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Annotation 

Artificial neural networks allow for the modelling of more complex problems, 

including natural language processing. The ability for computers to read and 

understand human written text is critical in the age of big data and artificial 

intelligence, and it is heavily researched. This thesis uses neural networks for author 

profiling, classifying texts into three author age categories. Three different neural 

network types are used to create a whole range of models, namely feedforward- 

(FNN), convolutional- (CNN) and recursive neural networks (RNN). Each of the 

types has its own strenghts and reasons to be used. FNNs are the most generic and 

work well for most problems, CNNs use feature extraction and RNNs specialize in 

sequential data.  

The subsequent results are then compared with the results achieved using a 

different machine learning technique, naive Bayes. Some models resorted to 

guessing, thus reaching accuracies as high as ~70%, whereas others learned, 

achieving worse results, around 50% only. After many experiments, the work 

concludes that naive Bayes is better suited for this data set, with CNNs a close 

second, and provides reasons why this may be so, along with further research 

options that may help the neural networks beat the baseline accuracy.  



 

 
 

Anotace 

Název práce: Klasifikace textu pomocí umělých neuronových sítí 

 
Umělé neuronové sítě umožňují modelování komplexnějších problémů včetně 

zpracování přirozeného jazyka. Schopnost počítačů číst a rozumět textu napsaného 

člověkem je v době big data a umělé inteligence kritickou a velmi zkoumanou 

oblastí. Tato práce se věnuje využití neuronových sítí pro profilování autorů, 

konkrétně klasifikaci textu do tří kategorií věku autorů. Pro vytvoření celé řady 

modelů je využito třech různých neuronových sítí, jmenovitě feedforward (FNN), 

konvolučních (CNN) a rekurzivních (RNN). Každý z typů má své vlastní přednosti a 

důvody pro použití. FNN jsou nejuniverzálnější a fungují dobře pro většinu 

problémů, CNN využívají výběru rysů a RNN se specializují na sekvenční data. 

Následující výsledky jsou porovnány s výsledky dosaženými využitím jiné metody 

strojového učení, naivního Bayesova klasifikátoru. Některé modely se uchýlily k 

hádání, čímž dosáhly až ~70% přesnosti, zatímco jiné se učily, dosahujíc horších 

výsledků, pouze okolo 50 %. Práce po vykonání mnoha experimentů vyvozuje závěr, 

že naivní Bayesův klasifikátor je vhodnější pro použitou sadu dat, těsně následován 

CNN, a vysvětluje důvody, proč tomu tak může být a zároveň popisuje další možnosti 

výzkumu, jak pomoci neuronové síti překonat minimální přesnost. 
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1 Introduction 

Since the start of the digital age, the amount of data has been growing and the need 

for algorithms to process big data arose. The data sets nowadays are generally too 

large or simply too complex to process using traditional software and specialised 

methods are needed. Many man-hours would be needed for some of these processes 

to be run to completion, which is why these tasks are preferably transferred to 

computers. Machine learning algorithms are especially popular, as they can provide 

useful outputs without explicitly being told how. 

Personal data collected online can provide immense insights into the users that visit 

our website, and can be used to personalise the user experience, generally for the 

purpose of making a profit. This can be done directly, through targeted marketing, 

or more indirectly, by showing more articles the user interacts with or likes, so they 

spend more time on the website, during which time more advertisements are 

shown. It can also be used to manipulate people or influence their decisions. 

Therefore, there are strict privacy laws in place regarding personal data online. 

Although making the collection of this data harder, it still doesn’t stop the interest 

in trying to analyse who the user is. 

One possible method to find out more about our users without breaking these 

privacy laws is through their textual communication. Author profiling tries to link 

texts to features of the writer. We may, for example, want to know the sex or the age 

of the user. Author profiling falls into the category of natural language processing, a 

field where a computer tries to understand written or spoken text in a way a human 

does. The computers generally work faster and can, in many instances, achieve as 

high accuracies as human workers, making this a very cost-effective option. 

Several machine learning algorithms can be used, but commonly deep neural 

networks, naive Bayes, support vector machines and logistic regression are used. 

They are all based on relatively simple mathematical models, but are run repeatedly 

or recursively, and again, doing them by hand or in an excel sheet wouldn't be 

effective. Another particular feature about these mathematical models is that they 
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learn over time. So not only can computers now process and analyse data about 

users faster than humans can, but they also improve their results over time. 

Many libraries are prepared to make the programming of these algorithms as simple 

and effective as possible, but still, a substantial amount of preprocessing of data and 

tweaking are required. This process can be slow and requires knowledge of the 

algorithm and used data set. Analysing and comparing different algorithms and 

models is therefore essential. 
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2 Aim 

This bachelor thesis aims to discuss and create deep learning models to classify 

texts. More specifically, create a neural network model that beats the baseline 

accuracy, calculated using naive Bayes, to extract information about the texts’ 

authors. The feature of focus is age, classifying the users into three categories: 10s 

(age 13-17), 20s (age 23-27) and 30s (age 33-39). 

To achieve this goal, three different variants of neural networks will be built, tested 

and compared to the baseline results and to each other. The types of networks in 

question are a feedforward neural networks (FNN), a convolutional neural network 

(CNN), and a recurrent neural network (RNN). Finally, the best-performing model 

will be selected and experimented on to attempt to improve its results even further. 

2.1 Hypothesis 

I expect the baseline calculated using the naive Bayes algorithm to lay on the slightly 

lower end of the summarising accuracies provided by Cesare et al. (Cesare et al., 

2017) Although the TF-IDF method can harvest good results, I think that the blog 

topics are so widely spread that it will struggle to reach astonishing results such as 

in Goswami’s study (Goswami et al., 2009) using only that, yet still reach an 

acceptable 60-70% accuracy. 

I hypothesise that the LSTM model will outperform the other two selected neural 

network models, but only by a few per cent. I believe that using these more basic 

models, I can reach accuracies around 70-85%, depending on the complexity of the 

model. 

Fully connected dense neural networks contain a innumerable links and 

information but no context. Convolutional neural networks‘ focus lies on feature 

extraction, and I am of the opinion that it could outperform the basic feed-forward 

network by a lot, provided it is set up correctly.  It will require some testing with 

different numbers of filters and pooling layers to get the network to focus on the 

decisive textual features and remove additional noise. I believe that the difference 

between running the CNN with stopwords and running it without stopwords can 
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result in wildly different results because of the filtering performed. If more filtering 

has happened in advance, it could reach interesting results faster, possibly scoring 

better. 

Long Short-Term Memory networks were designed especially for (textual) 

sequences and retain some information from previous words later on in the 

analysis. Although I believe it can outperform the other two types, I think this 

difference would be more apparent in generative or summarising experiments, 

where the context is even more important than here. Considering that scientists 

already can reach results around 80% based solely on features in text, I could be 

wrong, and the CNNs may end up beating the other models. 
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3 Related research 

The following chapter outlines previous research in related fields: author profiling 

using different machine learning techniques, natural language processing and 

neural networks. 

3.1 Author profiling 

It is well known that different age groups use different vocabulary and stylization, 

and this is a heavily researched topic. (Argamon et al., 2007b, 2009; Hinds, 2018; 

Huang & Paul, 2019; Peersman et al., 2011) The fascinating part is that most studies 

use alternative machine learning methods, with many handpicked language features 

they keep their eyes out for. The results are generally good, often reaching 80-90% 

accuracy, but a lot of research analyzing the language and choosing the relevant 

features precede the machine learning stages. 

Researching the use of automated detection of demographic traits on the internet is 

becoming more popular. However, other machine learning topics such as image 

recognition and text prediction still remain in the lead. Although I could not find any 

numerical data, tutorials and articles on the latter two are more numerous and 

easier to find. The articles mentioned in the summarising article How well can 

machine learning predict demographics of social media users (Cesare et al., 2017) are 

all from 2006 and later, whereas papers on the use of neural networks for image 

recognition were already innumerable by the mid-90s. Although some pieces on 

author profiling existed too, they were rarer. 

Even among the articles on author profiling, neural networks were not the only type 

of machine learning algorithms used, with other frequent methods including 

support vector machines, naive Bayes, k-nearest neighbours and random forests. 

The other traits that are typically explored are gender and ethnicity. A study 

comparing several approaches found that gender was the easiest trait to identify 

accurately, whereas age predictions, although using the same methodological 

approach, ended up with a wider range of accuracies. (Cesare et al., 2017) The 

results for all the machine learning models combined were between 43% and 95% 
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accuracy, with the age-specific studies using neural networks reaching above 70% 

accuracy and a deep neural network reaching results up to 94% accuracy. 

(Guimaraes et al., 2017; Kim et al., 2017; Peralta et al., 2021) 

 
Figure 3-1: Distribution of predicted accuracy by trait, looking at 160 machine learning 

studies. (Cesare et al., 2017) 

Despite this sounding high, other studies based solely on language features and their 

use among different demographics already reached accuracies as high as 80%. 

(Argamon et al., 2007b; Goswami et al., 2009) Goswami and his team, for example, 

used word frequencies to categorise the texts correctly. 
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Figure 3-2: Partial list of non-dictionary word frequency per 100 000 words in gender and 

age classes as presented by Goswami et al., 2009 

Whilst these results on their own are already interesting, they mean little without 

additional performance measurements such as recall, precision, F1 values or UAC. 

This is because the accuracy can be high on overfitted models and high accuracy on 

its own could in reality indicate a false good result, not performing well on never 

seen data. The Deep Convolutional Neural Network (DCNN) model obtained values 

as high as a recall of 95.6% and an F-measure of 93.0%, although this was performed 

on a binary dataset and the results of multiclass predictions are generally found to 

be lower. Specifically, a comparison showed that the F-score went down by as much 

as 0.2, increasing the binary testing to a 4-category multiclass experiment, scoring 

0.91 for binary, 0.73 for three categories and 0.71 for 4 categories. (Cesare et al., 

2017) Interestingly enough, predicting a numeric age rather than class-based, 

results in an F-score of 0.73, suggesting that unless performing binary analysis, a 

regression model could make more sense. Others, already mentioned above, on the 

other hand, suggest that it is possible to get a lot better results if the age gap is large 

enough, as the differences between the groups are larger. Another alternative is to 

use more sophisticated algorithms, such as deep neural networks. Also interesting 

is that for age specifically, adding metadata actually, unexpectedly slightly 

decreased the accuracy of the classification, going from 76% accuracy to 74%. 

Nowadays, a large number of articles on or related to author profiling are written at 

PAN, a conference focusing on stylometry. It has been the most popular topic,  
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available to pick from since 2013, with more than 40 publications on the topic in the 

last 3 years alone. (Potthast et al., 2009)  

Almost all the above-mentioned studies focus on the English language. The assumed 

reason is the abundance of data in the English language. One study used ten different 

machine learning algorithms on non-English texts, multilayered perceptrons being 

one of them, but they performed relatively poorly, reaching approximately 50-75% 

accuracy, with, in some cases, it performing worse than the baseline. (Duc Pham et 

al., 2009)  

3.2 State-of-the-art results 

Neural networks are generally gigantic and can contain thousands to billions of 

internal variables to adjust. We have between 90 and 100 billion neurons in our 

brains. (Chris Firth et al., 2014) In comparison, the largest artificial neural network 

is the Generative Pre-trained Transformer 3 (GPT-3), containing 175 billion 

parameters accepting an unprecedented 2048 tokens as its input. It was trained on 

almost all the accessible data on the internet at the time and provides many 

interesting tasks, of course including the more typical classification tasks and 

grammar correction, but also more unusual jobs like converting a movie to an emoji, 

explaining code, a recipe creator and a sarcastic chat bot. It can also learn entirely 

new tasks by only looking at a small number of examples. It is based on 

transformers, a relatively new (2017) type of neural network not relying on 

encoder-decoder combinations, convolutions or recurrence and instead uses 

attention mechanisms. With the many parts, it is not viable to implement something 

similar in this work, but as the leading ANN in NLP, it is worth mentioning. (OpenAI, 

2020a, 2020b; Romero, 2021; Vaswani et al., 2017) 

Although GPT-3 can perform many tasks, it can only provide one task at a time. Gato 

is a generalist agent that also uses a transformer-based neural network similar to 

large NLP neural networks to perform 604 different tasks simultaneously. These 

tasks cover a wide range: captioning images, controlling a robot arm to stack blocks, 

engaging in an interactive dialogue and playing games. It allows an input of 1024 

tokens, a batched input of all the mini-tasks. (Reed et al., 2022) 
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Several of the articles in section 3.1 mention that they use state-of-the-art pre-

trained models or achieved state-of-the-art results, but none of them mentions a 

specific number that they are trying to beat. The general accuracy to beat seems to 

be 70%, with some reaching higher and wanting to achieve above 80%, but some 

mentioning as low as 60%. Those numbers are significantly lower than the state-of-

the-art results for other neural network applications, with image recognition using 

convolutional neural networks often reaching above 90%, the typical MNIST 

example using Keras and TensorFlow already reaching a 97% validation accuracy. 

