BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENIi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGIi

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
USTAV POCITACOVE GRAFIKY A MULTIMEDIi

ALIGNING PRE-TRAINED MODELS FOR SPOKEN
LANGUAGE TRANSLATION

SLADENi PREDTRENOVANYCH MODELU PRO PREKLAD MLUVENEHO JAZYKA

MASTER’'S THESIS
DIPLOMOVA PRACE

AUTHOR Bc. SIMON SEDLACEK
AUTOR PRACE
SUPERVISOR SANTOSH KESIRAJU, Ph.D.

VEDOUCI PRACE

BRNO 2024

BRNO FACULTY
UNIVERSITY | OF INFORMATION
OF TECHNOLOGY TECHNOLOGY

-r

Master's Thesis Assignment I

Institut: Department of Computer Graphics and Multimedia (DCGM) 157031
Student: Sedlaéek Simon, Bc.

Programme: Information Technology and Atrtificial Intelligence

Specialization: Machine Learning

Title: Aligning pre-trained models for spoken language translation

Category: Speech and Natural Language Processing

Academic year: 2023/24

Assignment:

1. Get familiar with sequence-to-sequence models for spoken language translation (SLT) task.

2. Using existing toolkits (e.g.: Huggingface transformers) implement a baseline SLT system on a
standard dataset (e.g.: HOW2: English -> Portuguese)

3. Implement the Q-transformer baseline for aligning pre-trained speech encoder (ASR) and a language /
MT model.
4. Implement the alignment model as sequence-to-sequence in the same framework as point 3.

5. For a fixed choice of pre-trained models, experiment with the developed alignment models (points 3, 4)
for SLT on two standard datasets and analyse the results.

6. For a fixed choice of alignment model, experiment with various choices of pre-trained models (e.g.: XLS-
R, Whisper, LLaMA, GPT-2) for SLT, and summarize your findings.

Literature:

* Yu et al, "Connecting Speech Encoder and Large Language Model for ASR". arXiv:2309.13963,
2023.

 Lietal "BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and
Large Language Models". ICML, 2023.

+ Kesiraju et al "Strategies for improving low resource speech to text translation relying on pre-trained
ASR models". Interspeech 2023.

Requirements for the semestral defence:

Points 1-3

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Kesiraju Santosh, Ph.D.

Head of Department: ~ Cernocky Jan, prof. Dr. Ing.

Beginning of work: 1.11.2023

Submission deadline: 17.5.2024

Approval date: 14.5.2024

Faculty of Information Technology, Brno University of Technology / Bozetéchova 1/2 /612 66 / Brno

https://www.fit.vut.cz/study/theses/

Abstract

In this work, we investigate a novel approach to end-to-end speech translation (ST) by lever-
aging pre-trained models for automatic speech recognition (ASR) and machine translation
(MT) and connecting them with a small connector module (Q-Former, STE). The connec-
tor bridges the gap between the speech and text modalities, transforming the ASR encoder
embeddings into the latent representation space of the MT encoder. During training, the
foundation ASR and MT models are frozen, and only the connector parameters are tuned,
optimizing for the ST objective. We train and evaluate our models on the How2 English
to Portuguese ST dataset. In our experiments, aligned systems outperform our cascade ST
baseline while utilizing the same foundation models. Additionally, while keeping the size of
the connector module constant and small in comparison (10M parameters), increasing the
size and capability of the ASR encoder and MT decoder universally improves translation
results. We find that the connectors can also serve as domain adapters for the foundation
models, significantly improving translation performance in the aligned ST setting, com-
pared even to the base MT scenario. Lastly, we propose a pre-training procedure for the
connector, with the potential for reducing the amount of ST data required for training
similar aligned systems.

Abstrakt

Tato prace zkoumd novy end-to-end pristup k prekladu mluveného jazyka (ST) vyuzi-
vajici predtrénovanych modeli pro prepis fe¢i (ASR) a strojovy pieklad (MT), propo-
jené malym spojovacim modulem (Q-Former, STE). Ten mé za tkol ptreklenout mezeru
mezi modalitami Fe¢i a textu mapovanim embedding reprezentaci ASR enkodéru do latent-
niho prostoru reprezentaci MT modelu. Béhem trénovani jsou zvolené ASR a MT model
zmrazeny, ladény jsou pouze parametry spojovaciho modulu. Trénovani a evaluace jsou
provadény na datasetu How2, obsahujicim ST data z Angli¢tiny do PortugalStiny. V nasich
experimentech zjistujeme, Ze vétSina sladénych systému prekonava referencéni kaskadovy
ST systém, pricemz vyuzivaji stejné zakladni modely. Navic, pfi zachovani konstantni a ve
srovnani malé (10M parametri) velikosti spojovacitho modulu, vétsi a silnéjsi ASR a MT
modely univerzalné zlepsuji vysledky prekladu. Zjistujeme, Ze spojovaci moduly mohou
také slouzit jako doménové adaptéry pro zvolené zakladni systémy, kdy vyznamné zlepsuji
vysledky piekladu ve sladéném ST prostiedi, a to i oproti holému MT vykonu daného MT
modelu. Nakonec navrhujeme proceduru pro predtrénovani spojovaciho modulu s poten-
cidlem snizit mnozstvi ST dat potifebnych pro trénink obdobnych sladénych systémi.

Keywords

spoken language translation, speech translation, model alignment, automatic speech recog-
nition, machine translation, transfer learning, transformers, Q-Former, domain adaptation

Klicova slova

preklad mluveného jazyka, preklad feci, sladéni modeld, automatické rozpoznavani reci,
strojovy preklad, transfer learning, transformery, Q-Former, doménova adaptace

Reference

SEDLACEK, Simon. Aligning pre-trained models for spoken language translation. Brno,
2024. Master’s thesis. Brno University of Technology, Faculty of Information Technology.
Supervisor Santosh Kesiraju, Ph.D.

Rozsireny abstrakt

Preklad mluveného jazyka (SLT, ST) je proces prepisu audio nahravky obsahujici fe¢ v
urc¢itém zdrojovém jazyce (napt. Angli¢tina) do podoby textového prekladu v uréitém
cflovém jazyce (napt. Portugalstina). Tento problém je strojové typicky fesen dvéma zdk-
ladnimi zpusoby. Prvnim je vytvoreni tzv. kaskddového kompozitniho systému s vyuzitim
jiz. predtrénovanych modelu pro automaticky prepis 1e¢i (ASR) a strojovy preklad (MT).
Tyto modely jsou zapojeny za sebe do série, pricemz je nejdfive vygenerovan prepis zdro-
jové nahravky a poté je tento textovy prepis prelozen MT modelem. Druhym zptisobem
je natrénovani end-to-end enkodér-dekodér modelu, zalozeném napriklad na architekture
transformer [46].

Oba pristupy vsak maji své nevyhody. Kaskadové systémy mohou trpét fenoménem
akumulace chyb pravé z toho duvodu, Ze nejdrive nahravku prepiSou do textu, a ta je
az nasledné prelozena. Vznika ze takto prostor pro zesileni vlivu odchylek zptisobenych
napriklad rozdily mezi slovniky, které dané ASR a MT modely pouzivaji, nebo doménami
dat, na kterych byly systémy trénovany. Déale maji tyto systémy veétsi latenci, protoze k
vygenerovani prekladu je nutné projit dvéma fazemi dekédovani.

Na druhé strané, vytvareni a trénovani end-to-end systémii od zacatku neni jednoduchy
proces, protoze dany systém se musi naucit mapovat komplexni a proménlivé vzory ve
vstupnich fecovych nahravkach na sekvenci diskrétnich symboli (tokent) v daném cilovém
jazyce. Navic pri prekladu je nutné, aby se model naucil reorganizovat a ménit gramatické
struktury zdrojového jazyka tak, aby na vystupu vyprodukoval validni pieklad v cilovém
jazyce.

Je proto bézné pouzit ruzné trénovaci techniky, ktéré vysledky trénovaciho procesu
urychluji a zlepsuji, jako napriklad inicializace enkodéru vihami ASR modelu pro zdrojovy
jazyk, dodate¢nd supervize modelu na vystupu enkodéru, a podobné.

S aktudlnim rozvojem v oblasti velkjch jazykovich modeli (LLMs) se objevilo nékolik
pristupt k vyuziti téchto modeli jako bazi pro generovani textu a usuzovani pri reseni
naro¢nych cross-modalnich tloh jako naptiklad anotace obrazkt. Jeden z téchto pristupu
s nazvem BLIP-2 [25] uvedl jednoduchy transformer spojovaci modul zvany @Q-Former.
Tento modul je zodpovédny za mapovani abstraktnich reprezentaci extrahovanych z daného
zdrojového obrazku zmrazenym piedtrénovanym obrazkovym enkodérem do prostoru word-
embedding reprezentaci daného zmrazeného jazykového modelu, kde slouzi jako soft-prompt.
Dany jazykovy model pak vygeneruje anotaci ke zvolenému obrazku.

Podobné pristupy se nasledné zacaly objevovat i v doménach automatického prepisu feci
a jinych fecové orientovanych tlohéch [54, 50, 6]. V této préaci se podobny pfistup snazime
aplikovat na dlohu prekladu mluveného jazyka.

Pouziti malé spojovaci sité jako Q-Former pro preklenuti mezery mezi feCovou a tex-
tovou modalitou zvolenych zmrazenych predtrénovanych ASR enkodéru a MT modelu je
atraktivni z nékolika divodi. Za prvé, oproti trénovani klasického end-to-end systému pro
preklad Feci, tento propojovaci modul muze byt mnohem mensi s pouze zlomkem parametru.
Zvolené zakladni ASR a MT modely mohou zustat zmrazeny a optimalizovany jsou pouze
vahy konektoru. Dalsi vyhodou je, ze dany konektor muze v porovnani se zvolenymi zak-
ladnimi modely zustat velice maly, protoze stac¢i, aby se naucil spravné mapovani z jednoho
prostoru reprezentaci do druhého. Toto nasledné vede ke kratsim trénovacim casim a
obecné snizeni vypocetnich nakladi na trénovani takto sladéného systému oproti end-to-
end systému stejné velikosti.

V provedenych experimentech pouzivame dvé zakladni architektury pro sladéni ASR
a MT modeld — ECD architektura, kde vystup ASR enkodéru je konektorem mapovan na

cross-attention vstup daného MT dekodéru, a ECED, kdy konektor provadi stejné mapovani
do prostoru vstupnich textovych reprezentaci zvoleného MT enkodéru. Experimentujeme
se dvéma typy spojovacich model: Q-Former a STE (jednoduchy transformer enkodér s
konvoluénim subsampling frontendem).

7 vysledkil nasSich experiment usuzujeme, ze metoda sladovani ASR a MT modelt
pro ST je vhodny obecny framework pro vyuziti off-the-shelf predtrénovanych modeld pro
feSeni této tlohy. Zjistujeme, Ze nas STE konektor porazi vykon Q-Former, primarné diky
flexibilité kvuli schopnosti STE konektoru mapovat variabilné dlouhé vstupni sekvence na
variabilné dlouhy vystup, pricemz tuto schopnost Q-Former nema.

Daéle zjistujeme, ze pouziti vétsich a silnéjSich ASR a MT modelti vede univerzalné
ke zlepseni vysledktu prekladu, a to i v pripadé, ze velikost spojovaciho modul zustava
konstantni a mald v porovnani se sladénymi modely. Konektory také muzou slouzit jako
doménové adaptéry pro zvolené zakladni modely. Pro jeden z MT modela, ktery byl
trénovan mimo doménu How2 datasetu, zlepsuje sladéni v ST (Fec-text) architektuie u ne-
jlepsiho systému preklad o vice nez 9 BLEU bodt oproti zakladnimu piipadu vyhodnoceni
strojového prekladu na How2 (text-text).

V poslednim setu experimentii prozkouméavame zpusoby predtrénovani spojovaciho mod-
ulu pouze s vyuzitim ASR dat a zjistujeme, Ze vice ‘vanilla‘ pristupy zalozené na knowledge-
distillation mezi prostory reprezentaci na vystupu konektoru a MT enkodéru neprinasi
zdaleka takové vysledky a potencial jako vice robustni end-to-end metoda, kterou navrhu-
jeme. Tato end-to-end metoda zahrnuje pretrénovani zvoleného MT dekodéru na iden-
titu ve zdrojovém jazyce, aby bylo néasledné sladény systém mozno predtrénovat pouze s
vyuzitim ASR dat. Po predtrénovani lze pak dosdhnout lepsSich prekladovych vysledku
pri dotrénovani na mensich objemech ST dat. Prestoze tato predtrénovaci metoda proza-
tim nedosahuje nijak zazra¢nych vysledkti, domnivame se, Zze ma potencidl pro budouci
experimenty, Upravy a zlepseni.

Aligning pre-trained models for spoken language
translation

Declaration

I hereby declare that this Master’s thesis was prepared as an original work by the author
under the supervision of Mr. Santosh Kesiraju, Ph.D. I have listed all the literary sources,
publications, and other sources, that were used during the preparation of this thesis.

Simon Sedlacek
May 16, 2024

Acknowledgements

I would hereby like to sincerely thank my supervisor, Santosh Kesiraju, Ph.D. for his
support, advice, patience, and most importantly — inspiring discussions while working on
this thesis. Also, I would like to thank my friend, Ing. Alexander Polok for giving me access
to his excellent repository for my experiments, and always being there to help.

Contents

1 Introduction
2 Transformer-based neural networks
2.1 The Transformer
2.1.1 Attention mechanism L L
2.1.2 Word embeddings and positional encoding
2.1.3 Encoder
2.1.4 Decoder e
2.2 Transformer architectures in language modeling
2.3 Transformers for automatic speech recognition
2.4 Transfer learningo
3 Spoken language translation
3.1 SLT system architecture
3.1.1 End-to-end SLT systems
4 Pre-trained model alignment
4.1 The Q-Former. i i it e
4.1.1 Q-former for automatic speech recognition
4.1.2 Handling variable-length audio inputs
4.1.3 The Subsampler-Transformer Encoder connector (STE)
4.2 Proposed alignment architectureso
5 Experiments
5.1 The How2 dataset i
5.1.1 Evaluation metrics o e
5.2 Baseline ASR and MT systems
5.2.1 Training the ASRmodel
5.2.2 Training the MT model
5.2.3 Choosing off-the-shelf ASR and MT models
5.3 Baseline ST systemso
5.4 Alignment architecture evaluation
5.4.1 Architecture 1 —ECD
5.4.2 Architecture 2-ECED
5.5 ASR and MT model scaling effects
5.6 Q-Former query count
5.7 Evaluating the connectors on different input lengths

NI |

NeJ

10
13
13
15

16
16
17

19
20
22
22
23
24

6 Connector network pre-training
6.1 Knowledge distillation approach
6.2 End-to-end pre-training with MT decoder retraining
6.2.1 Pre-training experiments

7 Conclusions
Bibliography

A Contents of the enclosed storage unit

43
43
45
46

49

51

58

List of Figures

2.1

2.2

2.3

24

3.1

4.1

4.2

4.3

4.4

Scaled dot-product attention. Typically, ¢, = t, and dy = dj, however, in
the self-attention case used in the transformer model the shapes of all three

matrices are the same. Obtained from [11]. 8
Multi-head attention block. V', K,) denote the value, key and query atten-
tion inputs, respectively. Diagram obtained from [11]. 9

Diagram of the transformer model obtained from [46]. The transformer en-
coder is depicted on the left, the decoder on the right. The encoder feeds its
output hidden states to each decoder block via cross-attention connections.
The output of the last decoder block is passed to the unembedding linear
layer followed by softmax, producing an output probability distribution over
all the next likely tokens in the sequence. 11
Diagram of the OpenAI Whisper model [38]. 14

Diagram of different cascade and end-to-end SLT system architectures ob-
tained form [21]. In the diagram, x, y, z denote the input audio features,
source transcriptions, and target translations, respectively. h in this case
represents the hidden states of the ASR system, which establish the differ-
entiable connection to the MT model. 17

BLIP-2 Q-former alignment framework with both the decoder-only and encoder-
decoder language model variants. The output Q-former queries bypass the

LLM word embedding layer and serve as soft prompts for the language model

to generate the image annotation. Diagram obtained from [25]. 20
Segment-level Q-former structure. The Q-former queries are depicted in
green, outputs of the speech encoder in yellow. The rectangles with numbers
represent the added segment positional encoding. Diagram obtained from [54]. 23
Diagram of the two alignment modules. Variant A) is the Q connector (or
Q-Former), variant B) is the STE connector. Note the different embedding
vector ‘height‘ used by the connectors, which illustrates that the hidden size

of the connector network can actually be different to that of the ASR encoder
orthe MT model. 24
Diagram of the ECD alignment configuration. The original MT encoder is
stripped away, with the connector module taking its place. The connector
module output embeddings are used as the cross-attention (C/A) input to

the MT decoder. Both the audio encoder and the MT decoder are frozen. . 25

4.5

5.1

5.2

Diagram of the ECED alignment configuration. The connector module out-
put embeddings are now directly injected past the input embedding layer of
the MT encoder. Additional task prompt embedding sequence (as is typi-
cal for instruction-tuned models such as T5 [40]) can be pre-pended to the
connector outputs before entering the MT encoder.

Utterance length distribution of the 300-hour How2 subset. Figure obtained
from [41]. . . .
Performance comparison between the STE and Q connector networks with
varying numbers of queries in relation to input utterance length. The final
BLEU score is obtained by averaging BLEUs computed for both the val and
devb How2 sets. L e

25

28

Chapter 1

Introduction

Spoken language translation (SLT) is a task of transducing a speech utterance in a given
source language into its corresponding text translation in a given target language. To solve
this task, it is typical to either build a composite cascade speech translation system from
pre-trained automatic speech recognition (ASR) and machine translation (MT) systems, or
to train an encoder-decoder-like end-to-end deep learning model, based for example on the
transformer [46] architecture.

