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Abstract 

Eigenkets of electromagnetic field mode quadrature operators are unphysical states, which play 
an important part in bosonic implementations of quantum computers and in other areas of 
quantum optics. Their experimental preparation is inherently impossible, but they can be 
approximated using highly squeezed states and evaluated by means of quadrature squeezing. 
Superpositions of highly squeezed states, on the other hand, currently do not have any straight
forward methods of evaluating how well they approximate superpositions of quadrature eigen
kets. The construction of suitable evaluation methods for even superpositions of squeezed states 
is the main focus of this work. 
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Abstrakt 

Vlastní vektory kvadraturních operátorů módu elektromagnetického pole jsou nefyzikální stavy, 
které hrají důležitou roli při návrhu bosonových kvantových počítačů a v jiných oblastech kvan
tové optiky. Připravit tyto stavy experimentálně není možné, lze je však aproximovat pomocí 
silně stlačených stavů a vyhodnotit prostřednictvím stlačení v dané kvadratuře. Pro superpoz
ice stlačených stavů naopak v současné době neexistují žádné jednoduché metody vyhodnocení 
jejich kvality jakožto aproximace superpozic vlastních vektorů kvadraturního operátoru. Návrh 
vhodných metod vyhodnocování sudých superpozic stlačených stavů je hlavním zaměřením této 
práce. 
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Introduction 

One of the main avenues in the ever-evolving landscape of quantum information, communi
cation, and optics is the construction of fault-tolerant quantum computers utilizing continu
ous variables. More conventional approaches to quantum computing employ discrete two-level 
quantum systems - qubits, which can be physically implemented using superconducting circuits, 
quantum dots, and various other methods. Significant challenges emerge when implementing 
quantum error correction in this approach, as even the simplest error-correcting codes for two-
level systems require deep redundancy and pose significant practical challenges. [1, 2, 3] 

A n alternative to this is to encode logical qubits into continuous variables, usually those asso
ciated with non-commuting quadrature operators of field modes, as exotic continuous variable 
states allow for sufficient correction of certain errors connected with their symmetries. This 
strategy comes with the benefit of potentially employing already existing optical communica
tion infrastructure, but is equally applicable to superconducting microwave cavities and other 
systems, where quadrature operators are defined. Many proposed continuous variable quantum 
codes with error-correcting capabilities exist; nevertheless, one common thread tying many of 
them together is the need for quadrature eigenstates and their superpositions. [2, 4, 5, 6] 

Quadrature eigenkets are intrinsically unphysical, contain an infinite amount of energy, and can
not be prepared experimentally. They need to be approximated for all practical applications, 
with one of their available approximations being squeezed states. The preparation of squeezed 
states and their superpositions is an active area of research and the degree to which simple 
squeezed states approximate quadrature eigenkets can be evaluated by quadrature squeez
ing; however, no straightforward methods for evaluating the degree to which superpositions 
of squeezed states approximate superpositions of quadrature eigenstates exist. [6, 7, 8, 9] 

In this work, we investigate the properties of superpositions of displaced squeezed states, fre
quently referred to as squeezed cat states, and propose multiple methods for evaluating how well 
they approximate superpositions of quadrature eigenstates. We will employ analytical and nu
merical methods to compare the proposed metrics and discuss potential issues and outliers. The 
goal of this thesis is to find new methods for evaluating superpositions of highly squeezed states, 
which could potentially be used in their preparation and help pave the way to fault-tolerant 
quantum computation and communication. 
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Chapter I 

Foundations 

In the first chapter, we shall construct a basic theoretical framework, where squeezed states 
function as an approximation of quadrature eigenkets, and proceed to show why quantum state 
fidelity is not a good way to evaluate the suitability of such approximations. We will then 
explain the significance of quadrature eigenkets in the context of superposition states. 

1.1 Quadra ture eigenkets 

Let us begin by considering an electromagnetic field mode described by the bosonic annihilation 
operator a, which obeys the commutation relation 

a, 1, (1.1.1) 

where we have chosen natural units with h = 1. We define quadrature operators x and p as [10] 

x=^={a^ + a), (1.1.2) 

i 
72 

f> = -= (a f - a) . (1.1.3) 

It immediately follows from (1.1.1) that 

[x,p] = i, (1.1.4) 

which is the canonical commutation relation. The spectra of both of these operators are un
bounded and continuous, similarly to position and momentum [10]. We are particularly inter
ested in quadrature eigenkets, which will be denoted by their corresponding eigenvalues, such 
as 

x \x0) = x0 \X0) , (1.1.5) 
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where XQ is an arbitrary eigenvalue of x. We shall use \x = XQ) to refer to the same ket in cases 
where confusion with other bases could occur. It is apparent from (1.1.4) that the quadratures 
are incompatible observables and are thus bound by the uncertainty relation [11] 

v a r x - v a r p > — , (1.1.6) 

where the variance of an observable is defined as 

(1.1.7) 

Note that for the x, eigenket defined in equation (1.1.5), vara; will be zero, which means that 
varj? must diverge according to (1.1.6). 

Quadrature variance divergence implies the divergence of energy for these states and quadrature 
eigenkets are thus unphysical and non-normalizable. This poses some interesting problems 
for the foundations of quantum mechanics and, for example, necessitates the mathematical 
construction of rigged Hilbert spaces [12]. In the following work, however, we shall focus on 
how these eigenkets can be approximated using physical states with the same expectation value 
and minimized quadrature variance. 

1.2 Squeezed vacua 

Let us start with the eigenket \x = 0). Its wave function in the x—representation can be regarded 
as the Dirac delta distribution, and a suitable approximation for this eigenket is the squeezed 
vacuum state. We define the vacuum state |0) by [13] 

o|0) = 0 (1.2.1) 

and the squeezing operator S (f) as 

S (f) = exp Ir a 2 ~ - t2 
ra' 

(1.2.2) 

where f = retip is the complex squeezing parameter. We will mostly work with the simplified 
form 

S (r) = exp (a 2 - at 2) (1.2.3) 

where the squeezing parameter is set to be a real number. This simplification only allows 
squeezing in directions orthogonal to quadratures in the phase space, which is sufficient for our 
needs. The squeezed vacuum state is then 

|SV(r)) = 5(r) |0) (1.2.4) 
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The x—representation wave function of the vacuum is [10] 

<a;|0) = * xp ( _ y j , (1.2.5) 

from which we can derive the squeezed vacuum wave function to be [14] 

<*|SV(r)) = ^ e x p ( - e 2 ^ . (1.2.6) 

The expectation value (SV(r)|x|SV(r)) is zero per the symmetric wave function, we can thus 
determine the x variance of the squeezed vacuum state as 

/

+oo r+oo r 2 e r 

d x ( S V ( r ) | x ) x 2 ( x | S V ( r ) ) = / —= exp ( -x2e2r) dx, 
(1.2.7) 

which evaluates to 
1 

v a r £ = ^ - . (1.2.8) 
2 e 2 r V I 

It is well known that squeezed vacua are minimum-uncertainty states [13, 14], which saturate 
the uncertainty relation (1.1.6), we can therefore also immediately write the p variance 

v a r p = — . (1.2.9) 

Given the expectation value of x and its variance for this state, we can conclude that in the limit 
of large squeezing as r —>• +oo, the squeezed vacuum state converges to the eigenket \x = 0) , 
with its p variance diverging to infinity. 

var x 

1.3 F ide l i t y and variance 

Given the task of minimizing the quadrature variance of a squeezed vacuum state, two intuitive 
ways to do so are by measuring the variance, or by comparing the state to a different state, for 
which the variance is known. Let us now focus on the second method. This might seem unnec
essary in the context of squeezed vacua, but it proves to be a useful discussion in preparation 
for larger problems ahead. 

One way to measure the similarity of quantum states is the quantum state fidelity F. In the 
most general case, given two density operators pi and f>2 describing two quantum states, we 
define their fidelity as [15] 

(1.3.1) 

If we consider one of the states to be pure p\ = IV'piXV'pil , we can use p\ = p\ => \ffi[ = p\ 
to rewrite (1.3.1) as 

F(pi,p2) = (tr^|Vp 1>(V'p 1 |/52|Vp 1)(V'p 1 |) , (1-3.2) 
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'pi iwpl where {4>pl\p2\4'Pl) is a number and ( t r y ^ 
and a pure state is 

F(pl,fa) = (lpP1\fa\lpP1) , 

1, thus, the fidelity for a mixed state 

(1.3.3) 

from which we can determine the fidelity for two pure states as 

(1.3.4) 

Equation (1.3.4) can be intuitively understood as the square of the overlap between the two 
states. It also implies that for any pure ippl,tpp2 we have 0 < F (fa, fa) < 1, F (fa, fa) = 1 
ipPl = tpp2 and F(fa,fa) = F(fa,fa). It can be shown that these properties extend to the 
general case of mixed states as well [15]. 

Let us examine how the fidelity of two squeezed vacuum states relates to their x variance. 
Following equation (1.3.4), we can calculate the fidelity of two squeezed vacuum states with 
different squeezing parameters r\, r 2 as 

F(psV(r1),PSV(r2)) = |<SV (n ) |SV (r2)>|5 

+oo eOi+r 2)/2 

7T 
exp 

dx (SV (n)\x) {x\SV (r2)> 

x 
" Y + e 2r2 dx 

2grl+r2 

e 2 n + e 2 r 2 

. (1.3.5) 

In the rest of this section we shall denote F (psv(n)> Psv(r2)) a s F for simplicity. If we now 
consider F and r\ to be known, we obtain two possible solutions for r 2 in the form 

r'2 r\ + In 
1 ± y/1 - F2 

(1.3.6) 

Equation (1.3.6) says that given a squeezed vacuum state with a squeezing parameter n , all 
squeezed vacuum states which achieve fidelity F or higher with the given state must satisfy 

r 2 € n + l n ( l = ^ H ) , n + l n ( l ± ^ where [, ] is a closed interval. We can easily 
It 

F J ' ' 1 1 i i x V F 

translate this into the language of x variances by comparing equations (1.3.6) and (1.2. 
turns out to be useful to examine the ratio k between variances of x for the two squeezed vacua 
in question function of their fidelity: 

k(F) 
( S V ( n ) | x 2 | S V ( n ) ) e 2 r 2 exp(2ri)exp 2 1 n ( l ± y T ^ ! 

1 ± V i - F2 

( S V ( r 2 ) | x 2 | S V ( r 2 ) ) e 2 r i exp(2n) ^ F J 
(1.3.7) 

The ratio of variances for two squeezed vacuum states with fidelity F or higher must thus 

fall into the interval k(F) G 

The two values are reciproca 

( i ± * E E ) ' , regardless of their specific squeezing. 

when we find two squeezed vacua exactly satisfying the fidelity 
requirement, they form a unique minimum/maximum variance pair. The interval of possible 
variances can be plotted as a function of minimum fidelity, see figure 1.1. 
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It is apparent from figure 1.1 that in a logarithmic plot, the maximum and minimum variance 
ratios for a given fidelity form a symmetric area centered at k = 1, where F = 1 can only be 
achieved by states with the same variance and F > 0, on the other hand, is satisfied by any two 
finitely squeezed vacuum states. Both of these extremes are to be expected. 

One thing to note, however, is that fidelity values, which we may consider quite high intuitively, 
do not actually imply much for the variance of a quantum state. It can be readily shown from 
(1.3.7) that for F = 0.9 there exist two squeezed vacuum states whose variances differ from each 
other by a factor of 2.55 and even for F = 0.99 this factor is still 1.33. This of course is just 
a question of how we view fidelity and what our expectations for the states are based on this 
number, but it does beg the question of whether there is any connection between the fidelity of 
two states and their quadrature variances in the most general case. 

