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ABSTRACT
Ultra-high-frequency ECG (UHF-ECG) analysis provides information about electrical ven-
tricular dyssynchrony. Additionally, real-time UHF-ECG analysis enables direct optimiza-
tion of the pacing electrode during pacemaker implantation. In this master thesis, we
describe ventricular conduction abnormalities, the current method for UHF-ECG analy-
sis and most importantly, we have developed several deep learning models to find out
which steps of UHF-ECG analysis can be replaced by deep learning. Data used for
the development and validation of the models come from 2 private hospitals (FNUSA-
ICRC hospital, Brno, Czechia, and FNKV hospital Prague, Czechia) and from 3 publicly
available datasets.
First, we present two deep learning methods for QRS complex detection and QRS com-
plex duration estimation in one inference step. We received an overall F1-score of 98.84
± 0.51 % for the detection task and a Mean Absolute Error (MAE) of 12.25 ± 2.16
ms for the QRS duration estimation task. This method enhances UHF-ECG analysis
performance and therefore could significantly reduce measurement time.
Furthermore, a regression model for pacing stimuli removal based on a conditional gen-
erative adversarial network was developed. The results were evaluated based on the
correlation of 15 averaged high-frequency envelopes in the QRS complex region between
the model output and the target signal. The results show a higher correlation on spon-
taneous than on paced data and a drop in correlation with the increasing frequency
band.
Last, two deep learning models with convolutional neural network (CNN) were created
to estimate ventricular electrical dyssynchrony (VED). Specifically, 1 Dimensional (1D)
and 2 Dimensional (2D) CNN. The MAE between our solution and annotation is 12.61
±18.95 ms and 12.27 ±17.73 ms for 1D and 2D CNN, respectively. MAE on spontaneous
data is approximately 5 ms lower than on paced data for both models, indicating the
need to remove the pacing stimuli.
These deep learning models yield a reduction in the pre-processing pipeline while de-
livering output in a single inference step. For the QRS detection and QRS duration
estimation model, the performance improvement over the current solution is evident and
these steps of UHF-ECG analysis could be replaced by deep learning. However, for the
removal of pacing stimuli and VED parameter estimation, it is required to improve the
performance for a real use.

KEYWORDS
ECG, UHF-ECG, deep learning, UNet, ventricular dyssynchrony, LBBB, RBBB, QRS,
cGAN



ABSTRAKT
Analýza ultravysokofrekvenčného EKG (UHF-ECG) poskytuje informácie o elektrickej ko-
morovej dyssynchrónii. Okrem toho analýza UHF-ECG v reálnom čase umožňuje priamu
optimalizáciu stimulačnej elektródy počas implantácie kardiostimulátora. V tejto diplo-
movej práci opisujeme poruchy komorového vedenia, súčasnú metódu analýzy UHF-ECG
a hlavne predstavujeme niekoľko modelov hlbokého učenia na to, aby sme zistili, ktoré
kroky UHF-ECG analýzy môžu byť hlbokým učením nahradené. Dáta použité na vývoj a
validáciu modelov hlbokého učenia pochádzajú z 2 súkromných nemocníc (FNUSA-ICRC,
Brno, Česko, FNKV Praha, Česko) a z 3 verejne dostupných databáz.
Najprv boli predstavené dve metódy hlbokého učenia na detekciu QRS komplexu a odhad
trvania QRS komplexu v jednom kroku inferencie. Pri úlohe detekcie sme získali celkové
F1-skóre 98,84 ± 0,51 % a pri úlohe odhadu trvania QRS komplexu strednú absolútnu
chybu (MAE) 12,25 ± 2,16 ms. Táto metóda zvyšuje výkonnosť analýzy UHF-ECG a
vďaka tomu môže výrazne skrátiť čas merania.
Okrem toho bol vyvinutý regresný model na odstraňovanie stimulačných impulzov za-
ložený na tzv. conditional generative adversarial networks. Výsledky boli vyhodnotené
na základe korelácie 15 priemerných vysokofrekvenčných obálok v oblasti QRS kom-
plexu medzi výstupom modelu a cieľovým signálom. Výsledky ukazujú vyššiu koreláciu
na spontánnych signáloch a pokles korelácie so zvyšujúcim sa frekvenčným pásmom.
Napokon boli vytvorené dva modely konvolučených neurónových sietí (CNN) na odhad
komorovej elektrickej dyssynchrónie (VED). Konkrétne CNN s vrstavmi v 1D a 2D. MAE
medzi naším riešením a anotáciou je 12,61 ±18,95 ms a 12,27 ±17,73 ms pre 1D a 2D
CNN. MAE na spontánnych signáloch je pre oba modely približne o 5 ms nižšia ako na
stimulovaných údajoch, čo naznačuje potrebu odstrániť stimulačné impulzy.
Tieto modely hlbokého učenia prinášajú redukciu pipeline predspracovania a zároveň
poskytujú výstup v jednom kroku inferencie. V prípade modelu detekcie QRS a odhadu
trvania QRS je zlepšenie výkonu oproti súčasnému riešeniu evidentné a tieto kroky súčas-
nej analýzy UHF-ECG by mohli byť hlbokým učením nahradené. Avšak pre odstránenie
stimulačných impulzov a odhad parametrov VED je potrebné zlepšiť výkon pre reálne
použitie.

KĽÚČOVÉ SLOVÁ
EKG, UHF-ECG, hlboké učenie, UNet, komorová dyssynchrónia, LBBB, RBBB, QRS,
cGAN
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ROZŠÍRENÝ ABSTRAKT
Analýza ultravysokofrekvenčného EKG (UHF-ECG) poskytuje informácie o elek-
trickej komorovej dyssynchrónii. Klinický potenciál tejto metódy leží v zlepšení
selekcie pacientov pre srdcovú resynchronizačnú terapiu. Okrem toho analýza UHF-
ECG v reálnom čase umožňuje priamu optimalizáciu stimulačnej elektródy počas im-
plantácie kardiostimulátora. V tejto diplomovej práci opisujeme poruchy elektrick-
ého komorového vedenia, súčasnú metódu analýzy UHF-ECG a hlavne vytvárame
modely hlbokého učenia, ktoré by potenciálne mohli nahradiť jednotlivé časti UHF-
ECG analýzy.
Na začiatku sú predstavené základy analýzy EKG na ktoré naväzuje časť o abnor-
malitách v sieňokomorovom vedení, tzv. atrioventrikulárnych (AV) blokoch. Ďalej
sme sa presunuli na abnormality vo vedení komôr a to konkrétne blokádu ľavého a
pravého Tawaroveho ramienka (LBBB a RBBB). Zaoberáme sa hlavne morfológiou
EKG u týchto typov patológii a taktiež súčasnými možnosťami terapie. Ďalej bol
predstavený súčasný stav analýzy UHF-ECG, ktorá umožňuje presnejšiu identifiká-
ciu časovo priestorového rozloženia komorovej elektrickej depolarizácie a vyhodnote-
nia stupňa komorovej dyssynchrónie. Našou úlohou je implementovať hlboké učenie
na jednotlivé časti analýzy UHF-ECG a zvážiť ich použiteľnosť.
Dáta použité na vývoj a validáciu modelov hlbokého učenia pochádzajú z 2 súkrom-
ných nemocníc (FNUSA-ICRC, Brno, Česko a FNKV Praha, Česko) a z 3 verejne
dostupných databáz (Strict LBBB, CIPA, LUDB).
Prvý vytvorený model bol model pre detekciu QRS komplexov v UHF-ECG, ktorý
bol následne rozšírený o estimáciu šírky QRS komplexu. Trvanie QRS komplexu je
spolu s ejekčnou frakciou jedným zo základných parametrov pre selekciu pacientov
pre srdcovú resynchronizačnú liečbu. Tento model teda poskytuje v jednom infer-
enčnom kroku informáciu o polohe QRS, jeho začiatku, konci a tým aj o jeho trvaní.
Architektúra modelu je založená na architektúre segmentačného modelu konvolučnej
neurónovej siete UNet. Všetky vrstvy modelu sú však pre účely spracovania signálu
prevedené z 2D do 1D. Do modelu vstupuje okno signálu o dĺžke 3 s z 12 zvodov pri
veľkosti vzorkovacej frekvencie 5,000 Hz. Vstup má teda veľkosť batch x 12 x 15,000
(3s x 5,000 Hz). Výstupom je vektor pravdepodobností výskytu QRS komplexu o
rovnakej dĺžke ako vstupný signál, teda 3 s. Následne je výstup spracovaný na zák-
lade pravdepodobnostného a časového kritéria. Len tá časť signálu je považovaná
za QRS komplex, kde je pravdepodobnosť QRS nad hodnotou 0.7 a tento segment
má dĺžku aspoň 50 ms.
Dosiahnuté F1-score je 98.84 ± 0.51 % pre detekčnú úlohu a z hľadiska trvanie QRS
komplexu je stredná absolútna chyba (MAE) rovná 12.25 ± 2.16 ms. Táto metóda
zlepšuje presnosť súčasnej QRS detekcie zabudovanej vo VDI Vision softwari (F1
score 90 %) a tým by sa mohol signifikantne znížiť čas merania a hlavne čas operácie



počas implantácie kardiostimulátora.
Jedným zo základných krokov pre analýzu UHF-ECG, je odstránenie stimulačných
pulzov u pacientov s kardiostimulátormi. Je to nevyhnutný krok pre zhlukovanie
QRS na základe morfologickej skupiny. Odstránenie vzostupnej hrany stimulačného
impulzu je jednoduchá úloha avšak odstránenie fázy po dobíjaní stimulátora je
náročné, kvôli jej nízkej amplitúde.
Pre túto úlohu boli využité data z FNUSA pre tréning a válidáciu a data z FNKV
pre nezávislý test. Ako model hlbokého učenia bola aplikovaná architektúra pix2pix
ktorá patrí do triedy modelov nazývaných conditional Generative Adversarial Net-
works (cGAN). Tento model pri tréningu využíva tzv. generátor (architektúra
UNet), ktorý na svojom výstupe poskytuje signál s odstránenými stimulačnými
pulzami a diskriminátor, čo je bežný klasifikátor, ktorý núti generátor približovať
sa k skutočnosti (k anotácii, čo je signál, kde sú stimulačné impulzy detekované a
odstránené na základe lineárnej funkcie doplnenej splinom). Vstup do modelu je
0.2 sekundové okno derivovaného signálu. Počas tréningu do modelu okrem stim-
ulavných dát vstupujú aj spontánne data, ktoré buď ostávajú spontánne alebo sú v
nich umelo vytvorené stimulačné pulzy. Počet, trvanie, ampliúda a polarita týchto
umelo vytvorených stimulačných impulzov je náhodná.
Po natrénovaní modelu je ďalej využívaná len architektúra generátora. Výstup
a anotácia modelu sú derivované signály, ktoré je pre ďalšiu analýzu nutné inte-
grovať. Keďže UHF-ECG analýza je vykonávaná na amplitúdových obálkach v
oblasti QRS komplexov, tak pre analýzu výsledkov metódy boli vytvorené priemerné
vysokofrekvenčné amplitúdové obálky v oblasti QRS komplexu v 15 frekvenčných
pásmach z výstupu modelu a z anotácie. Vytvorené obálky boli porovnané na zák-
lade Spearmanovej korelácie. Bolo zistené, že u spontánnych signálov, kde nie je
nutnosť odstraňovať stimulačné pulzy je korelácia anotácie a výstupu vyššia a má
menšie konfidenčné intervaly narozdiel od stimulovaných signálov. Taktiež so zvyšu-
júcim sa frekvenčným pásmom dochádza k znižovaniu korelácie u spontánnych aj
stimulovaných dát.
Výhoda oproti súčasnej metóde aplikovanej vo VDI Vision softwari leží v odstránení
stimulačných impulzov v jednom inferenčnom kroku bez potreby predošlej detekcie
QRS. Avšak ak sa pozrieme na výsledky korelácie amplitúdových obálok v rôznych
frekvenčných pásmach, na to, aby mohol byť model použitý v praxi je nutné dostať
výkonnosť modelu na stimulovaných datach aspoň na úroveň výkonnosti na spon-
tánnych.
Na záver boli vytvorené 2 modely pre estimáciu hodnoty komorovej elektrickej
dyssynchrónie (VED). Keďže 1/3 pacientov s LBBB morfológiou, redukovanou ejekč-
nou frakciou (menšia alebo rovná ako 35 %) a s trvaním QRS nad 150 ms neodpovedá
na CRT, bola v minulosti vytvorená technika pre získavanie hodnoty komorovej



