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Abstract 
In this work, we investigate a novel approach to end-to-end speech translat ion (ST) by lever­
aging pre-trained models for automatic speech recognition ( A S R ) and machine translation 
( M T ) and connecting them wi th a smal l connector module (Q-Former, S T E ) . The connec­
tor bridges the gap between the speech and text modalities, transforming the A S R encoder 
embeddings into the latent representation space of the M T encoder. D u r i n g training, the 
foundation A S R and M T models are frozen, and only the connector parameters are tuned, 
opt imizing for the S T objective. We t ra in and evaluate our models on the How2 Engl i sh 
to Portuguese S T dataset. In our experiments, aligned systems outperform our cascade S T 
baseline while u t i l iz ing the same foundation models. Addi t ional ly , while keeping the size of 
the connector module constant and smal l i n comparison (10M parameters), increasing the 
size and capabil i ty of the A S R encoder and M T decoder universally improves translation 
results. We find that the connectors can also serve as domain adapters for the foundation 
models, significantly improving translat ion performance in the aligned S T setting, com­
pared even to the base M T scenario. Last ly, we propose a pre-training procedure for the 
connector, w i t h the potential for reducing the amount of S T data required for t raining 
similar aligned systems. 

Abstrakt 
Tato p r á c e z k o u m á nový end-to-end p ř í s t u p k p ř e k l a d u m l u v e n é h o j azyka (ST) využí­
vající p ř e d t r é n o v a n ý c h m o d e l ů pro přep i s řeči ( A S R ) a s t ro jový p řek l ad ( M T ) , propo­
jené m a l ý m spo jovac ím modulem (Q-Former, S T E ) . Ten m á za úkol p ř ek l enou t mezeru 
mezi modal i t ami řeči a textu m a p o v á n í m embedding r ep rezen tac í A S R e n k o d é r u do latent­
n ího prostoru r ep rezen tac í M T modelu. B ě h e m t r énován í jsou zvolené A S R a M T model 
zmrazený, l aděny jsou pouze parametry spojovacího modulu . Trénován í a evaluace jsou 
p rováděny na datasetu How2, obsahuj íc ím S T data z Angl ič t iny do Po r tuga l š t i ny . V naš ich 
experimentech zjišťujeme, že vě t š ina s laděných s y s t é m ů p řekonává referenční k a s k á d o v ý 
S T sys t ém, p ř i čemž využívaj í s te jné z á k l a d n í modely. Navíc , p ř i zachování k o n s t a n t n í a ve 
s rovnán í m a l é (10M p a r a m e t r ů ) velikosti spojovacího modulu , větš í a silnější A S R a M T 
modely un ive rzá lně zlepšují výs ledky p ř e k l a d u . Zjišťujeme, že spojovací moduly mohou 
t a k é s louži t jako d o m é n o v é a d a p t é r y pro zvolené z á k l a d n í sys témy, kdy v ý z n a m n ě zlepšují 
výs ledky p ř e k l a d u ve s l a d ě n é m S T p ros t ř ed í , a to i oprot i ho l ému M T v ý k o n u d a n é h o M T 
modelu. Nakonec navrhujeme proceduru pro p ř e d t r é n o v á n í spojovacího modulu s poten­
ciá lem sníži t m n o ž s t v í S T dat p o t ř e b n ý c h pro t r é n i n k o b d o b n ý c h s laděných sys t émů . 
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Rozšířený abstrakt 
Překlad mluveného jazyka ( S L T , ST) je proces p řep i su audio n a h r á v k y obsahuj íc í řeč v 

u r č i t é m zdro jovém jazyce (nap ř . Ang l i č t ina ) do podoby t e x t o v é h o p ř e k l a d u v u r č i t é m 
cílovém jazyce (nap ř . P o r t u g a l š t i n a ) . Tento p r o b l é m je s t ro jově typicky řešen d v ě m a zák­
l adn ími způsoby. P r v n í m je vy tvo řen í tzv. kaskádového k o m p o z i t n í h o s y s t é m u s v y u ž i t í m 
již p ř e d t r é n o v a n ý c h m o d e l ů pro automatický přepis řeči ( A S R ) a strojový překlad ( M T ) . 
T y t o modely jsou zapojeny za sebe do série, p ř i čemž je nejdř íve vygene rován přep i s zdro­
jové n a h r á v k y a p o t é je tento t e x t o v ý přep i s pře ložen M T modelem. D r u h ý m z p ů s o b e m 
je n a t r é n o v á n í end-to-end enkodé r -dekodé r modelu, za loženém n a p ř í k l a d na a r c h i t e k t u ř e 
transformer [46]. 

Oba p ř í s t u p y však ma j í své nevýhody . K a s k á d o v é s y s t é m y mohou t r p ě t f enoménem 
akumulace chyb p rávě z toho d ů v o d u , že ne jdř íve n a h r á v k u p řep í šou do textu, a ta je 
až nás l edně pře ložena . Vzniká ze takto prostor pro zesílení v l i v u odchylek z p ů s o b e n ý c h 
n a p ř í k l a d rozdí ly mezi slovníky, k t e r é d a n é A S R a M T modely používaj í , nebo d o m é n a m i 
dat, na k t e rých byly s y s t é m y t rénovány . Dá le ma j í tyto s y s t é m y větš í latenci, p ro tože k 
vygenerován í p ř e k l a d u je n u t n é proj í t d v ě m a fázemi dekódován í . 

N a d r u h é s t r a n ě , v y t v á ř e n í a t r énován í end-to-end s y s t é m ů od z a č á t k u nen í j e d n o d u c h ý 
proces, p ro tože d a n ý s y s t é m se m u s í n a u č i t mapovat komplexn í a p roměn l ivé vzory ve 
v s t u p n í c h řečových n a h r á v k á c h na sekvenci d i sk ré tn í ch s y m b o l ů ( tokenů) v d a n é m cílovém 
jazyce. Nav íc př i p ř e k l a d u je n u t n é , aby se model nauč i l reorganizovat a m ě n i t g r a m a t i c k é 
s truktury zdro jového jazyka tak, aby na v ý s t u p u vyprodukoval val idní p ř e k l a d v cí lovém 
jazyce. 

Je proto b ě ž n é použ í t r ů z n é t rénovac í techniky, k t e r é výs ledky t r énovac ího procesu 
urychluj í a zlepšují , jako n a p ř í k l a d inicializace e n k o d é r u v á h a m i A S R modelu pro zdro jový 
jazyk, d o d a t e č n á supervize modelu na v ý s t u p u enkodé ru , a p o d o b n ě . 

S a k t u á l n í m rozvojem v oblasti velkých jazykových modelů ( L L M s ) se objevilo někol ik 
p ř í s t u p ů k využ i t í t ě c h t o m o d e l ů jako báz í pro generování textu a usuzován í p ř i řešení 
n á r o č n ý c h c ross -modá ln ích ú loh jako n a p ř í k l a d anotace o b r á z k ů . Jeden z t ěch to p ř í s t u p ů 
s n á z v e m B L I P - 2 [25] uvedl j e d n o d u c h ý transformer spojovací modu l zvaný Q-Former. 
Tento modu l je z o d p o v ě d n ý za m a p o v á n í a b s t r a k t n í c h r ep rezen tac í e x t r a h o v a n ý c h z d a n é h o 
zdro jového o b r á z k u z m r a z e n ý m p ř e d t r é n o v a n ý m o b r á z k o v ý m e n k o d é r e m do prostoru word-
embedding r ep rezen tac í d a n é h o z m r a z e n é h o j azykového modelu, kde slouží jako soft-prompt. 
D a n ý j azykový model pak vygeneruje anotaci ke zvo lenému ob rázku . 

P o d o b n é p ř í s t u p y se nás l edně zača ly objevovat i v d o m é n á c h a u t o m a t i c k é h o p řep i su řeči 
a j iných řečově o r ien tovaných ú lohách [54, 50, 6]. V t é t o p rác i se p o d o b n ý p ř í s t u p snaž íme 
aplikovat na ú lohu p ř e k l a d u m l u v e n é h o jazyka. 

Použ i t í m a l é spojovací s í tě jako Q-Former pro p ř ek l enu t í mezery mezi řečovou a tex­
tovou modal i tou zvolených z m r a z e n ý c h p ř e d t r é n o v a n ý c h A S R e n k o d é r u a M T m o d e l ů je 
a t r a k t i v n í z někol ika d ů v o d ů . Z a prvé , oproti t r énován í klas ického end-to-end s y s t é m u pro 
p řek l ad řeči, tento propojovac í modu l m ů ž e bý t mnohem menš í s pouze zlomkem p a r a m e t r ů . 
Zvolené z á k l a d n í A S R a M T modely mohou z ů s t a t z m r a z e n ý a op t ima l i zovány jsou pouze 
váhy konektoru. Dalš í v ý h o d o u je, že d a n ý konektor m ů ž e v p o r o v n á n í se zvolenými zák­
l adn ími modely z ů s t a t velice malý, p r o t o ž e s tač í , aby se nauč i l s p r á v n é m a p o v á n í z jednoho 
prostoru r ep rezen tac í do d r u h é h o . Toto nás l edně vede ke k r a t š í m t r énovac ím č a s ů m a 
obecně snížení v ý p o č e t n í c h n á k l a d ů na t r énován í takto s l aděného s y s t é m u oproti end-to-
end s y s t é m u s te jné velikosti . 

V p rovedených experimentech p o u ž í v á m e dvě z á k l a d n í architektury pro s ladění A S R 
a M T m o d e l ů - E C D architektura, kde v ý s t u p A S R e n k o d é r u je konektorem m a p o v á n na 



cross-attention vstup d a n é h o M T dekodé ru , a E C E D , kdy konektor p rovád í s te jné m a p o v á n í 
do prostoru v s t u p n í c h t e x t o v ý c h r ep rezen tac í zvoleného M T enkodé ru . Experimentujeme 
se d v ě m a typy spojovacích model: Q-Former a S T E ( j ednoduchý transformer e n k o d é r s 
konvo lučn ím subsampling frontendem). 

Z výs ledků naš ich e x p e r i m e n t ů usuzujeme, že metoda s ladování A S R a M T m o d e l ů 
pro S T je v h o d n ý obecný framework pro využ i t í off-the-shelf p ř e d t r é n o v a n ý c h m o d e l ů pro 
řešení t é t o úlohy. Zjišťujeme, že n á š S T E konektor po ráž í v ý k o n Q-Former, p r i m á r n ě d íky 
flexibilitě kvůl i schopnosti S T E konektoru mapovat var iab i lně d louhé v s t u p n í sekvence na 
var iab i lně d louhý v ý s t u p , p ř i čemž tuto schopnost Q-Former n e m á . 

Dá le zjišťujeme, že použ i t í větš ích a silnějších A S R a M T m o d e l ů vede un iverzá lně 
ke zlepšení výs ledků p ř e k l a d u , a to i v p ř í p a d ě , že velikost spojovacího modu l zůs t ává 
k o n s t a n t n í a m a l á v p o r o v n á n í se s l aděnými modely. Konektory t a k é m ů ž o u sloužit jako 
doménové a d a p t é r y pro zvolené z á k l a d n í modely. P r o jeden z M T m o d e l ů , k t e r ý by l 
t r é n o v á n mimo d o m é n u How2 datasetu, zlepšuje s ladění v S T ( řeč- tex t ) a r c h i t e k t u ř e u ne-
j lepš ího s y s t é m u p řek l ad o více než 9 B L E U b o d ů oproti z á k l a d n í m u p ř í p a d u v y h o d n o c e n í 
s t ro jového p ř e k l a d u na How2 (text-text). 

V p o s l e d n í m setu e x p e r i m e n t ů p r o z k o u m á v á m e z p ů s o b y p ř e d t r é n o v á n í spojovacího mod­
ulu pouze s v y u ž i t í m A S R dat a zjišťujeme, že více 'vani l la ' p ř í s t u p y za ložené na knowledge-
distillation mezi prostory r ep rezen tac í na v ý s t u p u konektoru a M T e n k o d é r u nepř ináš í 
zdaleka t akové výs ledky a p o t e n c i á l jako více r o b u s t n í end-to-end metoda, kterou navrhu­
jeme. Tato end-to-end metoda zahrnuje p ř e t r é n o v á n í zvoleného M T d e k o d é r u na iden­
t i t u ve zdro jovém jazyce, aby bylo n á s l e d n ě s l aděný s y s t é m m o ž n o p ř e d t r é n o v a t pouze s 
v y u ž i t í m A S R dat. P o p ř e d t r é n o v á n í lze pak d o s á h n o u t lepších p řek l adových výs ledků 
př i d o t r é n o v á n í na menš ích objemech S T dat. P ř e s t o ž e tato p ř ed t r énovac í metoda proza­
t í m nedosahuje nijak záz račných výs ledků , d o m n í v á m e se, že m á p o t e n c i á l pro b u d o u c í 
experimenty, ú p r a v y a zlepšení . 
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Chapter 1 

Introduction 

Spoken language translation (SLT) is a task of transducing a speech utterance i n a given 
source language into its corresponding text translat ion in a given target language. To solve 
this task, it is typica l to either bu i ld a composite cascade speech translat ion system from 
pre-trained automatic speech recognition ( A S R ) and machine translation ( M T ) systems, or 
to t ra in an encoder-decoder-like end-to-end deep learning model, based for example on the 
transformer [46] architecture. 

However, both approaches have their caveats. Cascade systems can sometimes suffer 
from error accumulat ion due to first t ranscribing the input utterance and only subsequently 
translating it. 

O n the other hand, t ra ining end-to-end speech translat ion systems from scratch is not 
a simple task, as the system has to learn to map complex and variable speech audio patterns 
into sequences of discreet symbols (tokens) of the target language. Add i t iona l ly - unlike in 
the A S R scenario - there is no consistent monotonie alignment between the input speech 
audio and the output token sequences. The model has to therefore correctly learn to 
rearrange the grammatical structure of the text encoded in the input speech utterance to 
produce a val id translation in the target language. 

It is therefore common to uti l ize several t ra ining techniques including - but not l imited 
to - transfer learning and addi t ional model supervision, to obtain better results. 

W i t h the recent advancements i n the domain of large language models ( L L M s ) , ap­
proaches have emerged that t ry to leverage these powerful pre-trained models as language-
modeling bases for different cross-modal tasks, such as image-captioning. One such ap­
proach is called B L I P - 2 [25], introducing a simple connector transformer network called the 
Q-Former. In B L I P - 2 , the Q-Former is responsible for mapping abstract vision features 
extracted from the input image by a frozen image encoder into the word embedding space 
of a frozen large language model, prompt ing it to generate an annotation to the input image. 

Similar approaches have subsequently been adopted and applied to the domain of auto­
matic speech recognition and other speech-language oriented tasks [54, 50, 6]. In this work, 
we attempt to do the same wi th a focus on spoken language translation. 

U t i l i z ing a Q-Former-l ike connector network to bridge the gap between the speech and 
text modalities of a frozen speech encoder and a frozen machine translation/language model 
is attractive for a few reasons. F i r s t , as opposed to constructing a conventional encoder-
decoder speech translation model and t ra ining it on large amounts of data, the connector 
network can be much smaller w i th much fewer parameters. The pre-trained speech encoder 
and the chosen language decoder can remain frozen and only the connector network is 
trained. Even i f the chosen pre-trained models are very powerful, the bridge network only 
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has to learn the mapping between their hidden representation spaces, resulting in shorter 
t ra ining times and fewer computat ional resources required, i n contrast to conventional end-
to-end models of a similar size. 

