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Abstract 
We explore possibilities of using various abstractions of finite automata languages in op­
timization of automata algorithms used in automata reasoning. We focus on abstracting 
languages of states to sets of accepted lengths of word or Parikh images, represented as 
semi-linear sets, and explore options of using them to optimize automata constructions 
by pruning states based on abstractions of their languages. We propose several abstrac­
tions and work on optimizing their performance. We use two common finite automata 
problems, synchronous product construction and deciding the emptiness of finite automata 
intersection, as benchmark problems on which we test our optimizations. Nevertheless, our 
abstractions are applicable on many other typical automata operations, e.g., complement 
generation etc. Our experiments show that the proposed optimizations reduce generated 
state space for both benchmark problems substantially. 

Abstrakt 
Prověřujeme možnosti použití různých abstrakcí jazyků konečných automatů pro opti­
malizaci automatových algoritmů používaných pro rozhodování založené na automatech. 
Zajímáme se o abstrakci jazyků stavů na množiny přijímaných délek slov nebo Parikovy 
obrazy, reprezentované jako semi-lineární množiny, a zkoumáme možnosti jejich využití 
k optimalizaci automatových konstrukcí odstraňováním stavů založeném na abstrakcích 
jejich jazyků. Předvádíme několik abstrakcí a pracujeme na optimalizaci jejich výkonu. 
Používáme dva běžné automatové problémy, synchronní produkt konstrukci a rozhodování 
prázdnosti průniku konečných automatů, jako operace pro experimentální vyhodnocení, na 
kterých testujeme naše optimalizace. Naše abstrakce jsou nicméně aplikovatelné na mnohé 
další typické automatové operace, například generaci doplňku aj. Provedené experimenty 
ukazují, že navrhované optimalizace podstatně zmenšují generovaný stavový prostor pro 
oba testované problémy. 
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ness test, intersection computation optimization, state space reduction, length abstraction, 
Parikh images, mintermization 

Klíčová slova 
konečné automaty, abstrakce jazyků stavů, S M T výpočty, konstrukce produktu, test prázd­
nosti, optimalizace výpočtu průniku, redukce stavového prostoru, délková abstrakce, Parikovy 
obrazy, mintermizace 

Reference 
CHOCHOLATÝ, David. Abstraction of State Languages in Automata Algorithms. Brno, 
2022. Bachelor's thesis. Brno University of Technology, Faculty of Information Technology. 
Supervisor doc. Mgr. Lukáš Holík, Ph.D. 



Rozšířený abstrakt 
Konečné automaty nachází mnohá využití v různých oblastech výpočetní teorie, zejména 

v oblasti rozhodování založeném na automatech (model checking, string solving a analýza, 
WS1S). Přestože jsou konečné automaty konceptuálne jednoduché, často s nimi potřebu­
jeme provádět operace, které jsou výpočetně drahé a generují rozsáhlý stavový prostor, 
jehož mnohé části jsou nadbytečné. 

V této práci zkoumáme možnosti použití různých abstrakcí jazyků stavů automatů pro 
optimalizaci takových automatových algoritmů. Pomocí vhodných abstrakcí se snažíme 
předpovědět, které stavy výsledného automatu jsou nepotřebné, a mohou proto být odstraněny 
z generovaného stavového prostoru bez narušení jazyka výsledného automatu, pokud jsou 
získané abstrakce navzájem nekompatibilní. 

Pro demonstraci našich abstrakcí jsme se rozhodli použít operaci průniku konečných 
automatů prováděnou synchronní produkt konstrukcí a test prázdnosti průniku automatů. 
Naše předvedené abstrakce jsou však navrženy tak, aby byly aplikovatelné na širokou škálu 
automatových operací (například konstrukci doplňku aj.). Význam naší práce proto pře­
sahuje samotnou optimalizaci produkt konstrukce automatů. Všechny navrhované ab­
strakce s jejich inverzními funkcemi navíc tvoří Galois connection, tedy popisují nad-
abstrakci jazyků stavů. Díky tomu není nebezpečí, že bychom při odstraňování stavů 
s nekompatibilními abstrakcemi nechtěně odstranili i stavy důležité pro popis jazyka přijí­
maného generovaným automatem. 

Při konstrukci průniku automatů dochází k tzv. stavové explozi, kdy jsou generovány 
rozsáhlé části stavového prostoru, které tvoří neukončující stavy, ze kterých nebude dosažitelný 
žádný koncový stav ve výsledném produktu. Naše optimalizace sestává z kontroly kompat­
ibility abstrakcí jazyků stavů pro stavy, ze kterých se skládá daný produkto-stav, za běhu 
produkt konstrukce. Pokud určíme abstrakce jako nekompatibilní, můžeme bezpečně takový 
produkto-stav odstranit. Výhodou našich abstrakcí je, že stavový prostor zmenšují již při 
generaci výsledného automatu. Některé stavy tak nebude třeba vůbec ani generovat, pokud 
všechny jejich předchůdci budou odstraněni. Naproti tomu u naivní produkt konstrukce 
musíme nejdříve vygenerovat celý automat, než můžeme rozhodovat o kompatibilitě jazyků 
vstupních automatů. 

Mezi zkoumané abstrakce jazyků stavů patří délková abstrakce a abstrakce Parikovými 
obrazy. Dále zkoumáme možnosti optimalizace těchto abstrakcí či předzpracování vstupních 
automatů, například pomocí mintermizace automatů. 

Délková abstrakce tvoří nadaproximaci jazyka stavů na lineární množiny možných délek 
slov přijímaných jazykem pomocí lineárních délkových formulí. Aby daný produkto-stav 
patřil do průniku, přijímané délky slov stavů ve vstupních automatech si musí odpovídat, 
tedy formule popisující délkovou abstrakci musí být splnitelné zároveň. V opačném případě 
jazyky stavů nepřijímají stejný jazyk (délky přijímaných slov se liší) a jejich průnik je 
prázdný. Takové produkto-stavy mohou být odstraněny z generovaného stavového prostoru 
a jejich následníci nemusí být generováni. 

Délky slov modelujeme pomocí tzv. laso automatů přijímajících nadmnožinu jazyka 
vstupních automatů: laso automaty přijímají slova o všech délkách slov přijímaných vs­
tupními automaty. Vzájemnou splnitelnost délkových abstrakcí v podobě délkových for­
mulí sestavených z laso automatů ověřujeme zadáním příkazu pro S M T solver, nicméně 
můžeme optimalizovat otázku splnitelnosti délkových formulí nahrazením S M T solveru za 
matematický výpočet založený na vlastnostech lineární kongruence, který je schopný rychle 
a efektivně rozhodnout o splnitelnosti délkových formulí. 



Abstrakce Parikovými obrazy definuje semi-lineární množiny založené na Parikově teorému 
abstrahující jazyky stavů na počty výskytů symbolů na přechodech bez závislosti na jejich 
umístění v přijímaném slově pomocí semi-lineárních formulí Parikových obrazů. Za nekom­
patibilní abstrakce považujeme takové, kde si neodpovídají počty použitých symbolů jazyků 
stavů pro daný produkto-stav. Tedy, pokud jsou formule Parikových obrazů navzájem ne­
splnitelné, můžeme opět odstranit daný produkto-stav z generovaného stavového prostoru. 

Abstrakci Parikovými obrazy je možné nadále optimalizovat další redukcí Parikových 
obrazů či inkrementálním S M T výpočtem, který umožňuje předpočítat společné části for­
mulí jednou a využívat výsledky předchozího výpočtu po celý průběh konstrukce produktu. 
Nadále můžeme zavést timeout pro předčasné ukončení rozhodování splnitelnosti formulí 
Parikových obrazů. 

Obě abstrakce mohou využít optimalizace přeskočitelných produkto-stavů, kdy není 
třeba vyhodnocovat splnitelnost formulí abstrakcí, pokud daný produkto-stav byl vytvořen 
z produkto-stavu generujícího pouze tento jediný následující produkto-stav. Tedy, aby 
měl předcházející produkto-stav kompatibilní abstrakce jazyků stavů vstupních automatů, 
musí využívat aktuálního produkto-stavu pro dosažení koncového stavu, a proto musí nutně 
i abstrakce jazyků stavů pro tento následující produkto-stav být navzájem kompatibilní. 

Naše abstrakce jsme navrhli tak, aby tvořily obecný a samostatný popis jazyků stavů, 
což umožňuje abstrakce volitelně kombinovat, rozšiřovat o další abstrakce či optimalizační 
techniky, a tím využít výhod každé abstrakce, zatímco minimalizujeme dopad nevýhod 
daných abstrakcí. Tím umožňujeme využívat naše optimalizace pro širokou oblast problémů 
řešených konečnými automaty. Přís tup za běhu řešených abstrakcí jazyků stavů taktéž 
umožňuje operace paralelizovat nebo vhodně rozdělit na podproblémy. 

Provedli jsme experimentální vyhodnocení navrhovaných abstrakcí optimalizujících kon­
strukci průniku. Podle provedených experimentů můžeme soudit, že navrhované abstrakce 
mají předpokládané optimalizační schopnosti a zmenšují generovaný stavový prostor i lépe 
rozhodují test prázdnosti průniku automatů než naivní přístupy konstrukce produktu. 

Délková abstrakce je rychlá a jednoduchá, její optimalizační síla je však nižší než u ab­
strakce Parikovými obrazy. Délková abstrakce výborně optimalizuje produkty s dlouhými 
linkami stavů, může mít však potíže s odstraňováním stavů v hustě propletené síti pře­
chodů. Abstrakce Parikovými obrazy je velmi přesná. Skvěle optimalizuje generovaný pro­
dukt, ovšem výpočet vzájemné splnitelnosti formulí Parikových obrazů je pro S M T solver 
náročný a časově drahý. Můžeme si tedy zvolit, jestli chceme dosáhnout rychlého, i když 
možná méně důkladného zmenšení stavového prostoru; přesné, ale výpočetně náročnější 
minimalizace průniku; případně vhodné kombinace těchto vlastností. 
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Chapter 1 

Introduction 

Finite automata are a well-known model of computational theory used in many areas. Finite 
automata are commonly used in automata reasoning (e.g., in model checking [29], string 
solving and analysis [27] or WS1S [15, 16]). 

Finite automata are conceptually straightforward. However, operations on finite au­
tomata are often expensive: have high complexity, require extensive computational time 
and generate vast state space. 

Our goal is to find different heuristics for optimizing several typical problems connected 
to finite automata. We study possibilities of using various abstractions of languages of 
finite automata states in optimization of automata algorithms. We abstract languages of 
states to sets of lengths of words in state languages and to Parikh images, represented as 
semi-linear sets, and explore options of using them to optimize the automata constructions 
by pruning states whose language abstractions represent an empty language. We work on 
optimizing performance of these abstractions. Moreover, besides optimization techniques 
specific for concrete state language abstractions, we also consider a general technique of 
mintermization to allow using our abstractions on additional structures such as regular 
expressions represented as finite automata and to optimize our abstractions further. 

The idea of using abstraction in automata problem-solving is not new, but it is not 
properly explored either. There were first attempts of using abstraction techniques in 
automata such as alternating automata [18] or abstract regular model checking [5], both 
using techniques similar to a general predicate abstraction [8, 19] and C E G A R [7]. 

We want to optimize operations on finite automata which take lots of computational 
time and generate vast state space. We are considering operations such as product con­
struction, determinization of complement construction, minimization or determinization 
and inclusion test. Furthermore, we want to create state language abstractions which can 
work for different automata structures: operations on transducers, operations with alter­
nating automata such as its emptiness or a conversion of an alternating automaton to its 
N F A representation, conversion of finite automata to flat automata, etc. 

We focus on the construction of finite automata intersection generated by the syn­
chronous product construction. We consider two common forms of this finite automata 
operation as our benchmark problems on which we test our optimizations: 

• first, construction of the intersection automaton by the synchronous product con­
struction, which means completion of the entire product construction, and 

• testing the emptiness of finite automata intersection (emptiness problem) which asks 
whether the language of the product is empty. Here, it is not always necessary to 

2 



construct the entire product (or parts of the product) to resolve the emptiness of the 
intersection. 

Nevertheless, even if our optimizations are introduced on product construction and 
emptiness problem, our discoveries have wider impact and are in some form applicable on 
many typical automata operations. 