However, both approaches have their caveats. Cascade systems can sometimes suffer
from error accumulation due to first transcribing the input utterance and only subsequently
translating it.

On the other hand, training end-to-end speech translation systems from scratch is not
a simple task, as the system has to learn to map complex and variable speech audio patterns
into sequences of discreet symbols (tokens) of the target language. Additionally — unlike in
the ASR scenario — there is no consistent monotonic alignment between the input speech
audio and the output token sequences. The model has to therefore correctly learn to
rearrange the grammatical structure of the text encoded in the input speech utterance to
produce a valid translation in the target language.

It is therefore common to utilize several training techniques including — but not limited
to — transfer learning and additional model supervision, to obtain better results.

With the recent advancements in the domain of large language models (LLMs), ap-
proaches have emerged that try to leverage these powerful pre-trained models as language-
modeling bases for different cross-modal tasks, such as image-captioning. One such ap-
proach is called BLIP-2 [25], introducing a simple connector transformer network called the
Q-Former. In BLIP-2, the Q-Former is responsible for mapping abstract vision features
extracted from the input image by a frozen image encoder into the word embedding space
of a frozen large language model, prompting it to generate an annotation to the input image.

Similar approaches have subsequently been adopted and applied to the domain of auto-
matic speech recognition and other speech-language oriented tasks [54, 50, 6]. In this work,
we attempt to do the same with a focus on spoken language translation.

Utilizing a Q-Former-like connector network to bridge the gap between the speech and
text modalities of a frozen speech encoder and a frozen machine translation/language model
is attractive for a few reasons. First, as opposed to constructing a conventional encoder-
decoder speech translation model and training it on large amounts of data, the connector
network can be much smaller with much fewer parameters. The pre-trained speech encoder
and the chosen language decoder can remain frozen and only the connector network is
trained. Even if the chosen pre-trained models are very powerful, the bridge network only

has to learn the mapping between their hidden representation spaces, resulting in shorter
training times and fewer computational resources required, in contrast to conventional end-
to-end models of a similar size.

Chapter 2 first provides an introduction to the topic of transformer-based deep neural
networks, describing their architectures and typical use cases for this thesis. Chapter 3
then provides a brief introduction to the topic of spoken language translation (or speech
translation).

Chapter 4 further introduces the concept of aligning pre-trained models to solve difficult
cross-modal tasks and problems. The chapter gives focus to the Q-former connector model,
and proposes an alternative STE connector. Additionally, the two main model alignment
frameworks (ECD, ECED) used in the experiments conducted in this work are introduced.

Chapter 5 discusses most of the experiments and findings with regard to the alignment
architectures and connector modules, discussing the pros and cons of each, and evaluating
the model alignment approach to solving speech translation as a whole.

Finally, Chapter 6 describes two connector network pre-training approaches, focusing on
reducing the need for speech translation data for the alignment process, and poses further
questions and ideas for potential future work in this domain.

Findings and contributions

o We rule that our Subsampler-Transformer Encoder (STE) connector is superior to
the Q-Former for the ST alignment scenario both performance and flexibility-wise.
We find that determining an appropriate number of Q-Former queries is difficult in
comparison to leveraging the variable-length sequence mapping ability of the STE
connector.

e Scaling up the aligned ASR and MT models leads to universally better speech trans-
lation results, while the size of the connector network can remain constant, and rela-
tively small.

e The connector networks can serve as domain adapters, significantly improving trans-
lation performance for scenarios, where the aligned MT models are out-of-domain.

e We find that pre-training the connector network using vanilla knowledge-distillation
approaches aimed at matching the connector and MT encoder output embedding
spaces is not as useful when compared to more principled end-to-end approaches,
following the cross-entropy objective of the ASR task. For this purpose, we devise
a pre-training procedure that allows us to pre-train the connector using only ASR
data.

Chapter 2

Transformer-based neural networks

In this chapter, the topic of deep neural networks based on the transformer [46] architecture
is discussed.

Section 2.1 describes and explains the core concepts that build up the transformer, fo-
cusing on the ones that differentiate it from other neural network architectures. Section 2.2
then gives a brief overview of how the transformer and its many architecture variants are
used for natural language processing and language modeling in general, as it is relevant
to the topic of speech translation. Section 2.3 does the similar, only for automatic speech
recognition. Lastly, Section 2.4 briefly touches on the concept of transfer-learning, which
is key in the context of this work.

2.1 The Transformer

The transformer is a deep learning architecture first introduced in [46], which could poten-
tially be regarded as one of the overall most critical and influential advancements in the
deep learning domain in recent years. It has achieved state-of-the-art performance in most
sequential modeling tasks such as natural language generation [31], summarization [10, 40],
automatic speech recognition [38], machine translation [40, 19, 52, 29, 44], and many more.
Though originally developed specifically for sequence-to-sequence modeling tasks, the trans-
former can be used to solve a wide range of problems, where it is important to model either
temporal or structural relationships in the input data (e.g. even for computer vision [12]).

What makes the transformer stand out in comparison to other sequence modeling ap-
proaches such as recurrent neural networks (RNN), is mainly its effectiveness in terms of
computational cost and parallelism, leading to significantly better scaling, training, and
inference times. This is due to the fact that the transformer disposes of all recurrent con-
nections in the model architecture (minimizing the amount of sequential computation),
and uses the so-called attention mechanism to bidirectionally model temporal relationships
within the input sequences instead. The attention mechanism along with its innovations as
presented in [46] is described in the next Section 2.1.1.

2.1.1 Attention mechanism

At the core of the transformer architecture is the attention mechanism. This concept was
first introduced in [3], where it was applied in an RNN-based encoder-decoder model for
machine translation. In [46], the attention mechanism was expanded upon, resulting in the
introduction of what the authors called Scaled Dot-Product Attention.

Figure 2.1: Scaled dot-product attention. Typically, t, = t, and d; = dy, however, in the
self-attention case used in the transformer model the shapes of all three matrices are the
same. Obtained from [11].

The attention mechanism in general can be understood as a function of three input
vectors: a query, a key and a wvalue. The names correspond to the respective roles of
the vectors in the computation of the attention output. In a real scenario, the output is
computed over a number of input query, key and value vectors, organized into matrices:
Q. K, V, denoting the query, key and value matrix, respectively. The scaled dot-product
attention used in transformer models would then be computed as follows:

Attenti K, V) = Soft QK’ AY 2.1
ention(Q, K,)—omax(\/d_k) , (2.1)
where dj, is the dimensionality of the keys.

Intuitively, the output of the attention mechanism can be thought of as the values scaled
and selected by the attention map obtained by multiplying Q and K. This essentially
corresponds to computing a similarity (or a correspondence) measure for each query-key
pair and then converting it to probabilities or weights for V' via the softmax function.
a computation diagram of the scaled dot-product attention can be seen in Figure 2.1.

Another attention mechanism innovation introduced in [46] is the so-called Multi- Head
Attention depicted in Figure 2.2. Multi-head attention splits the processing of the queries,
keys and values into H paths, where H is the number of attention heads used. Each head h
has its own W,? (query), WX (key) and W) (value) projection matrices, which are used
to project the attention inputs Q, K,V into different sub-spaces for each particular head
h. These projections are, of course, learnable.

Splitting the attention mechanism into multiple heads alleviates some issues with aver-
aging attention-weighted positions when operating in a higher-dimensional attention map
space [46]. Additionally, it allows the model to attend to the input information in different
sub-spaces at different time steps at once:

l Linear I

Concatenate

A A

hgad h [Scaled Dot-Product Attention
head 2 _(
head 1 [Scaled Dot-Product Attention
[[|
Ar

Linear Linear

K v Q

Figure 2.2: Multi-head attention block. V, K,) denote the value, key and query attention
inputs, respectively. Diagram obtained from [11].

head), = Attention(QWY KWK VW), (2.2)

where the projection dimension of W,?, W,{f , W,‘{ typically corresponds to d, = d, = d, =
dmodel/Hheads-

After computing the attention outputs for each head, these outputs are then concate-
nated and finally projected back into the original model dimension dyoqe1 With the final
output linear layer WO:

MultiHead(Q, K, V) = Concat(heady, ..., head;)W?. (2.3)

2.1.2 Word embeddings and positional encoding

When using the transformer in a language modeling scenario, the input text string has to
first be converted into a form suitable for processing with the transformer encoder or de-
coder. The input sentence is first split into discrete symbols, called tokens using a tokenizer.
The tokenization process is typically performed on a sub-word level, where the tokenizer
is trained to learn to optimally split different words to separate sub-word units, creating
a compromise between efficiency and being able to represent even previously unseen words.
Among the commonly used sub-word tokenization algorithms are the Byte-Pair-Encoding
(BPE) [15], and Unigram [23] models. Other word-level or character-level tokenization
algorithms can alternatively be used, depending on the task.

After tokenization, the input text now takes the form of a list of integer token IDs,
based on the vocabulary of the tokenizer. These integer IDs are then converted into a one-
hot-encoding form, where the number of elements in each of the vectors is determined by
the size of the vocabulary. Let us denote this one-hot-encoded sequence of tokens as X.

Before being processed by the transformer, each one-hot-encoded token x; € X (i is the
position of the token in the sequence) has to first be embedded into the hidden representa-
tion space of the transformer. This is done using a trainable embedding layer, which for each

possible one-hot-encoded position of the source vocabulary keeps a corresponding embed-
ding vector, which represents the particular token x; in the transformer embedding space.
These word embedding vectors are optimized during training. The embedding space also
has a much lower dimensionality than the size of the vocabulary (for typical transformer
models ranging from 256 to 1024). We denote the embedding dimensionality d,oqe; (this
dimensionality is also often referred to as the hidden representation size of the transformer).

Embedding each input token x;, we obtain a its corresponding word embedding repre-
sentation e;:

Afterward, because the attention mechanism is actually position-agnostic, a positional
embedding is added to each of the embedded tokens to preserve the information about the
position of the token in the input sequence:

e} = pos(i) + e;. (2.5)
In [46], a simple sinusoidal positional encoding algorithm is proposed, though often

transformer models use different, even trainable positional encoding modules [38]. The
embeddings are subsequently passed to the actual transformer encoder.

2.1.3 Encoder

The role of the encoder is then to project and encode the input embedding sequence E into
a series of hidden states E’. The length of the input sequence is the same as the length of the
output sequence — each embedding vector is gradually enriched with additional contextual
abstract information.

The encoder itself consists of identical Ny layers or blocks (refer to Figure 2.3 for
a visual reference). In each encoder block n, the inputs E,, first pass through a self-attention
layer. The self-attention layer is simply a multi-head attention layer for which the queries,
keys, and values are one and the same — the inputs attend to themselves. Additionally,
there is also a residual connection, which bypasses the self-attention and adds the original
inputs to the attention output. Layer normalization is then applied to the result':

E,, = LayerNorm Self-Attention, (E,) + E,,). (2.6)

Then, the attention output is then passed to an intermediate feed-forward layer, again
employing the same type of residual connection and layer normalization afterward. This
gives us the final output of the encoder block E!:

E; = LayerNorm (Feed-Forward, (E},) + E,). (2.7)
It should be noted that the output of each block has exactly the same tensor shape as the
input.
2.1.4 Decoder

The decoder has a similar structure to the encoder — it once again consists of several decoder
blocks (layers), and the input of the decoder has to be first embedded via an embedding
layer, after which positional encoding information is added to the embeddings.

LContrary to the original paper, current transformer architectures mostly use what is called the pre-norm
architecture [51], where layer normalization is applied before the attention and feed-forward operations. This
has been shown to improve gradient behavior, making transformer training more stable.

10

()
Add & Norm J<=
Feed
Forward
e | ™\ | Add & Norm g
(—{_Add & Norm } Mutti-Head
Feed Attention
Forward 7 7 Nx
S A
N Add & Norm_J«—
r—>| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
t At 2
\>"""“ J \ """"J)
Positional o ¢ Positional
Encoding Encading
Input Output
Embedding Embedding
Inputs Outputs

Qutput
Probabilities

Linear

(shifted right)

Figure 2.3: Diagram of the transformer model obtained from [46]. The transformer encoder
is depicted on the left, the decoder on the right. The encoder feeds its output hidden states
to each decoder block via cross-attention connections. The output of the last decoder
block is passed to the unembedding linear layer followed by softmax, producing an output
probability distribution over all the next likely tokens in the sequence.

11

In each decoder block n, the input embeddings D,,? are first passed once again through

a self-attention layer, followed by adding the residual connection and applying layer nor-
malization:

D), = LayerNorm (Self-Attention, (Dy) + D5,). (2.8)

Then, a second multi-head attention layer often referred to as encoder attention or cross-
attention is utilized to allow the decoder to condition its outputs on the output hidden states
produced by the encoder. For this purpose, the decoder hidden states D!, are used as the
queries and the encoder output hidden states Eegyc. as the keys and the values:

D! = LayerNorm (Cross—Attentionn(D;L, Eenc., Eenc.) + D;L) (2.9)

This cross-attention connection runs from the encoder output to each of the decoder
blocks, further influencing the hidden states in each decoder layer. After the cross-attention,
the decoder outputs are once again processed by a fully-connected layer followed by layer
norm, producing the final output of the decoder block D!’:

D!’ = LayerNorm (Feed-Forward, (D)) + D). (2.10)

In contrast to the encoder, which operates bidirectionally on the input sequence, the
decoder operates auto-regressively. The decoder is first prompted with a start-of-sentence
token. The token is embedded and passed through all the decoder layers. It interacts with
the encoder outputs via cross-attention and finally, at the end of the last decoder block,
it is passed through a linear layer, known as the unembedding layer, which projects the
output embedding into the dimension of the model vocabulary. This operation produces
raw logit scores for each word unit in the output vocabulary, which can be converted into
probabilities using the softmax function, giving us the probability distribution of the next
likely words in the resulting sequence. The next word can then be obtained by simply
taking the word, whose probability value is the highest.

The auto-regressive behavior of the decoder stems from the fact, that this new output
word is then used a new input of the decoder along with all the other inputs from previous
time-steps. Then, the decoding process continues, until the model produces an end-of-
sentence token (or the generation is cut off by crossing a certain token count limit)?.

Because this auto-regressive process is strictly sequential and time-consuming, during
training, the whole desired output sequence is used as the decoder input. Instead of gener-
ating each token at each time step one by one, a triangular causal attention mask is used
in the self and cross-attention layers. This mask is used to essentially simulate performing
all of the auto-regressive generation steps in one forward pass only, as the decoder simulta-
neously predicts the next token for each position in the input sequence. The causal mask is
used, so when predicting the next token for a position 7 in the input sequence, none of the
future tokens at any position k£ > ¢ influence this prediction. During inference, these future
tokens would only become available at future time steps of the auto-regressive generation
process.

The employment of causal attention masking is one of the things that make the trans-
former much more efficient during training in contrast to other auto-regressive models,
based for example on recurrent neural networks.

2Here, the letter ‘D¢ is used to better differentiate the decoder embeddings from the encoder hidden
states.

3 An illustration of the generation process (and the whole transformer model in general) can be found at
https://jalammar.github.io/illustrated-transformer/

12

2.2 Transformer architectures in language modeling

Language modeling is perhaps the domain where the transformer is arguably used most
widely. Upon its introduction in [46], its capability is demonstrated on a machine transla-
tion task, where the transformer was used in its default encoder-decoder configuration.
Intuitively, this is natural for tasks such as translation [40, 52, 29, 44, 19] as the model is
trying to learn a sequence-to-sequence mapping (also referred to as sequence transduction)
from one language to another — without any monotony guarantees about the length or
symbol position relationships between the source input and the translation, for example.

Apart from machine translation, encoder-decoder transformer architectures can also
be used for other general language modeling tasks, as is demonstrated by models such as
BART [24], or different models from the T5 model family [40, 52, 29]. The T5 family is
especially interesting due to its multi-task training approach, resulting in models able to
handle multiple general language tasks specified by prepending an instruction in natural
language to the encoder input.

However, not all tasks require the full encoder-decoder architecture for solving the given
problem. In language modeling, it is also common to only use the transformer encoder or,
alternatively, the decoder, depending on the task at hand.

Encoder-only transformer models do away with the decoder completely and leverage
the ability of the transformer decoder to process the input bidirectionally. Encoder-only lan-
guage models usually rely on two training stages — pre-training and subsequent fine-tuning.
In the pre-training stage, the model collects information about the source language, learning
abstract language representations in the process. Then, after pre-training, new layers are
typically added on top of the encoder, and subsequently fine-tuned to interpret and trans-
form the last encoder-hidden states to solve the downstream task, e.g. text classification
or named entity recognition.

Perhaps the best-known model of this type is BERT [10]. BERT models are pre-trained
using masked language modeling (MLM), where some of the tokens in the input sequence
are masked and the model is tasked with recovering them, which is combined with the next
sentence prediction objective, where the model receives two input sentences and is tasked
to predict which of them precedes the other.

On the other hand, decoder-only transformer models consist of stacked decoder blocks
with the cross-attention layers removed. The decoder-only architecture was first introduced
n [26], demonstrating its text generation capability to be superior to encoder-decoder
architectures, as the models were able to scale better in terms of attending to very long
sequences and contexts. Decoder-only models are typically trained for the causal language
modeling task and can further be fine-tuned for more specific applications (with some
overlap with the encoder-only models).

Decoder-only models have also demonstrated good scaling properties [39, 4, 31, 8, 45],
earning a spotlight at the forefront of generative language modeling and understanding in
virtually all of their domains and flavors, known as the Large Language Models (LLMs).

