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ABSTRACT 

As urbanization expands, understanding its adverse effects on ecosystems, communities, and 

species becomes increasingly necessary. Birds are often the focus of urban ecology studies due 

to their ease of observation and role as effective bioindicators. Bird species vary in their 

responses to urbanization. While rare, specialist, and endemic species often suffer, a few 

widespread generalists thrive in urban areas, such as many corvid species. The replacement of 

native species with a few generalists leads to the biotic homogenization of urban avian 

communities. Understanding the factors that promote the presence of certain species and deter 

others becomes vital to urban conservation efforts. 

In this compilation thesis, we examine various aspects of urban avian communities, including 

habitat selection and overlap, antipredator behavior, and the role of remote sensing techniques 

in monitoring avian diversity. The work was conducted during the breeding seasons in several 

European cities over multiple years. The scale of the studies ranged from single species in one 

city to entire urban bird communities across several European cities. Fieldwork consisted of 

different methods, from point counts to survey species presence and abundance to measuring 

Flight Initiation Distance (FID), the distance at which an individual initiates escape from a 

potential predator. We also used remote sensing indices like the Normalized Difference 

Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) to assess the vegetation cover. 

The statistical methods employed various techniques and models. 

We studied the urban habitat selection and overlap of corvids. We also investigated the impacts 

of urban noise pollution on the antipredator behavior of the Eurasian Magpie (Pica pica). 

Additionally, we examined the role of refuge availability, proximity, and type on the 

antipredator behavior of urban avian communities. Finally, we explored the capacity of specific 

remote-sensing vegetation indices to act as proxies for urban avian diversity beyond simple 

bird richness, potentially revealing homogenization. 

Our findings showed a high overlap in the habitats of all corvid species despite some specific 

preferences. The corvids with similar habitat preferences often co-occurred, indicating low 

competition. Urban noise did not significantly affect the Magpies' ability to detect danger, but 

it did slow their reaction and escape. We found that urban birds preferred to seek refuge in trees 

after disturbance and felt more secure when near potential refuges, delaying their flight after 

disturbances. Finally, the NDVI mean proved to be a good proxy for multifaceted avian 

diversity monitoring and could help identify potential homogenization. 
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This thesis contributes to the growing field of urban ornithology, providing insights to guide 

conservation efforts. In Europe, urban ornithology can inform strategies to reduce avian loss 

and provide valuable knowledge for urban planning in newly developing cities worldwide to 

preserve biodiversity. 

Keywords: Adaptation, Avian, Behavior, Bird, Biodiversity, Corvid, Europe, EVI, Flight 

Initiation Distance, Habitat Selection, NDVI, Niche overlap, Noise Pollution, Urban. 
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CHAPTER 1. INTRODUCTION 

1.1- The role of birds in ecological studies 

Across cultures and throughout history, birds have consistently assumed the role of literary 

messengers, symbolizing various emotions due to their captivating beauty and ability to soar 

free in the skies (Cocker, 2014; D'couto, 2016; Serjeantson, 2009; Tidemann & Gosler, 2012). 

Beyond their symbolic significance in literature, birds are a key component of scientific 

inquiry, enabling people to answer some of the most complex questions about the world. Bird 

study, also known as ornithology, is one of the earliest established scientific fields, making 

birds some of the most researched organisms (Birkhead et al., 2014; Del Hoyo et al., 1992; 

Tietze, 2018). Many factors allowed birds to feature frequently in scientific research. First, 

their ease of study has attracted ecologists due to their high detectability, abundance, spread, 

and established phylogenies (Jetz et al., 2012; Prüm et al., 2015). For several reasons, birds can 

also be used as model organisms for other species. First, they are model organisms for 

population studies due to the high diversity of their social systems (Konishi et al., 1989). 

Moreover, they use similar senses to humans, making them ideal subjects for neurological 

studies (Konishi et al., 1989). Birds are likewise often considered reliable bioindicators for 

other taxa, ecosystems, and habitat quality (Benmazouz et al., 2021; Goodness et al., 2016; 

Morelli, Reif, et al., 2021). Avians also play significant and diverse roles in ecosystems due to 

their valuable functions (Gaston, 2022). Thus, they directly or indirectly benefit humanity 

through the various ecosystem services they support, namely regulating, provisioning, 

supporting, and cultural services (Lees et al., 2022). Many bird species act as pollinators, seed 

dispersers, scavengers, and ecosystem engineers (Goodness et al., 2016; Heyman et al., 2017). 