(TensorFlow, 2022) 
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4 Sociological impact 

Author profiling comes with large possible sociological impacts, both positive and 

negative. Two relevant examples are outlined below. 

4.1 Internet usage and safety 

Back in 2018, only 66% of adults over 65 used the internet compared to 98% of  18-

29-year olds. (Internet Usage Statistics, 2021) This makes it a lot harder to find the 

needed data and researchers tend to treat age as categories with the last category 

simply being over 35 or 40+. (Hinds, 2018) The amount of data online has since 

more than doubled (Holst, 2021) and regression may now be used instead of the 

more vague classification. In the case of age, your language use between one year 

and the next is unlikely to change drastically, but between two separate categories, 

there may be a more significant gap. It may therefore be harder to get exactly correct 

answers when using regression. One study solved this issue by discarding 

intermediate age groups to remove the ambiguity. (Argamon et al., 2009)  

Although the internet has many positives and provides endless possibilities and 

opportunities, it also comes with risks. Especially for school-aged children, there are 

4 groups of risks: (niDirect, 2022; Raising Children Australia, 2006) 

1) Content risk: Seeing upsetting content, such as animal cruelty, violence or 

sexual content.  

2) Contract risk: Agreeing with unfair terms and conditions, agreeing to data 

collection, coming into contact with pages with weak internet security, and 

opening them up for other risks.  

3) Contact risk:  Adults posing as children, sharing information or meeting up 

with strangers. 

4) Conduct risk: Cyberbullying 

Points 1-3 give a good motivation for why author profiling focused on the age 

parameter should be studied. Although there are many counters that parents could 
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use, such as child-safe search engines, seemingly safe pages could still cause harm. 

If it would be possible to accurately estimate users’ ages only using their written 

content, we could automatically flag underaged users from adult pages or, on the 

flipside, flag and block adults from child-oriented fora. Nowadays, metadata is 

already used in some “I’m not a robot”- checks, (Scott, 2019) but similar know-how 

is, to my knowledge, not yet used in automatic age classifications on the internet.  

4.2 Ethics of author profiling 

Demographics and why we should care about them is a far-reaching topic, that I will 

only briefly touch on. In general, demographic data is any array of socioeconomic 

information, often looking at gender, age, ethnicity, income and employment status. 

These pieces of data can then be used to see changes over time, e.g., growth or 

declines in the age in the population overall, of the adult population, population 

growth in general, diversity, gender distribution and income. This information is 

then used to plan and make investments in the correct places to either resolve 

related problems. An example mentioned is the number of elderly massive 

increasing resulting in the need for senior housing, certain health services and 

public facilities. (French, 2014) Author profiling online can furthermore be used to 

target users to personalize their content. Currently, one of the only ways to receive 

this data is by surveying or the census. The first is a tedious and expensive process 

and the second often contains older data and does not show the here and now. They 

do however show accurate information on many topics, like migration, language 

use, age, sex, number of children, foreign borns and computer use. (United States 

Census, 2022) Being able to automatize this process and find users that fit your 

needs could be revolutionary. 

Having access to all this data about users can also be misused, such as selling the 

data or targeting individual people or groups to hurt them or make a profit, which 

is why we have to make some ethical considerations. Generally, when using personal 

data, explicit user consent has to be given, but when using such a sizeable data set 

as when working with neural networks, we instead rely on group privacy, that is 

they are not profiled as individuals but as members of a group. If the group is large 
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enough, the information provided is inadequate to pick out an individual and so, is 

still protected. This is why for instance, publishing the test results in a table with 

students' names can be considered a violation of privacy, whereas when published 

as a histogram of overall results, it is not. However, with sufficient pieces of 

information, e.g., previous test scores and scores of friends, we may (soon) be able 

to uncover enough sensitive information to identify individuals and therefore data 

mining is considered to be a grey area by many. To limit the data that companies can 

collect about their users and the actions they can perform with this data, policies 

like the General Data Protection Regulation (GDPR) and California Consumer 

Privacy Act (CCPA) were enforced. (Bonta, 2018; Intersoft Consulting, 2018) For 

similar reasons, large social media websites with larger amounts of user data only 

let you scrape through special capped APIs. (Facebook help center, 2022; Twitter, 

2022) 
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5 Theory 

This chapter gives an overview of what artificial neural networks are and how they 

fit into the field, mentions different components of a neural network, possible data 

preprocessing steps and other theoretical knowledge needed to understand the 

practical network building in chapter 6: Implementation. 

5.1 Natural Language Processing 

Chapter 4 described some of the reasons why one may like to understand and 

analyse text, spoken or written. Natural Language Processing (NLP) is a branch of 

Artificial Intelligence, where computers try to do just this. It heavily overlaps with 

linguistics, and some of the methods are quite similar to human learning – for 

example, Part Of Speech (POS) tagging – that is identifying whether a word is a verb, 

noun or adjective – before performing sentiment analysis – analyse the emotion – 

or natural text generation – letting the computer write the following word or 

sentence. (Bird et al., 2009; Brownlee, 2017; IBM Cloud Education, 2020) Two of the 

methods routinely used in NLP will be explained in this thesis, namely neural 

networks and naive Bayes. 

5.2 Neural networks 

Artificial intelligence is most simply described as machines exhibiting some form of 

human-like intelligence. At the current date, there are no machines that have passed 

the Turing test and won the Loebner Prize golden medal. With the criticism the 

Turing test has received, and the lack of funding, the contest has been suspended 

and no one may ever win it. (AISBX, 2019; Powers, n.d.; Sundman, 2003) All 

intelligence achieved has been in a very narrow field, such as playing chess or 

checkers, driving driverless cars, making mortgage decisions and more. (Brighton & 

Selena, 2007; Conti, 2017; Redmon, 2017; Urmson, 2015) Machine learning is then 

a subfield of Artificial intelligence, where the machines learn by themselves, and 

artificial neural networks are a specific set of algorithms falling into this field. 

Artificial neural networks are inspired by the human brain and the neurons within 

them. The neurons in the human brain are connected and communicate by sending 
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pulses to each other over the synapses between them. Each synapse triggers a 

release of neurotransmitters that change the data received and send the data on to 

the next neuron. (Saaty, 2000) Soon will be shown that this is very similar to how 

artificial neural networks function. From now on, when not specified, neural 

networks will refer to artificial neural networks (ANNs). 

Describing an artificial neural network in simple terms is almost as complicated as 

explaining the human brain and can be looked at from many angles. One possible 

description is that a neural network is a self-learning mathematical model that 

accepts a set of examples (input and expected output) and, by manipulating the 

given data, can accurately predict the output of new, unseen input data. This thesis 

will focus on supervised learning, meaning a human has labelled the data in advance, 

giving the ability to compare results and decide whether the machine is correct or 

not at the time of its decision-making. Unsupervised learning contrasts this and lets 

the machine run more or less freely. Afterwards, a human goes in to see whether it 

spawned any helpful output. 

Neural networks describe fuzzy concepts- meaning there is no definite rule or it may 

not necessarily have a perfect answer. Instead, a good enough rule and solution are 

sought after. Examples of their implementations include image recognition, filtering 

spam, mortgage calculations, finding outliers, and translations. Solving any of the 

above examples using traditional programming methods, would soon result in the 

many if-statements, making the programming and understanding harder. 

Neural networks take an input, also named a feature and an output describing it, 

called a label. The combination of a feature and a label is called an example. An 

example could, e.g., be an image of a dog (feature) and the label being the string 

“dog”. In a different category, calculating the house price, the feature could be a list 

of selected house properties such as the number of windows, square footage, 

whether it has a pool etc. and the label being the actual worth of the house. 

The example with the price of the house is a type of regression problem. We take 

several inputs and output a single number. The dog images being labelled as dogs is 
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instead an example of a categorization problem. We prepare some possible output 

classes and the class with the highest probability is the predicted class. The age can 

be predicted either as a number or as a category. 

There are three common types of categorization: 

1) In binary categorization, the output is either true or false. For instance, a 

person is either a child - under 18 – or and adult - 18 and over.   

2) Multiclass categorization enables the use of more output classes. This is what 

will be used for the author profiling, as it allows the use of several categories. 

The categories that will be used are the 10s, 20s and 30s. Even though there 

are several classes to pick from, there is only ever one correct option. A 

person cannot fall in the age category 14-17 and at the same time be aged 33-

39. It is important to ensure that the class options are disjoint. 

3) Multilabel categorization allows several outputs. It can among other things, 

be used to label Wikipedia articles, so that related pages can easily be found. 

For example, an article on convolutional neural networks could be labelled 

artificial intelligence, machine learning and neural networks. One input, the 

article, gave several outputs, the labels. 

5.2.1 The structure of a neural network 

The basic structure of a simple neural network can be seen in Figure 5-1. Each grey 

circle represents a neuron, the basic building block of the network. A neuron can be 

thought of as a mathematical function taking some input and creating an output. The 

lines between them show which neurons are connected. Neurons are separated into 

layers, such that neurons in the same layer do not interact. Most neural networks 

have at least one layer where all neurons in that layer communicate with all neurons 

in the layer before and the layer after. Such layers are called dense and fully 

connected. 
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Figure 5-1: Artificial neural network architecture (Bre, 2017) 

To go from inputs to outputs, some mathematical operations have to be performed. 

This is done in the in-between layers, commonly called hidden layers. These hidden 

layers can be a number of types that will be described in the next section, 5.2.2: 

Types of layers and models. 

5.2.2 Types of layers and models 

Summarises the neural network types used in this project and the different layers 

within them. 

5.2.2.1  Dense 

“You have between 90 and 100 billion of them [neurons], yet not one of them has 

any idea who you are. But somehow, by chattering among themselves across billions 

of interconnections, neurons conjure up your self-awareness” (Chris Firth et al., 2014) 

Just like in the human brain, a set of neurons firing should cause a reaction in the 

next layer of neurons. In the most basic hidden layers, called dense layers, each 

neuron has several internal variables, namely one weight for each incoming value 

from neurons in the previous layer and one value titled bias. The output of these 

neurons is calculated as the sum of the individual weights times their respective 
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values (weighted sum) and is offset by a bias. The weights describe the importance 

of that neuron's activation for the following layer's neuron, where the size is 

proportional to its influence and a negative indicates a negative effect. 

The bias is then used to discard any small activations considered to be insignificant. 

The most simple version of this, taking several binary inputs and creating one binary 

output was already used in the 50s and is called a perceptron. Linking several of 

those together created a multilayered perceptron and was able to make some basic 

decisions. (Nielsen, 2019) Every decision, however, was binary. Either yes or no, 

never partially true. Although neurons being either entirely on or off more closely 

represents how the neurons in the human brain work, it is not very efficient when 

wanting to make complicated decisions in computing. (Saaty, 2000; Sanderson, 

2017a) To improve the results, some changes were made over the years. Later 

versions of the neuron models accepted non-binary input and output values. 

Once using non-binary inputs, there are two major issues with this output value. Its 

range is anywhere from minus infinity to infinity and, secondly, it is still not able to 

solve non-linear problems very well. To solve these issues, an activation function 

may be used, which squeezes the output values into a smaller range of values and 

may add non-linearity depending on the used mathematical function. This will be 

discussed further in section 5.2.2.5. 

A neuron that can learn – i.e., update its internal parameters (weights, biases, values 

of filters) to achieve better results – is generally a sigmoid neural. Small changes in 

perceptron models could cause the output to flip to the other binary output 

possibility, whereas the sigmoid neurons let small inputs create small changes in the 

output and get closer to a good model – it learns. (Nielsen, 2019) When there are no 

loops or other special characteristics in a neural network, it can be referred to as a 

feedforward neural network, pointing to the forward motion of the data flow, from 

input to output and the process of checking our data against the set weights and 

biases is called a forward pass.. (Amani & Soleimany, 2018) 
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A fully connected dense layer is also routinely used towards the end of the other 

models to reduce the number of neurons to the number of wanted output 

neurons. In classification problems, the number of neurons in the last (dense) layer 

corresponds to the number of classes. 

5.2.2.2  Convolutional Neural Networks 

Convolutional Neural Networks are commonly used for image classification but may 

also be used on sequential data such as texts. To understand CNNs, a step back must 

be taken to look at filters, the kind that can be found in any sophisticated image 

editing programs: Gaussian blur, filtering using median, sharpen, blur, maximum, 

and minimum. (Adobe Photoshop, 2021; CNN: Convolutional Neural Networks 

Explained - Computerphile, 2016) Each filter has its own kernel, a matrix with 

carefully decided values that results in the wanted result. 

A convolution is a mathematical operation by which the kernel slides across the 

image and performs the dot product of the values of the kernel and the original 

image, and the resulting value gets saved into a convoluted image. The kernel then 

gets slid over by a number of pixels, the stride, where the operation is repeated. This 

occurs until the entire image has been convoluted. There are several ways to handle 

the edges, trivial methods being padding (surrounding the image with zeros) to keep 

the original image size or valid, not adding additional zeros and as such only using 

valid values. This second method may result in ignoring the edge pixels, in which 

case some information gets lost. 

