustrates that automating

software testing is not necessarily a yes-or-no decision. Some additional sites make

similar assertions, such as: "Just as with any other testing activity, a cost-benefit

analysis is used to choose which tests to automate. If the analysis is wrong, you’ll end

up distributing your sources incorrectly. The formal literature (such as journal articles

and conference proceedings) and the informal literature (such as online discussion

forums and white papers) have both investigated the relative merits of automated and

manual testing in regard to various parameters. (Binder 2013)

The topics of when and what to automate have been extensively studied by

academics and industry professionals in technical publications, blogs, and forums.

However, to until, there has been a dearth of secondary sources—i.e., "review" or

survey papers—that analyze, gather, and synthesize the available information about

34

the "what" and "when" of automated testing. Our goal in doing this Multivocal

Literature Review (MLR) was to bridge the gap between theoretical research and the

practical information that is required by businesses. In addition to books and academic

studies, this investigation drew on a vast array of gray (unpublished nonresearched)

internet resources, such as presentation videos, tools, blog entries, and white papers.

One subset of SLRs, MLRs draw on both official and informal sources to compile their

findings. (Vahid Garousi 2016)

3.3 Benefits and Drawbacks of Each Testing Approach

An Organized Review of the Literature Bruno Rossi, TomáŇsPitner, and

Katar´ınaHrabovsk´a are faculty members at the Masaryk University in Brno, Czech

Republic. Abstract: Software testing is crucial to raising the calibre of products.

Several software testing methods have been created to assist enterprises as a result.

Nevertheless, there is still a lack of consistency in the implementation of testing

process models throughout enterprises; additional data regarding reported experiences

is required. Objective: To ascertain the outcomes obtained from the utilization of

software testing methods in organizational settings. Our attention is directed towards

attributes like the testing procedure phases, stated benefits and downsides, and the

context of use. Method: We conducted a Systematic Literature Review (SLR) that was

informed by findings from earlier reviews and concentrated on research concerning

the utilization of software testing procedures. Results: We gathered 17 testing models

from 35 primary studies and survey-based articles. While many models now in use are

said to be relevant to a wide range of situations, research findings indicate that certain

models are insufficient for specific domains and not appropriate for all sizes of

enterprises. In conclusion, the SLR evidence can be used to assess the applicability of

various software testing approaches inside businesses. Benefits and downsides, as

documented in the examples studied, help to clarify the advantages and disadvantages

of each approach. A crucial step in the software development process is software

testing. This review’s objective was to present an overview of current software models

that can be used to enhance the testing procedure. Utilizing the Systematic Literature

Review (SLR) technique, we sourced empirical research that detailed the advantages

and disadvantages of applying the models. During the process, a total of 17 testing

models were identified. Their areas of application and model representation are

35

different. Although most of the models are said to be broadly applicable, several

strategies were modified to meet particular specifications for fields including military

systems, automated testing, and embedded software. We also paid attention to the

areas that the concrete examples’ testing models helped to enhance. The majority of

empirical research highlight process standardization as the primary improvement, after

the model’s adaptation to the testing procedure. The enhancement of product quality

is the next crucially supported feature, and numerous research concentrate on certain

elements like measurements or the identification and/or mitigation of flaws. Under

some conditions, the benefits and downsides of a testing methodology may have an

impact on its acceptance. Aside from the area or various improvement processes,

models offer a number of special benefits. Based on the data gathered, we discovered

that while most of the models currently in use are deemed generally applicable, some

organizations believe the models are inadequate for use in specific domains like

embedded software development or small-to medium-sized businesses. Additionally,

the models use various procedures throughout the phases, which can be important

when choosing a model. (Katar´ına Hrabovsk´a, Bruno Rossi 2019)

3.4 Automation Testing Tools and Frameworks

Software testing must be completed more quickly and successfully in order to

guarantee that the standard is met, as there is an increasing need to offer high-quality

software "Quality at Speed." A software testing project can only be successful and

effective if it makes use of the proper test method(s) and test automation

tools/framework. It is frequently necessary to combine a few suitable testing

methodologies to thoroughly test software and guarantee that it meets standards.

Similarly, no single tool can fulfil all automated testing requirements, which

complicates the process of identifying the ideal tool combination. To achieve a

successful and effective software testing process, the first step is to be aware of the

many testing methods, tools, and frameworks. An extensive analysis of frameworks

and technologies for test automation is presented in this article. First, the categories of

automated testing were discussed, and then the different test automation frameworks

were explained. Lastly, a succinct comparison and explanation of some of the most

popular automation technologies was given. These days, good software testing

requires the use of test automation. The latest World Quality Report 2018-2019 states

36

that the biggest challenge to achieving "Quality at Speed" is test automation, which

has many benefits such as saving time, reducing expenses, increasing efficiency, and

improving accuracy. Therefore, without the appropriate automation tools and

framework, successful and effective test automation cannot be accomplished. This

report offers a thorough explanation of the various automation tools and frameworks

as well as insights into some crucial considerations for automation tool and framework

selection. (Mubarak Albarka Umar 2019)

3.5 Challenges and Limitations in Automation Testing

The opinions of academics and practitioners regarding software testing are

known to differ. To bridge the divide, this paper examines both perspectives on the

advantages and constraints of test automation. A comprehensive examination of the

literature is used to examine the academic viewpoints, and a survey containing

responses from 115 software professionals is used to evaluate the practitioner

viewpoints. Based on a thorough literature assessment, just 25 studies give sufficient

evidence about the benefits and limits, indicating a shallow supply of information.

Additionally, it was shown that restrictions frequently came from experience reports,

whereas benefits frequently came from stronger sources of data (experiments and case

studies). We think that the publication bias of favorable findings is to blame for this.

According to the poll, test automation offers advantages in terms of test coverage,

reusability, and repeatability as well as reduced work required to execute tests. The

constraints were large upfront costs for setting up automation, choosing tools, and

providing training. Furthermore, 45% of the participants concurred that the current

tools on the market do not adequately meet their requirements. Ultimately, the belief

that automated testing will completely replace manual testing was rejected by 80% of

practitioners. Three contributions are made by this paper. Initially, we conducted a

thorough analysis of the advantages and drawbacks of software test automation in

scholarly works. After filtering out 24.706 papers, we had 25 research works (see

Table II). Consequently, the body of evidence supporting these claims is somewhat

thin because only one or two sources support many of the restrictions and benefits.

Additionally, we discovered that whereas the strongest sources of evidence

(experiments and case studies) typically yielded benefits, experience reports were

more likely to disclose limitations. We believe that publication bias over the benefits

37

is to blame for this. We think that doing thorough empirical investigations, such as

case studies and experiments, to evaluate the constraints of test automation is crucial

to future research in this field. (Rafi 2021)

3.6 Case Studies on Manual and Automated Testing Implementation

One recommendation for automated test generation is a less expensive method

of producing tests. However, the comparative analysis between these exams and hand

created.

Those that are cost-effective and convenient. Industrial control software in

particular often needs extensive manual testing to fulfill stringent specifications for

both code coverage and testing based on specifications. For this reason, we conducted

a case study comparing the results of tests generated automatically with those

generated manually. We used fresh, real-world industrial code developed in the

popular programming language IEC 61131-3 for building industrial control systems

based on programmable logic controllers. On average, automated tests boost code

coverage by 90% in a fraction of the time it takes human testers to do the same task.

Comparing automated test generating tools to manual testing, we discovered that the

former did not improve defect identification in terms of mutation score. In particular,

mistakes of the logical, timer, and negation types are better caught by human tests than

by automatically produced ones. Further research on the efficacy of automated test

generation in the creation of trustworthy systems and the methods utilized for manual

testing in industrial settings is required considering these findings. The purpose of this

study was to compare the efficiency and effectiveness of manual testing with

automated test creation in a business environment. A newly developed industrial

control software and 61 IEC 61131-3 programs were used in the research, which relies

on test suites that were manually constructed by industry specialists.

Our research shows that automated test generation can provide decision

coverage on par with manual testing by industrial engineers, but at a much lower cost

and with far less effort. While these computer-generated test suites may not provide

better fault diagnosis in terms of mutation score compared to human written test suites,

they do have one advantage. Our results are consistent with those of other research that

38

has shown a similar problem identification rate when comparing manual testing with

automated code coverage-based test development. Surprisingly, our findings suggest

that manual test suites may be marginally more effective at detecting errors than

comprehensive test-based test suites. To prove this idea statistically, however, bigger

empirical research is required. Our research shows that compared to machine produced

test suites, human designed test suites are more likely to catch certain types of errors.

Automated test creation for industrial control software might benefit from a more

targeted mutation testing approach if it were to provide test suites capable of

identifying certain defect kinds. (Nguyen, H., & Tran 2014)

3.7 Best Practices in Combining Manual and Automated Testing

An essential step in ensuring the calibre and dependability of software products

is software testing. Software testing is commonly approached through two methods:

automated and manual. While automated testing uses software tools to run tests

automatically, manual testing involves testers carrying out test cases by hand.

Choosing between human and automated testing has a significant influence on the

efficiency and efficacy of software testing. Within the context of both human and

automated testing, this research paper analyses the efficacy and efficiency of software

testing. Data from a software testing project that combined automation and human

testing methods is analysed in this study. In order to assess the efficacy and efficiency

of human and automated testing in terms of duration, expense, and test coverage, the

study used quantitative analysis. According to the study’s findings, automated testing

is more cost and time-effective than manual testing. In terms of test coverage and

problem discovery, however, manual testing performs better than automated testing.

The report also points out the benefits and drawbacks of each strategy and recommends

a hybrid strategy that includes the best features of both automatic and manual testing.

This study advances knowledge regarding the effects of automated and manual testing

on the efficacy and efficiency of software testing. Based on the particular requirements

of the software project, this study offers software development teams insights to help

them decide which testing strategy to use. This study aimed to investigate the effects

of both automatic and manual testing on the efficacy and efficiency of software testing.

Data from a software testing project that included automatic and human testing

methods was examined in the study. The efficiency and efficacy of human and

39

automated testing in terms of time, cost, test coverage, and defect identification were

compared using quantitative analysis in the study. The study’s conclusions showed

that, in terms of both cost and time, automated testing is more effective than manual

testing. But manual testing is more efficient in terms of test coverage and defect

discovery than autonomous testing. Additionally, the study highlighted the advantages

and disadvantages of each strategy and recommended a hybrid approach that

incorporates the best aspects of both automatic and manual testing. The study’s

conclusions have significant ramifications for teams who develop software. The

particular needs of the software project should guide the decision between manual and

automated testing. Testing efficiency can be raised, testing time and expense can be

decreased, and testing can be done automatically. To guarantee sufficient test coverage

and to find flaws and problems that automated testing overlook, manual testing is still

required. The study concludes by highlighting the significance of selecting the proper

testing strategy in accordance with the needs. (Khin Shin Thant 2023)

3.8 Trends in Software Testing

The Software Development Lifecycle’s testing phase is the most important since

it determines if the product will be delivered in its finished form. There has to be

innovation and improvement in this process since it is labor-intensive and time-

consuming. (Garg 2018)

Because of this, it’s important to use automated testing and a variety of test

metrics before and throughout testing. Time savings and the creation of a reliable,

effective, and efficient final product that not only meets but exceeds all criteria are

both possible outcomes of using this approach to testing. The platform that houses

software testing and development is still very good and is always changing. But

something as important and vital as testing is frequently added very late in the software

development process. For improved comprehension and early review, which may

resolve ambiguity issues and thus save the cost of later software fixing, there should

be a maximum amount of contact between specification writers and testers. Once

testers are aware of the requirements and standards, they should provide developers

with a specific lightweight test model so they may create as soon as the project is

handled for official testing, make sure the primary specifications are met. Testers can

40

greatly benefit from using simulation tools to create an environment that is comparable

to the one in which the product will function. This allows for the best determination of

exception handling techniques and specific exception testing. The product may be

tested in an environment that closely resembles its intended use by simply integrating

the simulation into the testing procedure. Consequently, testing-related labor in the

future will rely heavily on technology, with automated testing models and simulation

helping to shorten the testing life cycle, provides optimum problem avoidance, and

provides effective quality assurance.

Test case generation based on manually created models: According to the

researchers suggested classification system, there are two distinct groups for MBT as

well. First, there’s MBT, which relies on models that have been hand-crafted in order

to generate test cases. The test designer is tasked with modeling the user interface and

its intended behavior in order to use test automation techniques. The test cases are

automatically generated by the tool using the behavior model that was manually built.

There are a number of methods that can be explained, but all of them involve manually

building models and then automatically creating test cases from those models. These

methods include keyword-driven models, faulty event sequence graphs, AI planning,

genetic models, probabilistic event-flow graphs, latin squares, coverage arrays,

hierarchical finite state machines, and a tactic based on UML diagrams. (Talha Ahmed

Khan 2021)

Test case generation based on automatically inferred models: Model ripping,

model extraction, or model inference are some of the more contemporary terms for the

process of automatically extracting GUI models that were introduced in MBT.

Traditional model extraction methods relied on static examination of the system’s

source code, which made it impossible to account for the GUI’s dynamic behavior.

Hence, similar to C&R tools, dynamic analysis was implemented to examine the GUI’s

behavior while the user interacted with the SUT. Automatic manipulation of GUI

widgets is now feasible thanks to the interaction’s ability to mimic human input. A

number of methods exist for automatically extracting models, such as the feedback-

based model extraction methodology, event interaction graphs, and event flow graphs.

41

Script-less GUI testing:

Techniques that do not rely on scripts to generate test cases are known as script-

less testing methodologies. Which means they are script-less, as no scripts are

produced to run the test cases. By picking and performing the actions of the found GUI

states, a script-less method dynamically produces user actions sequences during

runtime to explore the SUT. Following these steps will allow you to use a script-less

tool with ease. The initial step for script-less methods and tools is to determine whether

SUT GUI widgets are now accessible. Then, from those GUI widgets, we deduce all

the available actions. Using an Action Selection Mechanism (ASM), choose a subset

of these activities to construct the test sequences is the next step. The random testing

technique is being used to do this ASM. Further discussion of this method follows in

the section that follows.

Random or Monkey Testing:

Software testing methods that do not include scripts are called random testing,

monkey testing, or stochastic testing. In this method, test cases are produced in a

completely random manner while the test is being executed. In this approach, the SUT

is probed by means of generating random inputs and performing random actions in

order to identify broken systems. Due to the fact that this technique is primarily

concerned with sequences that identify failures in the SUT, the majority of the time,

test cases that are produced during testing are not stored. This strategy has the benefit

of not requiring the construction and maintenance of test cases, which is a significant

advantage. Monkey testing, in contrast to script-based procedures, has the ability to

uncover bugs that scripted approaches are unable to uncover. Microsoft said that test

monkeys are responsible for discovering between 10 and 20 percent of all issues. When

referring to test automation tools that are based on the random testing technique, we

use the phrase "test monkeys" to characterize these products. The reason these test

monkeys may see the SUT from a different angle than a human tester is because they

often explore the SUT in a different way while doing the tests. Making the SUT

unresponsive and crash is a common goal of test monkeys, therefore they construct

random test sequences with that intention. One of the tools that is based on the monkey

testing approach, which can be found in for a more in-depth description. Test monkeys

may be divided into two categories: clever monkeys and stupid monkeys. Both of these

42

categories are used in the procedure of monkey testing. (Anil Kumar, Anuj Kumar

2017)

Smart Monkeys:

Due to the fact that they possess some information of the SUT, monkeys are

referred to be "smart" monkeys. They are aware of the action sequences that may be

used to perform a straightforward task and the manner in which that functionality

should be executed. Capabilities that fail to deliver the desired outcome are considered

failures. Making the monkeys acquire information about the SUT is the first stage in

the process of developing clever monkeys. By using an application programming

interface (API) or image recognition to identify the widgets shown on the GUI, one

may retrieve the programmatic structure of the GUI’s layout and widgets. During the

second step, the information that was gathered during the first phase is used to identify

and extract the current state of the graphical user interface (GUI). Once the monkey

has gained some familiarity with the graphical user interface (GUI), it will be able to

deduce a series of actions that will be carried out.