Through migration, birds preserve ecological connections, linking ecosystem processes 

between distant areas (Graham et al., 2018). Therefore, bird studies help unfold the diverse 

functions of birds, contribute to the knowledge of different fields like behavior, evolution, and 

biology, and monitor ecosystem function and quality across time (Tietze, 2018). Though the 

field is reasonably established and bird species are relatively well understood, anthropogenic 

impacts, through land use alterations and climate change, pose new challenges to bird species, 

forcing them to adapt or suffer (Tietze, 2018). 



2 

1.2- Ornithology in urban environments 

Urbanization is defined as anthropogenic ally caused landscape alterations resulting from the 

development of human settlements (i.e., cities) and is one of the most severe causes of human-

related impacts on ecosystems (Foley et al., 2005). Around 55% of the global population 

currently resides in urban areas, and this number is projected to increase to 68% by 2050 (UN 

DESA, 2019). Specifically, in Europe, 75% of the people live in urban areas, which is expected 

to reach 84% by 2050 (UN DESA, 2019). Likewise, urban areas are predicted to continue to 

grow rapidly and are, thus, one of the fastest-expanding land-use types (McDonald, 2008). 

Even though urban areas occupy only 3% of the global land cover (Z. Liu et al., 2014), the 

adverse impacts of urbanization can affect areas many times their size (McGranahan & 

Satterthwaite, 2003) by depleting their natural resources, for example (Czech et al., 2000). 

Furthermore, urban land is shown to grow faster than the population and is expected to double 

in size within 19 years (Angel et al., 2011). 

Ornithology has emerged as a prominent discipline in urban studies driven by the rapid 

expansion of urban areas and the imperative to understand their profound impacts on 

ecosystems, communities, and species (Collins et al., 2021). A deeper understanding of the 

adverse effects of urbanization would contribute to informing more sustainable urban planning 

strategies (Lepczyk & Warren, 2012; McCloy et al., 2024). Birds have become central to urban 

ecological studies due to their abundance in cities and ease of observation across various spatial 

scales (Mekonen, 2017). Furthermore, bird communities exhibit dynamic responses to 

urbanization, offering valuable insights into its broader environmental impacts (Lepczyk & 

Warren, 2012). Avian communities also serve as bioindicators of urban ecosystems' health, 

guiding efforts to mitigate and reduce the adverse effects of urbanization on ecosystem 

functioning (McCloy et al., 2024; Mekonen, 2017; Morelli, Reif, et al., 2021). 

Preserving urban biodiversity (a major facet of urban green infrastructure) is necessary to 

ameliorate the well-being of human urban populations (Elmqvist et al., 2013; European 

Commission, 2011; Hedin et al., 2022). Not only is biodiversity critical for biomedical research 

and drug development (Chivian & Bernstein, 2004), but it also provides health benefits for 

people on a local scale (Hedin et al., 2022; Taylor & Hochuli, 2015). For example, urban green 

spaces with complex and diverse species provide people with various psychological benefits 

(Fuller et al., 2007). Bird watching is one of the many cultural services birds offer to people 

due to their aesthetic and symbolic values. Increased bird diversity, bird-watching activities, 
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and listening to bird songs improved positive affect and vitality and diminished anxiety levels 

and mood disorder hospitalization in the population (Buxton et al., 2023; Cox et al., 2017; Cox 

& Gaston, 2016; Ratcliffe et a l , 2013; Wolf et a l , 2017). Enhancing the well-being of the 

urban population becomes necessary as the urban populations continue to grow. 

For all these reasons, the field of urban ornithology has been flourishing, specifically in Europe, 

the United States of America (hereafter "USA"), and Canada (Collins et al., 2021; Marzluff, 

2017). 

Europe's long urban history presents a unique opportunity for avian ecological studies aiming 

to understand the complex relationships between wildlife and urbanization (Jokimaki et al., 

2016). Such studies can reveal the various adverse species-specific effects of urbanization and 

the effects on the overall community structure. Urban ecological studies in Europe can offer 

valuable knowledge and instruct urban planning initiatives toward more sustainable cities. 

Such information would greatly benefit newer, currently developing, and expanding cities 

worldwide, guiding the development of biodiverse and wildlife-friendly cities (Jokimaki et al., 

2016). Understanding the adverse effects of urbanization on birds in Europe can help mitigate 

these impacts and reduce avian loss. The abundance of native European birds has declined 

between 17% and 19% since the 1980s (Burns et al., 2021). This heavy loss is mainly attributed 

to anthropogenic land-use changes, including urbanization and agricultural intensification 

(Burns et a l , 2021; Fusco et a l , 2021). 