When classifying images, this is useful in 2 main ways: it removes fuzziness in the 

image by using operations like blurs, median (salt & pepper effect) and averaging. 

The next step uses gradients operations (Sobel, Robinson, Laplace etc.) to recognize 

specific patterns such as lines, corners and, later on, more complicated patterns. 

Each filter recognizes one such pattern, and therefore several filters are used in one 

convolutional layer. For colour images, 3D convolution filters are used, one two-

dimensional filter for each colour channel. (Bailey et al., 2019; Ježek, 2021; Russo, 

2019) It is vital to recognize that, in neural networks, the programmer only sets the 

number of filters and is not in charge of whether they want to use Sobel or Robinson. 
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The neural network updates the values of the filters, just like the weights and biases 

in the dense layer, to achieve as good a result as possible. To achieve an even better 

result, several convolutional layers are used in a row, called stacking. 

 

Figure 5-2: Testing different gradient operations on Lena (Olisa, 2018) 

Texts may also use convolutional layers to recognize different patterns, known as 

feature extraction, or to filter words. As an analogy, let’s imagine that words such as 

“and”, “you” and “the” may be considered to be worth less to us - as they are used in 

every age group - than less frequent words that may mean more in this context, such 

as “school”, “work” and “pensioner” and therefore should be considered more 

strongly. Neural networks for images use Conv2D (greyscale) or Conv3D (colour 

images) layers and work in one dimension only, whereas ANNs for classifying text 

prefer Conv1D layers, where the one dimension is the order of the sequence. 

5.2.2.3  Pooling layers 

Another method to reduce the size of the data considerably is pooling. It is a way to 

down-sample the given data and remove dimensionality.  It is often used in 

combination with convolutional layers or recurrent layers, following them, to 

reduce the precision. It may sound counter-intuitive, but a too precise convoluted 

image (e.g., a perfectly horizontal straight line of 1 pixel wide) would not recognize 

a slightly different feature (moved over, 2 pixels wide, rotated) as effectively. 
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In the pooling layer, we define two variables: the pooling size, which defines how 

much we want to reduce the image size and the stride, by how much we move the 

grid over each time. In Figure 5-3 an image of 6×6 pixels is summarized by a 2×2 

grid and a stride of 2. The resulting image will be four times smaller (3×3 pixels). 

The orange square, representing the grid, contains four values. Depending on the 

pooling method, we will get a different output. Although others exists, we generally 

use max pooling or average pooling. MaxPooling takes the greatest value in the grid 

and copies it over, ignoring the other values. Average pooling equivalently takes the 

average of the four values inside the grid. See figures Figure 5-3: Max pooling and 

Figure 5-4: Average pooling. 

  

Figure 5-3: Max pooling 

Left – Performing the pooling operation 

Right  - Selecting the max values 

There is another type of pooling, known as global pooling, which, as the grid size 

uses the size of the input data. It is an aggressive way of summarizing data and may 

be used to, for instance, find the topic or mood of a text. It has an average and 

maximum version, GlobalAveragePooling and GlobalMaxPooling. (Brownlee, 2019; 

Russo, 2019) Global pools can, in addition to other things, be used in recurrent 

neural networks to get one output per sequence (word, n-gram or character) rather 

than one output value per feature. 
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Figure 5-4: Average pooling 

Left – Performing the pooling operation 

Right  - Calculating the average values 

5.2.2.4 Recursive Neural Networks 

Before getting into what recursive neural networks are, we will again take a step 

back and focus on the shortcomings of the models mentioned so far and then slowly 

get into how recursive neural networks resolve some of those problems. 

Feedforward networks take each of the examples and analyse them separately from 

each other. This is a perfectly fine method for many problems, including evaluating 

the market price of one house does not depend on whether it is evaluated before or 

after a second house. The data points are standalone. Textual data, however, is a 

great example of sequential data, a form of data where the order matters. Other 

examples are the stock market, weather, location of moving objects and sound. The 

next prediction depends on their history. 

Some methods exist, that could be used to give feedforward and convolutional 

neural networks a small peak at the history, but each of them has its flaws. One of 

the most seen examples is to use a fixed window –looking at a set number of tokens 

(words, characters, sounds, market values) before the one we are interested in. 

Deciding the size of such a window is problematic, as too small a window does not 

provide you with information that is further away (at the beginning of a sentence, 

seasonal fluctuations in the weather), whereas longer windows contain more 

information that may not in any way be relevant to the topic and the window has to 

be a fixed size for the full data set.  Another problem with the fixed window size is 
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that parameters, such as weights and biases, are not shared. This means that a 

feature that may be recognised at one location, may not be recognised in a different 

location. This means that sentences meaning the exact same, only changing the word 

order, may not give the same output. 

Because of this, a search for a more reliable method began, providing long-term 

dependencies (resolving short windows), shared parameters (feature recognised, 

no matter the location), variable length inputs and preservation of the sequence 

order. Most simply put, they needed a way to share the important information found 

in previous neurons to be forwarded to the next neurons, letting them take this into 

consideration too. And so the recursive neural networks were formed. 

Figure 5-5 provides a typical representation of an RNN. On the left, it looks quite 

similar to a typical feedforward neural network, with the addition of a recursive 

arrow, which is where the name comes from. It represents taking the internal state, 

also known as the hidden state, of the neural network at time t-1 and putting it back 

into the network as an additional input to the usual 𝑥𝑡 to produce output  ŷ𝑡 . Simply 

meaning that the output always depends on the current input, in our case word, and 

the previous internal state, which is some number that represents the previous 

words. The right side of  Figure 5-5 shows the unrolled version of the RNN, where 

we more clearly can see the flow of the process, with the different inputs coming in, 

creating (temporary) outputs and forwarding some internal state onto the next 

calculation. Depending on the problem, we may be interested in all the outputs (text 

or music generation) or just the final output (word prediction, categorization). One 

more important thing to note is that the matrix of weights is the same for every time 

step. It does not get updated until we receive the final output, or more typically, the 

final output of the batch. 
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Figure 5-5: Recursive neural network, unrolled state (Amani & Soleimany, 2018) 

The mathematics of RNNs is more complex and depends on the type of recursion 

cell that is selected. One of the more basic models for an RNN is shown in figure 5-6, 

and its calculations are still relatively similar to previously seen networks. For a 

timestep t, we have one new input. Rather than instantly using this input and the 

weights to create an output, we add one step in the middle: we update the internal 

state. This hidden state is based on the previous hidden state and the current input. 

We perform a version of a weighted average (multiply the hidden state and the input 

by their individual weights and add them) before putting the result through an 

activation function, for instance tanh. This state is saved to be used in the next step 

before calculating the output for this timestep. 

 

Figure 5-6: RNN calculations (Adapted from Sanderson, 2017b) 

The two most commonly used forms of recursion are Long-Short Term Memory 

(LSTM) and Gated Recursive Units (GRU). They contain more complex computations 

that are generally chained, but the principle remains the same – the output depends 

on the input and hidden state. LSTMs are notorious for their ability to retain 

information for many timesteps while remaining useful for shorter-term predictions 

too. A typical LSTM cell representation can be seen in Figure 5-7. 
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Figure 5-7: LSTM cell (Amani & Soleimany, 2018) 

It uses an additional structure known as a gate, which selects what information 

should be kept and removed. To perform these actions it sigmoids (σ, keeping only 

a selection of the information, number between 0 and 1) and pointwise 

multiplications (×). The general process contains 4 steps. First, the LSTM cell forgets 

any irrelevant history. Then, relevant new information is then stored. Next, the 

internal state is then updated before finally calculating the output (using an output 

gate). (Amani & Soleimany, 2018; Lopez, 2019; Olah, 2015) As the LSTM cells are 

preprogrammed in Keras and only a few parameters can be changed, this level of 

mathematical understanding is sufficient at this point. (Keras, n.d.) 

Gated Recurrent Units are in many ways similar to LSTMs – they also use gates to 

calculate the internal state, but additionally contain a forget gate and don’t have an 

output gate the way an LSTM does. (Chung et al., 2014; Kostadinov, 2017; Lopez, 

2019) A comparison of the internal state calculations of the different RNNs is shown 

in Figure 5-8. 

 

Figure 5-8: Internal calculation comparison between a basic RNN, LSTM and GRU (Lopez, 
2019) 
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5.2.2.5 Activation functions 

Activation functions are functions used to convert large values, generally the 

weights of the neurons, to a more standardized range. The activations are decided 

in the model creation stage. 

 

Figure 5-9: Linear plot 

Linear is the most simple form and does not change the output. The output range is 

-∞ to +∞. 

 

Figure 5-10: ReLU plot 

ReLU, which stands for Rectified Linear Units, works as a linear activation for 

positive inputs but nullifies all negative inputs. It is quite popular and provides many 

of the same benefits that more complicated algorithms like Sigmoid and tanh 

provide and additionally solves the vanishing gradient problem. The range is 0 to 

+∞. There are versions of ReLu, such as ReLu6, where the upper range is also cut off. 

ReLU6’s range is 0 to 6. (Brownlee, 2020) 
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Figure 5-11: Sigmoid plot 

Sigmoid, S(x)=
1

1+𝑒−𝑥
, squeezes the output to a range of 0 to 1. It solves some 

problems like the range to infinity, but the network may learn very slow due to the 

shallow gradients. It also has a vanishing gradient, meaning it changes minimally 

towards the ends. 

 

Figure 5-12: Hyperbolic tan plot 

 

Tanh has steeper derivatives than Sigmoid and can resolve the slow learning 

problem. However, it only takes inputs between -1 and 1 and still has vanishing 

gradients. 

Softmax is a mathematical algorithm used to convert the raw vector outputs into 

values between 0 and 1, the probabilities that the given example belongs to a given 

category. In neural network classification problems, it is used after the last dense 

layer. 
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5.2.3 Neuron learning and model improvement 

Previously was mentioned that the neurons in the networks, no matter whether in 

a CNN, FNN or RNN, learn over time. They update their internal parameters to 

achieve better results, that is minimise the total error. However, the method of how 

they achieve this has not yet been spoken about. To simplify the thought, 

backpropagation in FNNs will be covered, and although mathematically somewhat 

more complicated, the same principle applies to the other models. 

It is already known that the data flow in feed-forward networks is forwards – from 

the input to the output. Backpropagation is the opposite process, where instead the 

flow from the calculated output back to the input is considered. 

5.2.3.1 Cost functions and loss 

Cost functions, or loss functions, are the equations used to calculate the total error, 

called the loss in the predictions of the network and the chosen method depends on 

the type of the problem. Learning is the process of minimising the loss of a model. 

The most basic form is a linear cost function, with MeanAbsoluteError likely being 

the best-known. Simply calculate the difference between the real and estimated 

values, take the absolute value and sum them all up before taking the average. In the 

case of multiclass categorical predictions, the correct category should have a true 

value of 1 and the rest 0. The main problem with this cost function is that 2 models, 

one with many small errors and a second with many even smaller errors but a few 

large errors would be considered equal. 

To solve this, the MeanSquaredError can be used. Instead of taking the absolute 

value of the difference, we square the resulting value. This way bigger errors get 

penalized more and so, resolved faster. 

Another way to look at the problem is to penalize less probable solutions. We can 

estimate the distribution of a random variable and calculate the entropy, a quite 

abstract concept describing the expected uncertainty. Keras provides different loss 

functions to minimize the entropy, depending on the kind of problem. 



 

28 
 

BinaryCrossentropy is used for binary classification problems – when the output is 

either 0 or 1 – and can be described as the negative average of the log of corrected 

predicted probabilities, where corrected probabilities simply means substituting 

the calculated probability with one minus that probability for all cases where the 

prediction was wrong, then giving us the prediction that the opposite is true. This 

correction is not that easy to make for larger datasets and this correction can be 

made directly in the calculation by accounting for both log(P) and log(1-P) in the 

initial calculation. Log of a probability (a value between 0 and 1) is always negative 

and is therefore countered with the additional minus. 

This can be summarized in the cross entropy equation 

1

𝑁
∑ −[𝑦𝑖 × log(𝑝𝑖) + (1 − 𝑦𝑖) × log(1 − 𝑝𝑖)]

𝑁

𝑖=1

 

Where for binary cross entropy N=2. 

For multiple class categorizations, it is widely accepted to use categorical cross-

entropy, Softmax (Section 5.2.2.5) followed by cross-entropy loss, or sparse 

categorical cross-entropy, a combination between Sigmoid (Also in section 5.2.2.5) 

and cross-entropy loss. (Godoy, 2018; Gómez, 2018) 

5.2.3.2  Optimizers and gradient descent 

At this stage, the capability of the model is known – we know whether it is predicting 

the age category for the corpus accurately or not, and we can compare the outputs 

for different values of internal variables – and the improvement stage begins. 