To crash or jam the graphical user interface (GUI), the objective of clever

monkeys is to produce arbitrary input sequences. The information about the SUT may

be gathered via the use of a state model, which also assists with action selection and

directs the clever monkey through the graphical user interface (GUI). It is the action

selection mechanism (ASM) that is responsible for this. In script-less testing, one of

the most important steps is to choose the appropriate actions to perform, since the

detection of errors is dependent on the activities that are being carried out. Action

selection may be carried out in a completely random fashion, or it can be accompanied

with some kind of intelligence in order to provide the test monkey with instructions on

what to do next. It is possible to increase the intelligence of an already intelligent

monkey by using techniques such as meta-heuristics, reinforcement learning, and ant

colony optimization (ACO). During a particular state of a graphical user interface

(GUI), the purpose of each of these methods is to determine the most effective course

of action for a test monkey to take.

43

Dumb Monkeys:

On the other hand, dumb monkeys conduct themselves in a way that displays

their lack of comprehension throughout the testing process. They are entirely unaware

of the SUT and act in a manner that reflects their lack of knowledge. They are unable

to identify the present state of the SUT or the results that may be predicted following

the execution of an activity since they do not own a state model. This has prevented

them from being able to determine either of these things. During their interactions with

insects, they demonstrate a lack of awareness, which ultimately results in an

unexpected event that the dumb monkey is unable to recognize. Among the things that

they are able to recognize are, for example, flaws that are easily observable, such as

crashes and hangs. In the late 1980s, Apple built the first dumb monkey test tool with

the intention of analyzing the resilience of their software within the environment of

their operating system. This was done in order to determine how well the program

would perform. It is common practice to use dumb monkeys for the purpose of

detecting flaws in operating systems; nevertheless, these monkeys are also capable of

locating errors in programs. These applications are not only economical but also easy

to develop, which makes them more desirable to experts who test software. This is

because they are completely automated, which makes them simple to design. (Kumar

2019)

Challenges of GUI Testing:

Since GUI testing is an emerging topic of software testing, we’ve already

established that it’s no easy feat. We discussed the key issues highlighted in a recent

literature study that outlined the difficulties encountered by researchers in the area of

GUI testing. This section will discuss the problems that have already been identified

in the literature and will provide a summary of the drawbacks of the testing methods

that have already been stated. Automated GUI testing is addressed in the first part,

which also discusses the more general difficulties of test automation. The difficulties

with the aforementioned automated GUI testing methods are going to be discussed in

greater detail in the parts that follow. The most common problems with automated

testing Due to continuous integration procedures, short development cycles of

incremental and iterative processes, and other issues, system-level testing via the GUI

is a big difficulty in software development. Testing must also occur in incremental

44

phases due to iterative and incremental development, which is a byproduct of shorter

development cycles seen in agile approaches. Maintenance of test cases and scripts, as

well as regression testing, are all part of quality assurance operations that are

significantly cut down by this. It is possible to reduce testing quality and inefficiency

due to a lack of time for regression testing.

In addition, the development cycle’s testing operations are becoming more

costly and time-consuming due to the human execution of regression tests due to a

lack of time to automate test cases. Testing efforts are also rising in tandem with the

complexity of software systems that support several devices and platforms, since each

test run must be executed on all of these platforms and devices. Some examples of this

kind of testing include compatibility testing, which checks whether the SUT can work

with various versions or facilities of software and hardware, and cross-browser testing,

which involves testing via several browsers that the SUT supports.

Among the many difficulties with test automation is the test oracle issue, which

presents even another obstacle. One definition of a test oracle is a function or activity

that checks whether a certain sequence of operations is acceptable for the SUT.

Because mathematical logic defines specified test oracles, a specification language is

necessary. An SUT’s proper and improper behavior may be identified by a derived test

oracle using artifacts such as documentation, system executions, and versions of the

system. Finally, a formal specification and domain expertise are not necessary for an

implicit test oracle to differentiate between an SUT’s proper and improper behavior;

instead, it depends on implicit knowledge. The tester who determines whether the

SUT’s behavior is right or wrong is known as the human oracle.

The primary obstacle to increasing test automation in software testing is the

paucity of focus and study on automating test oracles. Reviewing and checking the

behavior of SUTs still requires human interaction. One drawback of the previously

stated test oracle techniques is that they do not have a formal specification. As a result,

they depend on the abstraction of models, which might lead to imprecision or include

unnecessary behavior from models like the GUI model. Interpreting the abstract

outputs is another difficulty with these methods; this makes it hard to comprehend the

45

test findings and necessitates human involvement. The need to manually define oracles

is a hurdle for automated testing methods. Since it is not possible to describe

anticipated behavior for every SUT state, manually specified test oracles could lead to

test results that are unclear. (Gaikwad. 2020)

Challenges of script-based GUI testing:

The next part will go into more detail on the difficulties of script-based testing

and every testing method within that domain. The following are some of the potential

problems that may arise while using various testing methodologies, in addition to the

test oracle problem.

Capture & Replay:

The high maintenance costs and effort required for test scripts are a downside of

capture and replay systems. This method gives the least amount of automation in

regression testing and has the lowest tolerance for changes to the GUI, as illustrated in

Figure 1 and detailed in Section 3.1.12. As a result, this method requires a lot of upkeep

and a lot of human labor to modify test scripts, particularly for regression testing. This

is why C&R tools are often reserved for first software releases—to facilitate quicker

feedback—and subsequently retired after the introduction of new SUT versions.

Adding additional test cases to an existing test suite is another potential stumbling

block for testers using C&R tools. Adding new test cases to existing test suites may

need programming, which in turn may necessitate more programming knowledge and

time spent manually. This difficulty highlights the fact that new versions of SUTs

might result in longer test runs and greater expenses, especially when C&R tools are

used for rapid feedback on early versions of SUTs.

Model-based Testing:

Model-based testing is gaining popularity and is being integrated into several

test automation systems. However, how well these tools enable model-based testing

greatly influences their practicality. Since test scripts need to be constantly updated for

regression testing, MBT methodologies, similar to other script-based testing

techniques, are also not resistant to GUI changes. Tools for automating tests that use

the method of manually constructed GUI models (discussed in Section 3.1.12) still

46

need human intervention and specialist knowledge in order to construct the models. In

most cases, in-depth training on these tools is necessary for the tester to acquire the

necessary expertise. It may be a huge pain to figure out how to utilize the tool and

make the GUI models to automatically produce test cases; it also takes a lot of time

and money. (Saba Khalid 2021)

However, the problem with automated model extraction approaches is that they

still need human input. For instance, a tester may need to manually predefine certain

inputs, such usernames and passwords. The fact that the automatically produced model

still requires human inspection and correction to achieve the target coverage of GUI

models demonstrates that, despite the reduction in manual work, human involvement

is still necessary. Another issue is that testers are only concerned in the anticipated and

needed behavior of the SUT, but models’ irrelevant behavior is also being extracted.

Another obstacle that has to be addressed in the sphere of MBT techniques is validating

the validity of such models.

Challenges of conducting GUI testing without scripts include an approach

known as random or monkey testing, which involves choosing actions randomly. The

subsequent section explores the disadvantages of this method identified in the

literature, as well as the test oracle problem highlighted in the previous part.

Monkey Testing:

The very lengthy execution time of the monkey testing technique is a significant

concern. Since it seeks the vulnerability that causes the SUT to crash, a test automation

tool based on this method may have test runs that persist for several days (Aho&Vos,

2018). To get a high level of testing coverage, monkey testing requires a high

execution time. Improving the resources and doing parallel executions is one way to

get over this problem, but it won’t make the test run as quickly as the other methods.

The monkey testing method was the subject of several published studies that detailed

its shortcomings when used to system-level testing. When compared to other testing

methods, these academics consider monkey testing to be the least effective and are not

confident that it can identify serious errors.

47

The replication of the found flaws is a big problem with monkey testing after the

lengthy execution time. A test monkey may need many days to crash an SUT, leading

to testing sequences that are both lengthy and arbitrarily generated by arbitrary GUI

actions. For debugging reasons, it might be rather difficult to reproduce certain errors,

making it much more difficult for the developer to remedy the detected fault.

In monkey experiments, intelligent and non-intelligent monkeys are

distinguished. The SUT and its condition are completely unknown to ignorant

monkeys. It is completely unclear to them what is and is not acceptable input and

output. As a result, they miss the mark every time they encounter a glitch. However,

script-less testing techniques attempt to alleviate the maintenance burden that comes

with providing and maintaining SUT-specific information, which is a problem for

intelligent monkeys. In addition, the state model and the action selection mechanism

are crucial to the quality of a smart test monkey. Developing these components

demands skill and a lot of work. (Kumar. 2021)

Overall, both automated GUI testing techniques have challenges that can be

found summarized in the table below:

GUI Testing Technique Challenges

General challenges of

automated testing

Short development cycles, Increasing complexity

and number of supported platforms Test oracle

problem.

Script-based High maintenance of test scripts, High manual

effort to create test scripts, requires technical

knowledge, requires manual effort to detect GUI

widgets, requires high effort to learn the

tool/programming language.

Script-less Long execution time, Difficult reproducibility of

bug’s, Smart monkey: requires technical

knowledge to create a test oracle.

Table 1: Summary of the challenges of automated GUI testing

[Source: This thesis specific table was developed by the author.]

48

3.9 Research Gap

Numerous gaps and topics for more research have been found in the research on

the comparison of software testing tools and methods between automated and manual

testing. Research gaps in this area include the following:

Comparison between Effectiveness and Efficiency:

The efficacy and efficiency of automated versus manual testing in terms of

defect discovery, test coverage, and time-to-market have been evaluated in numerous

studies. More thorough and situation-specific comparisons, though, are required,

taking into account variables like project size, complexity, and resource availability.

Defect Discovery:

Studies often highlight that automated testing tends to discover a higher volume

of defects compared to manual testing due to its ability to execute repetitive tests with

precision. However, nuanced defects that may require human intuition might be

missed.

Test Coverage:

Automated testing generally provides broader test coverage as it can execute a

large number of test cases quickly and consistently. Manual testing, on the other hand,

might be more focused on specific areas but could miss edge cases.

Time-to-Market:

While automated testing can accelerate the testing process, manual testing might

provide quicker feedback in certain scenarios, especially during early development

stages or when rapid iterations are needed.

Benefit-Cost Analysis:

There is a dearth of actual data comparing the costs and advantages of manual

versus automated testing across the full software development lifecycle, even though

automated testing is frequently thought to be more economical in the long term. To

evaluate the costs of test automation which include initial setup, maintenance, and tool

49

licensing with the advantages of increased productivity, time savings, and quality

improvement, more research is required. (Kaner, Cem 2002)

Initial Setup:

Automated testing may require significant initial setup investment in terms of

tool acquisition, infrastructure, and training.

Maintenance:

While automated tests offer long-term benefits, they also require ongoing

maintenance to adapt to changes in the software.

Tool Licensing:

The cost of licensing automated testing tools can vary widely and needs to be

factored into the overall cost analysis.

Requirements for Training and Skills:

The importance of having competent testers and providing them with the right

training for both manual and automated testing has been brought to light by research.

This is done in order to ensure that there is maximum efficacy from the testers. The

comparison of the training requirements, learning curves, and skill requirements for

manual testers who migrate into automated testing roles, on the other hand, has not

been well investigated thus far. For the aim of strengthening the skills of manual testers

in automation, it is required to do more research in order to determine which training

philosophies and practices are the most conducive to achieving the desired results.

Training Demands:

Transitioning from manual to automated testing requires a different skill set,

including programming and familiarity with testing tools.

Learning Curves:

The time required for testers to become proficient in automated testing tools and

techniques varies and can impact project timelines.

50

Skill Requirements:

Automation testing demands a deeper understanding of scripting languages, test

frameworks, and software development principles compared to manual testing.

Test Upkeep and Development:

When it comes to automated testing, one of the most major challenges is the

maintenance of tests. This is because modifications to the application that is being

tested often need equivalent adjustments to test scripts and test data. One reason for

this is because the program is being tested. It is necessary to conduct additional

research in order to gain an understanding of the factors that influence the amount of

work that is put into test maintenance. This is in addition to the development of

techniques and instruments for automating test evolution, such as self-healing test

scripts and adaptive test generation algorithms. (Whittaker 2008)

Script Maintenance:

Automated test scripts need to be regularly updated to reflect changes in the

application’s functionality or user interface.

Data Management:

In order to guarantee that the test data is accurate and relevant, it is also necessary

to maintain and update.

Self-Healing Test Scripts:

It is possible that the amount of manual work that is required for the maintenance

of test scripts might be greatly reduced if self-healing mechanisms are investigated.

This is a possibility that is worth considering. In this regard, this would represent a

significant step forward.

Usability and Human Factors:

Although automated testing has advantages over manual testing in terms of

repeatability and coverage, it might not have the same human intuition and

inventiveness to spot subtle flaws and usability problems. In order to create hybrid

methodologies that capitalize on the advantages of both automated and human testing,

51

research is required to examine the effects of automation on the user experience as a

whole.

Repeatability vs. Intuition:

Automatic testing is particularly effective in dependably carrying out activities

that are repetitive, but manual testing may make use of human intuition to uncover

problems that are more complicated.

Usability Testing:

It is common for human testers to provide a more realistic assessment of the user

experience, which encompasses aspects such as usability, accessibility, and the design

of the user interface.

Hybrid Approaches:

It is feasible to give a better user experience and provide wide coverage by

merging two separate testing approaches: automated testing and manual testing. This

is achievable because of the integrated testing method.

Context-Specific Points to Remember:

Depending on the particular setting, such as the type of application (web, mobile,

embedded systems), development style (e.g., agile, DevOps), and industry domain

(e.g., finance, healthcare), the efficacy of human and automated testing methods and

technologies may differ. To determine context-specific elements that influence the

decision between automated and manual testing, as well as to produce best practices

and guidelines for choosing the most appropriate approach, more research is required.

Application Type:

It is likely that some applications, such as those that have user interfaces that are

exceptionally complex or that are in conformity with stringent regulatory standards,

may need further testing by humans.

52

Development Style:

There is a possibility that automation might be advantageous to configurations

that make use of Agile and DevOps in order to support continuous integration and

delivery strategies.

Industry Domain:

It may be required for a corporation to use both automated and manual testing

procedures in order to ensure that it is in compliance with the standards set out by

different regulatory agencies. Both the healthcare industry and the banking industry

are examples of sectors that have strict compliance demands.

By filling in these research gaps, we can make better decisions about software

testing procedures and enhance our knowledge of the advantages and disadvantages of

human and automated testing techniques and technologies. It can also aid in the

creation of testing plans that are more successful and productive and that optimize the

advantages of both automated and manual procedures. (Jorgensen 2013)

3.10 Summary of Literature Reviewed

Several important conclusions and insights are revealed by an examination of

the literature on the comparison of manual and automated testing techniques and tools

in software testing.

Efficiency and Effectiveness:

Research typically indicates that automated testing can outperform manual

testing in terms of fault identification, test coverage, and time-to-market. However, the

degree to which these benefits are realized may differ based on variables including

project size, complexity, and resource availability.

Benefit-Cost Analysis:

Although time savings and increased productivity make automated testing seem

more cost-effective in the long term, empirical data comparing the advantages and

disadvantages of manual versus automated testing across the software development

lifecycle is still needed. To calculate the expenses of test automation and weigh their

53

advantages against quality enhancement and resource efficiency, more investigation is

needed.

Requirements for Training and Skills:

Empirical studies emphasize the significance of proficient testers and sufficient

training in manual and automated testing. Comparing the training demands, learning

curves, and skill requirements for manual testers moving into automated testing roles,

however, has not been thoroughly studied. The efficacy of various training modalities

and approaches for up skilling manual testers in automation requires further research.