2.3 Transformers for automatic speech recognition

Subsequently, transformers began to be used for processing other modalities apart from
text. Notably, in [11], a general method of adapting the transformer to process speech
input data was proposed. Transformer architectures for end-to-end (E2E) automatic speech
recognition (ASR) began quickly outperforming previous state-of-the-art RNN-based and

13

TRANS-
EN CRIBE

o

.0 | The quick rOWN « ..
A

next-token
prediction

A ——
MLP

MLP cross attention

\ 4

o
8
Z
&
[}
2
i
S

self attention

Transformer

Encoder Blocks MLP Transformer

- Decoder Blocks
cross attention

cross attention

self attention

MLP

cross attention

Sinusoidal
Positional
Encoding

\ 4

i

self attention

Learned
Positional
Encoding

I

SOT | EN [fase| 0.0 | Th

[}

quick| ..

Log-Mel Spectrogram Tokens in Multitask Training Format

Figure 2.4: Diagram of the OpenAl Whisper model [38].

CNN-based models, given enough data. The most important advantages are better scaling
ability, computational effectiveness in terms of parallelization and training times (especially
in contrast to RNN-based encoder-decoder architectures), and the attention mechanism
providing better context windows to that of CNNs.

The typical speech-processing transformer operates on pre-computed spectral features”
such as spectrograms. For ASR purposes, such an input is needlessly detailed along the
time axis. This is why it is common to prepend a downsampling module to the transformer
encoder.

The downsampling layer typically consists of several 2-D or 1-D (as shown in Figure 2.4)
convolutional layers, processing the spectrogram and producing a sequence of downsampled
feature vectors, shortened to a fraction (e.g. a fourth) of its original length. Often, the
subsampling module simultaneously projects the original spectrogram features (typically
40 or 80-dimensional) to the operating embedding dimensionality d;,oq4e; 0f the transformer
model, acting similarly to the text embedding layer in the language scenario. Reducing
the time granularity of the input features ensures reasonable information density and dis-
tribution among the individual feature vectors in the sequence, compared to the original
much more fine-grained spectrogram. This or a similar downsampling/intermediate feature
extraction approach is universally used by most transformer and transformer-based model
architectures [11, 20, 16, 38].

Recently, several new encoder architectures have been introduced, designed from the
ground up to specifically accommodate speech processing tasks. Though these approaches
are based on the original transformer encoder structure, their specific implementations of
the respective encoder blocks differ. Perhaps best known among these is the Conformer [16],
which generally outperforms the standard transformer on several ASR and speech processing

40f course some models operate completely end-to-end, that is on raw audio files, learning to extract
feature representations completely from scratch [2].

14

benchmarks. Another such encoder architecture is the Branchformer [34], followed by its
successor, the E-Branchformer [22], which has been reported to offer a performance edge
among all of these encoder architectures [35]. The E-Branchformer is important in the
context of this thesis, as two of the baseline ASR models used in experiments conducted in
Chapters 5 and 6, are based on this encoder architecture.

2.4 Transfer learning

The introduction of the transformer model was also quite impactful in the domain of transfer
learning. Transfer learning is the previously mentioned deep-learning technique where one
takes a model that has been pre-trained for a given task — such as the BERT model for
masked language modeling — and utilizes the general capabilities and inner abstract models
the model has built up during pre-training (with respect to the particular domain) to train
a new model for a different objective/task. Typically, this new task is more specific, and
the fine-tuning requires training data specific to this task.

Transfer learning alleviates some training costs for training new models. For some
applications, this can even be the vast majority of the cost, for example, fine-tuning a pre-
trained BERT model for the task of named-entity recognition only requires training a small
linear layer with a few thousand parameters instead of the whole multi-million parameter
transformer model. Transfer learning can, however, be exploited on much larger scales, as
is demonstrated by models from e.g. the T5 family [40, 52, 29].

Overall, transfer learning is one of the most crucial concepts in modern deep learning,
especially given the cost of training new powerful models from scratch (mainly referring to
the costs of pre-training large language models [4, 31, 45]).

It is also well understood that generally, exploiting transfer learning leads to better
results than training a model from scratch with only the final specific task in mind. This
can be demonstrated by even a simple example of training a speech translation system,
where initializing the model weights with a model trained for automatic speech recognition
greatly improves the results, as discussed in Chapter 3. Therefore, in the context of this
work, the topic of transfer learning is at the core of what this project is trying to explore.
The specifics are discussed beginning from Chapter 4.

15

Chapter 3

Spoken language translation

Spoken language translation (SLT), often also referred to as speech translation (ST), is the
task of transcribing the contents of a spoken audio utterance in a given source language
(e.g. English) into text in a given target language (e.g. Portuguese).

This chapter provides an introduction and a brief overview of the methods that are
typically used for training and establishing SL'T systems.

3.1 SLT system architecture

There are two main model architecture classes for spoken language translation. The first
class is the so-called cascade speech translation system. Cascade ST systems in general
consist of two parts:

1. An ASR system in the source language,

2. and an MT (machine translation) system from the source language to the target
language.

Now, assume a hypothetical scenario with the source audio in English and the target
language being German. The ASR system first generates English transcriptions from the
source audio. Then, the English-German MT system translates the generated transcriptions
to the target German language.

The cascade approach is perhaps the most intuitive way of implementing speech trans-
lation, especially given the fact that training reasonably reliable ASR and MT systems is
generally not that challenging, provided enough data. Moreover, the abundance of freely
available pre-trained models for both ASR and MT means that constructing a cascade sys-
tem is very simple. In terms of translation performance, models of this kind have always
occupied the top positions with other state-of-the-art methods for SLT [36, 30]. In fact,
given the reliability and domain robustness of modern ASR and MT systems, they still do
nowadays. However, there are some potential drawbacks to these kinds of architectures.

First, the models have to be used whole. This means that there are two encoders and
two decoders, and therefore each forward pass through the system has two auto-regressive
generation stages, resulting in higher latency. What is more, if the vocabularies between the
ASR and MT models do not match (ASR models often generate lower-cased text without
punctuation), a third model (or tool), which restores casing and punctuation information
has to be added to the stack. In the end, a cascade system can easily have three generation
stages and three potential sources of error accumulation.

16

a. Cascade system

y

b. Joint training with end-to-end differentiability

y

X Encoder Decoder z

¢. End-to-end model with transcriptions as auxiliary objective.

Z

X Encoder Decoder z

d. End-to-end model with translations as auxiliary objective.

Figure 3.1: Diagram of different cascade and end-to-end SLT system architectures obtained
form [21]. In the diagram, x, y, z denote the input audio features, source transcriptions,
and target translations, respectively. h in this case represents the hidden states of the ASR
system, which establish the differentiable connection to the MT model.

Secondly, in the base scenario, there is no differentiable path from the ASR system all
the way to the translation system objective. The translation model therefore has no way of
interacting with the speech encoder during training, no means to interpret its uncertainty
during inference, meaning that the translations are perhaps more affected by any errors
made during the transcription process. Alluding to the previous point with the truecaser
model, committing the output of either model in the cascade scenario into text creates
room for potential error accumulation and domain adaptation problems.

This second problem can be alleviated by establishing a differentiable path between the
two models by, for example, feeding the hidden representations of the ASR system straight
into the MT model input embedding space (Figure 3.1, variant b). The system can then
be fine-tuned using different auxiliary objectives, as discussed in [47, 21].

3.1.1 End-to-end SLT systems

On the side of the spectrum, there are end-to-end (E2E)! speech translation systems. Such
systems are typically implemented and trained as a single sequence-to-sequence encoder-
decoder model, taking the source speech audio as input and producing the target language
translation text as output.

Implementing an ST system with an end-to-end architecture can potentially mitigate
some of the cascade system drawbacks; now the speech encoder and the translation decoder
have a differentiable pathway all the way from the inputs to the objective. The encoder and

'For clarification: E2E is often used to represent a class of speech recognition models such as Wav2Vec2 [2]
which operate on raw audio waveforms, having to learn their own speech representations during training.
However, this label is as often used for systems that operate end-to-end on top of some low-level extracted
features, such as spectrograms.

17

decoder can interact with each other, meaning that the passing of the speech information
to the translation decoder happens in a more abstract and continuous manner, rather
than committing it into discrete symbols. This helps to alleviate problems stemming from
domain mismatch and error accumulation between the models in a cascade scenario.

However, training an end-to-end ST system is also generally more challenging than
training ASR or MT systems alone, as the task is simply more complex. ASR systems only
have to learn a monotonous mapping between the speech audio input and the corresponding
sequence of tokens in the transcription. On the other hand, MT systems do have to learn to
alter and rearrange the grammatical structures encoded in the source language input token
sequence in order to produce a correct translation. However, they do not have to contend
with the input modality being different from the output one, as in the ASR scenario. End-
to-end ST systems have to learn to solve both of these problems at once.

In order to obtain better results, it is therefore common to implement several training
techniques that decrease the training difficulty and improve performance. Those include
mainly several transfer learning techniques, where the speech encoder and translation de-
coders would be initialized using weights from pre-trained ASR and MT models, respec-
tively [18, 48, 21]. With further ST training after this initialization, the models quickly over-
come the language and representation mismatch at the cross-attention connection, leading
to generally better results than when training from scratch.

The training could also include additional model supervision [53, 55], self-supervised
learning [49], or further regularization and conditioning using multi-task learning [18, 21].
For example, jointly enforcing the transcription objective at the output of the ASR encoder
using CTC, and the translation objective at the output of the decoder, similar to what is
shown in Figure 3.1.

18

Chapter 4

Pre-trained model alignment

This chapter discusses the topic of pre-trained model alignment, considered mainly from
the cross-modal viewpoint. This domain has been gaining traction recently, especially due
to the introduction and success of large language models [31, 4, 45]. The model alignment
research has mostly been trying to leverage the power that is offered by such systems by
connecting them to pre-trained source modality encoders using a smaller module, which
would facilitate the cross-modal alignment. That is, ideally without needing to fine-tune
the large models'. Perhaps one of the more critical of these alignment connectors, the
Q-former [25] (further discussed in Section 4.1) has recently been introduced and used
a number of vision-language tasks, which previously required a more bottom-up approach.
This method has subsequently sparked the inspiration for many cross-modal alignment
projects [6, 9, 54, 56].

Aside from the Q-former, other alignment methods have been explored in [50, 17, 28,
1, 42, 7]. For most methods, however, the principle remains roughly the same:

1. Use a pre-trained source modality encoder (ASR encoder, vision model, etc.) and use
it to extract abstract embedding representations from the source data.

2. Choose a powerful language model, which will provide the text generation — and
perhaps a task-related interactive reasoning basis for the final task.

3. Train a small modality connector module, responsible for converting as well as pro-
jecting the source modality embedding representations into either the cross-attention
connection space of the chosen language decoder or directly to its input embedding
space, serving as a quasi-language soft prompt.

In this work, we attempt to apply similar approaches to the task of spoken language
translation, trying to evaluate the merit of leveraging pre-trained ASR and MT models to
create new ST systems and compare such systems to the more traditional methods of solving
speech translation. The alignment experiments are conducted mostly in a smaller-scale,
restricted scenario, utilizing our proprietary, smaller, pre-trained models, to allow for a more
agile evaluation of the utilized alignment modules and architectures. However, experiments
are also conducted to show the extensibility of the proposed aligned ST framework and its
viability to be used with arbitrary larger-scale speech encoders and MT models. To the
best of our knowledge, this work is the first that focuses solely on speech translation in this

In most cases, the chosen encoder and decoder models are simply frozen and only the connector module
is trained.

19

e \oo-oo | — Output Text [a cat wearing sunglasses }
[}

Image

Q-Former Fully LLM Decoder
Connected

Oo0-o0 \»

Learned Queries

Encoder

* OO0-0o0d Suffix Text [wearing sunglasses J
)

.
B Fully o
i% Encoder { Q-Former [Connected < LLM Encoder ¥ LLM Decoder
b))
0Do-@o (ODOo-oo)(acat)
Input Image Learned Queries Prefix Text

Figure 4.1: BLIP-2 Q-former alignment framework with both the decoder-only and encoder-
decoder language model variants. The output Q-former queries bypass the LLM word
embedding layer and serve as soft prompts for the language model to generate the image
annotation. Diagram obtained from [25].

alignment context, and believe that our experiments show great prospects of utilizing and
building on these methods in several ST task domains, including — but not limited to — low
resource ST scenarios.

The next Section 4.1 introduces the Q-Former — the connector module that inspired
this work as a whole — and its architecture, its possible uses for ASR, and some of its short-
comings with regard to sequence-to-sequence modeling tasks. Section 4.2 then discusses
the proposed approach of aligning pre-trained ASR and MT models for solving speech
translation, the two main alignment architectures and the modality connectors used within
them.

4.1 The Q-Former

A novel pre-trained model alignment approach was recently introduced in BLIP-2 [25].
BLIP-2 presents a new method of fusing and aligning already pre-trained off-the-shelf large
models for computer vision and language modeling to solve a joint vision-language task
of describing the contents of a picture with natural language. Such an approach is quite
attractive, as training capable vision-language models from scratch is generally a challenging
task — especially resource-wise [37].

The paper proposes using a small querying transformer — the @Q-Former — to connect
a frozen image encoder and a frozen language model. The @Q-former is used to extract
information from the image features produced by the image encoder and present this infor-
mation to the frozen language model in its input text embedding space as a quasi-language
soft-prompt. To extract the desired information from the vision features, the Q-former uses
a fixed-length sequence of trainable queries. These query vectors are used as the input of
the Q-former and interact with the vision features via cross-attention. While the Q-Former
has the architecture of a conventional transformer decoder, it processes the queries bidi-
rectionally. The number of queries used is a hyper-parameter, and their dimensionality is
defined by the chosen hidden representation size of the Q-Former.

20

Upon leaving the Q-former, the queries are projected into the input text embedding
space of the frozen large language model with a fully-connected layer, acting as soft prompts
to the LLM. Finally, the LLM auto-regressively generates the image annotations. The
language model can be decoder-based (as shown in Figure 4.1), or encoder-decoder-based,
which also allows using additional text prompts to potentially ask the LLM about more
specific parts and aspects of the image.

In BLIP-2, overcoming the wide modality gap between the image encoder and the
language model is a challenge, as there is no direct correspondence between the image
embedding features and the text that describes it. For this reason, the Q-Former needs to
be trained in two phases:

1. The representation learning phase, where the Q-Former first learns to extract
representations from the image features, that are useful for generating the text anno-
tation.

2. The generative learning phase, where the Q-Former is trained to use the learned
representation extraction capabilities to supply the frozen LLM with a suitable soft-
prompt, training with the regular causal language modeling objective based on the
supplied image annotations.

In the representation learning phase, the self-attention and intermediate layers of the
Q-Former are first initialized with the pre-trained weights of BERT-base [10], while the
cross-attention layer weights are randomly initialized. Then, three pre-training tasks are
employed to condition the Q-Former to extract useful representations from the image fea-
tures:

e Image-grounded text generation, where the Q-Former is trained to use the
trainable queries to extract useful information from the image features in the cross-
attention layers, and then subsequently predict a textual annotation to the image
using the self-attention layers, where the transformed queries can interact with the
input text embeddings. a special causal self-attention mask is applied so that the text
embeddings can interact with the queries, but not vice-versa.

e Image-text matching, where the Q-Former predicts whether the supplied text an-
notation matches the image features supplied in the cross-attention connection.

e Image-text contrastive learning, where the Q-Former is trained to maximize the
mutual information (similarity) between the queries and the transformed output em-
bedding of the [CLS] token of the supplied annotation (or minimize it in the con-
trastive case).

The pre-training methods are described in more detail in the original paper. The impor-
tant observation here is that this representation learning stage with multiple tasks and
contrastive learning is important in the vision-language case, as the modality gap needs
to be shrunk first before employing the LLM for the second training stage. It should also
be noted that here contrastive learning is necessary to prevent the representation learning
process from collapsing.

For speech-text alignment, such pre-training is not necessary, as the modality gap is
already considerably narrower [54, 50]. However, it can be argued that there is potential
for similar types of pre-training or auxiliary supervision objectives and that such approaches

21

could potentially decrease the need for large amounts of speech translation data, especially
when aligning ASR and MT systems.

Following the introduction of the Q-former model, several new alignment approaches
have been introduced, either attempting to improve and expand upon the results of BLIP-2
(such as InstructBLIP [9]) or use the Q-former as an alignment basis for different modalities
entirely, e.g. video [6, 56] and audio [6, 54].

4.1.1 Q-former for automatic speech recognition

Using the Q-former for automatic speech recognition has recently been explored in [54]. The
methodology remains similar to [25]: a large pre-trained speech encoder like Whisper [38] is
frozen, and used to encode the input audio into a sequence of intermediate speech features.
The features are passed to the Q-former via cross-attention, where they interact with the
Q-former queries (see Figure 4.3 for reference). This means that the Q-former turns the
variable-sized input audio sequences into a fixzed length sequence — the length of the Q-former
output sequence is the same as the input query vector sequence. The transformed output
queries are subsequently projected into the embedding dimension of the connecting LLM,
prompting it to generate the transcription. Once again the training objective is the original
cross-entropy loss of the foundation LLM, however, only the Q-Former is optimized during
the training process.

In comparison to BLIP-2, the Q-former used here is much smaller — only two transformer
decoder layers — and does not require any pre-training, as it is argued that the modality
gap between the ASR encoder outputs and the LLM embedding space is relatively narrow.
The number of queries that were used for ASR purposes is 80 (in contrast to the 32 used
in [25]), which is, reportedly, a sufficient amount to retain the information in the encoded
input audio slices with lengths of up to 30 seconds with an acceptable performance-to-length
ratio.

The performance of the Q-former is also compared to two other connector modules —
a stack of linear layers and a multi-head cross-attention module [28] — outperforming them
all. It should be noted that the performance of the linear connector ends up behind the Q-
former with only a tenth-of-a-percent absolute WER margin, however, the study argues that
the Q-former represents a superior approach due to the higher computational complexity
of the fully-connected layer module in comparison to the Q-former. On the other hand, the
fact that a simple MLP was able to match the results of the Q-Former further reinforces
the notion, that the modality gap between the speech encoder output representations and
the LLM embedding space is perhaps narrower than expected.