1.3- The impacts of urbanization on birds 

Urban growth heavily alters the landscapes (Giineralp et al., 2020), destroying, fragmenting, 

or modifying species' natural habitats (Aronson et al., 2014; Fernandez-Juricic & Jokimaki, 

2001). Not only does urbanization alter the landscape with impervious structures (i.e., roads 

and buildings), but even remaining green areas in cities tend to differ from the original natural 

habitats of species since people plant non-native species, remove midstory canopy, and manage 

lawns (Aronson et al., 2014; Luck & Smallbone, 2010). Habitat destruction and fragmentation 

are likely the primary risk factors urbanization poses on bird species, forcing them to either 

look for more suitable habitats or adapt to the new conditions (Isaksson, 2018; Marzluff & 

Ewing, 2008; Mckinney, 2002). 

Besides changing the landscapes, urbanization also introduces additional risk factors for 

species. For one, urban areas are associated with higher levels of air pollution from various 
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sources, such as vehicular fuel combustion, power and heat generation, and municipal waste 

(Coelho et al., 2022). Air pollution has been shown to adversely affect the fitness of birds either 

directly or indirectly. Birds' respiratory systems are susceptible to air quality due to their 

efficiency in allowing the uptake of aerially suspended compounds (Brown et al., 1997). The 

impacts of inhaling air pollution include increased oxidative stress, susceptibility to illness, 

reduced thyroid function in birds, behavioral changes, and reduced reproductive success 

(Sanderfoot & Holloway, 2017). 

Urban areas are also associated with increased ambient noise levels, attributed primarily to 

traffic characterized by low-frequency sounds (Warren et al., 2006; Zollinger et al., 2017). 

Many species use sounds for communication and survival; therefore, they are not inherently 

harmful (Sordello et al., 2020; Sun & Narins, 2005). Elevated sounds may escalate to "noise 

pollution" when they disrupt wildlife, although different species may have varying tolerance 

levels (Sun and Narins, 2005; Sordello et al., 2020). Birds are a prime example of fauna 

negatively impacted by noise pollution. Avians depend on acoustic communication and signals 

to navigate their environment (Francis et al., 2009; Hu & Cardoso, 2009; Petrelli et al., 2017). 

They use their songs to communicate with brood and conspecifics, attract partners, and assert 

dominance (Catchpole & Slater, 2003; Slabbekoorn & Ripmeester, 2008). Birds rely on 

acoustic cues to detect approaching predators and send and receive signals from or to 

conspecifics about such potential predatory threats (Hollen & Radford, 2009). Therefore, 

missing calls from conspecifics can inflict fitness costs on the birds, such as missing mating 

calls from an optimal mate or missing alarm calls about an approaching predator (Brumm & 

Zollinger, 2013). Despite the adverse impacts of sound masking on bird communication, many 

bird species could adapt to the novel soundscapes within urban areas in various ways. For 

instance, some birds were found to modify the timing of their songs, starting at earlier times 

during the day to avoid the rush hour (Dorado-Correa et al., 2016). Some urban birds were 

demonstrated to sing at higher frequencies to minimize masking by low-frequency traffic noise 

(Bermudez-Cuamatzin et al., 2011). The reflexive increase in song amplitudes to maintain the 

signal-to-noise ratio, known as the Lombard effect (first identified in humans and later 

observed in other animals), is another way urban birds react to increased noise (Brumm, 2004; 

Lombard, 1911). Finally, some urban bird species were observed to sing longer songs in urban 

areas (Rios-Chelen et al., 2013). Such modifications may result from phenotypic plasticity or 

natural selection (Rios-Chelen et al., 2012; Warren et al., 2006). 
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However, besides masking sound cues, noise exposure entails direct physiological impacts by 

disrupting sleeping patterns and elevating stress levels (Grunst et al., 2021). Elevated stress 

from chronic exposure has been shown to weaken the immune system, increasing the 

individual's vulnerability to illness and diseases (Berkhout et al., 2023). Such diverse effects 

of noise pollution can result in detrimental outcomes from individual fitness to population 

dynamics and community structure (Francis & Barber, 2013). 

Another form of widespread pollution in urban regions is light pollution, namely the increased 

Artificial Light at Night (hereafter " A L A N " ) . Light pollution is defined as the adverse impacts 

of the extreme and disproportionate use of light (Ryer, 1997). Animals are accustomed to the 

regular patterns of light and darkness, giving the light a primary role in regulating daily and 

seasonal behavioral and physiological cycles (Dominoni et al., 2013; Gwinner & Brandstatter, 

2001). A L A N exposure may, therefore, disrupt organisms' circadian clock, leading to 

cascading effects, from disturbed hormone production to disrupted sleep, immunosuppression, 

stress, and more (Dickmeis, 2009; Figueiro & Rea, 2010; Grunst et al., 2020; Navara & Nelson, 

2007; Raap et al., 2016). Birds exposed to light pollution were shown to extend their activity 

timing, starting to sing earlier in the morning and ending later at night (Da Silva et al., 2015; 

