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Abstract
This recherche thesis covers the topic of building up Lagrangian for the Stan-
dard model of the particle physics. It describes Schrödinger, Klein-Gordon
and Dirac equations, their general solutions for a free particle and a particle
in the electromagnetic field, and compilation of related continuity equations.
The focus is on the part where various model Lagrangians are being con-
structed to be invariant under both Abelian and non-Abelian gauge calibra-
tions.
Subsequently part of the Lagrangian of the Standard Model for electroweak
unification and Higgs mechanism is discussed.
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Introduction

A thing is symmetrical if there is something we can do to it so that after we
have done it, it looks the same as it did before. For example, a symmetrical
vase is of such a kind that if we reflect or turn it, it will look the same as it
did before. - H. Weyl [1]

If the Lagrangian is invariant under a continuous symmetry, there is a cor-
responding conserved quantity. - Emmy Noether [2]

It is increasingly clear that the symmetry group of nature is the deepest thing
that we understand about nature today. - S. Weinberg [2]

Symmetries in nature give us a hope that one day we would find one equation,
one law, that could describes every interaction. There are many predictions
and theories attempting unification of all forces (string theory, quantum grav-
ity and many more). The aim of this thesis is to build up the Lagrangian for
the Standard model of particles focusing on the electroweak unification with
the Higgs mechanism. It is the least step with which one could start with
while longing for one single theory of physics.
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Terminology

This thesis is written in natural units ~ = c = 1, when needed, a footmark
will be added to expose the SI expression. If not mentioned otherwise, we
consider the Einstein sum rule. When talking about a Lagrangian, the L
symbol is used, but while talking about the Lagrangian density, we use L
and will call it Lagrangian as well. Where there the electric charge e is men-
tioned, we mean positron charge e = 1.602 · 10−19 C. We use hat symbolˆ
above operators only when expressly needed.

Metric tensor gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


Electromagnetic field tensor Fµν =


0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0


Laplace operator ∇ ·∇ = ∆
Momentum operator p̂ = −i∇
D’Alembert operator 2 = ∂µ∂

µ = ∂20 −∇2

Space derivative ∂j or ∇j

Time derivative ∂
∂t

= ∂0
Space-time derivative ∂µ = (∂0,−∇)
Covariant derivative Dµ = ∂µ + igAµ

Four-potential Aµ = (φ,A)
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Chapter 1

Classical electrodynamics

We start with a short overview od classical electrodynamics.

1.1 Classical electromagnetism
The knowledge of electromagnetism can be put down in four Maxwell formu-
las for the electric (magnetic) intensity E (H) and the electric (magnetic)
induction D (B)

∇×H − ∂0D = j (1.1)
∇ ·D = ρ (1.2)

∇×E + ∂0B = 0 (1.3)
∇ ·B = 0, (1.4)

where j is the current density of free charge and ρ is the charge q density.
and material definition

D = ϵ0E + P (1.5)
= ϵ0E(1 + κe) (1.6)
= ϵ0ϵrE (1.7)

B = µ0H +M (1.8)
= µ0H(1 + κm) (1.9)
= µ0µrH . (1.10)

The P is electric polarisation and M is magnetization. Permittivity ϵ and
permeability µ are constant in homogeneous isotropic medium or generally
tensors in inhomogeneous and / or anisotropic medium. Permittivity of vac-
uum is ϵ0 = 8.854 · 10−12 Fm−1 and permeability of vacuum is µ0 = 4π ·
10−7 Hm−1.
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There is formula for the speed of light in vacuum c = 1√
ϵ0µ0

and in medium
c = 1√

ϵµ
.

1.2 Electrostatics
Important definition is the electric (scalar) potential as electrical work needs
to be done to transfer unitary charge in electrostatic field along a trajectory l

φ = −
∫
l

E · dl. (1.11)

In case of an electrostatic field we write the third Maxwell’s equation in the
form of ∇×E = 0.

1.3 Electrodynamics
Let us consider a non-stationary non-conservative field. One can still use
the scalar potential but must include magnetic field described by a vector
potential A by defining

B = ∇×A. (1.12)

The fourth Maxwell equation is unchanged, because ∇ · (∇×A) = 0. One
can see that we can always add a gradient of any scalar function χ to the
vector potential A, and it will still satisfy the condition (1.12).
We now have definitions

E = −∇φ− ∂0A (1.13)
B = ∇×A. (1.14)

1.4 Gauge calibration
As mentioned before, vector potential A can be redefined by adding gradient
of an arbitrary scalar function χ. Let’s call this potential A′

A′ = A+∇χ. (1.15)

Scalar potential φ′ can be redefined similarly

φ′ = φ− ∂0χ (1.16)
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or altogether as four-potential

Aµ ≡ (φ,A) (1.17)
A′µ ≡ Aµ − ∂µχ. (1.18)

We put redefined potentials into (1.13) and (1.14) and we can see that the
E and B remain unchanged when gauge calibrated in this way.

E′ = −∇φ+∇∂χ

∂t
− ∂A

∂t
−∇∂χ

∂t
(1.19)

= −∇φ− ∂A

∂t
(1.20)

= E, (1.21)

B′ = ∇×A+∇×∇χ (1.22)
= ∇×A (1.23)
= B. (1.24)

We have therefore a freedom to choose the calibration (gauge) function χ.

1.5 Lagrangian and Hamiltonian for a classi-
cal particle in electromagnetic field

Classical Lagrangian for a charged particle in an electromagnetic field is

L(x, ẋ) =
mẋ2

2
− qφ+ qA · ẋ, (1.25)

where φ = φ(t,x) and A = A(t,x) and the corresponding Hamiltonian can
by formed as

H(p,x) =
∑
j

ẋj
∂L

∂ẋj
− L (1.26)

=
1

2m

(
p− qA

)2
+ qφ. (1.27)

By defining the canonical conjugate momentum, which is different from the
kinematic momentum mẋ,

∂L

∂ẋj
= mẋj + qAj (1.28)

≡ πj, (1.29)
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and computing

∂L

∂xj
= q∇j(Ajẋj)− q∇jφj (1.30)

d

dt

∂L

∂ẋj
= mẍj + q

d

dt
Aj, (1.31)

we can derive the Euler-Lagrange equations

∂L

∂xj
− d

dt

∂L

∂ẋj
= 0 (1.32)

−mẍj − q
d

dt
Aj = 0. (1.33)

From here we may derive the Lorentz force FL, while having (1.13) and (1.14)
in mind

ẋ =
∂H

∂p
(1.34)

=
p− qA
m

(1.35)

ṗ = −∂H
∂x

(1.36)

= q∇p− qA
m

A− q∇φ (1.37)

= q∇(ẋA)− q∇φ (1.38)

ẍ =
1

m
ṗ− q

m

dA

dt
(1.39)

where we use dA
dt

= ∂0A+ (ẋ ·∇)A

=
q

m
[∇(ẋA+ φ)]− q

m
∂0A−

q

m
(ẋ ·∇)A (1.40)

E = −∇φ− ∂0A (1.41)
ẋ×B = ∇(ẋA)− (ẋ ·∇)A (1.42)

mẍ = q(E + ẋ×B) (1.43)
= FL. (1.44)
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Chapter 2

Fundamental equations of
quantum mechanics

2.1 Schrödinger equation
2.1.1 Lagrangian, Hamiltonian and the Euler-Lagrange

equation
We are now moving from electrodynamics to quantum mechanic. The first
difference is that we don’t use any more momentum p, but operator p̂ = −i∇1.
The Lagrangian density for the Schrödinger equation for a free particle can
be derived in form [3]

LSch = ψ⋆
(
i∂0 − Ĥ

)
ψ (2.1)

= ψ⋆
(
i∂0 −

1

2m
∆
)
ψ (2.2)

where we used Ĥ = − 1
2m
p̂2. One can also include potential energy V , but

since we are dealing with a free particle, we consider it as zero.
The Euler-Lagrange equation is derived as

∂L
∂ψ

= 0 (2.3)

∂L
∂∂0ψ

= iψ⋆ (2.4)

∂L
∂ψ
− ∂0

∂L
∂∂0ψ

= 0 (2.5)

= −i∂0ψ⋆. (2.6)
1p̂ = −ih∇ in SI
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Following section 3.1 in [4] one sees that from here it is possible to obtain
the Schrödinger equation

i∂0ψ =
1

2m
∆ψ. (2.7)

The Hamiltonian is then

H =
∂L
∂∂0ψ

∂0ψ − L (2.8)

= iψ⋆∂0ψ − ψ⋆i∂0ψ + ψ⋆ 1

2m
∆ψ (2.9)

= ψ⋆ 1

2m
∆ψ (2.10)

2.1.2 Covariant derivative for particle in the electro-
magnetic field

Knowing the Hamiltonian (1.27) and using the canonical momentum operator
p̂ we can write the Hamiltonian operator as

Ĥ =
1

2m

(
− i∇− qA

)2
+ qφ. (2.11)

Then it is possible to rewrite the Schrödinger equation as

Ĥψ = i∂0ψ (2.12)
1

2m

(
− i∇− qA

)2
ψ = i∂0ψ − qφψ (2.13)

1

2m

[
i
(
−∇+ iqA

)]2
ψ = i(∂0 + iqφ)ψ. (2.14)

Denoting Aµ = (φ,A), where index µ represent both spatial or time compo-
nent, it is possible to rewrite covariant derivative in form

Dµ = ∂µ + iqAµ (2.15)
= ∂0 +∇+ iqφ− iqA (2.16)

Dµ = ∂µ + iqAµ (2.17)
= ∂0 −∇+ iqφ+ iqA. (2.18)

If we gauge-calibrate potential, we rewrite covariant derivative

D′
µ = ∂µ + iqA′

µ. (2.19)
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One can easily prove that such change won’t spoil mean values of coordinates
and of the kinetic momentum

⟨xj⟩ = ⟨ψ|x̂j|ψ⟩ (2.20)

=

∫ ∞

−∞
ψ̄xjψ dxj (2.21)

⟨x′j⟩ = ⟨ψ′|x̂′j|ψ′⟩ (2.22)

=

∫ ∞

−∞
ψ̄e−iχxje

iχψ dxj (2.23)

=

∫ ∞

−∞
ψ̄xjψ dxj (2.24)

⟨xj⟩ = ⟨x′j⟩ (2.25)
⟨πj⟩ = ⟨ψ|p̂j − qAj|ψ⟩ (2.26)

=

∫ ∞

−∞
ψ̄(−i∂j − qAj)ψ dxj (2.27)

= −
∫ ∞

−∞
(iψ̄∂jψ + qAjψ̄ψ) dxj (2.28)

⟨π′
j⟩ = ⟨ψ′|p̂′j − qA′

j|ψ′⟩ (2.29)

= −
∫ ∞

−∞
ψ̄e−iχ(i∂j + qAj + ∂jχ)e

iχψ dxj (2.30)

= −
∫ ∞

−∞
(iψ̄∂jψ − ψ̄∂jχψ + qAjψ̄ψ + ψ̄∂jχψ) dxj (2.31)

= −
∫ ∞

−∞
(iψ̄∂jψ + qAjψ̄ψ) dxj (2.32)

⟨πj⟩ = ⟨π′
j⟩. (2.33)

The Schrödinger equation with covariant derivatives is then

− 1

2m
(D)2ψ = iD0ψ (2.34)

One may verify that such Schrödinger equation will not hold the form when
we gauge re-calibrate electromagnetic potentials.

iD′
0ψ = − 1

2m
(D′)2ψ (2.35)

i(∂0 + iqφ′)ψ = − i

2m

(
∆− iq∇ ·A′ − 2iqA′ ·∇− q2A′2

)
ψ. (2.36)

This can be fixed by introducing

ψ′ = ψeiqχ, (2.37)
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where χ = χ(t,x) is an arbitrary continuous function. That means that if
we change potentials

Aµ → A′
µ (2.38)

A′
µ = Aµ + ∂µχ (2.39)

the wave function locally changes its phase by factor eiqχ,
There is another way, how to introduce calibration and transformation of ψ

ψ′ = ψeiχ (2.40)

A′
µ = Aµ +

1

q
∂µχ. (2.41)

Disadvantage of this concept is that here is charge q in denominator and so
it cannot be zero. Such attitude will be discussed in chapter 6.
Schrödinger equation with gauge-calibrated potential is then

− 1

2m
D′2ψ′ = iD′

0ψ
′. (2.42)

It can be easily proved that
−D′2ψ′ = −eiqχD2ψ (2.43)

= −D2ψeiqχ (2.44)
and

D′
0ψ

′ = eiqχD0ψ (2.45)
= (D0ψ)e

iqχ. (2.46)
Now it’s easy to see that

iD′
0ψ

′ = iD0ψ (2.47)

− 1

2m
D′2ψ′ = − 1

2m
D2ψ (2.48)

which is the same equation as (2.34). When dealing with the electromagnetic
field by using D′

j and D′
0, the Schrödinger equation will stay the same as

long as we substitute ψ by ψ′, knowing that ψ′ give us only phase, yet local,
change, and probability density is still the same: |ψ|2 = |ψ′|2. This will be
shown later in section 2.1.4.
There is another way how to introduce covariant derivative Dµ (2.15)

Dµ = ∂µ − iqAµ, (2.49)
but now the function ψ (2.37) must be transformed as

ψ′ = ψe−iqχ. (2.50)
Under this calibration the Schrödinger equation will stays invariant.