4.1.2 Handling variable-length audio inputs

It is common for ASR models to be optimized to operate on shorter audio inputs. In [54],
Whisper [38], which is trained and designed to operate on 30s chunks of input speech
segments, is used as the speech encoder. On the other hand, the context windows of the
chosen LLM allow for processing longer input sequences and prompts.

To counteract the source audio length limitation, the paper proposes a segment-level Q-
Former modification. This Q-former variant (shown in Figure 4.2) would receive batches of
the encoded source audio from the speech encoder and add positional embedding informa-
tion to the whole batch. Then, each segment is processed by the Q-former separately and
the output query sequences are concatenated. Once the whole source audio is processed,

22

Transcription

t
t i
t t

f f
t t

Figure 4.2: Segment-level Q-former structure. The Q-former queries are depicted in green,
outputs of the speech encoder in yellow. The rectangles with numbers represent the added
segment positional encoding. Diagram obtained from [54].

the concatenated queries are presented to the LLM as one long prompt, and transcriptions
are generated.

However, it could be argued that this segment-level approach is a symptom of a deeper
mapping problem with the Q-Former — due to the cross-attention interaction, the Q-Former
always maps any variable-length inputs to a fixed-length sequence of output queries. Such
an approach makes sense in the BLIP-2 scenario as in that case, the system is dealing with
abstract image feature representations. It is the actual meaning and content stored in these
image features that determine the length of the output text annotation, not the dimensions
of the features. Extracting this information into a fixed number of query tensors is therefore
adequate, as there is no direct basis for determining the length of the connector module
output at the Q-Former stage without perhaps introducing an auto-regressive decoding
step.

For the ASR case (and the speech translation case for that matter), the relationship be-
tween the encoder output embeddings and the generated text transcription (or translation)
is much more linear and monotonous — if the input audio utterance is long, it is proba-
ble that so will be the text. This immediately poses the question if it perhaps would be
more productive to require a variable-length to variable-length mapping from the connector
module.

4.1.3 The Subsampler-Transformer Encoder connector (STE)

In addition to the Q-Former, we, therefore, experiment with another connector module
variant inspired by the approaches presented in [50, 17]. This variant, though still rather
simple, solves the fixed-length mapping of the Q-Former by introducing a convolutional
subsampling layer in replacement of the cross-attention connection.

ASR encoder output embedding sequences typically have a higher granularity in compar-
ison to language model text representations. This granularity mismatch could potentially
cause problems for leveraging any zero-shot capabilities the language-model might offer
when prompted with these raw audio representations, therefore it is natural to downsample

23

(MT encoder embedding space)

1

(MT encoder embedding space)

f

[Language-projection (FC)]

[Language-projection (FC) J

A 0
t t
Transformer
Q-Former ———
3 0
100000 0g00s

/2-Iayer1D-conv. subsampler \

T

ASR embeddings ASR embeddings

A) B)

Figure 4.3: Diagram of the two alignment modules. Variant A) is the Q connector (or
Q-Former), variant B) is the STE connector. Note the different embedding vector ‘height*
used by the connectors, which illustrates that the hidden size of the connector network can
actually be different to that of the ASR encoder or the MT model.

these embeddings along the time dimension. In [17], two main subsampling approaches
are explored — CTC compression and convolutional downsampling (evaluating the convolu-
tional approach as superior). The hidden audio representations are subsampled to a fraction
of their original length, and only after that, they are presented to the connector module,
which, at this point, can be a simple transformer encoder. On the other hand, in [50],
the subsampling is done by simply stochastically discarding a fourth of the output ASR
embeddings, still yielding great results.

While the convolutional subsampler adds a number of parameters to tune (in our case
directly correlated to the ASR embedding dimensionality), an approach like this intuitively
seems superior, because of the fixed-length mapping constraint of the Q-Former. An ad-
ditional small perk of this second variant is also that no parameters in the model come to
waste — in contrast to the Q-Former, which cannot use the first self-attention block in any
meaningful way, as it only operates on the raw pre-trained query vectors when used in the
final alignment encoder-connector-LLM context.

Going further, this type of connector network will be referred to as the ‘STE‘ connector,
which stands for Subsampler-Transformer Encoder. The STE connector is depicted in
Figure 4.3.

4.2 Proposed alignment architectures

In this work, we experiment with two general alignment architectures for speech translation,
differing in the configuration of the frozen MT model. Both architectures are trained
primarily using the standard cross-entropy loss objective at the output of the MT decoder.

24

(ASR embedding space)

(MT encoder output embedding space) Translation
(Portuguese)
Source audio A
(English)
i Connector
wiplffer | Audo oo
encoder module decoder
<start>

Figure 4.4: Diagram of the ECD alignment configuration. The original MT encoder is
stripped away, with the connector module taking its place. The connector module output
embeddings are used as the cross-attention (C/A) input to the MT decoder. Both the audio
encoder and the MT decoder are frozen.

(ASR embedding space) (MT encoder input embedding space) Translation
(Portuguese)
)
Source audio T
(English)
Audio Connector MT cn MT
'l“'"|||‘“F'|||‘|‘|‘|||||..|I|‘|'""I|I|'"~-' —| encoder module encoder el

concatenate <start>

‘translate to Portuguese: '

Figure 4.5: Diagram of the ECED alignment configuration. The connector module output
embeddings are now directly injected past the input embedding layer of the MT encoder.
Additional task prompt embedding sequence (as is typical for instruction-tuned models such
as T5 [40]) can be pre-pended to the connector outputs before entering the MT encoder.

The first alignment architecture (shown in Figure 4.4) consists of a frozen ASR encoder
(the decoder is stripped away to avoid an extra decoding step), which extracts hidden audio
representations from the source speech audio. These representations are then passed to the
connector module, and its outputs are further projected to the dimension of the frozen
MT model via a fully-connected layer. In this architecture variant, the connector is used to
align the ASR encoder output embedding space with the output embedding space of the M'T
encoder, as shown in the diagram. Additionally, the original pre-trained MT encoder can be
used to initialize the weights of the connector network, or additionally serve as a basis for
some auxiliary modality matching objectives useful for stabilizing the training procedure.
This architecture will further be referred to as Encoder-Connector-Decoder (ECD).

The second architecture (shown in Figure 4.5) differs from the first one in the text
decoder part. The connector module now projects the speech embeddings into the input
text embedding space of the foundation MT encoder. Intuitively, it would seem that in this
case, the modality gap between the output speech embeddings and the input text embed-
dings of the MT encoder is narrower, than in the previous case. Whereas previously the
connector had to perform feature space alignment and simultaneously replace and overtake

25

the responsibilities of the original M'T encoder, now it is enough for the connector to mean-
ingfully bring up the textual information present in the speech embeddings so that the MT
encoder can make use of them. This kind of approach was, for example, explored in [50],
where aligning the speech encoder with a language model from the T5 [40] family allowed
the authors to leverage the original multi-task and reasoning capabilities of the founda-
tion multi-lingual language model, only enhanced in that the final model could also process
speech inputs. In general, this encompasses first taking the text instruction prompt such as:
‘translate to Portuguese: ¢, and subsequently embedding it with the MT encoder embedding
layer and prepending these instruction embeddings to the connector module outputs. This
architecture will further be referred to as Encoder-Connector-Encoder-Decoder (ECED).

For both architecture variants, we conduct experiments with two different types of
connector networks: the @Q-Former (which will also further be referred to as simply ‘Q°‘) and
the STE connector (a transformer encoder with a convolutional subsampler frontend), as it
was introduced in Section 4.1.3. The subsampling module used in our STE implementation
is a 2-layer stack of 1D convolutions, which reduces the length of the input speech embedding
sequence by a factor of 4, and was inspired by the frontend used for ASR systems in [48],
and simultaneously projects the subsampled embeddings from the dimensionality of the
ASR encoder to the operating dimensionality of the connector.

26

Chapter 5

Experiments

In this chapter, experiments are conducted to evaluate the pre-trained model alignment
approaches and architectures as they are described in Chapter 4. The main aim of these
experiments is to determine the viability of these alignment approaches for solving the
speech translation task, comparing these methods to our baseline systems constructed in
more conventional ways. Subsequently, we further explore the possibilities offered by off-
the-shelf pre-trained ASR and MT models in the ST alignment context.

All experiments carried out and models used throughout this work were implemented
using the Hugging Face' Transformers® framework. Hugging Face Transformers is an open-
source deep learning library based mainly on PyTorch?, which mainly aims to centralize and
provide simple, effective, and extensible tools to train and fine-tune modern transformer-
based models. It also provides a platform for hosting already pre-trained models that are
free to be used as off-the-shelf bases for further experiments and projects.

A currently access-restricted Hugging Face Transformers extension repository for ASR
training called ‘huggingface_asr* was used as the platform for implementing all models,
and training/evaluation scripts. This repository is developed and maintained mainly by
Ing. Alexander Polok from the BUT Speech@FIT research group from our faculty. All
recipes and code written and used for the experiments conducted throughout this work will
ultimately become available as a part of the toolkit, once the repository becomes public.
For now, the enclosed storage unit for this work contains the current image of the repository,
where all source files created and used for the purposes of this project are appropriately
annotated.

Further sections discuss the important topics with regard to the conducted experiments.
Section 5.1 introduces the How2 dataset used in the experiments, along with the WER, and
BLEU metrics used for evaluation. Section 5.2 goes over the training and selection of the
foundation ASR and MT models used for the alignment experiments. Section 5.3 then
describes the building and establishing of our reference baseline English to Portuguese ST
systems trained on the How2 dataset. Section 5.4 evaluates the merits of both alignment
architectures and connector modules. Section 5.5 explores the behavior of the alignment
approach when used with off-the-shelf pre-trained ASR and MT models. Lastly, Sections 5.6
and 5.7 attempt to analyze and compare the behaviors of the Q and STE connectors in
terms of input sequence lengths.

"https://huggingface.co/
“https://huggingface.co/docs/transformers/index
3https://pytorch.org/
“https://github.com/BUTSpeechFIT/huggingface_asr

27

https://huggingface

Table 5.1: Split statistics of the 300h portion of the How2 dataset.

Split Videos Hours Clips/utterances Per clip statistics

train 13,168 298.2 184,949
val 150 3.2 2,022 5.8 seconds / 20 words
devs 175 3.7 2.305

5.1 The How2 dataset

The How2 dataset [41] is a multi-modal corpus of English instructional videos and their
respective transcriptions. The dataset consists of approximately 2000 hours of video data
and contains a smaller 300-hour audio subset, for which there are also crowd-sourced trans-
lations to the Portuguese language.

The 300-hour subset is divided into three partitions: train, val, and dev5. As shown
in Table 5.1, the train partition consists of 298 hours of audio data, totaling 184949 spoken
English utterances. Both the devb and val partitions contain about 3 hours of speech data,
both totaling just above 2000 utterances. The lengths of most utterances in the 300-hour
subset range from one to up to twenty seconds, with most recordings being concentrated
in the region around the 4 seconds — the overall utterance length distribution is shown in
Figure 5.1.

How2 is a commonly used standard benchmark dataset for machine translation and
speech translation systems [30, 18, 47, 21] — due to the data being relatively clean, it is
considered to be appropriate for studying and evaluating various approaches and models
for speech translation. The How2 dataset is freely available for download, however, access
to it is restricted behind a license gateway. This is useful, as it essentially restricts any web
crawlers from accessing the data directly, minimizing the risk of data contamination in our
experiments with any off-the-shelf pre-trained models.

50000

40000

30000

20000

of Segments

10000

0

S & & & & & & & & ¢
S Y N A S

Duration Bins (secs)

Figure 5.1: Utterance length distribution of the 300-hour How2 subset. Figure obtained
from [41].

28

5.1.1 Evaluation metrics

For evaluation, we use the Word Error Rate (WER) metric for ASR systems, and for
translation systems, the BLEU metric is used.

Word Error Rate

Word Error Rate is a standard metric used to evaluate speech recognition systems, ag-
gregating several types of errors the model can make when generating the transcription
hypothesis in relation to the reference text:

weR - SED+L 51
where S is the number of substitutions (words that were changed in the hypothesis), D is
the number of deletions (words that are missing from the hypothesis altogether), I denotes
the number of insertions (words that cannot be found in the reference but are present in
the hypothesis), and N is the number of words in the reference.

WER is typically computed using normalized, lower-cased text without punctuation, as
casing and punctuation information can be more open to interpretation. Normalizing the
hypotheses and references allows for more accurate evaluation of the actual ASR perfor-
mance in terms of purely transcribing the correct words.

The BLEU metric

BLEU (Bilingual Evaluation Understudy) [32] is a metric used for evaluating the perfor-
mance of machine translation (and speech translation) systems. Roughly speaking, the
metric compares a translation hypothesis to a set of reference translations. These refer-
ences should be of good quality, representing the ideal translation performance, presumably
originating from a top-level human translator.

The value domain of the scores ranges from 0 (worst) to 100 (best). However, a perfect
BLEU score represents a virtually unattainable ideal, where the generated translations
would have to match the references perfectly. In a translation scenario, this is not realistic
for the simple reason that multiple translation hypotheses can be valid for one input source
language sentence.

BLEU is computed over N-gram sequences of words, with 4-grams being quite common.
To obtain the score reading, first, it is necessary to compute 1 to 4-gram precision scores
between the hypothesis and the reference. Then, to penalize generating short hypotheses if
the references are long, a brevity penalty is computed to offset the potential high precision
scores for these scenarios:

1, if ¢ >r,

el—r/c’ else (52)

Brevity penalty = {

where c is the hypothesis length and r is the reference length.
The final score is then obtained by computing a geometric mean precision from all
N-gram precision scores and multiplying it by the brevity penalty:

N
BLEU(N-gram) = Brevity penalty - Hp;”i, (5.3)
i=1

29

where p; is the i-gram precision score, and w; is the weight of the i-gram (the weights are
often chosen to be uniform).

Contrary to WER, BLEU scores are computed using true-cased text with punctuation
symbols, as machine translation systems make use of this information to produce better
translations. The actual meaning of the produced translation can be affected by both casing
and punctuation information, and therefore it is natural to include it when comparing to
the references.

5.2 Baseline ASR and MT systems

First, it is necessary to train and select reliable ASR and MT system baselines. These
systems would subsequently be used to establish our end-to-end and cascade ST baselines,
as well as serve as the foundation models for a large portion of the alignment experiments
in the context of the architectures described in Section 4.2. Our goals for these baseline
models are the following:

1. Train in-domain ASR and MT systems on How2 with close to state-of-the-art perfor-
mance used to build reference baseline ST systems and subsequently serve as founda-
tion models for evaluating the alignment architectures in a domain-restricted scenario.

2. Select different off-the-shelf pre-trained (possibly out-of-domain) ASR and MT mod-
els, used to evaluate the viability of the alignment architectures as generic frameworks
for solving speech translation.

For our proprietary in-domain models, we take inspiration from ESPnet [18] and build
our ASR and MT systems to match the sizes and results of ESPnet systems on the How?2
dataset’. Doing so allows us to better ground our experiment results.

5.2.1 Training the ASR model

The reference ESPnet ASR system trained on How?2 is a hybrid CTC/attention [20] trans-
former encoder-decoder model of 30 million parameters, with a 12-layer encoder and a 6-
layer decoder, achieving 13.0% WER on the dev5 set. During our preliminary experiments
we tried to replicate ESPnet ASR results on How2 using the same transformer-based archi-
tecture implemented in Hugging Face under the name Speech2Text’ [48] (S2T). However,
we were unable to do so, partly due to some training stabilization problems when imple-
menting the encoder CTC objective.

The best S2T ASR system trained during this preliminary phase achieved 17.32% WER
on the devb How2 subset. Because this system was not able to match the reference ESPnet
result, there was a concern that any cascade/end-to-end ST systems based on this ASR
model, or any subsequent alignment experiments would give unsatisfactory results. In both
cases, these concerns ended up being substantiated, as is further discussed in Sections 5.3
and 5.4.1.

Ultimately, we decide to pivot and train a baseline ASR system with the same basic
dimensions (256 hidden size, 12-layer encoder, 6-layer decoder), but whose encoder is based
on the novel E-Branchformer [22] architecture. Just as for ESPnet models, the CTC ob-
jective is used at the output of the encoder with a weight of 0.3 alongside the standard
cross-entropy loss at the output of the decoder.

Shttps://github.com/espnet/espnet/tree/master/egs/how2
Shttps://huggingface.co/docs/transformers/model_doc/speech_to_text

30

This ASR system — we refer to it as E-Branchformer small — was trained for 70 epochs,
with early stopping enabled to avoid overfitting, batch size of 128, a learning rate of le ™3,
and 20000 warm-up steps. The model utilizes a lower-cased vocabulary with all punctu-
ation except for the apostrophe removed. The vocabulary of the model is based on the
unigram tokenization method and has a size of 5000. For audio features, 80-dimensional
log-mel-spectrograms are used. To further improve the performance and robustness of the
ASR model, SpecAugment [33] is used to apply random time and frequency masks to the
spectrogram, specifically in the ‘LD‘ strategy, as described in the original paper. Before
extracting the mel-filterbank features, speed perturbation is applied to the source audio in
factors of [0.9, 1.0, 1.1] to further augment the dataset.

While this model has about 7 million more parameters than the ESPnet How2 baseline,
and the E-Branchformer architecture is generally considered to be more powerful for speech
recognition tasks than the conventional transformer [22, 35], it allows us to easily match
ESPnet ASR results on How2 , as it achieves 12.6 and 12.2% WER on the val and dev5
How2 subsets.

For more details about the used ASR systems, refer to Table 5.3.