The intersection of finite automata combines the original states from the individual au­
tomata to tuples called product states in the generated state space by finding correspond­
ing transitions with the same symbols. Every product state represents an intersection of 
languages of the corresponding states in the original automata. The synchronous product 
construction is computationally costly: for two finite automata, the generated product state 
space can increase quadratically to the number of input finite automata states (number of 
states in one finite automaton times number of states in the second finite automaton) and 
transitions. And, for multiple finite automata, exponentially to the number of used finite 
automata. However, there are often large parts of the generated state space which cannot 
accept any words (no final states can be reached from these states), yet are still generated1. 
Therefore, it is important to have a decent algorithm to minimize the generated product 
state space as much as possible. 

In our optimizations, we try to identify which generated product states cannot lead to 
any accepting state or are successive only to such states. When state language abstractions 
of states in product state are not compatible—the original languages of the corresponding 
states cannot accept the same words—we can omit such product state and all their potential 
successive states, pruning the generated state space. 

We start with an optimization using length abstraction of state languages. For each 
state, we construct a so-called lasso automata. It is used to compute a semi-linear formula 
which codes the lengths of the words in the languages of current states (we call them 
accepted lengths). We use S M T solver to resolve satisfiability of these formulae. When 
accepted lengths of states in the product states are not compatible (their formulae are not 
satisfiable), their languages have no common words. There is no path from the product state 
leading to the accepting product state. We can prune such product states. Consequently, 
this removes the need to even consider their potential successive states. 

Even though there still might be states which do not lead to any final state in the 
final product, this simple optimization often trims substantial parts of the state space. 
Length abstraction can also be implemented simply and efficiently. However, sometimes 
the abstraction is too coarse. For instance, it cannot detect unnecessary product states for 
finite automata with rich alphabets, since their states accept a multitude of word lengths. 

For that reason, we investigate a finer state language abstraction which uses Parikh 
images of state languages. Parikh image of a word tells us how many times each symbol 
occurs in the word 2 . Parikh image of a language is a semi-linear formula describing the 
relation between the number of symbol occurrences in words in a language. In contrast to 
the length abstraction, it contains additional information about the numbers of symbols in 
words. We can more precisely identify unnecessary state space by determining compatibility 
of Parikh image abstractions. To solve satisfiability of their formulae, we use S M T solver. 
However, the Parikh image computation is expensive. There is a trade-off between the 
precision of the Parikh image abstraction and its cost. 

l r The generated product state space sometimes explodes. 
2 A function which assigns each transition symbol a number of occurrences in a word. 
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Generating smaller state space using our Parikh image optimization can improve com­
putation time for the product generation in case substantial parts of the state space are 
pruned. Moreover, it is even enough to decide the emptiness of the intersection on the 
initial product state immediately in many cases. 

A n important part of this work is researching optimizations of the specific state language 
abstractions to make their usage efficient. For both abstractions, we find a way to skip eval­
uation of state language abstractions for product states in long lines (linear non-branching 
sequences of states). If a product state with compatible accepted lengths generates a single 
sequence of states, all states in the line have compatible length abstractions. 

For length abstraction, we reduce lasso automata generation for each state to a single 
expanding lasso automaton for the whole finite automaton. We also efficiently evaluate 
length abstractions without S M T solver by resolving satisfiability of their formulae with a 
special construction using linear congruences. 

For Parikh image computation, we remove parts of Parikh image formula, which can 
reduce its precision, but it occurs that it has no impact on pruning capabilities on our 
benchmark automata. The formulae are large. However, extensive parts of them remain 
unchanged for different product states. We utilize incremental S M T solving to precompute 
the common parts and for each state recompute only the remainder of the formulae. This 
speeds up the evaluation of compatibility of Parikh image abstractions. If resolving satisfi­
ability of formulae takes too long, we can introduce a timeout for S M T solver to stop the 
computation and not prune the product state. 

We also consider combinations of our abstractions, particularly we experiment with 
computing cheap length abstraction first and computing the Parikh images only when 
length abstraction fails to prune product states. 

Further, we use mintermization for intersection of finite automata as a different ap­
proach to processing the initial automata before applying other optimizations. We compute 
minterms, which can be used instead of transition symbols while retaining all information 
about the automata to compute Parikh images and other optimization abstractions faster. 

We implement the proposed abstractions and evaluate their impact on the emptiness 
problem and the product construction experimentally. We experiment with a benchmark 
containing a set of different finite automata obtained from runs of a regular model checking 
tool on verification of pointer programs and parametric protocols created in [4] based on 
a method of abstract regular model checking from [5]. We generate products of various 
combinations of these finite automata and solve the emptiness problem of their intersections 
or generate the whole products. We focus on the number of trimmed product states and 
their nature, their position in the product or other significant properties. For certain types 
of automata, our optimizations work really well. Parikh image abstraction usually trims vast 
state spaces where length abstraction cannot prune everything and unoptimized product 
state space explodes (e.g., from 20000 to 10 product states). In addition, the abstractions 
are sometimes successful at immediately stopping product construction on the first initial 
product state if the intersection is empty, while, in some cases, product construction would 
take hours (in one case, more than 7 hours, compared to 1 minute with Parikh image 
abstraction). 

The contribution of this work can be summarized as follows: 

1. heuristics trimming the generated state space of finite automata operations based on 
abstractions of specific state languages: length abstraction and Parikh image compu­
tation; or general approaches as mintermization, 
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2. optimizations for explored state language abstractions: 

• skipping evaluation of state language abstractions for some product states for 
sequences of product states in long lines, 

3. optimizations specific for length abstraction: 

• generating a single lasso automaton for the whole finite automaton, 

• efficient evaluation of length abstraction without S M T solver, 

4. optimizations specific for Parikh image abstraction: 

• reduced Parikh image to resolve satisfiability of Parikh image formulae faster, 
• resolving Parikh images with incremental S M T solving, 

• resolving Parikh images with a timeout for S M T solver, 

5. combination of state language abstractions to optimize automata problems, and 

6. implementation and experimental evaluation of said heuristics and their optimiza­
tions. 
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Chapter 2 

Preliminaries 

Let us clarify a few definitions and terms often used throughout this paper. The following 
definitions are mostly adapted from [12] or [30]. 

Alphabet is a finite, non-empty set denoted by E . Elements of an alphabet are called 
symbols or letters. A finite, possibly empty, sequence of symbols over an alphabet is a word 
w from the set of all words S* over an alphabet X. 

Definition 2.0.1 (Deterministic finite automaton) 

A deterministic finite automaton (DFA) is a 5-tuple A= (Q, S, 5,1, F), where: 

• Q is a non-empty set of states, 

• £ is an input alphabet, 

• 5 is a transition function: Q x £ -> Q, 

• I € Q is an initial state, and 

• F 9 Q is a set of final (accepting) states. 

» r A •
 a

0
 a l a3 a «-l i 

A run of A on input a o a i a 2 . . . a n _ i is a sequence go —* <7i — * 92 —* • • • * Qn, such 
that qi £ Q for 0 < i < n, qo = I and <5((/j, a )̂ = for 0 < i < n-l. A run is accepting if g n e F . 
yl accepts a word to e S* if 4̂ has an accepting run on input w. A language recognized by 
A is a set L(A) = {w e S* | to is accepted by ^4}. A single transition from <5 is denoted as 
q ^* q' if € 5(q, a) and means one can get from state q to state q' with a transition symbol 
a. For every state, D F A has at most one transition for a given symbol. Consequently, D F A 
has exactly one run on a given word from initial state to one of the accepting states (or 
non-terminating states1 in case the word is not accepted by the automaton at all). 
Definition 2.0.2 (Non-deterministic finite automaton) 
A non-deterministic finite automaton (NFA) is a 5-tuple A = (Q,Y,,5,I,F), where Q, E 
and F are as for DFA and: 

• 5 is a transition relation: ( 5 : Q x S - > P{Q), where P(Q) = {R \ R £ Q} is a set of 
subsets of Q, and 

• I - {q I Q € Q} is a non-empty set of initial states. 
x N o accepting state is accessible from them. 
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For every state and its transition symbol, P(Q) e S(q, a) is a singleton. For example, 
5(qi, a) = {qi,q2}. 

Two finite automata Ai and A2 are said to be equivalent when both accept the same 
language: L(Ai) = L(A2). 

For every N F A A exists a corresponding equivalent D F A A'. Determinization is a 
process of converting such N F A to DFA. 

Definition 2.0.3 (Powerset (subset) construction) 
The powerset construction is a method for creating a corresponding deterministic finite au­
tomaton from its equivalent non-deterministic finite automaton. Produces finite automaton 
A', where Q' = 2®, F' = {S e Q'\SnF±0},I' = I and for S e Q': S'(S,a) = \Js,sS(s,a). 

Definition 2.0.4 (Product construction) 
Given two NFAs A\ = (Qi,E,Si,Ii,Fi) and A2 = (Q2,E, S2,I2,F2) over the same alphabet 
E ; operations on Ai and A2 yield a result—a product A as a 5-tuple deterministic finite 
automaton A = (Q, E , S, I, F) where: 

• Q = QixQ2, 

. < 5 : Q x E ^ P(Q), 

• I = Ii x I2, and 

. F = FixF2. 

S is described as ( [ Q I , 92] , a) = Si(qi,a) x S2{q2,a). For pairs of states qi and q2 from 
Ai and A2, respectively, and a common transition symbol a of transitions q[ e Si(qi, a) and 
?2 € ^2(^2,0)) we denote a single product transition as [^1,^2] -*• [QITQ'^i where 
Wn Q^] € <K[<li>Q2],a,) for the corresponding states [qi, q2] and q'2] in 4̂ are called product 
states. 

Focusing on an intersection of finite automata, the product construction tells that 
L(A) = L(Ai) n L(A2). Finally, we test the emptiness of the intersection. Given Ai and 
A2, emptiness test asks whether the language of the product is empty: L(Ai n A2) = 0. 

We work with an unoptimized product construction in Algorithm 1. 

Definition 2.0.5 (Galois Connection) 
Galois connection is a quadruple TT = ( "P ,a , 7 , Q) such that: 

• V = (P, <) and Q = (Q, E ) are partially ordered sets (posets) and 

• abstraction function a : P -> Q and concretization function 7 : Q -*• P inverse to a. 
Vp e P and V<? e Q: 

p < 7 (g ) <=> a(p) E q. 

In the terminology of abstract interpretation, P is a concrete domain and Q is an 
abstract domain. If a and 7 functions form a Galois connection, Vp e P (p < 7 (a(p)) ) -
That is, the abstraction may only over-approximate the concrete semantics. 
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= ( 0 i , E , « i , 7 i , F i ) , N F A A2 = (Q2,T:,52,I2,F2) 
(Ai nA2) = (Q, E , 5,I, F ) with L(Ai nA2) = L(Ai) n L{A2) 

I n p u t : N F A Ax 

O u t p u t : N F A A = 

Q,S,F^0 
I - h x h 
W-I 
w h i l e W * 0 d o 

p i c k [</i,</2] f r o m W 
a d d [51,52] t o Q 
i f qi e F i and q2 e F2 t h e n 

[_ a d d [qi,q2] t o F 
f o r a l l a e E d o 

f o r a l l q4 e 5 i ( g i , o ) , g 2 e 5 2 (g2 ,o) d o 
i f [q[,q2] i Q t h e n 

L a d d [qfi,g2] t o W 
a d d [gi ,g 2 ] t o 5([gi ,g 2 ] ,a) 

Algorithm 1: Classic unoptimized product construction used by our state language abstractions 
to optimize the generated product state space by deciding the compatibility of state language 
abstractions. 

1 
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Chapter 3 

State Language Abstractions 

In this chapter, we introduce several state language abstractions, presented on product 
construction and deciding the emptiness problem. 

When constructing a product, a considerate number of product states are non-terminating 
and thus unnecessary. Moreover, the whole product must be constructed before we can de­
termine whether the automata intersection is empty. We want to minimize the number of 
generated product states when resolving the product construction of an automata intersec­
tion and deciding the emptiness of the intersection. 

We try to guess which product states do not lead to any final states and consequently can 
be omitted, and the following states do not need to be generated at all. Our optimizations 
decide the emptiness of parts of the product (or the whole product) already in the process of 
generating the product (on the fly). We can thus prune non-terminating states before they 
are added to the product and omit extensive product state space before even considering it in 
the classic product construction. We achieve this by computing state language abstractions 
for each state the generated product state consists of and deciding the compatibility of 
these abstractions. 

Our product construction optimizations are applicable on two and more automata, but 
for the ease of explanation, we consider only two automata. In the following, we will define 
an abstraction of languages of the states q, a(q). We define two kinds of abstractions: length 
abstraction aLA(q) and Parikh image abstraction aPI(q). These abstractions represent 
formulae in first-order predicate logic. Both our aLA(q) and apl(q) together with their 
inverse functions form a Galois connection. Hence, they are an over-approximation of state 
language of q. 