10



2.1.3 Solution to the three-dimensional Schrödinger equa-
tion

Three-dimensional Schrödinger equation is

− 1

2m
∆ψ = i∂0ψ. (2.51)

We are looking for solution in form

ψ ∼ eλ·xe−iEt. (2.52)

We put (2.52) into (2.51) and solve it

−e
−iEt

2m
∆eλ·x = ieλ·x∂0e

−iEt (2.53)

−e
−iEt

2m
λ · λeλ·x = −Ee−iEteλ·x (2.54)

−λ · λ
2m

= E (2.55)

λ · λ = −2Em (2.56)
λ = ±ip (2.57)

∥λ∥ = ±i
√
2Em. (2.58)

Only positive energy are needed to solve such equation and so the solution
to the three-dimensional Schrödinger equation is

ψp = K
(
eip·xe−iEt + e−ip·xe−iEt

)
, (2.59)

where p ∈ R3 and
∞∫

−∞
ψ⋆
p′ψp d

3x = δ3(p′ − p) so that K =
1

(2π)
3
2

.

Some exact solution of the Schrödinger equation can be found in [5]. Impor-
tant solutions are for free particle, for particle in potential well (both finite
and infinite) and the Schrödinger equation for the hydrogen atom.

2.1.4 Continuity equation
Let us introduce the probability density function ρ = |ψ|2 that gives us
information about what the probability to find particle in state ψ(t,x) is.
The integral over the whole space must be

∞∫
−∞

ρ d3x = 1 (2.60)

11



so the particle must be somewhere!
The probability density function is thus

ρ = |ψ|2 = ψψ⋆ (2.61)

and its time derivative is

∂0ρ = ψ⋆∂0ψ + ψ∂0ψ
⋆. (2.62)

The continuity equation can be written in form of

∇ · J + ∂0ρ = 0. (2.63)

It represents a local conservation law. In this case the probability that we
find particle at some place in every moment of time is conserved. It is found
by following instruction:

• Schrödinger equation is multiplied by ψ⋆ form left, where ⋆ means com-
plex conjugation.

• Complex conjugated Schrödinger equation is multiplied by ψ from left.

• Those two equations are subtracted and continuity equation is what
we are left with.

We will follow this rule every time while dealing with equation of motion to
obtain a continuity equation.
It is good to realize that

∂µJ
µ ≡ ∂0J

0 +∇ · J . (2.64)

In the ongoing process, we presume real functions

A = A⋆ (2.65)
φ = φ⋆ (2.66)
χ = χ⋆. (2.67)

Continuity equation for the Schrödinger equation without the elec-
tromagnetic field

Schrödinger equation without the electromagnetic field can be generally writ-
ten as (

− 1

2m
∆+ V

)
ψ = i∂0ψ (2.68)

(2.69)

12



where V = V (x, t) is potential energy. According to the instructions above
we write the Schrödinger equation and multiply it by ψ⋆:

− 1

2m
ψ⋆∆ψ + ψ⋆V ψ = iψ⋆∂0ψ (2.70)

and complex conjugated equation by ψ:

− 1

2m
ψ∆ψ⋆ + ψV ψ⋆ = −iψ∂0ψ⋆. (2.71)

Now we subtract equation (2.71) from (2.70) and obtain:

− 1

2m
ψ⋆∆ψ +

1

2m
ψ∆ψ⋆ = iψ⋆∂0ψ + iψ∂0ψ

⋆ (2.72)

− 1

2m
[ψ⋆∆ψ − ψ∆ψ⋆] = i∂0(ψψ

⋆). (2.73)

Right-hand side of last equation may be according to (2.61) denoted as i∂0ρ,
while the left-hand side can be expressed as

− 1

2m
[ψ⋆∆ψ − ψ∆ψ⋆] = i∂0ρ (2.74)

− 1

2m
∇ · [ψ⋆∇ψ − ψ∇ψ⋆] = i∂0ρ (2.75)

i

2m
∇ · [ψ⋆∇ψ − ψ∇ψ⋆] = ∂0ρ (2.76)

Therefore we see that density flux is

J ∝ ψ⋆∇ψ − ψ∇ψ⋆ (2.77)

J =
i

2m
(ψ⋆∇ψ − ψ∇ψ⋆) (2.78)

and probability density ρ is

ρ = ψψ⋆ = |ψ|2. (2.79)

Continuity equation for the Schrödinger equation for a particle in
an electromagnetic field

We expand the equation (2.34)

i(∂0 + igφ)ψ = − 1

2m
[∆− iq∇ ·A− 2iqA ·∇−

−q2A2]ψ + V ψ (2.80)
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which we multiply by ψ⋆

iψ⋆(∂0 + iqφ)ψ = −ψ⋆ 1

2m
[∆− iq∇ ·A− 2iqA ·∇−

−q2A2]ψ + ψ⋆V ψ. (2.81)

Then we complex conjugate the same equation (??) and multiply it by ψ

−iψ(∂0 − iqφ⋆)ψ⋆ = −ψ 1

2m
[∆ + iq∇ ·A⋆ + 2iqA⋆ ·∇−

−q2A⋆2]ψ⋆ + ψV ψ⋆. (2.82)

We subtract these two equations and get the continuity equation

i∂0(ψψ
⋆) = − 1

2m
[ψ⋆∆ψ − ψ∆ψ⋆ − 2iq∇ · (Aψψ⋆)] (2.83)

i∂0ρ = − 1

2m
[ψ⋆∆ψ − ψ∆ψ⋆ − 2iq∇ · (Aρ)] (2.84)

∂0ρ =
i

2m
[ψ⋆∆ψ − ψ∆ψ⋆ − 2iq∇ · (Aρ)] (2.85)

which can be also written in the form:

∂0ρ =
i

2m
∇ · [ψ⋆∇ψ − ψ∇ψ⋆ − 2iq(Aψψ⋆)] (2.86)

and thus we see that probability density is again

ρ = ψψ⋆ (2.87)

while the flux density is

J ∝ ψ⋆∇ψ − ψ∇ψ⋆ − 2iqAρ (2.88)

J =
i

2m
(ψ⋆∇ψ − ψ∇ψ⋆ − 2iqAρ). (2.89)

One can see that flux density is now modified by −2iqAρ. Such term is here
because the canonical momentum p is not equal to kinetic momentum π.

Continuity equation for the Schrödinger equation for a particle in
an electromagnetic field with a gauge-calibrated potential

Since equations (2.34) and (2.42) are formally the same (according to (2.43)
and (2.45)), the continuity equation is also the same, which leads to inter-
esting observation that J stay the same as well for both, without gauge-
calibrated potentials for wave function ψ′ and also for ordinary ψ without
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gauge-calibrated potentials. The same is for ρ and ρ′, so we can write

J ′ = J (2.90)
ρ′ = ρ (2.91)
J ′µ = Jµ. (2.92)

If we take the Schrödinger equation with gauge-calibrated potentials but only
with wave function ψ instead of ψ′, the flux density will have form

J ′ ∝ ψ⋆∇ψ − ψ∇ψ⋆ − 2iqAρ (2.93)

J ′ =
i

2m
(ψ⋆∇ψ − ψ∇ψ⋆ − 2iqAρ). (2.94)

Schrödinger equation is great starting point for describing particles in elec-
tromagnetic field while using quantum mechanics, but it fails as soon as we
try to add relativity. In relativity we have one covariant derivative Dµ that
contains both spatial and time derivative, but Schrödinger equation sepa-
rates them and even more-spatial derivative is here in second order but time
derivative is only first order. To fix this, the idea of Klein-Gordon equation
is needed.

2.2 Klein-Gordon equation
The real Klein-Gordon equation describes a neutral spin zero scalar parti-
cle (a Higgs boson, for example) and the complex Klein-Gordon equation
describe charged spin zero particle (such particle hasn’t been detected yet).

2.2.1 Lagrangian, Hamiltonian and Euler-Lagrange equa-
tion

Having Lagrangian density for Klein-Gordon equation in form of [6]

L =
1

2
∂µψ∂

µψ − 1

2
m2ψ2 (2.95)

The corresponding Hamiltonian can be written as

H ≡ ∂µ
∂L

∂(∂µψ)
− L (2.96)

H =
1

2
∂µψ∂

µψ +
1

2
m2ψ2. (2.97)
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The kinetic momentum is

π =
∂L
∂∂0ψ

(2.98)

= ∂0ψ. (2.99)

We must take into account that ψ = ψ(x) and thus we are dealing with
infinite amount of Euler-Lagrange equations while having infinite number of
degrees of freedom. Deriving the Euler-Lagrange equation one obtains the
Klein-Gordon equation

∂µ
∂L

∂(∂µψ)
− ∂L
∂ψ

= 0 (2.100)

∂L
∂(∂µψ)

= ∂µψ (2.101)

∂L
∂ψ

= −ψm2 (2.102)

(∂µ∂
µ +m2)ψ = 0 (2.103)

or shortened as

(2+m2)ψ = 0. (2.104)

Defining the D’Alembertian we obtain an operator that doesn’t distinguish
between space and time in order of derivative. This is the main difference
between Schrödinger (non-relativistic) and Klein-Gordon equation.
One would like to see what happens to the Lagrangian (2.95) if there is
interaction between two (complex) scalar fields

ψ =
1√
2
(ψ1 + iψ2) (2.105)

ψ† =
1√
2
(ψ1 − iψ2), (2.106)

where ψ1, ψ2 are real components. The Lagrangian will now consist of the ki-
netic term and the mass term, as it was so far, but there will be an interacting
term that describes interaction between fields ψ and ψ†

L = ∂µψ†∂µψ −m2ψ†ψ − g(ψ†ψ)2, (2.107)
= ∂µψ†∂µψ −m2ψ†ψ − g

4
(ψ2

1 + ψ2
2)

2 (2.108)

where g corresponds to the strength of the interaction [6].
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ψ2

ψ1

ψ2

ψ1

Figure 2.1: Interaction term in 2.107, drawn in [7]

2.2.2 Klein-Gordon equation with the electromagnetic
field

In order to introduce the minimal electromagnetic interaction we substitute
∂µ → Dµ = ∂µ + iqAµ in (2.103).
The Klein-Gordon equation with the electromagnetic field with can by then
rewrite as

0 = (DµD
µ +m2)ψ (2.109)

0 = (2+ iq(∂0φ+∇ ·A+ 2φ∂0 + 2A ·∇)−
−q2(φ2 −A2) +m2)ψ (2.110)

0 = (2− q2AµAµ + iq∂µAµ + 2iqAµ∂
µ +m2)ψ. (2.111)

and the Klein-Gordon equation with the electromagnetic field with a gauge-
calibrated potential as

0 = (D′2
0 −D′ ·D′ +m2)ψ′ (2.112)

0 = [2+ iq(∂0φ
′ +∇ ·A′ + 2φ′∂0 + 2A′ ·∇)−

−q2(φ′2 −A′2) +m2]ψ′ (2.113)
0 = (2− q2A′µA′

µ + iq∂µA′
µ + 2iqA′

µ∂
µ +m2)ψ′ (2.114)

It can be proven that this form of Klein-Gordon equation may be obtained
if we change wave function ψ → ψ′ = ψeiqχ, χ = χ(s) and simultaneously
Dµ → D′µ,Aµ → A′µ in (2.109).
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2.2.3 Solution to the Klein-Gordon equation
The Klein-Gordon equation for a free particle is

(∂20 −∆+m2)ψ = 0. (2.115)

We expect solution in form

ψ ∼ eλ·xeiωt. (2.116)

We put (2.116) into (2.115) and solve it to see what λ is, with respect to
relativistic property that energy ω2 is always bigger that mass m2

−ω2eλ·xeiωt − λ · λeλ·xeiωt +m2eλ·xeiωt = 0 (2.117)
λ · λ = m2 − ω2 (2.118)

= −(ω2 −m2) (2.119)
= −p · p (2.120)

λ = ±p, (2.121)

p ∈ R3. For energy ω we obtain

ω2 = −λ · λ+m2 (2.122)
= p · p+m2 (2.123)

E ≡ ω = ±
√

p · p+m2. (2.124)

The solution of the three-dimensional Klein-Gordon equation is

ψ = C1e
i(ωt+p·x) + C2e

i(ωt−p·x), (2.125)

where C1 and C2 ∈ R that satisfy
∞∫

−∞
ψ⋆
p′ψp d

3x = δ3(p′ − p).