5.2.2 Training the MT model

The baseline machine translation system adopts the MarianMT [19] transformer implemen-
tation available in Hugging Face Transformers and consists of a 6-layer encoder and a 6-layer
decoder, 4 attention heads, embedding size of 256, and intermediate feed-forward layer di-
mension of 2048. The source and target word embedding layers were untied in accordance
with the experiments in [18]. The system was trained in a true-cased to true-cased manner
with both the source and target BPE-based vocabularies containing 8000 word units.

The model was trained for a maximum of 50 epochs with 10k warm-up steps and a peak
learning rate of le~3, additionally adopting early stopping. The model was evaluated us-
ing the BLEU metric and achieved 57.90 and 56.95 BLEU on the val dev5 How?2 subsets,
respectively, which is on par with the results of [18] on How2 with the same model architec-
ture.

In further experiments, this model will be referred to as either MarianMT small, or just
MarianMT.

Table 5.2: Performance comparison of the foundation MT systems used in the alignment
experiments, evaluated on the How2 dataset. The MarianMT model was trained in-domain
on the How2 corpus, the T5 model is out-of-domain.

How2 BLEU 7 # of

Model In domain val devs parameters
MarianMT small Yes 57.9 57.0 21.6M
TH-en-pt No 40.0 38.8 223M

5.2.3 Choosing off-the-shelf ASR and MT models

On top of our two proprietary systems trained on How2 , we additionally choose some off-
the-shelf pre-trained ASR and MT models available on Hugging Face to conduct further
experiments with. Since our two models are both in-domain on How2 , it is not necessary

31

Table 5.3: Performance comparison of the foundation ASR systems used in the alignment
experiments, evaluated on the How2 dataset. The S2T, E-Branchformer small, and ESPnet
reference models were trained solely using How2 data, the E-Branchformer medium and
Whisper models were not trained on How2 . The ESPnet CTC/attn. transformer result is
included for reference.

Trained How2 WER | # of
Model on How2 57 devs parameters
S2T transformer baseline Yes 17.6 17.3 29M
CTC/attn. E-Branchformer small Yes 12.6 12.2 38.6M
CTC/attn. E-Branchformer medium No 12.1 11.7 174M
Whisper-small.en No 9.7 7.9 242M
ESPnet CTC/attn. transformer Yes - 13.0 30M

for these additional off-the-shelf models to perform that well on How2 without fine-tuning.
Rather than that, the main requirement is for the models to be generally more capable
than our proprietary ones. This allows for evaluating the performance scaling behavior
of the two alignment architectures, the domain and dimensionality adaptation capabilities
of the connector network, etc. In fact, it can be argued that if the foundation models
are out-of-domain on How?2 , it would be more akin to real-life scenarios, where one would
probably choose ASR and MT models that might both be powerful, but also mismatched
— both architecturally and domain-wise. For a comparison of all baseline M'T models, refer
to Table 5.2, and for a comparison of baseline ASR systems, refer to Table 5.3.

Ultimately, we choose and conduct experiments with two additional pre-trained ASR
models and one MT model. The chosen MT model is an English-to-Portuguese MT model
based on the T5 [40] architecture, which was developed for experiments conducted in [27].
The model was based on an English T5-base checkpoint, which was first pre-trained on
Portuguese language [5], and then fine-tuned for English to Portuguese translation on a 5M
English-Portuguese sentence subset of the ParaCrawl dataset [14], as well as some domain-
specific data in preparation for the WMT19 and WMT20 biomedical translation tasks.
Both the encoder and decoder consist of 12 layers with a hidden size of 768, resulting in
a model of 223M parameters.

This MT model is out-of-domain on How2 , achieving ‘only‘ 40.0 and 38.8 BLEU on the
val and devb sets, respectively. However, we chose this model primarily due to it being pre-
trained on Portuguese language and thus hope to leverage its Portuguese text-generation
capabilities in our alignment experiments. The model is freely available on Hugging Face’,
and will further be referred to as simply the T5 model.

Additionally, we choose two other ASR models. The first one is essentially a scaled-up
version of our E-Branchformer small model, trained with additional decoder-centric regular-
ization, a novel ASR training method developed by Ing. Alexander Polok at BUT@Speech.
The method has not been published yet, however, the model is freely available on Hugging
Face®. The model was once again trained with an additional CTC objective on top of
the 16-layer E-Branchformer encoder. The decoder has 8 layers, and the whole model has
a hidden size of 512, therefore totaling around 174 million parameters. Despite not being

"https://huggingface.co/unicamp-dl/translation-en-pt-t5
Shttps://huggingface.co/BUT-FIT/EBranchRegulaformermedium

32

trained on How2 , it achieves reasonable 12.1 and 11.7 WER on the val and dev5 sets,
respectively. Moreover, it was trained on 6000 hours of English speech data from various
datasets, providing an excellent baseline for an off-the-shelf ASR model with, hopefully,
good general audio embedding representation extraction capabilities. In our experiments,
it is referred to as E-Branchformer medium.

The second of the two additional ASR models is the English-only Whisper-small.en’
model by OpenAl [38]. The encoder and decoder of this model both consist of 12 layers
with a hidden size of 768. Whisper-small.en achieves 9.7% and 7.9% WER on val and
dev5 , respectively. As with the other ASR models, to compute this WER value, both the
transcriptions and Whisper output were normalized using the Whisper normalizer, then
lower-cased and all punctuation symbols were removed. Without normalization, the WER
values are 18.4% and 16.5% WER on the val and dev5 sets, respectively. We use this model
in only a few experiments to further demonstrate the ability of our alignment framework
to leverage good hidden representation-building capabilities of our foundation models (as
this particular model was pre-trained on 680 thousand hours of audio data).

5.3 Baseline ST systems

To establish a credible speech translation performance reference, two baseline ST systems
are created (plus the preliminary S2T-based system), each representing one side of the
cascade/end-to-end architecture spectrum. Both baseline systems are created using the
E-Branchformer small ASR and MarianMT small MT systems described in Sections 5.2.1
and 5.2.2. These systems are in-domain on the How2 dataset and were trained only using
this data.

First, we train an end-to-end ST system with the same architecture as the foundation
E-Branchformer small model. Adopting the How2 approach from [18], we reuse the 12-layer
encoder from the pre-trained E-Branchformer small ASR model and initialize the 6-layer
decoder with the weights from the MarianMT small decoder. The vocabulary of the decoder
is the same true-cased 8000-word unit BPE vocabulary used by the original MT decoder.
The system is then trained for a maximum of 40 epochs with a learning rate of le™3,
10000 warm-up steps, and a batch size of 128. Early stopping is used to avoid overfitting.
For this ST training phase, SpecAugment is no longer used, however, we keep the speed
perturbation augmentation with the same factors of [0.9, 1.0, 1.1]. Lastly, the encoder is
frozen for the first 8 epochs of training. This baseline system achieves 45.6 and 45.2 BLEU
on the val and dev5 How2 subsets, respectively, which is on par with the results of the
reference ESPnet system'", as shown in Table 5.4.

This end-to-end system represents the more robust but — at the same time — more costly
solution to the ST task. We obtain good performance using a small model, which employs
only one decoding step and does not suffer from domain mismatch. At the same time,
we still have to optimize all the parameters of the model to get the best results, and the
training would only consume more and more resources if the model size were to scale up.
Experiments presented in the following sections will attempt to argue that fine-tuning the
whole ST system is not necessary to obtain performance comparable to end-to-end systems
trained from scratch. That is if an appropriate alignment method is used.

Shttps://huggingface.co/openai/whisper-small.en
Yhttps://github.com/espnet/espnet/tree/master/egs/how2/st1

33

Table 5.4: Comparison of both trained and reference ST systems. The ESPnet reference is
an end-to-end transformer system, utilizing the same ASR and MT initialization approach
as our E-Branchformer end-to-end baseline. The S2T baseline is based on our preliminary
ASR transformer system from Section 5.2.1.

How2 BLEU 7

val devb

E-Branchformer end-to-end (ASR + MT init.) 45.6 45.2
Cascade (Ebr. ASR — truecaser — MarianMT) 40.9 40.4

Baseline ST system

ESPnet transformer reference - 45.7
Preliminary S2T transformer baseline 40.6 39.6

For completeness, the last line of Table 5.4 also shows the preliminary end-to-end ST
system based on the S2T transformer ASR from Section 5.2.1. This system was trained
in the same way as the E-Branchformer system, utilizing the S2T ASR encoder and the
MarianMT decoder as weight initialization points for the final system. Due to the worse
ASR performance of the original S2T model, this end-to-end preliminary ST baseline only
achieves 40.6 BLEU on the val set.

The other baseline ST system is a cascade system, connecting the E-Branchformer
small and MarianMT small models. For this system, no component is trained, however,
a minor issue arises, as the output vocabulary of the ASR model only consists of lower-
cased text with punctuation removed. The MT system on the other hand expects true-cased
English text with punctuation as its input. This type of domain mismatch can be quite
common among off-the-shelf ASR and MT systems as ASR systems are often trained to
only produce lower-cased, normalized text, contrary to MT systems, which utilize the casing
and punctuation information in the source text to produce better translations.

To overcome the vocabulary mismatch, we take a pre-trained T5H-based English casing
and punctuation restoration model from Hugging Face'', and use it to process the ASR
transcriptions before translating them with the MT model.

Our cascade system represents the naive but cheap solution to the ST task, as no param-
eters have to be tuned. However, the overall performance suffers from error accumulation,
resulting in noticeable performance degradation, as the model only achieves 40.9 and 40.4
BLEU on the val and devb How2 subsets, respectively. What is more, three decoding steps
have to be performed before obtaining the final translation.

5.4 Alignment architecture evaluation

The first set of alignment experiments mainly encompasses evaluating the two alignment
architecture variants (ECD, ECED) in conjunction with both of the connector network types
(Q and STE), as described in Section 4.2. These experiments aim to primarily determine
the viability of the aligning approach to training ST systems as a whole, juxtaposing them
against the baseline methods. On top of that, experiments are conducted with different
connector model compositions, namely in terms of the number of transformer layers, the
number of queries used by the Q-Former, etc.

Uhttps://huggingface.co/SJ-Ray/Re-Punctuate

34

Unless specified otherwise, all aligned models are trained for a maximum of 70 epochs
with 15000 warm-up steps, a batch size of 128, and a peak learning rate of 2¢~*. We adopt
early stopping to avoid overfitting and apply speed perturbation with the same factors as
in Section 5.3.

5.4.1 Architecture 1 — ECD

First, we evaluate the ECD architecture, where the frozen ASR encoder is connected to the
frozen MT decoder using the trained connector network. Starting off, the E-Branchformer
small ASR and the MarianMT small MT models (both trained in-domain on How2) are
chosen as the foundation models for the first part of alignment architecture evaluations.
Though these models are not the most powerful in comparison to other off-the-shelf models
pre-trained on thousands of hours of speech data, keeping both the ASR encoder and MT
decoder in-domain on the training set allows us to better isolate and identify potential short-
comings of the aligned models. Furthermore, the final results will be directly comparable
to the ST baselines from Section 5.3.

Since both foundation models have a hidden size of 256, we start off by defining both the
Q and the STE connectors as 6-layer transformer models with 4 attention heads, a hidden
size of 256, and an intermediate feed-forward layer with a size of 2048. The Q-Former
uses 100 trainable queries as input, the STE connector is prepended with the 2-layer 1-D
convolutional subsampler frontend, introduced in [43] and used in Fairseq [48]. Decreasing
the number of connector layers to 4 or 2 is also experimented with.

For the Q-Former, an additional modality-matching pooling loss is employed, inspired
by [13]. While training, we keep the original pre-trained MT decoder and use it to obtain
hidden representations T from the English transcription of the input speech utterance. Both
the transformed Q-Former output queries Q and the MT encoder output embeddings T
are then averaged along the time dimension to obtain single mean embedding vectors q and
t. The modality-matching loss is computed as mean-squared-error between the elements of
the two vectors:

LMM = MSE(q, t), (54)

essentially trying to enforce that the Q-Former output embeddings occupy the same space
as the output embeddings of the transcription, as it is encoded by the original MT encoder.
We find that while the modality-matching loss does not bring a clearly attributable increase
in performance, it helps stabilize the training.

Additionally, both the Q and STE connectors can be initialized from the original MT
encoder weights (the cross-attention layers of the Q-Former would be initialized randomly).
However, since this can only be meaningfully done when the connector dimensions match
the dimensions of the MT encoder, we ultimately refrain from doing so for most experiments
(especially down the line when bigger foundation ASR and MT models are used). For the
experiments, where the initialization was performed, we find no difference in performance,
however, for the STE architecture the initialization makes the model converge slightly
quicker.

From the results shown in Table 5.5 the STE connector outperforms the Q-Former by
a significant margin, almost matching the performance of the baseline end-to-end system,
achieving 45.0 and 44.8 BLEU on the val and dev5b sets, respectively. It could be argued,
that the STE connector perhaps benefits too much from the parameters added by the
convolutional subsampler, however, even the 4-layer STE configuration still outperforms the
6-layer Q-Former, suggesting that the problem lies probably in the way the Q connector

35

Table 5.5: Connector performance comparison for the ECD alignment architecture. The
S2T model is our ESPnet-inspired preliminary transformer baseline from Section 5.2.1.
Baseline ST model results from Section 5.3 are added for reference.

ASR enc. Connector Colg;lsfstor Queries MT enc. MT dec. prl;izlrr;ggis How2 BLEU T

val devb
Ebr. small Q 6 100 - Marian 61 9.6M 44.0 43.9
Ebr. small Q 4 100 - Marian 61 6.4M 42.5 42.6
Ebr. small Q 2 100 - Marian 61 3.2M 40.6 40.2
Ebr. small STE 6 - - Marian 61 10.7M 45.0 44.8
Ebr. small STE 4 - - Marian 61 7.9M 44.1 44.4
Ebr. small STE 2 - - Marian 61 5.3M 42.8 42.9
S2T Q 6 128 - Marian 61 9.6M 36.8 36.1
E-Branchformer E2E baseline 38.56M 45.6 45.2
Cascade baseline 0 40.9 40.4
S2T E2E transformer preliminary baseline 29M 40.6 39.6

represents and extracts information from the input speech embeddings. This is further
analyzed in Sections 5.6 and 5.7.

What is more, we also find that the training of the STE connector is more stable and
‘well-behaved‘ than the one of the Q-Former — it converges faster and spikes in evaluation
metrics while training are less common.

To further stress the importance of utilizing a quality ASR encoder for the alignment
experiments, Table 5.5 also shows the performance of one of the preliminary Q-Former
aligned models with the S2T transformer encoder (see Table 5.3). The performance gap
between the aligned model and the reference preliminary S2T end-to-end baseline is almost
4 BLEU points, which is considerably more than when a better ASR encoder (like our
E-Branchformer small) is used.

5.4.2 Architecture 2 — ECED

The second ECED architecture, where the connector maps the ASR encoder output em-
beddings into the input embedding space of the foundation MT encoder, should potentially
represent the less challenging alignment scenario between the two. The connector network
here does not have to overtake the responsibilities of the MT encoder completely (contrary
to the ECD architecture). Now, the main purpose of the connector network is to take the
ASR encoder output embeddings containing latent textual information and just transform
them in such a way that they roughly match their counterparts in the MT encoder input
text embedding space.

For these experiments, we keep the same training procedure, foundation models, and
connector configurations as for the ECD architecture.

In contrast to the ECD architecture, the performance falloff is not as stark when de-
creasing the number of connector layers. The best model is once again utilizing the 6-layer
STE connector, dipping slightly below the performance of the ECD configuration (see Sec-
tion 5.4.1) with 44.7 and 44.8 BLEU on the val and dev5 sets, respectively. The Q-Former
maintains better results in contrast to the ECD architecture, further reinforcing the hy-
pothesis that the mapping problem in this second architecture variant is a simpler one to
that of ECD.

36

Table 5.6: Connector performance comparison for the ECED alignment architecture. Base-
line ST model results from Section 5.3 are added for reference.

ASR enc. Connector Colzgsgor Queries MT enc. MT dec. pgzlr?lzl’?éis M
val devb
Ebr. small Q 6 100 Marian 61 Marian 61 9.6M 44.1 44.2
Ebr. small Q 4 100 Marian 61 Marian 61 6.4M 43.8 43.7
Ebr. small Q 2 100 Marian 61 Marian 61 3.2M 42.3 41.5
Ebr. small STE 6 - Marian 61 Marian 61 10.7TM 44.7 44.8
Ebr. small STE 4 - Marian 61 Marian 61 8.1M 44.0 44.1
Ebr. small STE 2 - Marian 61 Marian 61 5.5M 43.0 43.1
E-Branchformer E2E baseline 38.56M 45.6 45.2
Cascade baseline 0 40.9 40.4

Here, all of the aligned models (both using the Q and STE connectors) outperform our
cascade baseline. Though none of them surpass the E2E baseline system, it needs to be
stated that we are obtaining almost comparable performance while only tuning a small
module with less than a fourth of the parameter count of the E2E system. This further
indicates that there is potential in the alignment approach to ST, and it remains to be seen
as to what can be achieved by scaling up the foundation ASR and MT models.

5.5 ASR and MT model scaling effects

Having established that both the ECD and ECED alignment architectures are viable ap-
proaches for training speech translation systems, it is necessary to investigate the prospects
of aligning also off-the-shelf (and possibly out-of-domain) pre-trained ASR and MT models
in the same way. The hope is that increasing the size and capability of the foundation
models will yield an ST performance increase. Ideally, the alignment process would also
overcome any domain mismatch that would otherwise occur if one were to use the same
foundation systems as parts of a cascade ST system'”.