Da Silva & Kempenaers, 2017). They also spend more time foraging and increase their activity 

at night (Russ et al., 2015). These changes are energetically costly and negatively impact the 

birds' fitness (Da Silva et al., 2015; Raap et al., 2016). A L A N was shown to advance avian 

reproduction behavior, leading to a mismatch between optimal resource availability and clutch 

nutritional needs (Dominoni et al., 2013; Kempenaers et al., 2010). Thus, urban light 

pollution's impact on species may vary depending on their dietary needs, where omnivores and 

insectivores are adversely affected but not granivores (Morelli et al., 2023). Birds are naturally 

attracted to light, leading to millions of deaths yearly due to collision with artificial light 

structures (Gauthreaux Jr et al., 2006; Longcore et al., 2008). Light pollution also interferes 

with birds' migration, causing them to become disoriented (Horton et al., 2019). However, light 

pollution may have a few benefits, as some birds exploit artificial light structures to prey on 

insects that may be trapped there (Robertson et al., 2010). 

Urban birds are subjected to increased predation by human companion animals, mainly 

domestic cats (Felis silvestris catus, hereafter "cats") and dogs (Canis lupus familiaris) 

(Rebolo-Ifran et al., 2021). Additionally, collision with human-made structures, such as 

windows, increases birds' vulnerability to predation by cats and dogs (Rebolo-Ifran et al., 

2021). Besides directly killing the birds through predation (Beckerman et al., 2007; Greenwell 
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et al., 2019), these mesopredators inflict fear-related sublethal effects on avian species' 

adversely impacting their behavior, habitat selection, feeding, and fertility (Dauphine & 

Cooper, 2009; Greenwell et al., 2019; Pavisse et al., 2019). Birds have decreased densities, 

even within their ideal niches, in the presence of cats or their cues (i.e., feces, urine, or fur; 

Apfelbach et al., 2015; Kosicki, 2021). Furthermore, cats are vectors for various diseases that 

threaten wildlife and people alike (Dauphine & Cooper, 2009; Greenwell et al., 2019). 

According to the International Union for Conservation of Nature (IUCN), cats have caused or 

facilitated the extinction of sixty-three species of birds, mammals, and reptiles (Nogales et al., 

2013). In the USA alone, estimates show that cats kil l between 1.3 and 1.4 birds annually (Loss 

et al., 2013). Consequently, cats are the main direct human-related factor behind avian 

mortality (Loss et al., 2013). Specifically, fledglings are often at increased risk of cat predation, 

reducing urban birds' breeding success (Heyman et al., 2017). Cavity-nesting and ground-

foraging species are often the preferred targets for these predators (Bonney et al., 2009). As for 

dogs, they pose threats to more than 78 bird species worldwide (Doherty et al., 2017). 

The long list of challenges birds face in urban environments also includes mortality risks due 

to collision with buildings, windows, and vehicles and increased risks of illness, among others 

(Hager et al., 2017; Kent et al., 2021; Santiago-Alarcon & Delgado, 2017; Van Doren et al., 

2021). 

On the other hand, urban areas present advantages for certain bird species. These areas offer 

abundant anthropogenic food resources and artificial nesting sites (Gil & Brumm, 2013; 

Mainwaring, 2015; Marzluff, 2001). For instance, buildings serve as safer nesting sites for 

some bird species, where they often experience higher reproductive success than nesting 

outdoors (M0ller, 2010). In addition, many species seek urban areas for warmer temperatures, 

resulting from the Urban Heat Island (hereafter "UFA") effect (Isaksson, 2018). The UHI effect 

is caused by the increased temperature in urban areas compared to non-urban ones due to the 

heat-retaining qualities of the impervious surfaces and buildings, the heat-trapping impact of 

air pollution, and reduced green cover (Oke, 1982). Due to the UHI effect, cities attract early-

arriving migratory birds (Tryjanowski et al., 2013). 

By altering the physical, biotic, and abiotic environment and introducing new challenges, urban 

areas modify the species' community compositions as well (Aronson et al., 2014; Fernandez-

Juricic & Jokimaki, 2001; Morelli et al., 2016). Many species fail to withstand the novel 

conditions and disappear in urban environments (Marzluff, 2001). Particularly, specialists 

(species that can only prevail within a narrow set of environmental factors; Hutchinson, 1957; 
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Whittaker et al., 1973), native, and endemic species are the most severely affected. On the other 

hand, many generalists (species that can tolerate a wide range of conditions; Hutchinson, 1957; 