Introducing four-vector P µ
± = (E,±p) and knowing xµ = (t,x), we can

rewrite solution of the three-dimensional Klein-Gordon equation as

ψ±(x) = Ce±iPµ
±xµ (2.126)

ψp(x) = Ce±iPµxµ

. (2.127)

According to this, if ψ is interpreted as single particle wave function, there is
a possibility to have negative energy, which may be problem when particles
start to interact. Its energy may fall to minus infinity while emitting infinite
amount of energy. That is clearly problem, because nothing like that happens
in nature. The problem may by solve by interpreting ψ not as single particle,
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but as quantum field, which solve the problem with non-positive-definite
ρ as well [8]. R. Feynman and E. Stuckelberg, independently, considered
negative energy states as particle with opposite charge moving backward
in time while having negative momentum for consistency (CPT symmetry).
Such particles are call antiparticles and in Feynman diagrams are noted as
particles going backward in time. According to this the solution may be
interpeted as incoming particle and outgouing antiparticle with phase factor
±i(Et− px) [6].
If we denote linear operator K̂ = 2 + m2 = ∂µ∂

µ + m2, it is possible to
rewrite and verify the free-particle solution to the Klein-Gordon equation

K̂ψp(x) = (∂µ∂
µ +m2)e±iPµxµ

= 0. (2.128)

2.2.4 Continuity equation
Continuity equation for Klein-Gordon equation without the elec-
tromagnetic field

We deal with continuity equation the same way as we did for the Schrödinger
equation, so we take the Klein-Gordon equation without the electromagnetic
field and multiply it by ψ⋆

ψ⋆2ψ +m2ψ⋆ψ = 0 (2.129)
ψ⋆∂20ψ − ψ⋆∆ψ +m2ψ⋆ψ = 0, (2.130)

then we take complex-conjugated equation and multiply is by ψ

(2ψ⋆)ψ +m2 = 0 (2.131)
(∂20ψ

⋆)ψ − (∆ψ⋆)ψ +m2ψ⋆ψ = 0 (2.132)

and finally we subtract these two equation

ψ⋆∂20ψ − ψ∂20ψ⋆ + ψ∆ψ⋆ − ψ⋆∆ψ = 0 (2.133)
∂0(ψ

⋆∂0ψ − ψ∂0ψ⋆)−∇ · (ψ⋆∇ψ − ψ∇ψ⋆) = 0. (2.134)

One can see some similarities with flux density for Schrödinger equation
without electromagnetic field (2.77), but density probability ρ has now a
different form

J = −
[
ψ⋆∇ψ − ψ∇ψ⋆

]
(2.135)

= ψ∇ψ⋆ − ψ⋆∇ψ (2.136)
ρ = ρs − ψ∂0ψ⋆ (2.137)

= ψ⋆∂0ψ − ψ∂0ψ⋆. (2.138)
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It may be shown [6] that ρ now depends on value of energy and since it may
be both positive and negative, there comes a problem. One can no longer
consider ψ as a single particle wave function, but it is now scalar field, as
mentioned above in 2.2.3.
Denoting Jµ = (ρ,J) we can rewrite flux density as four-vector

Jµ = ψ⋆∂µψ − ψ⋆∂µ (2.139)

and its four-divergence as

∂µJ
µ = ψ⋆2ψ − ψ2ψ⋆ (2.140)

= 0. (2.141)

Continuity equation for Klein-Gordon equation with the electro-
magnetic field

The Klein-Gordon equation with the electromagnetic field multiplied by ψ⋆

is

0 = ψ⋆[2+ iq(∂0φ+ 2φ∂0 +∇ ·A+ 2A ·∇)−
−q2(φ2 −A2) +m2]ψ (2.142)

and complex-conjugated Klein-Gordon equation with the electromagnetic
field multiplied by ψ is

0 = ψ[2− iq(∂0φ⋆ + 2φ⋆∂0 +∇ ·A⋆ + 2A⋆ ·∇)−
−q2(φ⋆2 −A⋆2) +m2]ψ⋆. (2.143)

Then we subtract these two equations. For shortening length of equation we
now denote ψψ⋆ = ρs according to density probability of continuity equation
for the Schrödinger equation (2.79).

0 = ψ⋆2ψ − ψ2ψ⋆ + 2iq[∂0(φρs) +∇ · (Aρs)] (2.144)
0 = ψ∂20ψ

⋆ − ψ⋆∂20ψ + ψ⋆∆ψ − ψ∆ψ⋆ −
−2iq[∂0(φρs) +∇ · (Aρs)] (2.145)

0 = ∂0(ψ∂0ψ
⋆ − ψ⋆∂0ψ − 2iqφρs) +

∇ ·
[
ψ⋆∇ψ − ψ∇ψ⋆ + 2iqAρs

]
(2.146)

0 = ∂0(ψ∂0ψ
⋆ − ψ⋆∂0ψ − 2iqφρs)−

−∇ ·
[
ψ∇ψ⋆ − ψ⋆∇ψ − 2iqAρs

]
(2.147)

0 = ∂0ρ+∇ · J (2.148)
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We deal with electromagnetic field, so we have this −2iqAψψ⋆ part in flux
density. This member also appears in density probability −2iqφψψ⋆.

J = −
[
ψ∇ψ⋆ − ψ⋆∇ψ − 2iqAψψ⋆

]
(2.149)

= ψ⋆∇ψ − ψ∇ψ⋆ + 2iqAψψ⋆ (2.150)
ρ = ψ∂0ψ

⋆ − ψ⋆∂0ψ − 2iqφψψ⋆. (2.151)

One can here rewrite flux density as four-vector as well

Jµ = ψ⋆∂µψ − ψ⋆∂µψ − 2iq(Aµψ⋆ψ) (2.152)
∂µJ

µ = 0. (2.153)

Those two last equation are important for us to see that four-divergence is
still zero, in other words, that four-vector of flux density is conserved.

Continuity equation for Klein-Gordon equation with the electro-
magnetic field with gauge-calibrated potential

One can use formulas (2.43) and (2.45) we derive before and rewrite the
Klein-Gordon equation with gauge-calibrated potential in the same form as
the one without calibrated potential, only multiplied by phase factor e−iqχ

and eiqχ and those two cancel each other out. We are then left with equation
same as in the section 2.2.4.
Flux density for the Klein-Gordon equation is thus the same with or without
calibrated potential.

J ′ = −
[
ψ∇ψ⋆ − ψ⋆∇ψ − 2iqAψψ⋆

]
(2.154)

= ψ⋆∇ψ − ψ∇ψ⋆ + 2iq(Aρ) (2.155)
ρ′ = ψ∂0ψ

⋆ − ψ⋆∂0ψ − 2iq(φρ) (2.156)

Four-vector J ′µ now has the same form as the one without gauge-calibrated
potential

J ′µ = ψ⋆∂µψ − ψ⋆∂µψ − 2iq(Aµψ⋆ψ) (2.157)
∂µJ

′µ = 0. (2.158)

Advantage of the Klein-Gordon equation is that it has unified time and spa-
tial derivative. Its problems are that such derivative is there in second order
and so to solve it, one must know also the initial condition, and that it
suggest negative energies for ψ interpreted as single-particle.
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2.3 Pauli equation and matrices
We won’t be dealing with the Pauli equation as widely as we did with
Schrödinger and Klein-Gordon equations, the aim of this section is to intro-
duce Pauli matrices and some of its properties. The Pauli equation describes
a charged particle with spin 1

2
and is non-relativistic approximation of the

Dirac equation.
The Pauli equation is [6][ 1

2m
[σ · p]2 + gφ

]
ψ = i∂0ψ, (2.159)

where the wave function has two components ψ =

(
ψ+

ψ−

)
and σ = (σ1, σ2, σ3)

are Pauli matrices. These are 2 × 2 complex unitary matrices

σ1 =

(
0 1
1 0

)
(2.160)

σ2 =

(
0 −i
i 0

)
(2.161)

σ3 =

(
1 0
0 −1

)
. (2.162)

2.3.1 Properties of Pauli matrices
Unitarity and Hermitian conjugate

Hermitian conjugated matrix σ†
i means σ†

i ≡ (σ⋆
i )

T . It is easy to see that

σi · σ†
i = I, (2.163)
σ2
i = I, (2.164)
σi = σ†

i , (2.165)

where I is the identity matrix

I =
(
1 0
0 1

)
. (2.166)

It also applies that | det(σi)| = 1 and that

det(σi) = −1. (2.167)

Those three matrices form a Lie algebra which generate a Lie group SU(2).
Let us note that eiσ2 ·n ∈ SU(2), where ∥n∥ = 1 and σ

2
= J . The Sn,φ = eiJ ·nφ

is generator of rotation.
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Commutation and anti-commutation

Commutation relations are[
σi, σj

]
≡ σiσj − σjσi = 2iϵijkσk. (2.168)

Anti-commutation relations are

{σi, σj} ≡ σiσj + σjσi = 2δijI. (2.169)

It is therefore possible to write

σiσj =
1

2
[σi, σj] +

1

2
{σi, σj} (2.170)

= iϵijkσk + δijI. (2.171)

2.4 Dirac equation
It turned out that the Klein-Gordon is not a good equation when one wants
to examine a single particle and that it has some crucial issues with negative
energy and probability. The main issue lies in second-order time derivative
and our aim thus is to obtain first order relativistic equation - The Dirac
equation which serves well for spin-1

2
particles-both charged and neutral.

2.4.1 Building up the Hamiltonian for the Dirac equa-
tion

Assumptions

This section will be lead by chapter 3 in [9].
For the Hamiltonian we require

1. to respect the relativistic energy relation

E =
√
p · p+m2. (2.172)

Once again we emphasize that we work with natural units. Otherwise,
this equation would have form E =

√
p · pc2 + (mc2)2. That is to

respect

H2 = p̂2 +m2.2 (2.173)
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2. to be linear in p̂ = −i∇. and fot the equation of motion to have a
form

Hψ = i∂0ψ.
3 (2.174)

We know that there is formula (a + b)2 = a2 + b2 + 2ab, but let us presume
that we can write our Hamiltonian as

H = αp̂+ βm, 4 (2.175)

to be linear in space derivative as p̂ ∼ ∇. In the equation above α =
(α1, α2, α3) and β are n× n matrices and similarly to Pauli equation, ψ is a

multicomponent wave function ψ =


ψ1

ψ2
...
ψn

.

The main points we need to find out are

1. what is n?

2. what are α1, α2, α3 and β?

We begin from

H2 = (αp̂+ βm)2 (2.176)

and we want this to be equal

H2 = p̂ · p̂+m2 (2.177)

3Hψ = i~∂0ψ in SI units.
3H2 = p̂ · p̂c2 +m2c4 in SI units.
4H = αp̂c+ βmc2 in SI units.
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and to respect (2.172). We get(∑
j

αjpj + βm
)(∑

k

αkpk + βm
)
=

=
(
− i
∑
j

αj∂j + βm
)(
− i
∑
k

αk∂k + βm
)

(2.178)

= −
∑
j,k

αjαk(∂j∂k)− i
∑
j

∂jmαjβ

−i
∑
k

∂kmβαk + β2m2 (2.179)

= −
∑
jk

αjαk(∂j∂k)−

−im
∑
j

(
∂jαjβ + ∂jβαj

)
+ β2m2 (2.180)

We compare corresponding terms of these equations.

The term containing
∑

j ∂j(αjβ + βαj

)
It is clearly seen that −im

∑
j ∂j

(
αjβ + βαj

)
must be zero. This can by

achieved if

{αi, β} = 0, (2.181)

meaning that matrices αi and β must anti-commute.

The term containing p2

p̂2I = −
∑
j,k

αjαk(∂j∂k) (2.182)

−
∑
j

∂j∂jI = −
∑
j,k

αjαk(∂j∂k) (2.183)

=
∑
j,k

(1
2
[αj, αk] +

1

2
{αj, αk}

)
∂j∂k (2.184)

Knowing that [αj, αk] is antisymmetric and ∂j∂k is symmetric makes the term
with commutator equals zero (2.181). We are left with

=
∑
j,k

1

2
{αj, αk}∂j∂k (2.185)
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and from (2.189)

−∂j∂kI =
∑
j,k

δjk∂j∂kI (2.186)

=
∑
j,k

δjk∂
2
j I. (2.187)

This whole means that∑
j,k

δjk∂
2
j I =

∑
j,k

1

2
{αj, αk}∂j∂k (2.188)

2δjkI = {αj, αk} (2.189)

and so that

α2
j =

1

2
{αj, αj} = I. (2.190)

The term containing m2

We get prescription for β:

m2I = β2m2 (2.191)
I = β2 (2.192)

From which it applies that the eigenvalues λ of the matrix β

β2λ = λ2λ (2.193)

an that leads us to the eigenvalues of β2 = 1 = eiδ, but we want H = H†,
in other words, we want the Hamiltonian operator to have real eigenvalues
and so β = β† to also have real eigenvalues. It all means that β = ±1 and it
must be in some basis a diagonal matrix with only ones and minus ones on
its diagonal such that

Tr β =
∑
i

λi. (2.194)

This applies from

Tr β = Tr(βI) (2.195)
= Tr(βα2

i ) (2.196)
= Tr(αiβαi) (2.197)
= Tr(−βαiαi) (2.198)

Tr(αiβαi) = −Tr(βα2
i ) (2.199)

= −Tr(β). (2.200)
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This can be achieved only by

Tr(β) =
∑
i

λi = 0. (2.201)

This condition will be satisfied if there will be the same number of ones and
minus ones on the diagonal of β. Since we have declared that β is a n × n
matrix, we see that n must be even number. It will be shown later that the
least possibility is n = 4.
Since we have (2.181), we can write

{αi, β} = αiβ + βαi (2.202)
αiβ = −βαi (2.203)

Trαi = Tr(Iαi) (2.204)
= Tr(β2αi) (2.205)
= Tr(βαiβ) (2.206)
= Tr(−αiββ) (2.207)

Tr(βαiβ) = −Tr(αiβ
2) (2.208)

= −Tr(αi) (2.209)

and this can be achieved only by

Tr(αi) =
∑
i

αi = 0. (2.210)

There is a certain similarity between αi and Pauli spin matrices. Let’s try
then to substitute αi = σi. Will it satisfy our Hamiltonian (2.176) and all
following (2.181) and (2.189)? From (2.169) we see that the only condition
that we must prove is {σi, β} = 0.