For a product state p = [gi,g2] of the product P, we use abstractions of languages of 
states a(q\) and 0 ( ^ 2 ) to quickly detect whether p has an empty language. That can be 
achieved by checking whether a(q\) and 0 ( ^ 2 ) are compatible. If they are incompatible, 
product language is empty and p can be pruned (there is no run from p to any final 
state). Therefore, the optimized product language is the same as the unoptimized product 
language. 

3.1 Length Abstraction of State Languages 

In this section, we discuss length abstraction aLA(q). Length abstraction looks at lengths of 
words accepted by the state language, creating a set of accepted lengths. In the following, 
we first discuss the basic principle of length abstraction. Later, we propose efficiency 
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optimizations for length abstraction. To start with, we introduce lasso automata as a finite 
automata representation of length abstraction. 

3.1.1 Length Abstraction Represented by Lasso Automata 

Length abstraction over-approximates the language of q by considering only the accepted 
lengths of words. This is, if a length of a word does not belong to the length abstraction of 
q, it cannot be accepted by state language of q, either. 

Computing length abstraction over the languages of finite automata states is accom­
plished using lasso automata (LSA, handle and loop automata)—deterministic finite au­
tomata with a unary alphabet (similar as in [1]). They consist of a handle (a sequence of 
states from the initial state) and a loop (resolving the cycles in the original automaton) 
resembling a lasso with a few final states representing the accepted word lengths. 

You can create a lasso automaton for a state q, lsa(q), by taking the finite automaton A, 
q € QA, setting I A = {<?}, considering all transition symbols as a single transition symbol and 
determinizing the result with subset construction. lsa(q) is an automaton accepting every 
length of any word in state language of q. Consequently, it is easy to compute semi-linear 
set (formulae in the form of a disjunction of linear equations) for the accepted lengths of 
words, which can be efficiently evaluated. We are computing length formulae for individual 
states in the product state, checking their satisfiability, and constructing only those product 
states for which the length abstraction formulae are satisfiable. 

The length abstraction formulae are generated from lsa{q). For every state q, we get one 
or more existentially quantified formulae ip in Presburger arithmetic describing language 
abstracting aLA(q) in the form 

ip • 3k(\w\ = h + l-k) 

where \w\ is a length of a recognized word, h is the length of a handle to a certain final 
state / , and I is the length of a loop to return to / going through the loop, k is the number 
of cycles through the loop states until a word ends in / . When multiple depicted formulae 
are created (because there are more final states or different accepting runs for a single final 
state in L S A resulting in multiple accepted lengths), we append these formulae with logical 
or: 

a L A : 3k((pi V . . . V ipn) 

where n is a number of generated ip. 

Running Example We demonstrate the construction of a (qo) for initial state go of 
the following N F A Ai = ({qo,qi,qi,93,94,9s}, {0,1},Si, {qo}, {94}) where transition relation 
Si is depicted in Figure 3.1. That is, we construct Isa(qo). We will continue using Ai 
throughout the section. 

Ai is a non-deterministic finite automaton (see state qi) and uses multiple input sym­
bols. Due to the fact we work with only recognized word lengths, we can substitute the 
automaton alphabet with a unary alphabet of a single input symbol x-1. See the obtained 
finite automaton A[ in Figure 3.2. 

1 E v e n though we do not actually need any particular input symbol, we use * here as an example to 
depict the process. In general, al l we need to know is that there is a transition between two states. The 
specific transition symbols are not significant for our length abstraction. 
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Figure 3.1: Non-deterministic finite automaton A\. 

Figure 3.2: Non-deterministic finite automaton A'^. A\ with unified transition symbols. 

Then, we can generate Isa(qo), which is its deterministic equivalent. For the final lsa(qo), 
generated from A[ by its product construction determinization, see Figure 3.3. Lasso 
automaton for q$ accepts any words of lengths of words recognized by state language of qo. 

Figure 3.3: Lasso automaton lsa(qo) for the original N F A Ai generated from A[ by its 
determination with subset construction. 

3.1.2 Single Lasso Automaton for Each Original Automaton 

When we are constructing a product of finite automata A and B, we do not want to 
regenerate Isa(qA) and lsa{qs) for each product state p = [<ZA>(ZB ] - This is inefficient. Due 
to the nature of LSAs, the successive product states p' = [q'A, q'B] generate LSAs very similar 
to the LSAs for p. We can construct one summary lasso automaton for the whole finite 
automaton A, LSA(A), which contains all the lasso automata lsa{qA) for all states in A. 
Similarly for B. 

LSA(A) is a lasso automaton created as a union of all Isa(qA) for each qA e QA- That 
is, LSA(A) is a union of all lasso states, transitions, final and initial states for each qA- As 
a result, a L A for product construction generates only one L S A for each finite automaton 
(possibly with multiple loops and/or multiple handles). A l l singleton states in LSA(A) can 
be initial states. The initial state changes to which state qA we want lsa(qA) for. 
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To generate only the necessary Isa(qA), we can construct LSA(A) gradually, state by 
state, for only the currently required qA- We generate Isa(qA) as the first part of LSA(A). 
If we need lsa(q'A) later, we extend Isa(qA) with lsa(q'A) by union of both LSAs. When the 
new L S A state IA is not already present in LSA(A), we add IA to LSA(A) and continue with 
the following states l'A until we either create an entirely new loop in LSA(A) or generate 
l'A already in LSA(A) (we can stop generating l'A as from now on, all l'A are already in 
LSA(A). 

By executing the same steps for B, we get two LSAs, one for each finite automaton. 

Running Example For our finite automaton A\, Figure 3.4 shows LSA(Ai), currently 
prepared for an extraction of the length formulae for qo. However, the initial state is 
irrelevant for the general L5^4(^4i), as it changes to the state we are currently computing 
length abstraction formulae for. 

Figure 3.4: Summary lasso automaton LSA(A\). 

3.1.3 Product Construction with Length Abstraction 

The core of the product construction remains unchanged, but there are a few differences. 
The Algorithm 2 shows how we alternate the original product construction to optimize the 
algorithm with length abstraction. 

We call W from line 3 a work set. It stores the potential product states prepared for 
processing, which we pick from W one by one2. 

The optimization process starts when we pick a product state p from W. Instead of 
immediately generating new successive product states p1, we generate Isa(qi) and lsa(q2) 
to gain length formula. We test the satisfiability of this formula: sat(QLA(p)) where 

$LA(p) • aLA(qi) A aLA(q2) and 

sat{ip) is True iff tp is satisfiable ($ is sat), False otherwise. On line 9, we check whether 
sat(QLA(p)) holds and store a result as a boolean value to res. We are only interested in 
the satisfiability test result because we do not need any additional information from the 
computed formulae. Therefore, a simple boolean value is sufficient. QLA{p) is passed to an 
S M T solver to solve its satisfiability. The a L A compatibility check aLA(q\)/\aLA(q2) is sat 
can be implemented in S M T solver as in Algorithm 3. S M T solver returns sat when 

2 I n spite of the fact more approaches are valid, we strongly recommend picking the last added product 
state from W (see line 7)—using depth-first search—as this allows us to quickly advance through the 
automaton and get to any final state faster—in case we just want to know whether automata have a non­
empty intersection, this change wi l l get us the answer most of the time in less steps. It works even better 
when implemented with a satisfiable state skipping optimization, explained in Section 3.1.4. 
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: ( Q i , E , 5 i , J i , F i ) , N F A A2 = {Q2,Th52,I2,F2) 
(A! n A2) = (Q, E , 5,1, F) with L{P) = L{AX) n L(A2) 

1 
2 
3 

4 

5 

6 

7 

8 
9 

10 

11 

12 

13 

14 

15 

16 

17 

Input : N F A Ai 
Output: N F A P = 

Q,S,F^0 
I «- 7i x 7 2 

W W 
res «- False 
solved «- 0 

while W ±0 do 
picklast [91,92] from TV 
add [51,52] to solved 
res «- aLA(qi) A a i A ( § 2 ) is sai 
if res = Trwe then 

add [51,52] to Q 
if 51 e i* i a n d 52 6 F2 then 

[_ add [51,52] to F 

forall a e £ do 
forall gi e d~i(gi,a),g 2 e ^2(92,0) do 

if [<7i><?2] i solved and [q[,q'2] i W then 
L add [q[,q'2] to W 

add [q[,q'2] to 5([91,52],a) 

A l g o r i t h m 2: P r o d u c t const ruct ion w i t h length abstract ion. 

satisfiable (res is set to True) and unsat when unsatisfiable (res is set to False). If irosai 
is returned, length abstractions are incompatible. We have now pruned the generated state 
space by omitting the product state p. 

s m t l n i t ( ) 
smtAdd(fe > 0 , m > 0 ) 
for <pqi e aLA(qi) do 

for ipq2 e aLA(q2) do 
smtPushO 
smtAdd (ip q i. handle + <pqi- lasso * k = ipq2. handle + ipq2. lasso * m) 
res *- smtCheckO 
if res = True then 

break 

smtPopO 

A l g o r i t h m 3: Check compa t ib i l i ty of length abstractions w i t h S M T solver. 

If sat(& (p)), i.e., there will be an accepting run using p (see line 10), we add p to Q, 
possibly to F and generate p'. 

A note of caution. It is important to understand that we are working only with possible 
word lengths and when we test the emptiness of the intersection of automata, we can resolve 
only such cases where words lengths are not accepted by both automata. When the test 
shows there could be some words of certain length accepted by both automata and for that 
reason by their intersection too—sat(<&LA(p))—we cannot be sure there truly are any words 
accepted by both automata with their intersection non-empty, because there may be words 
of the suggested length, but it may be a different word for each automaton (which differ 
from one another in the containing symbols or their position in the word). For resolving 
such cases, we have to proceed with the classic algorithm steps to produce product states 
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according to their original transition symbols, not only by comparing the possible words 
lengths. Wi th certainty, we can omit only the cases where -isat($LA(p)). 

Running Example We will continue with our running example. The second automaton 
we will be working with is a N F A A<i = ({sn> s\, S2, S3}, {0,1}, 62, {so}, {S3}) where 82 is 
depicted in Figure 3.5. 

Figure 3.5: Non-deterministic finite automaton A2-

In Figure 3.6, there is LSA(A2), which we will be using together with LSA(A\) shown 
in Figure 3.4 for product construction of A\ and Ai-

Figure 3.6: Lasso automaton LSA{Ai) for A^. 

When we start the algorithm, we get the following length abstraction formulae for 
V = [<7o>so]- From LSA(A\) for go (go is the new initial state of LSA(Ai)), we get an 
existential formula representing length abstraction aLA(qo)3. From LSA(A2) for SQ (SQ is 
the new initial state of LSA(A2)), we get a formula for length abstraction aLA(so)i. 

aLA{q0) : 3k(\w\ = 2v\w\ = 4 + 2-k) 

aLA{s0) : 3m(\w\ = 2+ l-m) 

When we compare aLA(qo) and aLA(so), we get: 

aLA(qo) A aLA(s0) : 3k(\w\ = 2 v \w\ = 4 + 2 • k) A 3m(\w\ = 2 +l-m) 

or in a simplified notation: 

aLA(q0) A aLA(s0) : 3k3m(2 v 4 + 2 • k = 2 + 1 • m). 

To solve satisfiability of §LA([qo, so]), we try to find values of k and m such that \w\ in 
both formulae are equal (some expressions on the left and on the right side of the equation 
are equal). 

3 T h i s formula consists of two independent disjuncts tpi and (f2 describing there are more possible lengths 
for accepted words from the same init ial state. 

4 W e are using variable m here instead of k to emphasize variables from different formulae are not 
dependent on each other—they belong to different L S A s . 
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In Figure 3.7, we can see the product of Ai and A<i being constructed using length ab­
straction. Red states represent product states whose formulae are resolved as unsatisfiable 
and therefore the algorithm omits any successive product states—dashed states (such as 
q±S2 or qzS2) which are generated in the unoptimized product construction. The green state 
represents final states in both automata. Here, we have found a solution accepted by both 
A\ and A2. If we desire to resolve only the emptiness problem, we can stop the execution 
of the algorithm here as we have found one final state—automata have non-empty inter­
section. The blue state is a normal product state whose significance will be explained in 
section 3.1.4. 

1 , / r ' q 2 s 2 ) 

Figure 3.7: Constructed product with depiction of optimization with length abstraction. 