A very important thing to note is that the size of the connector network is kept constant
across all experiments. This is especially crucial in terms of the hidden size of the connector
(which is kept at 256) because the off-the-shelf adapted models use hidden sizes of 512 or
768. The connectors are intentionally kept this small for a few reasons, mainly because it
allows for shorter and more stable training runs (one training run is already around 13-15
hours). Also, the bottleneck nature of the connector does not seem to pose any problems
concerning ST performance, as is shown by the experiments that follow in this section —
even when the connector projects its output into an embedding space with more than twice
the dimensions. It can, of course, be argued that a connector with a hidden size closer to
that of the aligned MT model would yield better performance (and some side experiments
we conducted indeed support this), however, we argue that such behavior is expected and
the more interesting finding is that the connector can, in fact, be much smaller than either
of the foundation models, without impeding ST performance.

Once again, we train all the systems with the same training hyper-parameters as in
previous alignment experiments. The only exceptions are the two Whisper-small runs,

12This is also one of the reasons we do not build a cascade reference system using the chosen En-Pt T5
model, as its performance on How2 is already so impaired by domain mismatch that there is virtually no
hope for the cascade system to yield good results.

37

where we lower the number of warm-up steps to 12000 due to training instability, and
change the batch size to 48 with three gradient accumulation steps (resulting in an effective
batch size of 144), because of memory constraints.

We train most models in this section in the ECD alignment configuration except for
two instances, which are described later in this section. Experiments are conducted with
both the Q and STE connectors, trying out all possible combinations between both E-
Branchformer ASR encoders and MarianMT and T5 decoders. The results are shown in
the first half of Table 5.7.

Table 5.7: Aligned ST system performance comparison for different combinations of scaled-
up foundation ASR and MT models.

ASR enc. Connector COII;;:;:; or Queries MT enc. MT dec. pzl;zllﬁzlgelfs M
val devb
Ebr. medium Q 6 128 - Marian 61 10.4M 45.6 45.7
Ebr. medium Q 6 128 - T5 121 10.56M 46.8 47.5
Ebr. small Q 6 128 - T5 121 9.7M 44.5 44.4
Ebr. medium STE 6 - - Marian 61 12.0M 46.0 46.3
Ebr. medium STE 6 - - T5 121 12.0M 47.8 48.5
Ebr. small STE 6 - - T5 121 10.7M 45.4 45.6
Ebr. small STE 6 - T5 121 T5 121 10.7M 45.2 45.7
Ebr. medium STE 6 - T5 121 T5 121 12.0M 47.5 48.0
Whisper small Q 6 100 - T5 121 11.3M 47.4 47.6
Whisper small STE 6 - - T5 121 13.3M 48.2 48.9
E-Branchformer E2E baseline 38.5M 45.6 45.2
Cascade baseline 0 40.9 40.4

Once again, the STE connector performs slightly better than the Q-Former, improving
the BLEU score by one point on average when aligning the E-Branchformer small and
the T5 decoder. In the E-Branchformer medium/MarianMT configuration, STE still offers
a performance edge, only not as prevalent anymore. The results also suggest that increasing
the size and capability of the ASR encoder yields a bigger performance improvement on
average than when using a bigger M'T decoder. However, more experiments would need to
be done in this regard to confirm this hypothesis, as the chosen T5 model is perhaps not
the most fair reference point to draw such conclusions. Of course, utilizing both a bigger
ASR encoder and a bigger MT decoder yields the best translation results.

What is interesting about the T'5 decoder in these experiments, is that the BLEU scores
achieved by using this system in the aligned scenario far supersede the raw text translation
scores on How2 , as presented in Section 5.2. We argue that this is due to the connector
network being able to serve as a domain adapter for the MT decoder, reinforcing the notion
that the selected foundation ASR and MT models might not need to first be fine-tuned for
the specific domain of the available ST data.

We repeat this experiment also with the Whisper-small.en model, which achieves the
best WER on How2 of all the ASR systems used in this work. As shown in the last two
lines of Table 5.7, this model in combination with the same STE connector'’ yields the
best performance among all trained models, achieving 48.2 and 48.9 BLEU points on the

3Here both the encoder from Whisper and the T5 decoder have a hidden size of 768, while the connector
network still operates with 256-dimensional embeddings.

38

val and dev5 sets, respectively, which is an improvement of over 9 BLEU points for the T5
model on the dev5 set.

To further test the domain adaptation capabilities of the connector networks, we also
train two models with the whole T5 model in the ECED configuration, as one might argue
that a big part of the domain adaptation process is actually cutting off the T5 encoder.
The T5 model was trained for translation utilizing a specific task prompt that has to be
prepended to the encoder input, signaling the model to translate the input sentence, as is
typical for the T5 model family'*. Therefore when processing each batch, the tokenized
version of the prompt (‘translate English to Portuguese:) is first embedded via the T5
encoder input embedding layer and then prepended to the output embeddings produced by
the connector network, similarly to [50], and as shown earlier in Figure 4.5. This is done
to more closely match the original operational context of the T5 model.

The expectation here would be that if the connector network is actually only trying
to match the text embedding representation of the to-be-translated sentence at the input
of the MT encoder, the domain adaptation would fail, as there would be virtually no
distinction between the aligned scenario and the basic machine translation scenario in the
same domain. However (refer to lines 7-8 in Table 5.7), both models with either of the two
ASR encoders almost match the performances of their ECD counterparts. This suggests
that the connector network is actually doing something more abstract, perhaps learning
to steer the behavior of the translation model in a more nuanced way than just passing it
transformed ASR embeddings with textual information, resulting in better, more in-domain
results when decoding the final translated sentence. In other words, the connector network
seems to be adding some additional abstract information to the text information encoded
in the transformed embeddings, and this fine steering information allows the MT encoder
to properly translate the original sentence, without the out-of-domain effect becoming an
issue.

This same theme comes up again in Chapter 6, where it becomes apparent that this be-
havior of the connector networks is not always desirable and can probably even be regarded
as a case of domain or task overfitting.

In conclusion, these experiments show that both alignment architectures represent gen-
eral frameworks for aligning pre-trained ASR encoders with MT models, yielding better
results as one scales up the selected foundation models, while the connector network can be
kept small in size, allowing for quick and efficient training. Furthermore, we find that the
connector networks are able successfully to serve as domain adapters, drastically improving
the translation results even for out-of-domain MT systems.

5.6 Q-Former query count

Already in some preliminary experiments (using the initial subpar S2T ASR model), it
became apparent that the number of queries used by the Q-Former connector plays a crucial
role in relation to the aligned system performance. At first, those experiments suggested
that around 100 or 128 queries should offer the best results for our experiments. Once the
final foundation ASR and MT models were established, we once again tested the Q-Former
performance in relation to the number of input queries.

We train the same baseline Q-Former alignment system with our E-Branchformer small
and MarianMT small models, specifically in the ECD configuration. The same training

" Example encoder prompt: ‘translate English to Portuguese: So long, and thanks for all the fish;

39

setup and hyper-parameters as described at the beginning of Section 5.4 are used. The
query numbers we test are 40, 60, 80, 100, 128 (this number was used in many of the
preliminary experiments), and 150. See Table 5.8 for results.

Table 5.8: Q-Former performance comparison with regard to the number of queries used.

ASR enc. Connector Colr;;:;:;:or Queries MT enc. MT dec. pgl;zl;ﬁ{;}?elfs M
val devb
Ebr. small Q 6 150 - Marian 61 9.6M 43.2 42.9
Ebr. small Q 6 128 - Marian 61 9.6M 43.7 43.5
Ebr. small Q 6 100 - Marian 61 9.6M 44.0 43.9
Ebr. small Q 6 80 - Marian 61 9.6M 43.8 43.8
Ebr. small Q 6 60 - Marian 61 9.6M 43.3 43.1
Ebr. small Q 6 40 - Marian 61 9.5M 43.3 43.1
Ebr. medium Q 6 128 - Marian 61 10.4M 45.6 45.7
Ebr. medium Q 6 128 - T5 121 10.56M 46.8 47.5
Ebr. small Q 6 128 - T5 121 9.7M 44.5 44.4
Ebr. medium Q 6 100 - Marian 61 10.4M 45.8 45.4
Ebr. medium Q 6 100 - T5 121 10.5M 46.6 47.4
Ebr. small Q 6 100 - T5 121 9.7M 44.3 44.0

The results show that there is a clear sweet spot of around 100 queries that works best
for our experiments when training on How2 using our E-Branchformer small and MarianMT
models. Though it might seem that lowering the number of queries to 40 or 60 does not
impact the ST performance as much as one would perhaps expect, later in Section 5.7,
it is shown that lowering the number of queries to 60 and below comes with a significant
performance hit when measured on utterances longer than 15 seconds.

In contrast to [54], we find that increasing the number of queries past a certain threshold
does not yield better performance either. This is most likely caused by the fact that the How?2
dataset skews significantly towards shorter utterances of around 5 seconds, and the higher
number of queries might simply provide a needless amount of headroom that degrades the
performance of the MT decoder. Intuitively, this could be thought of as the Q-Former not
being able to learn to properly mask the unused queries, in a certain sense. Ultimately,
more experiments should be conducted to better pinpoint the cause of this problem.

The number of queries used by the Q-Former should generally be informed by the
average number of text tokens needed to represent the input utterance in the MT encoder
embedding space. Models with larger and finer-grained vocabularies might benefit from
a higher query count. This hypothesis is supported by a few experiments conducted with
the TH5 MT model, where 128 queries marginally outperform the 100 queries used in the
experiments with the MarianMT small model.

5.7 Evaluating the connectors on different input lengths

As was discussed in Section 4.1.2, the Q-Former has a fundamental issue of not being
able to handle audio embedding representation sequences of arbitrary lengths. Instead, it
always maps them to a fixed-length sequence, whose length is determined by the number
of queries used. This might not be that much of an issue if the foundation ASR model
only operates on audio slices of fixed length as well. For example, Whisper models [38]
always operate on audio inputs of exactly 30 seconds (if the audio is shorter, it gets padded

40

Connector BLEU scores in relation to input utterance length

\::?:::'7'1.\.
44 \.\. '-n.\\
s Ry,
p S,
2 &,
\.\ B3
a 42 \\ h N3
| < R,
m .\ ‘x-‘“
AN “"&.
X, T,
40 STE "\ "
Q-128 N
........ Q-100 \‘\
38 | —~ Q-80 S,
—— Q-60 .
Q-40 N
0-5s 5-10s 10-15s 15-20s

Utterance lengths

Figure 5.2: Performance comparison between the STE and Q connector networks with
varying numbers of queries in relation to input utterance length. The final BLEU score is
obtained by averaging BLEUs computed for both the val and dev5 How2 sets.

up to 30 seconds). In this scenario, the QQ connector can potentially better learn to mask
unused unused queries. However, for virtually all other cases it makes more sense for the
connector network to produce variable-length output — that way, there is always headroom
if the input audio sequence is longer, and, on the flip side, the model can be more efficient
if the input utterance is short. On top of that, it could be argued that having the connector
output length correspond monotonously to its input length, provides less room for confusion
in the downstream language/MT model. Such errors could stem from some unexpected
residual information being carried by queries that are not necessary to encode the whole
utterance, or, on the contrary, simply from not having enough queries to represent a long
input utterance properly.

From the experiments conducted in the previous sections, it is already quite apparent
that the STE connector generally outperforms the QQ connector. However, since the evalua-
tion is always computed over the whole val or devb set — and therefore aggregated over all
possible input utterance lengths — these results cannot confirm or disprove our hypothesis
that the STE connector is perhaps the superior architecture in terms of robustness to input
utterance length.

We therefore also evaluate both the Q and STE connectors on four sub-splits of the test
How2 subsets. These sub-splits are simply filtered by lengths: 0 to 5 seconds, 5 to 10, 10
to 15, and 15 to 20 seconds and contain approximately 1100, 700, 220, and 60 utterances
each, respectively. Because the majority of How2 utterances is concentrated in the 0 to 10-
second range, the last two splits are considerably smaller than the two made up of shorter
utterances of under 10 seconds. However, we think that the results of this experiment show

41

a clear trend that goes beyond any potential errors that could stem from the smaller amount
of test data (or training data for that matter). To obtain the final BLEU value for each
sub-split, the scores obtained for the val and devb sets are averaged to better illustrate the
overall performance decline trend of each evaluated system.

All results are obtained using the ECD models constructed using the E-Branchformer
small and MarianMT small foundation models, as presented in previous sections.

As shown in Figure 5.2, the STE connector clearly maintains good performance in
a much more consistent manner and falls off much slower than the Q-Former with longer
utterances. The Q-Former on the other hand greatly suffers from not being able to properly
represent longer utterances when only operating over 40 or 60 queries, dipping below 37
BLEU. This experiment also reinforces our previous finding from Section 5.6 that the sweet
spot for the Q connector lies around 80 to 100 queries (at least for the MarianMT model).
Slightly surprisingly, 128 queries also show degrading performance for longer utterances,
perhaps suffering from the skewing of the How2 dataset towards a greater amount of shorter
training utterances. Alternatively, the explanation could stem from the fact that the MT
model has — due to its 8000 sub-word unit vocabulary having relatively low granularity
— simply not encountered enough training sequences of lengths greater than 128, further
contributing to the performance degradation. This would also be supported by our other
findings, that when used with the T5 model, 128 queries give better overall performance
than 100.

Ultimately, it can be concluded that the STE architecture is a more robust and better-
performing connector network among the two, both in terms of raw performance and han-
dling variable-length sequences.

42

Chapter 6

Connector network pre-training

Inspired by BLIP-2 [25], the question arises, if there is a possibility to devise a pre-training
procedure for the aligned system, specifically the connector module. Ideally, such an ap-
proach would either improve the performance of the final system or help speed up the
training process, perhaps resulting in a reduced need for speech translation data.

The form and utility of the chosen pre-training approach depends not only on the entire
aligned model architecture, but also on the properties of the chosen pre-trained models,
especially the foundation language/MT model — it depends on whether the models are mono
or multilingual, and whether they support different kinds of diverse language understanding
tasks. For example, in [50] the aligned models are trained using a multitude of tasks that the
selected language model is already able to perform, utilizing both ASR and ST objectives
and data, which are combined with different ways of instructing the language model.

In this chapter, we explore two possible approaches to pre-training the connector net-
work: one is loosely based on the concept of knowledge distillation and mainly inspired
by the ideas presented in [13, 25]. The other one takes inspiration from [50] and involves
retraining the MT decoder in a way that allows us to use it as a criterion of the align-
ment progress. The knowledge distillation-based approach (and mostly its shortcomings)
is described in Section 6.1, and the ultimately much more successful end-to-end approach
is then discussed in Section 6.2.

6.1 Knowledge distillation approach

The first set of pre-training experiments was based on knowledge distillation (KD) in the
output hidden representation spaces of the connector network and the frozen MT encoder.
These experiments can currently be regarded more as a study of an apparent failure, though
with some positive outlooks and prospects for future work.

The goal of this knowledge distillation approach was to train the connector network
in the ECD configuration in such a way, that its output embedding sequence (encoding
the speech input) roughly matches the output embedding sequence of the MT encoder
(encoding the reference text transcription), which is replaced by the connector. If the
embeddings occupy similar representation spaces and there is high similarity between the
connector outputs and MT encoder output sequences in general, the MT decoder should,
in theory, behave similarly when prompted with either of them, provided that these output
embeddings encode the same sentence.

43

For pre-training, we only use the English ASR data from How2 (the translations are
not needed), and alter the training in the following manner. First, the connector network
transforms the output embeddings from the ASR encoder, giving us a matrix of hidden
representations Cg of length K. Then, the original MT encoder is used to encode the
ground truth text transcription for the input speech utterance, producing a sequence of M'T
encoder output embeddings T, of length L. We then compute the knowledge distillation
loss Lxp between the two sequences in the following way:

Lxp(Ck,Tr) = MSE(c,t) + Lsim.(Cx, TL), (6.1)

where ¢, t denote mean embedding vectors computed from Cg and T, respectively, and
Lgim. is a custom sequence similarity loss function, designed to maximize the similarity
between the connector outputs and MT encoder outputs. Note that no contrastive task is
employed here, in contrast to [25], as using the original MT encoder embedding space as
our target domain keeps the training from collapsing.

The Lgn. function can be defined in several ways, depending on what assumptions are
made about the nature of the desired similarity between the connector and MT encoder
output embedding spaces. We conduct experiments with two Lg;, variants, further denoted
as Lax and Lgiag. :

Lmax(Cr, Tp) = — 3 max Se(Cxc[k], TL[l]), (6.2)
keK
m d

Lo (C1c,T0) = = D03 SelCrelb], Tl + 1)) 5 (6.3)
k=0 1=0

where S.() is cosine similarity, m denotes the diagonal limit computed as min(k —d,l — d),
and d is a hyper-parameter denoting the width of the diagonal.

Putting it into words, Ly simply tries to maximize the mutual information between
the two embedding sequences, selecting the maximum similarity between each connector
embedding and any of the MT encoder output embeddings. The Lgj,g. loss function assumes
that in an ideal alignment scenario, there should be a monotonous similarity relationship
between the connector and MT encoder outputs along the main diagonal and attempts to
loosely enforce it by widening the diagonal region, where the similarities are computed.
Of course, there is room to alter the shape of the diagonal, even for enforcing a more
specific contrastive objective at the same time by requiring the off-diagonal elements to be
dissimilar, however, we leave such experiments for future work.

Unfortunately — though perhaps unsurprisingly — the experiments conducted using these
knowledge distillation losses did not bring any positive results. The KD losses would, on
one side, decrease during training, however, when switching the objective back to speech
translation and attempting to fine-tune the models, the training either diverges or severe
overfitting is observed every time.

Reflecting, because the MT encoder output embedding space is much more abstract than
perhaps the input text embedding space, trying to only optimize such relatively ad-hoc sim-
ilarity losses is perhaps not the best approach to pre-training the model. The structural and
similarity assumptions made about this space might be inaccurate and too specific to pro-
vide a useful training objective. This is further supported by the fact that when taking an
end-to-end-trained ECD architecture from the previous experiments and plotting a similar-
ity matrix between the output embeddings of the connector and the outputs of the original

44

MT encoder, there seems to be no discernible diagonal similarity relationship between the
two embedding sequences. In other words, when trained end-to-end, the connector seems
to find a completely different solution to encoding the speech embeddings than the MT
encoder does when encoding the text transcription.