Imagine a function relying on one input variable only. Given any point, calculating 

the slope at that point, a decision can be made on whether we should increase or 

decrease the given variable to decrease the cost. 

The size of this increase or decrease in the parameters is called the step size, also 

known as the learning rate or simply alpha, pointing to its assigned mathematical 

symbol. It generally has a value between 0.001 and 0.1. This is another variable that 

can be experimented with, larger step sizes may overshoot and jump over the 
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minima, and too small a step size would take too long to get close to the minimum.  

Therefore, an adaptive learning rate may want to be considered, making the steps 

smaller the closer you get to the minimum. (Using the callback reduceLROnPlateau) 

Although we may only find a local minimum of the graph and not the global 

minimum, the found minimum can be seen as a low enough cost and a well enough 

model. 

Gradient descent applies this same principle in a multivariable world, using 

multivariable calculus to calculate the gradient (∇), a vector of partial derivatives, 

which gives us the steepest increase, the calculation of which will be shown in the 

next section. Performing the opposite action, that is -∇ , gives us the steepest 

decrease and gives us the fastest way to the minimum. 

Add the resulting gradient vector to the learnable parameters (the weights and 

biases), hopefully making their next overall output for that one example less wrong, 

and repeat for all the other examples. The magnitude of the vector values shows the 

importance of a suggested change, and some changes will therefore have larger 

effects than others, some only helping one example while destroying the progress 

as a whole. Rather than calculating the loss for each individual forward pass, known 

as online learning, it is typical to group the examples in so-called batches and instead 

use their average cost to use during the backpropagation. A bigger batch is more 

memory intense, but the internal variables are less likely to fluctuate, and the set is 

more likely to find a better optimization. When the gradients across all examples are 

averages, we retrieve a very exact version of gradient descent that is both time and 

memory intensive. Because of this, backpropagation is generally performed in 

smaller, randomised batches – the standard in Keras is 32 examples. The smaller, 

less accurate steps are used in an often used optimizer called stochastic gradient 

descent (SDG) that can be used on both classification and regression models. 

(Brownlee, 2021a; Sanderson, 2017a) 

Another trivial optimizer is Adam, short for Adaptive Movement Estimation. It is an 

extension of SDG, using the first and second moments of the gradient. (Brownlee, 

2021c; Kingma & Lei Ba, 2017) 
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5.2.3.3 Backpropagation 

The algorithm to calculate the gradient in hidden neurons is called backpropagation 

and is based on the chain rule, a basic calculus principle. The more widespread 

version of the equations uses the Hadamard product or element-wise product, a 

matrix operation taking two matrices of dimension m×n and resulting in another 

matrix of the same size, where each index would be the multiplication of the 

elements in the same location, that is A ⊙ B = C, where 𝑐𝑖𝑗 = 𝑎𝑖𝑗×𝑏𝑖𝑗. 

 

Figure 5-13: Backpropagation equations (Nielsen, 2019) 

The notation in Figure 5-13 is more generalised but less intuitive than the following 

example, Figure 5-14 toFigure 5-17 (Sanderson, 2017b). For each example, we get a 

predicted output and a true output. As mentioned before, we want to minimize this 

difference. Looking at each class within the example, we can note down how much 

we would like the output to change by. For example, the result should be that the 

text was written by someone in their 10s, that is y = [1, 0,0] and the prediction, a(L) 

= [0.5, 0.4, 0.1]. Although the prediction is correct, the resulting cost calculated using 

the formula in Figure 5-14,  is quite large. 

 

Figure 5-14: The cost function of the example (Adapted from Sanderson, 2017b) 
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The wanted change in output is [+0.5, -0.4, -0.1]. These outputs cannot be changed 

directly, but the activations can be influenced by changes in the weights and biases 

in the previous layers. 

Imagine if the previous layer only had one neuron, the activation value would be 

calculated by the activation function of the weights time the previous activation plus 

the bias. In general, there is more than one neuron in each layer and this would be 

rewritten as in Figure 5-15 and Figure 5-16. 

 

Figure 5-15: The final layers activation depends on the sigmoid of z (Adapted from 
Sanderson, 2017b) 

 

Figure 5-16: z is the weighted sum of the weights, previous activations and the bias (Adapted 
from Sanderson, 2017b) 

Finally, what we are interested in is how big a change to the previous layer needs to 

be made to create the wanted change in the cost. This can be calculated as the chain 

rule of the previous equations, resulting in relatively simple derivatives that need to 

be multiplied through and summed up, working our way back through all the layers 

until we reach the first. Hence the name backpropagation. 

 

Figure 5-17: Applying chain rule to find the wanted gradient (Adapted from Sanderson, 
2017b) 
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5.2.3.4 Metrics 

The resulting model should have a low loss, but loss alone is not enough to 

objectively decide whether a model is performing well or not. For this purpose, 

different metrics are used. 

These metrics compare the actual (true) labels to the predicted labels. When the 

prediction is correct, this is called a true positive (TP) or true negative (TN), the 

second part referring to what was predicted. When the prediction is wrong, it is said 

to be a false positive (FP) or false negative (FN), the second part is, again, named 

after the prediction, not the true value. The relevant elements are the elements that 

we are trying to identify. A summary of this can be found in Table 5-1: Definitions of 

True and False Positives and Negatives. 

 Predicted labels 

A
ct

u
al

 la
b

el
s 

 Positive Negative 

Positive TP FN 

Negative FP TN 

Table 5-1: Definitions of True and False Positives and Negatives  

These four measures are then used to calculate the needed metrics, namely 

accuracy, precision, recall (also known as sensitivity) and f-measure. There are 

additional measures such as specificity and the negative predictive value but they 

are less conventional. 

As an example, consider a dataset with 100 points, and 20 of them are articles 

written by people in their 10s. The model identifies 15 articles, out of which 10 are 

correct and 5 are wrong. 

 Predicted labels 

A
ct

u
al

 la
b

el
s 

 In 10s Not 10s 

In 10s  10 10 

Not 10s 5 75 

Table 5-2: Example table of TP, FP, TN, FN. Revelant element is in 10s. 
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The accuracy is a measure of what percentage of examples were predicted correctly, 

that is 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 → 

10+10

10+10+5+75
 = 20% 

Precision is a measure of relevance or completion. It looks at the ratio between all 

the labels' true positives and the selected items. 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 → 

10

10+15
 = 40% 

The recall is similar to precision but instead looks at the fraction of relevant 

elements retrieved, true positive over the relevant items. 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 →  

10

10+5
 = 66% 

The difference between recall and precision is clearly illustrated in figure 5-14. 

When increasing the recall, the precision decreases and vice versa. Selecting which 

metrics you want to follow depends on the problem. Another way to find a middle 

ground where both values are acceptable is by comparing the F1 score, or F-score 

for short. It is an average of the precision and recall values. 
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 

→
2×0.4×0.66

0.4+0.66
 = 60% 

Scikit learn provides methods for all the above metrics, where generally the only 

required inputs are the true and predicted labels. (Scikit learn, 2019b, 2019a, 

2019d; Wang, n.d.) 

 

Figure 5-14: Precision and recall (Walber, 2014) 
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Once we have the predictions, the results are generally plotted in a confusion matrix. 

It can be seen as an extension of Table 5-1, where now all the options are shown. All 

the possible categories are plotted along both sides and the cells represent how 

many examples in that row got predicted as that column value. A perfect model has 

all the entries lined up in the main diagonal. It is a simple way to see confusions, 

where the model makes mistakes. For example, the model represented with the 

confusion matrix in Figure 5-15 often confuses the Versicolor for a Virginica and 

research should be done on why this is the case and whether a different model or 

even method isn’t more suitable. The values in the cells can either represent the 

number of examples or percentages. Again, scikit learn has a method to create a 

simple confusion matrix and prints it as an array. For a visual output, it is often 

combined with the Seaborn heatmap. (Aruchamy, 2021; Seaborn, 2012) 

 

Figure 5-15: Confusion matrix comparing lilies, confuses Versicolor for Virginica. (Scikit 
learn, 2019c) 

5.3 Naive Bayes 

Metrics such as mentioned in the previous section can also be compared with other 

machine learning models. Naive Bayes is one of those. Bayes theorem is a well-

known statistical model, which states 𝑃(𝐴|𝐵) =  
𝑃(𝐵|𝐴)×𝑃(𝐴)

𝑃(𝐵)
. In classification 

problems, we are trying to calculate P(category|feature), for each of the categories. 

The feature is in this case a long text and therefore we split it into pieces, so P(B) = 
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b1, b2, …, bn for each of the n tokens in the feature and calculate the probability for 

each of the tokens instead, that is: 

 𝑃(𝐴|𝑏1, 𝑏2, … , 𝑏𝑛) =  
𝑃(𝑏1|𝐴)×𝑃(𝑏2|𝐴)×…×𝑃(𝑏𝑛|𝐴)×𝑃(𝐴)

𝑃(𝑏1)×𝑃(𝑏2)×… ×𝑃(𝑏𝑛)
 

Instead of using the tokens directly, the textual input is generally preprocessed into 

TF-IDF format. It calculates how important a specific term is for one of the 

documents (d) of the corpus (D = di). More specifically, the documents can be 

thought of as a collection of all the blog post texts within one age category. TF stands 

for term frequency and simply is how often a word occurs relative to the whole 

document. TF(term, document) returns a percentage. The values for each term and 

each document is collected and represented as a matrix. The problem some words 

would have a very high TF, yet don’t add much meaning, such as “you”, “the” or  “and” 

and would be found ubiquitously in all the documents. Inverse Document Frequency 

(IDF), resolves this issue by ruling out words that are contained in all documents. 

IDF(term, document) = log (
𝑁𝑢𝑚𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠

𝑁𝑢𝑚𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠𝑊𝑖𝑡ℎ𝑇𝑒𝑟𝑚𝑇
). Using the three categories – 

10s, 20s and 30s – and the term the which would for sure be found in all of them, the 

IDF would be log(3/3) = log(1) = 0. Again, all those values would be saved in a 

matrix. The TF-IDF simply multiplies the TF and the IDF. So even when a term such 

as the may turn up 500 times in the category 10s, the TF-IDF(the, 10s) = 500 × 0 = 

0. (Gandhi, 2018; Ritvikmath, 2020; Scikit learn, 2011c) 

Naive Bayes additionally to Bayes theorem assumes strong independence between 

features, something which is not always true but gives a good approximation. It also 

treats all word orders the same. As mentioned before, two sentences can have the 

same vector of word counts, so-called bags of words, but have different meanings. A 

liked example is I’m good, not bad at all and I’m bad, not good at all. (Amani & 

Soleimany, 2018) 

For document classification, multinomial naive Bayes is generally used - specialised 

for multinomial distributions, a generalization of binomial distributions - where an 

additional smoothing value (α) is used. There are cases where a token occurs in one 

document but not in the others. The count would result in 0 and the final TF-IDF 
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value would also be 0, even if the other words may occur often. The smoothing value 

is added to the original count to overcome this issue. Commonly α is set to one and 

is then called Laplace smoothing. (Scikit learn, 2011a, 2011b; Starmer, 2020) 

5.4 Preprocessing data 

In the previous sections, several potential issues with the data have been described. 

The solutions to these and some additional problems are described in this 

subchapter 

There are many methods how we could preprocess and normalize our data. A 

different study highlights the growing concern of biased data and their biased 

results. Even something as simple as not balancing the length of the texts (padding) 

resulted in an unfair bias. (Dixon et al., 2018, p. 20) However, one should always 

proceed with caution and all of the mentioned methods may not be implemented on 

all data sets. 

The Oxford dictionary states that there are approximately 170’000 words in use. To 

make our work easier, while working with natural language processing, we limit this 

to the most used words, the number depending on the variety in the texts (e.g., social 

media posts are more general than movie reviews), with 10’000 words not being a 

foreign number. (Russo, 2019) 

To summarize the data preparation step, we remove variables for which we have 

too few data points, remove duplicates, perform a frequency distribution and decide 

the wanted vocabulary size based on this analysis. Then we consider whether the 

variables need to be changed in any way, for example, value mapping, where each 

word (or special meaning) gets mapped to a number. 

5.4.1 Tokenization 

Section 5.3 on Naive Bayes explained the idea behind why we cannot input the whole 

text at once. It has to be split. The splitting process is called tokenization, with each 

part of the text named a token, and there are three universally accepted types. 
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1) Word tokenization – Each word is a separate token. The text is split on 

spaces. The problem is that the whole corpus may contain many words, some 

not as relevant because of their scarcity or because they are misspelt. 

Because of this we often set a vocabulary size (S), and only the S most used 

words are included. Any other words are Out Of Vocabulary and are given an 

OOV character, typically [UNK], meaning unknown word. In this way, the 

existence of a word is retained, even if we don’t know the meaning of this 

word. 

