
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGII
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

DEVELOPER SUPPORT TOOLS FOR
TEVENT LIBRARY

BAKALÁRSKA PRACE
BACHELOR'S THESIS

AUTOR PRÁCE DAVID KOŇAŘ
AUTHOR

BRNO 2013

VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGII
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

VYVOJARSKE NÁSTROJE KE KNIHOVNĚ TEVENT
DEVELOPER SUPPORT TOOLS FOR TEVENT LIBRARY

BAKALÁŘSKÁ PRAČE
BACHELOR'S THESIS

AUTOR PRÁCE
AUTHOR

VEDOUCÍ PRÁCE
SUPERVISOR

DAVID KONAR

Ing. JAN ZELENÝ

BRNO 2013

Abstrakt
Práce se zabývá vytvořením návodu pro knihovnou tevent. Přiblížena je samotná koncepce
knihovny a její možnosti spolu s ukázkami kódu, jak s knihovnou vhodně pracovat. Dále se
práce zabývá rozšířením pro debuggery, jež bylo současně s touto prací vytvořeno a které
umožňuje efektivnější práci s touto knihovnou. Zahrnuto je rovněž porovnání s konkurující
knihovnou libevent.

Abstract
A i m of this thesis is creation of description and tutorial for tevent library. Another goal
was developing of debugger extension which has been created along with this thesis and is
helpful for programmers working with tevent. Furthermore, there is a comparison of tevent
with competition library - libevent.

Klíčová slova
tevent, událostmi řízené programování, událost, upozornění, asynchronní programování.

Keywords
tevent, event-based, event-driven, event, notification asynchronous programming.

Citace
David Koňař: Developer Support Tools for tevent Library, bakalářská práce, Brno, FIT
V U T v Brně, 2013

Developer Support Tools for tevent Library

Statement
I hereby declare that this thesis is my own work and effort and it has not been previously
submitted for any degree. Where other sources of information have been used, they have
been acknowledged. This thesis was elaborated under the supervision of Ing. Jan Zeleny.

David Koňař
May 15, 2013

Acknowledgements
I would like to thank Ing. Jan Zelený for his guidance and mentoring. I would further like
to thank people from Red Hat for feedback.

© David Koňař, 2013.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakulté in­
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 2

2 About the Event-driven Programming Paradigm 4
2.1 Libraries for Working with Events 6
2.2 Polling Mechanisms 7

3 Tevent 9
3.1 Basic Concepts of tevent 9
3.2 Tevent Context 10
3.3 Tevent - Managing Events 13

3.3.1 File Descriptor Event 14
3.3.2 Time Event 16
3.3.3 Signal Event 18
3.3.4 Immediate Event 19

3.4 Asynchronous Computation with tevent 20
3.4.1 Creating a New Asynchronous Request 21
3.4.2 Binding a Callback to an Asynchronous Request 22
3.4.3 Accessing Private Data 23
3.4.4 Finishing a Request 24
3.4.5 Subrequests - Nested Requests 25

3.5 Queues of Events with tevent 27
3.5.1 Creation of Queues 27
3.5.2 Adding Requests to a Queue 27

4 Tevent Extension for G D B 29

4.1 Examples of Usage 30

5 Conclusion 33

A D V D contents 36

B Comparison with libevent 37
B.0.1 Benchmark Setup 38
B.0.2 Conclusion 39

1

Chapter 1

Introduction

The efficient use of processing time without any unnecessary waiting was, is and will con­
tinue to be one of programmers' most basic goals. Performing an operation while others,
previously computed, are waiting for its inputs is the key to more economical and efficient
applications. Asynchronous or so-called nonblocking programming allows other processing
to continue before an awaiting event occurs [8]. This attitude permits the execution of
other operations instead of inefficient waiting time. Such behaviour can be very useful
especially when dealing with events where time delay or waiting is expected (e.g. internet
communication, user input, etc.).

The event-based programming model represents programs driven by events which are
subsequentially handled according to the programmer's will . Such behavior is nowadays
very common and widely used, especially in GUI implementations and applications which
provide communication over the internet. While waiting for a specific event to happen, the
program runs other instructions - provides different tasks in general - and at the time when
the awaited event happens, then deals with it according to set orders. In this area such a
handler is usually called a callback function which is triggered and its purpose is to deal
with the occurred event. The callback function is set together with a request to wait for the
specific event so that a program immediately knows what to do as soon as the requested
action is noticed.

Tevent1 belongs to group of event-based libraries (libevent, libev, etc.) which deal with
asynchronous tasks. The variety of events supported by tevent library is quite extensive (e.g.
timer, signals) although in comparison to other similar libraries tevent still has potential
for further development. The differences between these libraries are mainly in their speed
of preparing handlers and processing events, and also in the range or number of "backends"
(polling calls) which are supported.

Tevent is not widely spread among projects, but it is used in the Samba project 2. So far
the documentation for it is quite restricted, which limits the use of the library by others than
the developers of Samba. I found it useful and interesting to contribute to the improvement
of the documentation and tutorial for the tevent library, whose use in such a big project
could be starting point for its further use elsewhere.

This thesis consists of five chapters and two appendices. The concept of event pro­
gramming is described in the following chapter, together with libraries that provide A P I
for working with events. The tevent library itself is introduced at the beginning of chapter

xhttp: / / tevent.samba.org/
2http://samba, org

2

http://tevent.samba.org/
http://samba

3. Furthermore, chapters 3.2, 3.3 and 3.4 take a close look at the main features of tevent
library - tevent context, event handling and asynchronous requests. A l l three chapters
are divided into several sections, dealing with individual questions and offering practical
examples of tevent usage in development.

Chapter 4 focuses on a plugin that has been created together with this thesis. The
chapter includes the plugin's installation and configuration, and examples of its usage. The
thesis is summarized and concluded in Chapter 5. Benchmark testing between tevent and
other libraries is discussed in the final Appendix B.

3

Chapter 2

About the Event-driven
Programming Paradigm

Event-based programming is a name for a programming paradigm that presents a different
attitude to program flow and input data. Programming paradigms such as imperative,
object-oriented, logic or functional are grounded on the fundamental idea that progress
within a program is predetermined, whereas programs created in the event-based program­
ming paradigm do not predict in advance the sequences that will occur. They are written
to react to events. These events (input data) in fact determine what particular task will be
performed by the program [16].

This figure shows a pattern for handling events, demonstrating the concept of working
with events.

The basic concept behind the behaviour of event-based programs can be split into just 2
parts, where both of them are essential and the first is precondition for the second.

1. event loop - waiting for and detecting events

2. event handling

The reason for using this paradigm for software development rather than another may
be seen in the possibilities which it offers. If we compare software using threads to programs
based on events, there are several considerations to bear in mind.

event generator

events

Figure 2.1: Handling of events, [6]

4

Although threads can offer the opportunity to write a code which retains the appearance
of serial programming while having the ability to utilize multiprocessor hardware, the fact
of having to deal with shared resources that need to be protected cautiously might be
a problem. As the complexity and robustness of the application rises, more and more
requirements relating to shared data and the conditions coordinating the execution of thread
must be dealt with, somehow. This is very demanding and leads to bugs in the source code.
Programming with events offers a means of preventing bugs like these that would result from
dealing with concurrency and synchronization between threads. Event-driven programming
is typical for numerous smaller callback functions with a grounding in dynamic memory
allocation [].

The reason why this programming paradigm should be used is that it provides the pos­
sibility of creating more interactive applications (nowadays widely used for GUI programs)
or less bug-prone programs, in contrast to multiprocessor programs. In fact, it is possible
to extend event-driven programming with the ability to utilize the advantages of multipro­
cessor hardware. By colouring events it is possible to recognize what can be handled in
parallel and what cannot [4] [17].

On the other hand, the implementation of this event-driven principle might lead to
unclear code. The source code can seem to be less obvious to the programmer because
of the unpredictability of the program flow and the fact that the programmer's habitual
attitudes to programming are more likely to be imperative than event-driven.

input
stream

Imperative

-5 step 1

results ^ -

stcp2

step n

häiľ

Event-Driven

while (true) {

!

handler event

event sources

event queue

state variables
results

Time x

Figure 2.2: Imperative and Event-Driven paradigm contrasted, [16]

In this thesis, the term event is used very often and it is a key term. By this term event we
mean something interesting - an action whose origin is very often outside of the program
itself, although it may also be created by another part of the program. The means of
handling the occurred event is also called the service. Events detected by the program,
which then triggers the associated service are, for example [5]:

• user input

• signals

• time events

5

• file descriptor events

In order to handle these events more easily, there are several libraries that provide abstrac­
tion over low-level programming and come with A P I for working in an event-driven style.
So far, there are not many of these libraries and their development is still very much an
active project.

2.1 Libraries for Working with Events

There are several libraries that provide A P I for catching and servicing events, which differ
in the number of developers maintaining their codes, the platforms they support, and their
performance.

Lib event

This is a library offering A P I for dealing with a wide range of events, a feature common to
all of these libraries, and additionally libevent contains a framework for buffered network
10, and support for several protocols, such as DNS, H T T P , and others. It is widely used
in applications such as Chromium, Tor, and Crawl, and the library is still in development
[13]. In comparison to other libraries, it offers broad support of different platforms. There
is a tutorial on the library website describing how to work with this library.

The project's homepage is at http://libevent.org/.