An additional problem is that it might be necessary to involve the response feedback
from the actual aligned MT decoder (and therefore the causal language modeling objective)
in the pre-training as well. This alludes to the fact that the goal of the connector network is,
in the end, to align the two feature spaces of the ASR and MT models, with an emphasis on
the decoder behaving in the desired way. Perhaps some potential therefore lies in combining
similar MT encoder output knowledge distillation objectives with some more specific end-
to-end objectives as well. However, we leave that for future work.

For now, we refrain from attempting to pre-train the connector by only optimizing for
similarity in the MT encoder output embedding space and switch to a different method,
described in the next section.

6.2 End-to-end pre-training with MT decoder retraining

Since the knowledge distillation-oriented pre-training approach failed, we devise a different
method, partly inspired by the training approach presented in [50]. Instead of trying to
design an ad-hoc knowledge distillation loss function, operating in the abstract embedding
space, we propose to push the pre-training towards a more end-to-end-oriented goal. This
is done by retraining the MT decoder of the chosen MT model to serve as somewhat of
a loss-adapter, which further processes the MT encoder outputs and interprets them. We
design this pre-training approach to mainly accommodate simple MT models with perhaps
only one source and target language and demonstrate the approach using our MarianMT
model trained on How?2 .

Since one of the pre-training goals is to reduce the need for speech translation data
when aligning the models, the pre-training approach becomes the following:

1. Select the target MT model, freeze the encoder, and reset the decoder weights. Re-
place the embedding layers and vocabulary of the decoder with that of the encoder.

2. Keeping the encoder frozen, train the decoder for identity on the source language
(English), teaching it to repeat the encoder input.

3. Construct the ECED alignment model with this newly trained (English-English) iden-
tity MT model. Freeze the ASR encoder and the whole MT model.

4. Train the system for ASR in the source language (English), only optimizing the pa-
rameters of the connector.

5. Replace the MT decoder with the original target language (Portuguese) decoder and
freeze it.

6. Fine-tune the connector network, now optimizing for the translation objective using
speech translation data.

The main idea behind this pre-training method is to delegate the responsibility of the
ad-hoc knowledge distillation loss to the much more general ASR objective. For the newly
trained English MT decoder to produce the correct transcript of the input utterance, it has

45

to receive the correct set of output MT encoder embeddings. The assumption is that similar
decoder cross-attention inputs should produce similar outputs. Therefore, if the connector
network supplies the MT encoder with a set of embeddings, one should be able to conclude
that the ASR and MT models are aligned if the retrained MT decoder produces the correct
English transcription. Finally, when switching back to the original Portuguese MT decoder
— assuming that the alignment process had been successful — the decoder should be able to
infer the correct translations from the aligned MT encoder outputs.

What is more, retraining the MT decoder to reproduce the MT encoder input is very
simple, as the model has to only learn an identity mapping with virtually no information
bottlenecks. For such tasks, there is no data shortage and the training converges very
quickly, achieving near-perfect accuracy in a small number of training steps.

It is possible that this pre-training approach will not yield great ST results without
any fine-tuning on ST data, after we switch to the original MT decoder, most likely due to
over-fitting to the ASR pre-training task in step four of the procedure. However, we argue
that even if some fine-tuning is required afterward, it would be a success if this pre-training
approach helped alleviate the need for large amounts of speech translation data to produce
well-performing end-to-end ST systems.

6.2.1 Pre-training experiments

First, we retrain the decoder of our in-domain MarianMT model to recreate the given
English input. The training converges very quickly, achieving near-perfect BLEU in about
20 epochs, though we let the training run until convergence. Then, using this model, we
construct the ECED alignment model with the STE connector and E-Branchformer small
ASR encoder, and train the connector normally, only using the English ASR data. The
dimensions of the STE connector are kept as in previous experiments — 6 layers, 4 attention
heads, hidden size of 256.

Then, the ASR pre-training objective (step four) begins. The model is once again
trained for a max of 70 epochs with, a batch size of 128, 15000 warm-up steps, a learning
rate of 274, and early stopping. The final pre-trained system achieves 22.5 and 21.7%
WER on the val and dev5 How2 sets.

After the ASR training phase is finished, the English M'T decoder is replaced with the
original Portuguese one. At this point, the system is evaluated without any fine-tuning on
speech translation data, achieving 12.5 and 12.9 BLEU on the val and dev5 sets. While this
result is not what we initially hoped for, it is obvious that the ASR pre-training procedure is
much more productive in terms of aligning the ASR encoder with the MT encoder, contrary
to the knowledge distillation approach.

It seems plausible, that the embedding distribution the STE connector learns to produce
is reasonably useful for the ASR objective during step four. However, it does not completely
match the distribution that would correctly prompt the original MT decoder to produce
correct translations. As it was mentioned previously, this result supports the fact that the
connector network can, in fact, be susceptible to task and domain overfitting, explaining
both the result of this particular experiment and why it can perform domain adaptation
for out-of-domain foundation models. Perhaps this is the place where some additional
supervision or regularization in the embedding space would aid the final result while keeping
the end-to-end ASR objective as the main criterion for the pre-training procedure.

Nevertheless, we proceed with the fine-tuning. The fine-tuning strategy utilizes three
low-resource simulation How2 splits as used in [21], cut from the 300-hour set: 17 hours, 51

46

Table 6.1: Comparison of BLEU scores achieved by the pre-trained and non-pre-trained
E-Branchformer small + MarianMT small ECED/STE systems when fine-tuned using dif-
ferent amounts of ST data.

. 0 hours 17 hours 51 hours 153 hours 300 hours
Pre-trained
val devb | val devb | val devb | val devb | val devb
NO - - 25.4 25.0 37.8 38.3 42.7 43.3 44.7 44.8
YES 12.5 12.9 38.8 39.5 41.5 41.4 43.4 44.0 44.4 44.5

hours, and 153 hours. The pre-trained connector is fine-tuned using all of these splits to
test if the pre-training actually provides any further improvements when training the final
aligned ST system. Additionally, the results are compared to the same exact system, only
with a randomly initialized connector, that is, with no pre-training. Refer to Table 6.1 for
the results.

Quite obviously, the pre-training procedure helps achieve considerably higher BLEU
scores when fine-tuned using smaller amounts of data. Even for the 17-hour split, the pre-
trained system achieves 38.8 and 39.5 BLEU on the val and devb sets after fine-tuning,
which is an improvement of more than 13 BLEU points across both sets when compared to
the non-pre-trained system. While this result still does not beat our cascade baseline from
Section 5.3, we think this result is only a starting point, given the fact that the pre-training
procedure has a lot of potential for change and improvement. Additionally, fine-tuning
the pre-trained system on the 51-hour set already yields results that surpass the cascade
system, contrary to no pre-training.

As the fine-tuning split size grows to 153 and full 300 hours, the pre-training performance
advantage slowly diminishes, finally offering no actual performance edge for the 300-hour
subset, though it needs to be said that the pre-trained systems converge significantly faster.
This particular model configuration and architecture may be reaching saturation on the
full 300-hour How2 dataset, which could explain the lack of performance improvement when
utilizing pre-training.

Pre-training with off-the-shelf models

We repeat the previous pre-training experiment with the E-Branchformer medium and T5
models. Contrary to the previous experiment, these models have not seen any of the How?2
data during training, making them ideal candidates for testing this pre-trained method in
a more real-life scenario.

First, the decoder of the T5 model is stripped away and replaced with a small, 6-
layer decoder with 4 attention heads and a hidden size of 256 (same architecture as the
MarianMT small model). The tokenizer used is BPE-based and has an 8000 sub-word
true-cased vocabulary. This new decoder is then once again retrained to repeat the input
sentence to the T5 encoder — each input English sentence in this scenario is prepended with
the T'5 instruction prefix ‘translate English to Portuguese: ‘. Therefore, the decoder has to
only learn to repeat the sentence, that follows the instruction prefix.

After the decoder re-training is done, the same ECED/STE alignment architecture is
constructed, using the T5 with the new decoder and the E-Branchformer medium models.
The STE connector size is kept the same as in all previous experiments. The model is then
trained for ASR using How2 data, achieving an impressive 17.1 and 16.2% un-normalized

47

WER on How2 . The re-trained decoder is then once again switched for the original T5
decoder.

When evaluating this system for ST after only doing the ASR pre-training, the previ-
ously mentioned task overfitting tendency of the connector network manifests clearly, as
the BLEU scores without fine-tuning on ST data near absolute zero. Nonetheless, we pro-
ceed with the fine-tuning using the same low-resource simulation How2 splits and report the
results in Table 6.2. For reference, we also report BLEU scores for the same architecture
when only trained using the low-resource splits, without any ASR pre-training.

Table 6.2: Comparison of BLEU scores achieved by E-Branchformer medium + T5
ECED/STE systems with and without pre-training, when fine-tuned using different
amounts of ST data.

. 0 hours 17 hours 51 hours 153 hours 300 hours
Pre-trained
val devb | val devb | val devb | val devb | val devb
NO - - | 33.1 33.5 | 39.7 40.6 | 44.2 45.4 | 47.5 48.0
YES 0.0 0.0 37.5 37.2 41.1 41.8 44 .5 45.7 47.3 47.9

Similarly to the previous experiment, the translation performance between the pre-
trained and non-pre-trained models narrows with the size of the fine-tuning ST set. Surpris-
ingly, the system achieves better scores for the same fine-tuning splits without pre-training,
than in the previous case. This could be explained by the fact that the foundation ASR
and MT systems are more powerful. On the other hand, the pre-trained system reaches
worse performance for the 17-hour split than before (37.5 and 37.2 BLEU on the val and
dev5 splits), possibly stemming from the fact there is no overlap between the MT data used
to train the T5 model and the ST data used to fine-tune it. However, there is still a clear
performance gap between the models going in favor of the pre-trained system, suggesting
that the pre-training approach is generalizable to arbitrary combinations of off-the-shelf
pre-trained foundation models.

While this result is perhaps not what we hoped for, it still reinforces the merit of our
proposed pre-training method and we argue that it should be possible to further improve
and refine the approach in future work, for example by leveraging multiple pre-training
objectives and using multi-lingual models, similarly to [50].

48

Chapter 7

Conclusions

In this work, we explored the possibilities of aligning pre-trained ASR and MT models
to solve the task of spoken language translation. We did this by conducting experiments
in two alignment scenarios, Encoder-Connector-Decoder and Encoder-Connector-Encoder-
Decoder. In the ECD scenario, the connector maps the output embeddings of the foundation
ASR encoder into the cross-attention input space of the selected MT decoder, overtaking
the responsibilities of the MT encoder. In the ECED scenario, the connector instead in-
jects its output into the input text embedding space of the MT encoder, leaving room for
potential leveraging of any multi-task capabilities the model might offer. In both alignment
architectures, the foundation ASR and MT models are frozen and only the connector net-
work weights are optimized using a standard cross-entropy loss objective at the output of
the MT decoder in the context of the ST task.

We additionally compared two connector network types: the Q-Former and the STE
connector, which we used as an alternative. Our experiments find, that the STE connector is
superior to the Q-Former in both performance and flexibility, stemming primarily from the
variable-to-fixed-length mapping limitations of the Q-Former, caused by its utilization of
a fixed set of trainable queries to represent the extracted information. This results in the Q-
Former not being able to properly represent longer input sequences, impeding translation
performance. The STE connector alleviates this by utilizing a subsampler frontend and
adopting a regular transformer encoder architecture.

Our experiments show that the alignment approach is a viable framework for establish-
ing new end-to-end speech translation systems, as most of our alignment systems outper-
form the baseline cascade system constructed using the same foundation models, almost
matching the performance of our other end-to-end baseline ST system. We also find that
scaling up the aligned ASR and MT models leads to universally better speech translation
results, while the size of the connector network can remain constant, and relatively small,
in contrast to the aligned foundation models.

The connectors also demonstrate good domain adaptation capabilities when used in
conjunction with foundation models that are out-of-domain on the training data, as was
the case for the T5 translation model used in our experiments. In that case, the best-aligned
ST model improves the translation performance by more than 9 BLEU points on the devb
How2 set, when compared to the How2 evaluation result of the T5 system in the base MT
scenario.

Lastly, we propose a connector pre-training approach aimed at reducing the need for ST
data when aligning the systems. This approach involves re-training the original MT decoder
to replicate the encoder input, subsequently allowing us to train the entire aligned system

49

in the ECED configuration using the ASR objective and ASR data only. We find that his
kind of pre-training yields better results than other more ‘vanilla® knowledge-distillation-
based approaches we experiment with. The pre-training procedure improves the aligned
ST performance when fine-tuned on low-resource simulation ST How2 splits, allowing the
E-Branchformer medium + STE + T5 pre-trained system to achieve 37.5 BLEU on the val
set when fine-tuned using 17 hours of ST data, compared to the score of 33.1 of the same
system without the pre-training. While this result does not outperform our cascade ST
baseline, we argue that this result shows that there is potential in the pre-training method
if further developed and refined.

50

Bibliography

1]

ALAYRAC, J.; DONAHUE, J.; Luc, P.; MIECH, A.; BARR, I. et al. Flamingo: a Visual
Language Model for Few-Shot Learning. In: KOYEJO, S.; MOHAMED, S.; AGARWAL,
A.; BELGRAVE, D.; CHO, K. et al., ed. Advances in Neural Information Processing
Systems 35: Annual Conference on Neural Information Processing Systems 2022,
NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022. 2022.
Available at: http://papers.nips.cc/paper_files/paper/2022/hash/
960a172bc7£fbf0177ccccbb411a7d800-Abstract-Conference.html.

BAEVSKI, A.; ZHOU, Y.; MOHAMED, A. and AuLi, M. Wav2vec 2.0: A Framework
for Self-Supervised Learning of Speech Representations. In: LAROCHELLE, H.;
RANzZATO, M.; HADSELL, R.; BALCAN, M. and LiN, H., ed. Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual. 2020.
Available at: https://proceedings.neurips.cc/paper/2020/hash/
92d1leleblcd6£9fba3227870bb6d7f07-Abstract.html.

BAHDANAU, D.; CHO, K. and BENGIO, Y. Neural Machine Translation by Jointly
Learning to Align and Translate. 2016.

BrownN, T. B.; MANN, B.; RYDER, N.; SUBBIAH, M.; KAPLAN, J. et al. Language
Models are Few-Shot Learners. In: LAROCHELLE, H.; RANZATO, M.; HADSELL, R.;
BArcaN, M. and LiN, H., ed. Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurlPS 2020,
December 6-12, 2020, virtual. 2020. Available at: https://proceedings.neurips.cc/
paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

CarMO, D.; P1au, M.; CAMPIOTTI, I.; NOGUEIRA, R. and LoTuFroO, R. PTT5:
Pretraining and validating the T5 model on Brazilian Portuguese data. ArXiv
preprint arXiv:2008.09144, 2020.

CHEN, F.; HAN, M.; ZHAO, H.; ZHANG, Q.; SHI, J. et al. X-LLM: Bootstrapping
Advanced Large Language Models by Treating Multi-Modalities as Foreign Languages.
2023.

CHEN, G.; ZHENG, Y.-D.; WANG, J.; XU, J.; HUANG, Y. et al. VideoLLM: Modeling
Video Sequence with Large Language Models. 2023.

CHOWDHERY, A.; NARANG, S.; DEVLIN, J.; BosMA, M.; MIsSHRA, G. et al. PaL.M:
Scaling Language Modeling with Pathways. J. Mach. Learn. Res., 2023, vol. 24,
p- 240:1-240:113. Available at: http://jmlr.org/papers/v24/22-1144 html.

51

http://papers.nips.cc/paper_files/paper/2022/hash/
https://proceedings.neurips.cc/paper/2020/hash/
https://proceedings.neurips.cc/
http://jmlr.org/papers/v24/22-1144.html

[9]

[11]

[12]

[17]

Da1, W.; L1, J.; L1, D.; Tiong, A. M. H.; ZHAO, J. et al. InstructBLIP: Towards
General-purpose Vision-Language Models with Instruction Tuning. In: OH, A.;
NAUMANN, T.; GLOBERSON, A.; SAENKO, K.; HARDT, M. et al., ed. Advances in
Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurlPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023. 2023. Available at: http://papers.nips.cc/paper_files/
paper/2023/hash/9a6a435e75419a836fe47ab6793623e6-Abstract-Conference.html.

DEvLIN, J.; CHANG, M.-W.; LEE, K. and TouTaNOvA, K. BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding. In: BURSTEIN, J.;
DoRAN, C. and SOLORIO, T., ed. Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota:
Association for Computational Linguistics, June 2019, p. 4171-4186. Available at:
https://aclanthology.org/N19-1423.

Dong, L.; Xu, S. and XU, B. Speech-Transformer: A No-Recurrence
Sequence-to-Sequence Model for Speech Recognition. In: 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). 2018,

p- 5884-5888.

DosoviTskiy, A.; BEYER, L.; KOLESNIKOV, A.; WEISSENBORN, D.; ZHAI, X. et al.
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.

In: 9th International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net, 2021. Available at:

https://openreview.net/forum?id=YicbFdNTTy.

DUQUENNE, P.-A.; SCHWENK, H. and SAGoT, B. SONAR: Sentence-Level
Multimodal and Language-Agnostic Representations. arXiv, 2023. Available at:
https://arxiv.org/abs/2308.11466.

EsPLA, M.; FORCADA, M.; RAMIREZ SANCHEZ, G. and HOANG, H. ParaCrawl:
Web-scale parallel corpora for the languages of the EU. In: FORCADA, M.; WAY, A.;
TINSLEY, J.; SHTERIONOV, D.; Rico, C. et al., ed. Proceedings of Machine
Translation Summit X VII: Translator, Project and User Tracks. Dublin, Ireland:
Furopean Association for Machine Translation, August 2019, p. 118-119. Available
at: https://aclanthology.org/W19-6721.