2) Character – each character is a separate token. The OOV problem does not 

occur here as, although depending on the language, there are only around 20-

30 possible tokens. Instead, character tokenized texts can struggle with 

comprehension, as it needs context to convey any meaning. 

3) Subword tokenization – is between the word and character level. It splits the 

words into subwords, in ML more commonly called n-grams. The n-grams 

can be of fixed length, they can use stepping or not – skip a few characters – 

or use an algorithm such as Byte Pair Encoding (BPE), which can also be used 

for data compression, that makes a list of possible subword combinations 

and saves only the most used ones. The phrase Subword tokenization with n-

gram length without skipping would result in [Sub, ubw, bwo, wor, ord, rd , 

d t, …]. With a skip of size 2, 2 characters would be skipped between each 

iteration: [Sub, wor, d t, oke, niz, …]. BPE does not make sense on such a small 

data sample, but expected tokens include [est, er, es …] and other word 

endings on top of the single characters [a, b, c, …]. (Khanna, 2021; Pai, 2020) 

5.4.2 Words to vectors 

There are several ways to turn words into numbers. The resulting conversion table 

is called a dictionary. 

1) One-hot encoding - each word has a vector where the represented word is a 

1, and the rest are 0s, resulting in a very large vector, for instance, 10’000 

words long. 
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2) Label encoding,  where each possible value gets given a numerical value, eg 

word = 5, book = 7. This may however capture relationships between words 

that have similar numbers, but are not closely related in meaning. 

A sentence can be represented as a bag of words, saving the number of occurrences 

of each word in a vector. However, the word order is not accounted for, resulting in 

some problems with RNNs. This may be favourable to categorize longer texts, such 

as books or news articles, but in general, the individual texts are shorter, in which 

case padding would be preferred. Then a vector of label encodings is saved instead, 

with special characters for out of vocabulary, padding and the start of a text. Padding 

has no meaning and is therefore customarily given the value zero. It just fills the gap, 

giving us the needed input size. (Sethi, 2020) 

5.4.3 Embedding 

Even on the word level, it can be hard to relate words. Embedding is a method that 

compares the meanings of words and puts them closer to each other in the vector 

space. We can imagine that words such as happy and excited may have similar 

meanings and so strongly related vectors, whereas happy and sad are quite opposite 

and wouldn’t. A feature learned on one word can transfer to other, close vectors. 

(Brownlee, 2021b; Johnson, 2021; Koehrsen, 2018; TensorFlow, 2017b) 

These embedding spaces can be visualised using an embedding projector. 

(TensorFlow, 2017a, 2021) 

One other way to use embeddings is to take a pre-trained embedding, from a large, 

state-of-the-art NLP NN and use it as a feature extractor on your text, before entering 

the model. This is a form of transfer learning, a concept that won’t be described here, 

but could be explored further in future projects. 

5.4.4 Stop words 

When using word tokenization especially, once you have your vocabulary, you will 

notice that the most numerous words will be [UNK] and [], followed by quite 

meaningless words, along the lines of [how, I, do, the, a, for, …]. These words don’t 
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add any real meaning and are therefore stopped before making the vocabulary. The 

Natural Language Toolkit (NLKT) provides methods, including nltk.corpus’s 

stopwords, for this and you can quite easily import the stopwords for a given 

language and filter them out. (Bonaros, 2019; GeeksForGeeks, 2022; NLTK, 2001; 

Singh, 2019) 

5.4.5 Punctuation, numbers, emails, URLs 

Similar to the previous point, punctuation, numbers, email addresses, links and 

similar also don’t convey as much information to the computer as it may to a human, 

at least not in the case of classifications or sentiment analysis. It can be removed 

using a regex or an imported punctuation list. (Bonaros, 2019; GeeksForGeeks, 

2019) 

5.4.6 Word stemming and lemmatization 

Word stemming and lemmatization is also based on the idea of linking similar words 

together, but in a different way. One base of a word can turn into many different 

versions, inflexions, simply by changing the tense or taking making a noun our of the 

given verb. Stemming and lemmatization reduce the number of words used to 

describe the whole set of similar words. 

Stemming, as the name suggests, uses the stem of the word. It removes everyday 

endings like -ing, -‘s and -es. It can be performed with simpler algorithms but may 

result in tokens that are not actual words. Lemmatization does this more properly 

and returns a correct dictionary form, but it is harder to implement. It is useful for 

some cases as it can link irregular words – e.g. good, better, best – and is better at 

distinguishing between homonyms. For example, having turns into hav after 

stemming and have after lemmatization. Lemmatization and stemming return many 

of the same tokens, but generally there are some differences across the entire 

corpus. (Beri, 2020; Manning et al., 2008) 
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5.5 Hardware and software 

5.5.1 Python and its libraries 

Python is widely used in machine learning (Argamon et al., 2007b; Hinds, 2018; 

Huang & Paul, 2019; Peersman et al., 2011) because of the many useful libraries and 

frameworks. NumPy is one of the main libraries on which the others build. It is a 

mathematical library allowing for complicated vector and matrix calculations, 

building on C, a lower level compiled language, and in so doing speeding up the 

calculations performed compared to when run in pure Python, an interpreted 

language, which requires the code to be compiled first. 

When working with machine learning, and neural networks in particular, in addition 

to NumPy, the following libraries are often used: 

• MatPlotLib (Hunter, 2003) – a library to plot different graphs. Works well 

with NumPy data. 

• Pandas (McKinney, 2008) – provides data structures such as data frames to 

allow for easier data manipulation and provides some visual guidance in the 

data analysis. 

• Scikit-learn (Cournapeau, 2007) – sklearn for short, provides various 

machine learning algorithms including naive Bayes (section 5.3), the 

mentioned metrics (section 5.2.3.4), a basic confusion matrix and more. 

• Seaborn (Waskom, 2012) – Based on MatPlotLib, provides methods for data 

visualisation and is often used together with Scikit learn’s confusion matrix 

to give a visually more pleasing and understandable output. 

• NLTK (Team NLTK, 2001) – Natural Language ToolKit – provides many of the 

features mentioned in section 5.4 and other handy tools for natural language 

processing. 

• TensorFlow (Google Brain, 2015) – is focused on deep neural networks. It 

links in closely with Keras. Tensorflow additionally also provides different 
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premade datasets and TensorBoard – a tool to visualise the different 

experiments and their metrics. The name TensorFlow comes from tensor, a 

multidimensional vector, and flow, pointing to the data flowing from one 

neuron to another. (Fleisch, 2011) 

• Keras (Chollet, 2015) – can be seen as an interface for TensorFlow. It 

provides, among others, the layers, optimizers, callbacks, methods to save 

and reload your models so you can use the learned model elsewhere, and the 

functional and sequential APIs. 

5.5.2 Hardware 

Machine learning code can be run on a Central Processing Unit (CPU), but for many 

more data-intense projects, the work can be parallelised and instead run on a GPU 

(Graphical Processing Unit) or TPU (Tensor Processing Unit). 

CPUs were built to handle many, generally long, system operations at once, whereas 

GPUs perform and return fast mathematical calculations to then be rendered. 

Rendering operations are very similar to the tensor operations needed for neural 

networks. CPUs are generally good with calculations, but they only have 1, 2 (dual) 

or 4 (quad) cores. GPUs have many more cores, all containing Arithmetic Logic Units 

(ALUs), which control the multiple threads on each core. They can massively 

parallelise the calculations. For small data sets, however, using a CPU can be faster 

as it generally has larger cache memory and can store more information at once. It 

may simply be able to load and process more data at once. 

Google Colab provides GPU farms, where you can use their GPU computing power 

through the cloud. 

Tensor Processing Units are another step up and are processing units created by 

Google especially to be used with neural networks and TensorFlow. They are 

optimised not just for tensor operations like GPUs, but for larger tensor operations. 

They have separate parts for matrix multiplications and processing vectors, each 

performing these tasks very effectively. TPUs can be 20× faster than state-of-the-art 

GPUs, or as Google states “Models that previously took weeks to train on other 
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hardware platforms can converge in hours on TPUs.” (Google Cloud, 2016) However, 

this is not true for small batches, and additionally, it struggles with high precision 

arithmetic and frequent branching. 

A common factor for all these calculations is that they are generally performed in 

multiples of 8, coming from the idea that a byte contains 8 bits which flowed over 

into many other regions of computing.  
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6 Implementation 

This chapter will in detail describe the creation and comparison of the 

aforementioned models. Figure 6-1 gives a brief outline of the performed steps. 

 

Figure 6-1: Workflow outline 

6.1 Calculating the baseline 

As described in Chapter 3: Related research, the results in different machine 

learning experiments vary widely, reaching 43-95% accuracy. Deep neural 

networks did the best out of all the neural network models achieving a 94%. This 

can, given the limited data, be considered our state-of-the-art result which I am 

unlikely to beat. Anything above 43% seems significant enough to publish, likely as 

it beat the statistical expected value of 33% when guessing wildly when using 3 

categories. My initial aim was to beat 60% accuracy with similar values in the recall, 

precision and F1, but as all those values depend a lot on the data set and we don’t 

have ground-truth data for the user ages - the “true” age in the dataset is what the 

user provided on their blog and could be false - it seems fairer to compare it to a 

different prediction algorithm. 

I decided to use naive Bayes for the baseline calculation, as it is generally fast to 

calculate and it is similar to Goswami’s team’s method based on word frequency. It 

uses TF-IDF, further described in the theoretical section on naive Bayes (section 



 

44 
 

5.3), to convert the text to numbers, and then we model it using multinomial naive 

Bayes. This is most easily done with a simple two-step pipeline and the Sklearn 

library. (Neagoie & Bourke, 2020) 

from sklearn.feature_extraction.text import TfidfVectorizer 
from sklearn.naive_bayes import MultinomialNB 
from sklearn.pipeline import Pipeline 
 
baseline_model = Pipeline([ 
                           ("tf-idf", TfidfVectorizer()), 
                           ("clf", MultinomialNB()) 
]) 
 
baseline_model.fit(train_text, train_labels) 
 
baseline_predictions = baseline_model.predict(train_text) 
 
calculate_result_metrics(y_true=train_labels, 
y_pred=baseline_predictions) 

Code sample 6-1: Baseline calculation – Naive Bayes 

Once the baseline model is created, it is fitted to the training text and predictions are 

made. These predictions are then compared to the true age categories and the 

following metrics are returned: 

Accuracy: 0.6424748782350782 

Precision: 0.7570033463974328 

F1: 0.5815958976728455 

Recall: 0.6424748782350782 

 

So 64% will be the accuracy to beat. 

6.2 Data set selection 

It is imperative to consider the data source. “The quality of the data is the most 

important factor to influence the results from any analysis”. (Myatt, 2007) Selecting a 

data set turned out to be a harder process than expected, largely due to ethics and 

the need for the legal obtainment of the data. Data mining is generally considered a 

grey area and you have to go through special APIs to mine. This is true for many 

social media, including Twitter. Not everyone can get access to their endpoints and 

this turned out to be a too time-consuming option. Secondly, a lot of the data sets 
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used in other research are not published, as the users only gave consent to the 

researchers using their data. The results of their experiments can be published 

under the group privacy clause, but the actual personal data can not. This left me 

with only a small selection of possible data sources. 

Most of the leftover corpora were from PAN, a set of conferences focused on digital 

text forensics and stylometry. Although many of their data sets are used for author 

identification, only two of the ones I managed to get access to were related to age. 

Even then, they did not have the text entries saved directly but instead contained 

the link to Twitter where the text could be found. Unfortunately, many of the links 

were broken and again, it involved data mining Twitter. 

Finally, I noticed that several author profiling articles cited the same researchers. 

Looking them up I found several interesting articles and data sources, including the 

dataset I finally decided to settle on: Effect of Age and Gender on Blogging - Blog 

authorship corpus. (Argamon et al., 2007b) 

 

On their website it is described as follows: 

The Blog Authorship Corpus consists of the collected posts of 19,320 bloggers 

gathered from blogger.com in August 2004. The corpus incorporates a total of 681,288 

posts and over 140 million words - or approximately 35 posts and 7250 words per 

person. 

Analysis of a corpus of tens of thousands of blogs – incorporating close to 300 

million words – indicates significant differences in writing style and content between 

male and female bloggers as well as among authors of different ages. Such differences 

can be exploited to determine an unknown author’s age and gender on the basis of a 

blog’s vocabulary. (Argamon et al., 2007b) 

The selected data set is relatively unique, not only because of its massivity but also 

in the number of additional features it follows and it can be checked whether wrong 

predictions aren’t related to a more specific group of users, e.g., Aquarius male 

students in their 20s get predicted wrong rather than just people in their 20s. 
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Looking at the data results from other similar studies, it was suggested that 

multiclass prediction with 3 or more classes could be less accurate than using 

regression to get a numerical value. However, as this dataset contains preexisting 

gaps, it would not make sense to use such a method as regression does not like 

empty data points and we would have to make educated guesses to fill in the gaps, 

likely resulting in worse results in the end, although further research could be 

performed to check this. 