Test Upkeep and Development:

Given that modifications to the application being tested frequently necessitate

matching adjustments to test scripts and test data, test maintenance becomes a major

difficulty in automated testing. In addition to developing strategies and technologies

for automating test evolution, such as self-healing test scripts and adaptive test

generation algorithms, more study is needed to investigate the factors driving test

maintenance efforts.

Usability and Human Factors:

Although automated testing has advantages over manual testing in terms of

repeatability and coverage, it might not have the same human intuition and

inventiveness to spot subtle flaws and usability problems. It is recommended by

research to look into how automation affects the user experience overall and to create

hybrid testing strategies that combine the best features of automated and manual

testing.

Context-Specific Points to Remember:

Specific contexts, such as application kind, development process, and industrial

domain, might influence the efficacy of human and automated testing techniques and

technologies. Further investigation is required to pinpoint context-specific elements

impacting the decision between automated and manual testing, as well as to create

standards and best practices for determining which strategy is better.

54

Overall, the analysis of the literature offers insightful information about the

advantages and disadvantages of automated and manual testing techniques and

instruments, emphasizing the need for more study to fill in knowledge gaps and

overcome obstacles in this field. It highlights how crucial it is to take human aspects

and context-specific factors into account when deciding which testing strategy is best.

55

4. Practical Implementation

4.1 Research Design and Approach

Which method is most appropriate for implementing a set of research objectives

and the circumstances under which it is conducted is determined by the design of the

research. The first learning objective can be used to develop a structured framework

for data collection and analysis. This study will use a well-defined research design to

obtain a comprehensive understanding of the comparative advantages and

disadvantages of manual and mechanical testing methods and automation.

4.1.1 Overview and Rationale

The research design chosen will provide a balanced approach, combining

quantitative and qualitative data collection methods. This type of research is

particularly well suited for mixed methods because it allows us to:

• Estimating the impact of testing: By collecting quantitative data, we are able

to calculate the percentage of defects detected in each test method, the amount

of time and number of subjects used for testing, and the number of tests covered.

• Gain in-depth insights: Qualitative data from focus groups, questionnaires and

interviews can provide insightful information about test takers’ perceptions and

experiences of manual and automated testing this can reveal problems, perceived

benefits and opportunities for improvement.

• Improve results: Triangulation is possible when quantitative and qualitative

data are combined. By providing detailed knowledge, this enhances the validity

and reliability of research findings.

There are many approaches to descriptive research, such as qualitative and

quantitative methods. This research also made use of qualitative and quantitative

approaches. It employs a holistic strategy. Important phases in doing research include

defining the study’s scope and criteria, gathering and testing participant data, and

analyzing the results.

56

4.1.2 Mixed-Methods Approach

In order to get a thorough grasp of the phenomena being studied, this study use

mixed methodologies, which integrate quantitative and qualitative research

techniques. By collecting and analyzing numerical data, quantitative approaches

provide statistical insights into trends, patterns, and correlations. In contrast, object-

oriented approaches focus on deepening and analysing non-quantitative data to reveal

the richness and complexity of human experiences.

1. Quantitative Summary

a. Data Collection: Software development teams and testers have completed

structured surveys to collect quantitative data on the following topics:

• Time spent on manual testing and automation testing of tests (e.g., regression,

functionality).

• Percentage of test coverage achieved in each category. Error detection rates

related to automated and manual testing.

• Resource allocation (number of testers required) between projects using

automation methods and projects using only manual testing.

b. Test Management Tools: Data on test management times, types of errors

detected, and number of tests retested after issue resolution can be collected from

the test management tools currently used by the teams involved in the 19th

century.

c. Data Analysis: Quantitative data will be evaluated statistically to examine

patterns, correlations, and any differences in efficiency, utility, and resource

utilization between manual and automated testing.

57

2. Qualitative Data Collection

Data Collection Methods:

a. Semi-Structured Interviews: In-depth interviews with experienced hands-on

experimenters will be conducted to obtain a qualitative opinion on the following.

• These interviews focus on testers’ perspectives on the pros and cons of each

testing system.

• Difficulties with automated manual testing methods.

• Best practices and strategies to maximize the use of automated and manual

testing methods.

b. Optional Focus Groups: Focus groups can be conducted with testers of projects

using Balanced Human’s automated testing approach, based on feasibility to

explore:

• Communication within the team and communication between automation and

manual testers.

• Strategies for effectively integrating automation and manual testing in a project.

• The effect of a combination of strategies on both the efficacy and effectiveness

of a test.

c. Data Analysis: Analysis of the qualitative data gathered from focus groups and

interviews will highlight common trends and provide crucial insights into the

experiences and viewpoints of test takers as well as their exposure to all testing

apparatus.

58

The study plan is represented diagrammatically in the diagram.

Figure 2: Design of a Study in Schematic Form.

[Source: This thesis specific diagram was developed by the author.]

The study plan is represented diagrammatically in the diagram.

 “Figure 1.1: Design of a Study in Schematic Form

Goal: To determine which, given the scale of company, testing is more

effective.

Technique: “Checklist of structured questions about knowledge.

“Reporting”

Propose: A Comparative Study between Manual and Automation Methods

& Tools for Software Testing

”

.

“RESEARCH DESIGN”

“Descriptive and Inferential statistics”

“Findings and conclusion”

“Sampling Technique:The Non-Probability Purposive Sampling Method”

“Sample size: 40 on a target population”

59

4.1.3 Survey Result

In-depth analysis of the interpretation of the survey data. The graph aids in a

thorough examination of the data found in the table of frequencies and percentages.

Analyses statistically were performed using Pearson correlation and regression.

4.1.3.1 Descriptive Statistics Frequency and Percentage of Data

In descriptive statistics, the mean, standard deviation, and standard error of the

mean are displayed.

The following significant findings were discovered regarding the respondent’s

demographics. Questions about basic personal information like gender, age and

education come first. The success of a study depends on the researcher’s ability to

accurately portray the respondent’s profile and other variables. You can see what the

survey results are shown in the graphs below.

60

Age

 Frequency Percent

Below 25 years 9 20.0

26 to 30 years 18 40.0

31 to 35 years 7 15.6

36 to 40 years 6 13.3

Above 40 years 5 11.1

Total 45 100.0

Table 2: Age wise distribution of respondents

[Source: This thesis specific table was developed by the author.]

The above table discusses age wise distribution of respondents. In below 25

years group, frequency is 9 and percentage is 20%. In 25 - 30 years age group,

frequency is 18 and percentage is 40%. In 31 - 35 years age group, frequency is 7 and

percentage is 15.6%. In 36 – 40 years age group, frequency is 6 and percentage is

13.3%. In above 40 years age group, frequency is 5 and percentage is 11.1%.

Figure 3: Graphical representation of age wise distribution of respondents.

[Source: This thesis specific diagram was developed by the author.]

20.0

40.0

15.6

13.3

11.1

Age

Below 25 years 26 to 30 years 31 to 35 years 36 to 40 years Above 40 years

61

Gender

 Frequency Percent

Male 34 75.6

Female 11 24.4

Total 45 100.0

Table 3: Gender wise distribution of respondents

[Source: This thesis specific table was developed by the author.]

The above table discusses gender wise distribution of respondents. In male

respondents, frequency is 34 and percentage is 75.6%. In female respondents,

frequency is 11 and percentage is 24.4%.

Figure 4: Graphical representation of gender wise distribution of respondents.

[Source: This thesis specific diagram was developed by the author.]

0

10

20

30

40

50

60

70

80

FREQUENCY PERCENT

34

75.6

11

24.4

Gender

Male Female

62

Table 4: Experience wise distribution of respondents

[Source: This thesis specific table was developed by the author.]

The above table discusses experience wise distribution of respondents. In below

1 year, frequency is 15 and percentage is 33.3%. In 1 – 3 years, frequency is 17 and

percentage is 37.8%. In 3 – 5 years, frequency is 7 and percentage is 15.6%. In 5 – 10

years, frequency is 6 and percentage is 13.3%.

Figure 5: Graphical representation of experience wise distribution of respondents.

[Source: This thesis specific diagram was developed by the author.]

Years of Experience

 Frequency Percent

<1 year 15 33.3

1-3 years 17 37.8

3-5 years 7 15.6

5-10 years 6 13.3

Total 45 100.0

15

17

7

6

Years of Experience

<1 year 1-3 years 3-5 years 5-10 years

63

Job Role

 Frequency Percent

Test Analyst 9 20.0

Manual Test Engineer 12 26.7

Automation Test Engineer 6 13.3

QA Manager 7 15.6

Software Developer 6 13.3

Test Project Manager 5 11.1

Total 45 100.0

Table 5: Job role of respondents

[Source: This thesis specific table was developed by the author.]

The above table discusses job role of respondents. In Test Analyst, frequency is

9 and percentage is 20%. In manual test engineer, frequency is 12 and percentage is

26.7%. In Automation Test Engineer, frequency is 6 and percentage is 13.6%. In QA

Manager, frequency is 7 and percentage is 15.6%. In Software Developer, frequency

is 6 and percentage is 13.3%. In Test Project Manager, frequency is 5 and percentage

is 11.1%.

Figure 6: Graphical representation of job role of respondents.

[Source: This thesis specific diagram was developed by the author.]

20.0

26.7

13.3

15.6

13.3

11.1

Job Role

Test Analyst Manual Test Engineer Automation Test Engineer

QA Manager Software Developer Test Project Manager

64

Industry

 Frequency Percent

Finance 15 33.3

Healthcare 16 35.6

Technology 6 13.3

Manufacturing 7 15.6

Education 1 2.2

Total
45 100.0

Table 6: Industry of respondents

[Source: This thesis specific table was developed by the author.]

The above table discusses industry of respondents. In finance, frequency is 15

and percentage is 33.3%. In healthcare, frequency is 16 and percentage is 35.6%. In

technology, frequency is 6 and percentage is 13.3% in manufacturing, frequency is 7

and percentage is 15.6%, In education, frequency is 1 and percentage is 2.2%.

Figure 7: Graphical representation of industry of respondents.

[Source: This thesis specific diagram was developed by the author.]

0

10

20

30

40

15 16
6 7

1

33.3 35.6

13.3 15.6

2.2

Industry

Industry Frequency Industry Percent

65

Company Size

 Frequency Percent

Small (<50 employees) 18 40.0

Medium (50-250 employees)
22 48.9

Large (>250 employees)
5 11.1

Total 45 100.0

Table 7: Company Size

[Source: This thesis specific table was developed by the author.]

The above table discusses industry of respondents. In finance, frequency is 15

and percentage is 33.3%. In healthcare, frequency is 16 and percentage is 35.6%. In

technology, frequency is 6 and percentage is 13.3% in manufacturing, frequency is 7

and percentage is 15.6%, In education, frequency is 1 and percentage is 2.2%.

Figure 8: Graphical representation of company size.

[Source: This thesis specific diagram was developed by the author.]

0

10

20

30

40

50

SMALL (<50
EMPLOYEES)

MEDIUM (50-250
EMPLOYEES)

LARGE (>250
EMPLOYEES)

18
22

5

40.0

48.9

11.1

Company Size

Company Size Frequency Company Size Percent

66

Correlations

Defect

Detectio

n Rate

Test

Coverage

Testing

Efficiency

Cost

Effective

ness

Tester

Satisfacti

on

Quality

of

Testing

Docume

ntation

Defect

Detectio

n Rate

Pearson

Correlation
1 .686** .511** .731** .678** .500**

Sig. (2-

tailed)
 .000 .000 .000 .000 .000

N 45 45 45 45 45 45

Test

Coverag

e

Pearson

Correlation
.686** 1 .697** .726** .722** .650**

Sig. (2-

tailed)
.000 .000 .000 .000 .000

N 45 45 45 45 45 45

Testing

Efficienc

y

Pearson

Correlation
.511** .697** 1 .634** .650** .656**

Sig. (2-

tailed)
.000 .000 .000 .000 .000

N 45 45 45 45 45 45

Cost

Effective

ness

Pearson

Correlation
.731** .726** .634** 1 .824** .678**

Sig. (2-

tailed)
.000 .000 .000 .000 .000

N 45 45 45 45 45 45

Tester

Satisfact

ion

Pearson

Correlation
.678** .722** .650** .824** 1 .735**

Sig. (2-

tailed)
.000 .000 .000 .000 .000

N 45 45 45 45 45 45

Quality

of

Testing

Docume

ntation

Pearson

Correlation
.500** .650** .656** .678** .735** 1

Sig. (2-

tailed)
.000 .000 .000 .000 .000

N 45 45 45 45 45 45

**. Correlation is significant at the 0.01 level (2-tailed).

Table 8: Pearson Correlation Analysis of All Variables

[Source: This thesis specific table was developed by the author.]

67

The above table discusses correlation between all the variable in which sig. value

of all the variables are below 0.05 which is significant indicates all the variable are

significantly correlated.

Model Summary

Model R R Square

Adjusted R

Square

Std. Error of

the Estimate

1 .511a .261 .244 3.45461

a. Predictors: (Constant), Testing Efficiency

ANOVAa

Model

Sum of

Squares df Mean Square F Sig.

1 Regression 181.136 1 181.136 15.178 .000b

Residual 513.175 43 11.934

Total 694.311 44

a. Dependent Variable: Defect Detection Rate

b. Predictors: (Constant), Testing Efficiency

Coefficientsa

Model

Unstandardized

Coefficients

Standardized

Coefficients

t Sig. B Std. Error Beta

1 (Constant) 11.610 2.303 5.041 .000

Testing

Efficiency
.445 .114 .511 3.896 .000

a. Dependent Variable: Defect Detection Rate

Table 9: Regression Analysis of Defect Detection rate and Testing Efficiency

[Source: This thesis specific table was developed by the author.]

Regression analysis employs ANOVA to assess the degrees of variability within

a regression model and establish the foundation for a significance test. The table

provided clearly indicates that the factors examined in the research exhibit statistical

significance. Based on a regression analysis of testing efficiency and defect detection

rate, defect detection rate has a significant impact on testing efficiency, accounting for

68

51% of the variation observed. The remaining portion of the variation is not accounted

for and remains unexplained. The R value of 0.26 indicates a significant impact of

defect detection rate on testing efficiency, as evidenced by the Anova table which

shows a significant impact (F= 15.17, sign. value = 0.00). The data suggests that there

is a notable correlation between defect detection rate and testing efficiency. The

variable is represented in the table of coefficients above. The B-coefficients generally

exhibit a positive and statistically significant relationship. Given that the dimensions

of all indicators are the same, it is more advantageous to translate the B-coefficients

rather than the beta coefficients. The significance value implies that there is significant

effect of defect detection rate on testing efficiency.

Model Summary

Model R R Square

Adjusted R

Square

Std. Error of

the Estimate

1 .697a .485 .473 2.47279

a. Predictors: (Constant), Testing Efficiency

ANOVAa

Model

Sum of

Squares df Mean Square F Sig.

1 Regression 248.047 1 248.047 40.566 .000b

Residual 262.931 43 6.115

Total 510.978 44

a. Dependent Variable: Test Coverage

b. Predictors: (Constant), Testing Efficiency

Coefficientsa

Model

Unstandardized

Coefficients

Standardized

Coefficients

t Sig. B Std. Error Beta

1 (Constant) 10.344 1.649 6.274 .000

Testing

Efficiency
.520 .082 .697 6.369 .000

a. Dependent Variable: Test Coverage

Table 10: Regression Analysis of Test Coverage and Testing Efficiency

[Source: This thesis specific table was developed by the author.]

69

Regression analysis employs ANOVA to assess the degrees of variability within

a regression model and establish the foundation for a significance test. The table

provided clearly indicates that the factors examined in the research exhibit statistical

significance. Based on a regression analysis of testing efficiency and test Coverage,

Test Coverage has a significant impact on testing efficiency, accounting for 69% of

the variation observed. The remaining portion of the variation is not accounted for and

remains unexplained. The R value of 0.48 indicates a significant impact of Test

Coverage on testing efficiency, as evidenced by the Anova table which shows a

significant impact (F= 40.56, sign. value = 0.00). The data suggests that there is a

notable correlation between Test Coverage and testing efficiency. The variable is

represented in the table of coefficients above. The B-coefficients generally exhibit a

positive and statistically significant relationship. Given that the dimensions of all

indicators are the same, it is more advantageous to translate the B-coefficients rather

than the beta coefficients. The significance value implies that there is significant effect

of test coverage on testing efficiency.