Whittaker et al., 1973) can exploit the new conditions and unoccupied niches. Ultimately, the 

replacement of native, endemic, and rare species with a few widespread generalists leads to the 

biotic homogenization of urban communities (McKinney, 2006; McKinney & Lockwood, 

1999). Biotic homogenization is when city avian communities become more similar to each 

other than to those of nearby regional ecosystems (i.e., in Europe; Ferenc et al., 2014). Many 

studies demonstrate that bird species richness declines with increased urbanization while 

abundance increases (Chace & Walsh, 2006; Kontsiotis et al., 2019; Marzluff, 2001). However, 

some studies show that avian richness peaks at intermediate levels of urbanization (Blair, 

1996). Still, even with increased richness, these urban communities are made of redundant 

species present in cities worldwide (Kontsiotis et al., 2019). These are mainly cosmopolitan 

species and include Feral Pigeons (Columba livid), House Sparrows {Passer domesticus), and 

others (Aronson et al., 2014). Even when the urban species communities differ, they are 

overrepresented by the same few families (i.e., pigeons and corvids; Sol et al., 2017). 

Therefore, urbanization leads to declining global biodiversity (Aronson et al., 2014). 

Urbanization-caused biotic homogenization can be observed at different levels. It was shown 

to cause taxonomic, functional, and phylogenetic homogenization of avian communities 

(Devictor et al., 2007; Godet et al., 2015; Ibanez-Alamo et a l , 2017; Morelli et al., 2016; Reif 

et al., 2013). Finally, a recent large-scale European study found that increased urbanization 

levels were associated with a decrease in the evolutionary distinctiveness of the bird species 

(Morelli et al., 2024). 

1.4- Different ways avian species respond to urbanization 

Due to species-level responses to urbanization, as an area becomes increasingly urbanized, the 

species composition will likewise be modified, with some species disappearing and others 

thriving (Isaksson, 2018). Therefore, birds can be classified into three groups based on their 

response to urbanization: urban exploiters, adapters, and avoiders (Blair, 1996). 

Urban exploiters thrive in urban areas and take advantage of anthropogenic and artificial 

resources, such as plentiful food options and novel artificial nesting sites, like nest boxes and 

building holes (Blair, 1996; Kark et al., 2007; Liordos et al., 2021; Mckinney, 2002; McKinney, 

2006). Urban exploiters, many of whom are invasive species, have utilized human resources to 

the point of now depending on them for survival (Isaksson, 2018). They prefer high grey cover 
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and human disturbance, usually located within city centers (Liordos et al., 2021). Urban 

exploiters do not rely on green cover and may be negatively linked to it (Mckinney, 2002). 

Alternatively, urban adapters are species that do not entirely rely on human resources but can 

still take advantage of them. Those species usually avoid city centers and reside within areas 

with green cover (Liordos et al., 2021). They seek regions resembling their natural habitats in 

urban areas, "adapting" to urbanization while still resorting to natural resources (McKinney, 

2006). These species can out-compete urban exploiters in case of a decrease in anthropogenic 

resources, and the opposite is true (Isaksson, 2018). Finally, urban avoiders are the most 

sensitive species to environmental modifications and only thrive in their pristine natural 

habitats (Blair, 1996). They are the most easily identifiable as they disappear quickly once 

environments become urbanized (Isaksson, 2018). However, it is hard to classify some species 

for which urban areas may act as ecological traps (Lepczyk et al., 2017). Those species would 

be lured to urban regions due to the abundant food sources, artificial sites, and milder weather 

and would be tricked into viewing urban sites as high-quality environments (Lepczyk et al., 

2017). Then, these birds would suffer from the many risk factors of urbanization that were 

previously elaborated (Donovan & Thompson, 2001). Urban areas jeopardize the survival of 

these birds and reduce their fitness, causing their populations to decline slowly over time 

(Donovan & Thompson, 2001). Thus, long-term population studies are necessary to identify 

these species at risk (Isaksson, 2018). 

Understanding the factors and characteristics that allow certain species to thrive and adapt to 

urban areas while others suffer adverse consequences can be key to identifying vulnerable 

species and mitigation measures. While our understanding of the traits that make urban-tolerant 

birds is still limited, several factors have been shown to influence their ability to thrive in urban 

environments (Sayol et al., 2020). In general, urban tolerance is positively linked to dietary and 

habitat niche size (Callaghan et al., 2019; Ducatez et al., 2018; Lizee et al., 2011; Sayol et al., 

2020), making generalists less vulnerable to anthropogenic alterations (Callaghan et al., 2023). 