Let’s write β = C

(
1 0
0 −1

)
= C · σ3. Then:

{σi, β} = {σi, σ3} (2.211)

which fails when i = 3

{σ3, β} ̸= {σ3, σ3} (2.212)
{σ3, β} = 0 since (2.181) (2.213)
{σ3, σ3} = 2I since (2.169) (2.214)

0 ̸= 2I. (2.215)

Therefore we see that n cannot be 2 as pointed out before.
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Solution Dirac has came with is to take β =

(
I 0
0 −I

)
and αi =

(
0 σi
σi 0

)
.

We must understand 0 and I as 2× 2 matrices.
It is now simple to see that

{αj, αk} = 2δjkI, (2.216)

where I is the 4× 4 unit matrix.

2.4.2 Covariant form of the Dirac equation
We begin from simple Dirac equation for a particles of mass m, now in SI
units instead of natural

i~∂0ψ = (−i~c∇ ·α+ βmc2)ψ, (2.217)

where we must not forget that ψ =


ψ1

ψ2
...
ψn

 . We will multiply both sides of

equation by 1
β~c and get

iβ
∂ψ

∂ct
= (−i∇ · βα+

mc

~
)ψ (2.218)

i
(
β
∂ψ

∂x0
+∇ · βαψ

)
− κcψ = 0, (2.219)

where we can denote κc = mc
~ = 1

λC
as inverse Compton wavelength of the

particles, [κc] = m−1. Let us define

γ0 ≡ β (2.220)
γ ≡ βα (2.221)

or

γµ ≡ (γ0,γ) = (β, βα). (2.222)

To have the Hamiltonian H = H† the gamma matrices must be

γ0 = γ0† (2.223)
γj† = −γj (2.224)

and may be written in the Weyl (chiral) representation [6] or in the Dirac
representation [10] (see Table 2.1).
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Table 2.1: Representations of gamma matrices

Matrix Chiral representation Dirac representation

γ0

0 I

I 0

 I 0

0 −I


γj

 0 σ1

−σ1 0

  0 σj

−σj 0


γ5

−I 0

0 I

 0 I

I 0


The γ5 is chirality operator (see section 4.2.1) defined as

γ5 ≡ iγ0γ1γ2γ3. (2.225)

For gamma matrices applies

{γµ, γν} = 2I4×4g
µν (2.226)

∂µ∂νγ
µγν = ∂µ∂ν

(1
2
[γµ, γν ] +

1

2
{γµ, γν}

)
(2.227)

∂µ∂ν
[
γµ, γν

]
= 0 (2.228)

∂µ∂ν{γµ, γν} = 2I4×4g
µν∂µ∂ν . (2.229)

Dirac equation has then the form

i
(
γ0∂0ψ +∇ · γψI

)
− κcψ = 0 (2.230)

Denoting

∂µ ≡ ∂

∂xµ
= (∂0,−∇) (2.231)

∂µ ≡
∂

∂xµ
= (∂0,∇) (2.232)

∂µγ
µ = ∂0γ

0 + ∂jγ
j = ∂0γ0 − ∂jγj = ∂0γ0 +∇ · γ (2.233)

we get a simplified notation of the Dirac equation

(iγµ∂µ − Iκc)ψ = 0 (2.234)

Returning back to natural units (~ = c = 1) we get

(iγµ∂µ − Im)ψ = 0 (2.235)
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and by introducing the Feynman slash symbol

γµaµ ≡ /a (2.236)

we obtain the Dirac equation

(i/∂ − Im)ψ = 0. (2.237)

2.4.3 Solution to the Dirac equation
We take the Dirac equation in the form

(i∂µγ
µ −m)ψ = 0 (2.238)

and multiply it by (i∂νγ
ν +m) from left.

(i∂νγ
ν +m)(i∂µγ

µ −m)ψ = 0 (2.239)[
− ∂νγν∂µγµ − im∂νγν + im∂µγ

µ −m2
]
ψ = 0 (2.240)

One can see that ∂νγν∂µγµ becomes gµν∂µ∂ν , according to (2.226). We can
then write

(gµν∂µ∂ν + Im2)ψ = 0 (2.241)
(∂µ∂

µ + Im2)ψ = 0, (2.242)

which is the Klein-Gordon equation for each component of ψ (2.127). The
full solution can be written as e−iPµxµ , where P µ = (E,p) and p2 = m2. 5

One can thus write ψ as

ψ = u(p)e−iPµxµ (2.243)

u(p) =

(
φ(p)
χ(p)

)
, (2.244)

where u(p) is called bispinor.
We now put solution to final equation and obtain

i∂µ

(
γµue−iPµxµ

)
−me−iPµxµ

uI = 0 (2.245)

γµuPµe
−iPµxµ −me−iPµxµ

uI = 0 (2.246)
(γµPµ −mI)u = 0 (2.247)(

γ0P0 − γjPj −mI
)
u = 0 (2.248)

(/P µ −mI)u = 0, (2.249)
5Since we hold c = ~ = 1.
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From (2.248) it is possible to solve the Dirac equation by rewriting it as[(
E 0
0 −E

)
−
(

0 p · σ
−p · σ 0

)
−
(
m 0
0 m

)](
φ
χ

)
= 0 (2.250)(

E −m −p · σ
p · σ −E −m

)(
φ
χ

)
= 0 (2.251)

p · σ
E +m

φ− χ = 0 (2.252)

and so for u(p) one have

u(p) =

(
φ

p · σ
E +m

φ

)
. (2.253)

Let us show example of functions that satisfy (2.253)

φ1 =

(
0
1

)
(2.254)

φ2 =

(
1
0

)
. (2.255)

Solution was interpreted as prediction of antiparticles. For energy of particles
applies E2 = (p2+m2) , which still admits negative energy states, but solves
problem with negative probability [6]. Dirac hole theory [11] assume that
all possible states with negative energy are already filled by antiparticles. In
other words that vacuum is not nothing, but a sea [8] of negative energy from
which a particle may escape and annihilate with another suitable particle
while both emit energy-an annihilation of an electron and a positron, for
example.

2.4.4 Continuity equation
We are going to deal with the continuity equation in a bit different way
that we did with the Schrödinger or the Klein-Gordon equation. The main
change will be that we won’t use complex conjugation, but hermitian and
Dirac conjugation. We also change order of steps, so we first hermitian-
conjugate the equation and deal with it and then we will multiply ordinary
Dirac equation. In this order it will be easier to understand why we are
dealing with this equation as we do.
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Continuity equation for Dirac equation without the electromag-
netic field

In a first step, we create hermitian-conjugated Dirac equation from (2.234)

−i∂µψ†γµ† −mψ†I† = 0. (2.256)

With advantage we can use

γ0γµ†γ0 = γµ (2.257)

by multiplying equation (2.256) by (γ0)2 from left and by γ0 from right
getting

−i∂µ(γ0)2ψ†γµ†γ0 −mγ02ψ†I†γ0 = 0 (2.258)
−i∂µγ0ψ†γµ −mγ02ψ†I†γ0 = 0. (2.259)

It is simple to see that I† = I and also that γ0Iγ0 = I, because γ0 = β.
We continue by multiplying this equation by ψ from right.

−i∂µ(γ0ψ†)γµψ −mγ0ψ†Iψ = 0 (2.260)

In the second step, we take ordinary Dirac equation and multiply it by ψ†

from left. It is important not to multiply it from right, because ψψ† give us
a matrix, but ψ†ψ give us generally a complex number, a Lorentz scalar.

iψ†γµ∂µψ −mψ†ψI = 0 (2.261)

From (2.260) we see that we would like to have γ0 in this equation as well,
so we simply multiply this equation by it getting

iψ†γ0γµ∂µψ −mψ†γ0ψI = 0. (2.262)

There equations are usually written in shorter form where ψ†γ0 = ψ̄ is Dirac
conjugate wave function.
As usually while dealing with continuity equation we subtract (2.262) from
(2.260) and get

−i∂µψ̄γµψ − iψ̄γµ∂µψ = 0 (2.263)
∂µ(ψ̄γ

µψ) = 0 (2.264)
∂µJ

µ = 0, (2.265)
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where

Jµ = ψ†γ0γµψ (2.266)
= ψ̄γµψ (2.267)
= (ρ,J) (2.268)
= (ρ, ψ†αψ) (2.269)

J0 = ψ†γ0
2
ψ (2.270)

= ψ†ψ (2.271)
= ψ̄γ0ψ (2.272)
≡ ρ (2.273)

(2.274)

Continuity equation for the Dirac equation with the electromag-
netic field

One would like to involve the electromagnetic field and so substitute covariant
derivative ∂µ → Dµ as minimal introduction. The Dirac equation now has a
form (

iDµγ
µ −mI

)
ψ = 0 (2.275)(

i∂µγ
µ − qAµγ

µ −mI
)
ψ = 0, (2.276)

where

Dµ = ∂µ + iqAµ (2.277)

and q is the charge. Let us remind that A and φ are real function and so
A† = A and φ† = φ.
As before we first hermitian-conjugate equation (2.275) and multiplying it
by (γ0)2 from left and by γ0 from right

−i∂µψ†(γ0)2γµ†γ0 − qA†
µψ

†(γ0)2γµ†γ0 − (γ0)2ψ†γ0mI = 0 (2.278)
−i∂µψ̄γµ − qA†

µψ̄γ
µ −mψ̄I = 0. (2.279)

We continue by multiplying by ψ from right

−i∂µψ̄γµψ − qA†
µψ̄γ

µψ −mψ̄ψI = 0. (2.280)

Second we multiply (2.275) by ψ† from left and by γ0 from right

i∂µψ̄γ
µψ − qAµψ̄γ

µψ −mψ̄ψI = 0. (2.281)
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Third we subtract (2.281) from (2.280), while still having on mind that (2.65)

∂µ(ψ̄γ
µψ) = 0 (2.282)
∂µJ

µ = 0, (2.283)

where

Jµ = ψ̄γµψ. (2.284)

We got the same result as for Dirac equation without the electromagnetic
field.

Continuity equation for the Dirac equation with the electromag-
netic field with a gauge-calibrated potential

Dirac equation is now in form

(iD′
µγ

µ −mI)ψ′ = 0, (2.285)

where one have local phase change

D′
µ = ∂µ + iqA′

µ (2.286)
ψ′ = ψeiqχ(x). (2.287)

To have an easier ”job” we transfer the equation into more detail since A′
µ =

Aµ + ∂µχµ(x)

i∂µγ
µψeiqχ − qA′

µγ
µψeiqχ −mψeiqχI = 0 (2.288)

i(∂µγ
µψ)− qγµψ(Aµ − 2∂µχµ)−mψI = 0 (2.289)

First we hermitian-conjugate (2.289)

−i(∂µψ†γµ†)− qψ†γµ†(A⋆
µ − 2∂µχ

⋆
µ)−mψ†I = 0 (2.290)

and continue by multiplying by γ02 from left and γ2 from right

−i(∂µψ̄γµ)− qψ̄γµ(A⋆
µ − 2∂µχ

⋆
µ)−mψ̄I = 0. (2.291)

Then we simply multiply this equation by ψ from right

−i(∂µψ̄γµ)ψ − qψ̄γµψ(A⋆
µ − 2∂µχ

⋆
µ)−mψ̄ψI = 0. (2.292)

Second we take (2.289) and multiply it by ψ† from left and by γ0 from right

iψ̄(∂µγ
µψ)− qψ̄γµψ(Aµ − 2∂µχµ)−mψ̄ψI = 0. (2.293)
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As usual we subtract (2.293) from (2.292)

−i(∂µψ̄γµ)ψ − iψ̄(∂µγµψ) = 0 (2.294)
−i∂µ(ψ̄γµψ) = 0. (2.295)

It is interesting that we got the same form of continuity equation for the
Dirac equation both with or without electromagnetic field and also with
gauge-calibrated potential. This is because in (2.284) there is no derivative.