4.1.4 Interview Schedule

Expert 1 (5 years, Web application testing):

• I have 5 years of experience in web application testing, with a particular

emphasis on assessing functionality and usability.

• Approximately 70% of projects utilize a combined approach. Manual testing is

essential for conducting initial exploration and evaluating user experience, but

automation simplifies the process of regression testing.

Expert 2 (10 years, Mobile app testing):

• I have accumulated over 10 years of expertise, mostly focusing on testing mobile

applications for both iOS and Android platforms.

• Approximately 80-90% of mobile app initiatives derive advantages from

employing a combination of approaches strategy. Automation is highly effective

in doing repetitive activities, but manual testing continues to be essential for

evaluating usability and handling edge-case problems.

70

Expert 3 (8 years, API testing):

• I have accumulated 8 years of professional experience, with a specific focus on

API testing and backend functionality.

• The majority of API testing projects (over 95%) significantly rely on automation

because API requests are often repetitive in nature. Manual testing is centered

around the integration of different components and the examination of specific

scenarios or use cases.

Expert 4 (12 years, Performance testing):

• I have accumulated 12 years of expertise in the field of performance testing and

load optimization.

• The composition may differ; however, the majority of performance testing

typically consists of a mix, including around 60-70%. Manual testing is useful

for identifying bottlenecks, but automation is helpful for doing load simulation

and scalability analysis.

Expert 5 (7 years, Security testing):

• Seven years of experience conducting security testing, with a focus on

penetration testing and vulnerability identification.

• A common method is essential (80–90 percent). Exploitation strategies that are

not conventional require manual testing, whereas regression testing and

vulnerability scanning are facilitated by automation.

Expert 6 (Advanced Manual Techniques):

• Nine years of experience, with a solid background in both automated and manual

testing.

• The split varies, but it’s important to comprehend both strategies well. For

comprehensive test case design, I regularly employ boundary value analysis and

equivalency partitioning.

71

Expert 7 (Automation Tool Selection):

• I have accumulated 8 years of professional experience, specializing in

automation frameworks and technologies.

• The selection of tools is determined by the project. Open-source alternatives like

as Selenium are widely used, however for intricate projects, it may be essential

to employ commercial products that offer advanced functionality. Compatibility

with scripting languages is a significant factor to take into account.

Expert 8 (Efficiency gains with Automation):

• I have accumulated over 10 years of expertise and possess a strong enthusiasm

for utilizing automation to enhance the efficiency of testing processes.

• Automation has greatly enhanced the efficiency of regression testing in several

projects; however the exact proportion may vary. I have employed many

technologies to mechanize monotonous operations, therefore liberating time for

exploratory testing.

Expert 9 (Challenges in Automation):

• 12 years of experience and a thorough awareness of the advantages and

difficulties associated with automation.

• The combination is specific to a project. Two major issues in automation are

handling flaky tests and maintaining test scripts.

Expert 10 (Balancing Automation & Agile):

• 7 years of experience and proficiency with agile testing techniques.

• It is essential to maintain balance. In agile sprints, we emphasize manual testing

for new features while striving for good automation coverage.

Future of Testing (All Experts Agree):

• Artificial intelligence (AI) and machine learning (ML) have the capacity to

transform testing processes by automating operations such as generating test

cases, detecting anomalies, and even creating self-repairing test scripts.

72

• Testers must acquire and cultivate expertise in domains like as AI, data science,

and analytical thinking in order to effectively collaborate with these emerging

technologies.

Conclusion

The Interview of experts’ views on manual and automated testing methodologies

uncovers many significant findings, A combination of manual and automation testing

is the most efficient technique for the majority of software testing projects, but the

specific percentages may differ depending on the testing area. Proficiencies encompass

doing usability testing, performing exploratory testing, and effectively managing edge

situations. One weakness is that it might be time-consuming for repetitive activities.

Significant strengths including the ability to efficiently handle repeated jobs, do

regression testing, and perform API testing. Weaknesses encompass the burden of

maintenance and the difficulties associated with unreliable tests. The most effective

strategy varies depending on the individual requirements of the project. Gaining a

comprehensive understanding of the advantages and disadvantages of each approach

is essential for making well-informed choices. Equivalence partitioning and boundary

value analysis are effective techniques for meticulous test case creation in manual

testing. When selecting automation technologies, factors such as project complexity,

scripting languages, and money are all influential. Open-source alternatives are widely

favored, while complex tasks may necessitate the use of commercial software. The

automation of operations such as test case creation and self-healing scripts is

anticipated to transform testing through the use of AI and machine learning. To

effectively collaborate with these emerging technologies, testers must acquire and

cultivate proficiencies in AI, data science, and analytical reasoning. In conclusion,

attaining the highest level of test coverage necessitates a deliberate amalgamation of

human and automation testing techniques. Testers may enhance the thoroughness and

efficiency of the testing process by utilizing the advantages of each technique and

acknowledging their limits. With the changing testing landscape, the advancements in

AI and machine learning have the potential to improve testing capabilities. Testers

must acquire new skillsets to remain at the forefront of this progress.

73

4.2 Comparative Analysis Framework

4.2.1 Criteria for Comparison

The criteria for comparison inside the Comparative Analysis Framework are the

precise dimensions or elements underneath which the developed software may be

evaluated. These standards should be carefully decided to make a fair, comprehensive,

and relevant evaluation. The choice of standards depends at the context of the

assessment and the goals of the analysis.

• Effectiveness: Measures how well a software program achieves its meant

results.

• Efficiency: Assesses assets needed to acquire favored results.

• Scalability: Assesses the software program’s potential to address increasing

work scopes without compromising overall performance.

• Usability: Evaluates the software program’s person-friendliness, accessibility,

and intuitiveness.

• Flexibility and Adaptability: Assesses the software program’s capability to

alter to modifications or demanding situations.

• Sustainability: Assesses the software’s lengthy-term viability and

environmental impact.

• Return on Investment (ROI): Evaluates the profitability or value-effectiveness

of the software.

• Quality: Assesses the overall excellence of a software entity.

• Security: Evaluates the software program’s robustness against threats and

vulnerabilities.

• Innovation and Creativity: The software’s capacity to introduce novel answers

or improvements.

The above-stated criteria cover all of the relevant components of the software

program being in comparison, measurable or assessable in a scientific way, and align

with the desires and priorities of the business stakeholders involved within the

analysis.

74

4.2.2 Metrics for Effectiveness and Efficiency

To quantitatively assess the effectiveness and performance of manual versus

automated software program testing methods, we can compare them throughout

several key metrics. These metrics consist of setup time, execution time, price,

accuracy, scalability, flexibility, repeatability, and the talent level required. This

evaluation will be segmented by using brief-scale, medium-scale, and large-scale IT

industry projects over brief-term, medium-term, and long-time period periods. The

assessment is primarily based on standard developments found in the industry. The

unique values may additionally vary relying on the exact nature of the project and the

tools or methodologies used. The aim right here is to offer a broader assessment.

Project Scale:

• Short-Scale Projects: Small teams and scope, commonly lasting some weeks.

• Medium-Scale Projects: Medium-sized groups and scope, generally lasting a

few months.

• Large-Scale Projects: Large groups and good sized scope, regularly lasting six

months or greater.

Project Duration:

• Short-Term: Up to 3 months.

• Medium-Term: 3 to 6 months.

• Long-Term: More than 6 months.

75

Metric Manual

Testing

(Short-

Term)

Automat

ed

Testing

(Short-

Term)

Manual

Testing

(Medium

-Term)

Automa

ted

Testing

(Mediu

m-

Term)

Manual

Testing

(Long-

Term)

Automate

d Testing

(Long-

Term)

Setup

Time

Low to

Medium

High Low to

Medium

High Low to

Medium

High

Execution

Time

High Low High Low High Low

Cost Low High

(initial)

Medium Medium

(over

time)

High Lower

(over

time)

Accuracy Medium High Medium High Medium High

Scalability Low High Low High Low High

Flexibility High Medium High Medium High Medium

Repeatabil

ity

Low High Low High Low High

Skill Level

Required

Medium High Medium High Medium High

Table 11: Quantitative Analysis to achieve Test Effectiveness & Efficiency.

[Source: This thesis specific table was developed by the author.]

Metrics:

• Setup Time:

Is the time required to put together and begin the trying out process.

Automated checking out requires greater preliminary setup, especially for short-

time period projects. However, this investment will pay off in longer-term initiatives.

• Execution Time:

How lengthy it takes to finish the trying out cycle.

Automated checking out appreciably reduces execution time, which becomes

more useful as project size and length increase.

76

• Cost:

Initial and ongoing expenses associated with the testing process.

Manual trying out may additionally appear less costly inside the quick time

period because of lower preliminary setup expenses. However, automated checking

out will become extra cost-powerful through the years because of reduced execution

instances and the want for fewer human resources.

• Accuracy and Scalability:

The reliability of the checking out method in identifying defects is determined

as Accuracy and the capability to deal with increasing quantities of labor or being able

to be enlarged is described as Scalability.

Automated testing is more correct and scalable, making it specially perfect to

huge-scale and lengthy-term initiatives.

• Flexibility and Repeatability:

Ease of adapting the trying out manner to adjustments in venture scope or

technologies is referred as flexibility. Consistency of trying out results over a couple

of cycles is repeatability.

Manual trying out offers greater flexibility however lacks the repeatability of

automatic assessments, that can continually execute the same exams with high

precision.

• Skill Level Required:

Is the understanding needed to carry out testing successfully.

Automated testing calls for a better talent level for setup and renovation of check

scripts, while manual testing requires information of the software under check but less

technical ability in scripting.

This contrast highlights that at the same time as computerized testing involves

better initial setup time and fees, its blessings in execution time, accuracy, scalability,

and repeatability make it a more effective and efficient approach for medium to large-

scale tasks over the medium to long time. Manual checking out stays treasured for its

flexibility and decrease initial value, particularly in short-term, small-scale projects in

77

which the overhead of automation may not be justified. As tasks grow in scope and

length, the investment in automated testing can result in substantial enhancements in

efficiency and effectiveness, in spite of the better talent stage required to put in force

and maintain the testing framework.

4.3 Testing Processes and Techniques

4.3.1 STLC and SDLC Integration

Software Development Life Cycle Method (SDLC)

SDLC abbreviated as Software Development Life Cycle is a systematic process

that includes various phases of software development and the order of execution of

phases namely Planning, Defining, Designing, Development, Testing and Deployment

and Maintenance phase. SDLC creates the structure of development of software and

each phase requires deliverables from the previous phase in SDLC.

Figure 9: Software Development Life Cycle.

[Source: This thesis specific diagram was developed by the author.]

78

Figure 10: Planning and Requirement Analysis Stage.

[Source: This thesis specific diagram was developed by the author.]

• Stage 1: Planning and Requirement Analysis

Planning is the crucial step in software development. In this initial phase, project

stakeholders define the scope of the project, set goals, and determine the resources and

timelines. The quality of the software/application is a result of planning phase. Hence

key activities include feasibility studies, risk assessment, and project planning.

Figure 11: Defining Requirements Stage.

[Source: This thesis specific diagram was developed by the author.]

• Stage 2: Defining Requirements

During requirement gathering and elicitation phase, the project team works

closely with stakeholders to gather and analyze requirements. The goal is to understand

the needs of users and define the functional and non-functional requirements of the

software.

79

Figure 12: Designing Architecture Stage.

[Source: This thesis specific diagram was developed by the author.]

• Stage 3: Designing Architecture

Software requirement specification (SRS)/ Customer requirement specification

(CRS) is a reference document for software designers to produce best architecture.

Architects and designers develop system architecture, data structures, user interfaces,

and other design elements. The design phase involves creating a detailed blueprint of

the software based on the gathered requirements in Design document specification

(DDS). The DDS is evaluted by market analysts and stakeholders. After evaluating all

the factors, the most practical and logical design is chosen for development.

Figure 13: Developing Product Stage.

[Source: This thesis specific diagram was developed by the author.]

• Stage 4: Developing Product

During the implementation phase, developers write the software’s actual code

based on the design specifications. Coding standards are followed, and the code is

typically reviewed for quality and adherence to best practices.

80

Figure 14: Product Testing and Integration Stage.

[Source: This thesis specific diagram was developed by the author.]

• Stage 5: Product Testing and Integration

Once the product is developed, testing of the software is required to ensure that

all the software functions as intended and meet the specified requirements. Testers

conduct various types of testing including unit testing, integration testing, system

testing, regression testing and user acceptance testing.

Figure 15: Deployment and Maintenance of Products Stage.

[Source: This thesis specific diagram was developed by the author.]

• Stage 6: Deployment and Maintenance

Once the software has been properly tested and approved, it is moved to the

production environment. Data migration, installation, and configuration are some

examples of deployment activities. Following deployment, the program enters the

maintenance phase, during which continuing support and upgrades are provided. Bug

fixes, product enhancements, and other changes are performed in response to business

needs.

81

These phases can be executed in a linear or iterative fashion, depending on the

chosen SDLC model. The SDLC process provides a structured approach to software

development, guiding teams through different stages, ultimately aiming to deliver

high-quality software that meets user expectations.

Software Testing Life Cycle Technique (STLC)

Procedure that is used in Software testing is known as Software Testing Life

cycle is a structured approach that includes a series of well-defined phases of testing

process from requirement analysis to test closure that ensures quality, reliability and

functionality of a software applications. By following the well-defined phases of

STLC that are mentioned below, software development teams can identify defects

early, improve software quality, and deliver robust solutions that meet user

expectations.

Figure 16: Software Testing Life Cycle.

[Source: This thesis specific diagram was developed by the author.]

• Phase 1: In the first phase of a project, requirements and specifications are

thoroughly analyzed. The testing team works closely with business analysts to

understand the software’s intended functionality. By defining the testing scope

and identifying test scenarios, this phase prepares the ground for effective

testing.

• Phase 2: Test planning is an essential step in ensuring a thorough and effective

testing process. It involves the development of a detailed test plan that outlines

the strategy, objectives, resources, schedule, and expected results of the testing

82

process. This plan serves as a roadmap for the entire testing process, providing

a clear understanding of the scope of testing and the environment required to

execute it. By carefully planning and executing the testing process, organizations

can optimize their testing efforts, allocate resources efficiently, and manage their

timelines effectively, ultimately leading to higher quality products and improved

customer satisfaction.

• Phase 3: During the test case design phase, detailed test cases are developed

based on the requirements and test objectives outlined in the test plan. These test

cases outline specific steps to be taken, input data and expected results,. The

meticulous creation of test cases enables thorough coverage of the software’s

functionalities, resulting in accurate validation and bug detection.

• Phase 4: Establishing a testing environment that closely resembles the

production environment is crucial for effective testing. This process involves

setting up the necessary hardware, software, databases, network connections,

and other elements required to simulate real-world scenarios. A well-designed

test environment can help ensure that testing accurately reflects how the system

will perform in real-world use.

• Phase 5: During the test execution phase, the developed test cases are executed

on the software in a systematic manner. The testing team records the outcomes

of these tests and compares them to the expected results. The primary objective

of this phase is to identify any defects, inconsistencies, or deviations from the

desired behavior. By conducting thorough testing during this phase, issues are

identified early on, which helps to reduce the cost of fixing them later on.

• Phase 6: In defect reporting and tracking phase, when defects are discovered

during test execution, they are reported in a defect tracking system. Each defect

is assigned a unique identifier, its severity and priority are determined, and it is

tracked until it is resolved. Defect reporting and tracking guarantee that

identified issues are addressed and documented for future reference.