6.3 Data preparation and manipulation 

6.3.1 Loading the data set 

Before being able to handle the data, first, the data had to be loaded, which is where 

the first problem occurred. The given corpus is immense, an extraordinary ~300MB. 

Initially, I loaded the data using the code in figure X, where blogtest_0.csv was a pre-

split subset of blogtext.csv (Schler et al., 2005) saved locally as the file itself was too 

large to load this way. It was also too large to upload to Github or similar platforms. 

fileToLoad = files.upload() 
df = pd.read_csv(io.BytesIO(fileToLoad['blogtext_0.csv'])) 

Code sample 6-2: Loading partial dataset using io 

I found the same dataset uploaded to Kaggle (Tatman, 2017), a page widely used for 

machine learning, partially as it provides easy ways to load the datasets fast, no 

matter their size. Following the instructions found on the blog Analytics Vidhya 

(Gupta, 2019), I can now load the whole data set in seconds rather than 20 minutes 

per run for only a subset. 

The new method instead uses a personal Kaggle file which can be used to load any 

Kaggle dataset. Afterwards, it unzips the dataset and turns it into a pandas data 

frame – a table format. 

! kaggle datasets download rtatman/blog-authorship-corpus 
! unzip blog-authorship-corpus.zip 
df = pd.read_csv("blogtext.csv") 

Code sample 6-3: Importing the Kaggle dataset and turning it into a data frame 



 

47 
 

6.3.2 Initial data analysis and data preprocessing. 

 
 id gender age topic sign date text 

0 2059027 male 15 Student Leo 14,May,
2004 

Info has been found (+/- 100 
pages…) 

1 2059027 male 15 Student Leo 13,May,
2004 

These are the team members: 
Drewe… 

2 2059027 male 15 Student Leo 12,May,
2004 

In het kader van kernfusie op 
aarde… 

3 2059027 male 15 Student Leo 12,May,
2004 

           testing!!! testing!!! 

4 3581210 male 33 Investment 
Banking  

Aquarius 11,June,
2004 

Thanks to Yahoo!’s Toolbar I can 
… 

Table 6-1: The first 5 results in the data frame, shown using df.head() 

The initial data analyses, such as shown in Figure 6-1 and Figure 6-2, are important 

to ensure that the data is split fair and confirm there is no major bias in one 

direction. Even if the other features will not be used directly - as the additional 

metadata could impair the results - controlling them increases the reliability of our 

final results. We can also check the data types in each column and look at some data 

examples. 

id 19320 

gender 2 

age 26 

topic 40 

sign 12 

date 2616 

text 611652 

dtype: int64 

Table 6-2: Unique elements in each column, extracted using df.nunique() 

Furthermore, df.shape can be used to find the number of data entries and features, 

here returning (681284, 7) and the method df.nunique() gives us the number of 

unique values in the data frame. The number of unique texts comes out as 611'652 
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whereas there are 681'284 rows in the dataset, meaning there are likely duplicates 

which we will have to remove. This can be done with df.drop_duplicates() 

It is clear that the date is in a too detailed format and will be converted into the year 

only before graphing it. Code sample 6-4 takes the date as a string and keeps only 

the last 4 values, such as shown in Code sample 6-5. 

df_no_duplicates["date"] = df_no_duplicates["date"].apply(lambda x: x[-
4:]) 

Code sample 6-4: Simplifying the date, returning only the year 

test_string = "11,June,2004" 
test_string[-4:] //returns ‘2004’ 

Code sample 6-5: Example of date simplification. 

 
Figure 6-2: The results of plotPerColumnDistribution(df_plot, 5,3), showing the distributions 

of the users’ and their texts’ attributes 
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There are only 5 columns that are worth graphing as the others contain too many 

unique values. The valuable features are gender, age, topic, date and sign. 

Additionally, it is worth looking at the text length, which will be shown later. 

As seen in Figure 6-2: 

• The gender distribution is pretty even. No need to interfere 

• The age distribution is poor and should be grouped 

• Most of the topics are unknown. Only “student” really stands out, which will 

likely be well enough represented by the age. This could be checked with a 

correlation test, but considering that the vast majority of topics are unknown, 

it will be better to ignore this feature altogether. This column will be 

dropped. 

• The signs are pretty well balanced. Analysing astrological signs, that is 

astrology, is a pseudoscience (Carlson, 1985) and therefore, I do not consider 

the sign to be a relevant feature and the column will be dropped. It could 

however be relevant if we wanted to know their exact birthdays. 

• Almost all entries were written in 2004, with a few entries in the year before. 

We may assume that there will no major differences in language. The year 

column will be dropped. 

 id gender age text 

0 2059027 male 15 Info has been found (+/- 100 pages…) 

1 2059027 male 15 These are the team members: Drewe… 

2 2059027 male 15 In het kader van kernfusie op aarde… 

3 2059027 male 15            testing!!! testing!!! 

4 3581210 male 33 Thanks to Yahoo!’s Toolbar I can … 

Table 6-3: The data frame after dropping the irrelevant columns 

df_preprocessing = df_no_duplicates.copy() 
df_preprocessing.drop(columns=["topic", "sign", "date"], inplace = 
True) 

Code sample 6-6: Removing duplicate entries 
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6.3.3 Age categories 

The data has been pre-split into 3 categories: 

• Age 14-17, the "10s". They will get label 0 

• Age 23-27, the "20s". They will get label 1 

• Age 33-39, the "30s". They will get label 2 

As seen in Code sample 6-7, I locate the correct rows with three if statements and 

assign the label value to a new column named age_category. The result of this can be 

seen in Table 6-4, showing the output of df_preprocessing[[“age“, 

“age_category“]]. 

df_preprocessing.loc[df_preprocessing["age"] < 20 , "age_category"] = 0 
df_preprocessing.loc[(df_preprocessing["age"] > 20) & 
(df_preprocessing["age"] < 30)  , "age_category"] = 1 
df_preprocessing.loc[df_preprocessing["age"] >30 , "age_category"] = 2  

Code sample 6-7: Assigning age categories 

 age age_category 

0 15 0 

1 15 0 

2 15 0 

3 15 0 

4 33 2 

… … … 

681281 23 1 

681282 23 1 

681283 23 1 

Table 6-4: Adding the age_category label for each entry, comparing it to the age 

After assigning the labels, the split is a lot more even as seen in Figure 6-3. As 

expected, following the line of thought in the research articles, there are more 

teenagers online than adults. This is also why most studies were capped around the 

age of 40. They could not get the needed number of entries for the older age 

categories. 
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Figure 6-3: Pie chart of age categories in the selected dataset 

6.3.4 Further preprocessing 

As discussed in 5.4: Preprocessing data, the cleaning of the data is an important part 

of the machine learning process. It can be argued that good data with a slightly 

worse model can still achieve better results than worse data with a slightly better 

model. 

df_text['text'] = df_text['text'].str.lower() 

Code sample 6-8: Lowercase 

 

df_text['text'] = df_text['text'].apply(lambda x: re.sub('(([a-z]+(\'|-
)[a-z]+)|[a-z]*)(.+?)', '\\1 ', x )) 

Code sample 6-9: Regex for removing special characters 

 

df_text['text'].apply(lambda x: re.sub('urllink', ' ', x.strip())) 
df_text['text'] = df_text['text'].apply(lambda x: re.sub('nbsp', ' ', 
x)) 

Code sample 6-10: Removing hyperlinks 

 

df_text['text'] = df_text['text'].apply(lambda x: re.sub(' +', ' ', x)) 
df_text['text'] = df_text['text'].apply(lambda x: x.strip()) 

Code sample 6-11: Removing leading, trailing and multiple spaces 

I decided to perform several cleaning methods, namely turning everything into 

lower case,  removing any non-text characters, including hyperlinks and non-

breaking spaces, while keeping apostrophes in words so words like what’s, it’s, and 
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they’re are not affected. Removing the hyperlinks was relatively simple as they have 

previously been replaced with the word “urllink” and no regular expression was 

needed. Similarly for the nbsp (non-breaking space) entity. And finally, strip trailing 

and leading whitespaces and reduce multiple spaces to one.  (Code sample 6-8 to 

Code sample 6-11) 

0 info has been found pages and mb of pdf files … 

1 These are the team members drewes van der laag… 

2 in het kader van het kernfusie op aarde maak je ei… 

3 testing testing 

4 Thanks to yahoo s toolbar i can not capture th… 

Table 6-5: The resulting cleaned texts 

6.3.5 Removing short entries 

 

Figure 6-4: Entry length, x= text length, y = occurences 

After calculating the median length of a blog post and the standard deviation, any 

extreme outliers can be removed or edited if need be. After looking at some of the 

entries, it seemed like a good idea to remove the clear "testing" and "spam" entries 

before, so as to not influence the median too much. The longer entries can be 

trimmed using the found sizes. After some experimentation with the constant 

CUT_OFF_LENGTH, the length of the shortest entries to be excluded, the ideal value 

seemed to be 40, removing 11757 entries, under 2% of the entire dataset. Higher 

values started to contain entries with more semantic meaning. 



 

53 
 

Text length attributes: 
Minimum: 0 
Maximum: 750735 
Median: 580.0 
Mean: 1036.9508940316111 
Standard deviation: 2194.781090618009 
Minimum extreme outlier: -10393.905453090045 
Minimum outlier: -6004.343271854026 
Maximum outlier: 7164.343271854026 
Maximum extreme outlier: 11553.905453090045   

 

Some are empty entries, such as entry 150 seen in Table 6-6, which don’t add any 

value to the experiment. Other entries that are cut when using a cut-off length of 40 

are equally irrelevant. 

3 testing testing 

150 (empty entry) 

235 i drunk myself with win 

237 one chance 

240 wounded soul 

… … 

681214 die and choke on jason cucumber 

681245 peace 

681254 dear susan i hope you die patrick 

681257 dear susan why do you hate black people 

681265 susan i don’t like you haha 

Table 6-6: Data entries with a text length less than or equal to 40 

Comparing this to Table 6-7, where entries between a length of 40 and 60 are shown, 

they already contain more content that could be used to create a profile on the 

author. 
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138 we are drinking and talking of unrequited love n 

149 yeah so i’ve been thinking a bit but not typing n 

181 what sort of weird are you this quiz by orsa 

238 it was her face which etched clearly in my mind 

312 argh arghhhhhhh no time to look for one either 

… … 

681135 ah kin hahaz listening to mp har so suang 

681141 still not feeling oky i’m losing my voice 

681161 dear susan you a fat wombat i hate you tha… 

681173 dear susan you were an accident and a mistake … 

681241 dear susan you just aren’t worth it anymo… 

Table 6-7: Data entries with a text length between 40 and 60 inclusive. 

The entries cut are more or less the same as the spread of the whole data set. 

Rechecking all the graphs showing the different distributions, it is shown that 

removing short entries (≤40 characters) did not affect the age distribution of the 

corpus nor any major effect on any of the distributions in general. This means that 

the short message length is not an important representative point of this dataset and 

they can safely be removed. 

There are no minimum outliers, but there are numerous extreme maximum outliers. 

(With lengths 102 268, 104 352, 108 633, 110 774, 115 677, 115 709, … being 

significantly larger than the extreme outlier limit of 11 554) They will be left for now 

as these entries do contain valid and useful information and I don’t want to remove 

them in full. Instead, this will be resolved in a later step. 

6.3.6 Splitting data into training, testing and validation sets.  

I decided to use the classic 7:2:1 split using Sklearn’s train_test_split. The difference 

here was the first line, where the indices had to be reset due to all the dropped 

entries. 
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df_preprocessed = df_preprocessed[num_train_examples:].sample(frac=1, 
random_state = SEED).reset_index(drop = True) 
 
train_text, test_text, train_labels, test_labels = 
train_test_split(df_preprocessed["text"][num_train_examples:].to_numpy(
), 
df_preprocessed["age_category"][num_train_examples:].to_numpy(),        
                                                                        
test_size = 0.20, random_state = SEED )) 

Code sample 6-12: Train: test split of data using scikit-learn’s train_test_split method 

 Data entries Percentage 

Training set 403 236 71.11% 

Testing set 100 809 17.78% 

Validation set 63 006 11.11% 

Table 6-8: The data split 

6.3.7 Tokenisation, vectorisation and embedding 

As covered in section 5.4.1, tokenisation is used to split the given text into smaller 

pieces on a word, character or subword level. 

Although a character level tokenisation would result in a lot lower vocabulary size 

(26 if the text only contains English characters), it would be harder for the neural 

network to find connections between the letters. This does not necessarily need to 

be a problem for deep neural networks, but as I use relatively basic models, I decided 

to instead use word-sized tokenisation with an out-of-vocabulary character [UNK] 

replacing the least numerous words. The third option is subword level tokenisation, 

based on n-grams, where n is the length of each part. Although the idea is interesting, 

I would have to iterate over the entire corpus several times to find the best character 

sequences. As the text is very large, this doesn’t seem feasible to perform on an 

everyday use laptop. 