100r 

f~- 10 

o 
• i - H 

cd 
*- 1 
03 
O 

a 
• i - H 

<H 0.10 

0.01 

I I 1 1 1 1 1 1 
1 

-

: 

• 2.55 : 
_TT~ 

\ 
i ; 

2T55 

\ 
-

- 1 1 1 

0.2 0.4 0.6 0.8 1.0 

fidelity requirement F 

Figure 1.1: Logarithmic plot of all possible variance ratios for two squeezed vacuum states with a given 
minimum fidelity requirement. The blue lines represent extreme cases, which exactly satisfy the fidelity 
requirement, light blue filling signifies states with fidelity greater or equal to the requirement. Fidelity 
requirement of 0.9 is emphasized by a red line, with both the maximum and minimum ratios evaluated 
(these amount to fidelity values of exactly 0.9). 
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1.4 H o w fidelity fails us 

It turns out, it can be proven that, given any pure state p\, there exists a state p2 such that 
F(pi,p2) > FQ and (varrc)^ > K, where 0 < FQ < 1 and 0 < K are arbitrary real numbers. 
This means that given any fidelity requirement FQ and any pure state, we can construct a state 
satisfying this requirement with arbitrarily large x variance, the only exception being Fo = 1-

In order to prove this, let us make a slight modification to equation (1.3.3) by rewriting the 

mixed state as a sum of projectors onto pure states 

F(p1,p2)= (V'pilPalV'pi) = ( ^ I E R W ' l/\Yl\ I Ypl 
i=l i=l 

(1.4.1) 

We prove the existence of p2 by explicitly constructing it as 

P2 = F0 | ^ X ^ i l + (1 " Fo) |SV(r))(SV(r) | , (1.4.2) 

where we have used the fact that p\ is pure and where the squeezing parameter r is to be deter

mined later. Choosing probability coefficients in p2 in this way ensures the state is normalized. 

Equation (1.4.1) directly implies 

F(Pl,p2) = F0 K V p j V ^ ) ! 2 + (1 - FQ)\(SV(r)\M\2 , (1.4.3) 

where \(ippi\ippi)\2 = 1,(1 - F0) > 0 and |(SV ( r ) | V P l ) | 2 > 0, thus F(Pl,p2) > F0 for any 
squeezing parameter r. The variance of x is just an expectation value per equation (1.1.7) and 
as such reduces to the weighted sum of expectation values for the constituent pure states 

(varx)^ = F0 (varx)pi + (1 - F0) ( v a r x ) s v ( r ) 

where we can use (1.2.8) and (varx)- 2 > K to obtain 

(1.4.4) 

r < In 1 — -Pn 

\ 2 ]K - F 0 ( v a r x ; 
pi 

(1.4.5) 

which proves the existence of p2 for K > FQ (vaix)pi . This is sufficient, as not satisfying this 
condition implies p\ itself has an x, variance larger than K and therefore p2 = p\ is the trivial 
solution in such case. 

We have thus proven that even two states with arbitrarily large non-unitary fidelity can have 
arbitrarily different quadrature variances, which means that if we want to capture the variance 
of states into some kind of metric, an important task in approximating quadrature eigenkets, it 
seems necessary to look elsewhere. 
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1.5 Significance of quadrature eigenkets 

We have not yet fully explained the uses of quadrature eigenkets and their approximations and 
a good time to do so would be now, before diving into any larger problems. Squeezed vacuum 
states themselves are often used not only while preparing some of the states mentioned later [8], 
but also in the quest to reduce quantum noise in complex optical experiments, such as the L I G O 
Collaboration [16]. Things become even more interesting once we consider superpositions of two 
or more quadrature eigenkets. 

1.5.1 Squeezed cat states 

One of the simplest superpositions to consider is the even eigenket superposition 

\Ca,oo) = \a) + \-a) . (1.5.1) 

Following an argument similar to that in section 1.2, we can argue that this state can be 

approximated by the state 

(1.5.2) 

where Najr is a normalization constant and \a,r) is the squeezed-displaced state 

\a,r) =Dx(a)S(r)\0) (1.5.3) 

defined using the x displacement operator [10] 

Dx(a) = exp 

The state (1.5.2) is a special case of a more general state 

\Ca,f) = ( |« , f) + \-a, f ) ) , (1.5.5) 

where a, r are complex numbers and where general complex forms of the displacement and 
squeezing operator are used. States of the form (1.5.5) are sometimes called squeezed cat 
states [4], as opposed to the case of f = 0, i.e. the superposition of coherent states, which is often 
called the cat state [17]. Cat states themselves can be used to develop quantum computational 
schemes [18, 19] and can be prepared by means of photon subtraction [20], however, squeezed 
cat states offer some further possibilities. 

We will examine the properties of squeezed cat states later, but for now, we can note that, in the 
limit of large squeezing, squeezed cat states are invariant under certain translations, which allows 
us to perform approximate error correction in quantum codes based upon them [4]. Squeezed 
cat states can also be used to prepare G K P states [5, 7, 9], which makes them invaluable for 
many proposed bosonic quantum codes. 

a 

72 
(at - a) exp(—iap). (1.5.4) 
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1.5.2 G K P states 

Some more complicated cases of quadrature eigenket superpositions were introduced in [6] and 
are now usually called G K P states after the authors. We have already mentioned that certain 
schemes for their preparation include the use of squeezed cat states, but let us also briefly 
introduce the states themselves and their use. The two G K P states can be defined as [21] 

b'GKp) = ( 2 V ^ ) V 2 £ \x = (2n + j)V^) (1.5.6) 
n=—oo 

for j = 0,1. G K P states find their use in quantum computing because they form a periodic 
lattice in the phase space, which allows for very effective correction of errors that exhibit as a 
displacement smaller than the lattice period in the G K P code [6]. These errors are associated 
with photon loss [2], and as such it is impossible to avoid them and quite useful to be able to 
correct them. Needless to mention, G K P states again have to be physically approximated by 
superpositions of squeezed states [6, 21] as they comprise of quadrature eigenkets, which we 
have established to be unphysical. Although the G K P code was very much ahead of its time, 
it is not perfect and we can see see that it is for example not robust against dephasing errors, 
as G K P states do not possess the rotational symmetries that states in some other proposed 
bosonic codes do [2]. 

In recent years, the formalism of squeezed states has also spread from quantum optics into 
theoretical quantum descriptions of seemingly unrelated phenomena, such as black hole evap
oration [22], antiferromagnetism [23] and even into descriptions of quantum gravity and its 
potential detection [24], so there seems to be enough incentive to study them further. 

11 



Chapter II 

Squeezed cat states 

In the following chapters, we will turn our attention to how the quality of squeezed cat states 
can be evaluated. We choose to focus on these states, as the discussion in section 1.5 shows 
that they can be used either to create quantum computing codes based directly upon them or 
as resources to prepare more complex and possibly even more useful quantum states. Let us 
start by examining them more thoroughly. 

2.1 Representations and visual iza t ion 

For the purposes of this thesis, the squeezed cat state is to be understood as the even super
position of squeezed-displaced states with real displacement and real squeezing as defined in 
equation (1.5.2). Rewriting the squeezed displaced states using equation (1.5.3) we obtain 

ICn (Ar(a)S(r) |0> + Dx(-a)S(r)\0) 
[1 + exp( -a 2 e 2 r ) ] 

where we can use the wave function of the squeezed vacuum state (1.2.6) to determine 

1 

(2.1.1) 

(x\Ca,r) N1 

( 2 r (X - a) \ I 2r ( X + a ) 
exp - e - — — — +exp - e - — — - (2.1.2) 

the normalization constant is 

N'ar = exp 
-a2e2r — r 

2y^ [1 + exp (a2e2r (2.1.3) 

Note that the probability distribution of x for a squeezed cat state 

Pcatar(x) = \{ACa,r)Y N' 2 

J 2r(X - a) \ I 2r (X + a) 
exp -e2r-——— + exp -e2r-——- (2.1.4) 
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is quite similar to 

Pmixair(x) — (x\pm[Xa \x) exp e2r (x - aY + exp e 2 r (x + a) (2.1.5) 

which is the probability distribution of x for a mixture of two squeezed-displaced states 

/3mix a , r = ^(\a,r)(a,r\ + \-a, r)(-a, r | ) , (2.1.6) 

the only difference between (2.1.4) and (2.1.5) being the cross term and normalization. This is 
clearly visible when we construct the density matrix for the squeezed cat state 

Peat a,; 
1 

2[ l + exp( -a 2 e 2 r ) ] 
(\a, r)(a, r\ + |—a, r)(—a, r\ + |a, r)(—a, r | + |—a, r)(a, . (2.1.7) 

We can quantify their similarity by integrating the squared difference between the probability 
distributions over all quadrature eigenvalues 

/

+oo 
dx [Pc.ta,r(x) - Pm^r(x)Y 

-oo 
(2.1.J 

This is simply the squared L 2 —metric-induced distance between the two functions, which is 
equal to zero for probability distributions equal almost everywhere [25]. It is apparent from 
the plots in figure 2.1 that A 2 P ( a , r ) is approximately equal to zero for sufficiently separated 
superpositions (a and r large), which indicates that the probability distributions are extremely 
similar that case. We can see that the probability distributions are also identical for the case 
of a = 0, which is to be expected, as in that case, both of these states just turn into squeezed 
vacua. 

a) b) AzP(a, r) 

A2P(a, r) 

0.00 
0.0 

2.5 

2.0 

1.0 

0.5 

0.10 

0.0 

I 

0.04 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1. 

a 

Figure 2.1: a) 3D plot and b) density plot of A2P(a, r) as a function of a and r. For sufficiently squeezed 
and sufficiently displaced states, the probability distributions of x for the squeezed cat state (2.1.7) and 
the mixed state (2.1.6) are practically identical. 
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It is therefore impossible to fully characterize the squeezed cat state pCa,ta,r simply by examining 

it in the x—representation, even though that seemed sufficient for one squeezed state. In order 

to fully understand superpositions of this sort, we will have to resort other representations. 

To find the p—representation of a squeezed cat state, we insert the completeness relation [11] 

I G díC (p\x) (x\Catr) 

3 0 exp (—ipx) 

) N'rV2ŤŤ 
f 2 r (x - a) \ ( 2 r (x + a) 

exp - e - — + exp - e - dx (2.1.9) 

and perform the resultant Fourier transform to obtain 

I G 
2 I -2rP2) r x 

exp \ —e — J cos yap). ďN'a r \ 2 
(2.1.10) 

The process for mixed states is quite similar, even though it is necessary to insert the complete

ness relation twice in order to transform all matrix elements 

(PilPn \V2) dxidx2 (pi\xi) ( x i | / 3 m i X a r\x2) (x2\p2) 

+00 „r er exp (—ip\X\) exp {ip2X2) 
exp 

•2r (xi — a)2 (x2 — a)2 

+ exp „2r (xi + a)2 ^ (x2 + a)2 

dxidx2, 

(2.1.11) 

from which we obtain 

(pi|Pmixa,|P2) exp (ň + ď cos [a (p2 - Pi)}-

The probability distribution for the squeezed cat state being 

4 
\(p\Ca,r)\' 

?2rNL 
- — 2 e x p ( — e 2 r p2 ) cosz (ap) 

(2.1.12) 

(2.1.13) 

as opposed to the probability distribution for the mixed state 

(p|Pn x/ir V 
-2r 2 

e p (2.1.14) 

We can see that in the p—representation, the mixed state behaves like a squeezed vacuum state, 

whereas the squeezed cat state contains the cosine term, which implies that some eigenvalues 

of p are not allowed at all. It also implies periodicity and translational invariance with a period 

of A p = G Z in the limit as r —>• +00, whereas the mixture (2.1.14) is invariant under 

any p translation in the same limit. These properties can be attributed to the cross terms in 

(2.1.7) and distinguish the superposition state from the mixture. 

14 



2.1.1 Phase space formalism 

A n even more suggestive way to study quantum states is with the help of quasi-probability dis
tributions, arguably the most famous one being the Wigner quasi-probability distribution [10], 
also sometimes called the Wigner function. We define it for a quantum state described by the 
density operator p as 

W (x,p) 
1 

2^ 
exp (ipt) (x-t/2\p\x + t/2) dt. (2.1.15) 

It essentially acts as a joint probability distribution for x and p, and we can obtain their respec
tive distributions simply by integrating over the other variable. This highlights the importance 
of Wigner distributions for visualization, as they combine probability distributions for both 
quadratures. In order to achieve a full formulation of quantum mechanics in the phase space, 
we also need a mapping between operators in the Hilbert space and the phase space, which we 
usually call the Weyl transform [26]. This transformation is defined similarly to the Wigner 
function itself 

A(x,p) 
+oo 

exp (ipt) (x - t/2\A\x + t/2) dt, (2.1.16) 

where A is the transformed operator in the phase space. The phase space formalism allows 
us to calculate expectation values of operators only using the Wigner function of the quantum 
state and the Weyl transform of the operator [10] 

Aj= J J W (x,p) A (x,p) dxdp. 