Libev

A younger library, libev is loosely inspired by libevent. Like libevent, it supports a wide
range of events but also tries to offer additional possibilities (e.g. P I D 1 watchers) and more
efficient processing. The efficiency of both libraries was last tested by a libev developer in
2011, and the results showed higher performance from libev [10] [9].

The library's website is located at http://software.schmorp.de/pkg/libev.html.

Liboop

Liboop is another library that provides a notification interface. It does not provide so broad
range of features and its supported backends are just inefficient system calls select and poll.
The last stable version was released in 2003. Although this library has not been updated
or developed for a long time, it is still present in e.g. current Ubuntu distributions where
other applications such as libruli are built on the basis of this event library.

The homepage of the library is at http://directory.fsf.org/wiki/Liboop.

Tevent

This library, which is still in development, offers all the main characteristic features of this
type of library. In comparison with libev or libevent it is clearly not so extensive and does
not offer so many features, however its great benefit is its memory management by means
of the talloc library, and the possibility of creating of nested requests.

The library's homepage is located at http://tevent.samba.org/.

1 process ID

6

http://libevent.org/
http://software.schmorp.de/pkg/libev.html
http://directory.fsf.org/wiki/Liboop
http://tevent.samba.org/

Comparison of Libraries

This brief table shows a comparison of the libraries (a deeper and more thorough look at
tevent library in contrast to libevent can be found in Appendix B) .

System calls Platform Release date Notes

libev 4.15
epoll, poll,

kqueue, select,
event ports

Linux, *BSD,
Mac OS X ,

Solaris,
Windows

01 March,
2013

More efficient
than libevent

libevent 2.0.21

poll, kqueue,
event ports,
epoll, select,

Windows
select

Linux, *BSD,
Mac OS X ,

Solaris,
Windows a

18 November,
2012

Well-known for
a long time and
widely used in

projects

liboop 1.0 select, poll
Linux, *BSD,

Mac OS X ,
Windows

27 October,
2003

Not being
developed

tevent 0.9.17
select, poll,

epoll

Linux, *BSD,
Mac OS X ,
Windows

17 August,
2012

Support of
kqueue is in

progress
a libevent offers additional features because it supports Input/Output Completion Port

(IOCP)

Table 2.1: Comparison of event notification libraries

There is also a further library, libverto, which operates abstractly above the abovementioned
libraries and offers a neutral event loop A P I for asynchronous programming interface. Pro­
grammers using this do not have to deal with specific libraries individually, but can use
unified calls and choose which library should be used specifically in the background.

2.2 Polling Mechanisms

A very significant influence on the efficiency of each library lies in the polling mechanisms
that the library supports on individual operating systems. As there are many operating
systems, it is not unexpected that several mechanisms of dealing with events have been
created. Together with a time factor that leads to the development of more efficient system
calls providing communication between the application and the operating system, there
are now also several of these mechanisms, each of them supported by different platforms.
This fact places higher demands on the cross-platform portability of event libraries while
maintaining efficient performance.

Tevent library supports several mechanisms for dealing with events, specifically: select,
poll and epoll (kqueue2 support is currently being discussed and is supported in upstream,
but no stable version with this feature has yet been introduced). In contrast to its com­
petitors, such as libevent or libev, tevent does not so far have the capacity to work with the

2http://www.freebsd.org/cgi/man.cgi?query=kqueue

7

http://www.freebsd.org/cgi/man.cgi?query=kqueue

event ports framework for Solaris nor with the kqueue mechanism which was introduced
in the FreeBSD operating system. Both epoll and kqueue provide a much more efficient
method of event notification in comparison with select or poll.

The system calls epoll and kqueue operate at 0(1) instead of the inefficient select and
poll which cause 0(n) performance. The complexity of these mechanisms is much more
evident when working with a large number of events [11] [12]. Although both of these
possibilities represent great advancement in performance, there are distinguishing features
which make their use appropriate in different cases. The advantages of kqueue compared
to epoll, disregarding a slight performance difference4 in favour of kqueuef], is its more
abstract point of view, which leads to it supporting various events connected with e.g.
signals or processes. The epoll mechanism is limited in this respect and it is not capable
of e.g. handling files stored on a disc by using one unified system call [7].

3http: / / dsc.sun.com/Solaris / articles / event_completion.html
4This benchmark was run with libevent library.

8

http://dsc.sun.com/

Chapter 3

Tevent

Tevent is a library that simplifies work with events and is based on the talloc memory
management library [15]. It offers an A P I providing not just individual event requests but
also complex nested series of interconnected asynchronous requests. It allows the user to set
freely as many time events as required, handlers for reading and writing per file descriptor,
or handlers which take care of signals. The main feature of this library is the creation of
asynchronous requests that may be nested in others. In case of need, tevent also provides
its own F I F O 1 queue, which solves the problem of needing to carry out specific operations
sequentially.

For tevent's memory needs, the talloc library is used and therefore the allocated data
are stored in a hierarchical structure that allows both easy management and the freeing of
used memory. A l l the other source code is created on the basis of the standard ANSI C
libraries.

3.1 Basic Concepts of tevent

Tevent library is built on a common concept for event-driven programming corresponding to
the scheme shown in Figure 2.1. Each of the important parts of tevent library is described
in the following chapters.

A n essential element of the tevent library is its internal structure called tevent context
(Section 3.2), which represents a root unit. At least one such context must be created, and
all events have to belong under a context.

The principle of callback execution consists of a loop that awaits events and after notic­
ing them (Section 3.3), hands them over to a callback function. According to this process,
at least one event has to be registered before the loop is started, otherwise the loop would
not be able to catch any event. Setting up other event handlers may, however, be done on
the run and nested in other handlers (there is an example that demonstrates this possibility
on the attached CD) .

The most specific and widely used part of this library is asynchronous computation,
which, if we tear the code apart, is based on events. However, the A P I that tevent has
come up with also allows us to create much more complex mechanisms (Section 3.4). The
asynchronous computation in this library is composed of so-called tevent requests which
may be set either individually or in a hierarchial structure (the term subrequest will be
further used for these nested tevent requests).

1 First In, First Out

9

The flow of the program depends on the success or failure of the requests and all the
callbacks and superior requests react based on this outcome.

Memory Management with talloc Library

Tevent uses talloc library for its memory needs. Deep knowledge of this library is not neces­
sary in order to work with tevent, but a few function calls are essential. Proper knowledge
about working with talloc will also significantly ease tasks with tevent. Usage of talloc
for other memory requirements as well, when working with tevent, is highly recommended
because it will enable easy management and deallocation all of the used memory. The fol­
lowing section introduces talloc library very briefly, covering only the humblest requirements
in order to understand how to work with talloc in cooperation with tevent.

In the next Section 3.2, the basic initialization of the absolutely essential (TALLOC.CTX)
variables is shown - this is based on the function

void* t a l l oc_new (const void * c t x)

which, in case the passed argument is NULL, allocates a parent (top-level) memory unit.
For another allocation of memory needs, calling

void* t a l l o c (const void * c t x , #type)

will be appropriate. The first argument represents a parent memory unit (in this case it
would be the pointer returned from previous ta l loc.new (. . .) call) and the second is
the type of requested memory, e.g. i n t , char , some structure, etc. The returned value
is a pointer to memory of the requested size and can be treated the very same way as an
output from m a l l o c function.

To free allocated memory, the following function is used:

i n t t a l l o c _ f r e e (v o i d *p t r)

This will free the memory pointed out by the pointer p t r and all descendant units that
were allocated b y t a l l o c (. . .) and the pointer in the first argument. Similarly, calling
t a l l o c . f ree (r o o t . c t x) at the very end of the program will lead to total memory
deallocation (if all of the memory needs were allocated within the program run and in
accordance with talloc principles).

More information about this memory system can be found in the tutorial and docu­
mentation on talloc's website http://talloc.samba.org/.

3.2 Tevent Context

Background of tevent Context

A tevent context is this library's basic logical unit for working with events. It has to be
created, initialized, and all the events have to be registered within a tevent context so they
can be caught later. Of course several tevent contexts may be created individually according
to the need to process different types of events at distinctive points in the program (within
different tevent loops).

10

http://talloc.samba.org/

The following code demonstrates initialization of tevent context which is a node within
a hierarchical memory tree managed by talloc. In this case a root node is allocated first,
so the other memory requirements (in this case only tevent context) can later become its
descendants.

Hereinafter in the examples given in this thesis such an initialization is excluded, but
it is assumed to have been performed. The absence of these lines of code in any program
would cause it to malfunction.

TALLOC_CTX *mem_ctx = t a l l o c _ n e w(NULL);
if (m e m _ c t x == NULL) {

/* error handling */
}

struct t e v e n t _ c o n t e x t *ev_ctx = t e v e n t _ c o n t e x t _ i n i t (m e m _ c t x) ;
i f (e v _ c t x == NULL) {

/* error handling */
}

Listing 3.1: tevent context initialization

As mentioned, tevent memory requirements are managed by talloc library which is a hier-
archial, reference pool system in which, if a node of allocated memory is deallocated, all
the descendants are freed altogether, automatically and with no further concern. Based on
the hierarchial structure used by talloc, a root node has to be created and all other memory
requests should be allocated as the root's descendants.

Using this system is very helpful and efficient because by deallocating a root node the
whole tree of allocated memory is freed, thereby greatly reducing the probability of memory
leak [3].