As you can notice in Figure 3.8, the product generated by our algorithm has only 4 
product states in comparison to 9 product states generated by the unoptimized product 
construction. 

M q i s 2 

0 > 

1 

f 
q 4 s 3 

Figure 3.8: Final product minimized by length abstraction. 

3.1.4 Optimization with Skipping Satisfiable States 

When we take new p from W and sat(<&LA (p)), it is time to add all the possible successive 
product states p' to W. When p generates only a single p' and p £ Fp (final states are 
obviously in the product) or satisfiable length was not zero , we can say with certainty that 
sat(QLA(p')) as there is only a single branch in the automaton leading from p to a final 
state (through p'). p' is skippable, iff there exists p £ Fp or with satisfiable length not zero 
for which sat{QLA{p)) and whose only successor is p1, we add p' to W with the information 
of being skippable. If p' is already in W, we append the information to p' in W. 

We skip checking for sat(QLA(p')) when we pick p' from W. We can immediately 
check for final states and generate the successive product states. This optimization saves 

5 I f the satisfiable length is zero, we are in a final product state and p generated from final state might 
not lead to any final state, but the length abstractions for final state are compatible, of course. 
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us generating the length abstraction formulae for p' and testing the formulae in the S M T 
solver for their satisfiability. 

If automata have long lines (with non-splitting branches), this will prove extremely use­
ful, because only a few proper iterations with formulae computing and running S M T solver 
computation will be executed. The application of skipping satisfiable states is depicted in 
Algorithm 4. The line 9 from Algorithm 2 is substituted with the contents of Algorithm 4. 

1 i f s k i p p a b l e ( [ g i , < / 2 ] ) t h e n 

2 | res *- True 
3 e l s e 

4 |_ res <- aLA(qi) A ctLA(q2) i s sat 

A l g o r i t h m 4: Subs t i tu t ion of line 9 i n A l g o r i t h m 2 w i t h sk ipping satisfiable states. 

The only change is a test for every checked p, which decides whether p can be skipped. 
You can see that we proceed with the satisfiability check in S M T solver only for p which 
are generated from the product states with multiple transitions generating p and at least 
one more product state (in general at least two new potential product states). If only one 
p was generated earlier from a product state with satisfiable formulae, we skip the check 
for sat(<&LA{p)) and continue to generating its successive states immediately. 

You can notice there is one skippable state in the former example, which had to be 
evaluated and tested for satisfiability earlier. The blue state in Figure 3.7 is such a skippable 
state. In our case for state q$S2, when only one new state is generated from state q^s^ while 
this state is resolved as satisfiable (with not zero length—otherwise, if q$S2 did not lead back 
to ^453, q§S2 would be skippable even though it would not lead to any final state), newly 
generated product state has to be satisfiable as well, because the check for q^s^ already 
considered the state q§S2 as its only way to any final state with not zero length. 

When we have a series of such states, we can highly optimize generating the whole 
branch with only one initial check for satisfiability. In real world examples, there are often 
automata with long branches splitting into multiple branches only occasionally. We will 
check for satisfiability for all the initial states of each new branch and then either omit the 
entire branch (if unsat is returned) or skip checking satisfiability in the entire branch (if sat 
is returned). 

3.1.5 Resolving Length Abstraction Satisfiability without S M T Solver 

Evaluating satisfiability of length abstractions formulae in S M T solver is expensive. We 
try to replace S M T solver with a specialized structure which transforms the problem of 
solving satisfiability of length abstraction formulae to evaluating satisfiability of a linear 
congruence equations. 

Length abstraction formulae have the same, simple structure. Length abstraction can 
be implemented as a set of length formulae represented as a two-tuple of handle length and 
lasso length. Therefore, we can easily compare such sets in order to resolve satisfiability 
of length abstraction formulae without S M T solver. QLA(p) forms a set of linear congru­
ence equations, which can be resolved just by utilizing basic mathematical operations and 
properties of linear congruences. 

The Algorithm 5 shows how to determine sat(&L (p)) from line 9 using linear congru­
ences. 

We execute the following steps for each equation 

ipqi .handle + (pqi .lasso • k = ipq2 .handle + ipq2 .lasso • m. 
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1 for ipqi e a (qi) do 
2 for ipq2 e aLA(q2) do 
3 if ipqi.handle = ipq2.handle t h e n 
4 | res *- True 
5 e l s e if ipqi. handle > ipq2. handle t h e n 
6 | res «- s o l v e F o r O n e H a n d l e L o n g e r ( < / ? q i , y g 2 ) 
r e l s e 

8 | r e s «- s o l v e F o r 0 n e H a n d l e L o n g e r ( < / ? q 2 , 

9 r e s «- False 
A l g o r i t h m 5: Check satisfiabil i ty using length abstract ion a lgor i thm wi thout S M T solver. 

If the handle lengths of ipqi and ipq2 are equal, there are words of the same length 
accepted by both aLA(q\) and aLA(q2) (they are mutually compatible) without stepping 
into the loops of LSA(A\) and LSA(A2). Otherwise, handle lengths differ, and we must 
consider lengths of loops in our determination of compatibility of aLA(q\) and aLA(q2). 

We now have to determine sat(ipqi A ipq2) for abstractions with one handle longer. This 
is solved by the function s o l v e F o r O n e H a n d l e L o n g e r in Algorithm 6. 

First, to simplify the equation (line 2), we move handle lengths from the side of the 
equation with the shorter handle <ps to the side with the longer handle ipi to solve: 

ipi.handle + ipi.lasso • k = ips.lasso • m (3-1) 

which represents the number of loops a word must make in ips to be accepted by ipi (as if 
with shorter ipi.handle). 

If both (pi and ips have no loops (line 1), (pqi A (pq2 is unsatisfiable because the handles 
differ. Else, if only ips has no loop (line 6), every word accepted by ips is shorter than words 
accepted by ipi and the formulae cannot be satisfiable. 

Else, if only <pi has no loop (line 8), we can try to manually iterate over loops in ips to 
see whether the difference of word lengths between handles can be equalized by looping in 
ifs.lasso. 

Otherwise, both (pi and <ps have loops (line 16). We can apply linear congruence proper­
ties to the equation 3.1 to determine whether the formulae are satisfiable. The equation 3.1 
says that if formulae are satisfiable, the left side of the equation is divisible by some multiple 
of fs.lasso. We can rewrite that in a linear congruence equation as follows: 

ifl.handle +(pi.lasso• k = 0 (mod (ps.lasso) (3-2) 

tpi.lasso • k = -if[.handle (mod ips.lasso) (3-3) 

which is the same as solving a linear Diophantine equation 

ipi.lasso • k - fs.lasso • m = -ipi.handle. (3-4) 

Properties of multiplicative inverse [9, 20], based on Bezout's identity [9], say that iff 
ipi.lasso and ips-lasso are relatively prime (coprime)—the greatest common divisor (GCD) 
of ipi.lasso and ips.lasso is equal to 1—there exists a multiplicative inverse for ipi.lasso 
in modulo ips-lasso which ensures that linear congruence 3.3 is always solvable for some 
ipi.lasso in modulo ips-lasso . Therefore, the formulae are satisfiable. 

Otherwise, ipi.lasso and ips-lasso are not coprime (GCD is different from 1) and by prop­
erties of linear Diophantine equations [20], iff G C D precisely divides y without a remainder 

6 We can get the precise solution by multiplying both sides of the equation with the multiplicative inverse. 
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F u n c t i o n s o l v e F o r O n e H a n d l e L o n g e r ( i p i , ips): 
D a t a : Input length abstraction formulae of potential product state. 
ipv. Length abstraction formula with the longer handle, 
ips: Length abstraction formula with the shorter handle. 
R e s u l t : bool: True if satisfiable, False otherwise. 
(fi.handle «- ipi.handle - <pB.handle 
(ps-handle «- 0 
i f fi.lasso = 0 and ips.lasso = 0 t h e n 

r e t u r n False 
e l s e i f ips.lasso = 0 t h e n 

r e t u r n False 
e l s e i f ipi.lasso = 0 t h e n 

it*-0// C u r r e n t l e n g t h r e s e m b l i n g t h e i t e r a t i o n o f t h e s h o r t e r l a s s o l o o p , 
w h i l e it < ipi.handle d o 

i f it = ipi.handle t h e n 
r e t u r n True 

e l s e 
^ it «- it + ips.lasso 

r e t u r n False 
e l s e 

gcd «- getGCD(</?(.lasso, ips.lasso) 
i f gcd = 1 t h e n 

r e t u r n True 
e l s e 

y <—ipi.handle 
w h i l e y < gcd d o 

[_ y ^ y + ips-lasso 

i f (y mod gcd) = 0 t h e n 
r e t u r n True 

e l s e 

^ r e t u r n False 

A l g o r i t h m 6: Solve satisfiabil i ty of length abstract ion formulae for one handle longer. 

where y is the right side of the linear congruence 3.3 or its any congruent equivalent, there 
exist solutions to the linear congruence'. Otherwise, there are no solutions. 

3.2 Par ikh Image Abstraction of State Languages 

Length abstraction is a simple and fast optimization, but can be too coarse to detect 
non-terminating states in some cases. In this section, we present an abstraction of state 
languages with Parikh images, aPI, which aims to replace length abstraction to make the 
abstraction more precise to prune larger quantities of product state space. 

Parikh images provide more information about the finite automata than simple length 
abstraction. While length abstraction considers only accepted word lengths without know­
ing which transition symbols are actually in the transitions, Parikh image abstracts the 
state language to numbers of occurrences of specific transition symbols in words regardless 
of their position in said words. Thus, Parikh image abstraction allows us to more precisely 
determine whether the product state has non-empty language. However, Parikh image 

7 W e can apply extended Euclidean algorithm to find the precise values for the Diophantine equation 3.4. 
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computation itself is expensive. The question is, whether the added computation time 
compensates for more precise product generation with higher state pruning capabilities. 

We will introduce an algorithm for Parikh image abstraction a P I applied on each prod­
uct state p = [qi,q2] to decide the compatibility of aPI(qi) and aFI (q2)-

3.2.1 Parikh Image 

We derive our Parikh image construction from the Parikh's theorem [26] described in [13], 
creating a semi-linear Parikh image formulae for the given regular language as a set of 
Parikh images for each word in the language. However, our usage of Parikh image of 
some regular language (and therefore of the corresponding finite automaton recognizing 
such regular language) is restricted to determining the compatibility of Parikh image state 
language abstractions. Therefore, we only test for satisfiability of Parikh image formulae 
describing aPI(q). We use S M T solver to resolve the satisfiability of Parikh image formulae 
of the current potential product state. 

Given an N F A A = (Q,T,,A,I,F), Parikh image formula ip (as described in [25] for 
solving string constraints) consists of several constraints in conjunctive normal form, ip 
describes runs of A. Each satisfiable assignment defines properties of the run. ip consists 
of the following conjuncts: 

1. Foremost, we define a variable uq for each state q € Q. uq defines how many times 
we enter q and exit q by specifying the difference between the number of entries and 
exits. We construct equations with uq for a run as follows: 

• uq = 1 for q e I, 

• uq € {0, -1} for q € F and 

• uq = 0 for q e Q \ ( / u F). 

2. Second, we define a variable yt for each transition t e A such that yt > 0 describing 
how many times is t used in the run. 

3. We can now present an equation introducing a connection between uq and yt to 
evaluate the difference between the number of entries and exits for each q e Q as 
follows: 

uq + E vt- E yt = °-

where A^ is a set of ingoing transitions A^ = {(q',a,q) e A} and A~ is a set of 
outgoing transitions A~ = {(q,a, q') e A} from the given state q. 

4. Furthermore, we need to make sure that the states used in runs described by the 
satisfying assignments are connected and start in the initial state. Variable zq for 
each q e Q is introduced. zq represents the length of any path from / to q in a 
spanning tree of the subgraph with yt > 0. If zq = 0, there is no path from I to q and 
the state q is not used in the run. zq > 0 means there is a path from I to q and q is 
used in the run. 

If q € / , we add a constraint zq = 1 A yt > 0. Otherwise, 

{Zq = 0 A / \ l f t = 0 ) V \ / (Vt * 0 A Zq> > 0 A Zq = Zq< + 1). 
teA+ teA+ 

If the distance zq is 0, q is not in the run. 
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5. Last but not least, we declare the only free variable # a for each transition symbol 
a € £ . # a describes the number of occurrences of a in accepted words regardless of 
their position in the words (the number of a in the run). # a is the only variable 
common to different Parikh image abstractions when we test their compatibility. The 
constraint # a = £t=( g ,a ,g ' ) e A Vt ensures # a is consistent with the number of used t 
with a. 