Chapter 2 first provides an int roduct ion to the topic of transformer-based deep neural 
networks, describing their architectures and typica l use cases for this thesis. Chapter 3 
then provides a brief in t roduct ion to the topic of spoken language translat ion (or speech 
translation). 

Chapter 4 further introduces the concept of aligning pre-trained models to solve difficult 
cross-modal tasks and problems. The chapter gives focus to the Q-former connector model, 
and proposes an alternative S T E connector. Addi t iona l ly , the two main model alignment 
frameworks ( E C D , E C E D ) used i n the experiments conducted i n this work are introduced. 

Chapter 5 discusses most of the experiments and findings wi th regard to the alignment 
architectures and connector modules, discussing the pros and cons of each, and evaluating 
the model alignment approach to solving speech translat ion as a whole. 

Final ly , Chapter 6 describes two connector network pre-training approaches, focusing on 
reducing the need for speech translat ion data for the alignment process, and poses further 
questions and ideas for potential future work in this domain. 

Findings and contributions 

• We rule that our Subsampler-Transformer Encoder ( S T E ) connector is superior to 
the Q-Former for the S T alignment scenario both performance and flexibility-wise. 
We find that determining an appropriate number of Q-Former queries is difficult in 
comparison to leveraging the variable-length sequence mapping abi l i ty of the S T E 
connector. 

• Scaling up the aligned A S R and M T models leads to universally better speech trans­
lat ion results, while the size of the connector network can remain constant, and rela­
tively small . 

• The connector networks can serve as domain adapters, significantly improving trans­
lat ion performance for scenarios, where the aligned M T models are out-of-domain. 

• We find that pre-training the connector network using vani l la knowledge-distil lation 
approaches aimed at matching the connector and M T encoder output embedding 
spaces is not as useful when compared to more principled end-to-end approaches, 
following the cross-entropy objective of the A S R task. For this purpose, we devise 
a pre-training procedure that allows us to pre-train the connector using only A S R 
data. 
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Chapter 2 

Transformer-based neural networks 

In this chapter, the topic of deep neural networks based on the transformer [46] architecture 
is discussed. 

Section 2.1 describes and explains the core concepts that bu i ld up the transformer, fo­
cusing on the ones that differentiate it from other neural network architectures. Section 2.2 
then gives a brief overview of how the transformer and its many architecture variants are 
used for natural language processing and language modeling i n general, as it is relevant 
to the topic of speech translation. Section 2.3 does the similar, only for automatic speech 
recognition. Last ly, Section 2.4 briefly touches on the concept of transfer-learning, which 
is key in the context of this work. 

2.1 The Transformer 

The transformer is a deep learning architecture first introduced in [46], which could poten­
t ia l ly be regarded as one of the overall most cr i t ica l and influential advancements i n the 
deep learning domain i n recent years. It has achieved state-of-the-art performance in most 
sequential modeling tasks such as natural language generation [31], summarizat ion [10, 40], 
automatic speech recognition [38], machine translat ion [40, 19, 52, 29, 44], and many more. 
Though originally developed specifically for sequence-to-sequence modeling tasks, the trans­
former can be used to solve a wide range of problems, where it is important to model either 
temporal or s tructural relationships in the input data (e.g. even for computer vis ion [12]). 

W h a t makes the transformer stand out i n comparison to other sequence modeling ap­
proaches such as recurrent neural networks ( R N N ) , is mainly its effectiveness i n terms of 
computat ional cost and parallelism, leading to significantly better scaling, t raining, and 
inference times. This is due to the fact that the transformer disposes of a l l recurrent con­
nections i n the model architecture (minimizing the amount of sequential computation), 
and uses the so-called attention mechanism to bidirect ionally model temporal relationships 
wi th in the input sequences instead. The attention mechanism along wi th its innovations as 
presented in [46] is described i n the next Section 2.1.1. 

2.1.1 A t t e n t i o n m e c h a n i s m 

A t the core of the transformer architecture is the attention mechanism. Th is concept was 
first introduced in [3], where it was applied i n an RNN-based encoder-decoder model for 
machine translation. In [46], the attention mechanism was expanded upon, resulting in the 
introduct ion of what the authors called Scaled Dot-Product Attention. 
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Figure 2.1: Scaled dot-product attention. Typical ly , = tv and d 9 = dfc, however, i n the 
self-attention case used in the transformer model the shapes of a l l three matrices are the 
same. Obta ined from [11]. 

The attention mechanism i n general can be understood as a function of three input 
vectors: a query, a key and a value. The names correspond to the respective roles of 
the vectors i n the computat ion of the attention output. In a real scenario, the output is 
computed over a number of input query, key and value vectors, organized into matrices: 
Q , K , V , denoting the query, key and value matr ix , respectively. The scaled dot-product 
attention used i n transformer models would then be computed as follows: 

O K T 

At ten t ion(Q, K , V ) = S o f t m a x ) V , (2.1) 

where is the dimensionality of the keys. 
Intuitively, the output of the attention mechanism can be thought of as the values scaled 

and selected by the at tention map obtained by mul t ip ly ing Q and K . This essentially 
corresponds to computing a s imilar i ty (or a correspondence) measure for each query-key 
pair and then converting it to probabilities or weights for V v ia the softmax function, 
a computat ion diagram of the scaled dot-product attention can be seen i n Figure 2.1. 

Another attention mechanism innovation introduced i n [46] is the so-called Multi-Head 
Attention depicted in Figure 2.2. Mul t i -head attention splits the processing of the queries, 
keys and values into H paths, where H is the number of attention heads used. Each head h 
has its own (query), W ^ " (key) and (value) projection matrices, which are used 
to project the attention inputs Q , K , V into different sub-spaces for each part icular head 
h. These projections are, of course, learnable. 

Spl i t t ing the attention mechanism into mult iple heads alleviates some issues wi th aver­
aging attention-weighted positions when operating i n a higher-dimensional attention map 
space [46]. Addi t ional ly , it allows the model to attend to the input information i n different 
sub-spaces at different t ime steps at once: 
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Figure 2.2: Mul t i -head attention block. V, K, Q denote the value, key and query attention 
inputs, respectively. D iag ram obtained from [11]. 

head,, = A t t e n t i o n ( Q W ^ , K W £ , V W J ) , (2.2) 

where the projection dimension of Wj* , , typical ly corresponds to dq = = dv = 

^model / -f̂ heads • 
After computing the attention outputs for each head, these outputs are then concate­

nated and finally projected back into the original model dimension d m o de i w i th the final 
output linear layer W ° : 

M u l t i H e a d ( Q , K , V ) = C o n c a t ( h e a d i , . . . , headH)W0. (2.3) 

2.1.2 W o r d embedd ings a n d pos i t iona l e n c o d i n g 

W h e n using the transformer i n a language modeling scenario, the input text str ing has to 
first be converted into a form suitable for processing wi th the transformer encoder or de­
coder. The input sentence is first split into discrete symbols, called tokens using a tokenizer. 
The tokenization process is typical ly performed on a sub-word level, where the tokenizer 
is trained to learn to opt imal ly split different words to separate sub-word units, creating 
a compromise between efficiency and being able to represent even previously unseen words. 
A m o n g the commonly used sub-word tokenization algorithms are the Byte-Pair-Encoding 
( B P E ) [15], and Unigram [23] models. Other word-level or character-level tokenization 
algorithms can alternatively be used, depending on the task. 

After tokenization, the input text now takes the form of a list of integer token IDs, 
based on the vocabulary of the tokenizer. These integer IDs are then converted into a one-
hot-encoding form, where the number of elements i n each of the vectors is determined by 
the size of the vocabulary. Let us denote this one-hot-encoded sequence of tokens as X . 

Before being processed by the transformer, each one-hot-encoded token Xj G X (i is the 
posit ion of the token i n the sequence) has to first be embedded into the hidden representa­
t ion space of the transformer. Th is is done using a trainable embedding layer, which for each 
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possible one-hot-encoded posit ion of the source vocabulary keeps a corresponding embed­
ding vector, which represents the part icular token Xj i n the transformer embedding space. 
These word embedding vectors are opt imized during t raining. The embedding space also 
has a much lower dimensionality than the size of the vocabulary (for typ ica l transformer 
models ranging from 256 to 1024). We denote the embedding dimensionality dmodei (this 
dimensionality is also often referred to as the hidden representation size of the transformer). 

Embedding each input token X j , we obtain a its corresponding word embedding repre­
sentation e,: 

e* = EMB(XJ). (2.4) 

Afterward, because the attention mechanism is actually position-agnostic, a posit ional 
embedding is added to each of the embedded tokens to preserve the information about the 
posit ion of the token in the input sequence: 

e- = pos(z) + ej. (2.5) 

In [46], a simple sinusoidal posi t ional encoding a lgor i thm is proposed, though often 
transformer models use different, even trainable posi t ional encoding modules [38]. The 
embeddings are subsequently passed to the actual transformer encoder. 

2.1.3 E n c o d e r 

The role of the encoder is then to project and encode the input embedding sequence E into 
a series of hidden states E ' . The length of the input sequence is the same as the length of the 
output sequence - each embedding vector is gradually enriched w i t h addi t ional contextual 
abstract information. 

The encoder itself consists of identical Nenc layers or blocks (refer to Figure 2.3 for 
a v isual reference). In each encoder block n , the inputs E „ first pass through a self-attention 
layer. The self-attention layer is s imply a multi-head attention layer for which the queries, 
keys, and values are one and the same - the inputs at tend to themselves. Addi t ional ly , 
there is also a residual connection, which bypasses the self-attention and adds the original 
inputs to the attention output. Layer normalizat ion is then applied to the result 1 : 

E'n = L a y e r N o r m ( S e l f - A t t e n t i o n „ ( E „ ) + E n ) . (2.6) 

Then, the attention output is then passed to an intermediate feed-forward layer, again 
employing the same type of residual connection and layer normalizat ion afterward. This 
gives us the final output of the encoder block E " : 

E ^ = Laye rNorm(Feed-Forward n (E^) + E'n). (2.7) 

It should be noted that the output of each block has exactly the same tensor shape as the 
input. 

2.1.4 D e c o d e r 

The decoder has a similar structure to the encoder - it once again consists of several decoder 
blocks (layers), and the input of the decoder has to be first embedded v ia an embedding 
layer, after which posi t ional encoding information is added to the embeddings. 

1 Contrary to the original paper, current transformer architectures mostly use what is called the pre-norm 
architecture [51], where layer normalization is applied before the attention and feed-forward operations. This 
has been shown to improve gradient behavior, making transformer training more stable. 
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Figure 2.3: D iag ram of the transformer model obtained from [46]. The transformer encoder 
is depicted on the left, the decoder on the right. The encoder feeds its output hidden states 
to each decoder block v i a cross-attention connections. The output of the last decoder 
block is passed to the unembedding linear layer followed by softmax, producing an output 
probabil i ty dis t r ibut ion over a l l the next l ikely tokens i n the sequence. 
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In each decoder block n , the input embeddings D „ 2 are first passed once again through 
a self-attention layer, followed by adding the residual connection and applying layer nor­
malizat ion: 

B'n = L a y e r N o r m ( S e l f - A t t e n t i o n „ ( D „ ) + D n ) . (2.8) 

Then, a second multi-head attention layer often referred to as encoder attention or cross-
attention is ut i l ized to allow the decoder to condit ion its outputs on the output hidden states 
produced by the encoder. For this purpose, the decoder hidden states T)'n are used as the 
queries and the encoder output hidden states E e n c . as the keys and the values: 

D " = Laye rNorm (Cross-Attention™ ( D ^ , E e n c . , E e n c . ) + Wn). (2.9) 

This cross-attention connection runs from the encoder output to each of the decoder 
blocks, further influencing the hidden states in each decoder layer. After the cross-attention, 
the decoder outputs are once again processed by a fully-connected layer followed by layer 
norm, producing the final output of the decoder block D " ' : 

D " ' = L a y e r N o r m ( F e e d - F o r w a r d „ ( D " ) + D " ) . (2.10) 

In contrast to the encoder, which operates bidirect ionally on the input sequence, the 
decoder operates auto-regressively. The decoder is first prompted wi th a start-of-sentence 
token. The token is embedded and passed through a l l the decoder layers. It interacts w i th 
the encoder outputs v i a cross-attention and finally, at the end of the last decoder block, 
it is passed through a linear layer, known as the unembedding layer, which projects the 
output embedding into the dimension of the model vocabulary. This operation produces 
raw logit scores for each word unit i n the output vocabulary, which can be converted into 
probabilities using the softmax function, giving us the probabi l i ty dis t r ibut ion of the next 
likely words in the resulting sequence. The next word can then be obtained by simply 
taking the word, whose probabil i ty value is the highest. 

The auto-regressive behavior of the decoder stems from the fact, that this new output 
word is then used a new input of the decoder along wi th a l l the other inputs from previous 
time-steps. Then, the decoding process continues, un t i l the model produces an end-of-
sentence token (or the generation is cut off by crossing a certain token count l i m i t ) 3 . 

Because this auto-regressive process is str ict ly sequential and time-consuming, during 
training, the whole desired output sequence is used as the decoder input . Instead of gener­
ating each token at each t ime step one by one, a tr iangular causal attention mask is used 
in the self and cross-attention layers. Th is mask is used to essentially simulate performing 
al l of the auto-regressive generation steps in one forward pass only, as the decoder simulta­
neously predicts the next token for each posit ion in the input sequence. The causal mask is 
used, so when predict ing the next token for a posit ion i i n the input sequence, none of the 
future tokens at any posit ion k > i influence this prediction. Dur ing inference, these future 
tokens would only become available at future t ime steps of the auto-regressive generation 
process. 

The employment of causal attention masking is one of the things that make the trans­
former much more efficient dur ing t ra ining i n contrast to other auto-regressive models, 
based for example on recurrent neural networks. 

2 Here, the letter ' D ' is used to better differentiate the decoder embeddings from the encoder hidden 
states. 

3 A n illustration of the generation process (and the whole transformer model in general) can be found at 
https : //jalammar.github.io/illustrated-transformer/ 
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2.2 Transformer architectures in language modeling 

Language modeling is perhaps the domain where the transformer is arguably used most 
widely. U p o n its int roduct ion i n [46], its capabil i ty is demonstrated on a machine transla­
t ion task, where the transformer was used i n its default encoder-decoder configuration. 
Intuitively, this is natural for tasks such as translat ion [40, 52, 29, 44, 19] as the model is 
t ry ing to learn a sequence-to-sequence mapping (also referred to as sequence transduction) 
from one language to another - without any monotony guarantees about the length or 
symbol posit ion relationships between the source input and the translation, for example. 

Apar t from machine translation, encoder-decoder transformer architectures can also 
be used for other general language modeling tasks, as is demonstrated by models such as 
B A R T [24], or different models from the T 5 model family [40, 52, 29]. The T 5 family is 
especially interesting due to its multi-task t ra ining approach, resulting in models able to 
handle mult iple general language tasks specified by prepending an instruct ion i n natural 
language to the encoder input. 

However, not a l l tasks require the full encoder-decoder architecture for solving the given 
problem. In language modeling, it is also common to only use the transformer encoder or, 
alternatively, the decoder, depending on the task at hand. 

Encoder-only transformer models do away wi th the decoder completely and leverage 
the abi l i ty of the transformer decoder to process the input bidirectionally. Encoder-only lan­
guage models usually rely on two t ra ining stages - pre-training and subsequent fine-tuning. 
In the pre-training stage, the model collects information about the source language, learning 
abstract language representations i n the process. Then, after pre-training, new layers are 
typical ly added on top of the encoder, and subsequently fine-tuned to interpret and trans­
form the last encoder-hidden states to solve the downstream task, e.g. text classification 
or named entity recognition. 