It is possible to identify several stages for the tevent context:

• Initialization is started by calling t e v e n t _ c o n t e x t _ i n i t (. . .) which launches
preparations for further operations in the back end of tevent - the library deals with the
allocation of memory via talloc and checks the availability of system calls: select, poll
or epoll. Epoll (as the most efficient of these system calls (see Section 2.2) mechanism
is usually used as a default, if it is available under current operating system).

• As soon as the first tevent context is initialized, the library is ready and it provides
simple A P I for setting up handlers. It is up to the programmer to set a file
descriptor, to set a time (scheduled or immediate), or to signal events. A description
of the particular capabilities and examples of each type of event are given in the
following chapters.

• Removing events from a tevent context is possible if they have not already been
caught and processed. In order to remove event registration with a handler, calling
simple memory deallocation of the structure representing the event in question is
sufficient. Because tevent works in cooperation with talloc, the function t a l l o c _ -
f ree (...) (mentioned in Section 3.1) will do this job.

11

Structure of tevent Context

This Figure shows the structure that is created along with requests for event handling. Each
type of event is stored separately in lists. In addition to the lists shown in the diagram, the
tevent context also contains many other data (e.g. information about the available system
mechanism for triggering callbacks) but this information is used in the library's backend
and is not affected by the program itself.

tevent_fd[0] - - tevent_fd[N-l] - tevent_fd[N]

tevent_thner[0] - - tevent_timer[NJ

tevent_sigiial[ö] - . . . - tevent_signal[N]

tevent_immediate[D] - • • • - tevent immediate[N]

other data

Figure 3.1: Tevent context structure

Once the tevent context has been initialized, it is then possible to register events to be
captured, and handlers to covering the processing. It is important to mention that if the
event were to occur at this point, the application would not catch it and therefore no callback
would be invoked. The following essential step starts the tevent loop which behaves as a
dispatcher (as shown in Figure 2.1).

Tevent Loops

Tevent loops are the dispatcher for events. They catch them and trigger the handlers. In
the case of longer processes, the program spends most of its time at this point waiting for
events, invoking handlers and waiting for another event again.

There are 2 types of loop available for use in tevent library:

• i n t t e v e n t _ l o o p _ w a i t (s t r u c t t e v e n t . c o n t e x t *ev_ctx)

• i n t t even t_ loop_once (s t r u c t t e v e n t . c o n t e x t *ev_ctx)

The only difference between these 2 functions is whether the loop will theoretically last for
ever. Calling even t_ loop_wai t (. . .) will set up waiting that will continue for as long as
there is an event registered in tevent context. It can be interrupted only by the application
crashing, by sending the appropriate signal to the program, or by internal termination of
the program. B y contrast, calling event_wai t_once (. . .) will allow just one loop, the

12

first event, complete, and then the loop will break. Examples showing the difference can
be found on the attached C D .

These functions take as their only argument the pointer to a structure t e v e n t _ -
c o n t e x t , so only those events registered within the specific context which is set in the
specific loop will be caught. Therefore, if there is no reason to distinguish various events
into different contexts, it is sufficient simply to place all the events under a single context.

The returning values indicate whether the loop was succesful (zero value), or not
(nonzero value).

3.3 Tevent - Managing Events

In the following subsections, the ability to process various types of event with callbacks
is introduced in more detail. Before this, however, it is advisable to be familiar with
several typedefs which are laid down by the library. These newly set functions are provided
by tevent in order to pass on the most important data about the relevant event in a
straightforward manner.

In tevent library, the important data which connect nodes in the hierarchical memory
system and links both required and optional information, are the aforementioned structures,
TALLOC-CTX and t e v e n t . c o n t e x t . Each of these functions features a callback for specific
event and includes, in addition, further arguments which allow more precise work with the
event. The most significant argument, included in each of these functions, is the v o i d
pointer to data, which permits the programmer to send any kind of data into the event
handler. These data are called private data.

typedef void (* t e v e n t_fd _ h a n d l e r _ t)(struct t e v e n t _ c o n t e x t *ev,
struct t e v e n t_fd * fde , u i n t l 6 _ t
f l a g s , void * p r i v a t e _ d a t a)

typedef void (* t e v e n t _ t i m e r _ h a n d l e r _ t) (struct t e v e n t _ c o n t e x t *ev,
struct t e v e n t _ t i m e r * t e ,
struct t i m e v a l
c u r r e n t _ t i m e , void
* p r i v a t e _ d a t a)

typedef void (* t e v e n t _ i m m e d i a t e _ h a n d l e r _ t)(struct t e v e n t _ c o n t e x t
*ev, struct
* t e v e n t _ i m m e d i a t e * i m ,
void * p r i v a t e _ d a t a)

typedef void (* t e v e n t _ s i g n a l _ h a n d l e r _ t) (struct t e v e n t _ c o n t e x t *ev,
struct t e v e n t _ s i g n a l *se,
i n t s ignum, i n t c o u n t ,
void * s i g i n f o , void
* p r i v a t e _ d a t a)

13

The names of the functions themselves clearly describe to what particular event each of
the functions belongs. A l l of them are presented and described more in detail in the next
part of this thesis, where each of these typedefes corresponds to the focus and title of each
subsection.

3.3.1 File Descriptor Event

Support of events on file descriptors is mainly useful for socket communication but it cer­
tainly works flawlessly with standard streams (s t d i n , s t d o u t , s t d e r r) as well. Working
asynchronously with file descriptors enables switching within processing I /O operations.
This ability may rise with a greater number of I /O operations and such overlapping leads
to enhancement of the throughput.

This is our first meeting with setting event handlers, so let us first show how to register
a handler for an event, and then introduce the arguments of the function further.

struct t e v e n t _ f d * t e v e n t _ a d d _ f d (struct t e v e n t _ c o n t e x t *ev,
TALLOC_CTX *mem_ctx, i n t f d ,
u i n t l 6 _ t f l a g s ,
t e v e n t _ f d _ h a n d l e r _ t h a n d l e r ,
void * p r i v a t e _ d a t a)

The first two arguments of this function have already been introduced in this thesis
and for now, the most important thing we must note about them is that both must not be
NULL. The first, tevent-context, is a reference to the parent element under which the file
descriptor event will be registered. This is important because the tevent loop takes as its
only argument the pointer to tevent-context and only an event within this will be caught
and handled.

The second one is a memory pointer representing a node allocated within the hierarchical
talloc memory system. In terms of memory allocation, the future file descriptor event will
be a direct descendant of mem.ctx (the freeing of mem.ctx will result in the freeing of
s t r u c t t e v e n t _ f d * too).

The third argument is an integer value representing the opened file descriptor2.
The unique argument for the tevent_add_f d (. . .) call is the fourth one - this is

not used in any other function managing events. The flag defines the type of event at the
file descriptor which we want to be notified about. It can be either reading or writing
- analogous macros are defined in the tevent library for usage: TEVENT_FD_READ and
TEVENT_FD_WRITE.

The fifth argument is similar in every function, but differs in type. This argument
represents the specific handler that will be triggered as soon as the file descriptor event
occurs.

The last, sixth, argument is common for every function that registers an event. Theoret­
ically it can be NULL, in case that event processing does not request to hand over any data
related to the event. Otherwise, this pointer refers to a variable (integer, array, structure,
etc.) that keeps data necessary for processing the event, storing temporary data, etc.

A n example of establishing a new event handler for a file descriptor where reading data
is demanded could look like this:

2 A s a precaution, it is essential that this argument is a file descriptor and not a file pointer

14

i n t run(TALLOC_CTX *mem_ctx, struct t e v e n t _ c o n t e x t * e v e n t _ c t x) {
struct t e v e n t _ f d * fd_even t = NULL;

fd_even t = t e v e n t _ a d d _ f d (e v e n t _ c t x , mem_ctx, f d ,
TEVENT_FD_READ, h a n d l e r , b u f f e r) ;

i f (f d _ e v e n t == NULL) {
/* error handling */

}

return t e v e n t _ l o o p _ o n c e () ;
}

Listing 3.2: Capturing file descriptor event

This code snippet describes the simplest usage of tevent library, which will execute a callback
handler as soon as some data is readable on a specific file descriptor (for example an opened
socket through the internet). To guarantee the feasibility of this code it is essential to
check the memory allocation for errors. At the moment when any part of the whole fails,
appropriate actions must be taken.

Of course these lines of code may be placed within a much more complex asynchronous
tevent request, as I describe more precisely in Chapter 3.4).

There are several other functions included in tevent A P I related to handling file de­
scriptors (there are too many functions defined within tevent therefore just some of them
are fully described within this thesis. The declaration of the rest can be easily found on
the library's website or directly from the source code):

• t even t_ fd_se t_c lose_fn (. . .) - can add another function to be called at the
moment when a structure t e v e n t . f d is freed.

• t e v e n t _ f d_set_auto_close (. . .) - calling this function can simplify the main­
tenance of file descriptors, because it instructs tevent to close the appropriate file
descriptor when the t e v e n t . f d structure is about to be freed.

• t e v e n t . f d_get_f l a g s (. . .) - returns flags which are set on the file descriptor
connected with this tevent_fd structure.

• t e v e n t . f d_set_f l a g s (. . .) - sets specified flags on the event's file descriptor.