So finally I settled on tokenisation on a word level with a vocabulary size of 50 000 

words. I do not know the original vocabulary length, as the program crashes when 

the vocabulary size is set to None (unlimited, include all), but around 50 000, the 

words started to become uncommon - misspelt, not readily used in a everyday life 

or even strange. Some of the last included words in the vocabulary include: 
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['ganga','galz','gaby','futsal','furlong','funs','funnn','freshfaced','freeform','freakshow',

'fortify','forster','flinders','flattening'] 

Anything being less common than the above words, likely won’t add much value to 

the written text. Further experiments to reduce the vocabulary size could be 

performed. Comparing that to the most frequent words in the vocabulary: 

['','[UNK]','the','i','to','and','a','of','that','in','it','my','is','you','for','was','on','me','but'] 

Unsurprisingly, empty characters and the sum of all other words not included in the 

vocabulary, the OOV character [UNK], are at the top followed by typical personal 

pronouns and conjunctions. 

In the middle of the vocabulary, we find everyday words like: 

['guys', 'girl', 'gonna', 'used', 'family', 'thinking', 'live', 'hate'] 

Although words at the top of the vocabulary are important in the sense that they are 

used often, we would expect them across all age groups and they don’t add much 

value in that sense. Because of this, it can be worth considering filtering stop words 

- words that are filtered out before the actual natural language processing and 

before creating the vocabulary and it is often recommended to remove them for 

classification problems. 

Probably the most widespread way to remove stopwords is by using NLTK. As 

removing stopwords decreases the corpus size, the overall processing time tends to 

be lower. On the other side, wanting to remove stop words would result in having 

to use NLTK and iterating over the text manually, rather than some other currently 

faster methods. 

Therefore I will keep the stop words for now and instead experiment with it in the 

end, once I have found the most effective neural network model for our data set and 

use a different, quite effective approach for now. 

Only recently out of keras.experimental is the TextVectorization layer. It allows us 

to take any text and it will tokenise and vectorises it, outputting an array of numbers. 
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Padding the too short entries. The output length is based on the average text length 

and the average word length, so handling of any (extreme) upper outliers. 

The final preparation step before the actual machine learning algorithmic 

application is embedding the text. It finds correlations between different words and 

represents these similarities and differences as vectors. 

For example, the following text found in the data set: 

tomorrow i will be wearing my orange pants and red shoes i will be totally stylin haha 

yes today was pretty lame again jeff showed meghan and me his skate video thing and i 

told matt that i want to marry jon it was funny my bus didnt come till it was painfully cold 

outside too but while we were waiting me and natalie and katarina were watching the 

band and tom waved at us hurray for nice drummers 

 

text_vectorizer = layers.TextVectorization(max_tokens = 50000, 
output_sequence_length = OUTPUT_LENGTH) 

Code sample 6-13: Preparing text vectoriser 

After vectorising using the Code sample 6-13, it  turns into the following: 

<tf.Tensor: shape=(1, 207), dtype=int64, numpy= 
array([[  280,     3,    50,    23,   892,    11,  1817,  1210,     5, 
          571,  1092,     3,    50,    23,   572, 32841,   358,   233, 
           97,    15,   183,  1861,   132,  1921,  1173,  9762,     5, 
           17,    59,  5279,   855,   128,     5,     3,   211,  1190, 
            8,     3,    90,     4,  2434,  2190,    10,    15,   323, 
           11,   781,   131,   150,   640,    10,    15,  8086,   626, 
          497,    96,    18,   147,    24,    69,   539,    17,     5, 
         5274,     5, 34349,    69,   440,     2,   537,     5,  1399, 
         7295,    25,   119, 10967,    14,   208, 23020,     0,     0, 
            0,     0,     0,     0,     0,     0,     0,     0,     0, 
                                       ... 
            0,     0,     0,     0,     0,     0,     0,     0,     0, 
            0,     0,     0,     0,     0,     0,     0,     0,     0]]
)> 

 

embedding_layer = layers.Embedding(input_dim = vocab_length, output_dim 
= 256,) 
embedding_layer(text_vectorizer([sample_text])) 

Code sample 6-14: Preparing embedder, running vectorization and embedding on 
sample_text 
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And finally, it gets embedded using Code sample 6-14, returning: 

<tf.Tensor: shape=(1, 207, 256), dtype=float32, numpy= 
array([[[ 0.02513913,  0.03178935, -0.0057463 , ..., -0.04402475, 
          0.00963997, -0.03580179], 
        [ 0.02286556,  0.01752985, -0.01490762, ...,  0.01668891, 
          0.03585861, -0.01533937], 
        [-0.02062292,  0.02874741, -0.01069456, ..., -0.02900656, 
          0.01664155,  0.02478272], 
        ..., 
        [ 0.03735739, -0.03139231, -0.02102159, ...,  0.04548396, 
         -0.00557458, -0.02985016], 
        [ 0.04815376, -0.016858  ,  0.02365566, ...,  0.04610132, 
          0.04403371, -0.00902497], 
        [ 0.0184358 ,  0.01818255,  0.04221144, ..., -0.00287368, 
         -0.01065179, -0.00709324]]], dtype=float32)> 

6.4 Building the neural network models 

Neural networks are always built using the same setup: 

1) Make a model using different layers, deciding the structure.  

2) Fit the model to training data, optionally perform cross-validation, that is 

validate the results using validation data 

3) Make predictions using testing data 

4) Analyse the results 

5) Make changes and repeat 

6.4.1 Feed-forward neural network 

Feed-forward neural networks are commonly built using the sequential API, such as 

the examples shown in code samples Code sample 6-15 and Code sample 6-16, as it 

is a straightforward model with all the layers being processed in sequence. However, 

as recurrent models can’t be built using this, I decided to use the functional API for 

all three, making the differences clearer. 

model = tf.keras.models.Sequential([ 
tf.keras.layers.Dense(64, activation = "relu"), 
tf.keras.layers.Dense(3) 
]) 

Code sample 6-15: Sequential API example 1 



 

59 
 

model = tf.keras.models.Sequential 
model.add(tf.keras.layers.Dense(64, activation = "relu")) 
model.add(tf.keras.layers.Dense(3)) 

Code sample 6-16: Sequential API example 2 

Functional APIs on the other hand, allow for a non-linear topology. The difference 

will be shown in the graphs plotting the models later on. (The Functional API, n.d.) 

inputs = layers.Input(shape=(1), dtype = tf.string) 
x = text_vectorizer(inputs) 
x = embedding_layer(x) 
x = layers.GlobalMaxPool1D()(x) 
outputs = layers.Dense(3, activation = "softmax")(x) 
model_1 = tf.keras.Model(inputs, outputs, name = "1_feed_forward") 

Code sample 6-17: Feedforward model using the functional API 

The basic NN consists of a few layers, first, the texts (inputs) are put through the text 

vectorizer and the embedder, ensuring that all the data going into the neural 

network are numerical. This data is then passed through a global max-pooling layer 

to reduce dimensionality (can’t be passed into a dense layer without) followed by 

the final Dense layer of size 3, representing the 3 possible categories. 

The initial results were quite appalling, and when ran on a subset of 1000 data 

points, it just continuously guessed label 1 (the 20s). Adding an additional dense 

layer at least made it guess in each category, but the results don’t beat the baseline 

and aren’t anything of greater interest: 

Accuracy 53.54% 

Precision 59.15% 

F1 55.67% 

Recall 53.54% 

Table 6-9: FNN result with 2 dense layers 
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Figure 6-5 (left): Expected age category split 

Figure 6-6 (right): Best achieved results using FNN so far 

The feed-forward network seems unable to filter out the important features and 

looking at its confusion matrix (Figure 6-7), there doesn’t seem to be much of a 

system, confirmed by its history diagram (Figure 6-8). We can see that neither the 

validation loss nor the accuracy improve over time. Initially, I thought the model was 

memorising the data shown, but adding early stopping and dynamically changing 

the learning rate had little to no impact on the results, still achieving a training 

accuracy of over 99%, but a validation and testing accuracy of 54%. Clearly, it is not 

learning the correct features. 

 

Figure 6-7 (left): Confusion matrix FNN 

 Figure 6-8 (right): History FNN, x=epochs, y = size 

   

I added two more Dense layers, one with 32 neurons before and with 128 neurons 

after the existing 64 neuron layer, increasing the validation accuracy, but the model 
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is still not learning and improving its results over time, with the validation loss 

increasing rather than decreasing over time (Figure 6-9Figure 6-10) and in a later 

experiment, except the loss, none of the variables changed at all. (Figure 6-10) 

 

 

Figure 6-9 (left): Increasing validation loss 

Figure 6-10 (right): (Validation) accuracy and validation loss don’t change over time 

6.4.2 CNN 

I decided to leave the Feedforward network for a minute, assuming that it would 

achieve the worst results, and modelled, fit and compiled a convolutional neural 

network. The process is very similar, with the addition of a 1D convolutional layer, 

the number of neurons, stride and padding set arbitrarily.  

inputs = layers.Input(shape = (1,), dtype="string") 
x = text_vectorizer(inputs) 
x = embedding_layer(x) 
x = layers.Conv1D(64,4,1, padding="same")(x) 
x = layers.GlobalMaxPool1D()(x) 
outputs = layers.Dense(3, activation = "softmax")(x) 
model_2 = tf.keras.Model(inputs, outputs, name="2_CNN") 

Code sample 6-18: first CNN model  

Although better than the FNN results, the findings weren’t anything to be excited 

about. Although the resulting accuracy, F1 and recall were higher (see results in 

Table 6-10) than the baseline (64.25%, 58.16% and 64.25% respectively), the model 

is not learning and improving on those results (Figure 6-11). 
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Accuracy 67.75% 

Precision 67.45% 

F1 67.55% 

Recall 67.75% 

Table 6-10: CNN initial experiment results 

 

Figure 6-11: The training loss is decreasing and the accuracy increasing as expected, 
validation results aren’t conforming. 

 

Figure 6-12: Confusion matrix CNN, confuses 30s for 20s 
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The model seems to pick out authors in their 10s and 20s quite well, although this 

seems to be more of an accident than any real, scientific reason, as changing the 

parameters barely affects those results. 

6.4.3 LSTM 

After a handful of CNN experiments, I tried my hand at long short-term memory 

networks. Again, the same principle applies, we provide input and output shapes 

and the layers between, in this case using a special LSTM layer instead of the Conv1D 

layer. 

inputs = layers.Input(shape = (1,), dtype = "string") 
x = text_vectorizer(inputs) 
x = embedding_layer(x) 
x = layers.LSTM(64)(x) 
outputs = layers.Dense(3, activation = "softmax")(x) 
model_3 = tf.keras.Model(inputs, outputs, name = "model_3_LSTM") 

Code sample 6-19: LSTM initial model 

As accustomed to by now, the model works well on neither validation nor testing 

data. In the case of the initial LSTM model, it predicted the 20s (label 1) in 80% of 

the cases, only trying to maximise its statistically correct number of answers, not 

learning age-specific features. 

  
Figure 6-13 (left): LSTM confusion matrix, guessing 20s in 80% of the cases 

Figure 6-14 (right): LSTM prediction distribution, guessing 20s in 80% of the cases  
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Accuracy 51.09% 

Precision 50.65% 

F1 45.30% 

Recall 51.09% 

Table 6-11: LSTM initial model results 

6.4.4 Enhancing model accuracy 

After running a few more experiments on each type of model, receiving equally 

terrible results - around 50% when run on a smaller subset -  with the models not 

really learning no matter what I changed. When looking at the model summaries 

(such as the one shown in Figure 6-15) I realised they all had something in common, 

most of the trainable features are not in the neural network but in the embedding 

layer. 

 

Figure 6-15:LSTM model summary, 3 200 000 of the 3 233 219 trainable parameters are in 
the embedding layer. 

embedding_layer = layers.Embedding(input_dim = vocab_length, 
                                   output_dim = 256,  
                                   ) 

Code sample 6-20: Original embedding layer that could be causing problems 
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Removing the embedding layer and replacing it with a normalization layer indeed 

caused the network to learn when ran on a subset jumping from a loss of 200 

(validation: 86) all the way down to 0.98 (val: 1.28), but the resulting accuracies 

were a lot lower, with 50% on the training data and 46% on the validation. 

(increased from 38% and 34% respectively).  Once run on the full dataset, the 

accuracy starts stronger around 45% (val: 47%) with a  loss of 8.5 (1.0) but barely 

gets better, reaching 47% accuracy with a loss of 1.03 on both training and 

validation sets. It could be argued that in reality, it learns a lot more, as the networks 

work in batches of 32, updating the weights as they go. It may just find a well-

working collection of weights very early on, but as the predictions are all over the 

place, further investigation is needed. 

Recompiling and rerunning the feed-forward model, it can be seen that the initial 

loss is a lot higher and the accuracy a lot lower, scoring a loss of 351.9744 and 

accuracy of 0.3693. 