We gain an existentially quantified formula ip in Presburger arithmetic describing lan­
guage abstracting a P I for A with free variables # a : 

a P I : 3uqi,... , u q n , z q i , . . . , z q n , y t l , . . . ,ytm((p) 

where n = \Q\ is the number of states and m = |A| is the number of transitions in the finite 
automaton. 

Notice that a P I is an existential formula, which is great for S M T solving where comput­
ing with universal quantifiers can take a long time. S M T solver are specialized on efficient 
solving of existential or quantifier-free formulae. 

As for length abstraction for product state p = [<?i, <?2]> we decide compatibility of Parikh 
image formulae aPI(qi) and otPI(q2) as follows: sat(QPI(p)) such that 

® P I ( p ) : a P I ( q i ) A a P I ( q 2 ) 8 . 

3.2.2 Product Construction with Parikh Image Abstraction 

We introduce the unoptimized product construction using Parikh image abstraction. The 
algorithm is analogous to the product construction optimized by length abstraction from 
Algorithm 2. The difference is that we now compute Parikh image formulae and determine 
their satisfiability instead of generating lasso automata and determining satisfiability of 
length abstraction formulae. 

We use Parikh image formulae to determine whether p is to be added to the product P. 
As for length abstraction, we test whether Parikh image abstractions are compatible (a 
conjunction of Parikh image formulae is satisfiable). Therefore, instead of length abstraction 
on line 9 in Algorithm 2, we compute Parikh image abstractions: line 9 is replaced with 

PIf \ PIf \ • res <- a (qi)/\a (q2) is sat 

We can see our proposed algorithm using Parikh image computation to optimize product 
construction in the Algorithm 7. Parikh image formulae are computed on line 9 and their 
satisfiability is determined. 

3.2.3 Reduced Parikh Image 

The presented Parikh image would work well regarding its pruning capabilities. However, 
the described Parikh image computation requires extensive resources and computation time 
and we need Parikh images computed only for determining the emptiness of the intersec­
tion. Given that most of the computation time is spent by the evaluation of Parikh image 

8 I n reference implementation, we replace existential formulae with quantifier-free formulae with renamed 
variables without existential quantifiers. 
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Input : NFA A1 = (Q1,E,51,I1,F1),NFAA2 = (Q2,J:,52,I2,F2) 
Output: N F A P=(A1n A2) = (Q, E , S,F F) with L(P) = L{AX) n L(A2) 

1 Q,S,F^0 
2 / « - II X I2 

3 W^I 
4 res «- False 
5 solved «- 0 
6 while * 0 do 
7 

8 
9 

10 

11 

12 

13 

14 

15 

16 

17 

picklast [51,52] from TV 

add [51,52] to solved 
res «- a p / ( g i ) A aPI(q2) is s a i 

if r e s = T r w e then 
add [51,52] to Q 

if 51 e Fi and q2 e F2 then 
[_ add [51,52] to .F 

forall a e S do 
forall q[ e Si(qi,a),q'2 e S2(q2,a) do 

if [<7i><?2] i solved and [q[,q'2] i W then 
L add [q[,q'2] to W 

add [q[,q'2] to 5([qi,52],a) 

A l g o r i t h m 7: P r o d u c t construct ion w i t h P a r i k h image abstract ion. 

conjuncts in S M T solver, we want to minimize the number of Parikh image conjuncts S M T 
solver needs to evaluate for each ip. 

Consequently, we infer our reduced Parikh image from the shown Parikh image to 
further optimize Parikh image computation. We modify several conjuncts in Parikh image 
formula and unify initial states and accepting states to simplify the formula and reduce its 
complexity. 

Due to how we have reduced our Parikh image, we work only with finite automata with 
a single initial state and a single accepting state. However, we can easily convert any finite 
automaton into the required format with adding two new states: one for a new initial state 
from which one can transition to all previous initial states and one for a new accepting 
state to which lead all previous accepting states. The previous initial and accepting states 
are changed to common automata states. 

Our reduced Parikh image consists of the following conjuncts: 

1. We use the conjuncts 1, except now we restrict uq for each final state to have only 
the value - 1 , i.e.: 

uq = -1 for each state q e F. 

We can perform this reduction, because we know for sure that by unifying final states 
of the automaton into one abstract final state, there will be exactly only one final 
state where all words accepted by the automaton end, but none passes through this 
state earlier. 

2. The conjuncts 2 and 3 remain unchanged, the same holds for conjuncts 5. 

3. However, we completely omit the conjuncts for zq. The reason is that, as we have 
found out, the difference in pruning capabilities of Parikh image with or without 
the conjuncts 4 on our benchmark automata is insignificant in comparison to the 
computation time spared by removing these conjuncts. 
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The reason conjuncts 4 are so computationally costly is that they are complex for 
even simple automata. Even then, if we want to keep them, we can include these 
conjuncts, but, we can reduce their complexity by not having to compute zq lengths 
for initial and final states. 

The constraint for when q is an initial state (zq = 1 A yt > 0) remains unchanged as 
a starting length for other states. However, for every other state, we remove the 
possibility of yt = 0 and zq> = 0 in the second half of the conjuncts (as the option 
cannot occur with unified initial and final states). The conjuncts look like this: 

{zq = 0 A f\ yt = 0) v V {yt > 0 A Zq> > 0 A zq = zq> + 1). 

Skippable States Optimization 

Same as for the length abstraction, we can make use of skipping satisfiable product states 
optimization. When sat(QPI (p)) for some potential product state p = [qi,q2] and p gener­
ates only one consecutive potential product state p' = [q[, q'2] such that p -* p' where a e E , 
we can skip computing Parikh images for p' as we know for sure sat(&PI(p')) in order to 
get a satisfiable result for Parikh image for p. We can add this functionality to our previous 
algorithm by replacing line 9 with the content of Algorithm 8. 

1 i f s k i p p a b l e ([51,52]) t h e n 

2 J res *- True 
3 e l s e 

4 L_ r e s *~ ctPI iqi) A aPI (q2) i s sat 
A l g o r i t h m 8: P a r i k h image computa t ion w i t h skippable states op t imiza t ion . 

3.2.4 Optimization with Incremental S M T Solving 

Parikh image formulae are large and S M T solving is expensive. We have to recompute 
Parikh image formulae for every potential product state. However, formulae generated for 
different product states in one intersection problem are very similar. Large parts of Parikh 
image formulae do not change between the product states at all. 

We try to use S M T solver with incremental S M T solving to reuse parts of the previous 
computation in the next one. We can specify parts of the Parikh image formulae in the 
S M T solver once, without passing them to the solver for each product state. Further, 
once a formula have been computed, the solver can use its cache to reuse parts of the 
computation 9. In this section, We explain how we use incremental S M T solving for Parikh 
images in product construction to compute similar, consecutive Parikh image formulae 
faster. 

Notice that some conjuncts of Parikh image remain unchanged for the whole automaton, 
i.e., for every product state. Only some conjuncts which work with initial states (conjuncts 1 
and 4) have to be rewritten, because the only difference between states in two different 
product states are the different initial states. 

Assume finite automata A\ and A2 (whose intersection we generate) and a product 
state p = [q, s] where q e QA^ S e QA2- The changes of conjuncts in (fA1 and (fA2

 a r e caused 
by moving (setting) the states in both Ai and A2 corresponding to p as new initial states 

9Consequently, the computation of the first Par ikh image takes longer than for the next states. 
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IA1 = {q} and IA2 = {s} as we proceed further into the automata with product construction. 
We start with the abstract initial states (one for each original automata, IA1 - {Q'Q} and 
IA2 = {S'0}). 

First, we compute &PI (po) such that po = [q'0,s'Q]. Iff sat(QPI(po)), we generate new 
potential product states (e.g., p\ = [<zi,si] and P2 = [91,52])- Now we need to check 
whether to include p\ and P2 to the generated product, i.e., check that sat(QPI(pi)) and 
sat(QPI(P2)), respectively. Taking pi, we set new initial states IAX = {QI},IA2 = 
Similarly, for P2, we would set IA1 = {QI},IA2 = {-^j-

We now need to change every mention of initial states in <PA1 and (fA2 because the initial 
states are different from those we used at the start (q'0 and s'0) and for which we already 
computed &PI(po). We now introduce an optimization of Parikh image computation which 
precomputes unchanged conjuncts only once and recomputes only conjuncts mentioning 
initial states. 

Persistent and State Specific Clauses 

To present optimization with incremental S M T solving, we split aPI(q) conjuncts into two 
groups: persistent clause and state specific clause. 

Persistent clause represents Parikh image conjuncts which can be precomputed once 
for all states in the finite automaton and used throughout the whole product construction. 
Persistent clause consists of unchanged conjuncts of reduced Parikh image described in 3.2.1: 
conjuncts 2, conjuncts 3 and conjuncts 5. 

The state specific clause consists of conjuncts which change with every product state p, 
and as such have to be constructed and recomputed for every satisfiability test. The process 
of recomputing state specific clauses is the most expensive part of the product construction 
algorithm using Parikh images. Therefore, our goal is to minimize the number of conjuncts 
in a state specific clause as much as possible. The state specific clause consists of conjuncts 1 
in reduced Parikh image as they directly change according to initial states and, optionally, 
if we want to include zq conjuncts, conjuncts 3. We would need to recompute zq conjuncts 
for each potential product state too because the conjuncts compute with initial states. 

It is worth to note that the conjuncts 3 in reduced Parikh image manipulate with initial 
states, but the structure of the conjuncts could be reversed to compute connectedness of 
the automaton in reversed order, from the accepting states to the initial states. In that 
case, the conjuncts could be reconstructed as a part of the persistent clause dependent 
on accepting states which remain unchanged (the abstract accepting state) for the entire 
time. This additional optimization might be worth inspecting. Because the inclusion of 
conjuncts 3 does not generate smaller state spaces with our benchmark automata, we did 
not investigate further yet. 

Algorithm for Incremental S M T solving Using Parikh Image 

To implement incremental S M T solving to our current Parikh image computation shown 
in Algorithm 7, we need to make the following adjustments. 

We need to precompute persistent clauses once for both A\ and A^. We insert a new 
line to our algorithm between lines 5 and 6. The new line contains a call to a function 
a d d P e r s i s t e n t C l a u s e s () which precomputes persistent clauses for both A\ and A2. Note 
that the function is called only once, before we enter the while loop for iterating over 
potential product states. 
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We compute state specific clauses as normal when we ask whether sat(& (p)) when 
we are checking compatibility of both aPI on line 9. However, we push the previously 
precomputed state persistent clauses to the S M T solver stack. This preserves them when the 
current state specific clauses are dropped after sat(QPI (p)) is resolved. For a pseudocode 
of the replacement of line 9, see Algorithm 9. 

1 s m t P u s h O 

2 res «- a p l (qi) Aapl (qz) is sat 
3 s m t P o p O 

A l g o r i t h m 9: A d d state specific clauses to S M T solver for incremental S M T solving op t imiza­
t ion . 

The line 2 computes Parikh image formulae and determines their satisfiability, as ex­
plained in Section 3.2.3. 

3.2.5 Optimization with S M T Solver Timeout 

In the case of Parikh images computed with S M T solver, it is easier to determine -isat(Q>PI (p)) 
than sat(QPI(p)). Based on our experiments, we use timeout functionalities of S M T solver 
to speed up the process of resolving satisfiability of potential product states. 

We define a maximal amount of time S M T solver can compute sat(QPI (p)) for a single 
product state p to resolve its satisfiability. If S M T solver resolves sat(QPI (p)) before the 
time runs out, we proceed as normal. However, if the time runs out, the result of the 
satisfiability test is unknown and we must presume &PI(p) could be satisfiable: we must 
set res to True. 

This approach resolves sat(QPI(p)) of an over-abstraction described previously. We 
prune such potential product states that sat(QPI(p)) can be resolved quickly (within the 
defined timeout) while allowing the inclusion of some potential product states which are 
in fact unnecessary to the generated product. Nevertheless, we find pruning capabilities of 
this optimization satisfactory and the computation time decreases noticeably. 

The timeout is chosen empirically. One has to experiment with their finite automata. 
The ideal timeout can vary for different benchmarks. One timeout is usually successfully 
usable for operations on similar finite automata. The timeout is directly proportional to 
a precision of Parikh image abstraction and reversely proportional to the scale of Parikh 
image over-abstraction. 