elektrickej dyssynchrónie. Táto hodnota reflektuje elektrickú dyssynchróniu medzi
pravým komorovým septom a laterálnou stenou ľavej komory.
Pre tréning, validáciu a testovanie modelov pre estimáciu VED boli využité data
z FNUSA a FNKV nemocnice. V tomto prípade boli data zmiešané tak, aby sa
rovnaký pacient nenachádzal medzi rozdeleniami. Data boli zmixované hlavne z
dôvodu rôzneho typu patológii u pacientov v daných nemnocniciach. Vo FNUSA sa
nachádzajú hlavne pacienti s LBBB morfológiou a vo FNKV hlavne pacienti s AV
blokádami. Vstupom do oboch vytvorených modelov je 8 sekundové okno derivo-
vaného signálu zo 6 hrudných zvodov (V1-V6) a výstupom je konkrétna hodnota
VED bez nutnosti ďalšieho spracovávania.
Pre estimáciu VED boli vytvorené 2 modely: 1D a 2D konvolučná neurónová sieť.
Nápad za použitím 2D varianty pramenil z toho, že parameter VED sa pôvodne
odhaduje zo 6 hrudných zvodov súčasne v čase a sleduje sa časový posun medzi QRS
komplexom vo zvodoch V1 až V6, preto aplikujeme 2D konvolúciu, aby sieť mohla
vidieť viacero zvodov súčasne v čase. Táto teória však nebola potvrdená, keďže oba
modely vedú k podobným výsledkom. Úspešnosť nášho modelu je meraná na zák-
lade MAE medzi anotovaným a estimovaným VED parametrom u testovacej sady
dát. MAE pre 1D model je 12.61 ±18.95 ms a pre 2D CNN je to 12.27 ±17.73 ms.
Oba modely dosahujú vyššiu úspešnosť na spontánnych ako na stimulovaných dat-
ach, čo naznačuje nutnosť odstraňovania stimulačných pulzov. Taktiež, oba modely
majú lepšiu úspešnosť na kladných hodnotách VED a to z dôvodu rozloženia dát
v trénovacej sade (len 35 % signálov s negatívnou hodnotou VED). Na záver boli
vytvorené korelačné diagramy s príslušnou Spearmanovou koreláciou. 2D varianta
modelu dosahovala vyššiu koreláciu v porovnaní s 1D variantou (0.85 vs. 0.83) a to
hlavne u stimulovaných signálov (0.81 vs. 0.77).
Keďže iné metódy ktoré merajú elektrickú dyssynchróniu neexistujú, tak sme našu
metódu porovnali s metódou merania mechanickej dyssynchrónie komôr, ktorá sa
meria pomocou echokardiografie. Naša metóda má skrz pevnú architektúru a nas-
tavené parametre perfektnú reproducibilitu narozdiel od ľudského pozorovateľa pri
meraní mechanickej dyssynchrónie (intra reproducibilita v 95 % konfidenčnom in-
tervale je -27-26 ms). Výsledky naznačujú, že naše modely dokážu odhadnúť VED
pre spontánne data, ale výkonnosť u stimulovaných dat musí byť pre reálne použitie
vylepšená.
Výhodou všetkých týchto modelov je minimálne predspracovanie signálu a poskyt-
nutie požadovaného výstupu v jednom kroku inferencie. Ale zatiaľ čo prezentované
metódy fungujú perfektne v prípade detekcie a segmentácie QRS, identifikovali sme
aj slabé miesta v metódach odstraňovania stimulačných pulzov a odhadu VED.
Avšak, všetky tieto pozorovania sú nevyhnutné pre ďalší vývoj analýzy a pomáhajú
určiť, ktoré časti analázy UHF-ECG by mohli byť nahradené hlbokým učením.



KOŠČOVÁ, Zuzana. Analysis of ultra-high frequency ECG using deep learning. Brno:
Brno University of Technology, Faculty of Electrical Engineering and Communication, De-
partment of Biomedical Engineering, 2023, 68 p. Master’s Thesis. Advised by Ing. Filip
Plešinger, Ph.D.



Author’s Declaration

Author: Bc. Zuzana Koščová

Author’s ID: 203197

Paper type: Master’s Thesis

Academic year: 2022/23

Topic: Analysis of ultra-high frequency ECG us-
ing deep learning

I declare that I have written this paper independently, under the guidance of the advisor
and using exclusively the technical references and other sources of information cited in
the paper and listed in the comprehensive bibliography at the end of the paper.

As the author, I furthermore declare that, with respect to the creation of this paper,
I have not infringed any copyright or violated anyone’s personal and/or ownership rights.
In this context, I am fully aware of the consequences of breaking Regulation S 11 of the
Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of any breach
of rights related to intellectual property or introduced within amendments to relevant
Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009 Coll.
of the Czech Republic, Section 2, Head VI, Part 4.

Brno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
author’s signature∗

∗The author signs only in the printed version.



ACKNOWLEDGEMENT

I would like to thank my thesis supervisor Ing. Filip Plešinger Ph.D., colleague Ing.
Radovan Smíšek and whole Medical Signals department of ISI Brno of CAS for their
consultation, support and valuable advices.



Contents

Introduction 16

1 Electrophysiology of the heart 17

2 ECG analysis 19

3 Atrioventricular conduction abnormalities 22
3.1 First degree AV block . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Second degree AV block . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Third degree AV block . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Intraventricular conduction abnormalities 25
4.1 Bundle branch blocks . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Right bundle branch block . . . . . . . . . . . . . . . . . . . . 25
Treatment of RBBB . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.2 Left bundle branch block . . . . . . . . . . . . . . . . . . . . . 28
Treatment of LBBB . . . . . . . . . . . . . . . . . . . . . . . 29

5 Ultra-high frequency ECG analysis 31

6 Deep learning 33

7 QRS complex detection in UHF-ECG 35
7.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.3 Preprocessing and data augmentation . . . . . . . . . . . . . . . . . . 36
7.4 The neural network architecture . . . . . . . . . . . . . . . . . . . . . 37
7.5 Postprocessing and training . . . . . . . . . . . . . . . . . . . . . . . 38
7.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

8 Extension for QRS onset and offset detection 41
8.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



9 Pacing stimuli removal 47
9.1 Data and preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

9.2.1 Training the generator . . . . . . . . . . . . . . . . . . . . . . 49
9.2.2 Training the discriminator . . . . . . . . . . . . . . . . . . . . 50

9.3 Method and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
9.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

10 Assessing the level of ventricular electrical delay 54
10.1 Data and preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 54
10.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
10.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
10.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Conclusion 61

Bibliography 63

Symbols and abbreviations 67



List of Figures
1.1 Conduction system pathways . . . . . . . . . . . . . . . . . . . . . . 17
2.1 Example of a standard 12-lead ECG . . . . . . . . . . . . . . . . . . 19
2.2 ECG of the heart in normal sinus rhythm . . . . . . . . . . . . . . . . 20
2.3 A graphical record of the electrical activity of the heart . . . . . . . . 21
4.1 RBBB with marked characteristics on an ECG . . . . . . . . . . . . . 26
4.2 LBBB with marked characteristics on an ECG . . . . . . . . . . . . . 29
5.1 UHF-QRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.1 Standardized UHF-ECG . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.2 QRS detection method . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.3 UNet architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.1 Example of QRS onset and offset estimation . . . . . . . . . . . . . . 45
9.1 Scheme of preprocessing and generating data for training . . . . . . . 48
9.2 Scheme for training the generator . . . . . . . . . . . . . . . . . . . . 50
9.3 Scheme for training the discriminator . . . . . . . . . . . . . . . . . . 51
9.4 Example of pacing stimuli removal . . . . . . . . . . . . . . . . . . . 52
9.5 Correlation of average amplitude envelopes in 15 frequency bands

between target and model output . . . . . . . . . . . . . . . . . . . . 53
10.1 Distribution of VED paramter . . . . . . . . . . . . . . . . . . . . . . 55
10.2 2 models for assessment of VED level . . . . . . . . . . . . . . . . . . 57
10.3 Scatter plot of true values of VED vs estimated values of VED for 1D

and 2D CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



List of Tables
7.1 QRS detection model results . . . . . . . . . . . . . . . . . . . . . . . 39
7.2 Comparison of performance of QRS detection models . . . . . . . . . 40
8.1 Dataset used dor QRS duration estimation testing . . . . . . . . . . . 42
8.2 Results for QRS detection task . . . . . . . . . . . . . . . . . . . . . 43
8.3 Results for QRS duration task . . . . . . . . . . . . . . . . . . . . . . 44
8.4 Results for diferent morphological groups . . . . . . . . . . . . . . . . 44
9.1 Number of patients for pacing stimuli removal . . . . . . . . . . . . . 47
10.1 The number of patients used for VED estimation . . . . . . . . . . . 55
10.2 Results for 1D CNN for VED assessment . . . . . . . . . . . . . . . . 58
10.3 Results for 2D CNN for VED assessment . . . . . . . . . . . . . . . . 58
10.4 Results for 1D CNN for positive and negative VED level . . . . . . . 58
10.5 Results for 2D CNN for positive and negative VED level . . . . . . . 58
10.6 Spearman correlation coefficients between annotated and estimated

VED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



Introduction
According to the WHO, heart disease is the number one killer in the world re-
sponsible for 32% of deaths in 2019 [1]. Heart activity is usually observed using
electrocardiography (ECG) which is one of the fundamental examination methods
in cardiology to analyze heart disorders. The first part of this work focuses mainly
on ventricular conduction abnormalities and the therapeutic options for these dis-
orders.

Under normal circumstances in a healthy heart, both ventricles are depolarized
simultaneously. These contractions could, however, occasionally become dyssyn-
chronized, which is characteristic of the Left or Right Bundle Branch Block.

To examine the electrical dyssynchrony of the ventricles, an Ultra-high-frequency
ECG (UHF-ECG) technique has been developed [2]. UHF-ECG analysis results may
help to select patients for Cardiac Resynchronization Therapy (CRT) [3] and could
be also used for the optimization of pacing electrode location in real-time during
pacemaker implantation. However, the current method for UHF-ECG analysis is
computationally intensive and time-consuming [4]. Therefore, to improve real-time
UHF-ECG analysis, it is beneficial to reduce the preprocessing pipeline. In recent
years, a number of high-impact studies using deep learning to analyze and classify
ECGs in large patient cohorts were published. In the second part of this work, we
propose deep learning models for individual steps of UHF-ECG analysis which could
not only speed up the analysis but also improve its performance. Generally speaking,
our goal is to see if certain parts of the UHF-ECG analysis could be replaced by
deep learning.

This master thesis is organized as follows: The first chapter describes the heart
conduction system, which is followed by the second chapter dealing with the ECG
analysis. The following chapters describe atrioventricular and ventricular conduction
abnormalities. Chapter 5 describes the current methods for UHF-ECG analysis and
chapter 6 focuses on deep learning as an option for improving UHF-ECG analysis.
The 4 following chapters focus on specific real-time deep learning methods used for
UHF-ECG analysis, namely, detection of QRS complexes, QRS duration estimation,
pacing stimuli removal and assessment of ventricular electrical dyssynchrony. At the
beginning of each of these chapters there is a description of the used datasets and
applied methods. Then the results are summarized and discussed along with the
contribution of the above models in relation to the current state of the UHF-ECG
analysis in the separate discussions. The images in this work were created using
BioRender [5] and Adobe Illustrator. The program codes for this work are not
freely available, but they are available for viewing on request from me or thesis
supervisor.
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1 Electrophysiology of the heart
The heart is a four-part muscular pump driving the circulation of blood (Fig. 1.1).
It has an internal pacemaker and does not need nerve stimulation to function nor-
mally, despite being under the influence of the autonomic nervous system. A cardiac
conduction system is a system of specialized muscle cells in the heart that carry an
electrical charge (potential) and are thus adapted to generate cardiac impulses and
conduct them through the heart’s compartments [6].