83

• Phase 7: Test reporting involves generating various reports to communicate the

progress, test results, and defect status to stakeholders. These reports provide

insights into the software’s quality, highlight potential risks, and help project

managers make informed decisions about the software’s readiness for release.

• Phase 8: Upon completion of the test execution phase, a formal closure process

ensures that all necessary criteria have been fulfilled. The testing team assesses

the extent to which the exit criteria for testing have been met and produces a

comprehensive test summary report. This document provides an overview of the

testing activities, their outcomes, and any valuable lessons learned throughout

the testing process.

4.3.2 Comparative Analysis of Testing Processes

Compiling a comparative analysis of testing procedures involves organizing data

by different aspects like testing types, purpose, scope, techniques, tools, and involved

stakeholders. An example is presented comparing Manual Testing and Automated

Testing, which can be expanded to cover additional testing types or dimensions for a

thorough analysis. This simplification may overlook details related to various

development methodologies or organizational practices. Adapting the comparison to

suit the project or organizational needs is crucial.

84

Criterion Manual Testing Automated Testing

Purpose To manually execute test

cases without using any

automation tools.

To use automation tools to execute

test cases without human

intervention.

Scope Ideal for exploratory,

usability, and ad-hoc testing

where human observation is

crucial.

Best suited for regression, load,

and performance testing, where

repetitive and extensive tasks are

involved.

Techniques Black-box testing, White-box

testing, Grey-box testing.

Scripted testing, Data-driven

testing, Keyword-driven testing.

Tools Test management tools (e.g.,

JIRA, TestRail),

Documentation tools (e.g.,

Confluence).

Automation frameworks (e.g.,

Selenium, QTP), CI/CD tools

(e.g., Jenkins, GitLab CI).

Execution

Time

Time-consuming due to

manual effort required for

each test case.

Significantly faster after initial

setup, as tests can be run

automatically at any time.

Cost Lower initial cost but higher

long-term cost due to ongoing

manual effort.

Higher initial cost for setup and

maintenance, but lower long-term

cost due to reusability and

scalability.

Accuracy Subject to human error, but

beneficial for detecting visual

and usability issues.

High accuracy for detected

failures in test cases, but may miss

visual and usability issues.

Flexibility High flexibility to adapt to

changes in the application or

testing requirements.

Requires updates to test scripts

when application changes, which

can be time-consuming.

Stakeholders

Involved

Testers, QA analysts,

sometimes end-users for UAT

(User Acceptance Testing).

Testers, Developers (for writing

and maintaining scripts), DevOps

(for integrating with CI/CD

pipelines).

Best Used

For

Early stages of development,

small to medium projects,

features requiring human

judgment.

Large scale projects, projects with

long maintenance phases, areas

requiring frequent regression

testing.

Table 12: Comparative Analysis of Manual vs. Automated Software Testing

[Source: This thesis specific table was developed by the author.]

85

A detailed examination of different testing techniques such as Smoke, Sanity,

Functional, Regression, Retesting, Unit, Integration, System, and User Acceptance

Testing (UAT), and how they align with manual and automation testing methods is

needed to create a comparative analysis. A comprehensive comparison in table format

is available.

Testing

Technique

Purpose Scope Manual

Testing

Compatibil

ity

Automation

Testing

Compatibility

Smoke

Testing

First testing

performed on

newly released

initial build

(unstable) in

order to check the

basic & critical

functionalities.

And the deployed

software build is

stable or not?

Narrow

scope,

focusing on

critical

functionalitie

s of the

software.

High,

especially

for initial

builds.

High, suitable

for automated

smoke tests for

frequent

builds.

Sanity

Testing

Is performed on

stable build in

order to perform

deep testing on

selected

functionalities. To

check minor

changes or fixes

have not affected

existing

functionalities in

a new build.

Narrow,

focusing on

specific

components

or

functionalitie

s affected by

recent

changes.

High, for

quick

checks

without

detailed

scripts.

Moderate,

automation can

be used for

repetitive

sanity tests.

Functional

Testing

Is only concerned

with validating if

a system works as

intended. And the

ultimate goal of

functional testing

is to ensure that

software works

according to

specifications and

user expectations.

Broad,

covering all

functionalitie

s of the

application.

High, due to

the need for

varied

human

interaction.

High,

especially for

regression

functional

testing.

86

Regression

Testing

To ensure that

new changes or

modifications

have not

adversely affected

existing

functionalities.

Broad, as it

involves re-

testing the

entire

application.

Moderate,

for selective

critical

areas.

Very High,

ideal for

automation due

to repetitive

nature.

Retesting Is a type of

software testing

where specific

test cases that

previously failed

or identified

defects are

executed again

after the defects

have been fixed

or the code has

been modified

and also to ensure

that the fix hasn’t

introduced new

defects in

unchanged areas

of the software.

Specific to

defects that

were

identified and

supposed to

have been

fixed.

High, to

verify

specific bug

fixes.

Moderate,

automated

scripts can be

used for

known bug

fixes.

Unit Testing To test individual

units or

components of

the software. The

purpose of this

testing is to check

whether each

module is

working properly

Very narrow,

focusing on

the smallest

testable parts

of an

application,

like functions

or methods.

Moderate,

mainly for

complex

logic that’s

hard to

automate.

Very High,

most suitable

for automation.

Integration

Testing

To test the

integration or

interfaces

between

components, or

between different

systems. To check

modules are

communicating

each other as Data

Flow Diagram

specified in

Technical

Document.

Moderate,

focusing on

the

interactions

between

integrated

components

or systems.

Moderate,

to check the

flow of data

and control.

High,

automation can

facilitate

testing of

numerous

integration

points.

87

Table 13: Comparison of Software Testing Techniques Compatibility.

[Source: This thesis specific table was developed by the author.]

Manual and Automation Testing Methods are well matched in distinctive ways.

Manual Testing is only for techniques that need human inputs like UAT, Sanity, and

System Testing. On the alternative hand, Automation Testing excels in repetitive, data-

driven, or regression based processes which include Regression, Unit, and Integration

Testing.

4.4 Tools and Technologies Implementation

4.4.1 Automation Testing Tools Overview

Automation testing tools are critical in software development, allowing groups

to test the functionality, reliability, performance, and security in their applications

efficiently and accurately. These tools automate the running of test cases, eliminating

manual testing, which can be time-consuming and error prone. The selection of an

automation testing tool depends on factors such as the type of software application,

programming languages, testing sophistication level, and budget.

Here is an overview of various categories and tools in the automation testing

field. Functional Testing Tools are used to test software functionality and ensure it

behaves as expected by simulating user actions and verifying outputs. Selenium is an

System

Testing

To validate the

complete and

integrated

software product.

Broad,

covering the

software

entirely to

evaluate its

compliance

with the

requirements.

High, for

overall

system

evaluation.

Moderate to

High,

automation can

be used but

may not cover

all aspects.

User

Acceptance

Testing

(UAT)

To ensure the

software can

handle real-time

user requirements

and is ready for

deployment in

client’s

environment

Broad,

simulating

real-world

usage and

scenarios.

Very High,

requires

end-user

experience

and

feedback.

Low, manual

testing is

preferred to

assess user

satisfaction.

88

open-source tool for web testing supporting multiple browsers and languages. Appium

is for mobile apps like iOS and Android. UFT, previously QTP, is from Micro Focus

and supports desktop, web, and mobile apps. Performance Testing Tools evaluate

speed and stability, including JMeter for performance and LoadRunner for simulating

multiple users. CI/CD Tools like Jenkins automate building, testing, and deploying

apps. Security Testing Tools like OWASP ZAP and Fortify help identify

vulnerabilities and protect against cyber threats. API testing tools are vital for modern

applications that heavily rely on APIs for functionality, focusing on testing APIs

directly. Postman is a popular tool for sending requests and receiving responses from

a web server, while SoapUI is specifically for testing SOAP and REST APIs. Mobile

testing tools ensure seamless performance across devices and operating systems, with

Espresso for Android and XCTest for iOS and macOS.

The automation testing tool landscape is diverse and constantly evolving, with

options for functionality, performance, security, and API testing. Effective tool

selection is key for improving software quality, reducing testing time, and increasing

development efficiency.

89

4.4.2 Criteria for Tool Selection

Criteria Description Importance

Compatibility The tool needs to be

compatible with the

platforms, operating

systems, and technologies

utilized in the application.

• High

• Ensures that the tool

can test the application

effectively across the

required platforms.

Ease of Use The learning curve and

ease of setting up and using

the tool. Includes the

availability of a user-

friendly interface and

documentation.

• Medium to High

• Affects the speed of

adoption and

productivity of the

testing team.

Integration

Capabilities

The ability to integrate with

other tools and systems in

the development pipeline,

such as CI/CD tools,

version control systems,

and project management

tools.

• High

• Critical for enabling a

seamless and

automated workflow

throughout the

development and

testing phases.

Support for

Automation Feature

The variety and complexity

of automation

functionalities offered such

as codeless automation,

script reusability, and data-

driven testing.

• High

• Determines the

efficiency and

flexibility of creating

and managing tests.

Performance and

Scalability

The tool’s ability to handle

many tests at speed and

scale up to accommodate

growing project needs.

• High

• Essential for ensuring

the tool remains viable

as the project and its

testing requirements

grow.

Community and

Support

The presence of both a

strong community support

system and professional

assistance from the tool

vendor can play a vital role

in problem-solving and

skill development.

• Medium

• Can help resolve issues

more quickly and

enhance the tool’s

usability.

90

Cost The total cost of

ownership, including

licensing fees, training

costs, and any additional

expenses for

updates/support should

align with project’s support

• Medium to High

• A key consideration for

most projects,

especially those with

limited budgets.

Test Defect

Reporting and

Analytics

The reporting and analytics

capabilities are top-notch,

providing in-depth insights

into test coverage, defects,

and performance trends

through detailed test

reports.

• Medium to High

• Crucial for

understanding test

outcomes, identifying

trends, and making

informed decisions.

Security Features The tool’s features and

protocols for ensuring the

security of test data and the

testing environment.

• Medium to High

• Particularly important

for applications dealing

with sensitive data or in

regulated industries.

Table 14: Software Testing Tool Selection Criteria

[Source: This thesis specific table was developed by the author.]

91

4.4.3 Comparative Evaluation of Tools

A comparative evaluation of various automation testing tools across key aspects

will help in understanding their strengths, weaknesses, and ideal use cases. The tools

selected for comparison cover a range of testing needs, including web and mobile

application testing, performance testing, CI/CD, security testing, API testing, and UI

testing for mobile apps.

Table 15: Comparison of Software Testing Tools Across Various Criteria

[Source: This thesis specific table was developed by the author.]

Feature/

Criteria

Selenium Appium

JMeter

Jenkins

Postman

Type of

Testing

Functional

(Web)

Functional

(Mobile)

Performanc

e

CI/CD

API

Open Source Yes Yes Yes

Yes

No (Free

and Paid

versions)

Platform

Support

Web

browsers

Android,

iOS

Web

applications

Multiple

platforms

API

platforms

Programming

Languages

Java, C#,

Ruby,

Python,

others

Java,

Ruby,

Python,

others

Java

Groovy,

any via

plugins

-

Ease of Use Moderate-

High

(depends

on setup)

Moderate

(requires

setup)

Moderate

Moderate-

High

(depends

on setup)

Easy

Integration High (with

other

testing

tools)

High (with

other

testing

tools)

Moderate-

High

Very High

High

Community

Support

Very High

High

High

Very High

Very High

Reporting Moderate Moderate

High

High

High

Cost Free Free Free Free Free (with

paid

options)

92

4.5 Test Case Design and Execution

4.5.1 Importance of Test Cases

Test cases are an imperative a part of software checking out, forming the basis

for powerful trying out strategies and making sure software excellent, reliability, and

performance thru structured trying out of anticipated behaviours, potential errors, and

part instances. The significance of check cases is summarized with exceptional

components:

• Specification of Testing Objectives: Test instances without a doubt state the

desires of checking out for every function or aspect, outlining what will be tested

and the anticipated results. This aids in understanding the trying out scope and

achievement criteria.

• Ensuring Comprehensive Coverage: Well-crafted check cases cowl all

software program functionalities, which include high quality, negative, and edge

instances. This is important for figuring out person enjoy issues and device screw

ups.

• Facilitating Automated Testing: Test instances are crucial for automatic

testing, guiding test execution scripts for constant and green trying out methods.

• Reproducibility of Defects: Test cases allow defects to be replicated through

step-via-step commands, assisting builders in fixing problems and testers in

verifying the effectiveness of the fixes.

• Regression Testing: Test cases are key for retesting software after changes,

making sure that updates do no longer effect existing functionalities.

• Benchmarking and Quality Assurance: Test cases act as satisfactory

benchmarks, enabling teams to tune progress and make sure software program

meets satisfactory standards earlier than launch.

• Documentation and Knowledge Transfer: Test cases document checking out

approaches and effects, serving as a knowledge base for current and destiny

checking out efforts, facilitating new group member onboarding and retaining

checking out consistency.

• Legal and Compliance Assurance: In some sectors, take a look at cases are

wanted to reveal adherence to criminal and regulatory requirements, serving as

93

proof that the software has been adequately examined and meets specific

necessities.

Therefore, check instances play a vital function within the trying out procedure

by using imparting guidance, ensuring complete insurance, enabling automation,

supporting illness reproducibility, facilitating regression testing, documenting trying

out sports, and ensuring adherence to excellent requirements. Their systematic method

in defining standards and anticipated effects is essential for delivering top-notch

software program merchandise.

4.5.2 Manual and Automation Test Case Design

Creating manual cases and automation test scripts is a key part of trying out to

systematically become aware of software defects. To carry out Manual Testing, Test

cases for a buying demo website are carefully designed to validate person registration,

person login, purchasing cart, and checkout technique functionality. Each test case

follows a established layout to ensure thorough trying out of practical requirements,

with specific identifiers and a part of large test scenarios.

Manual Test Case Design:

Figure 17: Manual Test Case 1

[Source: This thesis specific diagram was developed by the author.]

94

Figure 18: Manual Test Case 2

[Source: This thesis specific diagram was developed by the author.]

Important Components of Manual Test Case Design illustrated in the Figure:

Test Scenario ID serves as a high-level categorization for related test cases, like

‘TC_URF_001’ for user registration. Each test case has a unique Test Case ID for

tracking and managing purposes, e.g., ‘TC_URF_Registration_001’. Test Case

Description outlines what the test case aims to validate, like user registration or email

duplication prevention. Test Steps provide a detailed procedure for testers to follow,

including browser opening and data input. Expected Result states the anticipated

outcome if the application functions correctly, while Actual Result reveals the outcome

of the test execution. Test Status indicates whether the test case passed or failed,

aligning with the expected result. The manual test cases are meticulously crafted for

precision and repeatability, with clear expected results to determine test success. They

cover both positive scenarios like successful user registration and negative scenarios

like existing email registrations or incorrect logins. The attention to detail in steps and

outcomes ensures thorough testing of nuanced application behaviour’s including cart

functionality persistence between user sessions. Overall, the detailed manual test case

95

design showcased in the screenshots highlights careful planning, documentation, and

coverage of functional paths for robust software validation.

Automation Test Scripts Design:

Figure 19: Automation Script for TestBase.

[Source: This thesis specific diagram was developed by the author.]

Figure 20: TestNG.xml file.

[Source: This thesis specific diagram was developed by the author.]

96

The evaluation of the different elements of the framework consists of following

sections:

• Page Classes (pages package): These classes represent individual pages of the

web application, with methods corresponding to the functionalities provided by

these pages. For instance, Home Page, Sign-In-Page, Registration Page, Product

Page, Shopping-Cart-Page, and Checkout Page contain methods that interact

with the elements on these pages.

• Test Classes (testcases package): Each test class corresponds to a page class

and contains test methods annotated with JUnit annotations (@Test). The

methods in these classes call the page methods to perform actions and assertions

to verify the application’s functionality. For example, Registration-Page-Test

contains tests for the registration functionality.