As mentioned, a more elaborate example using the potential possibilities of tevent is shown
below.

s t a t i c void c l o s e _ f d (s t r u c t t e v e n t _ c o n t e x t *ev, struct t e v e n t _ f d
* fd_even t , i n t f d , void * p r i v a t e _ d a t a) {

/* processing when fd_event is freed */
}

s t a t i c void h a n d l e r(struct t e v e n t _ c o n t e x t *ev, struct t e v e n t _ f d
* fde , u i n t l 6 _ t f l a g s , void * p r i v a t e _ d a t a) {

/* handling event; reading from a f i l e descriptor */
t e v e n t _ f d _ s e t _ c l o s e _ f n (f d _ e v e n t , c l o s e _ f d) ;

}

15

i n t run(TALLOC_CTX *mem_ctx, struct t e v e n t _ c o n t e x t * e v e n t _ c t x ,
i n t f d , u i n t l 6 _ t f l a g s) {

struct t e v e n t _ f d * fd_even t = NULL;

i f (f l a g s & TEVENT_FD_READ) {
fd_even t = t e v e n t _ a d d _ f d (e v e n t _ c t x , mem_ctx, f d , f l a g s ,

h a n d l e r , b u f f e r) ;
}
i f (f d _ e v e n t == NULL) {

/* error handling */
}
return t e v e n t _ l o o p _ o n c e () ;

}

Listing 3.3: More complex example of tevent_add_f d () usage
This example register a handler for an event on file descriptor when flag is set for reading.

3.3.2 Time Event

Working with timed events is similar to working with file descriptor events. Timed events
are used when triggering a callback is required at a specific time.

Time events differ in the argument that specifies the time when the callback should be
invoked. The time value should be in the future, or at the current time. If a function needs
to be triggered at the very moment, it is worth to considering whether usage of immediate
event may be more suitable (see Section 3.3.4).

struct t e v e n t _ t i m e r * t e v e n t _ a d d _ t i m e r (struct t e v e n t _ c o n t e x t *ev,
TALLOC_CTX *mem_ctx, struct
t i m e v a l n e x t _ e v e n t ,
t e v e n t _ t i m e r _ h a n d l e r _ t
h a n d l e r , void
* p r i v a t e _ d a t a)

Tevent also defines a few more functions that help when working with timed actions. The
complete list of these is included in tevent's online documentation 3. In this thesis, only a
few of these are mentioned, described and demonstrated with examples of their usage.

Returns standard timeval 4 structure containing time value of current time.

struct t i m e v a l t e v e n t _ t i m e v a l _ c u r r e n t (void)

Returns time value in the future created by adding specified offset to current time.

struct t i m e v a l t e v e n t _ t i m e v a l _ c u r r e n t _ o f s (u i n t 3 2 _ t s ees ,
u i n t 3 2 _ t usees)

Returns time value resulting from combination of specified timeval structure and amount
of time.

3http: / / tevent.samba.org/
4http://pubs.opengroup.org/onlinepubs/000095399/basedefs/sys/time.h.html

16

http://tevent.samba.org/
http://pubs.opengroup.org/onlinepubs/000095399/basedefs/sys/time.h.html

struct t i m e v a l t e v e n t _ t i m e v a l _ a d d (const struct t i m e v a l * t v ,
u i n t 3 2 _ t s ees , u i n t 3 2 _ t usees)

Based on this, a more sophisticated example showing a cyclic event follows. The example
repeatedly triggers the handler with 2 seconds delay over one minute (callback will be
invoked thirty times).

struct f o o _ s t a t e {
struct t i m e v a l end t ime ;
Struct TALLOC_CTX * c t x ;

};

s t a t i c void foo (struct t e v e n t _ c o n t e x t *ev, struct t e v e n t _ t i m e r
* t i m , struct t i m e v a l c u r r e n t _ t i m e , void
* p r i v a t e _ d a t a) {

struct f o o _ s t a t e *da ta = t a l l o c _ g e t _ t y p e (p r i v a t e _ d a t a , struct
f o o _ s t a t e) ;

struct t e v e n t _ t i m e r * t i m e _ e v e n t ;
struct t i m e v a l s c h e d u l e ;
if (t e v e n t _ t i m e v a l _ c o m p a r e (& c u r r e n t _ t i m e , &(da t a ->end t ime)) <

0) {

s c h e d u l e = t e v e n t _ t i m e v a l _ c u r r e n t_of s (2 , 0) ;
t i m e _ e v e n t = t e v e n t _ a d d _ t i m e r (e v , d a t a - > c t x , s c h e d u l e ,

f o o , d a t a) ;
}

}

i n t run(TALLOC_CTX *mem_ctx, struct t e v e n t _ c o n t e x t * e v e n t _ c t x) {

s c h e d u l e = t e v e n t _ t i m e v a l _ c u r r e n t_of s (2 , 0) ;
foo - > e n d t i m e = t e v e n t _ t i m e v a l _ a d d (s c h e d u l e , 60, 0) ;
foo - > c t x = mem_ctx;

t i m e _ e v e n t = t e v e n t _ a d d _ t i m e r (e v e n t _ c t x , mem_ctx, s c h e d u l e ,
foo) ;

i f (t i m e _ e v e n t == NULL) {
/* error handling */

}

return t e v e n t_loop _ w a i t () ;
}

Listing 3.4: Complex example of t even t_add_t imer () usage

17

3.3.3 Signal Event

Another feature that tevent offers catching and handling signals. This is an alternative
to standard C library functions s i g n a l () or s i g a c t i o n () . The main difference that
distinguishes these ways of treating signals is their setting up of handlers for different time
intervals of the running program.

While standard C library methods for dealing with signals offer sufficient tools for most
cases, they are inadequate for handling signals within the tevent loop. It could be necessary
to finish certain tevent requests within the tevent loop without interruption. If a signal was
sent to a program at a moment when the tevent loop is in progress, a standard signal
handler would not return processing to the application at the very same place and it would
quit the tevent loop for ever. In such cases, tevent signal handlers offer the possibility of
dealing with these signals by masking them from the rest of application and not quitting
the loop, so the other events can still be processed.

Calling the function t e v e n t _ a d d _ s i g n a l (. . .) sets up a callback for the given signal
and it is quite similar to the signal events.

struct t e v e n t _ s i g n a l * t e v e n t _ a d d _ s i g n a l (struct t e v e n t _ c o n t e x t *ev,
TALLOC_CTX *mem_ctx,
i n t s ignum, i n t s a _ f l a g s ,
t e v e n t _ s i g n a l _ h a n d l e r _ t
h a n d l e r ,
void * p r i v a t e _ d a t a)

In this case, the third and fourth arguments are unique to this function. Integer s ignum
is the number of the signal (SIGINT, SIGCHILD, etc.) and integer s a . f l a g s represents
a specification for dealing with the caught signal. The values correspond with standard
s i g n a c t i o n () 5 .

A control function, which enables us to verify whether it is possible to handle signals via
tevent, is defined within tevent library and it returns a boolean value revealing the result
of the verification.

b o o l t e v e n t _ s i g n a l _ s u p p o r t (struct t e v e n t _ c o n t e x t *ev)

Checking for signal support is not necessary, but if it is not guaranteed, this is a good and
easy control to prevent unexpected behaviour or failure of the program occurring. Such a
test of course does not have to be run every single time you wish to create a signal handler,
but simply at the beginning - during the initialization procedures of the program. After
that, simply adapt to each situation that arises.

s t a t i c void h a n d l e r (struct t e v e n t _ c o n t e x t *ev,
struct t e v e n t _ s i g n a l *se , i n t s ignum,
i n t c o u n t , void * s i g i n f o ,
void * p r i v a t e _ d a t a) {

/* processing event */
}

http://linux.die. net / man/2 / sigaction

18

http://linux.die

i n t run(TALLOC_CTX *mem_ctx, struct t e v e n t _ c o n t e x t * e v e n t _ c t x) {

i f (t e v e n t _ s i g n a l _ s u p p o r t (e v e n t _ c t x)) {
t e v e n t _ s i g = t e v e n t _ a d d _ s i g n a l (e v e n t _ c t x , mem_ctx,

SIGINT, 0, h a n d l e r , NULL);

i f (t e v e n t _ s i g == NULL) {
/* error handling */

}
} e lse {

/* a l t e r n a t i v e signal handling */
}
return t e v e n t _ l o o p _ o n c e () ;

}

Listing 3.5: Complex example of handling signals

3.3.4 Immediate Event

These events are, as their name indicates, activated and performed immediately. It means
that this kind of events have priority over others (except signal events). So if there is a bulk
of events registered and after that a tevent loop is launched, then all the immediate events
will be triggered before the other events. This also implies that if such an immediate event
occurs within another's event handler, this immediate event will be triggered with priority
over all the others events (if any) registered in the tevent-contex except other immediate
events and signal events.

Immediate events, according to the diagram of tevent context - Figure 3.1 on page 12,
are stored in a queue and processed sequentially. Therefore the expression immediate may
not correspond exactly to the dictionary definition of something without delay6 but rather
as soon as possible after all preceding immediate events.

In order to establish a new immediate event, 2 functions have to be called, where the
first one must not return NULL. The return value of the first function is passed as the first
argument of the second function.
struct t e v e n t _ i m m e d i a t e * t e v e n t _ c r e a t e _ i m m e d i a t e (TALLOC_CTX

*mem_ctx)

void t e v e n t _ s c h e d u l e _ i m m e d i a t e (struct t e v e n t _ i m m e d i a t e *im,
struct t e v e n t _ c o n t e x t * c t x ,
t e v e n t _ i m m e d i a t e _ h a n d l e r _ t h a n d l e r ,
void * p r i v a t e _ d a t a)

This table clearly shows the priority between different types of events so as to clarify the
order of their handling.