In a case of a normal heartbeat, the electrical activity starts at the sinoatrial
(SA) node of the right atrium and continues down throughout the ventricles of the
heart. As a wave of depolarization travels through the heart, it causes contraction
of the myocardium. Depolarization might be considered as an advancing wave of
positive charges within the heart’s myocytes [7].

Fig. 1.1: Conduction system pathways, RBB, and LBB refer to the right and left
bundle branches, respectively.

Depolarization initiates from the sinoatrial (SA) node, which is located in the
upper posterior wall of the right atrium. It is a heart dominant pacemaker and it
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is comprised of a unique group of cells that undergoes automaticity. The pacing
activity of the SA node is called a Sinus rhythm. As the SA node depolarizes, an
electrical signal proceeds from the SA node. Depolarization wave is simultaneously
transmitted to the right atrium via a bundle of cells called Bachman’s Bundle [7, 8].

Depolarization then continues to the atrioventricular (AV) node which is located
further inferior in the right atrium by the interatrial septum. The AV node conducts
the depolarization very slowly, thus causing a desirable pause in atrioventricular
conduction - atrial contraction (depolarization) must be completed first, followed by
ventricular contraction (depolarization). If this delay did not occur, the atria and
ventricles would contract simultaneously, and blood would not flow appropriately
through the heart. In the case of damage to the SA node, the AV node takes over
the role of the pacemaker - it is also referred to as a secondary pacemaker [7, 9].

Atrioventricular valves prevent blood backflow to the atria and electrically insu-
late the ventricles from the atria. Depolarization can only reach the ventricles from
the atria via His bundle, which is connected to the AV node. His bundle, located
inferior to the AV node in the interventricular septum, transmits the conduction
down to the left and right bundle branches and their subdivisions. The His Bundle
and both right and left bundle branches are bundles of rapidly conducting Purkinje
fibers. The terminal branches of the Purkinje fibers distribute ventricular space with
the electrical output. The terminal filaments of the Purkinje fibers span beneath the
endocardium that lines both ventricular cavities, therefore myocytes depolarization
of the ventricles begins at the lining and continues arcing toward the epicardium
(outside surface) [9, 10].
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2 ECG analysis
Electrocardiography (ECG) is a fundamental diagnostic method in cardiology. ECG
records the electrical activity of the heart providing valuable information about heart
function and structure. The standard ECG is a non-invasive examination where elec-
trodes placed on the skin are used to measure the voltage difference as a result of
the propagation of the excitation wave through the myocardium. During depolariza-
tion and repolarization, myocardial fibers become a source of voltage changes that
can be measured from the body surface. The stimulating wave of depolarization
makes the interiors of the myocytes positive and stimulates them to contract. Then
the myocyte interiors regain their resting negative charge during the repolarization
phase that follows [11].

According to the position of the electrodes, the electrodes are differentiated into
the limb and precordial electrodes. In clinical practice, a 12-lead ECG recording is
standardly used (Fig. 2.1). It consists of three limb bipolar leads (I, II, III), three
limb unipolar leads (aVR, aVL, aVF) formed by connecting each limb electrode to
the Wilson central terminal, and six unipolar precordial leads (V1-V6).

Fig. 2.1: Example of a standard 12-lead ECG [12].

A graphical record of the electrical activity of the heart over time is called an
electrocardiogram. The propagation of depolarization through the myocardium is
displayed differently with respect to the lead, depending on the direction and plane
in which it is positioned relative to the heart. The potential propagation path in
the heart has a typical character and thus produces typical deflections - waves,
oscillations, and lines that correspond to a particular phase of the electrical cardiac
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cycle (Fig. 2.2).

Fig. 2.2: ECG of the heart in normal sinus rhythm with marked waves, intervals,
and segments that correspond to a particular phase of the electrical cardiac cycle.
The P wave represents atrial depolarization, the QRS complex points to ventricular
depolarization, and T wave indicates ventricular repolarization. PR segment is the
segment between the end of the P wave and the beginning of the QRS complex, the
ST segment connects the QRS complex and the T wave, and the time from the start
of the Q wave to the end of the T wave is called QT interval.

The depolarising wave originating in the SA node propagates to the atrial mus-
cles, which are depolarised, and this appears as a P wave on the ECG recording
(Fig. 2.3 a.). Slow conduction in the atrioventricular node slows the progression of
depolarization from the atria to the ventricles and separates atrial from ventricular
systole. On the ECG, this corresponds to an isoelectric line (Fig. 2.3 b.). The total
transfer of depolarization from the atria to the ventricles is indicated by the PQ
interval [7, 11].

This is followed by depolarization of the ventricles, forming a QRS complex on
the ECG recording (Fig. 2.3 c.). The excitation progresses through His bundle to
the musculature of the interventricular septum, where the depolarization spreads
from left to right. The ECG shows either a negative Q oscillation or a positive R
oscillation, depending on the lead. The next progression of excitation spreads to the
apex, forming the middle part of the QRS complex, in most leads the oscillation of R.
From there the depolarization spreads through the Purkinje fibers to both ventricles,
from the endocardium to the epicardium, completing the ventricular QRS complex
with the S wave. QRS complex overlaps with atrial repolarization.
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Fig. 2.3: A graphical record of the electrical activity of the heart, a. atrial repo-
larization originating from the SA node, b. complete atrial depolarization with a
desirable pause in the AV node, c. atrial repolarization, and beginning of ventricular
depolarization, d. complete ventricular depolarization, e. beginning of ventricular
repolarization, f. complete ventricular repolarization.

After the depolarization is over, the electrical activity of the heart is momentarily
zero, the muscle fibers are in the plateau phase when no electrical currents propagate
through the myocardium. It appears as an isoelectric line on the ECG recording -
the ST segment (Fig. 2.3 d.). After this point, ventricular repolarization begins and
proceeds in the opposite direction from the epicardium to the endocardium. Thus,
a T wave is generated (Fig. 2.3 e. and f.) [7, 11].

The evaluation of ECG recordings allows us to detect arrhythmias caused by
defects in the generation or conduction of impulses. It also plays an important
role in detecting ischemic changes, localization, and stage of myocardial infarction.
Changes on the ECG are found either in all leads or in one or a group of leads that
are related to each other due to the anatomy of the heart.
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3 Atrioventricular conduction abnormalities
Blocks in any part of the heart conduction system slow or prevent the conduction of
electrical impulses. They may originate in the SA node, AV node, or in the larger
divisions of the ventricular conduction system. In this chapter, we will discuss the
blocks that originate from the atrioventricular node. AV blocks either delay or
eliminate conduction from the atria to the ventricles. The brief interval between
atrial and ventricular depolarization is prolonged by minor AV blockages, most
of the AV blocks prevent some or all supraventricular impulses from reaching the
ventricles [7].

3.1 First degree AV block
When the PR interval is longer than 0.2 s (usually 0.21 - 0.4 s but may be as long
as 0.8 s) in every cycle and the P-QRS-T sequence is standard in every cycle as
well, the 1°AV block is present. A QRS complex follows each P wave. Note that the
PR interval represents the time from the onset of atrial depolarization to the onset
of ventricular repolarization. It does not reflect the conduction of the stimuli from
the sinus node to the atrial space. Therefore, prolonged PR interval with narrow
QRS reflects a block in the AV node. If the widened QRS complex is observed, it
points to a blockage in the lower parts of the heart conduction system; His bundle or
Purkinje fibers. Although, prolonged PR interval with widened QRS can also mean
disruption in the AV node together with blockage in one of the bundle branches (or
both) [7, 13].

1°AV block can occur in healthy individuals, or athletes, or can be drug-related.
Diagnoses associated with 1 °AV block include myocarditis1, congenital heart dis-
ease2 or rheumatic heart disase3 [13].

3.2 Second degree AV block
In second degree AV block, some depolarizations are conducted from the AV node
to the ventricles, while other atrial depolarizations are completely inhibited leaving
lone P waves without an accompanying QRS complex, thus without ventricular
depolarization. There are two types of 2°AV blocks: Wenckebach and Mobitz [7].

1Myocarditis stands for inflammation of myocardium
2CHD is a range of birth defects that affect the normal way the heart works
3RHD is a condition in which the heart valves have been permanently damaged by inflammatory

disease
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Wenckebach 2°AV block originates from the AV node. On an ECG, the PR
interval progressively increases with each cycle until the final P wave of the series
does not reach the ventricles and therefore is not followed by the QRS complex. This
series can be observed repeatedly. The typical Wenckebach series contains anywhere
from 2-8 cycles (P: QRS ratio; 2:1, 3:2, 4:3, etc.) [7].

In the case of Mobitz 2°AV block, the number of atrial depolarizations is com-
pletely blocked before conduction to the ventricles is successful. More P waves are
generated in relation to successful QRS complexes, with a ratio of 2:1, 3:1, or more.
This series occurs repeatedly. Exceedingly slow ventricular rates may result in con-
sciousness loss (syncope). Every cycle with Mobitz that has a missing QRS has a
regular, punctual P wave. Regular sinus or atrial rhythm with intermittent non-
conducted P waves, with no sign of atrial prematurity, can be observed. For the
conducted beats PR interval is constant.

To distinguish between Wenckenbach and Mobitz 2°AV block in a 2:1 (P: QRS)
series, it is necessary to look at the duration of the QRS complex in addition to the
duration of the PR interval. Because for 2 P waves, we are not able to detect a
progressive prolongation of the P wave which is observable in the Weckenbach type
and not present in the Mobitz type. Wenckebach frequently originates in the AV
node, hence AV series 2:1 of this origin often has an initial lengthened PR interval
with no wide QRS pattern [7, 13]. The His Bundle, which is typically where Mobitz
begins, lies underneath the AV node, thus we can see that it frequently has a normal
PR with a broadened QRS pattern (in 80% of cases) in a ratio 2:1 (P waves: QRS
complex). Other mechanisms for the distinction between the 2 types include the
response to increasing heart rate and AV conduction, where improvement occurs
with Wenckebach and worsening occurs with the Mobitz type. In contrast, with
maneuvers lowering heart rate and AV conduction, Wenckebach block worsens and
Mobitz block improves [13].

In addition to the diagnosis that occurs in the case of the 1°AV block, the etiol-
ogy of the 2°AV block may also be myocardial infarction (inferior for Wenckebach,
anterior for Mobitz type) [7].

3.3 Third degree AV block
3°AV block prevents conduction of sinus-paced atrial depolarizations from reaching
the ventricular tissue. Atrial and ventricular rhythms are independent of one another
because atrial impulses consistently fail to reach the ventricles. Below the complete
block, there is an automaticity focus pacing the ventricles at their inherent rate. The
location of the automaticity focus depends on the location of the complete block [7].
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One possible location is the occurrence of a complete AV block at the upper
part of the AV node, which allows the junctional focus to escape and stimulate
the ventricles. PP and RR intervals are constant, but PR intervals vary. This is
because the rhythm of the atria remains independent of the rhythm of the ventricles.
The atria are stimulated by the SA node, but ventricles are independently paced
by junctional focus with idiojunctional rhythm. The ventricular rate ranges from
about 40 to 60 beats per minute and is usually slower than the atrial rate. QRSs
are usually normal (narrow) [7, 13].