GAGE, P. A new algorithm for data compression. C Users J. USA: R & D
Publications, Inc., feb 1994, vol. 12, no. 2, p. 23-38. ISSN 0898-9788.

GuLATI, A.; QIN, J.; CHIU, C.; PARMAR, N.; ZHANG, Y. et al. Conformer:
Convolution-augmented Transformer for Speech Recognition. In: MENG, H.; XU, B.
and ZHENG, T. F., ed. Interspeech 2020, 21st Annual Conference of the International
Speech Communication Association, Virtual Event, Shanghai, China, 25-29 October
2020. ISCA, 2020, p. 5036-5040. Available at:
https://doi.org/10.21437/Interspeech.2020-3015.

Hono, Y.; MiTsubpa, K.; ZHAo, T.; MiTsul, K.; WAKATSUKI, T. et al. An
Integration of Pre-Trained Speech and Language Models for End-to-End Speech
Recognition. 2023.

52

http://papers.nips.cc/paper_files/
http://OpenReview.net

[18]

[20]

[22]

23]

[24]

[25]

InacuMA, H.; KivyoNo, S.; DUH, K.; KARITA, S.; YALTA, N. et al. ESPnet-ST:
All-in-One Speech Translation Toolkit. In: CELIKYILMAZ, A. and WEN, T.-H.,
ed. Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics: System Demonstrations. Online: Association for Computational
Linguistics, July 2020, p. 302-311. Available at:
https://aclanthology.org/2020.acl-demos.34.

JuNnczys DOwMUNT, M.; GRUNDKIEWICZ, R.; DWoOJAK, T.; HOANG, H.; HEAFIELD,
K. et al. Marian: Fast Neural Machine Translation in C++. In: Liu, F.

and SOLORIO, T., ed. Proceedings of ACL 2018, System Demonstrations. Melbourne,
Australia: Association for Computational Linguistics, July 2018, p. 116-121.
Available at: https://aclanthology.org/P18-4020.

KARITA, S.; SOPLIN, N. E. Y.; WATANABE, S.; DELCROIX, M.; OGAWA, A. et al.
Improving Transformer-Based End-to-End Speech Recognition with Connectionist
Temporal Classification and Language Model Integration. In: Proc. Interspeech 2019.
2019, p. 1408-1412.

KESIRAJU, S.; SARVAS, M.; PAVLICEK, T.; MACAIRE, C. and CIUBA, A. Strategies
for Improving Low Resource Speech to Text Translation Relying on Pre-trained ASR
Models. In: INTERSPEECH 2023. ISCA, August 2023. Available at:
http://dx.doi.org/10.21437/Interspeech.2023-2506.

Kiv, K.; Wu, F.; PENG, Y.; PAN, J.; SRIDHAR, P. et al. E-Branchformer:
Branchformer with Enhanced Merging for Speech Recognition. In: IEEE Spoken
Language Technology Workshop, SLT 2022, Doha, Qatar, January 9-12, 2023. IEEE,
2022, p. 84-91. Available at: https://doi.org/10.1109/SLT54892.2023.10022656.

Kupo, T. Subword Regularization: Improving Neural Network Translation Models
with Multiple Subword Candidates. In: GUREVYCH, 1. and M1vao, Y.,

ed. Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Melbourne, Australia: Association for
Computational Linguistics, July 2018, p. 66—75. Available at:
https://aclanthology.org/P18-1007.

Lewis, M.; Liu, Y.; GOYAL, N.; GHAZVININEJAD, M.; MOHAMED, A. et al. BART:
Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. In: JURAFSKY, D.; CHAI, J.; SCHLUTER, N.

and TETREAULT, J., ed. Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics. Online: Association for Computational Linguistics,
July 2020, p. 7871-7880. Available at: https://aclanthology.org/2020.acl-main.703.

L1, J.; L1, D.; SAVARESE, S. and Hor, S. C. H. BLIP-2: Bootstrapping
Language-Image Pre-training with Frozen Image Encoders and Large Language
Models. In: KRAUSE, A.; BRUNSKILL, E.; CHO, K.; ENGELHARDT, B.; SABATO, S.
et al., ed. International Conference on Machine Learning, ICML 2023, 23-29 July
2023, Honolulu, Hawaii, USA. PMLR, 2023, vol. 202, p. 19730-19742. Proceedings
of Machine Learning Research. Available at:
https://proceedings.mlr.press/v202/1i23q.html.

53

http://aclanthology.org/2020.acl-demos.34
https://aclanthology.org/P18-4020
http://dx.doi.org/10.21437/Interspeech.2023-2506
https://doi.org/10.1109/SLT54892.2023.10022656
https://aclanthology.org/2020.acl-main.703

[26]

[27]

[30]

[33]

[35]

Liu, P. J.; SALEH, M.; Por, E.; GOODRICH, B.; SEPASSI, R. et al. Generating
Wikipedia by Summarizing Long Sequences. CoRR, 2018, abs/1801.10198. Available
at: http://arxiv.org/abs/1801.10198.

LopPEs, A.; NOGUEIRA, R.; LOTUFO, R. and PEDRINI, H. Lite Training Strategies for
Portuguese-English and English-Portuguese Translation. In: Proceedings of the Fifth
Conference on Machine Translation. Online: Association for Computational
Linguistics, November 2020, p. 833-840. Available at:
https://www.aclweb.org/anthology/2020.wmt-1.90.

Lvu, C.; Wu, M.; WANG, L.; HUANG, X.; Liu, B. et al. Macaw-LLM: Multi-Modal
Language Modeling with Image, Audio, Video, and Text Integration. 2023.

MUENNIGHOFF, N.; WANG, T.; SUTAWIKA, L.; ROBERTS, A.; BIDERMAN, S. et al.
Crosslingual Generalization through Multitask Finetuning. In: ROGERS, A.; BOYD
GRABER, J. and OKAZAKI, N., ed. Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). Toronto,
Canada: Association for Computational Linguistics, July 2023, p. 15991-16111.
Available at: https://aclanthology.org/2023.acl-long.891.

NIEHUES, J.; CATTONI, R.; STUKER, S.; NEGRI, M.; TURCHI, M. et al. The IWSLT
2019 Evaluation Campaign. In: NIEHUES, J.; CATTONI, R.; STUKER, S.; NEGRI, M.;
TUrcHI, M. et al., ed. Proceedings of the 16th International Conference on Spoken
Language Translation. Hong Kong: Association for Computational Linguistics,
November 2-3 2019. Available at: https://aclanthology.org/2019.iwslt-1.1.

OPENAI et al. GPT-4 Technical Report. 2023.

PAPINENT, K.; ROUKOS, S.; WARD, T. and ZHU, W.-J. Bleu: a Method for Automatic
Evaluation of Machine Translation. In: ISABELLE, P.; CHARNIAK, E. and LIN, D.,
ed. Proceedings of the 40th Annual Meeting of the Association for Computational
Linguistics. Philadelphia, Pennsylvania, USA: Association for Computational
Linguistics, July 2002, p. 311-318. Available at: https://aclanthology.org/P02-1040.

PARk, D. S.; CHAN, W.; ZHANG, Y.; CHIU, C.-C.; ZOPH, B. et al. SpecAugment: A
Simple Data Augmentation Method for Automatic Speech Recognition.

In: Interspeech 2019. ISCA, September 2019. Available at:
http://dx.doi.org/10.21437/Interspeech.2019-2680.

PENG, Y.; DALMIA, S.; LANE, I. R. and WATANABE, S. Branchformer: Parallel
MLP-Attention Architectures to Capture Local and Global Context for Speech
Recognition and Understanding. In: CHAUDHURI, K.; JEGELKA, S.; SONG, L.;
SzEPESVARI, C.; N1U, G. et al., ed. International Conference on Machine Learning,
ICML 2022, 17-28 July 2022, Baltimore, Maryland, USA. PMLR, 2022, vol. 162,
p. 17627-17643. Proceedings of Machine Learning Research. Available at:
https://proceedings.mlr.press/v162/peng22a.html.

PENG, Y.; KiMm, K.; WU, F.; YAN, B.; ARORA, S. et al. A Comparative Study on
E-Branchformer vs Conformer in Speech Recognition, Translation, and
Understanding Tasks. In:. August 2023, p. 2208-2212.

54

http://www.aclweb.org/
https://aclanthology.org/2023.acl-long.891
https://aclanthology.org/P02-1040
http://dx.doi.org/10.21437/Interspeech.2019-2680

[36] PHAM, N.-Q.; NGUYEN, T.-S.; HA, T.-L.; HUSSAIN, J.; SCHNEIDER, F. et al. The
IWSLT 2019 KIT Speech Translation System. In: NIEHUES, J.; CATTONI, R.;
STUKER, S.; NEGRI, M.; TURCHI, M. et al., ed. Proceedings of the 16th International
Conference on Spoken Language Translation. Hong Kong: Association for
Computational Linguistics, November 2-3 2019. Available at:
https://aclanthology.org/2019.iwslt-1.3.

[37] RADFORD, A.; Kim, J. W.; HALLACY, C.; RAMESH, A.; GOH, G. et al. Learning
Transferable Visual Models From Natural Language Supervision. In: MEILA, M.
and ZHANG, T., ed. Proceedings of the 88th International Conference on Machine
Learning, ICML 2021, 18-24 July 2021, Virtual Event. PMLR, 2021, vol. 139,

p. 8748-8763. Proceedings of Machine Learning Research. Available at:
http://proceedings.mlr.press/v139/radford2la.html.

[38] RADFORD, A.; Kim, J. W.; Xu, T.; BROCKMAN, G.; MCLEAVEY, C. et al. Robust
Speech Recognition via Large-Scale Weak Supervision. In: KRAUSE, A.; BRUNSKILL,
E.; CHoO, K.; ENGELHARDT, B.; SABATO, S. et al., ed. International Conference on
Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA. PMLR,
2023, vol. 202, p. 28492-28518. Proceedings of Machine Learning Research. Available
at: https://proceedings.mlr.press/v202/radford23a.html.

[39] RADFORD, A.; Wu, J.; CHILD, R.; LUAN, D.; AMODEI, D. et al. Language Models
are Unsupervised Multitask Learners, 2019.

[40] RAFFEL, C.; SHAZEER, N.; ROBERTS, A.; LEE, K.; NARANG, S. et al. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer. J. Mach.
Learn. Res., 2020, vol. 21, p. 140:1-140:67. Available at:
http://jmlr.org/papers/v21/20-074.html.

[41] SANABRIA, R.; CAGLAYAN, O.; PALASKAR, S.; ELLIOTT, D.; BARRAULT, L. et al.
How?2: A Large-scale Dataset For Multimodal Language Understanding. In:
NeurIPS. Proceedings of the Workshop on Visually Grounded Interaction and
Language (ViGIL). 2018. Available at: http://arxiv.org/abs/1811.00347.

[42] Su, Y.; LaN, T.; L1, H.; Xu, J.; WANG, Y. et al. PandaGPT: One Model To
Instruction-Follow Them All. In: HAZARIKA, D.; TaAnG, X. R. and JIN, D.,
ed. Proceedings of the 1st Workshop on Taming Large Language Models:
Controllability in the era of Interactive Assistants! Prague, Czech Republic:
Association for Computational Linguistics, September 2023, p. 11-23. Available at:
https://aclanthology.org/2023.t11m-1.2.

[43] SYNNAEVE, G.; XU, Q.; KAHN, J.; LIKHOMANENKO, T.; GRAVE, E. et al.

End-to-End ASR: from Supervised to Semi-Supervised Learning with Modern
Architectures. In: ICML 2020 Workshop on Self-supervision in Audio and Speech.
2020. Available at: https://openreview.net/forum?id=0SVxDDc360z.

[44] TeAM, N.; CosTA JUssA, M. R.; Cross, J.; CELEBI, O.; ELBAYAD, M. et al. No
Language Left Behind: Scaling Human-Centered Machine Translation. 2022.

[45] TouvRrON, H.; LAVRIL, T.; IZACARD, G.; MARTINET, X.; LACHAUX, M.-A. et al.
LLaMA: Open and Efficient Foundation Language Models. 2023.

55

http://proceedings.mir.press/vl39/radf
http://jmlr.org/papers/v21/20-074.html
http://arxiv.org/abs/1811.00347

[46]

[50]

[51]

[52]

VASWANI, A.; SHAZEER, N.; PARMAR, N.; USZKOREIT, J.; JONES, L. et al. Attention
is All you Need. In: GUYON, I.; LUXBURG, U. V.; BENGIO, S.; WALLACH, H.;
FERGUS, R. et al., ed. Advances in Neural Information Processing Systems. Curran
Associates, Inc., 2017, vol. 30. Available at: https://proceedings.neurips.cc/
paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

VYDANA, K. H.; KARAFIAT, M.; ZMOLiKOVA, K.; BURGET, L. and CERNOCKY, J.
Jointly Trained Transformers Models for Spoken Language Translation. In: ICASSP
2021 - 2021 IEEFE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE Signal Processing Society, 2021, p. 7513-7517. ISBN
978-1-7281-7605-5. Available at:
https://www.fit.vut.cz/research/publication/12522.

WaNG, C.; TANG, Y.; Ma, X.; Wu, A.; OKHONKO, D. et al. Fairseq S2T: Fast
Speech-to-Text Modeling with Fairseq. In: WoONG, D. and KIELA, D., ed. Proceedings
of the 1st Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics and the 10th International Joint Conference on Natural
Language Processing: System Demonstrations. Suzhou, China: Association for
Computational Linguistics, December 2020, p. 33—-39. Available at:
https://aclanthology.org/2020.aacl-demo.6.

WanNg, C.; Wu, A.; PiNo, J.; BAEVSKI, A.; AuLl, M. et al. Large-Scale Self- and
Semi-Supervised Learning for Speech Translation. In: HERMANSKY, H.; CERNOCKY,
H.; BURGET, L.; LAMEL, L.; SCHARENBORG, O. et al., ed. Interspeech 2021, 22nd
Annual Conference of the International Speech Commumnication Association, Brno,
Czechia, 30 August - 3 September 2021. ISCA, 2021, p. 2242-2246. Available at:
https://doi.org/10.21437/Interspeech.2021-1912.

WANG, M.; HAN, W.; SHAFRAN, I.; WU, Z.; CHiu, C. et al. SLM: Bridge the Thin
Gap Between Speech and Text Foundation Models. In: IEEE Automatic Speech
Recognition and Understanding Workshop, ASRU 2023, Taipei, Taiwan, December
16-20, 2023. IEEE, 2023, p. 1-8. Available at:
https://doi.org/10.1109/ASRU57964.2023.10389703.

XIONG, R.; YANG, Y.; HE, D.; ZHENG, K.; ZHENG, S. et al. On Layer Normalization
in the Transformer Architecture. In: Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event. PMLR, 2020,
vol. 119, p. 10524-10533. Proceedings of Machine Learning Research. Available at:
http://proceedings.mlr.press/v119/xiong20b.html.

XUE, L.; ConsTANT, N.; ROBERTS, A.; KALE, M.; AL RFouU, R. et al. MT5: A
Massively Multilingual Pre-trained Text-to-Text Transformer. In: TOUTANOVA, K.;
RUMSHISKY, A.; ZETTLEMOYER, L.; HAKKANI TUR, D.; BELTAGY, 1. et al.,

ed. Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies. Online:
Association for Computational Linguistics, June 2021, p. 483-498. Available at:
https://aclanthology.org/2021.naacl-main.41.

YAN, B.; DALMIA, S.; HIGUCHI, Y.; NEUBIG, G.; METZE, F. et al. CTC Alignments
Improve Autoregressive Translation. In: VLACHOS, A. and AUGENSTEIN, .,
ed. Proceedings of the 17th Conference of the European Chapter of the Association for

56

https://proceedings.neurips.cc/
http://www.fit.vut.cz/research/publicat
https://doi.org/10.21437/Interspeech.2021-1912
https://doi.org/10.1109/ASRU57964.2023.10389703

[54]

[55]

Computational Linguistics. Dubrovnik, Croatia: Association for Computational
Linguistics, May 2023, p. 1623-1639. Available at:
https://aclanthology.org/2023.eacl-main.119.

Yu, W.; TANG, C.; SUN, G.; CHEN, X.; TAN, T. et al. Connecting Speech Encoder
and Large Language Model for ASR. 2023.

ZHANG, B.; HADDOW, B. and SENNRICH, R. Revisiting End-to-End Speech-to-Text
Translation From Scratch. In: CHAUDHURI, K.; JEGELKA, S.; SONG, L.;
SzEPESVARI, C.; N1U, G. et al., ed. International Conference on Machine Learning,
ICML 2022, 17-28 July 2022, Baltimore, Maryland, USA. PMLR, 2022, vol. 162,
p- 26193-26205. Proceedings of Machine Learning Research. Available at:
https://proceedings.mlr.press/v162/zhang22i.html.

ZHANG, H.; L1, X. and BING, L. Video-LLaMA: An Instruction-tuned Audio-Visual
Language Model for Video Understanding. In: FENG, Y. and LEFEVER, E.,

ed. Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations. Singapore: Association for Computational
Linguistics, December 2023, p. 543-553. Available at:
https://aclanthology.org/2023.emnlp-demo.49.

57

http://aclanthology.org/2023.emnlp-demo.49

Appendix A

Contents of the enclosed storage
unit

e xsedlalh_thesis.pdf — The final .pdf version of this thesis.
e xsedlalh_thesis.zip — Contains the ITEX source code files for this thesis.

e huggingface_asr — A folder containing the Hugging Face extension repository with
all the source code files.

e README.md — A file documenting the code and containing further instructions for using
the scripts.

58