3.3 Combination of State Language Abstractions 

Length abstraction is fast but coarse; Parikh image abstraction is precise but expensive. 
We can combine both abstractions to take advantage of respective strengths of our ab­
stractions. In this section, we present an algorithm which introduces a modification to 
evaluation of compatibility of state language abstractions. We use both length abstraction 
and Parikh image computation to determine satisfiability of state abstraction to optimize 
product construction. The pruning capabilities remain the same as if we computed Parikh 
image alone, or even better in cases where Parikh image computation times out. 

The Algorithm 10 shows how we apply our modifications on a single evaluation of 
compatibility of abstractions. 

First, we test whether a L A alone can prune the generated product state space by omit­
ting the current potential product state [^1,^2] if -•sat(QLA([qi, 52]))- If length abstraction 
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1 i f a ( g i ) A a (52) is u n s a t t h e n 

2 J r e s « - False 
3 e l s e 

4 r e s «- a p / ( g i ) A aPI(q2) is sat 
5 i f r e s = Unknown t h e n 

6 J r e s «- T r w e 

A l g o r i t h m 10: Implementa t ion of checking compa t ib i l i ty of state abstractions using bo th length 
abstract ion and P a r i k h image computa t ion opt imizat ions . 

succeeds in omitting [91,92] from the product, we do not need to compute Parikh images for 
[91,92] and can continue with the product construction as if ->&PI([qi, 92])- Otherwise, we 
continue with Parikh image computation for [91, 92] (resolving satisfiability of its formulae 
as in the basic Parikh image algorithm from Algorithm 7). 

3.4 Abstraction of State Languages with Mintermization 

In this section, we introduce a method of optimizing operations on finite automata using 
minterms [24]. Minterm computation abstracts the state language of automata differently 
than what we have explored so far, allowing us to follow a diverse set of characteristics about 
the state language. We can afterwards make use of computed minterms for the automata 
with other optimization methods introduced in this paper, as well as another optimization 
approaches. 

Foremost, we give an algorithm for minterm computation adapted from [11], further 
defined and expanded in [23] for simulation algorithms for symbolic automata and now 
optimized for product construction to compute minterms for the non-empty multiset of 
input finite automata A = {A\,A2, • • • ,An} where n equals the number of finite automata. 
Gained minterms abstract automata state language in such a way we do not lose any 
information about the original automata (minterms are not an over-approximation of the 
original automata), but might create a more concise finite automata which will be easier to 
work with in our other abstractions and may significantly decrease the computation time 
required for optimizations such as Parikh image computation. 

The general idea is to get sets of transition symbols between two states for all our 
considered finite automata. Compute minterms from these sets, and substitute transition 
symbols between two states in our automata with corresponding minterms created from 
these transition symbols. 

For now, let us explain what minterms are and how you can generate them. 

Definition 3.4.1 (Minterms) 
Given an NFA A = (Q, E , 5,1, F), let $ = {(pi,(p2, • • •, <pn} be a finite set of non-empty finite 
sets of transition symbols <pi = {a \ a e E A 9 - i - 9'} for 1 < i < n where q, q' e Q, n equals the 
number of state pairs (9 , q') such that q ^* q' where q' e 5(q, a). 

We call (fi a transition set for the given pair of automaton states 9, q'. We denote ^ or 
Minterms ($) as a set of all minterms ip for A such that 

= Minterms($) = \ ip = f] ipi 
l<i<n 

Vi € {1, . . . ,n}((lpi € { ^ , Q \ ^ ) A ! / ) * 0 ) 

Minterms are computed once, at the beginning of the optimization process, for all 
considered finite automata. We generate so called minterm tree with nodes as intersection 
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between sets of transition symbols in case the intersection is non-empty. Each node can 
have up to two children, representing intersection with the next transition set and its 
complement, respectively. 

When such minterms for the given automaton are computed, we can abstract the state 
language of the automaton by replacing transitions from the state by their corresponding 
minterms. We say minterm ip is created from the set of transition symbols (p e $ if (p is 
used in the intersection defining ip in its direct form, not as a complement Q \ ip. 

Notice that we can compute minterms over multiple NFAs, which allows us to use 
minterms state language abstraction for optimization of operations on those automata. 

Given finite automata Ai = ({sn> si, S2, S3}, E , Si, {so}, {S3}) and 
^2 = ({<70j Qi, Q2}, E , 62, {qi}, {qo}) over alphabet E = {a, b, c, d} with Si and S2 according to 
Figure 3.9 and Figure 3.10, respectively, the Figure 3.14 depicts how we could mark each 
transition set in our automata to be used in mintermization process. For example, a transi­
tion set (pi could be a set of transition symbols from state so to s i : ipi = {a, b, d}. Similarly, 
we mark the remaining transition sets. Now, we can proceed to execute mintermization 
operations. 

Figure 3.9: Finite automaton Ai with tran- Figure 3.10: Finite automaton A2 with 
sitions Si. transitions $2-

Figure 3.11: Finite automata Ai and A2 used as example automata for mintermization. 

Figure 3.12: Finite automaton Ai with Figure 3.13: Finite automaton A2 with 
transition sets (pi. transition sets (p^. 

Figure 3.14: Finite automata Ai and A2 with marked transition sets used in mintermization. 

Computation of minterms for Ai and A2 is illustrated in Figure 3.15 in a diagram. 
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Figure 3.15: Mintermization process executed on example finite automata Ai and A2. We 
start with the whole alphabet and make our way down through all mintermization sets 
ipi, where 1 < i < n. For each mintermization set, we compute the intersection of the 
preceding set with the current mintermization set (fi. The results are shown in the diagram 
as the nodes of the tree. When operations on all mintermization sets were executed, the 
leaves of the tree (indicated by the green square) represent the final minterms for the given 
mintermization sets $ over the given alphabet X . We denote each minterm tpi, where 
1 < i < where | ^ | represents the total number of generated minterms. 

We start with the whole alphabet of both automata 1 0 at the top of the minterm tree 
to be generated. Afterwards, we iterate over transition sets. For each transition set (pi, we 
compute the intersection of the current minterm tree leaves with: 

• the current transition set (pi and store the result as a left node of this particular tree 
node, 

• the complement of the current transition set Q \ ipi and store the result as a right 
tree node of this particular tree node. 

If the intersection is empty, we omit creating the corresponding child node entirely. In 
the end, we are left with a complete minterm tree for the given set of transition sets 
representing the specified finite automata. 

1 0 I f the automata had non-equal alphabets, we would start with their intersection: £ = S i n E 2 . This is 
an optimization specific to product construction: If some transition symbols are not used by every finite 
automaton, we can safely omit such symbols as they are definitely not present in the intersection of these 
automata. 
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The acquired minterms are: 

* = Minterms($) = {{d},{a,b}, {c}} = {^1 ,^2,^3}-

We can now substitute the former transition sets ipt for finite automata with the appro­
priate minterms ipj,l < j < \^f\ which were created from the specific transition sets ipi e $ 
such that (fi is used in its direct form (not as a complement) in the process of computing 
tpj (optimized for product construction). The gained automata can be seen in Figure 3.18. 

Figure 3.16: Finite automaton A\ with 
transitions substituted by corresponding 
minterms ipi e \& created from these transi­
tion sets. 

Figure 3.17: Finite automaton A2 with 
transitions substituted by corresponding 
minterms ipi e \& created from these transi­
tion sets. 

Figure 3.18: Finite automata A\ and A2 with substituted transitions with minterms in the 
process of mintermization. 

As we can see, we are able to get rid of some transition symbols and reduce the alphabet 
as well as the number of transitions in finite automata. Considering we have minterms over 
alphabet of A, we know that the intersection of two minterms has to be an empty set and 
that Vip e Vl/(i/> £ ip, (p e $) if ip is created from ip. Important improvement of using minterms 
in product construction is the fact that < |E | instead of at most 2 ' s ' as is the case for 
minterms over general predicates for general operation (e.g., [23]). We make use of these 
points further. 

We can use the method of minterm computation with length or Parikh image abstrac­
tions of state languages. We choose this approach in order to improve pruning capabilities 
of length abstraction for some finite automata or speed up demanding Parikh image com­
putation, especially for automata with multitude of transitions between two states varying 
only in transition symbols, which require considerate time to compute and evaluate. 

This method proceeds to represent such sets of transitions between two states with 
(ideally) only a single minterm representing these transitions. We can therefore apply any 
previously mentioned optimization methods (or any other optimization method) on such 
modified automata with minterms as their transition symbols to construct their product 
without the need to compute, for example, Parikh image with every single transition symbol 
between two states. We can now compute possibly fewer transitions with the acquired 
minterms instead. Worst case is that the minterms do not reduce any transition symbols 
and we continue with the same, unchanged original automata. Minterm computation is 
quick and practically free optimization, which can be used every time an intersection of 
finite automata is computed. 

We apply the minterm computation before we start executing any optimized algorithms 
introduced here or any others. Instead of putting original automata as the input to opti-
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mized algorithms, we compute minterms for such automata and substitute all transitions 
with the generated minterms. The new input to optimized algorithms are automata with 
minterms which can be easier to work with, and their intersection can be computed quickly 
and more precisely. If we need to use the intersection automaton further, not just to re­
solve the emptiness problem, we simply substitute the minterms in the product with the 
corresponding original transition symbols back. 

Mintermization of our benchmark automata used in our experiments is however not 
useful, as the benchmark automata do not have multiple transitions between two states 
which could be changed into a minterm. Nevertheless, it is not hard to imagine instances 
of problems where minterms are essential. 

For instance, take regular expressions. If we want to use our abstractions on finite au­
tomata representing regular expressions, we have to use mintermization in advance. Other­
wise, gained abstractions would be extremely complex to evaluate for even simple regular 
expressions. Mintermization would allow us to modify such automata into finite automata 
with manageable number of transitions and transition symbols. 

As a future work, we want to try our abstractions in optimizing automata operations in 
string solving methods such as [1] or [27]. These methods generate regular expressions with 
rich alphabets and complex transitions with character classes, which would be unsolvable 
for state language abstractions which have to consider each transition and its symbol. 

As an example, imagine a simple regular expression a[a-z]*c* with its finite automa­
ton. It contains numerous transitions for each of the symbols in character classes. Our 
abstractions would have to compute with each specific transition symbol. However, if we 
use mintermization on the automaton first, most of the transitions would be simplified into 
a few minterms: {a}, {c}, {b,d-z} and {/3} where j3 represents a set of the remaining sym­
bols of .* not included in the previous minterms. Instead of complex automata transitions, 
we now have a finite automaton with only four transition symbols and eleven transitions. 
Our abstractions can now easily evaluate compatibility of such regular expressions. 
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Chapter 4 

Experiments 

The reference implementation of the proposed optimizations, written in Python 3, as 
well as a complete table of all of our experiments and their results and graphs is publicly 
accessible on a Codeberg repository2. 

Benchmark with sets of different finite automata used on our benchmark problems are 
available on a GitHub repository 3. These finite automata are obtained from runs of regular 
model checking tool on verification of pointer program and parametric protocols created 
in [4] based on method of abstract regular model checking from [5]. Such verification runs 
often execute operations similar to emptiness problem or product construction. 

Our experiments cover the benchmark automata from 40 various categories of verifi­
cation runs. In the benchmark, there are in total 5707 finite automata. However, each 
category contains similar finite automata recognizing similar languages. The results of our 
experiments on our benchmark problems for different combinations of finite automata from 
the same category are nearly identical. Thus, we choose representative finite automata from 
each category randomly. In total, we have executed more than 300 various experiment runs 
for combinations of more than 600 finite automata (over 300 pairs of two finite automata 
from one category). A timeout of 10 minutes for a single test was used. 

We test combinations of finite automata from each category to determine the product 
construction and decide the emptiness of the finite automata intersection. In our experi­
ments, our main objective is to find out how much our optimizations reduce product state 
space in both our benchmark problems. We want to know what are the pruning capabili­
ties of both our optimizations and whether they are efficient. Further, we want to compare 
pruning capabilities of length abstraction and Parikh image abstraction to see whether 
Parikh image pruning capabilities are higher and by how much. 

Our abstractions implemented by the reference implementation are not mature enough 
to properly compete in reduction of time cost of computation yet. Future work includes 
efficient implementation and further optimizations of our abstractions. Nevertheless, our 
experiments show our optimizations can sometimes speed up the execution of both bench­
mark problems. 

In this chapter, we present a few experiments which show and compare the pruning 
capabilities of our optimizations on our benchmark problems. Second, we show what im-

1 I n the reference implementation, we use Z3 as an S M T solver and automata operations are handled by 
for our purposes modified library Symboliclib. 