Substituting the embedded layer back, using a lower parameter (8, 16, 32, 64) and a 

lower vocabulary size (10 000, 20 000  words) finally showed growth in validation 

accuracy, but only 2 per cent over a span of 10 epochs. Running the model on testing 

data however showed a precision of 1.0 – we are back to guessing just 20s and 

receive no false positives, meaning a statistically smart guess.  

Next, I prepared the layers in the model in a separate step, so that .get_weights() 

could be run on them. As seen in Code sample 6-21, the weights cover a relatively 

wide range of values and they are not all evenly distributed as the results could 

implicate. Just in case, I decided to add some dropout layers, using 0.1 as the 

dropout. Randomly nulling 10% of the weights, forcing the model to adapt and the 

other nodes to catch the slack. Unfortunately, this did not affect the results by more 

than a few per cent combined with other changes. 
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#prepare new layers 
conv_layer = layers.Conv1D(64,4,1, padding="same") 
output_layer = layers.Dense(3, activation = "softmax") 
global_pooling_layer = layers.GlobalMaxPool1D() 
#use layers 
inputs = layers.Input(shape = (1,), dtype="string") 
x = text_vectorizer(inputs) 
x = embedding_layer(x) 
x = conv_layer(x) 
x = global_pooling_layer(x) 
outputs = output_layer(x) 
model_2 = tf.keras.Model(inputs, outputs, name="2_CNN") 

Code sample 6-21: Separating layer definition from their usage 

 

Figure 6-16: A subset of the weights of dense_layer_3 in the initial FNN 

inputs = layers.Input(shape=(1), dtype = tf.string) 
x = text_vectorizer(inputs) 
x = embedding_layer(x) 
x = global_pooling_layer(x) 
x = dense_layer_1(x) 
x = dropout_1(x) 
x = dense_layer_2(x) 
x = dropout_2(x) 
x = dense_layer_3(x) 
outputs = output_layer(x) 

Code sample 6-22: Adding two dropout layers with layers.Dropout(0.1) 
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Next, I updated my code to use TensorBoards, a visual tool provided by TensorFlow 

to compare experiments, in case my graph drawing was the cause of the error. This 

was not the case. 

 

 

Figure 6-17: A subset of the experiments shown simultaneously using TensorBoard.dev.  

I ran another approximately 100 experiments changing the following parameters: 

• CUT_OFF_LENGTH – including short texts I may not consider valuable. 

• OUTPUT_LENGTH –number of characters of each text being compared. 

• MAX_TOKENS – the vocabulary size, the number of different words allowed. 

• Use of embedding layer vs. a normaliser.  

• Embedding layer output_dimension 

• EPOCHS – first changed manually, early stopping callback added for 

automation. 

• BATCH_SIZE – the number of examples passed through the network before 

backpropagating.  

• The number of neurons in each of the layers. 

• The number of layers in the network. 

• The order of the layers.  

• Optimizers - Adam vs SGD 

• Activation functions - Tanh, Relu, Sigmoid 
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I changed one parameter at a time, to see what had a positive or negative effect on 

the experiments, but hardly any of the changes had any impact on the results at all. 

Increasing the batch size to 256, reducing the max tokens to 20 000 and with early 

stopping and dynamic learning rate, I managed to get the feed-forward network 

results up by 10%, but the learning is barely visible. Going from 59.83% accuracy to 

71.16 (val: 63.01 to 65.51) and the loss decreasing from 86.10% to 66.30% (val: 

0.80, flattening out around 0.78), finally obtaining a graph looking more like my 

expectations (Figure 6-18). 

 

Figure 6-18: Losses decreasing and flattening out, accuracies increasing. 
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7 Discussion 

This chapter discusses the results achieved in Chapter 6, comparing them to the 

hypothesis made in section 2.1 and finally provides ideas for improvements and 

further research. 

7.1 Achieved results, summary 

My hypothesis about the naive Bayes results, expecting a result of 60-70% was 

correct, achieving 64%. 

The expected neural network accuracies was 70-80% and was only just missed, 

reaching 68% with one of the CNN models. 

The hypothesis that LSTM would outperform the other models turned out to be 

wrong and it performed the worst of all, reaching only a maximum accuracy of 51%. 

LSTMs are focused on both long-term and short-term information. When reading 

some of the texts, there is little relation between the beginning and the end of a blog 

post. The authors' thoughts don’t seem as concise as in different forms of text and 

could have impacted the results negatively. Also, the many linguistical errors may 

have impacted this. 

Instead, the CNN performed the best, likely because the feature extraction process 

is close to the methods used by linguists when manually categorizing texts. Just like 

naive Bayes, it focused more on individual textual features, and a few misspelt words 

would not affect this as much. 

Despite my best efforts, I could not get this neural network to learn in the typical 

sense of the word and I have to conclude that I will not, in a reasonable timeframe, 

find a learning neural network model that would beat the baseline set using naive 

Bayes calculations. Although several of my models beat the 64% accuracy baseline, 

the neural network models were simply making statistically smart decisions rather 

than learning textual features and basing their decisions on those. 

Because of this reason, I have to conclude that on this corpus using this 

preprocessed data, naive Bayes is a more appropriate method. 
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7.2 Further investigation 

There is a high likelihood that a learning neural network beating the naive Bayes 

baselines exists, I just did not find one in a reasonable timeframe. Some examples of 

what could be investigated in further detail are: 

Different kinds of layers: for instance a Gated Recurrent Unit, a recurrent alternative 

to LSTM, could be used. 

Using a pre-trained model: either using a model trained on similar texts and 

applying it to this model or applying feature extraction. This is where you take a pre-

trained model, freeze the layers where it learned important textual features, and 

change the output layer to fit your needs. Many pre-trained models can be found on 

TensorFlow Hub. Alternatively, a pre-trained encoder could be used instead of 

manual encoding. The universal sentence encoder is a good example of such an 

encoder that could be used. (Cer et al., 2018) 

Further parameter changes: There are an infinite number of combinations, and I 

may simply have missed the ideal combination. Ideally, a table would be created, 

updating one parameter at a time, from the minimum to the maximum considered 

value and saving all the relevant metrics for each run. The results would be more 

structured and any affecting factors would be more easily recognisable. This, within 

the set bounds, would be an exhaustive method and require more time, but an 

optimal solution in the set range would indubitably be found. Further checks would 

have to be performed to ensure the best results are created by a learning model and 

not a statistically optimised guessing model, but those cases would easily be 

eliminated. 

Speed up the code: my code ran relatively slow at points. I already optimised the 

data loading, using a GPU and 8-based numbers, but there were still parts where my 

code ran slower than I would like. Mainly the regular expressions required a lot of 

time to run. Removing the punctuation required approximately a minute. In the past, 

it was possible to use tf.keras.preprocessing.text.Tokenizer, simply filtering the 

characters, but it has been deprecated. It got replayed with 
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tf.keras.layers.TextVectorization but its features are more limited to options such as 

“lower_and_strip_punctuation”. Although this is enough in many cases, it may not 

always satisfy the needs. This would also have removed my ability to filter out 

shorter messages early on. Alternatively, the texts could have been filtered using a 

stream, token not in the python-specific string.punctuation, which contains the most 

common punctuation types: 

 ! " # $ % & ' ( ) * + , - . / : ; < = > ? @ [ \ ] ^ _ ` { | } ~  

Removing additional sources of bias: As the models often ended up guessing only 

the 20s, it could be argued that the data is biased towards the 20s. However, as we 

saw during the data analysis, the 20s are only just overrepresented with 35% of the 

whole data set, compared to 33% which it would have been in an ideal situation. If 

bias was the issue, I would have expected the results to be biased towards option 0, 

the 10s which is represented by a full 47%, a full 14% more than an ideal 

representation. This could however explain the models where both the 10s and 20s 

were correctly represented and it only struggled with the 30s. Removing additional 

entries to more evenly represent the age categories could be further investigated. It 

may also be worth removing frequent writers, so as to not learn individual peoples’ 

styles.  An alternative rendition of the scientific article “Mining the Blogosphere: Age, 

gender and the varieties of self-expression thesis (Argamon et al., 2007a) contains 

several tables with a detailed analysis of the use of certain topics and vocabulary in 

the different age groups that can be used for inspiration. 

The effect of using lowercase letters only: Capitalization is an important part of our 

language and something we learn over time. I assume that adults are more likely to 

capitalize correctly and this could be another feature used to classify the texts 

correctly. A similar statement is true for improper punctuation use. With my limited 

computing power, I wanted to limit myself in the vocabulary size, and this was a 

sacrifice I was willing to make, although it for sure is an interesting concept to look 

into. This concept is mentioned in, among other papers, Stylometric analysis of 

Bloggers’ age and gender: “As blogs are informal writing, the bloggers’ may not abide 

by the grammatical and editorial rules (…). There are grammatical errors in the blog 
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writing like improper use of full stop (.), exclamation marks (!) and capital letters.” 

(Goswami et al., 2009) 

Using n-grams: I could have experimented with n-grams and rather than looking at 

only one word at a time, using among the most simple tokenization methods. Some 

additional context could have been extracted using n-grams. 

NLTK: In the future, I would use the NLTK options, and not the just-out-of-

experimental Embedding layer. This limited my options, and actions such as trying 

to remove stop words, lemmatization and similar NLP preprocessing techniques 

would cause the embedding to throw unsolvable errors. The Keras 

TextVectorization process could be replaced with SciKit learn’s preprocessing 

options, giving the experimenter more flexibility. I still think that the text-to-number 

conversion and meaningless words may be the reason for the disappointing results 

and having the ability to fine-tune more of those features could make a large 

difference. 

Transformers: As the state-of-the-art method for natural language processing, using 

transformers could have constituted in better result. As they are built on harder 

concepts, I did not consider them a viable option for this project, but they are an 

interesting concept that can be explored in the future. 

Shuffling: Reshuffling the training data before each forward pass, so the model does 

not learn the order. 

Age as a variable: The article Why gender and age prediction from tweets is hard 

(Nguyen et al., 2010) used age and gender as sociological variables, rather than fully 

scientific variables. They found that 10% of the tweets used were written by users 

where the gender does not agree with the sex. They also found that the language use 

was heavily influenced by the surrounding people. This concept may flow into age 

too, and an additional experiment could be created, taking into account the age of 

the closest 5 people in their lives. 
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Text augmentation: For images, image augmentation can be used to perform a few 

simple transformations (rotation, translation, zoom and reflection) to artificially 

grow the dataset and provide more similar yet slightly different examples. I am not 

aware of similar augmentation methods for texts, but further research may. 

7.3 Organisational standpoint 

Some of the other changes I would implement are not related to further research, 

but rather to changes from an organisational perspective. 

Organised code: I would have split the code into different files earlier on. I am 

already using a main file and a helper functions file, but this was not enough. I should 

have saved my preprocessed data set and then had 3 separate code files for each 

type of model. I had to keep scrolling back and forth, trying to find the correct pieces 

of code, related to the model I was working on. 

Computing power: The combination of my laptop and Colab was not ideal for such a 

large corpus. I was not able to open the file in Excel in advance, due to a lack of RAM 

and all the corpus familiarization had to be done through Colab, where I could only 

load in a few lines at a time. Additionally, as the code took some time to run as a 

whole, I would often perform other tasks in between, but Colab only stays active for 

a certain time until it deactivates. I would often see the results of the last run, only 

to change one line and have to run the whole code again as Colab had gone inactive. 

Code readability: I would have kept experimental parts more separate and 

functionalised more of the repeated code. My Python knowledge was not good 

enough for this at the start, but it is something to consider for the future. 

TensorBoard: I only found out about the TensorBoard callbacks towards the end of 

my thesis, after already having run well over 50 experiments. A visual 

representation of all of them on one diagram, easily comparable, rather than my 

notes all over the place would have pushed my thesis to the next level. 

Extent: I largely underestimated how much work would go into each model and my 

initial idea of using 5 models (the 3 used now, GRU and a pre-trained feature 
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extractor) quickly changed to 3, where 2 probably would have been sufficient for a 

bachelor thesis.   
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9 Appendix A 

9.1 Glossary 

ANN = Artificial Neural Network 

CNN = Convolutional Neural Network 

RNN = Recurrent Neural Network 

LSTM = Long Short Term Memory, a type of RNN 

GRU = Gate Recurrent Unit, a type of RNN 

TP = True Positive, model correctly predicts the positive class 

TN = True Negative, model correctly predicts the negative class 

FP = False Positive, model wrongly predicts the positive class 

FN = False Negative, model wrongly predicts the negative class 

AI = Artificial Intelligence 

ML = Machine Learning 

FNN = Feed-Forward Neural Network 
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9.2 Attachments 

Attached to this thesis is one .zip file named 

Anouk_Wilstra_Text_classification_with_artificial_neural_networks.zip containing 

three code files: age_classification_nn.ipynb, helper_functions.ipynb and 

activation_functions.ipynb.  

   



 

 
 

 