2.4.5 Lagrangian, Hamiltonian and Euler-Lagrange equa-
tion

Lagrangian density for the Dirac equation has the form [12]

L0 =
1

2

[
iψ̄γµ∂µψ − i(∂µψ̄)γµψ

]
−mψ̄ψ.6 (2.296)

In other literature ([10], [6] or [13], for example) the Lagrangian is written
only as

L0 = iψ̄γµ∂µψ −mψ̄ψ. (2.298)

The form (2.298) will be discussed in chapter 6 and on. In this chapter, we
will use (2.297). By computing

∂L0

∂ψ
= −mψ̄ − i

2
(∂µψ̄)γ

µ (2.299)

∂L0

∂ψ̄
= −mψ +

i

2
γµ∂µψ (2.300)

∂L0

∂(∂µψ)
≡ πµ (2.301)

=
i

2
ψ̄γµ (2.302)

∂L0

∂(∂µψ̄)
≡ π̄µ (2.303)

= − i
2
γµψ (2.304)

6In may be also written in a compact form as

L =
i

2
ψ̄γµ
←→
∂µψ −mψ̄ψ. (2.297)
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one gets Euler-Lagrange equations

0 =
∂L0

∂ψ
− ∂µ

∂L0

∂(∂µψ)
(2.305)

0 = −mψ̄ − i

2
(∂µψ̄)γ

µ − i

2
∂µ(ψ̄γ

µ) (2.306)

0 = −mψ +
i

2
γµ∂µψ +

i

2
∂µ(γ

µψ). (2.307)

The last (or the last but one) equation is Dirac equation

0 = −mψ +
i

2
γµ∂µψ +

i

2
∂µ(γ

µψ) (2.308)

0 = (iγµ∂µ −m)ψ. (2.309)

The Hamiltonian density is then

H0 ≡
∂L0

∂(∂0ψ)
∂0ψ + ∂0ψ̄

∂L0

∂(∂0ψ̄)
− L0 (2.310)

=
i

2
ψ̄γ0∂0ψ −

i

2
(∂0ψ̄)γ

0ψ − i

2
ψ̄γµ∂µψ +

i

2
(∂µψ̄)γ

µψ +mψ̄ψ (2.311)

=
i

2
(∂jψ̄)γ

jψ − i

2
ψ̄γj∂jψ +mψ̄ψ. (2.312)
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Chapter 3

Noether’s theorem

3.1 Conservation laws, symmetries and group
theory

There are important laws in nature that cannot been broken: conservation
laws, such as energy conservation, momentum conservation. Such laws are
connected with symmetry.
Symmetries are best described by a group theory (Lie groups, for example).
The important group of symmetry are the unitary group U(n) (n × n uni-
tary matrices) or the O(n) (n × n orthogonal matrices) and its subgroup
SO(n). The letter S stands for special, meaning that their determinant is
±1, and U means unitary. We would like to emphasize SU(2) that appears
in the electroweak theory (U(1)×SU(2)) and SU(3) that describes quantum
chromodynamics.
Another important aspect of symmetry is when a Hamiltonian of system com-
mute with the operator of the symmetry: then there is a preserved quantity,
an integral of motion.
As an example one can name a few transformations and preserved quantities
in Table 3.1. For a long time it had been thought that there is another
example-space inverse and conserved parity-P symmetry. But it was shown
that does not hold true for the weak interaction [14].

Table 3.1: Symmetries

Transformation Preserved quantity
translation momentum

rotation angular momentum
time translation energy
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3.2 Mathematical description
Let us consider an infinitesimal transformation of a field in the Lagrangian

ϕ(x)→ ϕ′(x′) = ϕ(x) + ϵδϕ(x) (3.1)
ϕ′(x)− ϕ(x) = δψ(x) (3.2)

under which the action

S =

∫
L(ϕ(x), ∂µϕ(x)) d4x (3.3)

is invariant

S ′ =

∫
L(ϕ′(x′), ∂′µϕ

′(x′)) d′4x (3.4)

= S (3.5)

and so the dynamics and Euler-Lagrange equation are still the same.
Let’s have a look at the Lagrangians’ difference

δL = L(ϕ′(x), ∂µϕ
′(x))− L(ϕ(x), ∂µϕ(x)) (3.6)

=
∂L
∂ϕ

δϕ+
∂L
∂∂µϕ

∂µδϕ (3.7)

=
∂L
∂ϕ

δϕ+
∂L
∂∂0ϕ

∂0δϕ+
∂L
∂∇ϕ

∇δϕ. (3.8)

The last two terms express the continuity equation (in case that δL=0)

∂µ

( ∂L
∂∂µϕ

δϕ(x)
)

= 0 (3.9)

∂0
∂L
∂∂0ϕ

δϕ+∇ ∂L
∂∇ϕ

δϕ = 0 (3.10)

and one may thus rename

∂L
∂∂µϕ

δϕ ≡ Jµ (3.11)

∂µ
∂L
∂∂µϕ

δϕ ≡ ∂µJ
µ, (3.12)

where Jµ is Noether current.
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We must note there that Lagrangians does not need to be invariant, but can
be modified by four-divergence ∂µKµ and still give the same dynamics. The
change will appear in equation (3.9)

∂µ

( ∂L
∂∂µϕ

δϕ(x)
)

= ∂µK
µ (3.13)

∂µ

( ∂L
∂∂µϕ

δϕ(x)−Kµ
)

= 0 (3.14)

and we obtain

δϕ(x)
∂L

∂∂µϕ(x)
−Kµ = Jµ (3.15)

∂µ

(
δϕ(x)

∂L
∂∂µϕ(x)

−Kµ
)
≡ ∂µJ

µ. (3.16)

From such current it is possible to define a conserved quantity called charge
as

Q ≡
∫
d4x J0 (3.17)

=

∫
d4x ρ (3.18)

and because we know the charge conservation law, we know that

dQ

dt
= 0 (3.19)

=

∫
d4x ∂0J

0 (3.20)

= −
∫

d4x ∂jJ
j. (3.21)

which is seen from continuity equation [6] [11] [13] [15].
As an example (executed according to [6]) one may take the Lagrangian of
the Dirac field (2.298)

L0 = iψ̄γµ∂µψ −mψ̄ψ (3.22)

and verify that it is invariant under the global (∂µχ = 0) infinitesimal trans-
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formation

ψ → ψeiχ (3.23)
ψeiχ ∼ ψ + iϵψ (3.24)
ψ̄ → ψ̄e−iχ (3.25)

ψ̄e−iχ ∼ ψ̄ − iϵψ̄ (3.26)
L′

0 ∼ iψ̄(1− iϵ)γµ(1 + iϵ)∂µψ −mψ̄(1− iϵ)(1 + iϵ)ψ (3.27)
= (iψ̄γµ∂µψ −mψ̄ψ)(1 + ϵ2) (3.28)
∼ L0 (3.29)

We used ϵ2 = 0 in the last step, because the transformation is infinitesimal.
In this case we see that

Kµ = 0. (3.30)

From this Lagrangian it is possible to derive the Noether current according
to (3.11)

∂L′

∂∂µψ
≡ πµ (3.31)

= iψ̄γµ (3.32)
∂L′

∂∂µψ̄
≡ π̄µ (3.33)

= 0 (3.34)
J0 = ψ̄γ0ψ (3.35)

= ψ†ψ (3.36)
J j = ψ̄γψ (3.37)
Jµ = ψ̄γµψ (3.38)

and the charge is

Q =

∫
d3xψ†ψ. (3.39)

The Klein-Gordon Lagrangian may be treated similarly. Such example can
be found in chapter 6 in [11].

3.3 CPT symmetry
According to the P symmetry, object (or a physical law) and its mirror
image should be the same and there shouldn’t be any way how to tell the
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left and the right (mirror image and reality). But T. D. Lee and C. D. Yang
realized that such requirement was not in any theory, so they proposed that
there need not be a conservation of the P symmetry in weak interaction
and C. S. Wu executed an experiment in which it was proven that weak
interaction violate the P symmetry [14]. Another symmetry is the change
of reality and its mirror (left and right) but also particle for its antiparticle
(C symmetry), and the weak interaction should conserve the CP symmetry.
Another experiment was executed and J. Cronin and V. Fitch proved that
such combined symmetry is also violated [16].
For all that we know so far (2020) the CPT symmetry holds. One must
realize that since CP symmetry is violated there must by another violation
in time (T symmetry) to cancel it out and be violated, too. The CPT
symmetry means that if an experiment is executed and another one in which
everything has the opposite parity, antiparticles instead of particles and is
executed inversely in time, there is no way how to distinguish these two
experiments.
If the nature is symmetric, all four fundamental forces should act as only one
interaction on high-level energies.
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Chapter 4

Short introduction to particles
and their properties

In this thesis we would like to bound all particles into Standard particle
model by electroweak unification, with ambition to briefly mention quantum
electrodynamics (QED) and quantum chromodynamics (QCD). To construct
such model one needs a fundamental knowledge about properties of elemen-
tary particles, such as charge, mass and spin.

4.1 Fermions and bosons
The first thing is that we distinguish two different types of particles-fermions
and bosons.

4.1.1 Fermions
Fermions, particles with half-integer spin are described by Fermi-Dirac sta-
tistical distribution and obey the Pauli exclusion principle. That means that
there can by only one fermion in particular quantum state and the oth-
ers must be in a different state. The wave function describing fermions is
antisymmetric-meaning that it changes sign when two particles are switched

ψ1 = ψ1(x1, x2, x3, ..., xn) (4.1)
ψ2 = ψ2(x2, x1, x3, ..., xn) (4.2)
ψ1 = −ψ2. (4.3)

Quarks, leptons and baryons are fermions.
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4.1.2 Bosons
Bosons are particles with spin n, n ∈ N and are described by Bose-Einstein
statistical distribution. They can be in the same quantum state and their
wave function is symmetric when switching two particles

ψ1 = ψ1(x1, x2, x3, ..., xn) (4.4)
ψ2 = ψ2(x2, x1, x3, ..., xn) (4.5)
ψ1 = ψ2. (4.6)

Mesons and intermediate particles like W or Z are bosons.

4.2 Fundamental particles
4.2.1 Leptons
Leptons may be described by SU(2) doublet (representing their left-handed
components)

L =
1

2
(1− γ5)

(
νℓ

ℓ

)
(4.7)

and by two SU(2) singlets (representing their right-handed component)

ℓR =
1

2
(1 + γ5)ℓ (4.8)

νℓR =
1

2
(1 + γ5)ν

ℓ, (4.9)

for ℓ = e, µ, τ and γ5 is the chirality operator. Chirality describes handedness
of particles and it is closely connected with helicity. Helicity is projection of
spin to the momentum. For massless particles is the same as chirality.
All leptons in the Standard Model have spin 1

2
.

Leptons appear as electron e, muon µ and tau τ in ascending order by their
mass (which is non-zero and its precise form will be shown in 6.3.4).
The right-handed part for neutrinos is without physical meaning since all
neutrinos have only left-handed chirality.
Electron, muon and tau have negative electric charge q = −e, where e is
positron charge. According to this they ”feel” the electromagnetic and the
weak interaction (which, as will be shown in 6.1.3, becomes a single elec-
troweak interaction at high-energy levels) besides gravity.1

1Every massive particle feels gravity, so with this being said we won’t mention it again
in this thesis.
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There are antiparticles to all leptons: positron ē− = e+, anti-muon µ̄− = µ+,
anti-tau τ̄− = τ+ and anti-neutrinos ν̄. The difference is that positron,
anti-muon and anti-tau have positive charge q = e.
Neutrinos have zero electric charge, so they feel only the weak interaction. If
one introduces non-zero masses for neutrinos by Yukawa theory (see 6.3.4),
there is phenomenon called neutrino oscillations. Briefly described, it allows
neutrinos to transform νe ↔ νµ ↔ ντ ↔ νe.
There is special conserved quantum number for leptons L = 1, anti-leptons
L = −1 and for other particles is L = 0. In every reaction this lepton number
must be conserved.2 One could ask what is this good for-well, due to this
number, one can tell difference between neutrino ν and antineutrino ν̄.