We can calculate the Wigner function for the squeezed cat state as 

cat (x,p) = — / exp (ipt) (x - t/2\Ca,r)(CaAx + t/2) dt 

2 cos (2ap) exp [e2r (2ax + a2)] + exp (4ae2rx) + 1 

x exp 

whereas for the mixed state, we obtain 

2vr [exp (a2e2r) + 1] 
2r I 2 n \ 2 - 2 r 

e ( —x — 2ax — p e 

(2.1.17) 

(2.1.18) 

I r+oo 
Wmix (x,p) = — exp 

47T J _ o o 
(ipt) (x - t/2\ (\a,r)(a,r\ + \-a, r)(-a,r|) \x + t/2)dt 

exp (4ae2rx) + 1 
2tt exp 2 o 2\ 2 - 2 r 

x — lax — a ) — p e 
. (2.1.19) 

Wigner functions for both states are plotted in figure 2.2, where, in the case of the squeezed 
cat state, we can observe negativity of the Wigner function, which is a characteristic of all 
non-Gaussian pure states [10]. It can also be seen why the states behave identically in the 
x—representation, as the interference fringes cancel out while integrating over p. 
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Figure 2.2: a) 3D plot and b) density plot of the Wigner function for the squeezed cat state, c) 3D plot 
and d) density plot of the Wigner function for a mixture of two squeezed displaced states. The Wigner 
functions are constructed per equations (2.1.18) and (2.1.19) with a = 5 and r = \ j\f2. The characteristic 
interference fringes and negativity of the Wigner function are apparent in the superposition state. 
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2.1.2 Fock basis 

Mainly for the purpose of future numerical optimization, it is also useful to examine the squeezed 
cat state in the basis of number states, also called the Fock basis, which consists of eigenkets of 
the number operator N = a^a [13]. The coherent state \a) = D (a) |0) can be written as 

N=0 

where the general displacement operator 

H 2 an 

- 'n\ 

D (a) = exp (aa) - a*a) (2.1.21) 

is used. This implies that an x displaced state Dx (a') |0) = \a', 0) is expressed as 

,2 +oo m 

and the superposition of displaced states is thus 

^ 0 ) = e V E : 7 _ | n ) (2.1.22) 

i(K,0> + | - a ' , 0 » = ̂  ( g - ^ . g i ^ ) |„>, ( , , 2 3 ) 

where the odd terms in the sums cancel out to give 
l2 

1 — 2— +00 /2n ^(V,0) + | - « ' , ( ) ) ) = ^ ^ y ^ " |2n). (2.1.24) 
V ^ V ' / V 2 ^ V 2 2 n (2n)! 1 7 V ' 

Notice that by choosing real a', all the coefficients are real. Applying the real squeezing op
erator S (r1) from equation (1.2.3) to (2.1.24) keeps all the coefficients real, as its own matrix 
representation in the Fock basis is just the exponential of | (a2 — a)2^j , which is a real-valued 
matrix in the Fock basis. Doing so creates a superposition of displaced-squeezed states, which 
exist in one-to-one correspondence with squeezed-displaced states [13]. This means that by 
choosing the correct a', r' for any given a, r we get 

1 S(r>)(\a>,0) + \-a>,0))=S(r>) 
V2 

l2 
_ f i L _ +00 n /2n 

V2 5 0 y 2 ^ ) ! | 2 n > 

— (|a,r) + | - a , r ) ) 

(2.1.25) 

Na,r 

|Ca,r) , 

which is a squeezed cat state that has real coefficients in the Fock basis (from the matrix repre
sentation of the squeezing operator and (2.1.24)), that are non-zero only for even-numbered Fock 
states (as the squeezed cat state wave function in x is symmetric, similarly to the superposition 
of displaced states). 
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2.2 Important properties 

Before proceeding further, let us list some important properties of the squeezed cat state, which 
follow from the various representations derived in the previous section: 

1. the squeezed cat state has symmetric wave functions in x and p, 

2. its Wigner function is negative at certain points, 

3. its expansion in the Fock basis only contains even terms, which are real-valued, 

4. its p—representation wave function vanishes at p = ( 2 f c~ 1) 7 r

; fcgZ. 

5. in the limit r —> +oo, the state is invariant under p translations by Ap = k G Z, 

6. in the limit r —> +oo, the x—representation wave function vanishes at i / i a . 
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Chapter III 

Evaluating squeezed cat states 

We would like to find a way to evaluate how well a given state approximates the superposition 
of quadrature eigenkets (1.5.1). We have already established in section 1.4 that the fidelity 
with any other state is not going to particularly help us, but there are some other methods to 
consider, which we will introduce generally and then apply to the squeezed cat state in this 
chapter. 

3.1 A s v i r t u a l interact ion resources 

One possible way to evaluate how similarly a state behaves to the ideal superposition of quadra
ture eigenkets is by utilizing it as a resource in an interaction and comparing the resultant output 
to the ideal output we would expect if we had used the ideal superposition instead. 

3.1.1 Quantum nondemolition interaction 

A n interesting interaction to consider is the Quantum nondemolition interaction (QND inter
action), which is a two-mode interaction that ideally transfers all the information from one 
of the input quadratures into the other mode [27]. Q N D measurements have been demon
strated experimentally and correspond to so-called sum gates in continuous variable quantum 
computation [28]. We can describe an ideal Q N D interaction using the quadrature relations 

x[ = x u p i = P 1 - P 2 , 
(0.1.1J 

P2=P2, X2=X2 + Xl, 

where Xi and pi are quadratures of the i—th mode described the annihilation operator ai and 
where the output quadratures are primed. The independent bosonic modes satisfy 
We can equivalently describe the interaction using its unitary transformation 

a>i,a>j Sij. 

C/QND = exp (-ixip2) • (3.1.2) 
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We call x\ and p2 the nondemolition variables, as they are fully transferred into the output of 
the other mode while not being affected themselves. 

Specifically, we shall consider an interaction depicted in figure 3.1, where the first mode contains 
the resource state |R), which will ideally be the superposition of x eigenkets defined in (1.5.1), 
and the second mode contains the vacuum state |0). 

| R ) r 

|o>s 

|IN) 1 2 

0 

I OUT) j 

|COUT> s 

Figure 3.1: Schematic representation of the quantum nondemolition interaction as a unitary black box, 
time evolution is from left to right, obtaining a conditional output in the second mode is included. 

We can write the joint input state of the interaction as 

P P + OC 

| IN) 1 2 = \R)1 ® |0) 2 = / / (xi |R) (x 2|0) \x1)1 ® \x2}2 d x i dx 2 , (3.1.3) 
J J—oo 

where (8) is the tensor product combining the two subsystems (modes) [29]. We use subscripts 
to specify which mode specific states are associated with. The joint output can be found as 

P P+OC 

| O U T ) 1 2 = | O U T l ) 1 ® |OUT2) 2 = / / (xi |R) (s 2 |0) \xl)l ® \xx + x2)2 ds idx 2 . (3.1.4) 
J J — oo 

We are particularly interested in the output if we measure the first mode p\ quadrature to be 
zero. This measurement can be analytically implemented by collapsing the first mode using the 

1(pi = 0| eigenbra. We can set 1(p\ = 0| = x (a?31 dx3 to obtain the ideal conditional second 
mode output (up to normalization) as 

| C O U T i d e a l ) 2 (xi\R) (x2\0) (x3\xi) \x\ +x2)2 dxidx 2 da;3 

+oo 
(x 3 |R) (x2\0) \x3 + x2)2 dx2dx3 

-oo 
+oo 

•DC 
+oo 

- oo 
-oo 

((a^3|̂ 3 = a) + ( x 3 | x 3 = - a ) ) (x2\0) \x3 + x2}2 d x 2 d x 3 

P P+OO 

If [S(x3 — a) + S (x 3 + a)] (x2\0) | x 3 + x 2 ) 2 dx2 dx3 

J J — oo 

(x2\0) (\x2 = -a)2 + \x2 = a)2^jdx2 

{x2\DX2(-a)\0) + (x2\DX2(a)\0) \x2)2 dx2 

DX2 (a)\0)2 + DX2 ( - a ) | 0 ) 2 . 

(3.1.5) 

oo 
4-0O 
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The ideal conditional output is therefore an even superposition of displaced vacuum states 
centered at eigenvalues corresponding to the resource state eigenkets - a cat state, only this 
time not a squeezed one. Both of the input states and the conditional output state are visualized 
using their Wigner functions in figure 3.2. 

a) W i n , ( z i , P i ) b) wiD2(x2,P2) c) wcout2(x2,p2) m 

6 

4 

2 

Pi 0 

-2 

-4 

-6 

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 

X\ x2 x2 

Figure 3.2: Density plots of a) the first mode input, b) the second mode input and c) the conditional 
second mode output, as given by the QND interaction in figure 3.1 for a = 5 and the ideal resource state. 
Note that the ideal resource state in the first mode input is only approximated by a highly squeezed cat 
state for the purposes of this visualization. 

In order to calculate the conditional output in cases where | R ) 1 is a pure state different from the 

ideal resource, we can pick up on the second line of (3.1.5) and perform a variable substitution 

X2 —> X2 — X3 to obtain 

| C O U T ) 2 = / / ( x 3 | R ) ( x 2 | 0 ) | x 3 + x 2 ) 2 d x 2 d x 3 = / / (x3\R) (x2 - x3\0) \x2)2 dx 2 dx 3 , 
J J-co J J — CO 

(3.1.6) 
which means that the x—representation of the (non-normalized) conditional output can be found 
by simply evaluating the integral 

/

+oo 
(x 3 |R) (x2 - x3\0) dx 3 , (3.1.7) 

-oo 

using only the x—representations of the resource state and the vacuum state. The nondemolition 
variable representation of the conditional output is thus simply the convolution of corresponding 
representations of the interacting states. Performing this integral with the squeezed cat state 
(1.5.2) as the resource, we obtain the conditional output 

exp 
~ (2xl-r+a2)-r \ r / , - M i - \ ^ 

2(e2r+l) 
(e2r(x2+a)2\ , (e2r(x2-af  

e X P ^ 2(e2r+l) ) + e X P V 2(e2r+l) 
( x 2 | C O U T c a t ) = ^ '- , 9 9 ^ . (3.1. 

which quite apparently has the characteristics of a cat state and it converges to the coherent 
state superposition obtained in (3.1.5) in the resource state squeezing limit of r —>• +oo. 
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The fidelity of this output and the ideal output can be evaluated as 

2eWe2r + 1 
F(^COUT 

cat 

exp 2(e 2 r+l)(2e 2 r+l) + exp 

(ea2 + 1) (2e 2 r + 1) e- 2 r+i + 1 
(3.1.9) 

and plotted as a function of a, r, see figure 3.3. It is apparent that F > 0.9 can be achieved even 

with zero squeezing, which is quite interesting. It seems that a superposition of x—displaced 

states is itself a decent approximation for a superposition of x—eigenkets, but we can also see 

that the fidelity increases significantly when squeezing is introduced, although it cannot reach 

unity for any physical state. Notice that there is a visible irregularity for small values of a 
and small squeezing, which can be attributed to the constituent states of both the resource and 

the output superpositions partially overlapping (picture the rightmost state in figure 3.2 with 

a £ [1,2]), which results in the fidelity function taking on a more interesting shape there. 

a) b) 
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0.90 

Figure 3.3: a) 3D plot and b) density plot of the fidelity of the ideal QND measurement conditional 
output obtained using a superposition of x—eigenkets and the realistic output obtained using a squeezed 
cat state as a function of a and r. 

It should also be mentioned that while we may have criticized fidelity in the first chapter, in 

this case, we are using it to compare two normalizable superpositions and not trying to target 

any unphysical states - the variance ratio issue outlined in section 1.4 is therefore irrelevant to 

this case. 
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3.1.2 Beam splitter 

A conceptually slightly simpler interaction to consider is an interaction of the squeezed cat state 
and the vacuum in a beam splitter. The ideal beam splitter interaction can be described by the 
unitary transformation [20] 

UBS = e x P (at 02 — a\ä\ (3.1.10) 

where 9 can be intuitively connected with the transmission and reflection coefficients of the 
beam splitter as \T\ = cos#, \R\ = sin#. It is useful to express the unitary transformation using 
mode quadratures as 

ÜBS = exp[i6>(pix2 - P2X1)}, (3.1.11) 

which is an evolution operator associated with the Hamiltonian H = p2X\ — p\X2- We can there
fore solve Heisenberg's equations of motion [11] to obtain the output quadratures as functions 
of 9: 

x'i = x\ cos 9 + £2 sin 9, p\ = p\ cos 9 + m sin 9, 
(3.1.12) 

P2 = P2 cos 9 — pi sin 9, x'2 = x2 cos 9 — x\ sin 9. 