Perhaps the best-known model of this type is B E R T [10]. B E R T models are pre-trained 
using masked language modeling ( M L M ) , where some of the tokens in the input sequence 
are masked and the model is tasked w i t h recovering them, which is combined wi th the next 
sentence prediction objective, where the model receives two input sentences and is tasked 
to predict which of them precedes the other. 

O n the other hand, decoder-only transformer models consist of stacked decoder blocks 
wi th the cross-attention layers removed. The decoder-only architecture was first introduced 
i n [26], demonstrating its text generation capabil i ty to be superior to encoder-decoder 
architectures, as the models were able to scale better i n terms of at tending to very long 
sequences and contexts. Decoder-only models are typical ly trained for the causal language 
modeling task and can further be fine-tuned for more specific applications (with some 
overlap wi th the encoder-only models). 

Decoder-only models have also demonstrated good scaling properties [39, 4, 31, 8, 45], 
earning a spotlight at the forefront of generative language modeling and understanding in 
v i r tua l ly a l l of their domains and flavors, known as the Large Language Models ( L L M s ) . 

2.3 Transformers for automatic speech recognition 

Subsequently, transformers began to be used for processing other modalities apart from 
text. Notably, i n [11], a general method of adapting the transformer to process speech 
input data was proposed. Transformer architectures for end-to-end (E2E) automatic speech 
recognition ( A S R ) began quickly outperforming previous state-of-the-art R N N - b a s e d and 
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CNN-based models, given enough data. The most important advantages are better scaling 
ability, computat ional effectiveness i n terms of parallel ization and t ra ining times (especially 
in contrast to R N N - b a s e d encoder-decoder architectures), and the attention mechanism 
providing better context windows to that of C N N s . 

The typica l speech-processing transformer operates on pre-computed spectral features 1 

such as spectrograms. For A S R purposes, such an input is needlessly detailed along the 
t ime axis. Th is is why it is common to prepend a downsampling module to the transformer 
encoder. 

The downsampling layer typical ly consists of several 2-D or 1-D (as shown in Figure 2.4) 
convolutional layers, processing the spectrogram and producing a sequence of downsampled 
feature vectors, shortened to a fraction (e.g. a fourth) of its original length. Often, the 
subsampling module simultaneously projects the original spectrogram features (typically 
40 or 80-dimensional) to the operating embedding dimensionality dmodei of the transformer 
model, acting s imilar ly to the text embedding layer i n the language scenario. Reducing 
the t ime granularity of the input features ensures reasonable information density and dis­
t r ibut ion among the ind iv idua l feature vectors i n the sequence, compared to the original 
much more fine-grained spectrogram. This or a s imilar downsampling/intermediate feature 
extraction approach is universally used by most transformer and transformer-based model 
architectures [11, 20, 16, 38]. 

Recently, several new encoder architectures have been introduced, designed from the 
ground up to specifically accommodate speech processing tasks. Though these approaches 
are based on the original transformer encoder structure, their specific implementations of 
the respective encoder blocks differ. Perhaps best known among these is the Conformer [16], 
which generally outperforms the standard transformer on several A S R and speech processing 

4 O f course some models operate completely end-to-end, that is on raw audio files, learning to extract 
feature representations completely from scratch [2]. 
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benchmarks. Another such encoder architecture is the Branchformer [34], followed by its 
successor, the E-Branchformer [22], which has been reported to offer a performance edge 
among a l l of these encoder architectures [35]. The E-Branchformer is important i n the 
context of this thesis, as two of the baseline A S R models used in experiments conducted in 
Chapters 5 and 6, are based on this encoder architecture. 

2.4 Transfer learning 

The introduct ion of the transformer model was also quite impactful i n the domain of transfer 
learning. Transfer learning is the previously mentioned deep-learning technique where one 
takes a model that has been pre-trained for a given task - such as the B E R T model for 
masked language modeling - and utilizes the general capabilities and inner abstract models 
the model has buil t up during pre-training (with respect to the part icular domain) to t ra in 
a new model for a different objective/task. Typical ly , this new task is more specific, and 
the fine-tuning requires t ra ining data specific to this task. 

Transfer learning alleviates some t ra ining costs for t ra ining new models. For some 
applications, this can even be the vast majority of the cost, for example, fine-tuning a pre-
trained B E R T model for the task of named-entity recognition only requires t ra ining a small 
linear layer w i th a few thousand parameters instead of the whole mul t i -mi l l ion parameter 
transformer model . Transfer learning can, however, be exploited on much larger scales, as 
is demonstrated by models from e.g. the T 5 family [40, 52, 29]. 

Overal l , transfer learning is one of the most crucial concepts in modern deep learning, 
especially given the cost of t ra ining new powerful models from scratch (mainly referring to 
the costs of pre-training large language models [4, 31, 45]). 

It is also well understood that generally, exploi t ing transfer learning leads to better 
results than t ra ining a model from scratch wi th only the final specific task in mind . This 
can be demonstrated by even a simple example of t ra ining a speech translat ion system, 
where in i t ia l iz ing the model weights w i th a model trained for automatic speech recognition 
greatly improves the results, as discussed in Chapter 3. Therefore, in the context of this 
work, the topic of transfer learning is at the core of what this project is t ry ing to explore. 
The specifics are discussed beginning from Chapter 4. 
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Chapter 3 

Spoken language translation 

Spoken language translation ( S L T ) , often also referred to as speech translation (ST) , is the 
task of transcribing the contents of a spoken audio utterance i n a given source language 
(e.g. English) into text i n a given target language (e.g. Portuguese). 

This chapter provides an introduct ion and a brief overview of the methods that are 
typical ly used for t ra ining and establishing S L T systems. 

3.1 SLT system architecture 

There are two main model architecture classes for spoken language translation. The first 
class is the so-called cascade speech translat ion system. Cascade S T systems i n general 
consist of two parts: 

1. A n A S R system in the source language, 

2. and an M T (machine translation) system from the source language to the target 
language. 

Now, assume a hypothet ical scenario wi th the source audio i n Engl i sh and the target 
language being German . The A S R system first generates Engl i sh transcriptions from the 
source audio. Then, the Engl i sh-German M T system translates the generated transcriptions 
to the target German language. 

The cascade approach is perhaps the most intui t ive way of implementing speech trans­
lat ion, especially given the fact that t ra ining reasonably reliable A S R and M T systems is 
generally not that challenging, provided enough data. Moreover, the abundance of freely 
available pre-trained models for both A S R and M T means that constructing a cascade sys­
tem is very simple. In terms of translation performance, models of this k ind have always 
occupied the top positions wi th other state-of-the-art methods for S L T [36, 30]. In fact, 
given the rel iabil i ty and domain robustness of modern A S R and M T systems, they s t i l l do 
nowadays. However, there are some potential drawbacks to these kinds of architectures. 

Firs t , the models have to be used whole. This means that there are two encoders and 
two decoders, and therefore each forward pass through the system has two auto-regressive 
generation stages, resulting i n higher latency. W h a t is more, i f the vocabularies between the 
A S R and M T models do not match ( A S R models often generate lower-cased text without 
punctuation), a th i rd model (or tool), which restores casing and punctuat ion information 
has to be added to the stack. In the end, a cascade system can easily have three generation 
stages and three potential sources of error accumulation. 
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Figure 3.1: D iag ram of different cascade and end-to-end S L T system architectures obtained 
form [21]. In the diagram, x, y, z denote the input audio features, source transcriptions, 
and target translations, respectively, h in this case represents the hidden states of the A S R 
system, which establish the differentiable connection to the M T model. 

Secondly, in the base scenario, there is no differentiable path from the A S R system a l l 
the way to the translation system objective. The translation model therefore has no way of 
interacting wi th the speech encoder during training, no means to interpret its uncertainty 
during inference, meaning that the translations are perhaps more affected by any errors 
made during the transcript ion process. A l l u d i n g to the previous point w i t h the truecaser 
model, commit t ing the output of either model i n the cascade scenario into text creates 
room for potential error accumulat ion and domain adaptat ion problems. 

This second problem can be alleviated by establishing a differentiable path between the 
two models by, for example, feeding the hidden representations of the A S R system straight 
into the M T model input embedding space (Figure 3.1, variant b). The system can then 
be fine-tuned using different auxi l iary objectives, as discussed i n [47, 21]. 

3.1.1 E n d - t o - e n d S L T systems 

O n the side of the spectrum, there are end-to-end ( E 2 E ) 1 speech translat ion systems. Such 
systems are typical ly implemented and trained as a single sequence-to-sequence encoder-
decoder model, taking the source speech audio as input and producing the target language 
translat ion text as output. 

Implementing an S T system wi th an end-to-end architecture can potential ly mitigate 
some of the cascade system drawbacks; now the speech encoder and the translat ion decoder 
have a differentiable pathway a l l the way from the inputs to the objective. The encoder and 

1 F o r clarification: E 2 E is often used to represent a class of speech recognition models such as Wav2Vec2 [2] 
which operate on raw audio waveforms, having to learn their own speech representations during training. 
However, this label is as often used for systems that operate end-to-end on top of some low-level extracted 
features, such as spectrograms. 
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decoder can interact w i th each other, meaning that the passing of the speech information 
to the translat ion decoder happens i n a more abstract and continuous manner, rather 
than commit t ing it into discrete symbols. Th is helps to alleviate problems stemming from 
domain mismatch and error accumulat ion between the models in a cascade scenario. 

However, t ra ining an end-to-end S T system is also generally more challenging than 
t ra ining A S R or M T systems alone, as the task is s imply more complex. A S R systems only 
have to learn a monotonous mapping between the speech audio input and the corresponding 
sequence of tokens in the transcript ion. O n the other hand, M T systems do have to learn to 
alter and rearrange the grammatical structures encoded in the source language input token 
sequence i n order to produce a correct translation. However, they do not have to contend 
wi th the input modal i ty being different from the output one, as i n the A S R scenario. E n d -
to-end S T systems have to learn to solve both of these problems at once. 

In order to obtain better results, it is therefore common to implement several t raining 
techniques that decrease the t ra ining difficulty and improve performance. Those include 
mainly several transfer learning techniques, where the speech encoder and translat ion de­
coders would be ini t ia l ized using weights from pre-trained A S R and M T models, respec­
tively [18, 48, 21]. W i t h further S T t ra ining after this ini t ia l izat ion, the models quickly over­
come the language and representation mismatch at the cross-attention connection, leading 
to generally better results than when t ra ining from scratch. 

The t ra ining could also include addi t ional model supervision [53, 55], self-supervised 
learning [49], or further regularization and condit ioning using multi-task learning [18, 21]. 
For example, jo int ly enforcing the t ranscript ion objective at the output of the A S R encoder 
using C T C , and the translation objective at the output of the decoder, similar to what is 
shown i n Figure 3.1. 

18 



Chapter 4 

Pre-trained model alignment 

This chapter discusses the topic of pre-trained model alignment, considered mainly from 
the cross-modal viewpoint. This domain has been gaining tract ion recently, especially due 
to the introduct ion and success of large language models [31, 4, 45]. The model alignment 
research has mostly been t ry ing to leverage the power that is offered by such systems by 
connecting them to pre-trained source modal i ty encoders using a smaller module, which 
would facilitate the cross-modal alignment. Tha t is, ideally without needing to fine-tune 
the large models 1 . Perhaps one of the more cr i t ica l of these alignment connectors, the 
Q-former [25] (further discussed in Section 4.1) has recently been introduced and used 
a number of vision-language tasks, which previously required a more bottom-up approach. 
This method has subsequently sparked the inspirat ion for many cross-modal alignment 
projects [6, 9, 54, 56]. 

Aside from the Q-former, other alignment methods have been explored i n [50, 17, 28, 
1, 42, 7]. For most methods, however, the principle remains roughly the same: 

1. Use a pre-trained source modality encoder ( A S R encoder, vision model, etc.) and use 
it to extract abstract embedding representations from the source data. 

2. Choose a powerful language model, which w i l l provide the text generation - and 
perhaps a task-related interactive reasoning basis for the final task. 

3. T ra in a smal l modality connector module, responsible for converting as well as pro­
jecting the source modal i ty embedding representations into either the cross-attention 
connection space of the chosen language decoder or direct ly to its input embedding 
space, serving as a quasi-language soft prompt. 

In this work, we attempt to apply similar approaches to the task of spoken language 
translation, t ry ing to evaluate the merit of leveraging pre-trained A S R and M T models to 
create new S T systems and compare such systems to the more t radi t ional methods of solving 
speech translation. The alignment experiments are conducted mostly i n a smaller-scale, 
restricted scenario, u t i l iz ing our proprietary, smaller, pre-trained models, to allow for a more 
agile evaluation of the ut i l ized alignment modules and architectures. However, experiments 
are also conducted to show the extensibili ty of the proposed aligned S T framework and its 
v iabi l i ty to be used wi th arbi trary larger-scale speech encoders and M T models. To the 
best of our knowledge, this work is the first that focuses solely on speech translat ion in this 

1 I n most cases, the chosen encoder and decoder models are simply frozen and only the connector module 
is trained. 
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Figure 4.1: B L I P - 2 Q-former alignment framework wi th both the decoder-only and encoder-
decoder language model variants. The output Q-former queries bypass the L L M word 
embedding layer and serve as soft prompts for the language model to generate the image 
annotation. D iag ram obtained from [25]. 

alignment context, and believe that our experiments show great prospects of u t i l iz ing and 
bui lding on these methods in several S T task domains, including - but not l imi ted to - low 
resource S T scenarios. 

The next Section 4.1 introduces the Q-Former - the connector module that inspired 
this work as a whole - and its architecture, its possible uses for A S R , and some of its short­
comings w i t h regard to sequence-to-sequence modeling tasks. Section 4.2 then discusses 
the proposed approach of aligning pre-trained A S R and M T models for solving speech 
translation, the two main alignment architectures and the modal i ty connectors used wi th in 
them. 

4.1 The Q-Former 

A novel pre-trained model alignment approach was recently introduced i n B L I P - 2 [25]. 
B L I P - 2 presents a new method of fusing and aligning already pre-trained off-the-shelf large 
models for computer vision and language modeling to solve a joint vision-language task 
of describing the contents of a picture wi th natural language. Such an approach is quite 
attractive, as t ra ining capable vision-language models from scratch is generally a challenging 
task - especially resource-wise [37]. 

The paper proposes using a smal l querying transformer - the Q-Former - to connect 
a frozen image encoder and a frozen language model . The Q-former is used to extract 
information from the image features produced by the image encoder and present this infor­
mat ion to the frozen language model i n its input text embedding space as a quasi-language 
soft-prompt. To extract the desired information from the vision features, the Q-former uses 
a fixed-length sequence of trainable queries. These query vectors are used as the input of 
the Q-former and interact w i th the vision features v i a cross-attention. W h i l e the Q-Former 
has the architecture of a conventional transformer decoder, it processes the queries bidi -
rectionally. The number of queries used is a hyper-parameter, and their dimensionali ty is 
defined by the chosen hidden representation size of the Q-Former. 
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U p o n leaving the Q-former, the queries are projected into the input text embedding 
space of the frozen large language model w i th a fully-connected layer, acting as soft prompts 
to the L L M . F ina l ly , the L L M auto-regressively generates the image annotations. The 
language model can be decoder-based (as shown in Figure 4.1), or encoder-decoder-based, 
which also allows using addi t ional text prompts to potential ly ask the L L M about more 
specific parts and aspects of the image. 