2 h t t p s : / /codeberg. org/Adda/opt i f a 
3 h t t p s : / /g i thub.com/ondrik/automata-benchmarks/ t ree/master /nf a /non-vtf /armc 
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pact have optimizations on our abstractions on computation time on our both benchmark 
problems. 

4.1 Length Abstraction 
In our first experiment, we want to find out what are the pruning capabilities of length 
abstraction for both our benchmark problems on our benchmark automata. The graph 
in Figure 4.1 shows a comparison of product state spaces sizes in unoptimized product 
construction and our optimized algorithm considering length abstraction for emptiness 
problem. The graph in Figure 4.2 shows a comparison of product state spaces sizes for 
unoptimized product and product optimized by length abstraction. 
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Figure 4.1: Emptiness problem. Figure 4.2: Product construction. 

Figure 4.3: Comparison of state space sizes generated by unoptimized product and product 
optimized by length abstraction for both benchmark problems. Both axes are in symmet­
rical logarithmic scale'', x-axis showing the number of states generated by the unoptimized 
algorithms, y-axis state space sizes of the optimized algorithms. 

As we can see, length abstraction successfully prunes state space in some cases. The 
improvement can be seen especially for the emptiness problem. Notice that for some cases, 
length abstraction can stop product generation immediately on the first product state. 
However, if finite automata have large density of final states, they often accept plenty of 
different word lengths and length abstraction can have problems with finding incompatible 
abstractions. 

The results where length abstraction have difficulties with pruning product space are 
influenced by our benchmark automata. The combinations of benchmark automata in each 
category rarely have empty intersections. Therefore, for our next experiment, we want to 
see whether slight modifications of input automata can highlight the strengths of length 
abstraction. To further extend the set of benchmark automata for this experiment, to each 
category, we add finite automata with slight modifications which we combine with original 
representatives in our experiments. These modifications imitate generation of variations of 
the same finite automata with different final states (similar to finite automata generated by 
string solving method from [1]) or little modifications of transitions (removed transitions or 

5 P l o t is linear around 0 instead of logarithmic. 
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changed transition symbols). We want to observe whether length abstraction can notice the 
difference in finite automata and react accordingly by pruning the generated state space. 

The following graphs show the results of intersection of combinations of the modified 
benchmark automaton with the original representative from each category for both decid­
ing the emptiness problem and product construction. The graph in Figure 4.4 shows the 
comparison of product state spaces sizes in unoptimized and our optimized product con­
struction for emptiness problem. The graph in Figure 4.5 shows the comparison of product 
state spaces sizes in unoptimized and our optimized product construction for product con­
struction. 
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Figure 4.4: Emptiness problem. Figure 4.5: Product construction. 

Figure 4.6: Comparison of state space sizes generated by unoptimized product and product 
optimized by length abstraction of both our benchmark problems with modification of 
benchmark automata. Both axes are in symmetrical logarithmic scale, x-axis showing the 
state space size of the unoptimized product, y-axis state space size of the optimized product. 

Length abstraction is able to prune state space here more often, and the pruning ca­
pabilities of length abstraction are sufficient for these automata. We conclude that length 
abstraction can usually notice the difference between modified and original automata and 
truly prunes substantial parts of the newly unnecessary state space, which we might have 
created by our modifications. We can see from the graphs that the larger the unoptimized 
product gets, the higher impact length abstraction has on the product state space size. 
Product construction optimized by length abstraction generates much smaller products. 
Length abstraction accomplishes to eliminate state space explosion in most cases. 

It is worth mentioning that we have neglected the number of generated states for our 
lasso automata. Their states are not in the product, but they are required for computation 
of the product. As we can see in Figure 4.9, even when counting with lasso states, the total 
number of generated states in the whole process of the product construction can be lower 
than the unoptimized product state space size. The larger the automata are, the better 
results we get. It is understandable that for smaller original automata, the overhead of 
generating lasso automata is significant in comparison with the small generated product 
state space sizes. However, the larger the original automata get, the lesser the overhead of 
the number of lasso states is in comparison with the unoptimized product state space. 

We can see that even that the overhead of generating lasso automata for length ab­
straction is necessary, if length abstraction can prune product states, it still pays off: The 
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Figure 4.7: Emptiness problem. Figure 4.8: Product construction. 

Figure 4.9: Comparison of state space sizes in unoptimized product and product optimized 
by length abstraction with a sum of states generated for both lasso automata. Both axes are 
in symmetrical logarithmic scale, x-axis showing the number of states in the unoptimized 
product, y-axis the number of states in the optimized product. 

number of total states generated for either the product or lasso automata is smaller than 
the number of states in the unoptimized product. 

For the rest of our experiments, we use only the original unmodified automata again. 

4.1.1 Length Abstraction Optimization without S M T solver 

We optimize evaluation of compatibility of length abstractions by substituting S M T solver 
with solving linear congruence equations. To show how linear congruences speed up the 
evaluation of compatibility of length abstractions on the original benchmark automata, we 
present the following experiment. 

The Figure 4.10 shows computation time from our benchmark problems pruned by 
length abstraction with and without S M T solver. 
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Figure 4.10: Comparison of time consumption of length abstraction evaluated by S M T 
solver and length abstraction evaluated without S M T solver, combining both benchmark 
problems. Both axes are in symmetrical logarithmic scale. They show time consumption 
in seconds: x-axis length abstraction evaluated by S M T solver, y-axis length abstraction 
evaluated without S M T solver. 
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We can see that computation of both benchmark problems is faster for length abstrac­
tions solved by linear congruences. This optimization improves significantly computation 
time. Thus, whenever we use length abstraction, we should only evaluate compatibility 
with linear congruences instead of S M T solver. 

Even though we do not focus on time cost of computation in our experiments, to get a 
first impression of how our optimized length abstraction compares to unoptimized product 
construction, we present an experiment in Figure 4.11 showing the difference in time cost 
for unoptimized product construction and our optimized length abstraction. 
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Figure 4.11: Comparison of time consumption of unoptimized product construction and 
length abstraction evaluated without S M T solver, combining both benchmark problems. 
Both axes are in symmetrical logarithmic scale. They show time cost in seconds: x-axis 
unoptimized product construction, y-axis length abstraction evaluated without S M T solver. 

As we can see, with length abstraction optimization of removing S M T solver, we can 
compute both our benchmark problems in time comparable to basic product construction. 
If parts of product construction can be pruned, we can even speed up both our benchmark 
problems. Our future work includes further optimizing length abstraction to lower time 
cost to time comparable to unoptimized product construction or better for most cases, 
even when length abstraction cannot prune large state space. 

Out of all experiments with length abstraction, one weakness of length abstraction is 
clear. The more final states the original automata have, the more difficult it is to optimize 
product construction using length abstraction. Every final state increases the number of 
accepted different lengths of automaton. Therefore, with automata where nearly every 
state is a final state, length abstraction cannot easily determine which product states can 
be pruned. 

4.2 Par ikh Image Computation 

Length abstraction can sometimes prune product state space significantly, sometimes can­
not. We introduced finer abstraction of state languages using Parikh images. Parikh image 
abstraction computes more precise over-approximation of the state language which would 
allow us to prune state space more often, even in cases where length abstraction fails. We 
aim at improving pruning capabilities of our abstractions. In this section, we show exper­
iments with Parikh image abstractions. First, we are interested in pruning capabilities of 
Parikh image abstraction. Later, we evaluate optimizations of Parikh image abstraction. 
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We want to find out what are the pruning capabilities of Parikh image abstraction in 
both our benchmark problems on our benchmark automata. In Figure 4.14, we can see how 
Parikh image prunes state space. 
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Figure 4.12: Emptiness problem. Figure 4.13: Product construction. 

Figure 4.14: Comparison of state space sizes generated by unoptimized product construc­
tion and product optimized with Parikh image abstraction. Both axes are in symmetrical 
logarithmic scale, showing state space sizes: x-axis of unoptimized product, y-axis of opti­
mized product. 

We can see that Parikh image prunes the state space significantly in many cases and 
substantially more than length abstraction, especially for product construction problem. 
Notice that in some cases, Parikh image is able to stop product construction immediately for 
the initial product state. However, in total, Parikh image timed out 6 times on emptiness 
problem and 40 times on product construction. From this we can deduce, that Parikh 
image is able to decide emptiness problem even for complex automata, but, for product 
construction, Parikh image computation often takes significantly longer. 

To see more clearly what is the difference in pruning capabilities of length and Parikh 
image abstractions, in the next experiment, we compare pruning capabilities of both ab­
stractions between each other. The Figure 4.15 compares pruning capabilities of length and 
Parikh image abstractions. 

Clearly, we can conclude from the experiment that Parikh image often optimizes the 
product state space more than length abstraction (at worst products are equal). Thus, 
pruning capabilities of Parikh image abstraction are higher than of length abstraction. In 
many cases, Parikh image optimization is able to prune vast state space by determining 
incompatible abstractions even if length abstractions are compatible. It is concluded that 
Parikh image is more precise abstraction, allowing us to prune more aggressively. 

Furthermore, notice the dots at the bottom of the graph. Here, Parikh image is able to 
determine that product language is empty on the first product state and immediately stop 
the product construction even though length abstraction failed. 

4.2.1 Incremental S M T solving 

Incremental S M T solving proves to be a great improvement to the Parikh image compu­
tation optimization. We want to know how large part of Parikh image formulae can be 
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Figure 4.15: Comparison of state spaces generated by length abstraction and Parikh image 
abstraction, combining both benchmark problems. Both axes are in symmetrical logarith­
mic scale. Axis show product state space sizes: x-axis for length abstraction, y-axis for 
Parikh image abstraction. 

precomputed and how many conjuncts have to be recomputed for each state. The number 
of conjuncts in Parikh images depends on the number of states in finite automata, the num­
ber of transitions and the number of initial or final states. See Table 4.1 for an example 
comparison of the number of all conjuncts in Parikh image, conjuncts common to all states 
(persistent clauses) and state specific conjuncts (state specific clauses). 

P r o d u c t States A l l Conjuncts Persistent Conjuncts State Specific Conjuncts R a t i o 
434 2652 1782 870 67.2% 

Table 4.1: A n example proportion of persistent and state specific conjuncts in Parikh image 
computation with incremental S M T solving optimization. Product States column shows the 
number of product states in the whole intersection product, All Conjuncts column shows the 
number of conjuncts in each computed Parikh image, Persistent Conjuncts column shows 
the number of persistent conjuncts in the whole Parikh image (out of the all Parikh image 
conjuncts), State Specific Conjuncts column states how many Parikh image conjuncts have 
to be recomputed for each product state and Ratio column shows the ratio of persistent 
conjuncts in all Parikh image conjuncts. 

In this example, for a product of 434 states, each product state Parikh image contains 
2652 conjuncts. From those, 1782 conjuncts are persistent conjuncts and the remaining 
870 are state specific conjuncts. A proportional ratio of persistent conjuncts in whole 
Parikh image is around 67.2%. The number of persistent conjuncts means around 70% of 
computed Parikh image conjuncts can be precomputed once and used for the whole product 
generation, and S M T solver can use its cache for efficient evaluation of parts of the Parikh 
image formulae. Only 30% of conjuncts must be computed repeatedly for each product 
state. 

Even if our abstractions are not mature enough to properly optimize time cost, we 
want to get a first impression of what is the cost of more precise pruning capabilities of 
Parikh image abstraction in both our benchmark problems on our benchmark automata. In 
Figure 4.18, we can see how Parikh image optimized by incremental solving cost compares 
to length abstraction optimized by S M T solver substitution with solving linear congruences. 
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Figure 4.16: emptiness problem. Figure 4.17: product construction. 

Figure 4.18: Comparison of the time cost of more precise pruning capabilities of Parikh 
image abstraction with incremental S M T solving and length abstraction optimized by S M T 
solver substitution with solving linear congruences. Both axes are in symmetrical logarith­
mic scale, showing time cost in seconds: x-axis of length abstraction, y-axis of Parikh image 
abstraction. 

As we can see, the time cost for both problems is higher for Parikh image than for length 
abstraction. However, time cost of emptiness problem is less affected by the complexity 
of finite automata. For product construction, Parikh image may take longer to decide 
compatibility of all product states. We can conclude from the experiment that Parikh 
image time cost of more precise pruning capabilities is present, but in many cases, Parikh 
image is able to finish the solving of the problem in reasonable time. 