6according Longman Dictionary of Contemporary English 5th Edition

19

Time ID Function Note
1 t even t_c rea t e_ immed ia t e ()
2 tevent_add_f d ()
3 t even t_c rea t e_ immed ia t e ()

X 4 teven t_add_t imer () sets event for current time x
x+k 5 t even t_c rea t e_ immed ia t e ()
x+l - t e v e n t _ l o o p _ w a i t ()

x+m 1 immediate event
x+n 3 immediate event

5 immediate event
4 time event
2 file descriptor event

Table 3.1: Priority of handling different types of events.

To prevent confusion between functions, each of the events created was given a unique ID
in the table so that the steps taken after the tevent loop in processing each event is evident.

If a signal was caught at any time after the tevent loop had started it would be handled
as the next event.

3.4 Asynchronous Computation with tevent

A specific feature of the library is the tevent request A P I that provides for asynchronous
computation and allows much more interconnected working and cooperation among func­
tions and events. When working with tevent request it is possible to nest one event under
another and handle them bit by bit. This enables the creation of sequences of steps, and
provides an opportunity to prepare for all problems which may unexpectedly happen within
the different phases. One way or another, subrequests split bigger tasks into smaller ones
which allow a clearer view of each task as a whole.

Understanding this part of the tevent library is somewhat more demanding to begin
with than the material covered in the previous chapters concerning hanging a callback for
a specific event. Dealing with tevent request structures and functions leads to much more
puzzling behaviour in the program. It is not possible to look at code in the same way as we
would in an imperative paradigm where the flow is sequential and quite easily predictable.

Because of the minimal usage of this library among developers, there is so far only one
convention for writing source code within this library. This convention is based on specific
naming of functions, with each containing code relating to its naming. Special naming
includes not just titles for functions but also for the private data structures (usually) which
are used for the storage of information required for each of the subrequests. The naming
is based upon suffixes which differ for each of the functions, while the rest of the name is
identical for all.

This thesis maintains these customs and an example of naming is shown here with
the exemplary function foo () (further in this Chapter the creation of nested requests is
described). It is possible to distinguish functions and variables based on time when they
are performed:

20

• Functions triggered before the event happens. These establish a request.

— f o o _ s e n d (. . .) - this function is called first and it includes the creation of
a tevent request - tevent-req structure (described in Section 3.4.1). It does not
block anything, it simply creates a request, sets a callback (foo.done) and lets
the program continue

• Functions as a result of event.

— f oo.done (. . .) - this function contains code providing for handling itself and
based upon its results, the request is set either as a done or, if an error occurs,
the request is set as a failure (see Section 3.4.4).

— f oo.recv (. . .) - this function contains code which should, if demanded, ac­
cess the result data and make them further visible. The f oo_s t a t e should be
deallocated from memory when the request's processing is over and therefore
all computed data up to this point would be lost. The principle for accessing
data stored within t e v e n t.req structures or as private data for callbacks is
presented in Section 3.4.3.

As was already mentioned, specific naming subsumes not only functions but also the data
themselves:

• foo _ s t a t e - this is a structure. It contains all the data necessary for the asyn­
chronous task.

Naming functions according to this pattern is not obligatory but is highly recommended
and it is considered good practice. The structure and lucidity of the source code become
much more evident when this naming is introduced, and it helps with maintenance or future
modification when it is clear that e.g. stealing of context^ or handing over some data to
another location has been carried out within one function.

3.4.1 Creating a New Asynchronous Request

The first step for working asynchronously is the allocation of memory requirements. As in
previous cases, the talloc context is required, upon which the asynchronous request will be
tied. The next step is the creation of the request itself.

struct t e v e n t_req* t e v e n t_req _ c r e a t e (TALLOC_CTX *mem_ctx,
void * * p s t a t e , #type)

The p s t a t e is the pointer to the private data. The necessary amount of memory (based
on data type) is allocated during this call. Within this same memory area all the data
from the asynchronous request that need to be preserved for some time should be kept.

7Talloc's capacity to take over data within the hierarchical structure from a parent and assign them to
another. This technique is described in the thesis concerning talloc [] as well as in talloc documentation
[14].

21

Dealing with a lack of memory

The verification of the returned pointer against NULL is necessary in order to identify a
potential lack of memory. There is a special function which helps with this check.

b o o l tevent_req_nomem (const void *p, struct t e v e n t _ r e q *req)

It handles verification both of the talloc memory allocation and of the associated tevent
request, and is therefore a very useful function for avoiding unexpected situations. It can
easily be used when checking the availability of further memory resources that are required
for a tevent request. Imagine an example where additional memory needs arise although
no memory resources are currently available.

b a r = t a l l o c (m e m _ c t x , struct foo) ;
i f (tevent_req_nomem (bar , r eq)) {

/* handling a problem */
}

Listing 3.6: Checking process of memory allocation.

This code ensures that the variable bar , which contains NULL as a result of the unsuccessful
satisfaction of its memory requirements, is noticed, and also that the tevent request r e q
declares it exceeds memory capacity, which implies the impossibility of finishing the request
as originally programmed.

3.4.2 Binding a Callback to an Asynchronous Request

Callback is a function triggered after the event it is bound to has occurred. It is necessary
to prepare for dealing with this request in any situation (with or without any errors) and
to pay good attention to setting the request either as a success or as a failure, otherwise
the callback will never be triggered at all.

The connection of a request to a specific callback function, usually while also adding
some private data by pointer, is simple.

void t e v e n t _ r e q _ s e t _ c a l l b a c k (struct t e v e n t _ r e q * r e q ,
t e v e n t _ r e q _ f n f n , void *data)

The pointer d a t a in this example is usually a pointer to •private data - a structure containing
some data, but it can also be a pointer to another t e v e n t _ r e q structure, through which
it is possible to access information allocated at the moment of the request's creation.

It is very important to create both callback and also functions that are able to deal with
various scenarios which may happen with a request.

• no error - take the action that was originally planned

• request timeout - the handler that was set to deal with the event at first will not
be triggered after all, but the callback will be. Tevent may in fact take the callback
triggering action twice - once, at the moment when the request was set as completed
or failed, and then again when a timeout interval is reached. It is good to be aware
of and prepared for this.

• error - handle the error and if necessary, hand the indication of error further.

22

3.4.3 Accessing Private Data

A tevent request is (usually) created together with a structure for storing the data necessary
for an asynchronous computation. For these private data, tevent library uses void (generic)
pointers, therefore any data type can be very simply pointed at. However, this attitude
requires clear and guaranteed knowledge of the data type that will be handled, in advance.
Private data can be of 2 types: connected with a request itself or given as an individual
argument to a callback. It is necessary to differentiate these types, because there is a
slightly different method of data access for each.

There are two possibilities how to access data that is given as an argument directly to a
callback. The difference lies in the pointer that is returned. In one case it is the data type
specified in the function's argument, in another v o i d * is returned.

void* t e v e n t _ r e q _ c a l l b a c k _ d a t a (struct t e v e n t _ r e q * r e q , #type)
void* t e v e n t _ r e q _ c a l l b a c k _ d a t a _ v o i d (struct t e v e n t _ r e q *req)

To obtain data that are strictly bound to a request, this function is the only direct procedure,

void * t e v e n t _ r e q _ d a t a (struct t e v e n t _ r e q * r e q , #type)

As you can see in the next example, the difference between functions returning pointers to
private data of the callback function, lies in their explicit conversion of the data.

struct f o o _ s t a t e {
i n t x ;

};

struct t e s t {
i n t y ;

};

s t a t i c void foo _ d o n e(struct t e v e n t _ r e q *req) {
// a->x contains 9

struct f o o _ s t a t e *a = t e v e n t _ r e q _ d a t a (r e q , struct f o o _ s t a t e) ;

// b->x contains 10
struct t e s t *b = t e v e n t _ r e q _ c a l l b a c k _ d a t a (r e q , struct

t e s t) ;

/ / c->x contains 10
struct t e s t *c = (struct t e s t *)

t e v e n t _ r e q _ c a l l b a c k _ d a t a _ v o i d (r e q) ;
}
struct t e v e n t _ r e q *foo_send(TALLOC_CTX *mem_ctx,

struct t e v e n t _ c o n t e x t * e v e n t _ c t x ,
• • •) {

struct f o o _ s t a t e * s t a t e ;
struct t e v e n t _ r e q * r e q ;

23

r e q = t e v e n t _ r e q _ c r e a t e (m e m _ c t x , S s t a t e , struct f o o _ s t a t e) ;
s t a t e - > x = 10
/ * * /

}

void run(TALLOC_CTX *mem_ctx, struct t e v e n t _ c o n t e x t * e v e n t _ c t x) {
struct t e s t *tmp = t a l l o c (m e m _ c t x , struct t e s t) ;
tmp->y = 9;
r e q = foo_send(mem_c tx , e v e n t _ c t x , . . .)
/ * * /
t e v e n t _ r e q _ s e t _ c a l l b a c k (r e q , foo_ d o n e , tmp) ;

}

Listing 3.7: Getting private data through generic pointers

3.4.4 Finishing a Request

Marking each request as finished is an essential principle of the tevent library. Without
marking the request as completed - either successfully or with an error - the tevent loop
could not let the appropriate callback be triggered. It is important to understand that this
would be a significant threat, because it is not usually a question of one single function
which prints some text on a screen, but rather the request is itself probably just a link in
a series of other requests. Stopping one request would stop the others, memory resources
would not be freed, file descriptors might remain open, communication via socket could be
interrupted, and so on. Therefore it is important to think about finishing requests, either
successfully or not, and also to prepare functions for all possible scenarios, so that the the
callbacks do not process data that are actually invalid or, even worse, in fact non-existent
meaning that a segmentation fault may arise.