• TestBase Class: This class serves as the base class for all test classes. It contains

common setup and teardown methods that initialize and clean up the test

environment before and after each test. It manages the WebDriver instance, loads

properties from a configuration file, and sets up wait conditions.

• Configuration (configuration package): There’s a config.properties file that

stores configurable parameters like browser type, URL, and credentials. The

TestBase class loads these properties to be used throughout the tests.

• TestNG XML (testng.xml): This XML file configures the test run, specifying

which test classes to execute. It enables batch running of tests and allows for

easy integration with CI/CD pipelines.

• WebDriver Initialization: Depending on the browser specified in the

config.properties file, the appropriate WebDriver is initialized. The browsers

listed are Chrome, Firefox, and Edge.

• Test Methods: The test methods use the Page Object methods to perform actions

on the web application and validate the outcomes using assertions. There are

examples of both positive and negative test cases.

This framework also includes annotations like @BeforeMethod and

@AfterMethod for setup and teardown routines, @Test for test methods, and

@Test(priority=x) to sequence the tests. The use of throws IO Exception indicates that

exception handling is in place for IO-related operations.

97

To conduct automated testing on a Shopping Demo website, programming

scripts are developed using a language that is compatible with Selenium, such as Java,

as part of a Selenium-based automation framework. These scripts utilize the Page

Object Model (POM) design pattern for web applications enhances test maintenance

and reduces code duplication, enabling them to communicate with web browsers and

carry out automated testing tasks via the Selenium WebDriver API. The scripts are

structured within a Maven project setup and leverage the TestNG framework to control

the testing process. Scripts are crafted using TestNG, which is a sophisticated testing

framework featuring enhanced annotations and organization of test methods. It also

facilitates data-driven testing and integrates with Maven to handle dependencies and

execute tests during the build cycle.

Figure 21: Automation Script for Registration page.

[Source: This thesis specific diagram was developed by the author.]

Registration Page Test

This test class focuses on the functionality of user registration. It includes tests

for validating successful registration with correct details and handling invalid

registration attempts.

98

The RegistrationPageTest class ensures that the registration process on the

website functions correctly. It includes positive and negative test scenarios to verify

that only users with valid details can register and that appropriate messages are

displayed when incorrect details are provided.

Figure 22: Automation Script for Sign-in page.

[Source: This thesis specific diagram was developed by the author.]

Sign In Page Test

The SignInPageTest tests the login functionality. It contains methods to check if

a user can log in with valid credentials and tests for login attempts with invalid

credentials.

SignInPageTest validates the sign-in process of the application. It ensures that

users with valid credentials can access the system and that access is denied to users

with incorrect credentials, thus safeguarding against unauthorized access.

99

Figure 23: Automation Script for Home page.

[Source: This thesis specific diagram was developed by the author.]

Home Page Test

This class tests features available on the homepage, such as navigation and

logging out. One of the tests checks if the homepage is accessible after a successful

login.

The HomePageTest class confirms the homepage’s integrity and navigability

post-login. It checks the functionality of core elements, ensuring the user experience

remains consistent upon accessing the homepage.

100

Figure 24: Automation script for Header-section page.

[Source: This thesis specific diagram was developed by the author.]

Header Section Test

In the HeaderSectionTest, the tests focus on the header section of the website,

checking functionalities like navigating to the sign-in and registration pages from the

header.

HeaderSectionTest is designed to confirm that the header section of the website

provides the necessary navigation functionalities, allowing users to move to the sign-

in and registration pages seamlessly.

101

Figure 25: Automation script for Product page.

[Source: This thesis specific diagram was developed by the author.]

Product Page Test

Tests within the ProductPageTest class verify the behavior of the product page,

such as selecting items and navigating to the shopping cart.

The ProductPageTest evaluates the product selection process, ensuring that users

can successfully add items to their shopping cart from the product page, enhancing the

shopping experience.

102

Figure 26: Automation script for Shopping-cart page.

[Source: This thesis specific diagram was developed by the author.]

Shopping Cart Page Test

This class focuses on the shopping cart’s functionalities, including adding items,

incrementing item quantities, and removing products from the cart.

ShoppingCartPageTest assures that the shopping cart operates as intended, with

tests to validate the addition and removal of products as well as the updating of product

quantities within the cart.

103

Figure 27: Automation script for Check-out page.

[Source: This thesis specific diagram was developed by the author.]

Checkout Page Test

The CheckoutPageTest ensures that the checkout process, including order

placements, is functioning correctly. It tests for a successful order completion after the

user has added items to the cart.

CheckoutPageTest is key for verifying the checkout process, confirming that

users can place orders successfully after adding their desired products to the shopping

cart.

Each test class aligns with a specific section or functionality of the web

application. They all inherit from the TestBase class, which handles common setup

and teardown tasks. The classes contain @Test methods, which are actual test cases,

and use the Page Object Model to interact with the web application under test. This

structured approach ensures that the tests are maintainable and that the application’s

functionalities are thoroughly validated.

104

4.5.3 Challenges in Test Case Maintenance

Maintaining test cases is vital but difficult in the software testing process. It

entails modifying them to match the application, environment, or requirements. Many

challenges are faced during test case maintenance which are listed below:

• As software applications evolve with new features and modifications, test cases

must be continuously updated to align with these changes. This can be a time-

consuming process, particularly for complex applications with frequent releases.

• Tests that are unreliable, resulting in varying outcomes, can be a significant

challenge to maintain. Identifying if a failure is caused by a flaw in the

application or an issue with the test itself requires thorough investigation and

substantial effort.

• Maintaining the significance and authenticity of test data in complex systems is

challenging because of the complex data dependencies that exist.

• In automated testing, changes in the UI or API can cause automated tests to

break, necessitating frequent updates to the test scripts. This fragility can lead to

a high maintenance overhead.

• Updates or changes in testing tools, browsers, operating systems, or other

components of the testing environment can lead to test failures, requiring tests

to be reviewed and updated accordingly.

• The need for specialized knowledge to maintain certain test cases can pose a

challenge, especially when team members with the necessary expertise are

unavailable.

• Without adequate traceability to requirements, managing test cases can become

aimless, making it difficult to prioritize updates and ensure that the test suite

stays focused on validating the critical functionalities of the application.

• Poor documentation of test cases complicates maintenance efforts, as it requires

testers to spend additional time understanding the purpose and steps of the test

before they can make updates.

• Limited resources, in terms of both time and personnel, can lead to a backlog of

maintenance tasks, putting pressure on the testing team and potentially

compromising the quality of testing.

105

4.6 Real-world Case Studies Implementation

4.6.1 Case Study Selection Criteria

When selecting real-world case studies for the implementation of Selenium

WebDriver automation scripts, several key criteria were taken into account to ensure

a comprehensive evaluation of the framework’s capabilities:

• Web Application Complexity: Case studies were chosen based on the

complexity of the web applications, including multi-page workflows, dynamic

content, and responsive design elements. This criterion ensures that the

framework is tested against applications that simulate a realistic user interaction

scenario.

• Variety of Web Elements: Applications with a wide variety of web elements

such as forms, dropdowns, modals, and pop-ups were selected. This diversity

tests the robustness of the locator strategies and interaction methods defined in

the page objects.

• Functionality Coverage: The selected applications cover a range of

functionalities, from user registration and sign-in processes to product selection

and shopping cart management. This allows for an exhaustive assessment of the

test scripts across different functional domains.

• User Interaction Flows: Applications with intricate user interaction flows,

including both linear and non-linear navigation paths, were considered. These

flows help validate the framework’s ability to handle complex user journeys and

state management.

• Error Handling and Negative Testing: Case studies that provide ample

scenarios for negative testing and error handling were preferred. The ability to

gracefully handle unexpected scenarios and recover from errors is a crucial

aspect of automated testing.

• Cross-Browser Testing: The need for cross-browser compatibility in the

modern web landscape necessitated the inclusion of case studies that can be

tested across multiple browsers, ensuring the scripts’ effectiveness in diverse

environments.

106

4.6.2 Implementation Insights

During the implementation of the Selenium WebDriver test scripts, several

insights were gathered that inform best practices and optimization strategies for

automated testing frameworks:

• Page Object Model Effectiveness: The implementation reinforced the

effectiveness of the Page Object Model in enhancing test maintainability and

readability, as evidenced by the structured and modular codebase of the page

classes.

• Configurable Test Data: The utilization of a config.properties file

demonstrated the value of keeping test data and configurations separate from the

script logic. This separation allows for easy adjustments without modifying the

core test scripts.

• Robust Locator Strategies: Implementing the tests underscored the importance

of robust locator strategies. The ability to identify web elements reliably under

different conditions was critical for the stability of the test execution.

• Asynchronous Behavior Handling: Handling the asynchronous behavior of

web applications through explicit and implicit waits was a key learning point,

ensuring that the tests are stable and less flaky.

• Negative Test Scenarios: Incorporating negative test scenarios proved to be

vital in ensuring the application’s resilience against invalid inputs and

unexpected user behavior.

• Continuous Integration Readiness: The framework’s compatibility with

TestNG and the creation of a testng.xml configuration file facilitated the

integration of the test suite into CI/CD pipelines, allowing for automated triggers

of test runs.

• Scalability and Flexibility: The scalability and flexibility of the framework

were tested by progressively adding more complex test scenarios and ensuring

the test infrastructure can handle the increased load.

• Cross-Browser Testing: Real-world implementation provided insights into

cross-browser issues and reinforced the need for comprehensive cross-browser

testing to ensure consistent user experiences.

107

The diploma thesis can delve deeper into each of those insights, providing

detailed analysis and examples from the case research to illustrate the real-world

applicability and demanding situations of Selenium WebDriver automated testing.

4.6.3 Practical Outcomes

Manual And Automation Test Execution:

Figure 28: Automation Test Execution report.

[Source: This thesis specific diagram was developed by the author.]

108

Comparison of Time taken during Test execution using Manual & Automation

testing.

Table 16: Comparison of Time Taken.

[Source: This thesis specific table was developed by the author.]

Sl.No Test Cases Time Taken in

Manual Testing

Time Taken in

Automation

testing

1 Registering a New User 30 seconds 3 seconds

2 Registering an Existing User 30 seconds 1 second

3 User login with Valid email &

Valid password

20 seconds 2.3 seconds

4 User login with Valid email &

Invalid password

20 seconds 2.1 seconds

5 User login with Invalid email &

Valid password

20 seconds 2 seconds

6 User login with Invalid email &

Invalid password

25 seconds 2.4 seconds

7 Successfully adding desired

product to the cart

60 seconds

15 seconds
8 Adding same item & cart getting

incremented

60 seconds

9 Total price of all the items in the

cart is displayed

150 seconds

60 seconds
10 On clicking remove item, the item

should be removed from the cart.

150 seconds

11 Items in cart should be present if

user logs out and logs in again

120 seconds 50 seconds

12 Users can proceed to the checkout

process from the shopping cart

5 minutes

20 seconds
13 Users can view an order summary

of items in the shopping cart

5 minutes

14 User can add new shipping

address

7 minutes NA

TOTAL TIME TAKEN 28 Minutes 40

Seconds

2 Minutes 60

Seconds

109

The TestNG report shown in Figure. 28 depicts automated test execution report

for a shopping demo website where functional testing was executed using both manual

and automated test scripts. The report outlines the execution of test cases related to

user registration, login, cart functionality, and checkout processes. This includes both

positive and negative scenarios to ensure comprehensive testing of the application’s

functionality. And Table. 16 shows the comparision of time taken to executed similar

test cases using both manual and automated testing approaches.

Based on the TestNG report, we can infer the following:

• User Registration Functionality: The test cases includes scenarios such as

registering with valid details (positive test) and attempting to register with

already existing email addresses (negative test). The automated scripts executed

by TestNG have validated the application’s response to each of these inputs,

such as successful account creation or appropriate error messages.

• User Login Functionality: This involved automated tests for valid login

credentials (positive test) and invalid login attempts (negative tests). The

TestNG report indicates the time taken for each test, reflecting the efficiency of

automated checks against these criteria.

• Cart Functionality: Automated test cases for the shopping cart have included

adding items to the cart, updating item quantities, and persisting cart items when

a user logs out and back in. Again, the report provides execution times, showing

how quickly the automation can verify cart behaviors.

• Checkout Functionality: The automated checkout process testing involve

successful order placement (positive scenario) and order placement with invalid

details (negative scenario). The TestNG framework have executed these tests to

validate the workflow and report any discrepancies from expected outcomes.

• Comparing the execution times for manual versus automated tests can provide

insights into performance and efficiency. Manual testing, while crucial for

exploratory and usability checks, typically takes longer due to the need for

110

human interaction. Automated tests, however, can be executed quickly and

repeatedly with TestNG, which is evident from the timestamps and durations

specified in the report. Automated tests also offer the advantage of running at

off-peak times or concurrently, thereby not adding to the time constraints of a

sprint or development cycle.

• For instance, an automated test that checks for valid user registration will

consistently enter the same data and expect the same result, which can be

completed in a matter of seconds as per the TestNG report timestamps. In

contrast, a manual tester may take a few minutes to complete the same task, and

the time vary slightly with each execution.

• The report also shows longer execution times for more complex scenarios, such

as those involving multiple steps or validations. These findings highlight the

effectiveness of automation in performing mundane, repetitive, and data-

intensive tests, allowing manual testers to focus on more intricate tests that

require human insight.

In summary, the TestNG report for the demo shopping website provides valuable

data on the time efficiency of automated testing compared to manual testing. While

both methods have their place in a balanced testing strategy, the synergy of both is

leveraged to ensure thorough quality assurance, with automation significantly

enhancing test efficiency and performance.

4.7 Best Practices Integration

4.7.1 Synergies Between Manual and Automation Testing

Combining manual and automated testing approaches can lead to substantial

synergies that enhance the general efficiency and effectiveness of software testing,

these synergies are built on the unique capabilities of both methods and when properly

utilized result in a tough and quick system of testing here are some of key benefits

realized by integrating both manual and automated tests.

111

• Increased Test Coverage: Automation can handle repetitive and high-volume

test cases, allowing manual testers to focus on exploratory, usability, and ad-hoc

testing. This distribution of work increases overall test coverage—automation

ensures consistency in regression testing, while manual testing explores new or

complex user scenarios.

• Efficiency and Speed: Automated tests can quickly perform numerous tasks

that take much longer if done manually, leading to faster test cycles. Selective

manual testing can be utilized to specifically target areas that necessitate human

judgment, such as visual appraisals and evaluations of user experience.

• Resource Optimization: By employing automation for repetitive and regression

tests, organizations can make better use of human resources, allocating skilled

testers to areas where their expertise is most needed, such as in test planning, test

case design, and high-level test execution.

• Improved Accuracy and Reduced Human Error: Automated testing provides

precise and consistent execution of predefined test cases, reducing the risk of

human error associated with repetitive manual testing tasks.

• Feedback Loop Enhancement: Automated tests can be integrated into the

Continuous Integration/Continuous Deployment (CI/CD) pipeline, providing

immediate feedback to developers. Manual testing can complement this by

providing more in-depth understanding of possible problems or enhancements,

thereby improving the feedback loop for development teams.

• Cost-Effectiveness: Over time, automation can lead to cost savings by reducing

the time and resources required for repetitive testing. Manual testing can then be

strategically employed for tasks that are not cost-effective to automate.

• Skill Development: Cross-training team members in both manual and

automated testing can lead to a more versatile and skilled testing workforce

capable of tackling various testing challenges.

112

• Quality Assurance: Combining manual and automated testing can lead to

higher quality software, as different testing methods can catch different types of

issues. This comprehensive approach ensures a more thorough examination of

the software product.

• Risk Management: Manual testing can be used for high-risk areas or new

features where automated tests have not yet been developed. Conversely,

automation can be employed to continuously test and monitor the more stable

parts of the application, ensuring that any new changes do not introduce

regressions.