We will again follow the same setup as before, only replacing the unitary transformation for 
one of the beam splitter. The interaction is visualized in figure 3.4. 

|R)i-

|o>s 

|IN>12 

0 » 
0 

I OUT) 12 

|COUT>j 

Figure 3.4: Schematic representation of the beam splitter interaction as a unitary black box, time 
evolution is from left to right, obtaining a conditional output in the second mode is included. 

Specifically, we shall consider a 50:50 beam splitter with 9 = 7r /4. The joint output after the 
beam splitter transformation is 

I OUT) 12 (xi |R) <x2|0) X\ + X2 

V2 
X2 - X\ 

V2 
dxidx2 (3.1.13) 

per (3.1.12), and the conditional second mode output for p\ = 0 is 

| C O U T ) 2 

+oo 
(xi |R) (x 2|0) {x3 

Xl + X2 

V2 
X2 - X\ 

V2 
dxi dx2 dxs 

•oc 
X 3 A / 2 - X2 RJ (x 2|0) X2V2 - x 3 y 2 dx2 dx3 

X3 - X2 

s/2 
R X2 + X3 

s/2 

(3.1.14) 

0 ) 1̂ 2)2 dx2 dx3, 
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where we performed the substitution x2\/2 — x% —>• x2 in the last line and ignored the renormal-
ization going with it, as the states are not normalized either way, due to the act of measurement 
in one of the modes. We expect the ideal output to be the infinite squeezing limit of the squeezed 
cat output, so let us compute that one first 

exp 
(x 2 |COUT, 

2(e2r+l) 

cat/ 
v

/ 2 ^ v / ? 7 T l V e ^ T + 1 

exp 
'e2r (ixl + 2lax2 + 2a' 

4 (e 2 r + 1) 
+ exp 

'e2r (4x1 ~ 2iax2 + 2a' 

4 (e 2 r + 1) 

In the limit r —>• + 0 0 we get 

_ a 2 _ M 2 ) 

( x 2 | C O U T i d e a i ) = 
2#7rVe a + 1 

exp 
a 

X+J2J 1 + ('XP 

a y 
72) 

(3.1.15) 

(3.1.16) 

which can be written as a squeezed cat state with specific parameters or as a squeezed super
position of coherent states 

| C O U T i d e a l ) a a/v / 2,ln2/2/ ~~ jy D, 
a/V^,ln2/2 L 

1 
T2)+ D' 

a 
V2 

S 
In 2 

|0> 

/ In 2 
N a/72, In 2/2 v-

(3.1.17) 
S[— Dx(a) + Dx(-a) |0) 

The interaction inputs and conditional output are visualized in figure 3.5. The conditional 
output is slightly squeezed compared to the QND interaction output from figure 3.2. 
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Figure 3.5: Density plots of a) the first mode input, b) the second mode input and c) the conditional 
second mode output, as given by the considered beam splitter interaction for a = 5 and the ideal resource 
state. Note that the ideal resource state in the first mode input is only approximated by a highly squeezed 
cat state for the purposes of this visualization. 
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We can again calculate the fidelity of the real output and the ideal output as 

2 e V e 2 r + 1 exp( i „ , , , - i -(2e 2 ' -+ i ; 
e X P \2(e2r+l)(2e2r+l) ) ~+~ e X P I 2(e2r+l) 

i 2 

(ea2 + 1) (2e2r + 1) ( e ^ + i + 1 
-, (3.1.18) F ( P C O U T c a t , P C Q U T i , 

which is exactly the same result we obtained for the Q N D interaction. For the squeezed cat 
state, both of these methods give us the same information, but that is not the case for all states 
(as will be seen later). For thoroughness, the fidelity is again plotted in figure 3.6. 

F (a, r) 
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0.97 
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Figure 3.6: a) 3D plot and b) density plot of the fidelity of the ideal beam splitter measurement 
conditional output obtained using a superposition of x—eigenkets and the realistic output obtained 
using a squeezed cat state as a function of a and r. 

3.2 B y measuring an observable 

We have shown that x—eigenket superpositions behave in a certain way when interacting with 
the vacuum state, and that one possible way of evaluating the quality of a given state as 
an approximation of said eigenket superposition is to perform the same interaction with the 
given state and compare the output with the ideal output by means of quantum state fidelity. 
This is a straightforward and intuitive way to approach this problem; however, its realization 
is not necessarily practical, as both the interaction and subsequent measurements have to be 
performed to be able to determine the fidelity (either numerically or experimentally). We have 
also not shown whether any local interaction fidelity maxima exist and whether the states that 
behave like quadrature eigenket superpositions in the aforementioned interactions necessarily 
share their structure as well. In order to do so, introducing a different method is desirable. 

The goal of this section is to find a quantity that can be measured directly from the quantum 
state we want to evaluate, and ideally provides similar information to the interaction-based 
methods. A simple way to obtain at least a theoretically measurable quantity, is to consider 
hermitian operators and their expectation values, which are by definition real-valued [11]. 
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3.2.1 Eigenvalue operators 

Let us now return to the squeezed cat state properties listed in section 2.2. We are particularly 
interested in the properties for the limit of large squeezing, as we ideally want the state to have 
identical properties to an eigenket superposition. We only want the quadrature eigenvalues 
of x = ± a to be measurable, and it is quite easy to design an operator with a minimized 
expectation value for that case. Consider 

2 
6 i (a ) = (x2 - a 2 ) . (3.2.1) 

Applying this operator in the x—representation simply amounts to multiplying the wavefunction 
by (x2 — a2)2 , which is a function positive everywhere except for x = ±a, where its value is 
zero. This means that in order for ^ O i ^ to be zero, the x—representation wavefunction of the 
state has to be fully localized at x = ± a and an x—eigenket superposition thus minimizes this 
operator. It is unfortunately not the only state minimizing this operator, as we have already 
established in section 2.1 that an equal mixture of x—eigenkets at ± a is also going to minimize 
this operator, and that, in general, no operator based solely on x can suffice. 

Another valid criticism of 3.2.1 would be that it does not give the same weight to both sides of 
the peaks. By that we mean the fact that (x2 — a2)2 grows faster for \x\ > a than for \x\ < a 
and it also diverges to infinity in the first case, while only getting up to a 4 at zero. We would 
ideally like for the function to grow the same way going both directions from ± a , so that we 
prioritize symmetric peaks while minimizing the operator expectation value and do not get 
approximate states with peaks "heavier" on one side. This is not really possible to achieve, as 
making the operator diverge at zero would make it non-hermitian. It would be possible to solve 
this problem through evaluating the variance around both a and —a separately by dividing the 
wavefunction into two parts for x > 0 and x < 0, but this again does not align with our goal of 
finding one hermitian operator. 

To ensure that the studied state is a superposition and not a mixture, we need to consider a 
property that only occurs in superposition states. We have shown that in a pure squeezed cat 
state (no matter the squeezing) the p—representation wave function vanishes at p = (-2fc

2^1->7r 

for k € Z. This is basically the opposite of the situation in the x—basis, where only specific 
eigenvalues can be measured. In order to detect this behavior using an operator, we would like 
it to correspond to a function of p that is zero everywhere, except for the vanishing eigenvalues. 
One way to achieve this, is to simply consider projections onto the eigenvalues 

+oo 

62(a) ^ £ 
(2fc — 1) 7 T \ / (2fc — 1) 7T 

V 2a / V 2a 
(3.2.2) 

The expectation value of this operator is zero for pure cat states and greater than zero for any 
state that contains non-zero values at p = (-2fc

2^1->7r in its p—representation. It does not give 
us any information about the squeezing, as we have established that this is a property of all 
squeezed cat states. 
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Note that this operator can be approximated as a harmonic function 1 up to normalization 

0'2(a) = lim [sin (ap)]2z = lim ( — 7 ) [exp (—zap) — exp (iap)]2z , (3.2.3) 
z—>+oo z—>+oo \ AJ 

which is essentially an infinite product of inverse x—displacement operator combinations. Using 
this representation, we can also approximate this operator by choosing large z, which is quite 
useful for numerical methods, as eigenket projections from equation (3.2.2) are not available in 
a finite Fock basis. We can combine the two introduced operators to get 

6(a) = 61(a) + d2(a), (3.2.4) 

which should allow (o(a)^ = 0 only for an infinitely squeezed cat state with displacement a, 
i.e. the superposition of x—eigenkets, and greater expectation values for all other states. We 
can explicitly evaluate (o(a)^ for a squeezed cat state by using the wave functions in (2.1.2) 
and (2.1.10) to obtain 

4 e 2 T & 2 : 3 )

+ 8 e ^ + 3 
0 ( ° ) ; = 6 4 6 4 , • (3-2-5) 

which is decreasing everywhere as a function of r and converges to zero in the limit of r —> + 0 0 , 
exactly as expected. We further expect that the lower the value of (o(a)^j is, the more the state 
behaves like an ideal superposition of eigenkets, however, this cannot be confirmed without a 
thorough numerical analysis, which is performed in the following chapter. 

3.2.2 Detecting decoherence 

In the rest of the thesis, we will mainly resort to numerical methods to fully evaluate the 
proposed quality measures. For the final purely analytical part, however, we can test how well 
the proposed operators detect decoherence of squeezed cat states. A l l physical systems undergo 
losses [13] and losses are the most common source of decoherence in optical superpositions, as 
they are associated with the loss of correlation between the constituent states. 

We can understand decoherence as the process during which a squeezed cat state turns into a 
mix of squeezed displaced states through the loss of interference fringes, refer to figure 2.2 for 
visualization. It can be argued that while curiosity gets the cat into the box, it is decoherence 
that truly kills it. Further losses then push the previously superposed states together, eventually 
resulting in a vacuum (or thermal) state. Losses are often modeled stochastically using the 
master equation, which is derived by coupling the electromagnetic mode to a heat bath [13]. In 
the interaction picture, we can write the master equation as 

p = -NL [of] p + - (N + 1) L [a] p - - (M*D [a] p + MD [a f] pj , (3.2.6) 

where L > 0 is the damping constant, M = M\ +1M2 is a complex number called the squeezing 
of the bath, which is zero at thermal equilibrium, N is a parameter related to the purity of the 

l rThe even exponent 2z is chosen in order to make the function non-negative everywhere. 

27 



asymptotic state (and to the number of thermal photons in the bath), and L 6 and D 6 
are the Lindblad superoperators [17] 

L 

D 

p = 20 / 30 t - O^Op - pO^O, 

P = 2dp6 - 66p - poo. 

(3.2.7) 

(3.2.8) 

We will not go into detail of how the master equation is actually solved, as open quantum 
systems are outside the scope of this work. The important fact is that it can be analytically 
solved for the squeezed cat state in the phase space representation. In the idealized case of 
M = N = 0, which corresponds to a state at equilibrium with a zero temperature bath [13], we 
obtain the squeezed cat Wigner function time evolution as [17] 

Wcat (x,p,t) = 

tr+r f e t r + 4 r _ e t r + 2 r , 
e V 4 2 " r 

e 2 ( « r +r ) , e ^ r _ _ e ^ : , e ^ : _ l 
4 - I - 4 4 "I- 2 4 

x < e 
-a2 (sinh(r)+cosh(r)) 

47T [e~a7'(sinhM+coshfV))2 _|_ \j 

( _ e t r _ e 2 r + 2 ) e t r + 2 r _ e t r + e 4 r _ 2 e 2 r + 1 

. t r ( e 2 r ( _ e t r _ e 2 r + 1 ^ 2 + p 2 ( _ e t r + 2 r + e 2 r _ 1 ^ + a 2 ( i t r + 6 r _ 6r + e<Lr\+ape^+2r s t r + 2r _2ie2r + 2A 

+ e e * r + 4 r _ 2 e t r + 2 r + e 2 ( t r + r ) + e t r _ e 4 r + 2 e 2 r _ 1 

tr 
e t r ( e 2 r ( _ e t r _ e 2 r + 1 ^ 2 + p 2 ( _ e t r + 2 r + e 2 r _ 1 ^ + a ( 2 e t r + 2 e 2 r _ 2 ^ ^ - + 2 r : ] : + a 2 e 2 r ( _ e t r _ e 2 r + 1 ^ 

_|_ e e t r + 4 r _ 2 e t r + 2 r + e 2 ( t r + r ) + e t r _ e 4 r + 2 e 2 r _ 1 

e t r ( e 2 r ( _ e t r _ e 2 r + 1 y 2 + p 2 ( _ e t r + 2 r + e 2 r _ 1 > j y a ( _ 2 e t r _ 2 e 2 r + 2 y % . 