In B L I P - 2 , overcoming the wide modal i ty gap between the image encoder and the 
language model is a challenge, as there is no direct correspondence between the image 
embedding features and the text that describes i t . For this reason, the Q-Former needs to 
be trained i n two phases: 

1. T h e representation learning phase, where the Q-Former first learns to extract 
representations from the image features, that are useful for generating the text anno­
tation. 

2. T h e generative learning phase, where the Q-Former is t rained to use the learned 
representation extraction capabilities to supply the frozen L L M wi th a suitable soft-
prompt, t ra ining wi th the regular causal language modeling objective based on the 
supplied image annotations. 

In the representation learning phase, the self-attention and intermediate layers of the 
Q-Former are first ini t ia l ized wi th the pre-trained weights of B E R T - b a s e [10], while the 
cross-attention layer weights are randomly ini t ia l ized. Then , three pre-training tasks are 
employed to condit ion the Q-Former to extract useful representations from the image fea­
tures: 

• Image-grounded text generation, where the Q-Former is trained to use the 
trainable queries to extract useful information from the image features in the cross-
attention layers, and then subsequently predict a textual annotation to the image 
using the self-attention layers, where the transformed queries can interact w i t h the 
input text embeddings. a special causal self-attention mask is applied so that the text 
embeddings can interact w i th the queries, but not vice-versa. 

• Image-text matching, where the Q-Former predicts whether the supplied text an­
notation matches the image features supplied in the cross-attention connection. 

• Image-text contrastive learning, where the Q-Former is trained to maximize the 
mutual information (similarity) between the queries and the transformed output em­
bedding of the [CLS] token of the supplied annotat ion (or minimize it i n the con­
trastive case). 

The pre-training methods are described i n more detail i n the original paper. The impor­
tant observation here is that this representation learning stage w i t h mult iple tasks and 
contrastive learning is important i n the vision-language case, as the modal i ty gap needs 
to be shrunk first before employing the L L M for the second t ra ining stage. It should also 
be noted that here contrastive learning is necessary to prevent the representation learning 
process from collapsing. 

For speech-text alignment, such pre-training is not necessary, as the modal i ty gap is 
already considerably narrower [54, 50]. However, it can be argued that there is potential 
for similar types of pre-training or auxi l iary supervision objectives and that such approaches 
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could potential ly decrease the need for large amounts of speech translat ion data, especially 
when aligning A S R and M T systems. 

Following the introduct ion of the Q-former model, several new alignment approaches 
have been introduced, either a t tempting to improve and expand upon the results of B L I P - 2 
(such as I n s t ruc tBLIP [9]) or use the Q-former as an alignment basis for different modalities 
entirely, e.g. video [6, 56] and audio [6, 54]. 

4.1.1 Q - f o r m e r for a u t o m a t i c speech recogni t ion 

Using the Q-former for automatic speech recognition has recently been explored i n [54]. The 
methodology remains similar to [25]: a large pre-trained speech encoder like Whisper [38] is 
frozen, and used to encode the input audio into a sequence of intermediate speech features. 
The features are passed to the Q-former v i a cross-attention, where they interact w i t h the 
Q-former queries (see Figure 1.3 for reference). Th is means that the Q-former turns the 
variable-sized input audio sequences into a fixed length sequence - the length of the Q-former 
output sequence is the same as the input query vector sequence. The transformed output 
queries are subsequently projected into the embedding dimension of the connecting L L M , 
prompting it to generate the transcription. Once again the t ra ining objective is the original 
cross-entropy loss of the foundation L L M , however, only the Q-Former is opt imized during 
the t ra ining process. 

In comparison to B L I P - 2 , the Q-former used here is much smaller - only two transformer 
decoder layers - and does not require any pre-training, as it is argued that the modal i ty 
gap between the A S R encoder outputs and the L L M embedding space is relatively narrow. 
The number of queries that were used for A S R purposes is 80 (in contrast to the 32 used 
in [25]), which is, reportedly, a sufficient amount to retain the information i n the encoded 
input audio slices w i th lengths of up to 30 seconds wi th an acceptable performance-to-length 
ratio. 

The performance of the Q-former is also compared to two other connector modules -
a stack of linear layers and a multi-head cross-attention module [28] - outperforming them 
al l . It should be noted that the performance of the linear connector ends up behind the Q-
former wi th only a tenth-of-a-percent absolute W E R margin, however, the study argues that 
the Q-former represents a superior approach due to the higher computat ional complexity 
of the fully-connected layer module in comparison to the Q-former. O n the other hand, the 
fact that a simple M L P was able to match the results of the Q-Former further reinforces 
the notion, that the modal i ty gap between the speech encoder output representations and 
the L L M embedding space is perhaps narrower than expected. 

4.1.2 H a n d l i n g var iab le - l ength audio inputs 

It is common for A S R models to be opt imized to operate on shorter audio inputs. In [54], 
Whisper [38], which is trained and designed to operate on 30s chunks of input speech 
segments, is used as the speech encoder. O n the other hand, the context windows of the 
chosen L L M allow for processing longer input sequences and prompts. 

To counteract the source audio length l imi ta t ion , the paper proposes a segment-level Q-
Former modification. This Q-former variant (shown i n Figure 1.2) would receive batches of 
the encoded source audio from the speech encoder and add posit ional embedding informa­
t ion to the whole batch. Then , each segment is processed by the Q-former separately and 
the output query sequences are concatenated. Once the whole source audio is processed, 
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Figure 4.2: Segment-level Q-former structure. The Q-former queries are depicted i n green, 
outputs of the speech encoder in yellow. The rectangles w i th numbers represent the added 
segment posit ional encoding. D iag ram obtained from [54]. 

the concatenated queries are presented to the L L M as one long prompt, and transcriptions 
are generated. 

However, it could be argued that this segment-level approach is a symptom of a deeper 
mapping problem wi th the Q-Former - due to the cross-attention interaction, the Q-Former 
always maps any variable-length inputs to a fixed-length sequence of output queries. Such 
an approach makes sense i n the B L I P - 2 scenario as i n that case, the system is dealing wi th 
abstract image feature representations. It is the actual meaning and content stored in these 
image features that determine the length of the output text annotation, not the dimensions 
of the features. Ex t rac t ing this information into a fixed number of query tensors is therefore 
adequate, as there is no direct basis for determining the length of the connector module 
output at the Q-Former stage without perhaps introducing an auto-regressive decoding 
step. 

For the A S R case (and the speech translation case for that matter), the relationship be­
tween the encoder output embeddings and the generated text t ranscript ion (or translation) 
is much more linear and monotonous - i f the input audio utterance is long, it is proba­
ble that so w i l l be the text. This immediately poses the question i f it perhaps would be 
more productive to require a variable-length to variable-length mapping from the connector 
module. 

4.1.3 T h e S u b s a m p l e r - T r a n s f o r m e r E n c o d e r connector ( S T E ) 

In addi t ion to the Q-Former, we, therefore, experiment w i th another connector module 
variant inspired by the approaches presented i n [50, 17]. Th is variant, though s t i l l rather 
simple, solves the fixed-length mapping of the Q-Former by introducing a convolutional 
subsampling layer i n replacement of the cross-attention connection. 

A S R encoder output embedding sequences typical ly have a higher granularity i n compar­
ison to language model text representations. Th is granularity mismatch could potential ly 
cause problems for leveraging any zero-shot capabilities the language-model might offer 
when prompted wi th these raw audio representations, therefore it is natural to downsample 
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Figure 4.3: Diagram of the two alignment modules. Variant A ) is the Q connector (or 
Q-Former), variant B) is the S T E connector. Note the different embedding vector 'height' 
used by the connectors, which illustrates that the hidden size of the connector network can 
actually be different to that of the A S R encoder or the M T model. 

these embeddings along the t ime dimension. In [17], two ma in subsampling approaches 
are explored - C T C compression and convolutional downsampling (evaluating the convolu-
t ional approach as superior). The hidden audio representations are subsampled to a fraction 
of their original length, and only after that, they are presented to the connector module, 
which, at this point, can be a simple transformer encoder. O n the other hand, i n [50], 
the subsampling is done by s imply stochastically discarding a fourth of the output A S R 
embeddings, s t i l l yielding great results. 

W h i l e the convolutional subsampler adds a number of parameters to tune (in our case 
directly correlated to the A S R embedding dimensionality), an approach like this intui t ively 
seems superior, because of the fixed-length mapping constraint of the Q-Former. A n ad­
di t ional smal l perk of this second variant is also that no parameters in the model come to 
waste - i n contrast to the Q-Former, which cannot use the first self-attention block in any 
meaningful way, as it only operates on the raw pre-trained query vectors when used in the 
final alignment encoder-connector-LLM context. 

Going further, this type of connector network w i l l be referred to as the ' S T E ' connector, 
which stands for Subsampler-Transformer Encoder. The S T E connector is depicted in 
Figure 4.3. 

4.2 Proposed alignment architectures 

In this work, we experiment w i th two general alignment architectures for speech translation, 
differing i n the configuration of the frozen M T model . B o t h architectures are trained 
pr imar i ly using the standard cross-entropy loss objective at the output of the M T decoder. 
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Figure 4.5: Diagram of the E C E D alignment configuration. The connector module output 
embeddings are now directly injected past the input embedding layer of the M T encoder. 
Add i t i ona l task prompt embedding sequence (as is typica l for instruction-tuned models such 
as T 5 [40]) can be pre-pended to the connector outputs before entering the M T encoder. 

The first alignment architecture (shown in Figure 4.4) consists of a frozen A S R encoder 
(the decoder is str ipped away to avoid an extra decoding step), which extracts hidden audio 
representations from the source speech audio. These representations are then passed to the 
connector module, and its outputs are further projected to the dimension of the frozen 
M T model v i a a fully-connected layer. In this architecture variant, the connector is used to 
align the A S R encoder output embedding space w i t h the output embedding space of the M T 
encoder, as shown in the diagram. Addi t ional ly , the original pre-trained M T encoder can be 
used to ini t ial ize the weights of the connector network, or addi t ional ly serve as a basis for 
some auxi l iary modality matching objectives useful for s tabi l izing the t ra ining procedure. 
This architecture w i l l further be referred to as Encoder-Connector-Decoder ( E C D ) . 

The second architecture (shown in Figure 4.5) differs from the first one i n the text 
decoder part. The connector module now projects the speech embeddings into the input 
text embedding space of the foundation M T encoder. Intuitively, it would seem that i n this 
case, the modal i ty gap between the output speech embeddings and the input text embed­
dings of the M T encoder is narrower, than in the previous case. Whereas previously the 
connector had to perform feature space alignment and simultaneously replace and overtake 
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the responsibilities of the original M T encoder, now it is enough for the connector to mean­
ingfully bring up the textual information present i n the speech embeddings so that the M T 
encoder can make use of them. This k ind of approach was, for example, explored in [50], 
where al igning the speech encoder w i th a language model from the T 5 [40] family allowed 
the authors to leverage the original multi-task and reasoning capabilities of the founda­
t ion mul t i - l ingual language model, only enhanced i n that the final model could also process 
speech inputs. In general, this encompasses first taking the text instruction prompt such as: 
'translate to Portuguese: ', and subsequently embedding it w i th the M T encoder embedding 
layer and prepending these instruction embeddings to the connector module outputs. This 
architecture w i l l further be referred to as Encoder-Connector-Encoder-Decoder ( E C E D ) . 

For bo th architecture variants, we conduct experiments w i th two different types of 
connector networks: the Q-Former (which w i l l also further be referred to as s imply 'Q ' ) and 
the S T E connector (a transformer encoder w i th a convolutional subsampler frontend), as it 
was introduced in Section 4.1.3. The subsampling module used i n our S T E implementat ion 
is a 2-layer stack of I D convolutions, which reduces the length of the input speech embedding 
sequence by a factor of 4, and was inspired by the frontend used for A S R systems i n [48], 
and simultaneously projects the subsampled embeddings from the dimensionality of the 
A S R encoder to the operating dimensionality of the connector. 
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Chapter 5 

Experiments 

In this chapter, experiments are conducted to evaluate the pre-trained model alignment 
approaches and architectures as they are described i n Chapter 4. The main a im of these 
experiments is to determine the v iabi l i ty of these alignment approaches for solving the 
speech translation task, comparing these methods to our baseline systems constructed in 
more conventional ways. Subsequently, we further explore the possibilities offered by off-
the-shelf pre-trained A S R and M T models i n the S T alignment context. 

A l l experiments carried out and models used throughout this work were implemented 
using the Hugging Face 1 Transformers 2 framework. Hugging Face Transformers is an open-
source deep learning l ibrary based mainly on P y T o r c h 3 , which mainly aims to centralize and 
provide simple, effective, and extensible tools to t ra in and fine-tune modern transformer-
based models. It also provides a platform for hosting already pre-trained models that are 
free to be used as off-the-shelf bases for further experiments and projects. 

A currently access-restricted Hugging Face Transformers extension repository for A S R 
training called 'huggingf ace_asr' 4 was used as the platform for implementing a l l models, 
and t ra ining/evaluat ion scripts. Th is repository is developed and maintained mainly by 
Ing. Alexander Polok from the B U T Speech@FIT research group from our faculty. A l l 
recipes and code wri t ten and used for the experiments conducted throughout this work w i l l 
u l t imately become available as a part of the toolki t , once the repository becomes public. 
For now, the enclosed storage unit for this work contains the current image of the repository, 
where a l l source files created and used for the purposes of this project are appropriately 
annotated. 

Further sections discuss the important topics w i th regard to the conducted experiments. 
Section 5.1 introduces the How2 dataset used i n the experiments, along w i t h the W E R and 
B L E U metrics used for evaluation. Section 5.2 goes over the t raining and selection of the 
foundation A S R and M T models used for the alignment experiments. Section 5.3 then 
describes the bui lding and establishing of our reference baseline Engl i sh to Portuguese S T 
systems trained on the How2 dataset. Section 5.4 evaluates the merits of both alignment 
architectures and connector modules. Section 5.5 explores the behavior of the alignment 
approach when used wi th off-the-shelf pre-trained A S R and M T models. Last ly, Sections 5.6 
and 5.7 attempt to analyze and compare the behaviors of the Q and S T E connectors in 
terms of input sequence lengths. 

x
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Table 5.1: Split statistics of the 300h por t ion of the How2 dataset. 

Split Videos Hours Clips/utterances Per clip statistics 

t r a i n 13,168 298.2 184,949 
val 150 3.2 2,022 5.8 seconds / 20 words 
dev5 175 3.7 2,305 

5.1 The How2 dataset 

The How2 dataset [41] is a mul t i -modal corpus of Engl i sh instruct ional videos and their 
respective transcriptions. The dataset consists of approximately 2000 hours of video data 
and contains a smaller 300-hour audio subset, for which there are also crowd-sourced trans­
lations to the Portuguese language. 

The 300-hour subset is d ivided into three partit ions: t r a i n , val , and dev5. A s shown 
in Table 5.1, the t r a i n par t i t ion consists of 298 hours of audio data, total ing 184949 spoken 
Engl i sh utterances. B o t h the dev5 and va l partit ions contain about 3 hours of speech data, 
both total ing just above 2000 utterances. The lengths of most utterances in the 300-hour 
subset range from one to up to twenty seconds, w i th most recordings being concentrated 
in the region around the 4 seconds - the overall utterance length dis t r ibut ion is shown in 
Figure 5.1. 