4.2.2 Quarks
In ascending order by mass, there are six quarks3: up u, down d, strange s,
charm c, bottom (or beauty) b and top (truth) t. 4 With s quark we introduce
strangeness Ss = −1, Ss̄ = 1 and other particles S=0. Analogically there are
truth for t quark, beauty for the b quark and charm for the c quark. The top
quark is the heaviest elementary particle, its mass is approximately mass of
176 protons.
All quarks have spin 1

2
. Their electric charge is either q = 2

3
e or q = −1

3
e and

due to this they are unable to exist alone. They also carry a quantum number
called colour charge and they feel strong interaction! 5 According to this
they may be combined into hadrons. There are two ways how hadrons can
by made-baryons are composed of three quarks (or antiquarks) meanwhile
mesons are composed of quark and anti-quark. Example of baryons may
be proton (uud) or neutron (udd), and examples of meson is π (π+ = ud̄,
π− = ūd) [20].
Analogically to a lepton number, there is a baryon number B which is B = 1
for any baryon , B = −1 for any anti-baryon and B = 0 otherwise.
Interesting fact is that mass of u and d quarks is approximatelymu = 2.2 MeV
and md = 4.7 MeV [20], the mass of proton is 1 GeV. This is because of
gluons that tie quarks together have a huge energy that contributes to such

2Lepton number is conserved in perturbative renormalized theories, but there is idea
that B − L, where B is baryon number, is conserved. In other theories lepton number is
violated. Proton decay, for example, could violate lepton number conservation up to three
units δL = ±3. [17] [18]

3The name quark is from book by James Joyce Finnegans Wake: ”...Three quarks for
Muster Mark”. [19]

4In GWS model, there are only u, d and s quarks.
5Since quarks have mass, they feel all four interactions.
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big proton mass.
The most common quarks are u, d and s. Those were predicted and discov-
ered and were thought to be only ones, but then theory predicted another
three to satisfy symmetry with leptons. The t quark, according to its huge
mass, decay very fast, so is impossible to be tamed into hadrons.

4.2.3 Intermediate particles
There are four fundamentals forces in universe: gravity, weak, electromag-
netic and strong. Each of these interactions is believed to be manifested by
relevant intermediate bosons. 6 There is heavy scalar (spin 0) particle called
the Higgs boson (6.3). It have been discovered in 2013 by ATLAS and CMS
experiments at CERN and its mass is 126 GeV.
Another particles are gauge vector (spin 1) and belongs to weak, electromag-
netic and strong interaction.
Photon, quantum of the electromagnetic interaction, is a massless particle
and in this thesis is described by field Aµ. It has no electric charge so it is
its own antiparticle.
Three massive vector bosons W±, Z belong to weak interaction. The electric
charge of W± is ±e, Z boson is neutral.
Those three are responsible for weak decays.
Gluon, a massless particle, is taming quarks together in hadrons. It has
no electric charge, but it carries colour charge similarly to quarks. There
three different types: qr, qg, qb. The rule is that resulting particle containing
quarks and gluons must have a zero colour charge qw. That can be achieved
by combinations

qr + qr̄ = qw (4.10)
qg + qḡ = qw (4.11)
qb + qb̄ = qw (4.12)

qr + qg + qb = qw. (4.13)

According to QCD, there are 8 possible states (octet) in which free gluon can
be found.
The very last should be a tensor (spin 2) particle called graviton. It should
have zero mass and carry no charge. This particle has only been predicted
but never been neither observed in experiment nor confirmed by theory.

6This is according to Standard Model of particles (SMP). There are theories beyond
SMP giving another prediction, but this thesis will hold its form within SMP derived by
Glasgow, Salam and Weinberg.
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Chapter 5

Weak interaction

As mentioned in chapter 4, all fermions (quarks and leptons) feel the weak
interaction that is responsible for decays. A well-known example of neutron
β-decay will be discussed in this section. Let us start with the Fermi theory
improved by Gell-Mann and Feynman [10]

Lint = − G√
2
Jρ†Jρ, (5.1)

where Jρ is charged current of hadrons and leptons and G is constant corre-
sponding to interaction. One can take the

n→ p+ + e− + ν̄e (5.2)

process, for example. The (5.1) will have a form

Lint = −Gβ√
2
Jρ†Jρ (5.3)

=
Gβ√
2
[ψ̄pγ

ρ(1− γ5)ψn][ψ̄eγρ(1− γ5)ψν ] +

Gβ√
2
[ψ̄nγ

ρ(1− γ5)ψp][ψ̄νγρ(1− γ5)ψe]. (5.4)

From 4.2.2 we know that n consist of udd quarks so the interaction (5.2) is
in fact

udd→ uud+ + e− + ν̄e. (5.5)
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e−p

n νe

(a) Neutron β-decay

e−u

νed

(b) Quark d β-decay

Figure 5.1: Diagrams of β decays, drawn in [7]

The constant for u↔ d interaction Gβ is connected with Fermi constant GF

Gβ = GF cosΘC , (5.6)

where ΘC
.
= 13◦ is Cabbibo angle. [10] The Fermi constant has a meaning

of ”strength” (coupling constant) of the weak force and its value is measured
GF = 1.166 · 10−5 GeV−2.[10]
In the Standard Model such interaction is possible due to three massive
particles W± and Z. Its interaction term in Lagrangian may we written as
[10]

Lint
W =

g

2
√
2

(
JµW+

µ + Jµ†W−
µ

)
(5.7)

with new coupling constant g.
We introduce another interaction described by Fermi theory

µ− → νµ + e− + ν̄e

with Lagrangian

Lint = −GF√
2
Jρ
e J

µ
ρ (5.8)

= −GF√
2
[ψ̄eγ

ρ(1− γ5)ψνe ][ψ̄νµγρ(1− γ5)ψµ] +

−GF√
2
[ψ̄νeγ

ρ(1− γ5)ψe][ψ̄µγρ(1− γ5)ψνµ ]. (5.9)

The Feynman diagrams of this scattering are shown in 5.2. Interaction in
Fig. 5.2a is according to Fermi theory with amplitudeM∝ GF√

2
and in 5.2b,

there is such interaction mediated by W boson. Its amplitude isM∝ g2

8m2
W

.
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µ−

e−

νµ

νe

(a) Interaction according to the Fermi theory

W

µ−

νµ

νe

e−

(b) Interaction according to the WS theory

Figure 5.2: Diagrams describing the µ decay, drawn in [7]

After comparing these two one can see that there is connection between the
Fermi and the GWS coupling constant

GF√
2

=
g2

8m2
W

, (5.10)

where mW is mass of W boson and α =
e2

4π
∼ 1

137
1 is a fine structure

constant.

1Emphasizing that we work in natural units. In SI it is α =
e2

4πϵ0~c
.

48



Chapter 6

Electroweak unification and
mass term

6.1 Gauge invariance, gauge symmetry, elec-
troweak unification

In this section, we will be led by chapter 4 and 5 from [10].

6.1.1 Abelian gauge invariance
Let us take Lagrangian of Dirac field (2.298) (meaning with no interaction)

L0 = iψ̄γµ∂µψ −mψ̄ψ (6.1)

where ψ is bispinor-solution of corresponding Dirac equation. We introduce
global phase transformation

ψ′ = eiχψ (6.2)
ψ̄′ = ψ̄e−iχ, (6.3)

where ψ = ψ(x), ψ̄ = ψ̄(x) and χ ∈ R. Then ∂µχ = 0, the Lagrangian will
be still the same

L′
0 = iψ̄′γµ∂µψ

′ −mψ̄′ψ′ (6.4)

= iψ̄e−iχγµ∂µ

(
eiχψ

)
−mψ̄e−iχeiχψ (6.5)

= iψ̄γµ∂µψ −mψ̄ψ (6.6)
= L0. (6.7)
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It was shown (2.295) that in this case we obtain flux density

Jµ = ψ̄γµψ. (6.8)

Let us now examine what happens once there is local transformation χ = χ(x)
and so ∂µχ ̸= 0

L′
0 = iψ̄e−iχ(x)γµ∂µ(e

iχ(x)ψ)−meψ̄−iχ(x)eiχ(x)ψ (6.9)

= iψ̄e−iχ(x)γµeiχ
[
∂µψ + iψ∂µχ(x)

]
−mψ̄e−iχeiχψ (6.10)

= iψ̄γµ∂µψ −mψ̄ψ − ψ̄γµψ∂µχ (6.11)
= L0 − ψ̄γµψ∂µχ. (6.12)

To have an invariant Lagrangian one must add the interaction term

Lint = gψ̄γµψAµ (6.13)

where Aµ transforms as

A′
µ = Aµ +

1

g
∂µχ. (6.14)

The Lagrangian is then

L = iψ̄γµ∂µψ −mψ̄ψ + gψ̄γµψAµ (6.15)
L′ = iψ̄′γµ∂µψ

′ −mψ̄′ψ + gψ̄′γµ∂µψ
′A′

µ (6.16)

= iψ̄e−iχ(x)γµeiχ
(
∂µψ + iψ∂µχ(x)

)
−me−iχψ̄eiχψ +

gψ̄e−iχ(x)γµeiχ(x)ψ
(
Aµ +

1

g
∂µχ

)
(6.17)

= iψ̄γµ∂µψ −mψ̄ψ + gψ̄γµψAµ (6.18)
= L. (6.19)

From there a covariant derivative can be seen

L = iψ̄γµ∂µψ −mψ̄ψ + gψ̄γµψAµ (6.20)

= ψ̄γµ
(
i∂µ + gAµ

)
ψ −mψ̄ψ (6.21)

= iψ̄γµ
(
∂µ +

g

i
Aµ

)
ψ −mψ̄ψ (6.22)

= iψ̄γµ
(
∂µ − igAµ

)
ψ −mψ̄ψ (6.23)

= iψ̄γµDµψ −mψ̄ψ (6.24)
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and so the covariant derivative is

Dµ = ∂µ − igAµ. (6.25)

The Lagrangian may by now rewritten as

L = iψ̄γµDµψ −mψ̄ψ (6.26)
= iψ̄ /Dψ −mψ̄ψ (6.27)
= ψ̄

(
i /D −m

)
ψ. (6.28)

Now it is easy to see that such Lagrangian will be invariant under calibration

A′
µ = Aµ +

1

g
∂µχ(x) (6.29)

ψ′ = eiχ(x)ψ (6.30)
ψ̄′ = ψ̄e−iχ(x). (6.31)

We were allowed to calibrate A with four-divergence of an arbitrary function
χ(x) so this is our calibration choice and we are free to do so.
Note that it is possible to rewrite this Lagrangian density with covariant
derivative once again

L′ = ie−iχ(x)ψ̄γµD′
µe

iχ(x)ψ −me−iχ(x)ψ̄eiχ(x)ψ (6.32)
= L (6.33)
= iψ̄γµDµψ −mψ̄ψ (6.34)

and so we see that

e−iχ(x)D′
µe

iχ(x) = Dµ. (6.35)

To fully describe this topic we must derive Euler-Lagrange equation

∂L
∂ψ

= gψ̄γµAµ −mψ̄ (6.36)

∂L
∂ψ̄

= gγµAµψ −mψ (6.37)

∂L
∂∂µψ

= iψ̄γµ (6.38)

∂L
∂∂µψ̄

= 0 (6.39)
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and so the Euler-Lagrange equation is

∂L
∂ψ
− ∂µ

∂L
∂∂µψ

= 0 (6.40)

gψ̄γµAµ −mψ̄ − i∂µψ̄γµ = 0. (6.41)

If the last equation is multiplied by γ0 from left and hermitian-conjugated,
one obtain

gAµγ
µψ + i∂µγ

µψ −mψ = 0 (6.42)
(i∂µ + gAµ)γ

µψ −mψ = 0 (6.43)
(iDµγ

µ −m)ψ = 0 (6.44)

which is the Dirac equation with the electromagnetic field (2.275).
The Hamiltonian density is

H =
∂L
∂∂0ψ

∂0ψ − L (6.45)

= −ψ̄(iγj∂j −m)− gψ̄γµψAµ. (6.46)

One would like to know more about Aµ and so we must introduce kinetic
term (antisymmetric tensor) that include first derivative of Aµ

Fµν =


0 Ex Ey Ez

−Ex 0 −cBz cBy

−Ey cBz 0 −cBx

−Ez −cBy cBx 0

 (6.47)

Fµν = ∂µAν − ∂νAµ = −Fνµ. (6.48)

Its inner product is

FµνF
µν = 2(B2 −E2). (6.49)

From this tensor is possible to derive the Maxwell equations (1.1) - (1.4) from
the Euler-Lagrange equation as

∂µF
µν = µ0J

ν , 1 (6.50)

and from the identity as

∂ρF
µν + ∂µF

ρν + ∂νF
µρ = 0. (6.51)

Such equations describe a massless, spin 1 particles.
1In vacuum it would be ∂µFµν = 0.
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Spin-1 particles with non-zero mass are described by Proca equation [8]

∂µF
µν +m2Aν = 0, 2 (6.52)

where F µν = ∂µAν − ∂νAµ. The Proca Lagrangian is [11]

L = −1

4
F µνFµν +

m2

2
AµA

µ. (6.53)

Gauge field tensor F µν may be also expressed as commutator of covariant
derivatives [10]

F µν =
i

g
[Dµ, Dν ], (6.54)

emphasizing that in Abelian theory

[Aµ, Aν ] = 0. (6.55)

We can now complete our Lagrangian for field with Abelian gauge symmetry
by including field tensor

L = −1

4
FµνF

µν + iψ̄ /Dψ −mψ̄ψ. (6.56)

6.1.2 Non-Abelian gauge invariance
We discussed case where (6.55) holds true. But what happens when these
fields don’t commute? Let’s start once again with the Lagrangian (2.296),
but now ψ is not an ordinary spinor field but a doublet of bispinors (Dirac
spinors) that describes two particles ψ1 and ψ2

Ψ =

(
ψ1

ψ2

)
(6.57)

and so the free Lagrangian has two parts

L ≡ L1 + L2 (6.58)
= iψ̄1γ

µ∂µψ1 −mψ̄1ψ1 + iψ̄2γ
µ∂µψ2 −mψ̄2ψ2 (6.59)

= iΨ̄Iγµ∂µΨ−mΨ̄IΨ, (6.60)

where

Ψ̄ ≡ (ψ̄1, ψ̄2). (6.61)
2In literature may be found as (2+m2)Aµ = 0, ∂µAµ = 0.
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Such a Lagrangian is invariant under a global matrix transformation

Ψ′ = SΨ (6.62)
Ψ̄′ = Ψ̄S−1, (6.63)

where S ∈ SU(2) is arbitrary constant matrix multiplied by Abelian phase
factor U(1) ∈ C. We can thus write

S = eiω
aTa (6.64)

= eiω·T ∈ U(2), (6.65)

where T a =
σa

2
and σa are Pauli matrices and ωa ∈ R.