_|_ g e t r + 4 r _ 2 e t r + 2 r + e 2 ( t r + r ) + e t r _ e 4 r + 2 e 2 r _ 1 I 

(3.2.9) 

This expression represents an analytical solution of the squeezed cat state loss and allows us 
to evaluate expectation values at any time for any operator we can find the Weyl transform 
of. This is not really a problem - if we can write an operator as a sum of operators that are 
dependent solely on x or solely p, then the Weyl transform of such operator is obtained simply 
by replacing x,p for x,p [26]. A l l operators mentioned so far are of this form. 

Note that in the zero-temperature case, the state converges to the vacuum as t —>• + 0 0 , as 
opposed to a general thermal state for any N > 0, this is luckily the optical default. Also 
note that while there are complex numbers present in (3.2.9), the function is real-valued as the 
summed pairs of exponentials are derived from complex conjugate matrix exponentials [17]. 

We can now study how expectation values for operators introduced in this section evolve with 
losses using the analytical solution obtained in (3.2.9), the general phase-space expectation value 
(2.1.17) and the trivial Weyl transforms of the studied operators. The solutions for T = 1 are 
plotted in figure 3.7. 
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Figure 3.7: Time evolution of (Oi(a)J and (02(a) J plotted in two different time scales, plot a) shows 
initial decoherence, where interference fringes are lost, plot b) shows the entire loss process with con
vergence to the vacuum state. A squeezed cat state with a = 5, r = 1 and losses governed by equation 
(3.2.6) with N = M = 0,T = 1 were chosen, axes are assigned by color, i i o s s is the time at which the 
quantum state converges to the vacuum (within used precision). 

We can see that both operators do what we expect them to: 0 2 ( a ) detects the loss of correlation 
between constituent states, which happens quite quickly, whereas 0\(a) increases as the states 
lose energy until only the vacuum state is left, which takes much longer. The operator 0(a) 
thus detects both of these distinct phases of loss. 

A question that arises naturally upon looking at the axis values in figure 3.7, is whether it is wise 

to give both of these operators the same weight as we had done in (3.2.4). Unfortunately, this 

question does not have a good answer because the values of ^ 0 2 ( a ) ^ are bounded, whereas that 

is not the case for (Oi(a)"j . Determining an appropriate weight for 0 2 ( a ) is thus a problem, 

which does not seem to have a unique solution. In general, we can consider operators of the 

form 

6c(a,c) = 01(a) + c-d2(a), c > 0, (3.2.10) 

Ouj(a,u) = Oi(a) cos to + 02(a) sinuj, a;G[0,27r], (3.2.11) 

where the parameter cor co can be chosen depending on the specific application. Note that while 
equation (3.2.11) allows for operators which are not positive semi-definite and is not generally 
minimized for the even eigenket superposition, it could still be an interesting object to study in 
the context of superpositions of squeezed states. In this work, however, we are mostly interested 
in obtaining the eigenket superpositions and will therefore continue focusing only on the positive 
semi-definite operator (3.2.10) with c = 1. 
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Chapter I V 

Numerical analysis 

We have proposed three distinct ways to evaluate the suitability of quadrature eigenket super
position approximations in the last chapter - two interaction based and one operator based 
measure. So far, we have mostly applied them to the model of the squeezed cat state (1.5.2). 
This state turned out to be a perfect approximation in the limit of high squeezing and a highly 
squeezed cat state is realistically the most we can hope to achieve, but only considering states 
of this very specific form will not get us too far. 

In this section, we shall utilize numerical optimization in truncated Fock spaces to explore more 
complex quantum states in order to find out if the proposed methods actually agree with each 
other, and determine how much information they convey and what their limitations are. 

4.1 Truncated Fock basis approximat ions 

It has been established in the first chapter that the spectra of quadrature operators are contin
uous and unbounded. Therefore, if we want to consider all possibilities in spaces spanned by 
these operators, we run into the problem of having an infinite number of parameters. Limiting 
their amount is thus crucial to perform any numerical calculations and there are multiple ways 
of doing so. A reasonable one, however, is to consider the first m eigenstates of the number 
operator, which form the truncated Fock basis 

This way, we limit ourselves to 2m — 2 parameters for pure states and generally work in an 
m—dimensional Hilbert space obtained as the span of this basis. A l l operators derived from 
the bosonic annihilation operator can also be written in the Fock basis because the annihilation 
operator functions as a lowering operator in this basis, following the fundamental relation [10] 

(4.1.1) 

(4.1.2) 

lrThere are m complex coefficients, the normalization requirement and global phase. 
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which implies that in the Fock basis, it can be written as 

fo VT o o 

0 0 y/2 0 . . . 

0 0 0 y/3 ... 

\ \ i i i ••• / 

(4.1.3) 

This representation is sufficient to derive the Fock basis forms of the quadrature operators, the 

squeezing operator, and the displacement operator, as all of these have been established to be 

functions of the annihilation operator in the first chapter. Obtaining the truncated Fock basis 

representations is then done either by simply discarding all matrix elements for n > m — 1 in 

the infinite-dimensional operator, or by using its relation to the annihilation operator with the 

truncated form of a plugged in. These representations are generally different and associated 

with differing errors [30]. In this work, we will utilize the second method. 

In order to determine whether a state is well approximated in the given truncated Fock basis 

(i.e. similar to its representation in an infinite-dimensional Fock space), we have designed a 

simple criterion. Consider a state \Am) in the m—dimensional Fock basis 

\Am) = Cl(am)\0), (4.1.4) 

where Cl is an operator function of the m—dimensional annihilation operator.2 Notice that 

all the states we worked with so far are actually of this form. We will say that \Am) is well 

approximated in the m—dimensional basis, if the state 

\BlQm) = Cl(a1Qm)\0), (4.1.5) 

which is a different state created using the same operator in a higher-dimensional representation, 

has the property 
m— 1 

\{n\B10m)\2 > 0-99. (4.1.6) 
n=0 

This criterion says that a state is well approximated in an m—dimensional Fock space if a state 

created using the same operators in a 10m—dimensional Fock space has > 99% probability of 

measuring n = 0 , . . . , m — l i n the number basis. We expect \B\QM) to be practically identical to 

the infinite-dimensional case obtained using the exact form of f2, this criterion therefore tells us, 

that even the infinite-dimensional state is predominantly composed of Fock states with n < m. 

Note that both the probability (99%) and the dimensional expansion (lOx) are a matter 

of choice. This specific combination of values was chosen as the Wigner functions of well-

approximated states per criterion (4.1.6) were close to indistinguishable from Wigner functions 

of their infinite-dimensional representations. Choosing a lower probability, for example, resulted 
2The QuTiP library [31] also obtains its truncated operators by simply using their relation to the annihilation 

operator and plugging in its truncated form, it is therefore natural to study the Cl (am) operator. 
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in well-approximated states containing clearly visible fringes in their Wigner functions (which 

do not appear in the infinite-dimensional case). 

4.2 Op t imiza t i on 

Let us now examine the operator 0(a) introduced in (3.2.4). It can be implemented in a 

truncated Fock space quite easily; 0\{a) can be obtained directly using the x operator and 

02(a) can be implemented through its approximation in (3.2.3) using the displacement operator. 

We have chosen z = 500, as using greater values of z resulted in the number system overflowing 

and returning 00 in certain coefficients. We propose two ways of finding the quantum state that 

minimizes the expectation value of an operator with non-negative eigenvalues: 

4.2.1 Eigenvalue minimization 

The more efficient way to find the optimal state is by simply finding the eigenstate of the 

operator with the lowest eigenvalue. A l l possible expectation values for an operator must be 

bound by its eigenvalues, as any state can be written in the eigenstate basis. The state with 

minimized expectation value of an operator with non-negative eigenvalues can therefore be 

found by selecting the ground state of the operator. The Python code to do this is shown in 

A . l . Results of this optimization for (o(a)^ in two different truncated Fock bases are visualized 

in figures 4.1 and 4.2, where the optimized states are compared with the most squeezed, well 

approximated cat states (per criterion (4.1.6)) in the given Fock basis (found using A.2). 

Figure 4.1: Wigner functions of a) the state with minimal (o(a)J and b) the most squeezed cat state 
available in the truncated Fock basis (per criterion (4.1.6)) for dimension m = 30 and displacement 
a = 3. The corresponding expectation values are denoted above the plots, both of the Wigner functions 
are constructed only using Fock states with eigenvalues n < m — 1. 
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It is apparent that the state obtained using eigenvalue minimization returns a lower expectation 
value than the most squeezed cat state available in the truncated Fock basis according to our 
criterion. The minimum eigenvalue state indeed looks very much like a squeezed cat state and it 
also possess its properties, like having nonzero coefficients only for even-numbered Fock states, 
with those coefficients also being real (see section 2.2). Here, these properties arise naturally 
by minimizing (0(a)), as does Wigner function negativity and symmetry. 

Figure 4.2: Wigner functions of a) the state with minimal \ 0(a)j and b) the most squeezed cat state 
available in the truncated Fock basis (per criterion (4.1.6)) for dimension m = 100 and displacement 
a = 3. The corresponding expectation values are denoted above the plots, both of the Wigner functions 
are constructed only using Fock states with eigenvalues n < m — 1. 

One issue with truncated Fock spaces is the fact that the smallest available eigenvalue is highly 
dependent on the dimension m and displacement a. To quantify this problem, we have plotted 
minimum O(a)— eigenvalue dependence on m for three different displacements in figure 4.3. 
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Figure 4.3: The dependence of minimum available eigenvalue of O (a) on the truncated Fock space 
dimension m for a 2,3,4. 
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We know that the minimum eigenvalue for m —> + 0 0 is zero and that there appears to be 
an upper bound in all plots. Within this bound, however, the behavior is quite chaotic due 
to truncated Fock space approximations. This does not mean that we cannot use the trun
cated operators for optimization. By construction, they should behave the way we expect the 
infinite-dimensional operator to, but we cannot make direct comparisons between Fock spaces 
of different dimensions. 

In order to compare the behavior of 0{a) in truncated Fock spaces and in the infinite-dimensional 
Hilbert space a little more easily in the following work, we chose a dimension-displacement 
combination m = 30, a = 3.1, because the finite-dimensional approximation of 0(3.1) has (by 
chance) an extremely low ground state eigenvalue in the 30—dimensional truncated Fock space. 
This does not imply that the expectation values of the approximated operator agree with the 
infinite-dimensional form in this case, but having similar minima allows us to easily scale them 
to compare their behavior. 

4.2.2 Random gradient-like method 

We have also developed a different method for finding the quantum state minimizing (o{a 
This method utilizes random kets to shift the states in a truncated Fock space closer to the 
optimal state. It can be described in the following simple steps: 

0. choose a normalized starting state |temp), 

1. generate a (pseudo)random normalized ket jshift), 

2. evaluate (o(a)^j for three states defined as 

_ |temp) - I [shift) 

|temp) - I (shift) 
I temp), + 

|temp) + I I shift) 

I temp) + I I shift) 
(4.2.1) 

3. rename the state with smallest ^0(a)y as jtemp), 

4. if jtemp) did not change in a set amount of iterations, increase the precision value k, 

5. repeat steps 1. to 4. until the optimization converges. 

Its implementation in Python can be seen in A.3, both the need for precision increase and 
convergence are checked using counters. This method is based on the simple premise that 
unless you are standing sideways to your goal, you can always make some progress towards it 
by making a small enough step forwards or backwards. The journey may be treacherous, but 
you will eventually reach it (unless you stumble upon a local minimum). 