Manually

This is the most common type of finishing request. Calling this function sets the request
as a TEVENT_REQ_DONE. This is the only purpose of this function and it should be used
when everything went well. Typically it is used within the -done functions (for a reminder
of the naming conventions, see Section 3.4).

void t e v e n t _ r e q _ d o n e (struct t e v e n t _ r e q *req)

Alternatively, the request can end up being unsuccessful.
b o o l t e v e n t _ r e q _ e r r o r (struct t e v e n t _ r e q * r e q , u i n t 6 4 _ t e r r o r)

The second argument takes the number of an error (declared by the programmer, for exam­
ple in an enumerated variable). The function t e v e n t _ r e q _ e r r o r (. . .) sets the status
of the request as a TEVENT_REQ_USER_ERROR and also stores the code of error within the
structure so it can be used, for example for debugging. The function returns true, if mark­
ing the request as an error was processed with no problem - value e r r o r passed to this
function is not equal to 1.

24

Setting up a timeout for request

A request can be finished virtually, or if the process takes too much time, it can be timed
out. This is considered as an error of the request and it leads to calling callback.

In the background, this timeout is set through a time event (described in Section 3.3.2)
which eventually triggers an operation marking the request as a TEVENT_REQ_TIMED_OUT
(can not be considered as successfully finished). In case a time out was already set, this
operation will overwrite it with a new time value (so the timeout may be lengthened) and
if everything is set properly, it returns true.

b o o l t e v e n t _ r e q _ s e t _ e n d t i m e (struct t e v e n t _ r e q * r e q ,
struct t e v e n t _ c o n t e x t *ev,
struct t i m e v a l endtime)

Premature Triggering

Imagine a situation in which some part of a nested subrequest ended up with a failure and
it is still required to trigger a callback. Such as example might result from lack of memory
leading to the impossibility of allocating enough memory requirements for the event to
start processing another subrequest, or from a clear intention to skip other procedures and
trigger the callback regardless of other progress. In these cases, the function t e v e n t _ -
r e q . p o s t (. . .) is very handy and offers this option.

struct t e v e n t _ r e q * t e v e n t _ r e q _ p o s t (struct t e v e n t _ r e q * r e q ,
struct t e v e n t _ c o n t e x t *ev)

A request finished in this way does not behave as a time event nor as a file descriptor
event but as a immediately scheduled event, and therefore it will be treated according the
description laid down in Section 3.3.4.

3.4.5 Subrequests - Nested Requests

To create more complex and interconnected asynchronous operations, it is possible to
submerge a request into another and thus create a so-called subrequest. Subrequests are
not represented by any other special structure but they are created from teven t_ req_-
c r e a t e (. . .) . This diagram shows the nesting and life time of each request. The table
below describes the same in words, and shows the triggering of functions during the appli­
cation run.

Wrapper represents the trigger of the whole cascade of (sub)requests. It may be e.g. a
time or file descriptor event, or another request that was created at a specific time by the
function tevent_wakeup_send (. . .) which is a slightly exceptional method of creating
tevent requests.

struct t e v e n t _ r e q * teven t_wakeup_send (TALLOC_CTX *mem_ctx, struct
t e v e n t _ c o n t e x t *ev, struct
t i m e v a l wakeup_time)

25

By calling this function, it is possible to create a tevent request which is actually the return
value of this function. In summary, it sets the time value of the tevent request's creation.
While using this function it is necessary to use another function in the subrequest's callback
to check for any problems tevent_wakeup_recv (t e v e n t . r e q *req))

[mn(...)
setfoo_done callback

[foo_seii(1(...))—

create rl
set bar done callback \ bai_send(...) \-

create r2
set test done callback

1 test_seiid(...)
create r3

| te ventlo op_wait(,..)

wrapper(...)
sets rS as done

[test_<lone(...) \
sets r2 as done 1

| bar_(loiie(...) \-
sets rl as done

foo_seiid(...)]
foo_recv(...)

Figure 3.2: Handling of events,

Time Function Action
run () set foo_done() callback

f oo . send () rl is created; set bar .done () callback
b a r . s e n d () r2 is created; set t e s t - d o n e () callback

t e s t _ s e n d () r3 is created
X t e v e n t _ l o o p _ w a i t () -

x+m wrappe r () r3 is set as done
x+n t e s t_done() r2 is set as done; t e s t . r e c v ()
x+o bar .done () rl is set as done; ba r_ recv ()
x+p f oo.done () foo_recv()

Table 3.2: Sequence of triggering of functions during application run

The functions with the suffix _recv are optional and so as not to make the table unneces­
sarily big, these have been placed into the column of actions.

Aforementioned information about subrequests might seem to be a bit complicated with
no real example within this thesis. Comprehensive example containing features from the
Section 3.4 is especially by reason of nested subrequests very long and therefore it is located
as an example on the attached C D . Description and explanation is placed within the source
code itself (s u b r e q u e s t . c) and enclosed file README.

26

3.5 Queues of Events with tevent

There is a possibility that the dispatcher and its handlers may not be able to handle all
the incoming events as quickly as they arrive. One way to deal with this situation is to
buffer the received events by introducing an event queue into the events stream, between
the events generator and the dispatcher. Events are added to the queue as they arrive, and
the dispatcher pops them off the beginning of the queue as fast as possible [6].

In tevent library it is similar, but the queue is not automatically set for any event. The
queue has to be created on purpose, and events which should follow the order of the FIFO
queue have to be explicitly pinpointed. Creating such a queue is crucial in situations when
sequential processing is absolutely essential for the succesful completion of a task, e.g. for
a large quantity of data that are about to be written from a buffer into a socket.

The tevent library has its own queue structure that is ready to use after it has been
initialized and started up once.

3.5.1 Creation of Queues

The first and most important step is the creation of the tevent queue (represented by
s t r u c t tevent.queue), which will then be in running mode.

struct t e v e n t_queue* t e v e n t_queue_ c r e a t e (TALLOC_CTX *mem_ctx,
const char *name)

When the program returns from this function, the allocated memory, set destructor and
labeled queue as running has been done and the structure is ready to be filled with entries.

Stopping and starting queues on the run

If you need to stop a queue from processing its entries, and then turn it on again, a couple
of functions which serve this purpose are:

• b o o l t even t_queue_s top (s t r u c t t even t.queue *q)

• b o o l t e v e n t_queue_ s t a r t (s t r u c t t even t.queue *q)
These functions actually only provide for the simple setting of a variable, which indicates
that the queue has been stopped/started. Returned value indicates result.

3.5.2 Adding Requests to a Queue

Tevent in fact offers 3 possible ways of inserting a request into a queue. There are no vast
differences between them, but still there might be situations where one of them is more
suitable and desired than another.

W i t h No Further Possibility of Management

b o o l t e v e n t_queue _ a d d(struct t e v e n t_queue *queue, struct
t e v e n t _ c o n t e x t *ev, struct t e v e n t _ r e q * r e q ,
t e v e n t _ q u e u e _ t r i g g e r _ f n _ t t r i g g e r , void
* p r i v a t e _ d a t a)

27

This call is the simplest of all three. It offers only boolean verification of whether the op­
eration of adding the request into a queue was successful or not. No additional deletion of
an item from the queue is possible, i.e. it is only possible to deallocate the whole tevent
request, which would cause triggering of destructor handling and also dropping the request
from the queue.

Extended Options

Both of the following functions have a feature in common - they return tevent_queue_-
e n t r y structure representing the item in a queue. There is no further possible handling
with this structure except the use of the structure's pointer for its deallocation (which
leads also its removal from the queue). The difference lies in the possibility that with the
following functions it is possible to remove the tevent request from a queue without its
deallocation. The previous function can only deallocate the tevent request as it was from
memory, and thereby logically cause its removal from the queue as well.

There is no other utilization of this structure via A P I at this stage of tevent library.
The possibility of easier debugging while developing with tevent could be considered to be
an advantage of this returned pointer.

struct t e v e n t_queue_ e n t r y *
t e v e n t_queue _ a d d _ e n t r y(struct t e v e n t_queue *queue, struct

t e v e n t _ c o n t e x t *ev, struct t e v e n t_req * r e q ,
t e v e n t_queue _ t r i g g e r _ f n _ t t r i g g e r , void
* p r i v a t e _ d a t a)

The feature that allows for the optimized addition of entries to a queue is that a check for
an empty queue with no items is first of all carried out. If it is found that the queue is
empty, then the request for inserting the entry into a queue will be omitted and directly
triggered.

struct t e v e n t_queue_ e n t r y *
t e v e n t_queue_ a d d _ o p t i m i z e _ e m p t y(struct t e v e n t_queue *queue, struct

t e v e n t _ c o n t e x t *ev, struct
t e v e n t_req * r e q ,
t e v e n t_queue _ t r i g g e r _ f n _ t t r i g g e r ,
void * p r i v a t e _ d a t a)

When calling any of the functions serving for inserting an item into a queue, it is possible
to leave out the fourth argument (t r i g g e r) and instead of a function pass a NULL pointer.
This usage sets so-called blocking entries. These entries, since they do not have any trigger
operation to be activated, just sit in their position until they are labeled as a done by
another function. Their purpose is to block other items in the queue from being triggered.