Birds that nest high up in a tree are much more successful in urban regions than ground nesters 

(Conole & Kirkpatrick, 2011; Dale et al., 2015). Gregarious birds have also performed better 

in urban circumstances (Croci et al., 2008; Kark et al., 2007; Sol et al., 2014). Other 

characteristics that have been associated with urban birds such as dispersal ability (M0ller, 

2009; Neate-Clegg et al., 2023), larger clutch size (Lizee et a l , 2011; Neate-Clegg et al., 2023), 

and longer life spans (Croci et al., 2008; Neate-Clegg et al., 2023). However, the importance 
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of many traits for urban tolerance determination may vary according to the region (Neate-Clegg 

et al., 2023). 

Some behavioral characteristics such as boldness, innovation, and adaptability define urban 

birds (Patankar et al., 2021). Studies worldwide have revealed the role of phenotypic plasticity 

in the swift behavioral adaptations of avian species to urbanization (Marzluff, 2017). Urban 

areas provide ample food resources at the cost of increased human, cat, and dog presence. 

Therefore, only bolder individuals are expected to explore these resources. Indeed, studies have 

shown that urban birds are bolder than their rural conspecifics (Sol et al., 2011; Tryjanowski 

et al., 2016). 

1.5- Behavioral adaptations through Flight Initiation Distance 

One way to measure birds' risk-taking, behavioral adaptations, and flexibility in urban areas is 

through the Flight Initiation Distance (hereafter "FID"; M0ller, 2021). More specifically, FID 

is used to study the antipredator behavior of species under various conditions. FID is the 

distance that separates the prey from a potential approaching predator (in ecological studies, 

usually a researcher that approaches under standard conditions) when the prey initiates escape 

(Blumstein, 2006). Alert Distance (hereafter "AD") is the distance before FID when the prey 

first notices the predator (Fernandez-Juricic et al., 2002). After detecting an advancing 

predator, the prey must evaluate the danger level and choose a potential proper distance to flee 

(W. E. Cooper et a l , 2015). 

The optimal escape distance is difficult to determine for prey. Early escape would come at the 

cost of the loss of foraging opportunities or other tasks at hand. On the other hand, late escape 

would increase the predation risk and may put the individual's life in jeopardy. Therefore, the 

FID is a compromise between the risks of staying put and resuming the current activity and 

escaping and losing energy and opportunities (M0ller, 2008). Thus, FID is expected to be the 

distance when it becomes more costly to stay than escape (Ydenberg & Dil l , 1986). FID studies 

can, therefore, help determine the factors that impact the decision-making regarding when to 

flee that may push the tradeoff in either direction. Several factors have been shown to influence 

this decision and alter FID in birds and other species. First, the Starting Distance (hereafter 

"SD" or the distance separating the two individuals at the beginning of the approach) and the 

A D are positively linked to FID (Chen et al., 2020). Therefore, the SD must be controlled 

during the FID collection or accounted for during the data analyses. 
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Some functional traits seem to impact interspecific and individual FID variations. For one, 

body size has consistently been shown to reduce FID (Gnanapragasam et al., 2021; Morelli et 

al., 2019). Larger birds require more time to initiate flight due to their size than smaller 

individuals, which may prompt them to initiate escape earlier (Fernandez-Juricic et al., 2006). 

Larger birds are more easily detectable and make a larger, more tempting meal to predators, 

increasing their risk of predation (Fernandez-Juricic et al., 2002; Holmes et al., 1993). Human 

hunters have targeted larger birds more than smaller species, which may have increased their 

fear of people and, as a result, their FIDs (Gnanapragasam et al., 2021). Flock size has also 

been shown to affect FID either positively or negatively (Shuai et al., 2024). The impact may 

be affected or diminished by other confounding variables, such as body size and climate (Shuai 

et al., 2024). Environmental factors seem to influence FID as well. For example, birds may 

delay escaping the higher perched they are (Chen et al., 2020), when food abundance is low 

(M0ller et al., 2015), and when temperature and precipitation are high (Diaz et al., 2021). Urban 

birds have consistently been shown to have shorter FIDs than rural ones (M0ller et al., 2015; 

Morelli et al., 2019; Sol et al., 2018). Urban individuals have shorter FIDs than rural 

conspecifics of the same species (Carrete et al., 2016; Vincze et al., 2019). Due to human 

prevalence, birds are expected to exhibit reduced fear in urban environments, allowing them to 

prioritize activities such as foraging and reproduction over energetically costly constant fleeing 

(W. E. Cooper & Frederick, 2007; Tryjanowski et al., 2016). The difference between urban 

and rural FID may reveal the behavioral plasticity of urban individuals, enabling them to 

habituate to human presence and reduce their fear over time (Vincze et al., 2019). Alternatively, 

the local adaptation theory proposes that urban areas select for more courageous organisms 

(M0ller, 2008). Finally, bolder rural individuals may have higher chances of successfully 

colonizing urban areas, as explained in the differential colonization theory (Carrete & Telia, 

2011). 