How2 is a commonly used standard benchmark dataset for machine translat ion and 
speech translat ion systems [30, 18, 47, 21] - due to the data being relatively clean, it is 
considered to be appropriate for s tudying and evaluating various approaches and models 
for speech translation. The How2 dataset is freely available for download, however, access 
to it is restricted behind a license gateway. This is useful, as it essentially restricts any web 
crawlers from accessing the data directly, min imiz ing the risk of data contamination i n our 
experiments w i th any off-the-shelf pre-trained models. 

Duration Bins (sees) 

Figure 5.1: Utterance length dis t r ibut ion of the 300-hour How2 subset. Figure obtained 
from [41]. 
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5.1.1 E v a l u a t i o n metr ics 

For evaluation, we use the W o r d Er ro r Rate ( W E R ) metric for A S R systems, and for 
translat ion systems, the B L E U metric is used. 

W o r d E r r o r Rate 

W o r d Er ro r Rate is a standard metric used to evaluate speech recognition systems, ag­
gregating several types of errors the model can make when generating the transcript ion 
hypothesis i n relation to the reference text: 

where S is the number of substitutions (words that were changed i n the hypothesis), D is 
the number of deletions (words that are missing from the hypothesis altogether), / denotes 
the number of insertions (words that cannot be found i n the reference but are present in 
the hypothesis), and iV is the number of words i n the reference. 

W E R is typical ly computed using normalized, lower-cased text without punctuat ion, as 
casing and punctuat ion information can be more open to interpretation. Normal iz ing the 
hypotheses and references allows for more accurate evaluation of the actual A S R perfor­
mance i n terms of purely transcribing the correct words. 

T h e B L E U metric 

B L E U (Bi l ingual Evalua t ion Understudy) [32] is a metric used for evaluating the perfor­
mance of machine t ranslat ion (and speech translation) systems. Roughly speaking, the 
metric compares a translat ion hypothesis to a set of reference translations. These refer­
ences should be of good quality, representing the ideal translation performance, presumably 
originating from a top-level human translator. 

The value domain of the scores ranges from 0 (worst) to 100 (best). However, a perfect 
B L E U score represents a v i r tua l ly unattainable ideal, where the generated translations 
would have to match the references perfectly. In a translat ion scenario, this is not realistic 
for the simple reason that mult iple translation hypotheses can be val id for one input source 
language sentence. 

B L E U is computed over N-g ram sequences of words, w i th 4-grams being quite common. 
To obtain the score reading, first, it is necessary to compute 1 to 4-gram precision scores 
between the hypothesis and the reference. Then , to penalize generating short hypotheses i f 
the references are long, a brevity penalty is computed to offset the potential high precision 
scores for these scenarios: 

where c is the hypothesis length and r is the reference length. 
The final score is then obtained by computing a geometric mean precision from a l l 

N-gram precision scores and mul t ip ly ing it by the brevity penalty: 

W E R = 
S + D + I 

N 

(5.2) 

N 
B L E U (N-gram) = Brev i ty penalty • Y\_Pi (5.3) 

i=l 
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where pi is the i -gram precision score, and Wi is the weight of the i -gram (the weights are 
often chosen to be uniform). 

Contrary to W E R , B L E U scores are computed using true-cased text w i th punctuat ion 
symbols, as machine translat ion systems make use of this information to produce better 
translations. The actual meaning of the produced translat ion can be affected by both casing 
and punctuat ion information, and therefore it is natural to include it when comparing to 
the references. 

5.2 Baseline A S R and M T systems 

Firs t , it is necessary to t ra in and select reliable A S R and M T system baselines. These 
systems would subsequently be used to establish our end-to-end and cascade S T baselines, 
as well as serve as the foundation models for a large por t ion of the alignment experiments 
in the context of the architectures described i n Section 4.2. O u r goals for these baseline 
models are the following: 

1. Tra in in-domain A S R and M T systems on How2 w i t h close to state-of-the-art perfor­
mance used to bui ld reference baseline S T systems and subsequently serve as founda­
t ion models for evaluating the alignment architectures i n a domain-restricted scenario. 

2. Select different off-the-shelf pre-trained (possibly out-of-domain) A S R and M T mod­
els, used to evaluate the v iabi l i ty of the alignment architectures as generic frameworks 
for solving speech translation. 

For our proprietary in-domain models, we take inspirat ion from E S P n e t [18] and bui ld 
our A S R and M T systems to match the sizes and results of E S P n e t systems on the How2 
dataset 5 . Do ing so allows us to better ground our experiment results. 

5.2.1 T r a i n i n g the A S R m o d e l 

The reference E S P n e t A S R system trained on How2 is a hybr id C T C / a t t e n t i o n [20] trans­
former encoder-decoder model of 30 mi l l ion parameters, w i th a 12-layer encoder and a 6-
layer decoder, achieving 13.0% W E R on the dev5 set. D u r i n g our prel iminary experiments 
we t r ied to replicate E S P n e t A S R results on How2 using the same transformer-based archi­
tecture implemented i n Hugging Face under the name Speech2Text 6 [48] (S2T) . However, 
we were unable to do so, par t ly due to some t ra ining stabil izat ion problems when imple­
menting the encoder C T C objective. 

The best S2T A S R system trained during this prel iminary phase achieved 17.32% W E R 
on the dev5 How2 subset. Because this system was not able to match the reference E S P n e t 
result, there was a concern that any cascade/end-to-end S T systems based on this A S R 
model, or any subsequent alignment experiments would give unsatisfactory results. In both 
cases, these concerns ended up being substantiated, as is further discussed in Sections 5.3 
and 5.4.1. 

Ult imately, we decide to pivot and t ra in a baseline A S R system wi th the same basic 
dimensions (256 hidden size, 12-layer encoder, 6-layer decoder), but whose encoder is based 
on the novel E-Branchformer [22] architecture. Just as for E S P n e t models, the C T C ob­
jective is used at the output of the encoder w i th a weight of 0.3 alongside the standard 
cross-entropy loss at the output of the decoder. 

5

https: //github. com/espnet/espnet/tree/mast er/egs/how2 
6

https: //huggingf ace.co/docs/transf ormers/model_doc/speech_to_text 
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This A S R system - we refer to it as E-Branchformer small - was trained for 70 epochs, 
w i th early stopping enabled to avoid overfitting, batch size of 128, a learning rate of l e - 3 , 
and 20000 warm-up steps. The model utilizes a lower-cased vocabulary wi th a l l punctu­
ation except for the apostrophe removed. The vocabulary of the model is based on the 
unigram tokenization method and has a size of 5000. For audio features, 80-dimensional 
log-mel-spectrograms are used. To further improve the performance and robustness of the 
A S R model , SpecAugment [33] is used to apply random time and frequency masks to the 
spectrogram, specifically i n the ' L D ' strategy, as described in the original paper. Before 
extracting the mel-filterbank features, speed perturbation is applied to the source audio in 
factors of [0.9, 1.0, 1.1] to further augment the dataset. 

W h i l e this model has about 7 mi l l ion more parameters than the E S P n e t How2 baseline, 
and the E-Branchformer architecture is generally considered to be more powerful for speech 
recognition tasks than the conventional transformer [22, 35], it allows us to easily match 
E S P n e t A S R results on How2 , as it achieves 12.6 and 12.2% W E R on the va l and dev5 
How2 subsets. 

For more details about the used A S R systems, refer to Table 5.3. 

5.2.2 T r a i n i n g the M T m o d e l 

The baseline machine translat ion system adopts the M a r i a n M T [19] transformer implemen­
tat ion available i n Hugging Face Transformers and consists of a 6-layer encoder and a 6-layer 
decoder, 4 attention heads, embedding size of 256, and intermediate feed-forward layer d i ­
mension of 2048. The source and target word embedding layers were untied i n accordance 
wi th the experiments i n [18]. The system was trained i n a true-cased to true-cased manner 
wi th both the source and target B P E - b a s e d vocabularies containing 8000 word units. 

The model was trained for a m a x i m u m of 50 epochs wi th 10k warm-up steps and a peak 
learning rate of l e - 3 , addi t ional ly adopting early stopping. The model was evaluated us­
ing the B L E U metric and achieved 57.90 and 56.95 B L E U on the va l dev5 How2 subsets, 
respectively, which is on par w i th the results of [18] on How2 w i th the same model architec­
ture. 

In further experiments, this model w i l l be referred to as either MarianMT small, or just 
MarianMT. 

Table 5.2: Performance comparison of the foundation M T systems used i n the alignment 
experiments, evaluated on the How2 dataset. The M a r i a n M T model was trained in-domain 
on the How2 corpus, the T 5 model is out-of-domain. 

M o d e l In domain 
How2 B L E U t 
val dev5 

# of 
parameters 

M a r i a n M T small Yes 57.9 57.0 21.6M 
T5-en-pt No 40.0 38.8 223M 

5.2.3 C h o o s i n g off-the-shelf A S R a n d M T mode l s 

O n top of our two proprietary systems trained on How2 , we addi t ional ly choose some off-
the-shelf pre-trained A S R and M T models available on Hugging Face to conduct further 
experiments wi th . Since our two models are both in-domain on How2 , it is not necessary 
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Table 5.3: Performance comparison of the foundation A S R systems used i n the alignment 
experiments, evaluated on the How2 dataset. The S2T, E-Branchformer small , and E S P n e t 
reference models were trained solely using How2 data, the E-Branchformer medium and 
Whisper models were not trained on How2 . The E S P n e t C T C / a t t n . transformer result is 
included for reference. 

M o d e l Trained How2 W E R I # of 
M o d e l on How2 val dev5 parameters 

S2T transformer baseline Yes 17.6 17.3 2 9 M 
C T C / a t t n . E-Branchformer small Yes 12.6 12.2 38 .5M 
C T C / a t t n . E-Branchformer medium No 12.1 11.7 174M 
Whisper-small .en No 9.7 7.9 242M 

E S P n e t C T C / a t t n . transformer Yes - 13.0 3 0 M 

for these addi t ional off-the-shelf models to perform that well on How2 without fine-tuning. 
Rather than that, the main requirement is for the models to be generally more capable 
than our proprietary ones. This allows for evaluating the performance scaling behavior 
of the two alignment architectures, the domain and dimensionality adaptat ion capabilities 
of the connector network, etc. In fact, it can be argued that if the foundation models 
are out-of-domain on How2 , it would be more ak in to real-life scenarios, where one would 
probably choose A S R and M T models that might both be powerful, but also mismatched 
- bo th architecturally and domain-wise. For a comparison of a l l baseline M T models, refer 
to Table 5.2, and for a comparison of baseline A S R systems, refer to Table 5.3. 

Ult imately, we choose and conduct experiments w i th two addi t ional pre-trained A S R 
models and one M T model . The chosen M T model is an English-to-Portuguese M T model 
based on the T 5 [40] architecture, which was developed for experiments conducted i n [27]. 
The model was based on an Engl i sh T5-base checkpoint, which was first pre-trained on 
Portuguese language [5], and then fine-tuned for Engl i sh to Portuguese translation on a 5 M 
English-Portuguese sentence subset of the P a r a C r a w l dataset [14], as well as some domain-
specific data i n preparation for the W M T 1 9 and W M T 2 0 biomedical translation tasks. 
B o t h the encoder and decoder consist of 12 layers w i t h a hidden size of 768, resulting in 
a model of 223M parameters. 

This M T model is out-of-domain on How2 , achieving 'only ' 40.0 and 38.8 B L E U on the 
val and dev5 sets, respectively. However, we chose this model pr imar i ly due to it being pre-
trained on Portuguese language and thus hope to leverage its Portuguese text-generation 
capabilities in our alignment experiments. The model is freely available on Hugging Face 7 , 
and w i l l further be referred to as s imply the T 5 model. 

Addi t ional ly , we choose two other A S R models. The first one is essentially a scaled-up 
version of our E-Branchformer smal l model, trained wi th addi t ional decoder-centric regular-
ization, a novel A S R training method developed by Ing. Alexander Polok at BUTCDSpeech. 
The method has not been published yet, however, the model is freely available on Hugging 
Face 8 . The model was once again trained wi th an addi t ional C T C objective on top of 
the 16-layer E-Branchformer encoder. The decoder has 8 layers, and the whole model has 
a hidden size of 512, therefore total ing around 174 mi l l ion parameters. Despite not being 

7

https: //huggingf ace.co/unicamp-dl/translation-en-pt-t5 
8

https: //huggingf ace.co/BUT-FIT/EBranchRegulaformermedium 
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trained on How2 , it achieves reasonable 12.1 and 11.7 W E R on the val and dev5 sets, 
respectively. Moreover, it was trained on 6000 hours of Engl i sh speech data from various 
datasets, providing an excellent baseline for an off-the-shelf A S R model wi th , hopefully, 
good general audio embedding representation extraction capabilities. In our experiments, 
it is referred to as E-Branchformer medium. 

The second of the two addi t ional A S R models is the English-only Whisper-smal l .en 9 

model by O p e n A I [38]. The encoder and decoder of this model both consist of 12 layers 
wi th a hidden size of 768. Whisper-small .en achieves 9.7% and 7.9% W E R on val and 
dev5 , respectively. A s wi th the other A S R models, to compute this W E R value, bo th the 
transcriptions and Whisper output were normalized using the Whisper normalizer, then 
lower-cased and a l l punctuat ion symbols were removed. Wi thou t normalizat ion, the W E R 
values are 18.4% and 16.5% W E R on the val and dev5 sets, respectively. We use this model 
in only a few experiments to further demonstrate the abi l i ty of our alignment framework 
to leverage good hidden representation-building capabilities of our foundation models (as 
this part icular model was pre-trained on 680 thousand hours of audio data). 

5.3 Baseline ST systems 

To establish a credible speech translat ion performance reference, two baseline S T systems 
are created (plus the prel iminary S2T-based system), each representing one side of the 
cascade/end-to-end architecture spectrum. B o t h baseline systems are created using the 
E-Branchformer smal l A S R and M a r i a n M T small M T systems described i n Sections 5.2.1 
and 5.2.2. These systems are in-domain on the How2 dataset and were trained only using 
this data. 

Firs t , we t ra in an end-to-end S T system wi th the same architecture as the foundation 
E-Branchformer smal l model . Adop t ing the How2 approach from [18], we reuse the 12-layer 
encoder from the pre-trained E-Branchformer smal l A S R model and ini t ial ize the 6-layer 
decoder w i th the weights from the M a r i a n M T small decoder. The vocabulary of the decoder 
is the same true-cased 8000-word unit B P E vocabulary used by the original M T decoder. 
The system is then trained for a m a x i m u m of 40 epochs wi th a learning rate of l e - 3 , 
10000 warm-up steps, and a batch size of 128. E a r l y stopping is used to avoid overfitting. 
For this S T t ra ining phase, SpecAugment is no longer used, however, we keep the speed 
perturbation augmentation w i t h the same factors of [0.9, 1.0, 1.1]. Last ly, the encoder is 
frozen for the first 8 epochs of t raining. This baseline system achieves 45.6 and 45.2 B L E U 
on the val and dev5 How2 subsets, respectively, which is on par w i t h the results of the 
reference E S P n e t sys t em 1 0 , as shown i n Table 5.4. 

This end-to-end system represents the more robust but - at the same time - more costly 
solution to the S T task. We obtain good performance using a smal l model, which employs 
only one decoding step and does not suffer from domain mismatch. A t the same time, 
we s t i l l have to optimize a l l the parameters of the model to get the best results, and the 
training would only consume more and more resources i f the model size were to scale up. 
Experiments presented in the following sections w i l l attempt to argue that fine-tuning the 
whole S T system is not necessary to obtain performance comparable to end-to-end systems 
trained from scratch. Tha t is if an appropriate alignment method is used. 