In testing this method for (0(a)y, we did not stumble upon any local minima, and it always 
converged to the eigenstate with the lowest eigenvalue for the given m and a, the same states 
which were found in the previous section. This is a good sign, but the true power of this method 
lies in the journey itself. 
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4.3 E m b r a c i n g randomness 

Using the random gradient-like optimization introduced in the previous section, we can actually 
compare the proposed evaluation methods for a plethora of states that would never explicitly 
come to mind. By choosing a random starting state every time, the optimization would even
tually (after an infinite number of runs) go through all available states in the truncated Fock 
space. Given that it always converges to the same state, we can expect to get decent enough 
coverage for states similar to the optimal state after a finite number of runs. If we evalu
ate (o(a)^ along with the interaction fidelities from section 3.1 for all |temp) states during 
each optimization run, we should obtain the best picture of which states actually behave like 
quadrature eigenket superpositions and which do not. 

First, we need to generally implement the conditional measurements necessary for interaction-
based evaluations, for which we can use the unitary descriptions in (3.1.2) and (3.1.11). Given 
the unitary transformation, we can find the conditional output in the second mode after mea
suring pi = 0 in the first mode as [32] 

TV! 
P C O U T 2 = 

Tr 

f> t /5iN 1 2 ^(bi = 0) 1(pi = 0 | ® i 2 ) 

f> t/5iN12f>(bi = 0) 1(pi = 0 | ® i 2 ) 
(4.3.1) 

where i 2 is the unitary operator of the second mode, PIN12 is the joint input state before the 

unitary transformation U, in our case (with pure states) PIN12 = ® |0)2(0|, and Tr i 

denotes the partial trace over the first subsystem [29]. 

The issue of obtaining \pi = 0) in a truncated Fock space was solved by approximating it by 
the most squeezed vacuum state, which is well approximated in the given space (per criterion 
(4.1.6)), similarly to section 1.2, only with squeezing in the orthogonal direction (to obtain an 
approximation of \p = 0) instead of \x = 0)). 

Over one hundred optimization runs from random starting states were performed for the afore
mentioned dimension-displacement combination m = 30, a = 3.1 and a total of 1,090,137 unique 
quantum states were examined with ^O(a )^ , -FQND and F B S evaluated for all of them. F Q N D de
notes fidelity of the ideal QND output established in (3.1.5) and the output we obtain by using 
the examined state as the resource, F^s denotes the same value for the beam splitter interaction. 
Results are plotted in figures 4.4, the code used can be viewed in A.4. 

While it might seem that there is no connection between the fidelities and (O(a)^ , there is a 

very apparent lower bound starting at around ^O(a)^ = 0.15 and states with lower expectation 

values only exhibit F Q N D and F B S above a certain boundary. 

Careful examination of states which lie directly on this boundary (see figure 4.5) shows that 
these are states with minimized (Oi(a)*j , which differ only through values of (|o2(a)^ . This 
allows us to derive the boundary analytically, which is done in the next section. 
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Figure 4.4: Results of the repeated random (d(a)J minimization for m = 30, a = 3.1 with plots of a) 
V ^ Q N D and b) A / F B S - 0 The primed plots are zoomed-in leftmost sections of the non-primed plots. The 
individual optimization runs are clearly visible in the zoomed-in plots as well as a boundary curve, left 
of which no quantum states were found. 

"The QuTiP library defines fidelity according to [1], which corresponds to the square root of our fidelity. 
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4.3.1 Finding boundaries 

We postulate that in the Hilbert space spanned by x and p, all pure states minimizing (Oi(a) 
(i.e. the boundary states) are superpositions of the form 

|Ca,oo,w) = w I a) + | - a ) , 

where iu € R . This state can be thought of as the large squeezing limit of 

\£a,r,w) = i^— (wDx(a)S(r) |0> + Dx(-a)S(r) |0>) , 
•'»a,r,iu 

The x—representation wave function of this state is 

2 + tue 

y ^ e rw2 + 2y
/

7Te ° 2 e 2 r rtt> + y
/

7re 

and the p—representation is therefore 

((u> + 1) cos (ap) — z (w — 1) sin (ap)) 

IT Jw (ea e w + 2) + ec 

(4.3.2) 

(4.3.3) 

(4.3.4) 

(4.3.5) 

We can explicitly evaluate the expectation value of 02 ( a ) for this state as 

02(a) 
(w — 1) exp ^ - - r 

exp { ^ ) 

TT 
exp a2e2r 

/TT [2to + exp (a 2 e 2 r ) (1 + w2)} 
(4.3.6) 

where #2 [9] = 2g 1 / / 4 J^n^o <?n(-n+1*> is the second elliptic theta constant. Using equations (3.1.7) 
and (3.1.14) we can also straightforwardly calculate the conditional outputs in the QND inter
action and the beam splitter as 

2 r 2 , o 2 r 2 r e x^+2ae x^—re —r 

WC - 1 +1 e 2 ( e 2 r + l) 

( x 2 | Q N D _ C O U T ) 

•4/TT^e2r + IJto (e a 2 e 2 r tu + 2) + ec 

, 2 e 2 r \ a 2 e 2 r 

\ w ( e a 2 e 2 r i ü + 2 ) + e a 2 e 2 r 

(4.3.7) 

+ e e 2 r + ! I c 

2 i e 2 r x % + 8 a e 4 r x 2 + 8 a e 2 r x 2 - 2 % r e 2 r - 2 % , 

2 f ( e 2 r + 1 ) 

( x 2 | B S _ C O U T ) 
/ a 2 e 2 r \ 

e e 2 r + l w + 2 

a 2 e 2 r 
+ e e 2 r + 1 

tfl</e2r + l^/to (ea2e2rw + 2) + e « 2 e 2 r A 

/ a 2 e 2 r \ 
e e 2 r + l w + 2 

a 2 e 2 r 
+ e e 2 r + 1 

tfl</e2r + l^/to (ea2e2rw + 2) + e « 2 e 2 r A 
w ( e a 2 e 2 r w + 2 ) _ | _ e a 2 e 2 r 

(4.3.J 

38 



and the fidelities with optimal outputs as 

F = -PQND = ^ B S 

e V e 2 r + l e 2 ( e 2 r + 1 )( 2 e 2 r + 1 ) +e 2 ( e 2 r + 1 ) (to + l)z 

(e° 2 + 1) (2e 2 r + l)(w( e-^w + 2 ) + 
(4.3.9) 

It is clear that F B S = -PQND = 0 for an odd squeezed cat state with w = —1 and that these 
expressions convert to ones we obtained before for the original case with w = 1. Even and odd 
eigenket superpositions thus give oppositely correlated, orthogonal results in these interactions. 
Equation (4.3.9) also implies that the boundary is identical for both FBS and -FQND-

We can now compare equations (4.3.6) and (4.3.9) to eliminate w and then solve for F in the 
limit of large squeezing to obtain 

-Fmin (a, (6{a) 

¥ ( 0 ( a ) 
1 / 2 \ 

2^2 exp (-^J 
>°> 

for (0(a)) e 

otherwise, 

2^9 exp ( «2) 
7T (4.3.10) 

where we used the fact that ^02(a)y —> \0(a)j as r —>• +oo for all w. Equation (4.3.10) was 
2 

obtained for e~a <C 1 and is therefore only an approximation that works extremely well for 
a }t 2 (maximum error of <5.Fmm = 0.002 for a = 2.5). For smaller a, the exact form is 

0{a)) + 2ea e tf2 (e ö +l) \yfrer(\-ea e 

F m m ( a , (O(a)) ) = lim ̂  V 
V \ / ; ^ + ° o 2 0 F e r - ( e « 2 _ e « 2

e
2 " )/o ( a ) ) + 2 e ö 2 e 2 r ( e ö 2 + l ) ^ 2 

exp 

[exp ( - ^ ) 
(4.3.11) 

Using the explicit boundary curve equation, we can now visualize the relationship between 
Q N D / B S output fidelity and (0 (a)^ for any set displacement in an infinite-dimensional Hilbert 
space, see figure 4.6. 
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m = oo, a = 1 m = oo, a = 2 

{6(a)) (6 (a ) ) 

Figure 4.6: Analytical relations between (o(a)) and possible y/-FQND, V ^ B S for various values of a, gray 

rilling signifies the existence of quantum states with specific and (o (a)). Dashed lines correspond 
to (4.3.10) and full lines were found using (4.3.11), they overlap perfectly in the bottom two plots. 

It is apparent that the simplified form (4.3.10) works well for sufficiently large values of a and 
we can also see that the boundary behaves very similarly to the one found through numerical 
optimization, even though the values of ^O(a)) do not align. 

This can be attributed partly to the fact that we have chosen a very optimistic combination of 
m, a for the optimization, where the optimal state returns ((9(3.1)) = 2.39 • 10~6, even though 
evaluating it in an infinite-dimensional space returns larger values. This is caused by using a 
truncated Fock basis form of 0(a), but let us not forget that we have also used the harmonic 
approximation of 02(a) from equation (3.2.3), which is not normalized in the same way as the 
original form of the operator from equation (3.2.2). This is most likely the main cause of the 
shift in values. We can compare the analytical boundary with the one found numerically by 
scaling it appropriately, see figure 4.7. 
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(6(3.1)} 

Figure 4.7: Comparison between numerical data and the analytical relation between (^0(a)^ and possible 
X / - P Q N D • The thick red line was found using (4.3.10) with a scaling factor of 12.57 in the argument. 

The appropriately scaled analytical boundary agrees with the numerical optimization data al
most perfectly. This suggests that we have found the correct relationship analytically and that 
the truncated Fock basis numerical optimization does actually give data which agrees with the 
infinite-dimensional case, just scaled differently because of the 0 2 ( a ) approximation employed. 

Note that we can shift the boundary to the right by giving 0 2 ( a ) a larger weight in (3.2.4) and 
also note that the existence of quantum states in the entire filled area is only postulated; we 
have not established whether any bounds for large (O(a)) exist. 
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4.3.2 New cat-like states 

We have also found states that exhibit large values of (6(a)) , while still achieving very high 
fidelity outputs. Two of these states are visualized in figures 4.8 and 4.9 along with their 
respective QND and BS outputs. The same is done for the optimal state in figure 4.10. 

We can see that both of the new states create outputs with very high fidelities in the QND 
interaction; however, the second state performs quite poorly in terms of beam splitter fidelity. 
We have already mentioned that -FQND and -FBS do not necessarily have to be the same for 
general states and it is apparent that these two values can differ significantly. Both of the new 
states only contain real coefficients, which are non zero only for even-numbered Fock states, 
similarly to squeezed cat states; however, the coefficient structure is very different. 

A big challenge is to replicate states from figures 4.8 and 4.9 analytically in an infinite-
dimensional Hilbert space and potentially find more states which behave this way. One good 
question to ask is whether an upper bound for the fidelities exists based on (6(a)) . We had 
already established that the expectation value is unbounded; therefore, there may not be an 
upper fidelity bound at all, but this is only the case for an infinite-dimensional space, which 
also suggests that numerical analysis in truncated Fock spaces will not help us in finding an 
upper bound. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 
Fock Number 

Figure 4.8: a) New cat-like state Wigner function along with conditional outputs in b) the QND inter
action and c) the beam splitter. Fock coefficients of the top left state are shown in d), this state achieves 
F Q N D = 0.992, F B S = 0.996 with (6(a)) = 291 for a = 3.1. 
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Figure 4.9: a) New cat-like state Wigner function along with conditional outputs in b) the QND inter
action and c) the beam splitter. Fock coefficients of the top left state are shown in d), this state achieves 
F Q N D = 0.990, F B S = 0.732 with (6(a)) = 957 for a = 3.1. 
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Figure 4.10: a) The optimal state Wigner function along with conditional outputs in b) the QND 
interaction and c) the beam splitter. Fock coefficients of the top left state are shown in d), this state 
achieves F Q N D = 0.999, FBS = 0.996 with (6(a)) = 2.39 • 10~6 for a = 3.1. 
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Conclusions 

Throughout this thesis, the widely established theoretical framework of quantum optics was 
employed to examine the properties of even quadrature eigenket superpositions and subsequently 
devise methods to evaluate their approximations. In the first chapter, we have reached the 
conclusions that quadrature eigenkets can be thought of as the large squeezing limits of squeezed 
displaced states and that highly squeezed states therefore function as their approximations. We 
have also explicitly shown that quantum state fidelity gives us minimal information about how 
well a certain state approximates a quadrature eigenket, due to insufficient connection between 
fidelity and the quadrature variance ratio of two states. 