1.6- Corvids, successful urban dwellers 

Many corvid species are some of the most successful urban exploiters, profiting significantly 

from anthropogenically modified habitats (Garcia-Porta et al., 2022; Matsyura et al., 2016; 

Preininger et al., 2019; Wang et al., 2008). Their intelligence allowed them to habituate to 

human presence and exploit the abundant resources associated with them (Seed et al., 2009; 

Sol et al., 2005). Studying corvids in urban areas can help identify traits that enable certain 

birds to adapt to these novel habitats while others do not. Moreover, corvids are a nuisance for 
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both people and ecosystems (i.e., they are noisy nest predators; Benmazouz et al., 2021; 

Madden et al., 2015; Marzluff & Neatherlin, 2006). However, some species may provide 

valuable ecosystem services in urban areas, such as seed dispersal, serving as biosensors for 

diseases, and reducing animal remains through scavenging (Benmazouz et al., 2021; Julian et 

a l , 2002; Pesendorfer et a l , 2016; Schwartz et a l , 2018). 

1.7- Monitoring avian diversity in urban environments 

Knowledge of the spatial patterns of species distribution can provide valuable insights for 

developing sustainable land management practices and crafting more efficient conservation 

plans (Seto et al., 2004). Traditional field surveys can offer crucial information about the 

community composition, species distribution, and abundance, but they are costly, challenging, 

and time-consuming (Seto et al., 2004). Remote sensing tools using satellite images offer 

accessible ways to monitor variables correlating with biodiversity, such as by locating different 

land cover variables (Roughgarden et al., 1991; Turner et al., 2001). Such tools allowed the 

development of vegetation indices, such as the Normalized Difference Vegetation Index 

(hereafter "NDVI") and Enhanced Vegetation Index (hereafter "EVI"). NDVI is calculated 

using the near-infrared (that is reflected strongly by green vegetation) and red light (that is 

absorbed by the vegetation) spectral reflectance from the land surface (Huete et al., 1999). 

NDVI is an index between -1 and 1 that indicates vegetation presence and density (Pettorelli, 

2013). EVI is calculated similarly but incorporates blue bands for atmospheric and background 

correction (H. Q. Liu & Huete, 1995). Both indices are used extensively to map vegetation, 

proving to be great proxies of its spatiotemporal distribution (Pettorelli et al., 2005) and 

primary productivity (Box et al., 1989). Higher NDVI and EVI values suggest healthier and 

denser vegetation (Matsushita et al., 2007). EVI and NDVI can effectively indicate avian 

diversity since primary productivity affects species diversity and distribution (Wright, 1983). 

These vegetation indices proved to predict avian species richness within and outside urban 

areas (Bae et a l , 2018; Bino et al., 2008; Callaghan et a l , 2020; W. J. Cooper et al., 2020; Hobi 

et al., 2017; Leveau, 2019). However, since species richness may increase despite biotic 

homogenization, their capacity to predict avian community composition remains unknown. 

1.8- The value of urban ornithological studies 

Due to the fast urban expansion, it is necessary to understand the various impacts of 

urbanization on species and communities to mitigate them (Diaz et al., 2022; Miller & Hobbs, 
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2002). Avian ecologists should, therefore, guide urban planners and policymakers to make 

informed urban growth decisions to preserve biodiversity (Marzluff, 2001). Furthermore, urban 

areas allow the study of various aspects of evolution, adaptation, and plasticity in species in 

real-time (Alberti, 2015; Isaksson, 2018) as they enable studying the impacts of rapid 

environmental changes on biodiversity (Alberti, 2015; Morelli, Benedetti, et al., 2021). 

Urbanization is also an example of the various anthropogenic pressures species have to endure, 

and therefore, urban ecology provides a means to study the impacts of these pressures on 

communities (Marzluff, 2017). This thesis aims to improve the understanding of urban bird 

communities and contribute to the field of urban ornithology. The objectives are better 

described in the next chapter. 
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CHAPTER 2. AIMS AND OBJECTIVES 

This thesis aims to improve the understanding of urban bird communities and contribute to 

the field of urban ornithology. The specific aims can be summarized as follows: 

1- To investigate the habitat and behavioral adaptations of select urban-dwelling bird 

species 

2- To understand some of the impacts of urbanization on the antipredator behavior of birds 

3- To assess the capacity of some tools of remote sensing in monitoring large-scale urban 

avian diversity 

In more detail, the objectives of each article are: 

2.1- Research I (Annex I): 

"Spatial overlap and habitat selection ofcorvid species in European cities" 

This study aimed to characterize the habitat selection and the degree of spatial overlap among 

five corvid species inhabiting different European cities. Specifically, to assess: 

2.1.1- The presence and distribution of each corvid species in 16 European cities: 

This objective helps identify the most successful corvid species in European cities. Such 

information may highlight traits and behaviors of species that facilitate their proliferation in 

urban environments. Additionally, identifying the most and least successful corvid species 

coupled with other studies and the literature would determine whether there is a need to control 

or promote their presence in urban areas depending on their impacts (Marzluff & Neatherlin, 

2006). 