9

https: //huggingf ace.co/openai/whisper-small.en 
1 0

https: //github. com/espnet/espnet/tree/mast er/egs/how2/stl 
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Table 5.4: Compar ison of both trained and reference S T systems. The E S P n e t reference is 
an end-to-end transformer system, u t i l iz ing the same A S R and M T ini t ia l iza t ion approach 
as our E-Branchformer end-to-end baseline. The S2T baseline is based on our prel iminary 
A S R transformer system from Section 5.2.1. 

Baseline S T system 
How2 B L E U t 
val dev5 

E-Branchformer end-to-end ( A S R + M T init .) 45.6 45.2 
Cascade (Ebr . A S R —> truecaser —> M a r i a n M T ) 40.9 40.4 

ESPne t transformer reference - 45.7 
Pre l iminary S2T transformer baseline 40.6 39.6 

For completeness, the last line of Table 5.4 also shows the prel iminary end-to-end S T 
system based on the S2T transformer A S R from Section 5.2.1. T h i s system was trained 
in the same way as the E-Branchformer system, u t i l iz ing the S2T A S R encoder and the 
M a r i a n M T decoder as weight in i t ia l izat ion points for the final system. Due to the worse 
A S R performance of the original S2T model, this end-to-end prel iminary S T baseline only 
achieves 40.6 B L E U on the va l set. 

The other baseline S T system is a cascade system, connecting the E-Branchformer 
small and M a r i a n M T small models. For this system, no component is trained, however, 
a minor issue arises, as the output vocabulary of the A S R model only consists of lower­
cased text w i th punctuat ion removed. The M T system on the other hand expects true-cased 
Engl i sh text w i th punctuat ion as its input . Th is type of domain mismatch can be quite 
common among off-the-shelf A S R and M T systems as A S R systems are often trained to 
only produce lower-cased, normalized text, contrary to M T systems, which uti l ize the casing 
and punctuat ion information in the source text to produce better translations. 

To overcome the vocabulary mismatch, we take a pre-trained T5-based Engl i sh casing 
and punctuat ion restoration model from Hugging F a c e 1 1 , and use it to process the A S R 
transcriptions before translating them wi th the M T model. 

Our cascade system represents the naive but cheap solution to the S T task, as no param­
eters have to be tuned. However, the overall performance suffers from error accumulation, 
resulting in noticeable performance degradation, as the model only achieves 40.9 and 40.4 
B L E U on the va l and dev5 How2 subsets, respectively. W h a t is more, three decoding steps 
have to be performed before obtaining the final translation. 

5.4 Alignment architecture evaluation 

The first set of alignment experiments mainly encompasses evaluating the two alignment 
architecture variants ( E C D , E C E D ) i n conjunction wi th both of the connector network types 
(Q and S T E ) , as described i n Section 4.2. These experiments a i m to pr imar i ly determine 
the viabi l i ty of the aligning approach to t ra ining S T systems as a whole, juxtaposing them 
against the baseline methods. O n top of that, experiments are conducted wi th different 
connector model compositions, namely i n terms of the number of transformer layers, the 
number of queries used by the Q-Former, etc. 

n

https: //huggingf ace.co/SJ-Ray/Re-Punctuate 
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Unless specified otherwise, a l l aligned models are trained for a m a x i m u m of 70 epochs 
wi th 15000 warm-up steps, a batch size of 128, and a peak learning rate of 2e~ 4 . We adopt 
early stopping to avoid overfitting and apply speed perturbation w i t h the same factors as 
in Section 5.3. 

5.4.1 A r c h i t e c t u r e 1 - E C D 

Firs t , we evaluate the E C D architecture, where the frozen A S R encoder is connected to the 
frozen M T decoder using the trained connector network. Star t ing off, the E-Branchformer 
small A S R and the M a r i a n M T small M T models (both trained in-domain on How2 ) are 
chosen as the foundation models for the first part of alignment architecture evaluations. 
Though these models are not the most powerful i n comparison to other off-the-shelf models 
pre-trained on thousands of hours of speech data, keeping bo th the A S R encoder and M T 
decoder in-domain on the t ra ining set allows us to better isolate and identify potential short­
comings of the aligned models. Furthermore, the final results w i l l be directly comparable 
to the S T baselines from Section 5.3. 

Since both foundation models have a hidden size of 256, we start off by defining both the 
Q and the S T E connectors as 6-layer transformer models w i th 4 attention heads, a hidden 
size of 256, and an intermediate feed-forward layer w i th a size of 2048. The Q-Former 
uses 100 trainable queries as input, the S T E connector is prepended wi th the 2-layer 1-D 
convolutional subsampler frontend, introduced in [43] and used i n Fairseq [48]. Decreasing 
the number of connector layers to 4 or 2 is also experimented wi th . 

For the Q-Former, an addi t ional modal i ty-matching pool ing loss is employed, inspired 
by [13]. W h i l e training, we keep the original pre-trained M T decoder and use it to obtain 
hidden representations T from the Engl i sh transcript ion of the input speech utterance. B o t h 
the transformed Q-Former output queries Q and the M T encoder output embeddings T 
are then averaged along the t ime dimension to obtain single mean embedding vectors q and 
t. The modal i ty-matching loss is computed as mean-squared-error between the elements of 
the two vectors: 

L M M = M S E ( q , t ) , (5.4) 

essentially t ry ing to enforce that the Q-Former output embeddings occupy the same space 
as the output embeddings of the transcription, as it is encoded by the original M T encoder. 
We find that while the modal i ty-matching loss does not br ing a clearly at tr ibutable increase 
in performance, it helps stabilize the training. 

Addi t ional ly , bo th the Q and S T E connectors can be ini t ia l ized from the original M T 
encoder weights (the cross-attention layers of the Q-Former would be ini t ia l ized randomly) . 
However, since this can only be meaningfully done when the connector dimensions match 
the dimensions of the M T encoder, we ul t imately refrain from doing so for most experiments 
(especially down the line when bigger foundation A S R and M T models are used). For the 
experiments, where the ini t ia l izat ion was performed, we find no difference in performance, 
however, for the S T E architecture the ini t ia l izat ion makes the model converge slightly 
quicker. 

F rom the results shown in Table 5.5 the S T E connector outperforms the Q-Former by 
a significant margin, almost matching the performance of the baseline end-to-end system, 
achieving 45.0 and 44.8 B L E U on the val and dev5 sets, respectively. It could be argued, 
that the S T E connector perhaps benefits too much from the parameters added by the 
convolutional subsampler, however, even the 4-layer S T E configuration s t i l l outperforms the 
6-layer Q-Former, suggesting that the problem lies probably in the way the Q connector 
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Table 5.5: Connector performance comparison for the E C D alignment architecture. The 
S2T model is our ESPnet - inspi red prel iminary transformer baseline from Section 5.2.1. 
Baseline S T model results from Section 5.3 are added for reference. 

A S R enc. Connector 
Connector 

layers ^ ueries M T enc. M T dec. Trainable 
parameters 

How2 B L E U t Connector 
layers ^ 

Trainable 
parameters 

val dev5 

Ebr. small Q 6 100 Marian 61 9.6M 44.0 43.9 
Ebr. small Q 4 100 Marian 61 6.4M 42.5 42.6 
Ebr. small Q 2 100 Marian 61 3.2M 40.6 40.2 
Ebr. small S T E 6 - Marian 61 10.7M 45.0 44.8 
Ebr. small S T E 4 - Marian 61 7.9M 44.1 44.4 
Ebr. small S T E 2 - Marian 61 5.3M 42.8 42.9 

S2T Q 6 128 Marian 61 9.6M 36.8 36.1 

E-Branchformer E 2 E baseline 38.5M 45.6 45.2 
Cascade baseline 0 40.9 40.4 
S2T E 2 E transformer preliminary baseline 29M 40.6 39.6 

represents and extracts information from the input speech embeddings. Th is is further 
analyzed i n Sections 5.6 and 5.7. 

W h a t is more, we also find that the t ra ining of the S T E connector is more stable and 
'well-behaved' than the one of the Q-Former - it converges faster and spikes in evaluation 
metrics while t ra ining are less common. 

To further stress the importance of u t i l iz ing a quali ty A S R encoder for the alignment 
experiments, Table 5.5 also shows the performance of one of the prel iminary Q-Former 
aligned models w i th the S2T transformer encoder (see Table 5.3). The performance gap 
between the aligned model and the reference prel iminary S2T end-to-end baseline is almost 
4 B L E U points, which is considerably more than when a better A S R encoder (like our 
E-Branchformer small) is used. 

5.4.2 A r c h i t e c t u r e 2 - E C E D 

The second E C E D architecture, where the connector maps the A S R encoder output em-
beddings into the input embedding space of the foundation M T encoder, should potential ly 
represent the less challenging alignment scenario between the two. The connector network 
here does not have to overtake the responsibilities of the M T encoder completely (contrary 
to the E C D architecture). Now, the main purpose of the connector network is to take the 
A S R encoder output embeddings containing latent textual information and just transform 
them in such a way that they roughly match their counterparts i n the M T encoder input 
text embedding space. 

For these experiments, we keep the same t ra ining procedure, foundation models, and 
connector configurations as for the E C D architecture. 

In contrast to the E C D architecture, the performance falloff is not as stark when de­
creasing the number of connector layers. The best model is once again ut i l iz ing the 6-layer 
S T E connector, d ipping slightly below the performance of the E C D configuration (see Sec­
t ion 5.4.1) w i th 44.7 and 44.8 B L E U on the val and dev5 sets, respectively. The Q-Former 
maintains better results i n contrast to the E C D architecture, further reinforcing the hy­
pothesis that the mapping problem in this second architecture variant is a simpler one to 
that of E C D . 
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Table 5.6: Connector performance comparison for the E C E D alignment architecture. Base­
line S T model results from Section 5.3 are added for reference. 

A S R enc. Connector 
Connector 

layers Queries M T enc. M T dec. Trainable 
parameters 

How2 B L E U t 

val dev5 

Ebr. small Q 6 100 Marian 61 Marian 61 9.6M 44.1 44.2 
Ebr. small Q 4 100 Marian 61 Marian 61 6.4M 43.8 43.7 
Ebr. small Q 2 100 Marian 61 Marian 61 3.2M 42.3 41.5 
Ebr. small S T E 6 - Marian 61 Marian 61 10.7M 44.7 44.8 
Ebr. small S T E 4 - Marian 61 Marian 61 8.1M 44.0 44.1 
Ebr. small S T E 2 - Marian 61 Marian 61 5.5M 43.0 43.1 

E-Branchformer E 2 E baseline 
Cascade baseline 

38.5M 
0 

45.6 
40.9 

45.2 
40.4 

Here, a l l of the aligned models (both using the Q and S T E connectors) outperform our 
cascade baseline. Though none of them surpass the E 2 E baseline system, it needs to be 
stated that we are obtaining almost comparable performance while only tuning a small 
module w i t h less than a fourth of the parameter count of the E 2 E system. This further 
indicates that there is potential i n the alignment approach to S T , and it remains to be seen 
as to what can be achieved by scaling up the foundation A S R and M T models. 

5.5 A S R and M T model scaling effects 

Having established that both the E C D and E C E D alignment architectures are viable ap­
proaches for t ra ining speech translat ion systems, it is necessary to investigate the prospects 
of al igning also off-the-shelf (and possibly out-of-domain) pre-trained A S R and M T models 
in the same way. The hope is that increasing the size and capabil i ty of the foundation 
models w i l l y ie ld an S T performance increase. Ideally, the alignment process would also 
overcome any domain mismatch that would otherwise occur if one were to use the same 
foundation systems as parts of a cascade S T sys t em 1 2 . 

A very important th ing to note is that the size of the connector network is kept constant 
across a l l experiments. Th is is especially crucial i n terms of the hidden size of the connector 
(which is kept at 256) because the off-the-shelf adapted models use hidden sizes of 512 or 
768. The connectors are intentionally kept this smal l for a few reasons, mainly because it 
allows for shorter and more stable t raining runs (one t ra ining run is already around 13-15 
hours). A l so , the bottleneck nature of the connector does not seem to pose any problems 
concerning S T performance, as is shown by the experiments that follow in this section -
even when the connector projects its output into an embedding space wi th more than twice 
the dimensions. It can, of course, be argued that a connector w i th a hidden size closer to 
that of the aligned M T model would yield better performance (and some side experiments 
we conducted indeed support this), however, we argue that such behavior is expected and 
the more interesting finding is that the connector can, in fact, be much smaller than either 
of the foundation models, without impeding S T performance. 

Once again, we t ra in a l l the systems w i t h the same t ra ining hyper-parameters as in 
previous alignment experiments. The only exceptions are the two Whisper-smal l runs, 

1 2 T h i s is also one of the reasons we do not build a cascade reference system using the chosen En-P t T5 
model, as its performance on How2 is already so impaired by domain mismatch that there is virtually no 
hope for the cascade system to yield good results. 
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where we lower the number of warm-up steps to 12000 due to t ra ining instability, and 
change the batch size to 48 w i t h three gradient accumulat ion steps (resulting in an effective 
batch size of 144), because of memory constraints. 

We t ra in most models i n this section i n the E C D alignment configuration except for 
two instances, which are described later i n this section. Experiments are conducted wi th 
both the Q and S T E connectors, t ry ing out a l l possible combinations between both E -
Branchformer A S R encoders and M a r i a n M T and T 5 decoders. The results are shown in 
the first half of Table 5.7. 

Table 5.7: A l igned S T system performance comparison for different combinations of scaled-
up foundation A S R and M T models. 

A S R enc. Connector Connector 
layers Queries M T enc. M T dec. Trainable 

parameters 
How2 B L E U t 

va l dev5 

Ebr. medium Q 6 128 - Marian 61 10.4M 45.6 45.7 
Ebr. medium Q 6 128 - T5 121 10.5M 46.8 47.5 
Ebr. small Q 6 128 - T5 121 9.7M 44.5 44.4 

Ebr. medium S T E 6 _ _ Marian 61 12.0M 46.0 46.3 
Ebr. medium S T E 6 - - T5 121 12.0M 47.8 48.5 
Ebr. small S T E 6 - - T5 121 10.7M 45.4 45.6 

Ebr. small S T E 6 _ T5 121 T5 121 10.7M 45.2 45.7 
Ebr. medium S T E 6 - T5 121 T5 121 12.0M 47.5 48.0 

Whisper small Q 6 100 _ T5 121 11.3M 47.4 47.6 
Whisper small S T E 6 - - T5 121 13.3M 48.2 48.9 

E-Branchformer E 2 E baseline 
Cascade baseline 

38.5M 
0 

45.6 
40.9 

45.2 
40.4 

Once again, the S T E connector performs slightly better than the Q-Former, improving 
the B L E U score by one point on average when aligning the E-Branchformer smal l and 
the T 5 decoder. In the E-Branchformer m e d i u m / M a r i a n M T configuration, S T E st i l l offers 
a performance edge, only not as prevalent anymore. The results also suggest that increasing 
the size and capabil i ty of the A S R encoder yields a bigger performance improvement on 
average than when using a bigger M T decoder. However, more experiments would need to 
be done i n this regard to confirm this hypothesis, as the chosen T5 model is perhaps not 
the most fair reference point to draw such conclusions. O f course, u t i l iz ing both a bigger 
A S R encoder and a bigger M T decoder yields the best translat ion results. 