Sometimes the block’s location is in the lower part of the AV node or even in
the His bundle leaving only a ventricular focus to pace without junctional focus
available. Ventricular focus paces the ventricles at their inherent slow rate of only
20 to 40 beats per minute. Cerebral blood flow might be compromised resulting
in syncope (Stokes-Adams Syndrome). In order to recognize ventricular focus it is
necessary to note the morphology and duration of the QRS complex. In this case, we
observe wide QRS complexes with premature ventricular contraction morphology.
Complete AV block patients require ongoing monitoring, airway maintenance, and
eventually, an artificial pacemaker [7, 13].

Complete heart block may result from myocardial infarction (MI), which ac-
counts for 5–15% of all myocardial infarctions. First-degree AV block or Wenckebach
2°AV block is frequently present before inferior MI. Complete heart block, which of-
ten precedes Mobitz 2°AV block or bifascicular block develops in anterior MI as a
result of severe damage to the left ventricle and is associated with death rates as
high as 70%. Other causes might include degenerative heart disease, infiltrative
disease, or endocarditis in which conduction failure and complete heart block are
caused by inflammation or edema of the septum and peri-AV nodal tissues [13].
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4 Intraventricular conduction abnormalities

4.1 Bundle branch blocks
Under normal circumstances in a healthy heart, the depolarization stimulus is
quickly conducted from His bundle by the right and by the left bundle branches
to the right and left ventricles. Ordinarily, both ventricles are depolarized simulta-
neously. The electrical activation of the right and left ventricle from their branches
results in the QRS complex, which then represents the sum of two parallel but
independent electrical phenomena [7, 14].

A block in one of the bundle branches is a condition in which there is a delay or
blockage along the pathway that electrical impulses travel to make the heartbeat.
With bundle branch block (BBB), the unblocked branch conducts depolarization
regularly, while in the block bundle branch depolarization needs to pass through sur-
rounding tissue, which causes slower conduction than in the bundle branch which is
specialized for this task. After the blocked part, depolarization proceeds at a normal
pace again. Therefore, in a BBB if the conduction in His bundle is normal and one
bundle branch is blocked, the corresponding ventricle is depolarized slightly later
than the other one, which causes two joined QRSs to appear on an ECG as widened
QRS, which means the increasing duration of the QRS complex with unchanged PR
interval. The frequency of bundle branch block in the young population ranges from
0.1 - 0.3%. While in elderly healthy subjects it ranges from 0.7 -2% [15, 13].

4.1.1 Right bundle branch block

In the right bundle branch block (RBBB) activation of the right ventricle is delayed,
as depolarisation originates from the left ventricle across the septum. Therefore, in
the doubled QRS, the first R wave is represented by a left punctual ventricle and
the second R wave is represented by the depolarization of a delayed right ventricle.
This is mostly visible on chest leads V1 and V2 (Fig. 4.1). RBBB has two variants,
complete and incomplete blockage. In complete blockage, the right bundle branch is
completely disrupted and the impulse reaches both ventricles only via the LBB and
then passes from the left ventricle through the myocardium to the right ventricle.

In the complete RBBB, a prolonged QRS complex may be observed on the ECG
(≥ 120 ms) together with a secondary R’ wave in precordial leads V1 and V2 with
the second R’ wave usually having higher amplitude than the initial R wave. Delayed
onset of intrinsecoid deflection1 (> 50ms) in V1 and V2 leads is likely to occur. In

1Intrinsecoid deflection time is measured from the beginning of the QRS complex to the peak
of the R wave
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leads V1 and V2 there may be present ST and T wave changes like T wave inversion
and downsloping ST segment. Wide slurred S waves in lead I, V5, and V6 are
observed [13].

Fig. 4.1: RBBB with marked characteristics on an ECG. Secondary R’ (double R)
wave in precordial leads V1 and V2 could be observed together with wide S wave in
V5 and V6 leads.

In incomplete blockage the right bundle branch is not completely disrupted, it
still conducts the depolarizing impulse but more slowly. This is the main difference
between complete and incomplete blockage. In incomplete blockage, the QRSd is <
0.12 ms [13].

RBBB occurs in normal healthy individuals, with no previous records of struc-
tural heart disease at a prevalence of 0.2%. The prognosis for these patients is
essentially the same as for the general public. However, RBBB is linked to a double
increase in mortality among individuals with coronary artery disease when compared
to patients without BBB. RBBB may not cover up the signs of an inferior infarction.
Still, an anterior infarction may be difficult to detect in RBBB. On the other hand,
RBBB does not affect ST segments, and if elevations are present in a patient with
suspected infarction, these are likely to be clinically significant changes [13]. Right
bundle branch block is further associated with hypertensive heart disease, myocardi-
tis, dilated cardiomyopathy (DCM)2, rheumatic heart disease (RHD), degenerative
disease of the conduction system, pulmonary embolism (PE) 3 or cor pulmonale 4.
ST segment depression associated with RBBB indicates ischemia [15, 13].

2DCM causes the heart to expand and become inefficient at pumping blood
3PE is a disease in which blood flow from the heart to the lungs is partially or completely

blocked
4Cor pulmonale is right ventricular dilatation resulting from acute or chronic pre-capillary
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Usually, a right bundle branch block does not cause any symptoms by itself.
If there are additional issues in addition to the right bundle branch obstruction,
symptoms are more likely to occur.

Treatment of RBBB

Generally, isolated RBBB without any other cardiac disorders, if occurring in a
healthy population, requires no further treatment. If RBBB occurs in patients with
heart failure with a low ventricular ejection fraction (EF) 5, cardiac resynchroniza-
tion therapy (CRT) is to be considered. CRT is a procedure that involves implanting
electrodes into the right (usually the apex) and left ventricles (usually the coronary
sinus) of the heart. This procedure is used to treat heart failure by synchronizing the
left and right ventricles using a pacemaker. Since the introduction of CRT for pa-
tients with heart failure, an increasing number of patients undergoing CRT had QRS
morphology with RBBB. This is because, in the beginning, the only ECG marker
for CRT was QRS duration. However, past observational studies that assessed the
effect of CRT show excess mortality in RBBB CRT-treated patients compared to
LBBB CRT-treated patients. Consequently, it was advised against using CRT in
patients with typical RBBB morphology [16].

Nevertheless, some patients with heart failure and an RBBB pattern on their
ECG also have a concurrent superimposed delay in left ventricular activation. In
wider QRS, RBBB frequently masks the underlying co-existing LBBB. Atypical
RBBB patterns include broad, slurred, occasionally bifid R waves on leads I and
aVL and a leftward axis deviation that is typically seen in patients with LBBB QRS
morphology. Acute response to CRT is clinically significant and has favorable values,
according to a recent assessment of various studies that took CRT into account in
the subset with atypical RBBB [17].

CRT is recommended in symptomatic patients with heart failure and sinus
rhythm with EF of left ventricle lower or equal to 35%, QRSd > 150 ms, and
non-LBBB QRS morphology (including atypical RBBB). The goal is to improve
symptoms and reduce morbidity and mortality [18].

If the conditions are the same as in the paragraph above with a difference
in QRSd (130 - 149 ms), patients belonging to the New York Heart Association
(NYHA) class IV6 may be considered for CRT [18].

pulmonary hypertension
5EF measures the amount of blood the left ventricle pumps out to your body with each con-

traction
6IV - Unable to carry out any physical activity without discomfort
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4.1.2 Left bundle branch block

The left bundle-branch block (LBBB) completely modifies the electrical activation
of the left ventricle and QRS complex on ECG. Interventricular septum activation,
which in physiologic settings is left-sided, starts on the right side of the structure.
The electrical impulse then spreads inferiorly, to the left, and slightly anteriorly
[14]. As a result, the left ventricle experiences a nonhomogeneous and delayed
depolarization that can only be partially retained in the presence of a functional
distal left bundle branch and Purkinje network. In the left bundle branch block, the
right ventricle is depolarized on time, therefore a double R wave occurs in the lateral
leads V5 and V6. The first R wave represents depolarization of the right ventricle
and the second R wave in the widened QRS is caused by the delayed depolarization
of the left ventricle. Similarly to the RBBB, LBBB has two variants, complete
and incomplete blockage. In complete LBBB, the impulse that comes from the
atria activates the ventricles only through the RBB, and then the impulse travels
through the myocardium to the left ventricle and depolarizes it.

For a complete LBBB (Fig. 4.2), the ECG shows prolonged QRS complexes
(>120 ms), and increased intrinsecoid deflection time (80–120 ms), because of de-
layed intincsecoid onset (>50ms) [13]. Furthermore, it shows rS or QS complexes in
V1–V2 [14], broad monophasic R waves in I, V5, and V6 that are usually notched
or slurred and loss or significant reduction of septal Q wave in lateral leads I and
aVL. Leads I and aVL typically display a negative ST-T pattern [14, 15]. It also
shows ST depression and T wave inversion in I, V5, and V6. ST elevation can be
seen in an upright T wave in leads V1 and V2 [13].

In an incomplete LBBB, the left bundle branch is damaged but not completely
blocked. It conducts the pulse more slowly. The only difference in the ECG com-
pared to the complete block is the width of the QRS complex, which in this case
lasts from 0.09-0.12 ms [13].

LBBB can be seen in patients with left ventricular hypertrophy (LVH)7. Accord-
ing to pathological and echocardiographic studies, 80% of patients with LBBB have
abnormally enlarged LV mass, however, a formal diagnosis of LVH should not be
established in the context of LBBB [13]. LBBB can be caused also by myocardial
infarction and ischemic heart disease (IHD)8. In the presence of LBBB, no infarction
changes can be observed on the ECG. This does not mean that the ECG is worth-
less. If a patient hospitalized with chest pain with suspected ischemia shows a newly
developed LBBB on the ECG, an infarction is very likely and appropriate treatment

7LVH is characterized by an increase in left ventricular mass caused by an increase in wall
thickness, an expansion of the left ventricular mass, or a combination of the two

8IHD is defined as inadequate blood supply to a local area due to blockage of the blood vessels
supplying the area
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Fig. 4.2: LBBB with marked characteristics on an ECG. ST elevation in leads V1
and V2 can be observed, together with ST depression, T wave inversion and double
R wave in V5 and V6.

should be initiated [15]. Furthermore, LBBB is often associated with degenerative
disease of the conduction system, dilated cardiomyopathy (DCM), congenital heart
defects (CHD), or arterial hypertension. Rarely, it also occurs in healthy people
without any heart disorders [15, 13].

About 0.06% to 0.1% of the overall population suffers from LBBB. LBBB is seen
in about 33% of heart failure patients. Other than the distinctive ECG pattern,
LBBB is asymptomatic; there are no other signs or symptoms. The presence of
LBBB without other signs of heart disease is accompanied by approximately a 30%
increase in the risk of death compared with persons with a normal ECG. The risk
of death is further doubled if LBBB suddenly develops in a person who previously
had a normal ECG, even if the person is asymptomatic [15].

Treatment of LBBB

If a patient is diagnosed with LBBB but is asymptomatic, they may not need treat-
ment for LBBB but for other diagnoses associated with LBBB (e.g. high blood pres-
sure). Another treatment option is CRT, in which it is necessary to follow guidelines
[18]. Considering the inclusion criteria of large randomized clinical studies (RCS)
focused on CRT, according to the NYHA in class II-IV9, where QRS duration >

9II - Slight limitation of physical activity
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130 ms and EF < 35-40%, it is estimated that 15-30% of patients with heart failure
reduced ejection fraction (HFrEF) may benefit from CRT [18]. The most beneficial
effect on morbidity and mortality, according to the RCS results, was shown in the
groups of patients with EF 35% or less, who had a dominant sinus rhythm with
LBBB and were in NYHA functional class II-IV. In other patient groups, female sex
with QRSd >150 ms and prolonged PR interval appeared as factors with a tendency
to better outcome [18].

CRT is recommended in symptomatic patients with heart failure (HF) and sinus
rhythm with EF of the left ventricle (LVEF) lower or equal to 35%, QRSd > 150
ms, and LBBB morphology. The goal is to improve symptoms and reduce morbidity
and mortality [18].