4.2.2 Precise Timeout Selection 

For our benchmark automata, we have experimentally concluded the ideal timeout for S M T 
solver to solve Parikh image abstractions compatibility is around 600 ms. This gives S M T 
solver enough time to compute most incompatible cases, while it does not wait too long for 
the confirmation of satisfiability of Parikh image formulae for compatible cases. Our bench­
mark automata have however large numbers of transitions from each state, and therefore 
our timeout might not work best for other types of automata and their complexity. We sug­
gest trying running our optimizations first without any timeout and then, according to the 
results, adjust the timeout according to the needs of given operations and the complexity 
of used automata. 

4.3 Combination of State Language Abstractions 

When we combine length and Parikh image abstraction optimizations in one algorithm, we 
want to help length abstraction to more precisely prune state space and reduce the number 
of product states for which Parikh image must be computed. In Figure 4.19, we can see 
how many product states can be skipped with our skippable states optimization, how many 
states is pruned by length abstraction and how many states is pruned by Parikh image 
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abstraction (if length abstraction resolves length abstraction formulae as satisfiable). We 
provide comparison of pruning capabilities of both abstractions on the same automata. 

8000 - -

6000 - -

4000 - -

2000 - -

1000 - -

800 - -

600 - -

400 - -

14522 10123 15661 14458 14563 

Figure 4.19: Summary comparison of pruning capabilities of length and Parikh image state 
language abstractions in optimization algorithm combining both abstractions with opti­
mizations by skippable states. Both axes are in the logarithmic scale: x-axis shows the 
number of processed product states in product construction (how many product states we 
have considered in total), y-axis the number of states resolved by respective abstractions. 
The blue column shows the number of skipped states (we do not need to evaluate abstrac­
tions for them), the red column the number of states with compatible both length and 
Parikh image abstractions, the yellow column the number of states pruned by Parikh image 
abstraction, but not by length abstraction, and the green column the number of states 
pruned by length abstraction alone. In the graph, we have summed the number of states 
resolved by each abstraction or optimization according to the number of processed states 
as follows (from left to right): 0 to 499, 500 to 999, 1000 to 1999, 2000 to 2999 and 3000+. 

We can clearly see that substantial number of states can be resolved by skippable states 
optimization or pruned by length abstraction. Parikh images do not have to be computed 
for any of these states. For the rest of the states, Parikh image have to be computed. We 
see here again how Parikh image abstraction is precise and helps when length abstraction 
cannot: Parikh image can prune large numbers of states even though length abstraction 
fails to prune them. The red and blue column together represent the number of states in 
the intersection, the yellow and green column the number of pruned states. 

Notice that for the fourth column, for number of processed states between 2000 and 
2999, length abstraction managed to prune extensive parts of product state space and 
therefore the number of product states pruned by Parikh image is clearly lower than for 
other categories. This shows that if length abstraction can prune the state space, there are 
less product states for Parikh image to resolve and therefore much less product states to 
be pruned by Parikh images. Length abstraction helped here substantially. 

To sum it up, large parts of product can be pruned. We conclude that combined 
algorithm using both length abstraction Parikh image abstraction prunes state space really 
well. 

To get an impression of how computation time is affected in product construction with 
Parikh image abstraction and with combined algorithm in both our benchmark problems 
on our benchmark automata, we present the following experiment. In Figure 4.22, we can 
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see how Parikh image cost compares to combined approach using both length and Parikh 
image abstractions. 
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Figure 4.20: Emptiness problem. Figure 4.21: Product construction. 

Figure 4.22: Comparison of the time cost of Parikh image abstraction and combined algo­
rithm using both our abstractions. Both axes are in symmetrical logarithmic scale, showing 
time cost in seconds: x-axis of Parikh image abstraction, y-axis of combined algorithm. 

We can see that length abstraction pruning capabilities can help prune some product 
state which do not have to be evaluated by Parikh image abstraction and consequently 
speed up the product construction. There is also a cost of generating lasso automata with 
our abstractions, which can slightly increase the time cost in cases where there are no 
product state that can be pruned and both Parikh image and length abstraction have to 
be evaluated for each one of them. 

We believe there is a space for further improvements to get better results with combined 
algorithm for every case. The key factor here is whether finite automata accept multitude 
of lengths. If they do, length abstraction cannot prune much and many evaluations of 
Parikh images have to be computed. On the other hand, if we had finite automata with 
empty intersections or accepting limited number of lengths, length abstraction can solve 
nearly the problem alone and Parikh image can be computed just for a few hard-to-resolve 
product states. This would significantly speed up the product construction. 

4.4 Results 

The experiments show that our abstractions often prune large parts of the product state 
space. Length abstraction pruning capabilities are decent, but sometimes it fails to prune 
state space for intersection of automata with multiple accepted lengths. Pruning capabili­
ties of Parikh image are much higher. Parikh image often succeeds in pruning states where 
length abstraction fails. Further optimizations of the abstractions have impact on perfor­
mance of our abstractions. State language abstractions are combinable without affecting 
pruning capabilities. 
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Chapter 5 

Conclusion 

The most costly parts of the intersection computation is the generation of product states 
and transitions of the product automaton. We tried to reduce the size of the generated state 
space by pruning the states which cannot lead to any final state by deciding the emptiness 
of the corresponding state languages for the product states using various state language 
abstractions over the finite automata states, such as length abstraction using lasso automata 
or Parikh image computation based on Parikh's theorem. Our abstractions are based on 
over-approximating abstraction of state languages. Each approach has been experimentally 
tested and further optimizations to the proposed algorithms were introduced. 

According to our experiments, product state space can be reduced substantially. Prun­
ing capabilities of our abstractions are satisfactory, and their optimizations have high impact 
on computation time. We get great results especially for intersections with long lines or 
for intersections of automata which differ in accepted lengths. Experiments show our algo­
rithm generates smaller state spaces for both resolution of emptiness problem and product 
construction. 

We have concluded that length abstraction is fast and coarse abstraction, Parikh image 
precise but expensive. Our abstractions can be combined, parallelized and further extended. 

Due to our discoveries, as a future work, we want to continue working on our state 
language abstractions, optimize their performance with efficient implementation and ex­
plore possibilities of additional improvements of these abstractions. We also want to paral­
lelize evaluation of the compatibility of the abstractions. Further combinations with other 
abstraction techniques described below, to see how the generated product state space is 
affected, are in consideration, too. 

The idea of using abstraction in automata problem-solving is not new, but it is not 
properly explored either. There were first attempts of using abstraction techniques in 
automata such as alternating automata [18] or abstract regular model checking [5, 14], 
both using techniques similar to a general predicate abstraction [8, 19] and C E G A R [7]. 

However, we have not encountered similar approaches to optimization of product con­
struction using length or Parikh image abstractions to compare our results with. Techniques 
using abstraction were explored especially in a field of program analysis. In the context of 
automata problem-solving are relevant namely C E G A R [7], I C 3 / P D R [21, 6, 22, 31, 10] or 
I M P A C T [28]. There were some experiments using techniques similar to length abstrac­
tion using information about length constraints [3] to speed up string solving. There are 
also methods based on the interpolation-based approach of McMil lan [2, 17]. A l l the men­
tioned techniques have proven efficient in hardware or software verification, and they can 
be applied in automata too. 
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We believe state language abstractions introduced in this work are promising and their 
pruning capabilities have potential in various automata problems. For that reason, we will 
continue exploring this approach to automata problem-solving and investigate options of 
using state language abstractions to optimize operations on finite automata. 
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Appendix A 

Complete Optimization Algorithm 

N F A At 

N F A P = 
= ( 0 i , E , « i , 7 i , F i ) , N F A A2 = (Q2,Y,,52,h,F2) 
(Ai n A2) = (Q, E , 5,1, F) with L ( A i n A 2 ) = L(Ai) n L ( ^ 2 ) 

I n p u t 

O u t p u t 

1 Q,S,F^0 
2 7 «- 7i x 7 2 

3 W ^ 7 
4 r e s «- False 
5 solved «- 0 

6 a d d P e r s i s t e n t C l a u s e s ( ) 

7 w h i l e * 0 d o 

p i c k l a s t [91,92] f r o m TV 

a d d [51,52] t o solved 
i f sk ippable( [91 ,92]) t h e n 

r e s «- T r w e 

else 

i f a i A ( 9 i ) A a i A ( 9 2 ) is unsat t h e n 

r e s «- False 
else 

smtSolverPushO 

addStateSpeci f i c C l a u s e s ([91,92]) 

r e s «- a p / (91) a a P I (92) is s a i 

smtSolverPopO 

i f r e s = Unknown t h e n 

r e s «- T r w e 

i f r e s = T r w e t h e n 
a d d [91,92] t o Q 
i f 91 e Fi and 92 € F2 t h e n 

|_ a d d [91,92] t o F 

f o r a l l a e E d o 

f o r a l l e 5 i ( 9 i , o ) , 9 2 e ^2(92,0) d o 

i f [91,92] i solved and [91,92] i W t h e n 
|_ a d d [q[,q'2] t o 

a d d [91,92] t o 5 ( [ 9 i , 9 2 ] , a ) 

A l g o r i t h m 1 1 : P roduc t construct ion using bo th length abstract ion and P a r i k h image compu­
ta t ion and a l l their opt imizat ions . 
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Appendix B 

Contents of the Included Storage 
Media 

The following list shows the contents of the included storage media. Listed are only the 
folders on the highest levels in the folder hierarchy. 

• opt i f a/: The main folder with reference implementation of state language abstrac­
tions and all related files. 

— docs/: The LaTeX source files for this paper. 

— r e s u l t s / : The results gained by our experiments. 

— s r c / : The implementation of our optimizations and scripts to run them. 

— b a s i c D F A s / : Example finite automata in Timbuk format used in this paper. 

• S y m b o l i c l i b : Implementation of the external library Symboliclib with our modifica­
tions included. 
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Appendix C 

Reference Implementation Manual 

Our reference implementation was tested on G N U / L i n u x (kernel 5.15.37-1-lts), but it should 
run on any Unix-like system, possibly even on other operating systems. In order for the ref­
erence implementation to work, you need the following programs: Python 3.101 or higher, 
Python library Symboliclib with our modifications and additions 2 and Z3 solver A P I for 
Python: Z3Py from Z3 solver repository 3. Further, to run comparison tests of our opti­
mizations, a command-line benchmarking tool hyperfme . The accepted finite automata 
file format is Timbuk 5 . 

Each program can be run with — h e l p flag to show a quick help message explaining 
how to run the program. 

Run tests for all our state language abstractions for a specific category (directory with 
finite automata) or all categories in a directory (for all subdirectories) with r u n _ t e s t s . p y 
as follows: 
. / r u n _ t e s t s . p y - r < r o o t _ d i r e c t o r y > - n < e x p e r i m e n t s _ n u m b e r _ p e r _ c a t e g o r y > - o < o u t p u t _ f i l e > 

You can run tests for all our state language abstractions for a specific combination of 
finite automata with r u n _ t e s t s . p y as follows: 
. / r u n _ t e s t s . p y — s i n g l e - a < f i n i t e _ a u t o m a t o n _ A > - b < f i n i t e _ a u t o m a t o n _ B > - o < o u t p u t _ f i l e > 

Separate optimizations can be run with their respective scripts: 

• length abstraction with r e s o l v e _ s a t i s f i a b i l i t y _ l e n g t h _ a b s t r a c t i o n . p y , and 

• Parikh image abstraction with r e s o l v e _ s a t i s f i a b i l i t y _ p a r i k h _ i m a g e . p y . 

Combined optimization algorithm using both length and Parikh image abstractions can be 
run with r e s o l v e _ s a t i s f i a b i l i t y _ c o m b i n e d . p y . 

Each program offers various flags and required or optional arguments to adjust the run 
according to our requirements: Whether to construct a full product or just test emptiness of 
the intersection, which abstraction-specific optimizations to enable, where to store results, 
etc. 

Automata with transitions replaced by minterms can be generated with g e t _ m i n t e r m s . py. 

x h t t p s : / / w w w . p y t h o n . o r g / 

h t t p s : / / c o d e b e r g . o r g / A d d a / s y m b o l i c l i b / ; Remember to add Symboliclib to Python path. 
3 h t t p s : / / g i t h u b . c o m / Z 3 P r o v e r / z 3 ; Remember to add Z3Py A P I to Python path. 
4 h t t p s : / / g i t h u b . c o m / s h a r k d p / h y p e r f i n e 
5 h t t p s : / / g i t l a b . i n r i a . f r / r e g u l a r - p v / t i m b u k / t i m b u k / - / w i k i s / S p e c i f i c a t i o n - F i l e - F o r m a t 
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