28

Chapter 4

Tevent Extension for GDB

To improve development with tevent, an extension for gdb was created as a part of this
thesis. A script extension written in Python was designed to fulfill basic debugging needs
when programming with tevent. Features that are implemented in the plug-in were dis­
cussed with Red Hat developers and based on their requests []. The reason for choosing
the extension for gdb is its widespread familiarity among developers and the fact that it
is one of the most common debugging tools. The plugin was also tested and works with
graphical front-end ddd.

The plugin's main features are described here together with the outputs of the debugger,
but for deeper knowledge it is recommended to look at the source code of the plug-in directly.
The source code of the extension is available on the C D attached to this thesis, or on the
internet.

This plug-in was developed and tested on G D B 7.4 and Python 2.7.3.

Extension usage
At first the plug-in must to be loaded into gdb. This can be done in two different ways:
temporary or constant. The advantage of constant loading is that this extension will then
be automatically loaded by G D B whenever the debugger is launched. To do so, you must
first create a file . g d b i n i t into your home directory - ~ / . g d b i n i t (if it does not already
exist). Then add a line s o u r c e / < p a t h - t o - f i l e > / t e v e n t - g d b - e x t e n s i o n . py into
the file to tell the debugger to load this script at startup.

The command required to load the Python extension just once should be entered directly
within the debugger:
(gdb) source t e v e n t - g d b - e x t e n s i o n . p y

Listing 4.1: Including G D B plug-in

Compatibility issues

This extension was tested on different operating systems (Fedora 13, CentOS 5.8, Ubuntu
12.04 LTS and others), distinguish Python (2.x.x) and G D B versions and configurations.
This testing revealed different compatibility issues which forced to create two versions of
tevent extension. Both of them are placed in appropriate folder on the medium. Lighter ver­
sion brings the compatibility of more platforms but it is a bit limited in its capabilities. Two
functions (t e v e n t - s e t - b r e a k p o i n t - c a l l b a c k and t e v e n t - s e t - b r e a k p o i n t) were
excluded.

29

Features of the Extension

After loading the plug-in, the only thing required for its usage is to type specific command.
A list of the commands and features which are currently supported in the plug-in follows:

• t e v e n t - a w a i t i n g - r e q u e s t s-num ev - shows the number of events waiting to
be done in the future. The output is separated into 4 categories (file descriptors,
signals, timer and immediate events).

• t e v e n t - r e q - s t a t u s req - prints the status of the given tevent request.

• t e v e n t - s e t - b r e a k p o i n t - c a l l b a c k - sets a breakpoint for every attempt to set
up a callback for a tevent request.

• t e v e n t - s e t - b r e a k p o i n t function - sets breakpoint(s) for a given function.
The symbol '*' (asterisk) may be used as a substitution for any string.

• t e v e n t - r e q - c a l l b a c k req - shows what callback (if any) is set to a given tevent
request.

• t e v e n t - t a l l o c - p a r e n t item - shows the parent in talloc hierarchial memory for
a given variable.

• t e v e n t - q u e u e-inf o q - prints information about a queue and its inserted entries.

4.1 Examples of Usage
To present the capabilities of the extension more thoroughly, a quick overview of all the
opportunities for working with the extension, with exemplary inputs and output from the
gdb extension follows.

To acquiant yourself with this extension it is recommended to try its usage with the
examples attached on the C D at first to see how tevent works.

Number of Awaiting Events

A tevent-context is accepted as the only valid argument. This feature will show up the
number of events that are ready to be handled, sorted into groups. As well as the basic
number of events, this feature also displays the tevent structure relative to each event.

(gdb) t e v e n t - a w a i t i n g - e v e n t s e v e n t _ c t x
t i m e r _ e v e n t s : 1 (0x804b20)
i m m e d i a t e _ e v e n t s : 0
s i g n a l _ e v e n t s : 3 (0x804b5a0, 0x804b5e4, 0x804b610)
fd _ e v e n t s : 2 (0x804b340, 0x804b2d8)

30

Status of a Request

This function discovers whether a request completed successfully or ended up with an error
status. It allows as its argument not only the name of a request but also an address in
hexadecimal form that points to the allocated memory for the request.

(gdb) t e v e n t - r e q - s t a t u s 0x804c3c8
S t a t u s : TEVENT_REQ_IN_PROGRESS

If the address or name is invalid, the extension notifies of this appropriately in the output.

(gdb) t e v e n t - r e q - s t a t u s 0x804c3aa
E r r o r o c c u r r e d ! A r e you su re t h a t ' 0 x 8 0 4 c 3 a a ' i s t he r i g h t

a d d r e s s o f t he t e v e n t _ r e q s t r u c t u r e ?

Watching for Callback Setup

This call will inform you and break the application every time an attempt to set a callback
(via function t e v e n t _ r e q _ s e t _ c a l l b a c k ()) to a request is about to happen.

(gdb) t e v e n t - s e t - b r e a k p o i n t - c a l l b a c k
B r e a k p o i n t 1 a t 0x8048a30

Setting up Breakpoint for Specific Function(s)

This allows you to simply set up callback for a whole series of the functions, e.g. f o rward_-
send, forward-done and f o r w a r d . r e c v by using an asterisk which masks, as usual, any
sequence of characters.

(gdb) t e v e n t - s e t - b r e a k p o i n t f o r w a r d _ *
B r e a k p o i n t 1 a t 0x8048a30: f i l e c l i e n t . c , l i n e 330 .
s t a t i c v o i d f o r w a r d _ s e n d (TALLOC_CTX *, s t r u c t t e v e n t _ c o n t e x t *,
c h a r *) ;
B r e a k p o i n t 2 a t 0x254a f40 : f i l e c l i e n t . c , l i n e 382 .
s t a t i c v o i d forward_done (s t r u c t t e v e n t _ r e q *) ;
B r e a k p o i n t 2 a t 0x8049010: f i l e c l i e n t . c , l i n e 450.
s t a t i c v o i d forward_done (s t r u c t t e v e n t _ r e q * , i n t *) ;

Showing Request's Callback

Usage of following extension displays whether a callback has been set for a specific request.
If it has, the name of the function that is called as a callback is printed to standard output.

(gdb) t e v e n t - r e q - c a l l b a c k p r e q
No c a l l b a c k was s e t t o t h e r e q u e s t .

(gdb) t e v e n t - r e q - c a l l b a c k s u b r e q
C a l l b a c k f u n c t i o n f o r t he r e q u e s t i s : ' c o n n e c t _ d o n e '

31

Showing the Parent Node in talloc

This finds a parent node within the talloc memory tree. If such a node has a name it prints
it. Naming nodes is optional in talloc and therefore a situation could occur when the parent
node does not have a name. In this case, the data type and address where is stored will be
displayed.

(gdb) t e v e n t - t a l l o c - p a r e n t e v e n t _ c t x
T a l l o c p a r e n t i s : ' r o o t ' at address 0x8049970

Showing Information About a Queue

After creation of a tevent queue it is possible to display information about it - the name
of the queue, its status (whether it is running or stopped) and its length, together with
addresses for each of the elements stored in the queue.

(gdb) t e v e n t - q u e u e - i n f o q
Name o f t h e queue: ' t e s t '
S t a t u s : IS RUNNING
Length: 2
Nod e (s) : 0x804c880, 0x804c8d8

32

Chapter 5

Conclusion

This thesis has acquainted readers with the concept of the event-based programming paradigm,
its advantages and disadvantages, and has introduced several libraries that support pro­
gramming with events, as well as pointing out their capabilities.

A presentation and investigation of the tevent library with a description of its capabil­
ities followed. A lot of attention was paid both to the single event approach, and to the
principle of creating nested subrequests. The question of subrequests is a major interest­
ing feature of tevent library and is among others widely used in projects Samba and SSSD.
These features of the library were not previously satisfactorily documented and I am pleased
to make tevent more accessible for others who might start working with it. Improvement
of official documentation on project homepage is being discussed with developers.

At the end of thesis, an extension for G D B debugger was introduced. This plugin was
created to facilitate work with tevent library by fulfilling developers' suggestions gathered
from the open mailing-list of the SSSD project.

Finally, benchmark testing of libraries libevent and libev with tevent was presented.
This comparison has demonstrated the performance of tevent library in contrast to the
more widely used and long-term-developed libraries.

33

Bibliography

[1] [SSSD] [tevent] G D B extension for tevent library [online], h t t p s : / / l i s t s .
f e d o r a h o s t e d . o r g / p i p e r m a i l / s s s d - d e v e l / 2 013-March/0138 0 9.html.

[2] What's the difference between libev and libevent? [online].
h t t p : / / s t a c k o v e r f l o w . c o m / q u e s t i o n s / 9 4 3 3 8 64/
w h a t s - t h e - d i f f e r e n c e - b e t w e e n - l i b e v - a n d - l i b e v e n t .

[3] Bfezina, Pavel. Talloc - a hierarchical memory allocator, spring 2012.