If the conditions are the same as in the paragraph above with a difference in
QRSd (130 - 149 ms), CRT should still be considered [18].
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5 Ultra-high frequency ECG analysis
The ultra-high frequency ECG (UHF-ECG) technique was first introduced by Jurak
et.al [2]. UHF-ECG is an approach with the ability for more accurate identification
of the temporal-spatial distribution of ventricular electrical depolarization and to
evaluate the degree of ventricular dyssynchrony. The first step in the UHF-ECG
technique is the assesment of ECG signals, which are usually sampled at a frequency
of 5,000 Hz (depending on the setting and version, it can even work at 1,000 [3] or
4,000 Hz) with a dynamic range of 26 bits (some version have range 16 or 24 bits)
and a frequency range of 2 kHz [2].

Necessary preprocessing steps are the removal of pacing artifacts in patients with
pacemakers [19] and the detection of QRS complexes [20], which are then clustered
into categories by their morphology [21]. This technique is primarily focused on the
dominant QRS morphology (only QRSs from the major morphological group should
be further used).

The Fourier and Hilbert transforms were used to compute nine amplitude en-
velopes in the 150–1050 Hz frequency range [4]. The count of frequency bands has
evolved during development of UHF-ECG and it also depends on the sampling fre-
quency of the signal. The amplitudes are averaged with an R–wave trigger and
smoothed in the 0–40 Hz passband (UHFQRS) [2].

In Fig. 5.1 averaged QRS complexes from V1-V6 precordial leads could be seen.
The envelopes of the UHFQRS complexes from the mentioned leads are shown in
Fig. 5.1 b. From this, maps (Fig. 5.1 c) were created, where each row represents
the normalized shape of the QRS complex for the corresponding lead. The values
were normalized between 0 which is the minimum (blue) and 1 corresponding to the
maximum (red).

In order to numerically identify ventricular electrical dyssynchrony, the param-
eter UHFDYS (Fig. 5.1 e), defined as the difference in the locations of maxima in
leads V1 and V6 is computed. According to the UHFDYS parameter in Fig. 5.1,
peak depolarization in the right ventricle septum starts 84 milliseconds before peak
depolarization in the left ventricle lateral wall. This value can easily be seen from
UHFQRS (Fig. 5.1 b–e), but not from conventional (low-frequency) QRS (Fig. 5.1
a, d). In this case, the dyssynchrony between V2-V6 is even bigger than that be-
tween V1-V6, so electrical activation map (Fig. 5.1 c) is equally important for us as
Fig. 5.1 e [2].

UHG-ECG analysis and UHFQRS is a method which clinical potential lies in
detecting the value of ventricular electrical dyssynchrony and thus improving the
selection of patients who could respond to CRT. Additionally, the UHF-ECG method
has been experimentally used in His bundle pacing [22], RV pacing, and left sep-
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tal pacing to optimize the electrode position and analyze the synchrony of heart
ventricles.

Fig. 5.1: UHF-QRS and UHF-QRS maps. a.) averaged QRS complexes, b.) UHF-
QRS envelopes, c.) UHF-QRS maps where each row represents the normalized shape
of the QRS complex for V1-V6 leads, d.) averaged QRS, e. ) averaged UHFQRS,
UHFDYS—difference in positions of UHFQRS maxima in leads V1 and V6. The
maximum intraventricular dyssynchrony is represented by UHFDYS ALL. The V1
lead is represented by the blue color, the V6 lead by the color light green and the
overlap of the V1 and V6 depolarization is represented by the color dark green [2].

Even though UHF-ECG analysis results bring many benefits to patients, it still
has some drawbacks that can be further improved. This method is very compu-
tationally intensive and preprocessing steps such as the removal of pacing artifacts
and detection of QRS complexes with subsequent clustering result in excessive com-
putations. Therefore, to improve real-time UHF-ECG analysis performance, it is
beneficial to reduce the preprocessing pipeline required for QRS detection and pac-
ing stimuli removal. We believe that using deep learning models will help us achieve
that.

32



6 Deep learning
Deep learning (DL) is a specific subset of machine learning (ML) which is one
of the branches of artificial intelligence (AI). AI simulates human cognition using
computational modelling. ML as a branch of AI helps software applications to
gradually improve their accuracy without having to be explicitly programmed to
do so. In order to predict new output values, machine learning algorithms use
historical data as input. DL is inspired by the structure of the human brain and
uses a multi-layered structure of algorithms called neural networks. While a shallow
neural network can still make approximate predictions, additional hidden layers can
help to optimize and refine for accuracy. Deep neural networks are simply neural
networks with 3 or more layers. The initial benefit of deep learning over machine
learning is that feature extraction is unnecessary. Feature extraction refers to the
process of transforming raw data into numerical features that can be processed while
preserving the information in the original data set. Feature extraction is typically
a difficult process that requires an in-depth understanding of the problem domain.
This step is already included in networks with deep architecture [23].

One of the most popular deep neural network architectures are Convolutional
Neural Networks (CNNs) [24]. They are extremely successful at image processing,
but also for many other tasks such as speech recognition or natural language pro-
cessing. The state-of-the-art CNNs have usually 12 layers and more, so they are
part of DL. A CNN consists of several computational layers of neurons. The 3 basic
types of layers are convolutional layers, pooling layers, and fully connected layers
[23].

The main point of convolutional layers is to extract distinctive features from the
input which can be an image, video, or time series. The mathematical operation
that is applied to the image in the form of a filter is called convolution. The kernel,
representing the filter, is a matrix of numbers that simulates weights. A matrix
with a certain number of rows and columns is shifted, in other words, convolved
over an input, to obtain the resulting feature map. The initial layers of the network
distinguish simple visual elements such as edges, corners, or curves. In deeper layers,
filters specialized for distinguishing more sophisticated objects could be found [23].

The role of pooling layers is to reduce the spatial resolution of the feature maps
while remaining invariant to the shape and position of significant features that have
been detected in the image. After the application of the convolution, the predefined
neighborhood of pixels is unified into a single value. Typically, MaxPooling layers
are used, which extract the maximum from neighboring pixels, but other methods
such as MinPooling, AveragePooling, or MedianPooling can also be used [23].

The convolutional and pooling layers are repeated several times, and finally, all
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the features are connected using fully connected layers, which are usually present in
a traditional multilayer neural network [23].

CNNs are one of the biggest trends in image and signal processing nowadays
because they use a special architecture well adapted for classification, detection,
and also regression. Medical research in the field of convolutional neural networks
is no exception.

ECG is one of the fundamental examination methods in cardiology. In recent
years, a number of high-impact studies using deep learning to analyze and classify
ECGs in large patient cohorts were published [25, 26, 27]. In the next chapters,
deep learning methods will be presented, focusing on UHF-ECG analysis, the re-
sults of which can improve patient selection for CRT and even accelerate and refine
optimization during pacemaker implantation.
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7 QRS complex detection in UHF-ECG
The entry point to the UHF-ECG analysis is the detection of the QRS complex.
Although this may seem like a simple task, UHF-ECG is specific for several reasons.
One is the high sampling frequency for which traditional QRS detection methods
have not been refined. But mainly it is the presence of pacing stimuli (Fig. 7.1) in
patients with pacemakers, which amplitude is often much higher than the amplitude
of a regular ECG signal, and further analysis requires suppression or even complete
removal of these artifacts. The current version of the VDI Vision software (desktop
application to acquire, process, and analyze UHF-ECG signals in real-time) [4] and
its solution for QRS detection requires the removal of pacing stimuli. The F-score of
this detector is currently at 90%, which requires improvement because subsequent
analysis steps such as QRS morphology clustering are affected by non-captured
QRSs that prolong a measurement time. Of course, a longer analysis means longer
surgery time for the patient. Thus, our goal is to improve the success rate of QRS
detection and thus reduce the measurement time, and speed up pacing optimization
which would lead to a shorter surgery time.

The data, methods, and results presented in this chapter were published and
presented at the Computing in Cardiology conference in Brno 2021 [28].

Fig. 7.1: Standardized UHF-ECG signal with bipolar septum stimulation from V3
lead with pacing stimuli (triangles). Circles point to QRS complexes [28].

7.1 Data
For QRS complex detection we used a private dataset from Fakultní nemocnice u sv.
Anny (FNUSA) hospital (Brno, Czechia) for training and validation. This dataset
contained 3,018 12-lead records that were sampled at a frequency of 5,000 Hz. It
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consisted of 68 healthy and 942 CRT subjects, and the dataset included signals with
spontaneous and paced QRSs. A total of 2,250 ECG recordings acquired from 780
subjects were used as a training set; other 768 ECG records (450 spontaneous and
318 paced) acquired from 240 subjects were used as a validation set. The QRS
complex annotation marks for training and validation were automatically created
by the VDI Vision software [4].

An independent private dataset from Fakultní nemocnice Královské Vinohrady
(FNKV) hospital (Prague, Czechia) was used to test the model. The data were
also sampled at a frequency of 5,000 Hz and included 12-lead records. The test
set contained 300 recordings obtained from 47 subjects before, during, and after
pacemaker implantation. These records contained spontaneous QRSs (57 records
from 11 subjects) and paced QRSs (247 records from 47 subjects). Subjects in
the test set were mostly treated by His bundle or Parahisian stimulation. Several
recordings were obtained for different pacing electrode positions per patient. QRS
complex annotation marks were manually prepared using the SignalPlant software
[29].

QRS complex annotation marks were converted to QRS complex probabilities.
In the region of the QRS complex, more specifically 0.05 s (250 samples) to each
side of the QRS complex annotation mark, the probability was set to 1; everywhere
else, the probability was set to 0 and a rectangular signal of the same length as the
input signal was produced.

7.2 Method
CNN with UNet architecture was chosen for QRS complex detection. Since the
model needs to work in a real-time application, a 3 seconds input window was
chosen. Neural network process 3 precordial leads (V1, V3, V6). Thus the input
of the UNet architecture is a matrix of size 3x15,000 (3 s x 5,000 Hz). After UNet
inference, we get an output of length identical to the length of the signal. This
output is pushed through a softmax activation function, which allows us to obtain
the probability of QRS/nonQRS complex for each sample (Fig. 7.2).

7.3 Preprocessing and data augmentation
The described method is developed to work in real time with minimal signal pre-
processing. Before network inference, it is necessary to standardize the signal using
a z-score only.
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Fig. 7.2: QRS detection method. Top - original ECG signal (V3 lead). The signal
(ECG leads V1, V3, and V6) is standardized and pushed into the UNet model,
resulting in a QRS probability vector (middle). Post-processed output probability
results in QRS annotation marks (bottom) [28].

To extend the training dataset and simulate signals with faster heart rates, we
chose online augmentation of random recordings in the training dataset. From these
recordings, a 3-second signal window was prepared. A random distant segment of
length 6 seconds was selected and resampled to a sampling rate of 2,500 Hz using a
Butterworth antialiasing filter (the fifth-order with a cut-off frequency of 1,200 Hz,
and decimation with factor 2) [30].

7.4 The neural network architecture
For the deep learning model, the UNet architecture was chosen, which was originally
developed for image segmentation [31]. Since in our case we are dealing with 1D
signals, all the layers are changed into one dimensional form. The main difference
between our architecture and the original one is the different hyperparameters in the
max pooling and convolutional layers and the size of the kernels in the convolutional
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layers.
The UNet architecture consists of two symmetric parts, the contraction (Fig.

7.3 -left) and expansion (Fig. 7.3 -right) sections. In the contraction section, there
is a reduction in signal length and an increase in the number of feature maps.
There are 4 identical blocks which consist of 2 convolution layers (kernel size =
9, stride = 1, padding = 4), batch normalization, and ReLU activation function
followed by MaxPooling layer (kernel size = 2, stride = 2). After each block signal
is downsampled with a factor of two and the number of feature maps in the first
three blocks doubles.

Similarly to a contraction section, there are 4 blocks in the expansion section.
In each block, there is a transpose convolution layer (kernel size = 9, stride = 2)
which upsamples the signal length by a factor of two. The transpose convolution
layer is followed by two convolution layers (kernel size = 9, stride = 1, padding = 4)
with batch normalization and ReLU activation function. Output from each block
is concatenated with output from a corresponding block in the contraction section,
and after the first three expansion blocks feature maps number is cut in half.