Applying (2.168) we get

[Ta, Tb] = ifabcTc, (6.66)

where in this case fabc is a generalized Levi-Civita symbol ϵabc.
Analogically to the prior Abelian theory case we look at local transformation
ω = ω(x). We see that such Lagrangian will not be invariant and to fix this,
we must introduce vector field Aµ(x) that in fact consist of triplet of vector
fields Aa

µ.

Aµ(x) ≡ Aa
µ(x)T

a. (6.67)

The covariant derivative is now

Dµ = ∂µ − igAµ. (6.68)

Let’s see the calibrated Lagrangian

L′ = iΨ̄′γµDµΨ
′ −mΨ̄′Ψ′ (6.69)

= iΨ̄S−1γµDµSΨ−mΨ̄S−1SΨ (6.70)

and to keep the Lagrangian invariant, the covariant derivative must be trans-
formed as

D′
µ = SDµS

−1 (6.71)
= ∂µ − igA′

µ. (6.72)

From there it is possible to derive [10]

A′
µ = SAµS

−1 +
i

g
S∂µS

−1. (6.73)
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For infinitesimal transformation

A′a
µ = Aa

µ − fabcϵbAc
µ +

1

g
∂µϵ

a, (6.74)

where we used the linearisation

S(x) = I+ iϵa(x)T a (6.75)
S−1(x) = I− iϵa(x)T a. (6.76)

As before, we would like to introduce kinetic term for Aµ of Lagrangian Lkin
including first derivatives of Aa

µ, but in non-Abelian case, the commutator

[Aµ, A
ν ] ̸= 0 (6.77)

and we must derive our kinetic term from formula mentioned before (6.54).
The antisymmetric tensor Fµν is now

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ] (6.78)
F a
µν = ∂µA

a
ν − ∂νAa

µ + gfabcAb
µA

c
ν , (6.79)

where Fµν = F a
µνT

a. The last term leads to self-interaction of the field Aµ.
To construct the gauge invariant kinetic interaction term, we must take F a

µν

instead of just Fµν and so the Lagrangian will be

LYM = −1

4
F a
µνF

aµν + iΨ̄ /DΨ−mΨ̄Ψ. (6.80)

The lower index YM references to C. N. Yang and R. Mills, who described
this theory [10]. In this Lagrangian we obtained, apart from kinetic term,
also a new quadratic and cubic term that describe self-interaction of Yang-
Mills field. This theory is based on the gauge group U(2) = SU(2)×U(1) in
which SU(2) is generated by Pauli matrices and U(1) is corresponding phase
factor ωa. Coupling constant in this theory must be a real parameter g.
We haven’t include any mass term for Aµ in Lagrangian, yet. One cannot
add it by hand, that would break symmetry, so a new theory is needed-Higgs
mechanism.

6.1.3 Electroweak unification
In this chapter we would like to unify parity-conserving electromagnetic cur-
rent and the weak current that according to [14] violates parity. The solution
is to separate left-and right-handed parts of the fermion field so that the left-
handed fermion field is SU(2) doublet (leading to three mass fields AµaTa)

55



and the right-handed is SU(2) singlet (leading to massless particle Bµ). [10]
One can consider fermion field for two corresponding particles, electron e and
its neutrino ν, for example

eL =
1

2
(1− γ5)e (6.81)

νL =
1

2
(1− γ5)ν (6.82)

eR =
1

2
(1 + γ5)e (6.83)

νR =
1

2
(1 + γ5)ν, (6.84)

and since we treat eL and νL as an SU(2) doublet we arrange them as

L =

(
νL
el

)
. (6.85)

The covariant derivate is then

DL
µ = ∂µ − igAa

µT
a − ig′YLBµ (6.86)

DR
µ = ∂µ − igAa

µT
a − ig′YRBµ (6.87)

(6.88)

where YL, YR ∈ R. By condition YL ̸= YR we mean that the left-handed field
may transform with different phase factor than the right-handed one. The
Lagrangian is

L = iL̄γµDL
µL+ iēRγ

µDR
µ eR + iν̄Rγ

µDR
µ νR. (6.89)

As in previous sections we would like to include kinetic term that may be
written as

Lkin = −1

4
F a
µνF

aµν − 1

4
BµνB

µν . (6.90)

Now the Lagrangian consists of (6.89) and (6.90)

L = iL̄γµDL
µL+ iēRγ

µDR
µ eR + iν̄Rγ

µDR
µ νR −

−1

4
F a
µνF

aµν − 1

4
BµνB

µν . (6.91)
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Let us take only Aµ − ψ interaction part of (6.89) and introduce

T±

2
≡ σ± (6.92)

≡ 1√
2
(σx ± iσy) (6.93)

σ+ =
√
2

(
0 1
0 0

)
(6.94)

σ− =
√
2

(
0 0
1 0

)
(6.95)

and also

A±
µ ≡ 1√

2
(A1

µ ± iA2
µ) (6.96)

≡ W∓
µ (6.97)

According to these we find

Lint =
g√
2
(ν̄Lγ

µeLW
+
µ + ēLγ

µνLW
−
µ ) + Ldiag (6.98)

Ldiag =
1

2
gL̄γµσzLA

3
µ + g′YLL̄γ

µLBµ + g′Y e
RēRγ

µeRBµ

+ g′Y ν
R ν̄Rγ

µνRBµ. (6.99)

Once this is set, the kinetic term of Lagrangian (6.90) will now become

Lkin = −1

2
W−

µνW
+µν − 1

4
A3

µνA
3µν − 1

4
BµνB

µν . (6.100)

It is important to emphasize that neither Aµ nor Bµ has no direct physical
meaning, but their linear combination shall, as it will be shown. We introduce
a new vector field Zµ

A3
µ = cosΘWZµ + sinΘWAµ (6.101)

Bµ = − sinΘWZµ + cosΘWAµ, (6.102)

where ΘW is the Weinberg mixing angle. This can be also rewritten as(
A3

µ

Bµ

)
=

(
cosΘW sinΘW

− sinΘW cosΘW

)(
Aµ

Zµ

)
. (6.103)

One thus get Lagrangian in form

Lkin = −1

2
W−

µνW
+µν − 1

4
AµνA

µν − 1

4
ZµνZ

µν . (6.104)
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It is good to also realize that since A1
µ and A2

µ couple with anti-diagonal Pauli
matrices, they allow us to exchange ν for e and vice versa.
According to the orthogonality of (6.103) we obtained no mixing term in
(6.104). If we now substitute (6.101) into the diagonal part of the Lagrangian
(6.99), we obtain two independent components

Ldiag = LA
diag + LZ

diag (6.105)

LA
diag =

(1
2
g sinΘW ν̄Lγ

µνL −
1

2
g sinΘW ēLγ

µeL +

g′ cosΘWYLν̄Lγ
µνL + g′ cosΘWYLēLγ

µeL +

g′ cosΘWY
e
RēRγ

µeR + g′ cosΘWY
ν
R ν̄Rγ

µνR

)
Aµ (6.106)

LZ
diag =

(1
2
g cosΘW ν̄Lγ

µνL −
1

2
g cosΘW ēLγ

µeL −

−g′ sinΘWYLν̄Lγ
µνL − g′ sinΘWYLēLγ

µeL −
−g′ sinΘWY

e
RēRγ

µeR − g′ sinΘWY
ν
R ν̄Rγ

µνR

)
Zµ. (6.107)

First, we will look at only LA
diag We require that there are no right-handed

neutrinos

Y ν
R = 0, (6.108)

that there is no interaction between left-handed neutrino and a vector field
Aµ (photon-neutrino interaction, for example).

1

2
g sinΘW + g′ cosΘWYL = 0 (6.109)

and that left-and right-handed electron has the same coupling to Aµ (since
it describes one particle)

−1

2
g sinΘW + g′ cosΘWYL = g′ cosΘWY

e
R. (6.110)

According to these requirement we see that

Y e
R = 2YL (6.111)

tanΘW = −2g
′

g
YL (6.112)

= −g
′

g
Y e
R. (6.113)

We now compare such Lagrangian with the QED Lagrangian

LQED = eψ̄γµAµψ, (6.114)
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where ψ describes fermion field. One can see that for coupling constant must
apply

e = g sinΘW (6.115)
e < g, (6.116)

which are so called unification conditions. The e is positron charge. If we
substitute (6.115) into (5.10), we obtain

mw =
( √

2e2

8GF sin2ΘW

)1
2 (6.117)

=
( πα

GF

√
2 sin2ΘW

)1
2 . (6.118)

6.2 Weak hypercharge
Let us introduce weak hypercharge YW [6] that consist of third component
of weak isospin I3 and electric charge Q

Q = I3 + YW .
3 (6.119)

Their values for SU(2) can be found in Table 6.1.

eL νL eR νR

I3 −1

2

1

2
0 0

YW −1

2
−1

2
-1 0

Table 6.1: Values YW and I3 for SU(2)

For exact choice YL = −1

2
(see Table 6.1 and corresponding formula (6.119))

one get expression for g, g′ and ΘW

tanΘW =
g′

g
(6.120)

cosΘW =
g√

g2 + g′2
(6.121)

sinΘW =
g′√

g2 + g′2
. (6.122)

3It is also possible to find it in form of Q = I3 +
1

2
YW .
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If we now take a look at LZ
diag (6.107) with respect to (6.108), (6.111) and

(6.112), we obtain

LZ
diag =

[ g

cosΘW

1

2
ν̄Lγ

µνL −
g

cosΘW

cos 2ΘW

2
ēLγ

µeL +

g

cosΘW

sin2ΘW ēRγ
µeR

]
Zµ. (6.123)

From this very important relations for SU(2)× U(1) can be seen

1

2
= Iν3L −Qν sin2ΘW (6.124)

0 = Iν3R −Qν sin2ΘW (6.125)

sin2ΘW −
1

2
= Ie3L −Qe sin2ΘW (6.126)

sin2ΘW = Ie3r −Qe sin2ΘW . (6.127)

Since Qe = −1 and Qν = 0, this can by easily verify according to Table 6.1.
If we now introduce new coupling constants gνL, geL and geR respecting (6.115)

gνL =
g

2 cosΘW

(6.128)

=
g2

2
√
g2 − e2

(6.129)

geL =
g

cosΘW

(− cos2ΘW ) (6.130)

=
2e2 − g2

2
√
g2 − e2

(6.131)

geR =
g

2 cosΘW

sin2ΘW (6.132)

=
e2√
g2 − e2

, (6.133)

it is possible to rewrite our Lagrangian into a shorted form

LZ
diag =

(
gνLν̄Lγ

µνL + geLēLγ
µeL + geRēRγ

µeR

)
Zµ. (6.134)

The main parameter of electroweak unification is then the mixing angle
sinΘW =

e

g
. For zero angle one obtain only electromagnetism and for

sinΘW = 1 is interaction strictly weak with no electromagnetic impact.
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6.3 Higgs mechanism
This section is inspired by chapter 6 in [10].
Having suitable Lagrangian for electroweak theory, one would like to add a
mass term. First we show how to do it by Goldstone theorem, then execute
Abelian theory and finally came up with mass for vector bosons (W±, Z)
and leptons (e−, ν). Photon, that is also vector particle included in Aµ, has
a zero (invariant) mass. A new scalar particles will be examined-massless
Goldstone boson and Higgs boson with non-zero mass.