W h a t is interesting about the T 5 decoder i n these experiments, is that the B L E U scores 
achieved by using this system i n the aligned scenario far supersede the raw text translat ion 
scores on How2 , as presented i n Section 5.2. We argue that this is due to the connector 
network being able to serve as a domain adapter for the M T decoder, reinforcing the notion 
that the selected foundation A S R and M T models might not need to first be fine-tuned for 
the specific domain of the available S T data. 

We repeat this experiment also wi th the Whisper-small .en model, which achieves the 
best W E R on How2 of a l l the A S R systems used i n this work. A s shown i n the last two 
lines of Table 5.7, this model i n combinat ion w i t h the same S T E connector 1 3 yields the 
best performance among a l l trained models, achieving 48.2 and 48.9 B L E U points on the 

1 3 Here both the encoder from Whisper and the T5 decoder have a hidden size of 768, while the connector 
network sti l l operates with 256-dimensional embeddings. 
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val and dev5 sets, respectively, which is an improvement of over 9 B L E U points for the T 5 
model on the dev5 set. 

To further test the domain adaptat ion capabilities of the connector networks, we also 
t ra in two models w i th the whole T 5 model i n the E C E D configuration, as one might argue 
that a big part of the domain adaptat ion process is actually cut t ing off the T 5 encoder. 
The T 5 model was trained for translat ion ut i l iz ing a specific task prompt that has to be 
prepended to the encoder input, signaling the model to translate the input sentence, as is 
typica l for the T 5 model fami ly 1 ' 1 . Therefore when processing each batch, the tokenized 
version of the prompt ('translate Engl i sh to Portuguese: ') is first embedded v i a the T 5 
encoder input embedding layer and then prepended to the output embeddings produced by 
the connector network, s imilar ly to [50], and as shown earlier i n Figure 4.5. Th is is done 
to more closely match the original operational context of the T 5 model. 

The expectation here would be that i f the connector network is actually only t ry ing 
to match the text embedding representation of the to-be-translated sentence at the input 
of the M T encoder, the domain adaptat ion would fail, as there would be v i r tua l ly no 
dist inct ion between the aligned scenario and the basic machine translat ion scenario i n the 
same domain. However (refer to lines 7-8 i n Table 5.7), bo th models w i th either of the two 
A S R encoders almost match the performances of their E C D counterparts. Th is suggests 
that the connector network is actually doing something more abstract, perhaps learning 
to steer the behavior of the translat ion model in a more nuanced way than just passing it 
transformed A S R embeddings wi th textual information, resulting i n better, more in-domain 
results when decoding the final translated sentence. In other words, the connector network 
seems to be adding some addi t ional abstract information to the text information encoded 
in the transformed embeddings, and this fine steering information allows the M T encoder 
to properly translate the original sentence, without the out-of-domain effect becoming an 
issue. 

This same theme comes up again in Chapter 6, where it becomes apparent that this be­
havior of the connector networks is not always desirable and can probably even be regarded 
ctS ct CctS6 of domain or task overfitting. 

In conclusion, these experiments show that both alignment architectures represent gen­
eral frameworks for al igning pre-trained A S R encoders w i th M T models, yielding better 
results as one scales up the selected foundation models, while the connector network can be 
kept smal l in size, al lowing for quick and efficient t raining. Furthermore, we find that the 
connector networks are able successfully to serve as domain adapters, drastically improving 
the translat ion results even for out-of-domain M T systems. 

5.6 Q-Former query count 

Already i n some prel iminary experiments (using the in i t i a l subpar S2T A S R model), it 
became apparent that the number of queries used by the Q-Former connector plays a crucial 
role in relation to the aligned system performance. A t first, those experiments suggested 
that around 100 or 128 queries should offer the best results for our experiments. Once the 
final foundation A S R and M T models were established, we once again tested the Q-Former 
performance i n relation to the number of input queries. 

We t ra in the same baseline Q-Former alignment system wi th our E-Branchformer small 
and M a r i a n M T smal l models, specifically i n the E C D configuration. The same training 

1 4 Example encoder prompt: 'translate English to Portuguese: So long, and thanks for al l the fishj 
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setup and hyper-parameters as described at the beginning of Section 5.4 are used. The 
query numbers we test are 40, 60, 80, 100, 128 (this number was used i n many of the 
prel iminary experiments), and 150. See Table 5.8 for results. 

Table 5.8: Q-Former performance comparison wi th regard to the number of queries used. 

A S R enc. Connector 
Connector 

layers Queries M T enc. M T dec. Trainable 
parameters 

How2 B L E U t 

v a l dev5 

Ebr. small Q 6 150 Marian 61 9.6M 43.2 42.9 
Ebr. small Q 6 128 Marian 61 9.6M 43.7 43.5 
Ebr. small Q 6 100 Marian 61 9.6M 44.0 43.9 
Ebr. small Q 6 80 Marian 61 9.6M 43.8 43.8 
Ebr. small Q 6 60 Marian 61 9.6M 43.3 43.1 
Ebr. small Q 6 40 Marian 61 9.5M 43.3 43.1 

Ebr. medium Q 6 128 Marian 61 10.4M 45.6 45.7 
Ebr. medium Q 6 128 T5 121 10.5M 46.8 47.5 
Ebr. small Q 6 128 T5 121 9.7M 44.5 44.4 

Ebr. medium Q 6 100 Marian 61 10.4M 45.8 45.4 
Ebr. medium Q 6 100 T5 121 10.5M 46.6 47.4 
Ebr. small Q 6 100 T5 121 9.7M 44.3 44.0 

The results show that there is a clear sweet spot of around 100 queries that works best 
for our experiments when t ra ining on How2 using our E-Branchformer smal l and M a r i a n M T 
models. Though it might seem that lowering the number of queries to 40 or 60 does not 
impact the S T performance as much as one would perhaps expect, later i n Section 5.7, 
it is shown that lowering the number of queries to 60 and below comes w i t h a significant 
performance hit when measured on utterances longer than 15 seconds. 

In contrast to [54], we find that increasing the number of queries past a certain threshold 
does not yield better performance either. Th is is most l ikely caused by the fact that the How2 
dataset skews significantly towards shorter utterances of around 5 seconds, and the higher 
number of queries might s imply provide a needless amount of headroom that degrades the 
performance of the M T decoder. Intuitively, this could be thought of as the Q-Former not 
being able to learn to properly mask the unused queries, i n a certain sense. Ult imately, 
more experiments should be conducted to better pinpoint the cause of this problem. 

The number of queries used by the Q-Former should generally be informed by the 
average number of text tokens needed to represent the input utterance in the M T encoder 
embedding space. Models w i th larger and finer-grained vocabularies might benefit from 
a higher query count. This hypothesis is supported by a few experiments conducted wi th 
the T 5 M T model, where 128 queries marginal ly outperform the 100 queries used i n the 
experiments w i th the M a r i a n M T small model. 

5.7 Evaluating the connectors on different input lengths 

A s was discussed in Section 4.1.2, the Q-Former has a fundamental issue of not being 
able to handle audio embedding representation sequences of arbi t rary lengths. Instead, it 
always maps them to a fixed-length sequence, whose length is determined by the number 
of queries used. This might not be that much of an issue i f the foundation A S R model 
only operates on audio slices of fixed length as well . For example, Whisper models [38] 
always operate on audio inputs of exactly 30 seconds (if the audio is shorter, it gets padded 
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Connector BLEU scores in relation to input utterance length 

Q-40 

0-5s 5-lOs 10-15S 15-20S 
Utterance lengths 

Figure 5.2: Performance comparison between the S T E and Q connector networks wi th 
varying numbers of queries i n relation to input utterance length. The final B L E U score is 
obtained by averaging B L E U s computed for both the v a l and dev5 How2 sets. 

up to 30 seconds). In this scenario, the Q connector can potential ly better learn to mask 
unused unused queries. However, for v i r tua l ly a l l other cases it makes more sense for the 
connector network to produce variable-length output - that way, there is always headroom 
if the input audio sequence is longer, and, on the flip side, the model can be more efficient 
if the input utterance is short. O n top of that, it could be argued that having the connector 
output length correspond monotonously to its input length, provides less room for confusion 
in the downstream l a n g u a g e / M T model . Such errors could stem from some unexpected 
residual information being carried by queries that are not necessary to encode the whole 
utterance, or, on the contrary, s imply from not having enough queries to represent a long 
input utterance properly. 

F rom the experiments conducted in the previous sections, it is already quite apparent 
that the S T E connector generally outperforms the Q connector. However, since the evalua­
t ion is always computed over the whole v a l or dev5 set - and therefore aggregated over a l l 
possible input utterance lengths - these results cannot confirm or disprove our hypothesis 
that the S T E connector is perhaps the superior architecture in terms of robustness to input 
utterance length. 

We therefore also evaluate both the Q and S T E connectors on four sub-splits of the test 
How2 subsets. These sub-splits are s imply filtered by lengths: 0 to 5 seconds, 5 to 10, 10 
to 15, and 15 to 20 seconds and contain approximately 1100, 700, 220, and 60 utterances 
each, respectively. Because the majority of How2 utterances is concentrated in the 0 to 10-
second range, the last two splits are considerably smaller than the two made up of shorter 
utterances of under 10 seconds. However, we think that the results of this experiment show 
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a clear trend that goes beyond any potential errors that could stem from the smaller amount 
of test data (or t ra ining data for that matter). To obtain the final B L E U value for each 
sub-split, the scores obtained for the val and dev5 sets are averaged to better il lustrate the 
overall performance decline trend of each evaluated system. 

A l l results are obtained using the E C D models constructed using the E-Branchformer 
small and M a r i a n M T small foundation models, as presented in previous sections. 

A s shown i n Figure 5.2, the S T E connector clearly maintains good performance in 
a much more consistent manner and falls off much slower than the Q-Former wi th longer 
utterances. The Q-Former on the other hand greatly suffers from not being able to properly 
represent longer utterances when only operating over 40 or 60 queries, d ipping below 37 
B L E U . This experiment also reinforces our previous finding from Section 5.6 that the sweet 
spot for the Q connector lies around 80 to 100 queries (at least for the M a r i a n M T model). 
Sl ightly surprisingly, 128 queries also show degrading performance for longer utterances, 
perhaps suffering from the skewing of the How2 dataset towards a greater amount of shorter 
t ra ining utterances. Alternat ively, the explanation could stem from the fact that the M T 
model has - due to its 8000 sub-word unit vocabulary having relatively low granularity 
- s imply not encountered enough training sequences of lengths greater than 128, further 
contr ibuting to the performance degradation. This would also be supported by our other 
findings, that when used w i t h the T 5 model, 128 queries give better overall performance 
than 100. 

Ul t imately , it can be concluded that the S T E architecture is a more robust and better-
performing connector network among the two, both in terms of raw performance and han­
dl ing variable-length sequences. 
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Chapter 6 

Connector network pre-training 

Inspired by B L I P - 2 [25], the question arises, if there is a possibil i ty to devise a pre-training 
procedure for the aligned system, specifically the connector module. Ideally, such an ap­
proach would either improve the performance of the final system or help speed up the 
t ra ining process, perhaps resulting in a reduced need for speech translat ion data. 

The form and u t i l i ty of the chosen pre-training approach depends not only on the entire 
aligned model architecture, but also on the properties of the chosen pre-trained models, 
especially the foundation l a n g u a g e / M T model - it depends on whether the models are mono 
or mul t i l ingual , and whether they support different kinds of diverse language understanding 
tasks. For example, i n [50] the aligned models are trained using a mult i tude of tasks that the 
selected language model is already able to perform, u t i l iz ing both A S R and S T objectives 
and data, which are combined wi th different ways of instruct ing the language model. 

In this chapter, we explore two possible approaches to pre-training the connector net­
work: one is loosely based on the concept of knowledge dis t i l la t ion and mainly inspired 
by the ideas presented in [13, 25]. The other one takes inspirat ion from [50] and involves 
retraining the M T decoder i n a way that allows us to use it as a cri terion of the align­
ment progress. The knowledge distil lation-based approach (and mostly its shortcomings) 
is described i n Section 6.1, and the ul t imately much more successful end-to-end approach 
is then discussed in Section 6.2. 

6.1 Knowledge distillation approach 

The first set of pre-training experiments was based on knowledge dis t i l la t ion ( K D ) i n the 
output hidden representation spaces of the connector network and the frozen M T encoder. 
These experiments can currently be regarded more as a study of an apparent failure, though 
w i t h some positive outlooks and prospects for future work. 

The goal of this knowledge dis t i l la t ion approach was to t ra in the connector network 
in the E C D configuration in such a way, that its output embedding sequence (encoding 
the speech input) roughly matches the output embedding sequence of the M T encoder 
(encoding the reference text transcription), which is replaced by the connector. If the 
embeddings occupy similar representation spaces and there is high s imilar i ty between the 
connector outputs and M T encoder output sequences i n general, the M T decoder should, 
in theory, behave s imilar ly when prompted wi th either of them, provided that these output 
embeddings encode the same sentence. 

43 



For pre-training, we only use the Engl i sh A S R data from How2 (the translations are 
not needed), and alter the t ra ining i n the following manner. F i r s t , the connector network 
transforms the output embeddings from the A S R encoder, g iving us a mat r ix of hidden 
representations Ck of length K. Then, the original M T encoder is used to encode the 
ground t ru th text t ranscript ion for the input speech utterance, producing a sequence of M T 
encoder output embeddings of length L. We then compute the knowledge dis t i l la t ion 
loss L k d between the two sequences in the following way: 

L K D ( C X , T l ) = MSE(c, t) + L s i m . ( C x , T L ) , (6.1) 

where c, t denote mean embedding vectors computed from Ck and T^, respectively, and 
L s i m . is a custom sequence s imilar i ty loss function, designed to maximize the s imilar i ty 
between the connector outputs and M T encoder outputs. Note that no contrastive task is 
employed here, i n contrast to [25], as using the original M T encoder embedding space as 
our target domain keeps the t ra ining from collapsing. 

The L s i m . function can be defined i n several ways, depending on what assumptions are 
made about the nature of the desired s imilar i ty between the connector and M T encoder 
output embedding spaces. We conduct experiments w i th two L s i m . variants, further denoted 
&S iJmax and -C/diag. : 

L m a x ( C x , T L ) = - Y,™**Sc(CK[k],TL[l]), (6.2) 
fcex e 

m d 

£ d i a g . ( C x , t L ) = " Sc(CK[k],TL[k + 1])-, (6.3) 
fc=0 1=0 

where Sc() is cosine similarity, m denotes the diagonal l imi t computed as min(/c — d,l — d), 
and d is a hyper-parameter denoting the wid th of the diagonal. 

Pu t t i ng it into words, L m a x s imply tries to maximize the mutual information between 
the two embedding sequences, selecting the m a x i m u m similar i ty between each connector 
embedding and any of the M T encoder output embeddings. The Ldiag. loss function assumes 
that i n an ideal alignment scenario, there should be a monotonous s imilar i ty relationship 
between the connector and M T encoder outputs along the main diagonal and attempts to 
loosely enforce it by widening the diagonal region, where the similarities are computed. 
Of course, there is room to alter the shape of the diagonal, even for enforcing a more 
specific contrastive objective at the same time by requiring the off-diagonal elements to be 
dissimilar, however, we leave such experiments for future work. 

Unfortunately - though perhaps unsurprisingly - the experiments conducted using these 
knowledge dis t i l la t ion losses d id not br ing any positive results. The K D losses would, on 
one side, decrease during training, however, when switching the objective back to speech 
translat ion and at tempting to fine-tune the models, the t ra ining either diverges or severe 
overfitting is observed every time. 