The final layer of the network is the convolution layer (kernel size = 1, stride =
1) with a softmax activation function that outputs the class probabilities [32].

Fig. 7.3: UNet architecture [28].

7.5 Postprocessing and training
In order to obtain accurate QRS complex positions, it is necessary to post-process
the output from the network, which is in the form of the QRS complex probability.
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For this, a probability and distance criterion was chosen empirically on the vali-
dation dataset. Only that part of the signal is chosen as QRS complex which has
a probability above 0.95 and is at least 10 ms long (40 samples). The final QRS
position is chosen as the midpoint of this segment.

The model had been trained for 30 epochs, using Adam optimization [33] with
a learning rate of 0.0001. Weighted cross-entropy loss function was used due to
imbalanced output classes (QRS/nonQRS) [34]. We used a graphic-processing unit
(GPU) with “Compute Unified Device Architecture” (CUDA) for training (GeForce
RTX 2080 Ti). The methods were implemented in the Python programming lan-
guage version 3.8.6 [35]. The PyTorch library was used for the creation of the
convolutional neural network and its optimization [36].

7.6 Results
The success rate of the method is reported in Tab. 7.1. Results are presented for
the entire FNKV test dataset but also separately for spontaneous and paced QRSs.
The results were evaluated in terms of sensitivity, which indicates the proportion
of missed QRSs, positive predictive value (PPV), which indicates the proportion of
falsely detected QRSs, and F-score, which is the harmonic mean of sensitivity and
PPV.

Furthermore, the proposed model performance was compared to the method
already used in VDI vision (up to version 1.0) and to the Pan-Tompkins algorithm
for QRS detection (Tab. 7.2) [37].

Tab. 7.1: QRS detection model results for used datasets. No. of QRS refers to
the total number of QRSs in records. Sens represents sensitivity, PPV is a positive
predictive value.

Dataset No. of QRS Sens [%] PPV [%] F1-score [%]
Train 7,904 98.99 97.42 98.19

Validation 2,745 98.36 96.95 97.65
Test (total) 1,480 96.49 97.74 97.11

Test (spontaneous) 214 97.20 95.41 96.30
Test (stimulated) 1,266 96.37 98.15 97.25
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Tab. 7.2: Comparison of performance for specific QRS detection models on the test
set (300 records from 47 patients). Results are reported for spontaneous and paced
records and for the entire test set (Total). VDI refers to the detection method used
in software VDI vision version 0.9 or earlier.

Model Record type Sensitivity [%] PPV [%] F1-score [%]
Spontaneous 97.20 95.41 96.30

Unet Paced 96.37 98.15 97.25
Total 96.49 97.74 97.12

Spontaneous 92.52 94.29 93.40
VDI Paced 86.97 93.07 89.91

Total 87.77 93.25 90.43
Spontaneous 81.31 75.98 78.56

Pan Tompkins Paced 29.51 28.55 29.02
Total 37.1 35.7 36.39

7.7 Discussion
In this chapter, we introduced a deep-learning model aimed at QRS complex detec-
tion in UHF-ECG recordings. The achieved F-score for the test dataset (97.11 %)
is better than the F-score (90.43%) of the QRS detector embedded in the current
version of the VDI vision software.

Additionally, we compared the Pan Tompkins detector implemented in the Python
package "py-ecg-detectors" version 1.0.2 with our model. On the test set, the Pan
Tompkins received an F1-score of 29.02% for stimulated recordings and 78.56% for
spontaneous activity compared to our 96.30% and 97.25% for stimulated and sponta-
neous activity, respectively. The Pan Tompkins detector, however, was not intended
for UHF-ECG recordings with paced QRSs, which relates to a nearly 50% difference
in F1-score between paced and spontaneous signals (Tab 7.2).

We also explored the most typical cause of false positives (FP) and false negatives
(FN). The most frequent occurrence of FP detections is at the beginning and at the
end of the 3-second window, so it is recommended not to include the first and last 0.5
seconds of the ECG record in the analysis. Ventricular fusion beats with random
stimuli in their descending edge have the highest non-captured QRS rates (FN).
However, as only the majority morphological group of QRS is examined in further
UHF-ECG analysis, these FN detections have no negative effects. If caught, fusion
beats would be removed from the examination.
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8 Extension for QRS onset and offset detec-
tion

In the next step, we decided to extend the detection model to deliver the onset and
offset positions of the QRS complex and thus estimate the QRS duration (QRSd).
The prolonged duration of QRS complex in a 12-lead ECG is associated with ad-
verse prognosis in patients with cardiac disease. It is one of the parameters and
typical measurements linked to conduction abnormalities in the heart ventricles.
QRSd describes the time difference between the start (QRS onset) and end (QRS
offset) of ventricular depolarization. A healthy, young population usually has low
QRSd, around 70-80 ms, while patients with conduction diseases have QRSd higher
than 110 ms [38]. Since the QRSd can be easily read from printed ECG, it is an
essential metric for cardiologists. The data, methods, and results (with some alter-
ations) presented in this chapter were published and presented at the Computing in
Cardiology conference in Tampere 2022 [39].

8.1 Data
In this case, we have 2 tasks, that must be completed by one method in one infer-
ence step: the first is detecting the QRS complex and the second is delivering the
QRSd. For training, validation, and testing of QRS detection, data from the same
institutions as in the section 7.1 were used. This time we were able to add new data
to the training, validation, and test.

In terms of QRS duration assessment, all the datasets mentioned above were
used, plus external public datasets for testing which had information about QRSd.
Unfortunately, these datasets could not be used to assess QRS detection because
they only contained median QRS information.

For cross-database tests, we selected four independent datasets: a private dataset
from FNKV hospital (extended with new recordings) and 3 public datasets; Cipa
[40], LUDB [41] and Strict LBBB [42]. These public datasets contain only records
with spontaneous rhythm. The duration of the QRS complexes for FNKV (testing)
and FNUSA (training, validation) datasets was obtained from an automatic detec-
tor based on wavelet transform [43]. This detector was the most accurate in the
challenge LBBB Initiative of the ISCE 2018 meeting [42], where a reduced subset
of MADIT-CRT data [44] was used. The boundaries of the QRS complexes for the
public datasets were determined by certified cardiologists by manual inspection of
each ECG recording.
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The desired output of the network for FNUSA and FNKV data was constructed
from QRS annotation marks and QRS duration annotations. Each QRS annotation
mark of an ECG record belongs to one of three most common morphological groups,
and each of these morphological groups has a corresponding onset and offset, thus
corresponding duration. Based on this, for each recording, we built a rectangular
signal representing ongoing ventricular depolarization: samples between QRS onset
and offset of particular QRS were set to 1, and all the other samples remained at
zero. In contrast to the QRS detection model, these rectangles are no longer of a
fixed duration of 10 ms; their size corresponds to the QRS duration of the associated
ECG recording and corresponding QRS morphological group. An overview of the
data used for validation and testing is summarized in Tab. 8.1.

Tab. 8.1: Datasets used for validation (FNUSA) and cross-database tests (FNKV,
Cipa, Strict LBBB, LUDB) for the QRS duration model. The Rhythm column
tells whether the recordings were spontaneous (spont) or paced, and the Recordings
column tells the number of recordings for a given dataset.

Database Sampling frequency [Hz] Rhythm Recordings
FNUSA 5,000 Spont 206

Paced 239
FNKV 5,000 Spont 371

Paced 1,941
CIPA 1,000 Spont 5,749

Strict LBBB 1,000 Spont 602
LUDB 500 Spont 200

8.2 Method
The same method was used to detect QRS onset and offset as for QRS detection,
with small variations that allowed us to achieve better accuracy.

Firstly, in preprocessing, in addition to the z-score, resampling to 5,000 Hz was
included for all datasets, as this model was designed to work primarily on UHF-ECG
data.

Secondly, 12-lead ECG was used instead of 3-lead ECG, so the number of the
model input channels was 12.

Next, each BatchNormalitaztion layer was changed to an InstanceNormalization
layer. BatchNormalization layers behave differently in training and in evaluation
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mode, replacing them with InstanceNormalization allowed us to achieve better re-
sults in this case.

The hyperparameters of the architecture were also changed, the sizes of the
kernels and strides were in this case 12 and 6 or 5, respectively.

Furthermore, the loss function was changed. The Mean square error loss function
was added to the weighted crossentropy function, which allowed better penalization
of the samples in the QRS onset and offset region.

The output of the network is an array of QRS probabilities (Fig. 8.1). To obtain
the final QRS positions and thus their durations, the output must be post-processed.
Segments of the output signal are considered QRS if their probability is higher than
0.7 and their duration is at least 50 ms (empirically determined on a validation
FNUSA dataset). If two consecutive QRS complexes have a distance of less than
60 ms, they are combined into a single QRS complex segment. The initial and final
100 ms of the utilized 3s signal segment are not included in the final QRS duration
and detection result calculations.

8.3 Results
The performance of the model in terms of QRS detection for datasets that contained
information about the QRS position in the signal is shown in Tab. 8.2. Results are
reported separately for paced and spontaneous records.

Tab. 8.2: Results for QRS detection task for validation (FNUSA) and test (FNKV,
LUDB) datasets. PPV refers to the positive predictive value. Spont stands for
spontaneous.

Database Rhythm Sensitivity [%] PPV [%] F-score [%]
FNUSA Spont 99.83 99.15 99.49

Paced 99.43 99.43 99.43
FNKV Spont 99.29 98.86 99.07

Paced 99.36 99.28 99.32
LUDB Spont 96.96 99.35 98.14

To validate the ability of the model to estimate QRS duration, Mean abso-
lute error (MAE), Standard Deviation of MAE (STD), and Median Absolute Error
(MedAE) were calculated between the duration annotations and the duration ob-
tained after postprocessing the network output (Tab. 8.2).
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Tab. 8.3: Results for QRS duration task for validation (FNUSA) and test (FNKV,
LUDB, CIPA, LBBB) datasets. MAE refers to the mean absolute error, STD refers
to the standard deviation of the absolute error and MedAE is the median average
error. Spont stands for spontaneous.

Databae Rhythm MAE [ms] STD [ms] MedAE [ms]
CIPA Spont 13.30 5.90 13.10
LUDB Spont 10.02 9.69 7.34
LBBB Spont 15.46 8.03 15.40

FNUSA Spont 7.56 7.62 4.88
Paced 6.58 8.88 3.67

FNKV Spont 9.69 10.12 6.4
Paced 12.80 15.81 7.44

As mentioned above, FNUSA and FNKV datasets contained information of QRS
duration for the 3 different morphological groups. Tab. 8.4 shows the results sep-
arately for these morphological groups. In this case, the duration of each network-
detected QRS complex was separately compared with the corresponding annotated
QRS complex. In each recording, the mean QRS duration for each morphological
group was calculated.

Tab. 8.4: Results for QRS duration task for validation (FNUSA) and test (FNKV)
datasets for 3 different morphological groups. MAE reffers to the mean absolute
error, STD refers to standard deviation of the absolute error.

Database
Morphological

group
No of QRSs MAE [ms] STD [ms]

1 1,216 6.68 7.95
FNUSA 2 64 14.37 17.52

3 20 14.71 24.75
1 8,328 11.88 15.12

FNKV 2 764 15.71 20.14
3 405 14.71 17.21
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Fig. 8.1: Example of QRS onset and offset estimation for 3 different 12-lead UHF-
ECG signals (1 spontaneous and 2 stimulated/paced). The purple rectangular signal
represents the annotations and the blue rectangular signal represents post-processed
model output [28].
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8.4 Discussion
In this chapter, we introduced a deep learning model that delivers the onset and
offset of the QRS complex in addition to the QRS complex position and hence its
duration in one inference step. The models differ from the QRS detection model in
the number of data used for training, hyperparameters of the network architecture
(size of kernels, 9 vs. 12), and loss function used for training (weighted crossentropy
vs. weighted crossentropy + MSE) but more importantly, they differ in the size of
the annotation “rectangle,” which forms a signal that a model is trained to produce.
These rectangles are no longer of a fixed duration of 10 ms; their size corresponds to
the QRS duration of the associated ECG recording and an associated morphological
group of the QRS complex.