The remainder of this work was focused on even superpositions of oppositely displaced quadra
ture eigenkets and their approximations. After a short examination of the various represen
tations and properties of squeezed cat states, which again converge to the desired eigenket 
superpositions in the limit of large squeezing, two interaction-based evaluation methods were 
described. We have shown that by using a squeezed cat state as the resource for an interaction 
with the vacuum state in a beam splitter or a quantum nondemolition interaction, we can draw 
conclusions about the squeezing of constituent states by evaluating the fidelity of the obtained 
output with the ideal output state, which would have been expected if we had used the eigenket 
superposition instead. 

The main result of this work is the construction of a new operator 0(a), based entirely on 
the properties of even eigenket superpositions. We have initially shown that for squeezed cat 
states, its expectation value is minimized at zero for a superposition of infinitely squeezed states 
at x = ± a and then we have also shortly examined how this operator detects decoherence of 
squeezed cat states. 

To establish the usefulness of this operator, numerical optimization with random starting points 
was performed in a truncated Fock space, which allowed us to compare the expectation value 
of 0(a) along with the aforementioned beam splitter and QND fidelities. Using the results 
of this optimization, we analytically derived a parametric boundary that allows us to set a 
lower bound for the ideal output fidelity in both interactions simply by finding the operator 
expectation value. This suggests that the presented evaluation methods agree with each other, 
that the even eigenket superposition can be found by minimizing 0(a), and that predictions 
about the interaction fidelities can be made solely based on its expectation value. 
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Outlook 

Many stones were left unturned by this thesis. It has not been determined whether there is 
a way to directly measure O(a) or any of its approximations. As a hermitian operator, it 
represents an observable in theory, but no experimental schemes were discussed. Regarding the 
operator itself, the generalization to an odd eigenket superposition and superpositions with a 
general phase difference between constituent states remains an open question, along with the 
optimal weights assigned to operators O\(o) and 0 2 ( a ) . The generalization of 0(a) should be 
achievable simply by displacing the projection eigenkets in 0 2 ( a ) to match up with zeros of 
the p—probability distribution of the general superposition, whereas the question of optimal 
weighting will most probably have multiple application-dependent solutions. 

We have also mentioned that one of the primary uses for eigenket superposition approximations 
is the preparation of G K P states, and it would also be reasonable to explore how the expectation 
values of 0(a) for resource states in breeding protocols influence the obtained grid states. In 
order to simplify the answer to this question, a similar operator-based evaluation method for 
G K P states could also be developed - this can probably be achieved for any of the states 
mentioned in [2]. 

M e t h o d s 

Wolfram Engine 13.1 [33] was used to perform algebraic simplification, evaluate infinite sums, 
create graphics and evaluate definite integrals. Maxima was used to evaluate some definite 
integrals. Python 3 .10 .11 [34] with the QuTiP [31] and NumPy [35] libraries was used for numerical 
calculations in truncated Fock spaces. Typeset using XgBTf^X with BIBTJ^K. 

45 



Bibliography 

Books 

[1] Nielsen, M . A . and Chuang, I. L . Quantum Computation and Quantum Information, en. 
Cambridge, England: Cambridge University Press, June 2012. 

[10] Leonhardt, U . Measuring the quantum state of light, en. Cambridge studies in modern 
optics. Cambridge, England: Cambridge University Press, July 1997. 

[11] Sakurai, J . J . and Napolitano, J . J . Modern Quantum Mechanics: Pearson New Interna
tional Edition, en. 2nd ed. London, England: Pearson Education, July 2013. 

[13] Walls, D . F . and Milburn, G. J . Quantum Optics, en. Springer Study Edition. Berlin, 
Germany: Springer, Apr. 1994. 

[29] Peres, A . Quantum Theory: Concepts and Methods, en. Fundamental Theories of Physics. 
Dordrecht, Netherlands: Springer, Oct. 1993. 

Online resources 

[2] Joshi, A . , Noh, K . , and Gao, Y . Y . "Quantum information processing with bosonic qubits 
in circuit QED." In: Quantum Science and Technology 6.3 (Apr. 2021), p. 033001. U R L : 
ht tps: / /doi .org/10.1088/2058-9565/abe989. 

[3] Steane, A . M . "Error Correcting Codes in Quantum Theory." In: Physical Review Letters 
77.5 (July 1996), pp. 793-797. U R L : h t tp s : / / do i .o rg /10 .1103 /phys rev le t t . 77 .793 . 

[4] Schlegel, D. S., Minganti, F. , and Savona, V . "Quantum error correction using squeezed 
Schrodinger cat states." In: Physical Review A 106.2 (Aug. 2022). U R L : h t t p s : / / d o i . 
org/10.1103/physreva.106.022431. 

[5] Weigand, D. J . and Terhal, B . M . "Generating grid states from Schrodinger-cat states 
without postselection." In: Phys. Rev. A (Coll. Park.) 97.2 (Feb. 2018). 

[6] Gottesman, D., Kitaev, A . , and Preskill, J . "Encoding a qubit in an oscillator." In: Physical 
Review A 64.1 (June 2001). U R L : h t tps : / /doi .org/10.1103/physreva.64.012310. 

[7] Vasconcelos, H . M . , Sanz, L . , and Glancy, S. "All-optical generation of states for "Encoding 
a qubit in an oscillator"." In: Optics Letters 35.19 (Sept. 2010), p. 3261. U R L : h t tps : 
/ /do i .o rg /10 .1364/o l .35 .003261 . 

[8] Huang, K . , Jeannic, H . L . , Ruaudel, J. , Verma, V . , Shaw, M . , Marsili, F. , Nam, S., Wu, E. , 
Zeng, H . , Jeong, Y . - C , Fi l ip, R., Morin, O., and Laurat, J . "Optical Synthesis of Large-
Amplitude Squeezed Coherent-State Superpositions with Minimal Resources." In: Physical 

46 

https://doi.org/10.1088/2058-9565/abe989
https://doi.org/10.1103/physrevlett.77.793
https://doi
https://doi.org/10.1103/physreva.64.012310


Review Letters 115.2 (July 2015). U R L : https://doi.org/10.1103/physrevlett.115. 

023602. 

Hastrup, J . and Andersen, U . L . "Protocol for Generating Optical Gottesman-Kitaev-

Preskill States with Cavity QED." In: Physical Review Letters 128.17 (Apr. 2022). U R L : 

https://doi.org/10.1103/physrevlett.128.170503. 

Madrid, R. de la. "The role of the rigged Hilbert space in quantum mechanics." In: Euro
pean Journal of Physics 26.2 (Feb. 2005), pp. 287-312. U R L: https://doi. org/10.1088/ 

0143-0807/26/2/008. 

Munguia-Gonzalez, E . , Rego, S., and Freericks, J . K . "Making squeezed-coherent states 

concrete by determining their wavefunction." In: American Journal of Physics 89.9 (Sept. 

2021), pp. 885-896. U R L : https://doi.org/10.1119/10.0004872. 

Jozsa, R. "Fidelity for Mixed Quantum States." In: Journal of Modern Optics 41.12 (Dec. 

1994), pp. 2315-2323. U R L : https://doi.org/10.1080/09500349414552171. 

Tse, M . et al. "Quantum-Enhanced Advanced L I G O Detectors in the Era of Gravitational-

Wave Astronomy." In: Physical Review Letters 123.23 (Dec. 2019). U R L : https://doi. 

org/10.1103/physrevlett.123.231107. 

Serafini, A . , Siena, S. D. , Illuminati, F. , and Paris, M . G . A . "Minimum decoherence 

cat-like states in Gaussian noisy channels." In: Journal of Optics B: Quantum and Semi-
classical Optics 6.6 (May 2004), S591-S596. U R L : https://doi.org/10.1088/1464-

4266/6/6/019. 

Jeong, H . and K i m , M . S. "Efficient quantum computation using coherent states." In: 

Physical Review A 65.4 (Mar. 2002). U R L: https://doi.org/10.1103/physreva.65. 

042305. 

Ralph, T. C , Gilchrist, A . , Milburn, G . J. , Munro, W . J. , and Glancy, S. "Quantum 

computation with optical coherent states." In: Physical Review A 68.4 (Oct. 2003). U R L : 

https://doi.org/10.1103/physreva.68.042319. 

Dakna, M . , Anhut, T., Opatrný, T., Knóll, L . , and Welsch, D . -G. "Generating Schródinger-

cat-like states by means of conditional measurements on a beam splitter." In: Physical 
Review A 55.4 (Apr. 1997), pp. 3184-3194. U R L: https://doi.org/10.1103/physreva. 

55.3184. 

Walshe, B . W., Baragiola, B . Q., Alexander, R. N . , and Menicucci, N . C. "Continuous-

variable gate teleportation and bosonic-code error correction." In: Physical Review A 102.6 

(Dec. 2020). U R L : https://doi.org/10.1103/physreva.102.062411. 

Farley, A . and D'Eath, P. "Coherent and squeezed states in black-hole evaporation." In: 

Physics Letters B 634.4 (Mar. 2006), pp. 419-426. U R L : https://doi.Org/10.1016/j . 
physletb.2006.01.020. 

Kamra, A . , Thingstad, E . , Rastelli, G. , Duine, R. A . , Brataas, A . , Belzig, W. , and Sudb0, 

A . "Antiferromagnetic magnons as highly squeezed Fock states underlying quantum cor

relations." In: Physical Review B 100.17 (Nov. 2019). U R L : https://doi.org/10.1103/ 

physrevb.100.174407. 

47 

https://doi.org/10.1103/physrevlett.115
https://doi.org/10.1103/physrevlett.128.170503
https://doi
https://doi.org/10.1119/10.0004872
https://doi.org/10.1080/09500349414552171
https://doi
https://doi.org/10.1088/1464-
https://doi.org/10.1103/physreva.65
https://doi.org/10.1103/physreva.68.042319
https://doi.org/10.1103/physreva
https://doi.org/10.1103/physreva.102.062411
https://doi.Org/10.1016/j
https://doi.org/10.1103/


Parikh, M . , Wilczek, F. , and Zahariade, G . "Signatures of the quantization of gravity 
at gravitational wave detectors." In: Physical Review D 104.4 (Aug. 2021). U R L : h t tps : 
/ /doi .org/10.1103/physrevd.104.046021. 

Lopez-Diaz, M . , Sordo, M . A . , and Suarez-Llorens, A . "On the Lp—metric between a 
probability distribution and its distortion." In: Insurance: Mathematics and Economics 
51.2 (Sept. 2012), pp. 257-264. U R L : h t t p s : / / d o i . O r g / 1 0 . 1 0 1 6 / j . i n s m a t h e c o . 2 0 1 2 . 
04.004. 

Brogaard, J . "Wigner function formalism in Quantum mechanics." Bachelor's Thesis. 
Copenhagen, Denmark: University of Copenhagen, June 2015. U R L : h t tps : / / n b i . ku . dk/ 
engl i sh / theses /bache lor - theses / jon-brogaard /Jon_Brogaard_Bachelor thes i s_ 
2015.pdf. 

Filip, R., Marek, P., and Andersen, U . L . "Measurement-induced continuous-variable 
quantum interactions." In: Physical Review A 71A (Apr. 2005). U R L : h t tps : / / do i . 
org/10.1103/physreva.71.042308. 

Yoshikawa, J.-i . , Miwa, Y . , Huck, A . , Andersen, U . L . , Loock, P. van, and Furusawa, A . 
"Demonstration of a Quantum Nondemolition Sum Gate." In: Physical Review Letters 
101.25 (Dec. 2008). U R L : h t tps : / /do i .o rg /10 .1103/physrev le t t .101 .250501. 
Provaznik, J. , Fil ip, R., and Marek, P. "Taming numerical errors in simulations of con
tinuous variable non-Gaussian state preparation." In: Scientific Reports 12.1 (Oct. 2022). 
U R L : h t tps: / /doi .org/10.1038/s41598-022-19506-9. 

Johansson, J. , Nation, P., and Nori, F . "QuTiP 2: A Python framework for the dynamics 

of open quantum systems." In: Computer Physics Communications 184.4 (Apr. 2013), 

pp. 1234-1240. U R L : h t tps : / / d o i . org/10.1016/j . cpc. 2012.11.019. 