Reflecting, because the M T encoder output embedding space is much more abstract than 
perhaps the input text embedding space, t ry ing to only optimize such relatively ad-hoc sim­
i lar i ty losses is perhaps not the best approach to pre-training the model . The structural and 
similar i ty assumptions made about this space might be inaccurate and too specific to pro­
vide a useful t ra ining objective. Th is is further supported by the fact that when taking an 
end-to-end-trained E C D architecture from the previous experiments and plot t ing a similar­
ity matr ix between the output embeddings of the connector and the outputs of the original 
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M T encoder, there seems to be no discernible diagonal s imilar i ty relationship between the 
two embedding sequences. In other words, when trained end-to-end, the connector seems 
to find a completely different solution to encoding the speech embeddings than the M T 
encoder does when encoding the text transcription. 

A n addi t ional problem is that it might be necessary to involve the response feedback 
from the actual aligned M T decoder (and therefore the causal language modeling objective) 
in the pre-training as well . Th is alludes to the fact that the goal of the connector network is, 
in the end, to align the two feature spaces of the A S R and M T models, w i th an emphasis on 
the decoder behaving i n the desired way. Perhaps some potential therefore lies in combining 
similar M T encoder output knowledge dis t i l la t ion objectives wi th some more specific end-
to-end objectives as well . However, we leave that for future work. 

For now, we refrain from at tempting to pre-train the connector by only opt imiz ing for 
s imilar i ty i n the M T encoder output embedding space and switch to a different method, 
described i n the next section. 

6.2 End-to-end pre-training with M T decoder retraining 

Since the knowledge disti l lation-oriented pre-training approach failed, we devise a different 
method, par t ly inspired by the t ra ining approach presented i n [50]. Instead of t ry ing to 
design an ad-hoc knowledge dis t i l la t ion loss function, operating i n the abstract embedding 
space, we propose to push the pre-training towards a more end-to-end-oriented goal. This 
is done by retraining the M T decoder of the chosen M T model to serve as somewhat of 
a loss-adapter, which further processes the M T encoder outputs and interprets them. We 
design this pre-training approach to main ly accommodate simple M T models w i th perhaps 
only one source and target language and demonstrate the approach using our M a r i a n M T 
model trained on How2 . 

Since one of the pre-training goals is to reduce the need for speech translat ion data 
when aligning the models, the pre-training approach becomes the following: 

1. Select the target M T model, freeze the encoder, and reset the decoder weights. Re­
place the embedding layers and vocabulary of the decoder w i th that of the encoder. 

2. Keeping the encoder frozen, t ra in the decoder for identity on the source language 
(English), teaching it to repeat the encoder input. 

3. Construct the E C E D alignment model w i th this newly trained (English-English) iden­
t i ty M T model . Freeze the A S R encoder and the whole M T model. 

4. Tra in the system for A S R in the source language (English), only opt imiz ing the pa­
rameters of the connector. 

5. Replace the M T decoder w i t h the original target language (Portuguese) decoder and 
freeze i t . 

6. Fine-tune the connector network, now opt imiz ing for the translation objective using 
speech translation data. 

The main idea behind this pre-training method is to delegate the responsibility of the 
ad-hoc knowledge dis t i l la t ion loss to the much more general A S R objective. For the newly 
trained Engl i sh M T decoder to produce the correct transcript of the input utterance, it has 
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to receive the correct set of output M T encoder embeddings. The assumption is that similar 
decoder cross-attention inputs should produce similar outputs. Therefore, if the connector 
network supplies the M T encoder w i th a set of embeddings, one should be able to conclude 
that the A S R and M T models are aligned if the retrained M T decoder produces the correct 
Engl i sh transcription. F ina l ly , when switching back to the original Portuguese M T decoder 
- assuming that the alignment process had been successful - the decoder should be able to 
infer the correct translations from the aligned M T encoder outputs. 

W h a t is more, retraining the M T decoder to reproduce the M T encoder input is very 
simple, as the model has to only learn an identity mapping wi th v i r tua l ly no information 
bottlenecks. For such tasks, there is no data shortage and the t ra ining converges very 
quickly, achieving near-perfect accuracy in a smal l number of t raining steps. 

It is possible that this pre-training approach w i l l not yield great S T results without 
any fine-tuning on S T data, after we switch to the original M T decoder, most l ikely due to 
over-fitting to the A S R pre-training task in step four of the procedure. However, we argue 
that even if some fine-tuning is required afterward, it would be a success i f this pre-training 
approach helped alleviate the need for large amounts of speech translation data to produce 
well-performing end-to-end S T systems. 

6.2.1 P r e - t r a i n i n g exper iments 

Firs t , we retrain the decoder of our in-domain M a r i a n M T model to recreate the given 
Engl i sh input . The t ra ining converges very quickly, achieving near-perfect B L E U in about 
20 epochs, though we let the t ra ining run un t i l convergence. Then, using this model, we 
construct the E C E D alignment model w i th the S T E connector and E-Branchformer small 
A S R encoder, and t ra in the connector normally, only using the Engl i sh A S R data. The 
dimensions of the S T E connector are kept as in previous experiments - 6 layers, 4 attention 
heads, hidden size of 256. 

Then, the A S R pre-training objective (step four) begins. The model is once again 
trained for a max of 70 epochs wi th , a batch size of 128, 15000 warm-up steps, a learning 
rate of 2 e - 4 , and early stopping. The final pre-trained system achieves 22.5 and 21.7% 
W E R on the val and dev5 How2 sets. 

After the A S R training phase is finished, the Engl i sh M T decoder is replaced w i t h the 
original Portuguese one. A t this point, the system is evaluated without any fine-tuning on 
speech translat ion data, achieving 12.5 and 12.9 B L E U on the val and dev5 sets. W h i l e this 
result is not what we in i t ia l ly hoped for, it is obvious that the A S R pre-training procedure is 
much more productive in terms of al igning the A S R encoder w i th the M T encoder, contrary 
to the knowledge dis t i l la t ion approach. 

It seems plausible, that the embedding dis t r ibut ion the S T E connector learns to produce 
is reasonably useful for the A S R objective dur ing step four. However, it does not completely 
match the dis t r ibut ion that would correctly prompt the original M T decoder to produce 
correct translations. A s it was mentioned previously, this result supports the fact that the 
connector network can, in fact, be susceptible to task and domain overfitting, explaining 
both the result of this part icular experiment and why it can perform domain adaptat ion 
for out-of-domain foundation models. Perhaps this is the place where some addi t ional 
supervision or regularization in the embedding space would a id the final result while keeping 
the end-to-end A S R objective as the main criterion for the pre-training procedure. 

Nevertheless, we proceed wi th the fine-tuning. The fine-tuning strategy utilizes three 
low-resource simulat ion How2 splits as used i n [21], cut from the 300-hour set: 17 hours, 51 
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Table 6.1: Compar ison of B L E U scores achieved by the pre-trained and non-pre-trained 
E-Branchformer smal l + M a r i a n M T small E C E D / S T E systems when fine-tuned using dif­
ferent amounts of S T data. 

Pre-trained 
0 hours 17 hours 51 hours 153 hours 300 hours 

val dev5 val dev5 val dev5 val dev5 val dev5 

N O 25.4 25.0 37.8 38.3 42.7 43.3 44.7 44.8 
Y E S 12.5 12.9 38.8 39.5 41.5 41.4 43.4 44.0 44.4 44.5 

hours, and 153 hours. The pre-trained connector is fine-tuned using a l l of these splits to 
test if the pre-training actually provides any further improvements when t ra ining the final 
aligned S T system. Addi t ional ly , the results are compared to the same exact system, only 
wi th a randomly ini t ia l ized connector, that is, w i th no pre-training. Refer to Table 6.1 for 
the results. 

Quite obviously, the pre-training procedure helps achieve considerably higher B L E U 
scores when fine-tuned using smaller amounts of data. E v e n for the 17-hour split, the pre-
trained system achieves 38.8 and 39.5 B L E U on the val and dev5 sets after fine-tuning, 
which is an improvement of more than 13 B L E U points across both sets when compared to 
the non-pre-trained system. W h i l e this result s t i l l does not beat our cascade baseline from 
Section 5.3, we think this result is only a starting point, given the fact that the pre-training 
procedure has a lot of potential for change and improvement. Addi t ional ly , fine-tuning 
the pre-trained system on the 51-hour set already yields results that surpass the cascade 
system, contrary to no pre-training. 

A s the fine-tuning split size grows to 153 and full 300 hours, the pre-training performance 
advantage slowly diminishes, finally offering no actual performance edge for the 300-hour 
subset, though it needs to be said that the pre-trained systems converge significantly faster. 
Th is part icular model configuration and architecture may be reaching saturation on the 
full 300-hour How2 dataset, which could explain the lack of performance improvement when 
ut i l iz ing pre-training. 

Pre-training with off-the-shelf models 

We repeat the previous pre-training experiment w i th the E-Branchformer medium and T 5 
models. Contrary to the previous experiment, these models have not seen any of the How2 
data during training, making them ideal candidates for testing this pre-trained method in 
a more real-life scenario. 

Firs t , the decoder of the T 5 model is str ipped away and replaced wi th a small , 6-
layer decoder w i th 4 attention heads and a hidden size of 256 (same architecture as the 
M a r i a n M T small model). The tokenizer used is B P E - b a s e d and has an 8000 sub-word 
true-cased vocabulary. This new decoder is then once again retrained to repeat the input 
sentence to the T 5 encoder - each input Engl i sh sentence in this scenario is prepended wi th 
the T 5 instruct ion prefix 'translate Engl i sh to Portuguese: '. Therefore, the decoder has to 
only learn to repeat the sentence, that follows the instruction prefix. 

After the decoder re-training is done, the same E C E D / S T E alignment architecture is 
constructed, using the T 5 wi th the new decoder and the E-Branchformer medium models. 
The S T E connector size is kept the same as i n a l l previous experiments. The model is then 
trained for A S R using How2 data, achieving an impressive 17.1 and 16.2% un-normalized 
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W E R on How2 . The re-trained decoder is then once again switched for the original T 5 
decoder. 

W h e n evaluating this system for S T after only doing the A S R pre-training, the previ­
ously mentioned task overfitting tendency of the connector network manifests clearly, as 
the B L E U scores without fine-tuning on S T data near absolute zero. Nonetheless, we pro­
ceed wi th the fine-tuning using the same low-resource simulat ion How2 splits and report the 
results i n Table 6.2. For reference, we also report B L E U scores for the same architecture 
when only trained using the low-resource splits, without any A S R pre-training. 

Table 6.2: Compar ison of B L E U scores achieved by E-Branchformer medium + T 5 
E C E D / S T E systems wi th and without pre-training, when fine-tuned using different 
amounts of S T data. 

Pre-trained 
0 hours 17 hours 51 hours 153 hours 300 hours 

val dev5 val dev5 val dev5 val dev5 val dev5 

N O - 33.1 33.5 39.7 40.6 44.2 45.4 47.5 48.0 
Y E S 0.0 0.0 37.5 37.2 41.1 41.8 44.5 45.7 47.3 47.9 

Simi lar ly to the previous experiment, the translat ion performance between the pre-
trained and non-pre-trained models narrows wi th the size of the fine-tuning S T set. Surpris­
ingly, the system achieves better scores for the same fine-tuning splits without pre-training, 
than in the previous case. Th is could be explained by the fact that the foundation A S R 
and M T systems are more powerful. O n the other hand, the pre-trained system reaches 
worse performance for the 17-hour split than before (37.5 and 37.2 B L E U on the val and 
dev5 splits), possibly stemming from the fact there is no overlap between the M T data used 
to t r a in the T5 model and the S T data used to fine-tune i t . However, there is s t i l l a clear 
performance gap between the models going i n favor of the pre-trained system, suggesting 
that the pre-training approach is generalizable to arbi t rary combinations of off-the-shelf 
pre-trained foundation models. 

W h i l e this result is perhaps not what we hoped for, it s t i l l reinforces the merit of our 
proposed pre-training method and we argue that it should be possible to further improve 
and refine the approach i n future work, for example by leveraging mult iple pre-training 
objectives and using mul t i - l ingual models, s imilar ly to [50]. 
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Chapter 7 

Conclusions 

In this work, we explored the possibilities of aligning pre-trained A S R and M T models 
to solve the task of spoken language translation. We d id this by conducting experiments 
i n two alignment scenarios, Encoder-Connector-Decoder and Encoder-Connector-Encoder-
Decoder. In the E C D scenario, the connector maps the output embeddings of the foundation 
A S R encoder into the cross-attention input space of the selected M T decoder, overtaking 
the responsibilities of the M T encoder. In the E C E D scenario, the connector instead in­
jects its output into the input text embedding space of the M T encoder, leaving room for 
potential leveraging of any multi- task capabilities the model might offer. In both alignment 
architectures, the foundation A S R and M T models are frozen and only the connector net­
work weights are opt imized using a standard cross-entropy loss objective at the output of 
the M T decoder i n the context of the S T task. 

We addi t ional ly compared two connector network types: the Q-Former and the S T E 
connector, which we used as an alternative. O u r experiments find, that the S T E connector is 
superior to the Q-Former in both performance and flexibility, s temming pr imar i ly from the 
variable-to-fixed-length mapping l imitat ions of the Q-Former, caused by its u t i l iza t ion of 
a fixed set of trainable queries to represent the extracted information. This results i n the Q-
Former not being able to properly represent longer input sequences, impeding translat ion 
performance. The S T E connector alleviates this by ut i l iz ing a subsampler frontend and 
adopting a regular transformer encoder architecture. 

Our experiments show that the alignment approach is a viable framework for establish­
ing new end-to-end speech translat ion systems, as most of our alignment systems outper­
form the baseline cascade system constructed using the same foundation models, almost 
matching the performance of our other end-to-end baseline S T system. We also find that 
scaling up the aligned A S R and M T models leads to universally better speech translation 
results, while the size of the connector network can remain constant, and relatively small , 
in contrast to the aligned foundation models. 

The connectors also demonstrate good domain adaptat ion capabilities when used in 
conjunction wi th foundation models that are out-of-domain on the training data, as was 
the case for the T 5 translat ion model used i n our experiments. In that case, the best-aligned 
S T model improves the translat ion performance by more than 9 B L E U points on the dev5 
How2 set, when compared to the How2 evaluation result of the T 5 system in the base M T 
scenario. 

Lastly, we propose a connector pre-training approach aimed at reducing the need for S T 
data when aligning the systems. This approach involves re-training the original M T decoder 
to replicate the encoder input, subsequently al lowing us to t ra in the entire aligned system 
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in the E C E D configuration using the A S R objective and A S R data only. We find that his 
k ind of pre-training yields better results than other more 'vani l la ' knowledge-distillation-
based approaches we experiment wi th . The pre-training procedure improves the aligned 
S T performance when fine-tuned on low-resource simulation S T How2 splits, al lowing the 
E-Branchformer medium + S T E + T 5 pre-trained system to achieve 37.5 B L E U on the val 
set when fine-tuned using 17 hours of S T data, compared to the score of 33.1 of the same 
system without the pre-training. W h i l e this result does not outperform our cascade S T 
baseline, we argue that this result shows that there is potential in the pre-training method 
if further developed and refined. 
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Appendix A 

Contents of the enclosed storage 
unit 

• xsedlalh_thesis.pdf - The final .pdf version of this thesis. 

• xsedlalh_thesis.zip - Contains the D T ^ X source code files for this thesis. 

• huggingf ace_asr - A folder containing the Hugging Face extension repository w i t h 
al l the source code files. 

• README. md - A file documenting the code and containing further instructions for using 
the scripts. 
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