We received an overall F-score of 98.84 ±0.51% for test datasets (FNKV, LUDB)
for QRS detection task (Tab. 8.2). In terms of the QRS duration task, we received
an overall MAE of 12.25 ±2.16 ms (Tab. 8.3) for test datasets (CIPA, LUDB, LBBB,
FNKV). We also compared results between the 3 morphological groups (Tab. 8.4).
We observed slightly worse results for morphological groups 2 and 3 compared to
morphological group number 1. This difference reflects the distribution of morpho-
logical groups in the training set.
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9 Pacing stimuli removal
The current method for UHF-ECG analysis requires the removal of the pacing stim-
uli. This is an essential step for QRS morphology clustering. While deleting a
stimulus’ rising edge is rather simple, it is more difficult to localize and remove the
end of the post-stimulus recharge phase because of its low amplitude. The current
method for removing pacing pulses and the area around them requires detecting
them and then applying a linear function supplemented by a spline function on the
edges in the time domain [19]. In this technique, however, the useful part of the
signal at the stimulus location is removed. Our task is to develop a regression deep
learning model that is able to suppress the effect of the pacemaker while maintaining
a useful signal.

9.1 Data and preprocessing
We used data from the FNUSA hospital to train and validate the model for pacing
stimuli removal. For testing, we used independent data from the FNKV hospital.
The number of records used can be found in Table 9.1.

Tab. 9.1: Number of patients used for removal of pacing stimuli for training, vali-
dation and test set.

Train Validation Test
Database FNUSA FNKV FNKV
Spontaneous 639 310 112
Paced 384 74 112

Signals containing V1- V6 precordial leads were extracted from the database.
We also extracted corresponding target signals for the model with pacing stimuli
suppressed and replaced by a linear function supplemented by a spline function on
the edges as a target (PCM1-PCM6) [19].

Our dataset contains paced and spontaneous data. Paced leads (V1-V6) have
corresponding leads without pacing pulses as a target (PCM1-PCM6). Regarding
spontaneous data, online augmentation was performed. Randomly, a portion of the
signals remained spontaneous with the same target as the input to the model. For
the portion of the spontaneous signals, stimulus pulses were artificially created in
the area of QRS complex. For each of these signals, the number of pacing stimuli
within the input window (1-3), their polarity, amplitude (0.5 - 3 x the amplitude
of the spontaneous signal), and position within the input window were randomly
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selected. The corresponding target was spontaneous signal without these artificial
changes.

A 0.2 s (1000 samples) input window is taken from each signal. Each precordial
lead from a signal enters the model separately. In this window, 1st derivative and
then z-score normalization is applied. The process of generating data for training
and preprocessing is summarized in Figure 9.1.

Fig. 9.1: Scheme of preprocessing and generating data for training.
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9.2 Model
The deep learning model used for removing pacing stimuli from UHF-ECG was
pix2pix [48]. This model was originally developed to map any image to any other
image, e.g. the edges of an object to the image of the object. In our case, we are
mapping the signal to the signal of the same length minus the pacing stimuli, so we
need to transform all the layers into 1D. Model architecture belongs to a group of
models called conditional Generative Adversarial Networks (cGANs). It consists of
a generator and a discriminator.

The generator is a CNN with UNet architecture. An input to the network of
size 16x1x1,000 (batch size x 1 precordial lead x signal length) passes through the
generator and the output is a signal of the same length.

The discriminator is a classification CNN consisting of 4 identical blocks con-
taining a convolutional layer( kernel size = 4, stride = 2), an instance normalization
layer and leaky ReLU activation function (negative slope = 0.2). The input to this
network is 16x2x1,000 (batch size x concatenated leads x length of the signal) After
each of these layers, the number of feature maps is increased (64, 128, 256, 512).
Finally, one convolutional layer is applied (kernel size = 4, stride =2) whose output
has a size of 16x1x61. The input of the discriminator network is either the output
of the generator concatenated with the input of the generator or the target of the
generator with the input of the generator.

9.2.1 Training the generator

To train the generator, its inference is done first. The input to the generator is a
stimulated signal (16x1x1,000). Then its output is concatenated with its input and
such a tensor of size 16x2x1,000 enters the discriminator. To train the generator
we use 2 error functions which are finally summed. L1 loss measures the L1 dis-
tance between the generator’s target and its output. Furthermore, the loss from the
discriminator, the MSE between the output of the discriminator (16x1x61) and a
vector of ones of the same length (16x1x61) is computed. The final loss from the
generator is therefore (10 x L1 loss) + MSE loss (Figure 9.2). When this loss is
back-propagated, the discriminator network’s parameters are frozen.
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Fig. 9.2: Scheme for training the generator. MSE stands for Mean Square Error.
Part a.) of the Figure represents the generator inference and the L1 loss calcula-
tion. Part b.) represents the concatenation of the input to the discriminator and
calculation of the MSE loss.

9.2.2 Training the discriminator

The role of the discriminator is to try to distinguish whether its input is a concate-
nated generator input with a generator output or with a target. The discriminator
loss function measures how good or bad the discriminator’s predictions are. When
training the discriminator, the generator’s parameters are frozen.

Inference of the discriminator is performed 2 times. First, the concatenated input
of the generator and target enters the discriminator. The loss function is calculated
as MSE of the output of the discriminator and tensor of ones of the exact size as
the output (Figure 9.3 a.)).

The second time the input of the generator concatenated with the output of the
generator enters the discriminator. The loss function is now calculated as MSE of
the output of the discriminator and tensor of zeros of the exact size as the output
(Figure 9.3 b.)). The resulting discriminator loss is the sum of the 2 losses mentioned
above.
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Fig. 9.3: Scheme for training the discriminator. MSE stands for Mean Square Er-
ror. Plus stands for concatenation. Part a.) of the Figure represents the first
discriminator inference with target and input to the generator concatenated. Part
b.) represents the second discriminator inference with output of the generator con-
catenated with the input to the generator.

9.3 Method and results
For further evaluation, the output must be integrated and compared with the original
target (before 1st derivative). After training the model, we use only the generator
network for inference. The output of the model and its target are the first derivative
signals. An example of the input, output and target can be seen in Fig. 9.4.
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Fig. 9.4: Example of pacing stimuli removal. First subplot represents the input to
the network. Second subplot represents the target ECG (processed by the current
method implemented in VDI vision software) and third subplot represents the output
of the model (blue line) compared to the target (orange line). The black dot is the
mark of the pacing stimuli and the red one of the QRS complex.

Then we analyzed the method results on 224 signals from the test set (112 spon-
taneous and 112 paced). UHF-ECG analysis is performed from amplitude envelopes
and therefore it is necessary to find out how the method for pacing artifacts removal
affects them. We performed network inference on the whole signals with a floating
window of 1,000 samples. We then took 50 ms before and after QRS complex mark,
applied Fourier and Hilbert transform and counted 15 amplitude envelopes (150-
950 Hz). From these envelopes in the QRS complex region, we created an average
envelope for each frequency band and compared this with the average envelope of
the target and calculated the Spearman correlation. The results of the correlation
of spontaneous and paced data plus 95% confidence intervals can be seen in Figure
9.5.
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Fig. 9.5: Correlation of average amplitude envelopes in 15 frequency bands between
target and model output. CI stands for confidence interval

9.4 Discussion
Our goal was to create a deep learning model that would remove the pacing stimuli,
but at the same time would not remove the useful signal in the pacing phase and
recharge phase. We sought to achieve this by training on paced data but also by
creating artificial pacing stimuli in spontaneous ECGs. We evaluated the results
based on the correlation of the average amplitude envelopes in 15 frequency bands
between the target and the model output in QRS complex region. As expected,
when a spontaneous signal enters the model, where there is no need to remove
pulses, the network achieves a higher correlation and has smaller confidence inter-
vals. However, for both spontaneous and paced data, there is a tendency that the
correlation decreases as the frequency band increases. Hence, although in the time
domain, it looks like our model can remove pacing stimuli with minimal mean square
error between the output and target signals, if we create frequency band amplitude
envelopes we can see that correlation between the target and model output is not
sufficient for paced signals.

The advantage over the current method is the stimuli removal in one inference
step with no need for previous QRS complex detection. However, regarding ampli-
tude envelopes in different frequency bands and paced ECGs, performance need to
be further improved. The results suggest that to apply this method in a real time
UHF-ECG analysis, it is necessary to bring the performance of the model on the
paced data to at least the same performance level as on spontaneous data.
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10 Assessing the level of ventricular electri-
cal delay

The ejection fraction, QRS duration (QRSd) and QRS morphology are the main
selection criteria for CRT. Because 1/3 of patients, with ejection fraction reduced
to lower or equal to 35 % and QRS duration above 150 ms with LBBB morphology
do not respond to CRT, a technique for assessing the level of electrical ventricular
delay (VED) has been developed in the past [2] [45]. The value of this delay reflects
the electrical dyssynchrony between the right ventricle septum and left ventricle
lateral wall. Patients with low values for the VED parameter and QRS duration
that satisfies the CRT criterion, are not likely to respond to CRT [46]. Measuring
the VED parameter may raise the number of patients who react to CRT [3]. The
value of this delay is positive for the LBBB morphology and negative for the RBBB
morphology. Our task is to develop a deep learning model that would estimate the
VED value in a single inference step directly from ECG signal.

10.1 Data and preprocessing
For training the regression deep learning model we used data from FNUSA and
FNKV hospital. This time, however, the datasets were mixed together due to the
fact that the individual datasets contained patients with different types of patholo-
gies. In the FNUSA dataset, there are mainly patients with LBBB morphology, on
the other hand in the FNKV dataset there are mostly patients with AV blocks. The
VED parameter as ground truth for the model training was calculated as shown in
Chapter 5 (referred to as UHFDYS).

We deleted outliers from the dataset based on VED values using an interquartile
range. The first and third quartiles are calculated, which are then subtracted from
each other to obtain the interquartile range. This is multiplied by 1.5 and the
resulting value is subtracted from the first quartile and added to the third quartile
forming upper and lower bound. All observations that have VED values outside
these bounds are classified as outliers. The distribution of the data in the form
of boxplots and histograms is shown in Figure 10.1. The median VED in FNUSA
and FNKV are 15 and 6 ms; the randomly selected value of the FNUSA dataset
is considered to be greater than the randomly selected value of the FNKV dataset
(Mann–Whitney U = 5,643,926, p < 0.001 right-tailed), which is precisely due to
other types of pathologies between datasets.
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Fig. 10.1: Distribution of VED parameter for data from FNUSA (blue) and FNKV
(orange) datasets. Black dots in boxplots and black bars in the histogram represent
outliers. Mann–Whitney right-tailed test shows that the randomly selected value
of the FNUSA dataset is considered to be greater than the randomly selected VED
value of the FNKV dataset (U = 5,643,926, p < 0.001).

Data were partitioned into training, validation, and test so that the same patients
did not appear between the partitions and also so that the distribution of the VED
value was approximately the same in all 3 partitions. For some records, there was
no patient information. Thus, all these records were included in the training set to
avoid overfitting. The number of patients and records in each split is captured in
Table 10.1.

Tab. 10.1: Number of patients and records used for training, validation, and testing
the regression model for estimation of VED.

Training Validation Test
Number of patients 1,384 169 178
Number of records 6,326 592 592
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Our goal is to estimate the value of the VED parameter for the main morphology
of the QRS complexes, so we take the 8s of the UHF-ECG signal as input. This is
then downsampled to a sampling rate of 1,000 Hz, differentiated and passed through
the neural network.

10.2 Method
We experimented with several models, different combinations and types of layers.
The 2 models that gave the best results on the validation dataset are presented next.