Hence by combining manual and automated testing methods can create a well-

rounded strategy that maximizes the advantages of each. This unified approach can

enhance software quality, increase efficiency, improve resource management, and

strengthen the testing process. Organizations should acknowledge these benefits and

incorporate both methods strategically for optimal testing results.

4.7.2 Recommendations for Optimal Efficiency

To optimize software testing efficiency, it is advised to use a balanced approach

that combines manual and automated testing strengths. Identify repetitive tasks for

automation to save time and minimize errors, especially in regression, data validation,

and performance testing. Manual testing should focus on areas requiring human

intuition like exploratory and usability testing. Maintain well-documented automated

test scripts and invest in continuous integration tools for efficiency and scalability in

testing. Creating a detailed test plan with clear objectives and test cases is essential for

effective manual testing. Equip testers with the right tools for managing test cases and

collaborating with the development team. Cross-train team members in manual and

automated testing to ensure versatility and adaptability. Foster collaboration between

developers and testers for better defect resolution. Regularly review and update testing

strategies to respond to new challenges. Following these recommendations will

maintain an efficient and effective testing process and aligns with software

development lifecycle needs by adhering to these recommendations in organizations.

113

4.8 Future Trends in Software Testing Impact

4.8.1 Emerging Trends in Test Automation

Advancements in technology and changes in software development

methodologies are driving the reshaping of software testing through emerging trends

in test automation. One significant trend is the increased integration of artificial

intelligence (AI) and machine learning (ML) into test automation tools, enabling more

intelligent decision-making and predictive analytics. Another trend is the adoption of

codeless test automation platforms, making test automation more accessible to a

broader range of professionals. The rise of Continuous Integration/Continuous

Deployment (CI/CD) and DevOps has also had a profound impact on test automation

practices, emphasizing shift-left testing and automation to keep pace with fast-paced

software deployments. Additionally, there is a focus on testing in more complex

environments, supported by the design of test automation tools to cater to a wide range

of platforms and devices. Collaboration and integration of test automation tools with

other software development lifecycle tools are also becoming increasingly important

for better communication and collaboration within development and testing teams. To

remain up to date in test automation, testers and organizations need to constantly

evolve their tools and practices to fully utilize the potential of new technologies and

methodologies driving the field forward.

4.8.2 AI, ML, Agile, and DevOps Impact

The impact of Artificial Intelligence (AI), Machine Learning (ML), Agile

methodologies, and DevOps practices on the domain of software testing is profound

and multifaceted. AI and ML are revolutionizing test automation by enabling smarter

and more adaptive testing processes. These technologies allow for the automatic

generation of test cases, prediction of key risk areas, and more efficient management

of the vast datasets generated during testing. Machine learning models can analyze

historical test data to identify patterns, predict outcomes, and provide insights that lead

to more targeted and effective testing strategies.

114

Agile methodologies have necessitated a more iterative and continuous approach

to testing, integrating testing into the early stages of development to identify and

resolve issues more quickly. Agile has promoted the development of test automation

tools that are flexible and can accommodate rapid changes to the codebase without the

need for extensive rework.

DevOps practices further integrate testing into the continuous integration and

deployment pipeline, ensuring that automated tests are run frequently and consistently,

which helps in identifying defects as soon as they are introduced. The synergy between

DevOps and test automation is critical for achieving the rapid deployment cycles that

are essential to the DevOps model while maintaining a high standard of software

quality.

The combined impact of AI, ML, Agile, and DevOps is creating a more dynamic,

responsive, and efficient testing environment. This is characterized by a shift-left in

testing practices, where quality assurance is involved at every stage of the software

development lifecycle, fostering a culture of continuous improvement, and enabling

faster time-to-market for high-quality software products.

115

5. Results and Discussion

The results of the mixed methods analysis are presented in the section 4.1.2. The

study will delve into the quantitative and qualitative data collected to provide a better

understanding of automated human testing techniques.

5.1 Analysis of Manual Testing Results

Examining manual testing results from different sizes of projects reveals several

patterns. Small projects, which are often characterized by dynamic and agile

development environments, shows how manual testing can be flexible when it comes

to rapidly changing requirements. When it comes to small projects, manual testing

works especially well, when adapted streamlining and frequent changes take

precedence. On the other hand, larger projects with complex systems and larger test

sets may have trouble with flexible manual testing, potentially sharing the testing

process. Intermediate projects between these two extremes finds a balanced approach

to manual testing helpful.

Strengths:

Using quantitative data (such as survey and test management tools) and

qualitative techniques (such as interviews), the study focuses on the key strengths

identified. This can include tasks such as functional testing, exploratory testing, and

managing edge cases, which are domains where manual testing shines.

Weaknesses:

Data will be analysed to identify barriers to manual testing, including the need

to spend a lot of time repeating activities, the possibility of human error, and potential

problems with systems a remarkable in scalability.

Resource management:

Quantitative data will be analysed to understand how manual testing versus

automation testing scenarios impacts resource allocation—that is, the number of

testers required.

116

5.2 Analysis of Automation Testing Results

The findings of automation testing show clear advantages for larger projects with

more complex test cases that are repeated. Larger projects benefit from increased

productivity and reliable results from automated test writing, especially in regression

testing and performance testing. While medium-sized businesses benefit from

automation, it can be difficult for them to allocate the funds and initial resources

needed to automate testing programs small businesses may find it costly in the case of

automation outweighs its usefulness when dealing with more compact and dynamic

tasks.

Strengths:

The study looks at the benefits of automated testing such as qualitative insights

(such as tester experience increasing productivity) and quantitative data (such as faster

implementation times). Regression testing, performance testing, and multiple coverage

testing are just a few examples of what this can entail.

Weaknesses:

Data will be studied to identify shortcomings of automation testing, including

the need for initial investment in tooling and script development, the need for ongoing

script maintenance, and the inability to automate testing in any case.

Resource management:

Quantitative data will be analysed to understand how automated testing impacts

resource allocation, including reducing the number of manual tests required for

specific projects.

5.3 Comparison of Results

Analysis of the results of manual and laboratory tests of various commercial

sizes reveals a complex picture. Small businesses that value flexibility and rapid

improvement find manual testing appropriate for their goals. Depending on the

specifics of the project, medium-sized enterprises combine automated and manual

testing in a balanced way. Larger businesses use automation because it is more

117

efficient and scalable. The comparison highlights the importance of tailoring test

methods to the specific needs and circumstances of each large-scale project.

Important areas of focus may include:

• Efficiency: Check how long it takes to run tests and look for errors at any stage.

• Effectiveness: Examine covered test achievement and detection of deficiencies

in both human and automated research.

• Applications: Evaluate how each strategy affects budget and human resource

allocation.

• Strengths and Weaknesses: Summarize the main advantages and

disadvantages of human and mechanical testing.

5.4 Implications of Findings

The findings of the study highlight the importance of developing assessment

strategies that are specific to the size of the organisation. Small businesses benefit from

being flexible and investing in manual testing due to their dynamic development

environment. To maximize productivity, mid-size companies should deliberately

integrate automated manual testing. Large enterprises, with their extensive

infrastructure and testing labs, can greatly benefit from a strong automation system.

Organizations can use insights to ensure the quality of the software development

lifecycle, improve efficiency, and align testing processes with enterprise size.

This section will discuss the broader implications of the survey findings for the

software development community based on comparisons and analytical findings.

This may include:

• Selection criteria: Advice on the best test methodology to use given the nature

of the application, project requirements and available resources.

• A balanced approach: Emphasize the value of an experimental approach that

balances the advantages of manual and automated testing to achieve the best

results.

• Resource Optimization: Explain how resource allocation decisions between

manual and automated testing activities can be made based on the survey data.

118

5.5 Practical Insights from Case Studies

Real case studies provide useful insights for businesses of all sizes. The

flexibility of manual testing helps small businesses startups with limited resources, for

example—adjust quickly to changing needs. Software development organizations

provide examples of how mid-sized projects use hybrid design, carefully balancing

hands-on and automated testing. MNCs, representing large enterprises, demonstrate

the scalability and efficiency improvements that can be achieved through extensive

automation These case studies provide useful insights that enable companies to make

informed decisions through strategies using testing methods to establish their

objectives and characteristics.

In this section (as outlined in Section 2.2.4) the research will examine real-world

case studies in detail. Examining these case studies can provide the following useful

conclusions.

• Successful implementations: Examine real-world examples of software

development teams that have successfully integrated automated human testing

into their implementations.

• Process and Results: Calculate the benefits seen in the case studies, such as

increased test payment percentages, shorter test schedules, and increased defect

detection of the account.

• Top Techniques: Identify generalizable best practices from case studies that can

be applied to test projects. This may involve developing methods for combining

automated and manual testing or for solving specific testing problems.

Specifically, the results and Discussion phase not only analyse the results of

human and automated testing, but also change practical and meaningful ways to

manage small, medium, and sizes specific needs. Organizations can streamline their

testing processes and align testing strategies with company size to ensure a balanced

and effective approach to unique software development environments.

119

6. Conclusion

6.1 Summary of Key Findings

The constant changes and increasing requirements in software development

require a careful and sensitive approach to quality assurance. An important part of this

effort is software testing, which involves carefully comparing systems against pre-

established standards and is necessary to ensure the reliability and performance of

applications The testing industry has changed have favoured automation testing, a

paradigm of specialized tools and scripts to automatically execute test cases using.

Automation testing has replaced manual testing, which was previously controlled by

human testers who precise test procedures.

This study examined the advantages and disadvantages of manual and automated

testing, highlighting the specific conditions under which each method works best and

any underlying limitations. Furthermore, the study examined the various automation

frameworks and tools available, analysing their characteristics and limitations. The

primary objective was to provide a comprehensive understanding of the software

development teams so that they can decide when and how to implement each testing

method to ensure maximum coverage and high-quality software delivery.

Getting to know the details: Adapt testing schedules to fit the size of the company

The findings of the study provided the useful realization that there is no one way

to choose the best research strategy. The scale of the project greatly influences the

efficiency of testing methods.

Small Businesses:

Using hands-on testing to acknowledge agility. Small projects exhibited flexible

manual testing, modelled by their dynamic and flexible development environment.

Manual testing works best in these situations, where frequent changes and rapid

iteration are key. Its flexibility allows testers to quickly identify errors and adjust to

changing requirements. This is especially helpful for smaller organizations with

limited resources, as they may not be able to make the initial investment necessary for

an automation testing framework.

120

Mid-sized companies:

Finding a happy medium using a mix of strategies. Mid-sized companies can

benefit from a hybrid approach that takes the right path between complex assignments

and resource constraints and combines manual and automated testing where human

sensitivity and flexibility are needed great, such as functional testing, analytical

testing, and handling edge issues Manual testing is inevitable At the same time,

working with monotonous features such as performance and regression testing

increases performance great, and provides features that allow human testers to focus

on complex issues.

Large projects:

Automation is used to increase productivity. Larger companies struggle with the

limitations of manual testing because they manage large systems and tests. The

development timeline can have a significant impact on the time required to conduct

manual testing, and scalability is a major concern. In these cases, automation testing

emerges as an effective solution. Larger projects can achieve faster response cycles

and be more efficient by automating common tests. In addition, automated tests reduce

the chances of human error by ensuring consistent and reliable execution.

Beyond dimensions: Different research approaches

Although project scope is an important factor in selecting appropriate test

methods, several test methods should be considered to achieve adequate test coverage

the study highlighted which test methods emphasize the following importance:

• Unit testing is a method used by developers to test the functionality of individual

software units. Usually automated. This setting is necessary to ensure that the

installations in the application work as intended.

• Integration testing is the process of confirming how components interact with

each other. Depending on the complexity of the integration, manual and

automated testing may be required.

121

• Functional testing ensures that application features meet specified requirements.

Functional testing includes automated testing and manual testing, which

supports various approaches such as white box and black box testing.

• Passive testing: This refers to methods for assessing passive characteristics,

including usability, safety, performance, and availability Passive testing uses

human testing and testing they use all their own.

Integrating strategies: Developing a common assessment methodology

The strategic integration of testing methods is necessary to achieve an integrated

testing approach. The most important things to consider are:

• Test Plan: A comprehensive test plan detailing features, scope, and test

procedures is required. This system must stay adaptable to meet the demands of

a changing industry.

• Equipment selection: Choosing the right equipment for both manual and

automated testing is important. While choosing the right framework for

automation testing is important, defect detection and test management solutions

accelerate manual testing.

• Collaboration: It is important that the craft and laboratory communicate well

and work together. Discussion, identification of limitations, and exchange of

information enhance the overall testing effort.

• Continuous Improvement: Test methods should be flexible, changing as

industry and technology evolve. Strategies are constantly explored to ensure

adaptability to changing circumstances.

In summary:

In conclusion, due to the dynamic nature of software development, software

testing should take a sophisticated and flexible approach. The objective of this

comparative study was to shed light on the advantages and disadvantages of manual

and automated testing approaches and enable software development teams to adapt

their approach according to project objectives and project scope.

122

Organizations navigating the complex world of quality can benefit greatly from

the comprehensive guidance provided by the combination of test methods and design

concerns presented in this study. Software development teams are able to understand

the unique characteristics of each testing methodology and strategically combine them

to create an environment for successful, efficient, and high-quality software delivery

One important finding was the need for considerable work is required in identifying

optimal testing protocols.

As software development progresses, testing will always be necessary to ensure

the quality of the final product. Because applications, designs, and technologies are

constantly changing, testing methodologies must be flexible and appropriately

integrated. The concept of effective collaboration, continuous improvement, and a

thorough understanding of the contextual factors influencing testing decisions is a way

to explore sustainable integrated testing processes.

6.2 Recommendations for Future Research

Although this research thoroughly understands human and laboratory

capabilities, there are still areas for future research that can deepen our understanding

of software testing methodologies. Suggestions include:

• Analysis of Industry-Specific Bottlenecks: Analysis that analyses nuances and

industry-specific bottlenecks in human and mechanical testing provides highly

focused insights for companies involved in various industries.

• Application of Machine Learning in Software Testing: Research on machine

learning techniques in software testing can lead to solutions designed to

automate complex testing scenarios to improve the testing.

• Analysing the impact of emerging technologies: Considering how cutting-

edge technologies such as blockchain, artificial intelligence and the Internet of

Things impact testing methodologies can provide an idea of how the software

development industry is changing around.

• Analysis of Organizational and Cultural Factors: A better understanding of

the contextual and human aspects of testing can come from examining how

123

organizational and cultural factors influence the selection and effectiveness of

testing strategies in the influence of.

• Evaluate the long-term effects of testing strategies: Analysis of the impact of

a particular test system on software maintenance, scalability, and overall system

resilience over time will shed light on how strategies a use is on the sustainable.

6.3 Closing Remarks

This comprehensive review examined the challenges of software testing,

exploring the benefits and limitations of both manual and automated testing we have

found that there is no one-size-fits-all solution, and the best testing methodology is

commercial. Reflects a variety of factors including size, type of project and resource

constraints.

Here are why the insights gained from this study are so valuable to practitioners,

researchers, and organizations:

• Accreditation: Software development testers take the lead in ensuring software

quality. By understanding the strengths and weaknesses of manual and

automated testing, testers can choose the most appropriate methods for a

particular testing environment which this empowers them to optimize test

methods, achieve testing detailed information, and finally provide high-quality

software.

• Guidance for researchers: Researchers in the software testing field can use the

findings of this study to identify areas for further research. The growth of AI,

machine learning, and DevOps techniques requires continuous research and

testing practices. This study can serve as a catalyst for future research that

examines how to incorporate this emerging technology into testing procedures.

• Reporting organizations: Software development organizations are constantly

faced with the challenge of balancing quality with effectiveness. This study

provides valuable insights that can help organizations choose the most

appropriate testing strategy based on their specific needs. By understanding the

advantages and disadvantages of both manual and automated testing,

organizations can optimize their testing processes, improve product allocation,

124

and ultimately deliver consumer-friendly software meets role expectations and

meets performance objectives for.

A changing landscape and the need for continuous improvement

The software development landscape is constantly changing, with advances in

technology, evolving user requirements, and the adoption of new methodologies such

as Agile and DevOps as these paradigms change, testing practices must change

accordingly.