Ban, M . "Photon statistics of conditional output states of lossless beam splitter." In: 
Journal of Modern Optics 43.6 (June 1996), pp. 1281-1303. U R L : h t t p s : / / d o i . o r g / 1 0 . 

1080/09500349608232803. 
Wolfram Research, Inc. Mathematica Language, Version 13.1. Champaign, IL, 2022. U R L : 
https://www.wolfram.com/mathematica. 

Van Rossum, G. and Drake, F . L . Python 3 Reference Manual. Scotts Valley, C A , 2009. 
U R L : h t tps : / /docs .py thon .org /3 / re fe rence / index .h tml . 

Harris, C. R., Millman, K . J. , Walt, S. J . van der, Gommers, R., Virtanen, P., Courna-
peau, D., Wieser, E. , Taylor, J. , Berg, S., Smith, N . J. , Kern, R., Picus, M . , Hoyer, S., 
Kerkwijk, M . H . van, Brett, M . , Haldane, A . , Rio, J . F . del, Wiebe, M . , Peterson, P., 
Gerard-Marchant, P., Sheppard, K . , Reddy, T., Weckesser, W., Abbasi, LL, Gohlke, C , 
and Oliphant, T. E . "Array programming with NumPy." In: Nature 585.7825 (Sept. 2020), 
pp. 357-362. U R L : h t tps : / /doi .org/10.1038/s41586-020-2649-2. 

'18 

https://doi.Org/10.1016/j.insmatheco.2012
https://doi.org/10.1103/physrevlett.101.250501
https://doi.org/10.1038/s41598-022-19506-9
https://doi.org/10
https://www.wolfram.com/mathematica
https://docs.python.org/3/reference/index.html
https://doi.org/10.1038/s41586-020-2649-2


Appendix A 

Code examples 

A . l F i n d i n g m i n i m u m eigenvalue eigenkets 

from qutip import * 

import numpy as np 

import csv 

def find_minimum_eigenvalue_vector(operator) : 

e i g v a l s , eigstates = operator.eigenstates() 

ground_eigvalue = eigvals [ 0 ] 
ground_state = eigstates [ 0 ] 

return ground_eigvalue , ground_state 

This function returns a tuple containing the minimum eigenvalue and its associated eigenstate 
of operator, which is assumed to have only non-negative real eigenvalues. Note that it is 
necessary to include "Sparse=True" in the eigenstates function options for large truncated 
Fock space dimensions because of memory constraints. This snippet also contains the necessary 
imports for all code in this appendix. 
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A . 2 F i n d i n g the best wel l approximated states 

The following code defines a function, which returns the most squeezed cat state with displace
ment a, that is well approximated in the iV—dimensional Fock space, and a function that returns 
the best approximation for the \p = 0) eigenket in the same space, which is then used to define 
the measurement projector in A.4. 

1 def squeezed_cat(N,a,r) : 

2 
3 plus = displace(N,a/np.sqrt(2))*squeeze(N,r)*basis(N,0) 

minus = displace(N,-a/np.sqrt(2))*squeeze(N,r)*basis(N ,0) 

5 

return (plus+minus).unit() 

7 

8 def find_maximum_squeezing_cat(N,a) : 

9 
10 r = 0 

11 well_approximated = True 

12 

13 while well_approximated: 

14 t e s t _ s t a t e = squeezed_cat(N*10,a,r) 

15 coefs = test _state . data . toarray ( ) . f l a t t e n () 

16 p r o b a b i l i t y = 0 

17 

18 for i i n range (N): 

19 p r o b a b i l i t y += coefs [ i ] * * 2 

20 

21 i f p r o b a b i l i t y < 0.99: 

22 well_approximated = False 

23 else: 

24 r += 0.01 

25 

26 return squeezed_cat(N,a,r-0 .01) 

2 7 

28 def find_optimal_p0(N): 

29 

3 0 r = -1 

31 well_approximated = True 

32 

33 while well_approximated: 

34 t e s t _ s t a t e = squeeze(10*N,r)*basis(10*N,0) 

35 coefs = test _state . data . toarray ( ) . f l a t t e n () 

36 p r o b a b i l i t y = 0 

3 7 

38 for i i n range (N): 

39 p r o b a b i l i t y += coefs [ i ] * * 2 

40 

i f p r o b a b i l i t y < 0.99: 

42 well_approximated = False 

43 else: 

44 r -= 0.01 

45 

46 return squeeze(N,r+0.01)*basis(N , 0) 

4 7 
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A . 3 R a n d o m gradient-l ike expectat ion value min imiza t i on 

The following code implements the random optimization method introduced in section 4.2.2. 
The maximum number of iterations is defined as max_steps and the number of significant digits 
required to converge is defined as convergence_requirement, values for stuck_counter and 
convergence_counter are chosen according to performance requirements. 

1 def operator_ol(N,a): 

2 return (position(N)**2-a**2*qeye(N))**2 

3 
4 def operator_o2(N,a,z) : 

5 plus = 1j*momentum(N)*a 

6 minus = -1j*momentum(N)*a 

return (-l/4)**z*(minus.expm()-plus.expm())**(2*z) 

8 

9 def dynamic_precision_random_optimisation(N, a, max_steps, i n i t i a l _ s t a t e , 

convergence_requirement) : 

10 

11 current_state = i n i t i a l _ s t a t e 

12 operator = operator_ol(N,a) + operator_o2(N,a , 500) 

13 stuck_counter, convergence_counter, p r e c i s i o n = (0, 0, 10) 

14 

15 for step in range (max_steps) : 

16 

17 states = [] 

18 q u a l i t i e s = [] 

19 noise = rand_ket (N) 

20 

21 i f stuck_counter == 100: 

22 stuck_counter = 0 

23 p r e c i s i o n *= 10 

24 

25 for i i n r a n g e ( - l , 2) : 

26 temp_state = ( c u r r e n t _ s t a t e + ( i / p r e c i s i o n ) * n o i s e ) . u n i t ( ) 

2 7 states.append(temp_state) 

28 qualities.append(np.abs(expect(operator,temp_state))) 

29 b e s t _ q u a l i t y = m i n ( q u a l i t i e s ) 

30 

31 i f np.round(best_quality, convergence_requirement) 

32 == np.round(qualities[1] , convergence_requirement) : 

33 convergence_counter += 1 

34 else: 

35 convergence_counter = 0 

3 6 

3 7 i f b e s t _ q u a l i t y == q u a l i t i e s [1] : 

38 stuck_counter += 1 

39 

40 else: 

current_state = s t a t e s [ q u a l i t i e s . i n d e x ( b e s t _ q u a l i t y ) ] 

42 stuck_counter = 0 

43 

44 i f convergence_counter == 1000: 

45 p r i n t ( f " o p t i m i z a t i o n converged in {step} steps") 

46 return current_state 

4 7 

48 p r i n t ( " u n s u c c e s s f u l optimization, maximum steps reached") 

49 return current_state 
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A . 4 Repeated random expectat ion value min imiza t i on 

This is the code associated with fig. 4.4. A run of repeated_random_quality_optimization 
creates a . csv file which gets filled in with data, where each row corresponds to a quantum state, 
and where the first column is filled with values of (o(a)) , the second column with ^ / F Q N D 

and the third column with V - ^ B S - It a l s ° saves all the optimized states as optimised_xx.qu, 
where xx is the number of the optimization run. The random_quality_optimization function 
is based upon A . 3 with some additional options available. 

1 def repeated_random_quality_optimization(runs, N, a, max_steps, convergence_requirement, 

weight, i n i t i a l _ p r e c i s i o n , s t u c k _ l i m i t , convergence_limit): 

2 
3 meas_projector = ket2dm(find_optimal_pO(N)) 

4 

5 for run i n range(runs): 

random_quality_optimization(N, a, max_steps, convergence_requirement, weight, 

i n i t i a l _ p r e c i s i o n , s t u c k _ l i m i t , convergence_limit, meas_projector) 

7 

8 def random_quality_optimization(N, a, max_steps, convergence_requirement, weight, 

i n i t i a l _ p r e c i s i o n , s t u c k _ l i m i t , convergence_limit, meas_projector): 

9 
10 current_state = rand_ket (N) 

11 operator = operator_ol(N,a) + weight*operator_o2(N,a,500) 

12 stuck_counter, convergence_counter, p r e c i s i o n = (0, 0, i n i t i a l _ p r e c i s i o n ) 

13 

14 xO = t e n s o r ( p o s i t i o n ( N ) , i d e n t i t y ( N ) ) 

15 p i = tensor (ident i t y (N) , momentum(N)) 

16 aO = tensor(destroy(N), identity(N)) 

17 a l = tensor(identity(N) , destroy(N)) 

18 qnd_unitary = (-1j*pl*x0).expm() 

19 bs_unitary = (-(np. pi/4) * (aO . dag () * a l - a l . dag () *a0)). expm () 

20 model_in = basis(N.O) 

qnd_optimal_cond_out = ket2dm(displace(N, a/np.sqrt(2))*basis(N,0)+displace(N, -a/np.sqrt 

(2))*basis(N,0)).unit() 

bs_optimal_cond_out = ket2dm(displace(N,a/2)*squeeze(N,np.log(2)/2)*basis(N,0)+displace(N 

,-a/2)* squeeze(N,np.log(2)/2)*basis(N,0)).unit() 

23 

24 with open(f"_randomoptimization_N{N}a{a}w{weight}.csv", "a", newline='') as c s v f i l e : 

25 csv_writer = c s v . w r i t e r ( c s v f i l e ) 

26 

for step in range(max_steps): 

28 

29 states = [] 

30 q u a l i t i e s = [] 

31 noise = rand_ket(N) 

32 

33 i f stuck_counter == s t u c k _ l i m i t : 

34 stuck_counter = 0 

35 p r e c i s i o n *= 5 

3 6 

3 7 for i in range (-1, 2) : 

38 temp_state = ( c u r r e n t _ s t a t e + ( i / p r e c i s i o n ) * n o i s e ) . u n i t ( ) 

39 states.append(temp_state) 

40 qualities.append(np.abs(expect(operator,temp_state))) 

41 best_quality=min(qualities) 

42 
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43 i f np.round(best_quality,convergence_requirement) == np.round(qualities [1] , 

convergence_requirement) : 

44 convergence_counter += 1 

45 else: 

46 convergence_counter = 0 

4 7 

48 i f b e s t _ q u a l i t y == q u a l i t i e s [1] : 

49 stuck_counter += 1 

50 else: 

51 c u r r e n t _ s t a t e = s t a t e s [ q u a l i t i e s . i n d e x ( b e s t _ q u a l i t y ) ] 

52 stuck_counter = 0 

53 

54 modeO_in = current_state 

55 rho_in = ket2dm(tensor(modeO_in , model_in)) 

56 

5 7 qnd_out = qnd_unitary.dag()*rho_in*qnd_unitary 

58 qnd_cond_out = (((qnd_out*tensor(meas_projector,identity(N))).ptrace(1))).unit() 

59 bs_out = bs_unitary.dag()*rho_in*bs_unitary 

bs_cond_out = (((bs_out*tensor (meas_projector , i d e n t i t y (N))) . p t r a c e ( l ) ) ) . u n i t O 

61 

62 qnd_fid = f i d e l i t y ( q n d _ c o n d _ o u t , qnd_optimal_cond_out) 

63 b s _ f i d = f i d e l i t y ( b s _ c o n d _ o u t , bs_optimal_cond_out) 

64 

65 csv_writer.writerow([best_quality, qnd_fid, b s _ f i d ] ) 

66 

i f convergence_counter == convergence_limit: 

68 filename = "optimised_" 

s u f f i x = 0 

70 

while os.path.exists(filename + s t r ( s u f f i x ) + ".qu"): 

72 s u f f i x += 1 

73 

74 filename += str ( s u f f i x ) 

75 qsave (current_state , filename) 

76 

p r i n t ( f " t h e optimisation has converged a f t e r {step} steps at the value <0> = {np. 

round(best_quality, convergence_requirement)}\nthe generated state has been saved into { 

f ilename}.qu") 

78 

return current_state 

80 

81 p r i n t ( f " t h e optimisation has not converged a f t e r {step} steps, lowest value <0> = {np. 

round(best_quality, convergence_requirement)}") 

82 

83 return current state 

53 