[4] Frank Dabek, Nickolai Zeldovich, Franks Kaashoek, David Mazieres, and Robert
Morris. Event-driven programming for robust software. In Proceedings of the 2002
SIGOPS European Workshop, Saint-Emilion, France, September 2002.

[5] Dickson K . W. Chiu and Wesley C. W. Chan and Gary K . W. Lam and S. C. Cheung
and Franklin T. Luk. A n event driven approach to customer relationship
management in an e-brokerage environment. In 36th Hawaii International
Conference on System Sciences (HICSS36), page 10, 2003.

[6] Ferg, Stephen. Event-Driven Programming: Introduction, Tutorial, History [online].
h t t p : / / h e a n e t . d l . s o u r c e f o r g e . n e t / p r o j e c t / e v e n t d r i v e n p g m / e v e n t _
driven_programming.pdf, 2008/02/08. (visited on 10/11/2012).

[7] Han, Sangjin. Scalable event multiplexing: epoll vs. kqueue [online], http://www.
e e c s . b e r k e l e y . e d u / ~ sangj i n / 2 012/12/21/epoll-vs-kqueue.html.

[8] Hansen, Stuart and Timothy V . Fossum. Event Driven Programming [online].
http://www.cs.uwp.edu/staff/hansen/EventsWWW/Text/Events.ps,
2011.

[9] Lehmann, Marc. Benchmarking libevent against libev [online].
h t t p : / / l i b e v . s c h m o r p . d e / b e n c h . h t m l .

[10] Lehmann, Marc. Libev [online].
h t t p : / / s o f t w a r e . s c h m o r p . d e / p k g / l i b e v . h t m l .

[11] Lemon, Jonathan. Kqueue: A generic and scalable event notification facility [online].
h t t p : / / p e o p l e . f r e e b s d . o r g / j l e m o n / p a p e r s / k q u e u e _ f r e e n i x . p d f ,
2000.

[12] Maharjan, Pasa. Comparing and Measuring Network Event Dispatch Mechanisms in
Virtual Hosts [online], h t t p : / / d s p a c e . c c . t u t . f i / d p u b / b i t s t r e a m /
handle/12345 67 8 9/21143/maharjan.pdf , 2011.

34

http://stackoverflow.com/questions/94338
http://heanet.dl.sourceforge.net/project/eventdrivenpgm/event_
http://www
http://www.cs.uwp.edu/staff/hansen/EventsWWW/Text/Events.ps
http://libev.schmorp.de/bench.html
http://software.schmorp.de/pkg/libev.html
http://people.freebsd.org/jlemon/papers/kqueue_freenix.pdf
http://dspace.cc.tut.fi/dpub/bitstream/

[13] Mathewson Nick and Provos, Niels. Libevent - an event notification library [online].

h t t p : / / l i b e v e n t . o r g / .

[14] Samba. Talloc documentation [online], h t t p : / / t a l l o c . s a m b a . o r g .

[15] Samba. Tevent documentation [online].
h t t p : / / t e v e n t . s a m b a . o r g / i n d e x . h t m l .

[16] Tucker, A . B . and Noonan, R. Programming languages: principles and paradigms.
McGraw-Hill , 2002.

[17] Nickolai Zeldovich, Alexander Y ip , Frank Dabek, Robert Morris, David Mazieres,
and Frans Kaashoek. Multiprocessor support for event-driven programs. In
Proceedings of the 2003 USENIX Annual Technical Conference (USENIX '03), San
Antonio, Texas, June 2003.

35

http://libevent.org/
http://talloc.samba.org
http://tevent.samba.org/index.html

Appendix A

DVD contents

• benchmark/ - performance results

• examples / - source codes describing usage of tevent.

• e x t e n s i o n / - G D B extension

• t h e s i s / - contains this document and WF^K. source codes of this bachelor thesis

36

Appendix B

Comparison with libevent

A brief introduction to libraries that work with events was presented in Section 2.1 where
a summary table comparing all the libraries in terms of their OS support and polling
mechanisms was provided. The information presented in this appendix will focus on a more
detailed comparison of libevent and tevent, for which not only their supported platforms
and features will be examined. In the graphs and comparisons the libev library is also
included, to show the performance differences that result from libev optimization. For a
more complex overview the brief introduction should also be read.

Just to summarize, all three libraries (libevent, libev and tevent) support high perfor­
mance epoll and are capable of running on Unix type systems, Mac OS X , *BSD, Windows.
Tevent does not yet officially support the kqueue mechanism, but this is about to changed.
Once tevent introduces kqueue support, all three libraries will also be equivalent concerning
the operating system Solaris. The main difference that makes libevent more efficient on
Windows platform is its ability to work with IOCP (Input/output completion port), which
offers more throughput for asynchronous I /O than just s e l e c t () .

Specific features of libev which are not commonly implemented by other libraries and
are missing in tevent's range include: watchers that monitor either child process or pro­
cess labeled with PID in general, time events not only for relatively expressed time or
timeouts but also for absolutely specified time, which may behave like cron; monitoring
of filesystem objects (with the ability, above standard readability or writability, also to
change the attributes of files); and the option to interconnect several event loops together
and communicate between them.

In comparison to other libraries, libevent offers a framework that enables the user to
control tasks regarding network communication much more easily. Further features that
accompany this possibility are SSL, rate limits, and support for protocols such as H T T P S ,
DNS.

It is noticeable that libevent tries to provide a variety of capabilities and a complex
solution. On the other hand, libev only implements the event library itself, with the aim
of creating the highest possible level of performance [2].

There is a clear difference between the features included in tevent and those both of
libev and of libevent. Tevent released its first version in Autumn 2009, compared with
libevent whose first release was issued in 2000. Nine years further development has enabled
libevent to provide both more features and better performance (libev, which is modelled
on libevent, was introduced in 2007).

37

B.0.1 Benchmark Setup

This part of the thesis examines and compares the performance of libevent and tevent. No
previous benchmark of tevent and another library is known, and therefore a performance
test was run within this thesis to find out how efficient tevent actually is.

A l l tests were run on the following computer:

C P U : In te l® C o r e ™ i3-3225 @ 3.30 GHz
Memory: 8GB DDR3 667 MHz
OS: Ubuntu 12.04 LTS 64-bit
tevent: tevent-0.9.17
libevent: libevent 2.0.16
libev: libev 4.11

There is a known comparison between libev and libevent, which is provided and updated
by the libev developers on their website. This test was modified and used for this thesis as
well.

The benchmark consists of creating pairs of sockets; event watchers are then set, and at
the end a smaller number of active clients send and receive data to a subset of those sockets
[9]. The time measurements cover the total time spent within a function, which includes
setting up handlers for an event, as well as the event loop itself.

Total t ime for processing (100 active clients)

vi

E

100

l ibevent
l ibev

tevent

1000

File descriptors

10000

Figure B . l : 100 active clients

38

Total t ime for processing (1000 active clients)

20000 r-

1B000 -

leooo -

14000 -

III
3. 12000 -
C

10000 -
a>
t
i—

8000 -

5000 -

4000 -

2000 {

0 -

l ibevent
l ibev

tevent

1000 10000
File descriptors

Figure B.2: 1000 active clients

The test was carried out for 100 and 1000 active clients. The number of file descriptors
opened was gradually increased up to 10000. A n epoll interface was used because this is
the most highly performing mechanism supported by both the operating system and the
libraries (for more information about system calls, see 2.2).

The source files (included on the attached CD) were compiled with G C C version 4.6
with optimization -03 .

gcc t e v e n t _ b e n c h . c -o t e v e n t _ b e n c h - l t e v e n t - l t a l l o c - l e v e n t -03
gcc l i b e v e n t _ b e n c h . c -o l i b e v e n t _ b e n c h - l e v e n t -03
gcc l i b e v _ b e n c h . c -o l i b e v _ b e n c h - l e v -03

The graphs show both variants of 100 and 1000 active clients, which each perform 1
input and 1 output operation (send() and r e c v ()) . The benchmark was run several
times for each adjustment and the value presented in the graph is the arithmetic mean of
all values obtained for the specific configuration.

B.0.2 Conclusion

The difference between the libraries rises with the number of file descriptors, and clearly
shows that the libev library is more efficient when dealing with large quantities of file
descriptors. The breakpoint at which the libraries start to be clearly distinguishable from
one another is at around 1000 file descriptors (seen on the graph with 100 active clients).

The performance difference between libev and libevent occurs for several reasons. The
libev developers have a unique attitude in trying to achieve the highest performance library
focused on events, and they have been successful in this goal. Libev also takes a different

39

attitude regarding working with epoll calls, compared to tevent or libevent. Further reasons
for the differences in performance between libev and libevent are mentioned on the libev
benchmark website [9]. The results in the test I have performed here correspond with the
data presented on libev's website.

More interesting and, above all, new are the results of the test on tevent library, which
has not previously been benchmarked. Tevent library keeps pace and is just a little slower
than libevent, although it has different memory management provided by talloc library.
Tevent is approximately 13% slower than libevent in terms of total time. If only the time
for event processing (event loop) itself were counted, and the time consumed by registering
the event handler were to be excluded, the difference between the libraries would be about
20% (this is not presented in graphs).

Looking at these numbers, it is obvious that tevent is not as fast as libevent. However,
taking into account that the time spent processing events is in milliseconds, the results
in the time for actual operations differ in the third decimal place at most. Use of tevent
therefore could be considered, and the performance difference should not be seen as a reason
not to choose tevent over libevent.

40