We used 2D and 1D variants of the convolutional neural network for VED as-
sessment. For the 1D variant, the input tensor size is 16x6x8,000 (batch size x
number of leads x signal length). The kernel size in the convolutional layers was
chosen to be 5 and 7, with zero padding = 2. The number of feature maps was
increased to 20 after the first double convolution block and then doubled after each
subsequent double convolution block (40, 80, 160, 320). After each of these blocks, a
max-pooling layer and a drop-out layer were included. Finally, max-pooling, linear
layer, ReLU activation function, and the last linear layer were applied to the tensor
of size 16x320x496 to deliver the output of the network.

The 2D variant was based on the 1D variant in terms of architecture, but in
this case, the layers are in 2D format. The idea behind this is that the VED
parameter is originally estimated from 6 precordial leads simultaneously in time
and the time shift between the QRS complex in lead V1 to V6 is tracked, hence we
apply 2D convolution so that the network can see multiple leads simultaneously in
time. The input to the network is 16x1x6x8,000 (batch size x number of channels
x number of leads x length of the signal). The kernel sizes, in this case, were 3x3
with zero padding = 2. Finally, only one max-pooing layer and one linear layer were
included. The output consisted specifically of the VED parameter without the need
for further postprocessing in both of the architectures. Neural network architectures
are depicted in Fig. 10.2.
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Fig. 10.2: 1D and 2D convolutional network architectures for assessment of Ventric-
ular Electrical Dyssynchrony (VED) level.

Both models were trained using L1 loss and Adam optimization, with an initial
learning rate of 0.001; a scheduler was also used to change the learning rate during
training, with a reduction of 0.1 every 10th epoch. For both the 1D and 2D variants,
early stopping was used during training, so if there was no improvement of the loss
function on the validation dataset after 5 consecutive epochs, the training process
was stopped.

10.3 Results
The performance of our models is measured based on the Mean Absolute Error
between the actual and estimated VED values (MAE), along with the standard
deviation (STD) and the Median Absolute Error (Median AE) on the test dataset.
Results are reported separately for spontaneous ECG signals and for paced ones
(Table 10.2) for 1D CNN and Table 10.3 for 2D CNN) and also for the negative and
positive values of VED (Table 10.4) for 1D CNN and Table 10.5 for 2D CNN). To
observe relationships between annotated and predicted VED we used scatter plots
(Fig 10.3) and Spearman correlation coefficient (Table 10.6) since the data are not
normally distributed according to the Shapiro Wilk test (p<0.05).
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Tab. 10.2: Results for 1D CNN for VED assessment. MAE stands for mean absolute
error STD for standard deviation and MEDIAN AE for median average error.

MAE [ms] STD [ms] MEDIAN AE [ms]
Overall 12.61 18.95 8.25
Spontaneous 9.11 13.11 5.92
Paced 14.87 21.87 9.88

Tab. 10.3: Results for 2D CNN for VED assessment. MAE stands for mean absolute
error STD for standard deviation and MEDIAN AE for median average error.

MAE [ms] STD [ms] MEDIAN AE [ms]
Overall 12.27 17.73 8.58
Spontaneous 8.97 12.77 6.48
Paced 14.41 20.09 9.99

Tab. 10.4: Results for 1D CNN for positive and negative VED level.

MAE [ms] STD [ms] MEDIAN AE [ms]
Positive VED 10.68 15.59 7.39
Negative VED 16.11 20.21 10.06

Tab. 10.5: Results for 2D CNN for positive and negative VED level.

MAE [ms] STD [ms] MEDIAN AE [ms]
Positive VED 9.08 12.73 6.17
Negative VED 17.70 17.21 13.21
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Fig. 10.3: Scatter plot of annotated vs estimated values of VED for 1D and 2D CNN
for both spontaneous (spont green) and paced (stim yellow) UHF-ECG signals.

Tab. 10.6: Spearman correlation coefficients for scatter plots (Fig. 10.3) between
annotated and estimated VED, reported for the whole test set and also separately for
spontaneous and paced data. All correlation coefficients in the table have p<0.0001.

Pearson correlation coefficient
1D CNN 2D CNN

Overall 0.83 0.85
Spontaneous 0.89 0.88
Paced 0.77 0.81

We also measured inference time for a single 8-second ECG block using the GPU
(CUDA acceleration, GTX 1080 Ti). The average computing time (1000 trials) was
5.2 ±6.3 ms for both 1D and 2D CNN.

10.4 Discussion
Our results in terms of MAE (1D CNN - 12.61 ±18.95 ms, 2D CNN - 12.27 ±17.73
ms) and inference time (5.2 ±6.3 ms) suggest that the 1D and 2D CNN models
provide very similar performance in the same amount of time. According to Mann
Whitney test the null hypothesis cannot be rejected and the randomly selected value
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of MAE in 1D CNN is assumed to be equal to the randomly selected value of MAE in
2D CNN (p > 0.05). Thus, our assumption that 2D convolution will yield improved
results is not confirmed.

Both models achieve higher accuracy and hence smaller MAE on spontaneous
data compared to the paced data (Tab. 10.2, 10.3. Also, the models perform
better on positive VED values compared to negative ones (Tab. 10.4, 10.5), which
corresponds to the percentage of negative values of VED in the training set (35%).

We also tried to evaluate the performance with signals that contained only major
morphological group of QRS complexes (n = 402) in the 8s window, since our
annotations for the VED value originate from the major morphological group. MAE
is 11.85 ±18.39 ms and 11.42 ±16.49 ms for 1D and 2D CNN, respectively. Thus,
there was only a marginal improvement of less than 1 ms.

If we look at the Spearman correlation coefficient and scatter plots between
actual and estimated VED, a strong and significant positive correlation can be seen
for both models and also for spontaneous and paced data. The 2D CNN model
acquires a higher correlation (0.85 compared to 0.83 for 1D CNN) which can be
observed particularly for paced data (0.81 for 2D CNN vs. 0.77 for 1D CNN).

However, comparison to other techniques to measure electrical dyssynchrony
cannot be done since they do not exist. Still, we can point to advantages over a
measure of interventricular mechanical delay, which is the closest possible option.
The most commonly used technique for evaluating interventricular dyssynchrony is
standard echocardiography which measures interventricular mechanical delay and
delayed motion of the posterior wall. Study [47] shows that intra and inter observer
reproducibility of this measure in 95% confidence interval is (-27,26 ms) and (-43,41
ms), respectively. If we look at the results of our models, which in this case predict
a slightly different parameter, namely electrical ventricular dyssnyhcrony, the MAE
of less than 13 ms indicates a smaller error than in the case of the measurement
of mechanical dyssynchrony. And since our method is a model with fixed structure
and properties, it is perfectly reproducible in comparison to a human expert.

Our results suggest that both models can estimate VED for spontaneous data,
but performance for paced ECGs needs to be further improved. This could be
achieved in the future either by augmenting this type of data during training, al-
ternatively, suppression of the pacing stimuli will be necessary. The advantage over
the current method [2] for VED estimation lies in the minimal signal pre-processing.
Also, our method estimates the VED from an 8-second window, whereas the cur-
rent solution in VDI Vision software estimates the VED from a 2-minute segment
of the signal. VED estimation using deep learning is fast but requires refinement.
Another advantage is that it works on 1 kHz sampled signals, so it can be used also
on conventional ECG data, no UHF-ECG is required.
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Conclusion
The master thesis was aimed to research the issue of ventricular activation disorders
(especially LBBB and RBBB) and the analysis of the UHF-ECG using methods of
artificial intelligence, namely deep learning models. Generally speaking, the goal
was to observe whether specific UHF-ECG analysis tasks can be solved via deep
learning methods.

The first task was to design, implement and test a deep learning model suitable
for the detection of QRS complexes in UHF-ECG and consider the possibility of
simultaneous QRS complex width detection. We presented 2 real-time deep learning
models, the first for QRS detection and the second for QRS detection focusing on
its onset and offset and thus delivering QRS duration in one inference step. With
minor changes in the architecture hyperparameters, and training (loss function,
annotations) we were able to improve the performance of our QRS detection model.
We received an overall F-score of 98.84 ±0.51% for the QRS detection task. In
terms of the QRS duration task, we received an overall Mean Absolute Error of
12.25 ±2.16 ms.

An important benefit of the presented solution is a significantly increased F-score
(98.84%) for the test dataset compared to the QRS detector (90.43%) embedded in
the current version of the VDI Vision software suggesting that the average time for
UHF- ECG analysis can be shortened. Thanks to minimal signal preprocessing and
high detection performance, the presented model is likely to be implemented in the
future generation of real-time VDI Vision software. The most beneficial effect for
patients is shorter measurement time, which is essential during implant procedures.
Another benefit is the simultaneous estimation of QRS duration, which is one of
the parameters important for patient selection for CRT and rather raw measure of
pacing effectivness.

Next, we developed a deep learning regression model (pix2pix network) to remove
pacing stimuli from the UHF-ECG. We evaluated model performance based on the
Spearman correlation of high-frequency amplitude envelopes in 15 frequency bands
between the model output and the target. We found that on spontaneous data,
the model provides higher correlation than on paced data and also that as the
frequency band increases, there is a degradation in performance for both stimulated
and spontaneous data. The advantage over the current method implemented in
current version of VDI Vision is the stimuli removal in one inference step and no
need of prior QRS detection. However, for the model to be implemented in VDI
Vision, the performance of the model on paced data must reach at least the same
performance as on spontaneous data.

The last task was the estimation of ventricular electrical dyssynchrony (VED),
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for which we used 2 regression models: 1D CNN and 2D CNN. The MAE between
our solution and ground truth is 12.61 ±18.95 ms and 12.27 ±17.73 ms for 1D and
2D CNN, respectively. MAE on spontaneous data is approximately 5 ms better than
on paced data for both models, indicating the need to remove the pacing stimuli
from the UHF-ECG. If we wanted to compare the estimation of VED with another
parameter, the closest option would be standard echocardiography measuring in-
terventricular mechanical delay. Our model of fixed structure and parameters has
perfect reproducibility compared to a human observer measuring the mechanical
dyssynchrony (intra observer reproducibility 95% CI is -27 - 26 ms) [47].

The advantage of all of these models lies in minimal signal preprocessing and
delivering the desired output in one inference step. But while presented methods
perform perfectly in case of QRS detection and segmentation, we also identified
weak points in pacemaker stimuli removal and VED estimation methods. However,
all these observations are essential for further development of UHF-ECG analysis,
helping to state which specific methods could be changed to artificial intelligence
approaches.
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Symbols and abbreviations
1D 1 Dimensional

2D 2 Dimensional

AI Artificial Intelligence

AV Atrio Ventricular

BBB Bundle Branch Block

CHD Congenital Heart Disease

CI Confidence Interval

CNN Convolutional Neural Network

CRT Cardiac Resynchronization Therapy

CUDA Compute Unified Device Architecture

DCM Dilated Cardiomyopathy

DL Deep Learning

ECG Electrocardiogram

EF Ejection Fraction

FNKV University Hospital Královské Vinohrady

FNUSA St. Anne’s University Hospital Brno

GPU Graphical Processing Unit

HF Heart Failure

HFrEF Heart Failure with reduced Ejection Fraction

IHD Ischemic Heart Disease

LBB Left Bundle Branch

LBBB Left Bundle Branch Block

LVH Left Ventricular Hypertrophy

MAE Mean Absolute Error
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MedAE Median Absolute Error

MI Myocardial Infarction

ML Machine Learning

NYHA New York Heart Association

PE Pulmonary Embolism

PPV Positive Predctive Value

QRSd QRS duration

RBB Right Bundle Branch

RBBB Right Bundle Branch Block

RCS Randomized Clinical Studies

ReLU Rectified Linear Unit

SA Sinoatrial

STD Standard Deviation

VDI Ventricular Dyssynchrony Imaging

VED Ventricular Electrical Dyssynchrony

UHFDYS Ultra-high frequency Dyssynchrony

UHF-ECG Ultra-high frequency ECG

UHFQRS Ultra-high frequency QRS
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