This study highlights the importance of continuous improvement in software

testing. By studying emerging trends, such as AI-driven test automation, machine

learning for fault prediction, and specialized testing methodologies for IoT

applications, organizations can ensure that their testing processes remain robust and

fly effective in the face of change.

Concluding Thoughts

In conclusion, this review provides a comprehensive review of manual and

automated testing methods. By emphasizing the importance of testing strategies

tailored to specific needs and embracing continuous improvement, this review

empowers practitioners, researchers, and organizations to navigate an ever-evolving

world of software testing of the and offer exceptional software experience they will.

As the future of software development unfolds, the insights presented here will serve

as a valuable roadmap for ensuring software quality remains a top priority.

125

7. References

AALS, van der, 2019. Automated GUI Testing. . 2019.

ADIL, Mohammad, 2024. Challenges In Automation Testing. . 2024.

ANIL KUMAR, ANUJ KUMAR, and Neeraj Kumar., 2017. Recent Trends in

Software Testing. International Journal of Advanced Research in Computer Science

and Software Engineering,. 2017. Vol. 7, no. 10, p. 301–306.

ANNE METTE JONASSEN HASS, Lesley M, 2016. Global Software Test

Automation. . 2016.

ARBON, J., & BURNETT, M., 2012. Model-based Testing. . 2012.

BACH, J., & BOLTON, M., 2010. Exploratory testing. . 2010.

BELL, J., 2018. Better Software Test Automation. . 2018.

BHATIA, S., & SHARMA, A, 2018. Comparative Study of Manual and Automated

Testing Tools. Journal of Scientific Research in Computer Science. 2018. Vol. 3, no. 3,

p. 1- 8.

BINDER, Robert V., 2018. Testing Object-Oriented Systems. . 2018.

BINDER, Robert V, 2013. Automated Software Testing. . 2013.

BOT PLAY AUTOMATION, 2022. Automation & Manual Testing Best Practices -

Improve Software Quality. . 2022.

CEM KANER, JACK FALK, Hung Q. Nguyen, 2008. Testing Computer Software. .

2008.

COPELAND, Lee, 2004. A Practitioner’s Guide to Software Test Design. . 2004.

DANIEL SUNDMARK, Paul Pettersson, 2019. A Study of Manual and Automated

Testing for Industrial Control Software. . 2019.

DESIKAN, Srinivasan, 2006. Software Testing: Effective Methods. . 2006.

126

DILMEGANI, Cem, 2024. Automation Testing Case Studies. . 2024.

DRUSINSKY, Doron, 2017. Software Testing and Continuous Quality Improvement.

. 2017.

ENOIU, Eduard Paul, 2017. A Comparative Study of Manual and Automated Testing

for Industrial Control Software. . 2017.

GAIKWAD., Amol S. Dange and Suhas A., 2020. Recent Trends in Software Testing.

International Journal of Scientific & Engineering Research. 2020. Vol. 11, no. 4,

p. 178- 181.

GARG, Varsha Choudhary and Deepak, 2018. A Review on Recent Trends in Software

Testing. International Journal of Advanced Research in Computer Science and

Software Engineering. 2018. Vol. 8, no. 4, p. 40–47.

GAROUSI, V., KHEZRIAN, M., FELDERER, M, 2018. A Review and Comparison

of Automated Testing Tools for GUI-based Applications. Journal of Software:

Evolution and Process. 2018. Vol. 30, no. 3.

GOYAL, A., & SINGHAL, M., 2018. An Overview of Ad-hoc Testing. International

Journal of Engineering & Technology (IJET). 2018. Vol. 7, no. 4, p. 119–124.

GRIGERA, PABLO, and Santiago Matalonga, 2007. Practical Regression and System

Testing. . 2007. Vol. 24, no. 2, p. 101- 103.

HAMILTON, Thomas, 2024. Difference Between Manual and Automation Testing. .

2024.

HUANG, Y., HUANG, G., LEUNG, H, 2019. Generations of Automated GUI Testing.

. 2019.

JACKSON-BARNES, Shannon, 2024. Testing Trends for 2024 and Beyond. . 2024.

JOHNSON, A., 2019. A Comprehensive Guide to White Box Testing Techniques.

Journal of Software Engineering. 2019. Vol. 14, no. 3, p. 102–115.

JORGENSEN, Paul C, 2002. Software Testing. . 2002.

127

JORGENSEN, Paul C., 2013. Software testing: a craftsman’s approach. . 2013.

K., Anupam, 2022. evaluate the performance of an automated testing framework. .

2022.

KANER, CEM, and James Bach, 2002. Automated versus manual testing. . 2002.

Vol. 12, no. 2, p. 125–147.

KATAR´INA HRABOVSK´A, BRUNO ROSSI, and Tom´aˇsPitner, 2019. Software

Testing Techniques. . 2019.

KHIN SHIN THANT, Hlaing Htake Khaung Tin, 2023. THE IMPACT OF MANUAL

AND UTOMATIC TESTING ON SOFTWARE TESTING EFFICIENCY AND

EFFECTIVENESS. . 2023.

KUMAR, S., & SHARMA, R, 2021. A Comparative Study of Various Manual

Acceptance Testing Methods. International Journal of Software Quality Assurance

and Testing. 2021. Vol. 9, no. 4, p. 32–45.

KUMAR., Shweta Chaudhary and Alok, 2021. A Survey on Recent Trends in Software

Testing. International Journal of Computer Sciences and Engineering. 2021. Vol. 6,

no. 8, p. 59–65.

KUMAR, ankaj Kumar and Umesh, 2019. A Review on Recent Trends in Software

Testing. International Journal of Engineering and Advanced Technology. 2019. Vol. 9,

no. 3, p. 187–191.

KUMARI, Bhawna, CHAUHAN, Naresh and VEDPAL, 2018. A COMPARISON

BETWEEN MANUAL TESTING AND AUTOMATED TESTING. Journal of

Emerging Technologies and Innovative Research (JETIR). 2018. Vol. 5, no. 12, p. 2–

9.

MUBARAK ALBARKA UMAR, Zhanfang Che, 2019. A Study of Automated

Software Testing Automation Tools. . 2019.

NGUYEN, H., & TRAN, T., 2014. Case Study: Improving Test Efficiency through

Automated Testing in a Mobile Application Development Environment. International

128

Journal of Computer Science and Information Technology. 2014. Vol. 6, no. 2, p. 89-

97.

NGUYEN, T. T., & KAPFHAMMER, G. M., 2021. Automated GUI testing for mobile

applications. . 2021. Vol. 172.

NGUYEN, T.T., MEMON, A.M, 2017. A Comparative Study of Manual and

Automated Testing Techniques for GUI-based Applications. . 2017.

PAI, Akshay, 2023. Manual Testing vs Automation Testing. . 2023.

RAFI, Dudekula Mohammad, 2021. Benefits and_limitations of automated software

testing Systematic literature review and practitioner. . 2021.

RAJESH KUMAR MISHRA, 2017. Future Trends in Software Testing. International

Journal of Computer Applications. 2017. Vol. 168, no. 5, p. 0975 – 8887.

RASHID, F., MOHAMAD, R. A., & ALSARAYREH, S, 2019. A Comparative Study

of Automated GUI Testing Tools. IEEE International Conference on Systems, Man

and Cybernetics (SMC). 2019. P. 453–458.

REHKOPF, MAX, 2022. Automated software testing. . 2022.

SABA KHALID, Muhammad Usman, 2021. Emerging Trends and Challenges in

Software Testing: International Journal of Advanced Computer Science and

Applications. 2021. Vol. 12, no. 1, p. 246–253.

SAHA, D., ROY, C. K., & KIM, D. S., 2020. Automated GUI Testing Techniques and

Tools. IEEE International Conference on Software Maintenance and Evolution

(ICSME). 2020. P. 682–686.

SHARMA, A., & GUPTA, R, 2020. Gray Box Testing Techniques. Journal of

Scientific Research in Computer Science. 2020. Vol. 5, no. 1, p. 31–36.

SINGH, Anshuman, 2023. What is the Difference Between Manual and Automation

Testing? . 2023.

TALHA AHMED KHAN, 2021. A Survey on Recent Trends in Software Testing.

129

International Journal of Scientific Research in Computer Science, Engineering and

Information Technology. 2021. Vol. 6, no. 1, p. 137–144.

TED KURMAKU, Musa Kumrija., 2020. A SYSTEMATIC LITERATURE REVIEW

AND METAANALYSIS COMPARING AUTOMATED TEST. . 2020.

THAKKAR, Mit, 2024. Deep Learn about different types of Manual Testing. . 2024.

TIAN, Jeff, 2005. Software Quality Engineering. . 2005.

TULLIS, T. S., & ALBERT, B., 2013. Measuring the User Experience. . 2013.

VAHID GAROUSI, Mika V, 2016. When and what to automate in software testing? .

2016.

WHITTAKER, James A, 2008. Software testing techniques. . 2008.

130

8. List of Tables, Figures and Abbreviations

8.1 List of Table

Table 1: Summary of the challenges of automated GUI testing 47

Table 2: Age wise distribution of respondents .. 60

Table 3: Gender wise distribution of respondents ... 61

Table 4: Experience wise distribution of respondents ... 62

Table 5: Job role of respondents .. 63

Table 6: Industry of respondents ... 64

Table 7: Company Size ... 65

Table 8: Pearson Correlation Analysis of All Variables ... 66

Table 9: Regression Analysis of Defect Detection rate and Testing Efficiency 67

Table 10: Regression Analysis of Test Coverage and Testing Efficiency 68

Table 11: Quantitative Analysis to achieve Test Effectiveness & Efficiency. 75

Table 12: Comparative Analysis of Manual vs. Automated Software Testing 84

Table 13: Comparison of Software Testing Techniques Compatibility. 87

Table 14: Software Testing Tool Selection Criteria .. 90

Table 15: Comparison of Software Testing Tools Across Various Criteria 91

Table 16: Comparison of Time Taken. .. 108

8.2 List of Figure

Figure 1: Automated GUI Testing Architecture. .. 28

Figure 2: Design of a Study in Schematic Form. .. 58

Figure 3: Graphical representation of age wise distribution of respondents. 60

Figure 4: Graphical representation of gender wise distribution of respondents. 61

Figure 5: Graphical representation of experience wise distribution of respondents. 62

Figure 6: Graphical representation of job role of respondents. 63

Figure 7: Graphical representation of industry of respondents. 64

Figure 8: Graphical representation of company size. .. 65

Figure 9: Software Development Life Cycle. ... 77

Figure 10: Planning and Requirement Analysis Stage. ... 78

Figure 11: Defining Requirements Stage. ... 78

Figure 12: Designing Architecture Stage. ... 79

131

Figure 13: Developing Product Stage. .. 79

Figure 14: Product Testing and Integration Stage. .. 80

Figure 15: Deployment and Maintenance of Products Stage. 80

Figure 16: Software Testing Life Cycle. ... 81

Figure 17: Manual Test Case 1 ... 93

Figure 18: Manual Test Case 2 ... 94

Figure 19: Automation Script for TestBase. ... 95

Figure 20: TestNG.xml file. .. 95

Figure 21: Automation Script for Registration page. .. 97

Figure 22: Automation Script for Sign-in page. .. 98

Figure 23: Automation Script for Home page. .. 99

Figure 24: Automation script for Header-section page. .. 100

Figure 25: Automation script for Product page. .. 101

Figure 26: Automation script for Shopping-cart page. ... 102

Figure 27: Automation script for Check-out page. ... 103

Figure 28: Automation Test Execution report. .. 107

8.3 List of Abbreviations

QA: Quality Assurance

UI: User Interface

UX: User Experience

KPI’s: Key Performance Indicators

BAT: Business Acceptance Testing

SEO: Search Engine Optimization

MLR: Multivocal Literature Review

SLR: Systematic Literature Review

GUI: Graphical User interface

C&R: Capture and Replay

MBT: Model based Testing

SUT: System Under Test

ANOVA: Analysis of Variance Formula

ROI: Return On Investment

IT: Information Technology

132

SDLC: Software Development Life Cycle

CRS: Customer Requirement Specification

SRS: Software Requirement Specification

DDS: Design Document Specification

STLC: Software Testing Life Cycle Technique

UAT: User Acceptance Testing

UFT: Unified Functional Testing

QTP: Quick Test Professional

OWASP ZAP: Open-Source Web Application Security Scanner

REST API: Representational State Transfer Application Programming Interface

SOAP: Simple Object Access Protocol

XML: Extensible Markup Language

URL: Uniform Resource Locator

POM: Page Object Model

API: Application Programming Interface

TestNG: Test Next Generation

CI/CD: Continuous Integration / Continuous Deployment

ML: Machine Learning

MNCs: Multinational Corporation

DevOps: Development and Operations

AI: Artificial Intelligence

IoT: Internet of Things

133

Appendix

Questionnaire

Demographics

1. Age

• Below 25 years

• 26 to 30 years

• 31 to 35 years

• 36 to 40 years

• Above 40 years

2. Gender

• Male

• Female

3. Years of Experience

• <1 year

• 1-3 years

• 3-5 years

• 5-10 years

4. Job Role

• Test Analyst

• Manual Test Engineer

• Automation Test Engineer

• QA Manager

• Software Developer

• Test Project Manager

134

5. Industry

• Finance

• Healthcare

• Technology

• Manufacturing

• Education

6. Company Size

• Small (<50 employees)

• Medium (50-250 employees)

• Large (>250 employees)

This section consists of a structured questionnaire based on a 5-point uniform

scale. In this, 1 strongly disagree, 2 disagree, 3 neutral, 4 agree, 5 strongly agree.

Defect Detection Rate:

Statement 1 2 3 4 5

Manual testing is more

effective than automation in

detecting defects.

Automation tools can detect

defects more efficiently than

manual testing.

The defect detection rate is

higher in automated testing

compared to manual testing.

Manual testing allows for

better identification of

subtle defects compared to

automated testing.

Automated testing helps in

detecting defects across

different platforms and

configurations better than

manual testing.

135

Test Coverage:

Statement 1 2 3 4 5

Manual testing provides

better test coverage

compared to automation.

Automation tools ensure

broader test coverage than

manual testing.

The test coverage achieved

through automation is more

comprehensive than manual

testing.

Manual testing allows for

more precise targeting of

critical areas for testing

compared to automation.

Automation enhances test

coverage by executing

repetitive tests across

various scenarios.

Testing Efficiency:

Statement 1 2 3 4 5

Manual testing is more

time-consuming and less

efficient compared to

automation.

Automation tools

significantly improve the

efficiency of testing

processes.

Manual testing requires

more effort and resources

compared to automation.

Automated testing reduces

the time required for

regression testing compared

to manual methods.

Automation enables quicker

feedback on changes,

enhancing overall testing

efficiency.

136

Cost Effectiveness:

Statement 1 2 3 4 5

Manual testing is more cost-

effective than automation.

Automation tools require

substantial initial

investment but prove cost-

effective in the long term.

Manual testing incurs higher

costs due to increased

resource requirements.

Automation reduces overall

testing costs by minimizing

human involvement.

The initial cost of setting up

automation may be higher,

but it leads to cost savings

over time.

Tester Satisfaction:

Statement 1 2 3 4 5

Testers prefer manual

testing over automation.

Automation tools contribute

to higher job satisfaction

among testers.

Manual testers feel more

engaged and in control of

the testing process.

Automation reduces

mundane tasks, leading to

increased satisfaction

among testers.

Testers find automation

tools user-friendly and

enjoyable to work with.

137

Quality of Testing Documentation:

Statement 1 2 3 4 5

Manual testing results in

more thorough and detailed

documentation compared to

automation.

Automated testing generates

more consistent and

standardized testing

documentation.

Documentation quality is

compromised when using

automation tools.

Manual testers tend to

provide richer contextual

information in test

documentation.

Automation tools facilitate

easier maintenance and

updating of testing

documentation.