6.3.1 Goldstone model
Let’s start with Lagrangian density for complex scalar field

L = ∂µφ⋆∂µφ− V (φφ⋆) (6.135)
V (φφ⋆) = λ(φφ⋆)2 − µ2φφ⋆, (6.136)

where V (φφ†) is potential term constisting of dimensionless coupling constant
λ > 0 and real parameter µ, [µ] = GeV. We can thus rewrite Lagrangian in
a form of

L = ∂µφ∂
µφ⋆ − λ(φφ⋆)2 + µ2φφ⋆. (6.137)

The first and third terms looks similar to Klein-Gordon Lagrangian, but the
last term has opposite sign (2.95). Lets have a look at potential term written
with substitution √ρ = φφ⋆, [ρ] = GeV, c. f. 6.1

V (ρ) = λρ4 − µ2ρ2. (6.138)

Figure 6.1: Potential V (ρ)
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We would like to find minimum
∂V (ρ)

∂ρ
= 0 (6.139)

4λρ3 − 2µ2ρ = 0 (6.140)

ρ = 0 ∨ ρ2 =
µ2

2λ
. (6.141)

The first give us maximum and the second is global minimum. We may thus
substitute

v2 =
µ2

λ
, (6.142)

where v stand for vacuum, to obtain
v2√
2

= ρ2 (6.143)

= φφ⋆ (6.144)

and so

φ0 =
v√
2
eia (6.145)

φ⋆
0 =

v√
2
e−ia, (6.146)

where a ∈ R. This v will be very important in following sections as well.
In the light of this observation we would like to have the vacuum state as a
starting point, not the unstable ρ = 0. To do so, we recalibrate ρ→ ρ′ where

ρ′ =
σ + v√

2
(6.147)

and so we obtain

φ = ρ′e

iπ(x)

v 4 (6.148)

We now put (6.148) into (6.137) and use (6.142)

L =
1

2
∂µσ∂

µσ +
1

2
∂µπ∂

µπ − λv2σ2 + Lint (6.149)

Lint = −1

4
λσ4 − λvσ3 +

σ2

2v2
∂µπ∂

µπ +
σ

v
∂µπ∂

µπ (6.150)

= −1

4
λσ4 −

√
λµσ3 +

λσ2

2µ2
∂µπ∂

µπ +

√
λσ

µ
∂µπ∂

µπ (6.151)

4Term 1

v
is introduced to get right dimension of angular field π(x). [10]
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and introduce m
2
σ

2
= λv2 = µ2. Now we have the same sign of the mass term

as in (2.95) and we see that there are two scalar fields σ and π with masses

mσ = µ
√
2 (6.152)

mπ = 0. (6.153)

In the Fig. 6.2 there are Feynman diagrams for all interactions in (6.151).

σσ

σ

σ

(a) -λσ4

4

σ

σ

σ

(b) -λvσ3

π

π

σ

σ

(c) λσ
2

2µ2
∂µπ∂

µπ

π

π

σ

(d)
√
λσ

µ
∂µπ∂

µπ

Figure 6.2: Interactions in (6.151), drawn in [7]

We would like to see, whether such Lagrangian is invariant under transfor-
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mation

φ′ = eiωφ (6.154)
φ′⋆ = e−iωφ⋆ (6.155)
σ′ = σ (6.156)
π′ = π + vω, (6.157)

where ω ∈ R. We see that our ground state vacuum isn’t invariant, while the
Lagrangian is. Such a case is called spontaneous symmetry breaking. Such
theory, according to Goldstone theorem, implies that there must be scalar
massless particle called Goldstone boson. In forthcoming section we shall see
that such particle doesn’t exist and is replaces by Higgs boson.

6.3.2 Abelian model
In this theory we work with covariant derivatives instead of ordinary ones
and we must add a kinetic term, so our starting Lagrangian is

L = −1

4
FµνF

µν +DµφD
µφ⋆ − λ(φφ⋆ − v2

2
)2. (6.158)

Such Lagrangian is invariant under local transformation

φ′ = eiχφ (6.159)
φ′⋆ = e−iχφ⋆ (6.160)

A′
µ = Aµ +

1

g
∂µχ, (6.161)

where χ = χ(x).
We process analogically to previous case: introduce reparametrization for
field

φ = ρe
i
π

v , (6.162)

still having (6.142) in mind. To remove phase factor, we choose

χ(x) = −π(x)
v

(6.163)

to obtain

ρ′ = ρ (6.164)

A′
µ = Aµ −

1

gv
∂µπ (6.165)

= Bµ. (6.166)
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As in previous case we use shift (6.147) and by renaming

Gµν = ∂µBν − ∂νBµ (6.167)

we obtain final form of Lagrangian

L = −1

4
GµνG

µν + ∂µσ∂
µσ +

g2σ2

2
BµB

µ + g2σvBµB
µ +

g2v2

2
BµB

µ − λσ4

4
− λσ3v − λσ2v2. (6.168)

In the Fig. 6.3 there are Feynman diagrams for all interactions in (6.168).

γ

σ

γ

(a) g2vσBµB
µ

γσ

σ

γ

(b) g
2σ2

2
BµB

µ

σ

σ

σ

(c) -λvσ3

σσ

σ

σ

(d) -λσ4

4

Figure 6.3: Interactions in (6.168), drawn in [7]
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As in prior case one obtain mass term for scalar field σ, but in this Lagrangian
also contains mass term for vector field Bµ with respective coupling constant
g. The sign is here accurate, because such particle Bµ is described by Proca
equation Lagrangian (6.53)

mσ = µ
√
2 (6.169)

mB = gv. (6.170)

The main difference is need for massive scalar particle σ instead of massless.

6.3.3 Electroweak SU(2)× U(1) model
In this chapter, we would like to work with a doublet of two complex fields

Φ =

(
φ+

φ0

)
(6.171)

consisting of complex field carrying +1 and 0 charge respectively. In fact, it
can easily be

L =

(
νL
eL

)
(6.172)

as well. Each component may be rewritten in form of two real fields

φ+ = φ1 + iφ2 (6.173)
φ0 = φ3 + iφ4. (6.174)

We start with Goldstone Lagrangian

L =
(
DµΦ

)†
DµΦ− λ

(
Φ†Φ− v2

2

)2
(6.175)

Φ†Φ = φ2
1 + φ2

2 + φ2
3 + φ2

4 (6.176)

with respect to (6.142), but we included the covariant derivatives instead of
ordinary ones

Dµ = ∂µ + igAa
µ

σa

2
+ ig′Y Bµ. (6.177)

Aµ is vector field corresponding to SU(2), Bµ is scalar field corresponding to
U(1) and g, g′ and coupling constant.
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Once again we shift the ground state Φ†
0Φ0 and we get rid of expanding

around minimum od V (Φ) one gets

Φ =
1√
2

(
0

(v +H)

)
e

iπ·T
v (6.178)

where H = H(x) is scalar Higgs field. Since we have a freedom in choosing
χ, we can easily get rid of this whole exponential term including non-physical
π to have only

Φ =
1√
2
(v +H)ξ, (6.179)

where ξ =
(
0
1

)
. The mass of Higgs particle is found to be

mH =
√
2λv (6.180)

=
√
2µ. (6.181)

If we now rewrite our Lagrangian with respect to all of this, anticommuta-
tivity and unitarity of Pauli matrices and according to

ξ†ξ = 1 (6.182)
ξ†σxξ = 0 (6.183)
ξ†σyξ = 0 (6.184)
ξ†σzξ = −1 (6.185)

we obtain Lagrangian in form of

L =
1

2
∂µH∂

µH − λv2H2 − λvH3 − 1

4
λH4 + Lg (6.186)

Lg =
(v +H)2

8

(
g2Aa

µA
aµ − 4Y gg′A3

µB
µ + 4Y 2g′2BµB

µ
)
, (6.187)

where the second term in L is a mass term for Higgs boson. If we take into
account (6.103) and (6.112) and realize that Y = −YL =

1

2
(since we want

to recall electroweak theory from 6.1.3), it is possible to rewrite

Lg =
v2

8
(g2 + g′2)ZµZ

µ +
v2g2

4
W−

µ W
+µ + LqH (6.188)

Zµ =
1√

g2 + g′2
(gA3

µ − g′Bµ) (6.189)

W±
µ =

1√
2
(A1

µ ∓ iA2
µ) (6.190)
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from which we directly see that

mW =
gv

2
(6.191)

mZ =

√
g2 + g′2v

2
(6.192)

mW

mZ

= cosΘW . (6.193)

The term with Higgs interaction LqH is

LqH =
(2vH +H2)

8

(
(g2 + g′2)ZµZ

µ + 2g2W−
µ W

+µ
)

(6.194)

and so the full Lagrangian is

L =
1

2
∂µH∂

µH − λv2H2 − λvH3 − 1

4
λH4 +

(v +H)2

8

[
(g2 + g′2)ZµZ

µ + 2g2W−
µ W

+µ
]
. (6.195)

In the Fig. 6.4 there are Feynman diagrams for all interactions in (6.195).
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H
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Z
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4
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Z
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8
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(e)
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µ W
+µ

2
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W

H

W

(f)
g2H2W−

µ W
+µ

4

Figure 6.4: Interactions in (6.195), drawn in [7]

If we put mW into (5.10), we get exact value for v

v =

√
1

GF

√
2

(6.196)
.
= 246 GeV (6.197)

and one can rename it as Higgs field VEV (vacuum expected value). It is
scale for electroweak unification. Knowing this, one can easily solve mZ

remembering (6.117)

mZ =
( √

2e2

2GF sin2 2ΘW

)1
2 . (6.198)
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6.3.4 Yukawa coupling
As mentioned above, also lepton mass term couldn’t have been added to
Lagrangian by hand, because it would spoil a symmetry. In this section
we will use Yukawa-coupling to achieve non-zero lepton masses. Yukawa
interaction term in Lagrangian is

Le
Yukawa = −heL̄ΦeR − heΦ†LēR (6.199)

= − he√
2
(v +H)( ¯emmLeR + ēReL) (6.200)

= −meēe+ geeH ēeH, (6.201)

where L =

(
νL
eL

)
, Φ is defined as (6.179), he is dimensionless coupling con-

stant, eR is right-handed electron singlet, H is Higgs boson, me is electron
mass

me = = − 1√
2
hev (6.202)

and geeH is Yukawa coupling for 2 electron and Higgs boson. Note that every
term in (6.199) is invariant under SU(2)× U(1) group symmetry.
According to (6.191) this may be recast as

geeH = −me

v
(6.203)

= − meg

2mW

. (6.204)

It is possible to rewrite for muon and tau respectively as

gµµH = − mµg

2mW

(6.205)

gττH = − mτg

2mW

. (6.206)

From definition for Φ is clear that there cannot be any mass for a neutrino,
but it can by obtained by redefining

Φ̃ =

(
0 1
−1 0

)
Φ† (6.207)

=
v +H√

2

(
1
0

)
. (6.208)
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That is anti-doublet to L =

(
νL
eL

)
. The Lagrangian is

Lν
Yukawa = −hνL̄Φ̃νR − heΦ̃†Lν̄R (6.209)

= − hν√
2
(v +H)(ν̄LνR + ν̄RνL) (6.210)

= −mν ν̄ν + gννH ν̄νH. (6.211)

Analogically to prior case

mν = = − 1√
2
hνv (6.212)

gννH = − gmν

2mW

. (6.213)
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Chapter 7

Symmetry in unification
theories

This thesis is based only on relativistic quantum mechanics, the GWS the-
ory of Standard particle model and the electroweak unification. But there
are further study to accomplish such theories based on a quantum field the-
ory (QFT): the Super-symmetry (SUSY), the M-theory (String theory), the
Grand unification theory (GUT) and the Quantum gravity. The author
would like to briefly introduce such theories.

7.1 GUT
Since we have unified the electromagnetic and the weak interaction, one
would like to continue and add the electroweak and the strong force as well.
Such theory is predicted to happen at scale around 1015 GeV and is called
Great unification theory. The nature is thought to be in such state at 10−36

s after the Big bang. There are different theories of GUT: theory based on
SU(5), [16] or the Spin(4)×Spin(6) theory and both can be extended to the
Spin(10) theory [21].

7.2 SUSY
There is proposed unification theory based on symmetry in nature called a
Supersymmetry (SUSY for short). It suggests that fermions and bosons do
not differ, but are the same particle in different state. Therefore there must
be a symmetrical partner for every particle - fermion to boson and boson to
fermion. Such a symmetrical fermion should have a letter s− before its name
(squark, for example), and a symmetrical boson is to have ”-ion” at the end
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(gluino, for example.) [16]

7.3 Quantum gravity
Once there is theory where all non-gravitational forces, described by quantum
field theory, are tamed, one would like to add the gravity, described by general
relativity, as well. But there comes problem with infinities that start to
appear in equations describing the ToE-Theory of everything. Many research
are focused on bringing together quantum mechanics and general relativity,
but none of them succeeded, yet.
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Summary

In this thesis we first dealt with relativistic quantum mechanics equations and
we examined their continuity equations with and without the electromagnetic
field and a gauge calibration. We mentioned elementarily the Noether theo-
rem and briefly introduced particles in the Standard Model. Then we built
up the Lagrangian for the GWS model, add the kinetic and the interaction
term. The mass term was included by using Higgs mechanism.
At the end we emphasized the impact of the electroweak interaction by men-
tioning other unification theories and their possible influence in further un-
derstanding of the nature.
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