2.1.2- The level of spatial overlap among the five corvid species 

This aim seeks to assess the extent of spatial overlap among the five corvid species within 

European cities. By analyzing their spatial distribution patterns, this research aims to determine 

whether the corvid species pairs' co-occurrence is coincidental, more likely than expected by 

chance, or less likely. Understanding the degree of spatial overlap provides insights into habitat 

resource partitioning, resource sharing, and competitive interactions among corvid species. 
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2.1.3- The level of overlap of their habitat selection 

Here, we seek to comprehend the extent of habitat niche overlap among corvid species in 

European cities. Understanding niche overlap among sympatric species reveals their 

interspecific relationships, competition, and resource partitioning (Matsubara, 2003). While 

studies on niche overlap are quite common for specialist species, they remain rare for 

generalists, particularly in disturbed environments like urban areas (Matsubara, 2003). Finally, 

this investigation seeks to determine whether habitat preferences influence spatial associations. 

The influence may lead to positive (showing co-occurrence driven by similarity in habitats) or 

negative (suggesting avoidance due to high competition) spatial associations. 

2.1.4- The urban features selected by each species 

This objective will help identify specific urban features selected by each corvid species in 

European cities to highlight potential adaptations to novel environmental features the species 

may have undergone to thrive in urban regions. Alternatively, it may show similarities to their 

natural habitat preferences. Understanding urban habitat selection by corvids contributes to 

evolutionary studies and provides insights into urban ecosystem dynamics (Benmazouz et al., 

2021; Marzluff & Neatherlin, 2006). It would also help shape urban planning efforts to control 

certain populations and promote higher urban diversity. 

2.2- Research II (Annex II): 

"Urban noise slows down the antipredator reaction of Eurasian Magpies" 

In this research, we intended to explore the effect of noise pollution on Magpies' antipredator 

behavior in Prague during the breeding season. The specific objectives were to investigate: 

2.2.1- The variation of AD and FID/AD of Magpies across a gradient of urban noise 

Here, we wish to uncover the potential effects of urban noise pollution on Magpies' antipredator 

behavior. Urban noise may impact the antipredator behavior in two opposing ways. Urban 

noise can reduce the animal's vigilance by distracting it or masking the sounds of an 

approaching predator (Barber et al., 2010; Chan, David Stahlman, et al., 2010; Zhou et al., 

2019). Alternatively, it may cause the animal to heighten its vigilance either to compensate for 

the reduced hearing capacities or because it fears the noise in itself (Evans et al., 2018; Kern & 

Radford, 2016; Meillere et al., 2015; Shannon et al., 2016). Such effects may be revealed in 
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the A D (reflecting threat detection) and a corrected FID (FID/AD, which demonstrates the 

speed of the response after threat detection). 

2.2.2- The consistency of the impact of noise on threat detection and speed of the escape 

response. 

We hypothesized that the two opposing ways noise may impact the antipredator behavior may 

not be exclusive and can thus manifest differently in two measures of fear. First, distraction 

may be observed in a reduced alert behavior, hence a smaller A D . However, the Magpies may 

increase their speed of response to the threat to compensate for their suppressed attention, 

which can be reflected in an increased FID/AD. 

2.3- Research III (Annex III): 

"Flight initiation distance and refuge in urban birds " 

This study aimed to compare the escape distances (measured as FID) of birds concerning the: 

2.3.1- Distance to the closest potential refuge 

This aim investigates how the distance of birds to their nearest potential refuge affects their 

FID. We seek to determine whether proximity to the refuge provides birds with increased (or 

perceived) security, potentially reducing their FID since closer refuge needs less time to reach 

and, thus, less time to be captured. 

2.3.2- Distance fled to the refuge 

Here, we examine the association between FID and the Distance Fled (hereafter, "DF") to the 

actual refuge. This aim can determine whether fearfulness is a consistent personality trait for 

individuals that is displayed similarly across measures of fearfulness (W. E. Cooper & 

Frederick, 2007; W. E. Cooper & Wilson, 2007). 

2.3.3- Refuge type and availability in urban areas 

This aim focuses on how different types of refuges (i.e., trees, bushes, and artificial structures) 

impact the FID of birds. The goal is to determine if birds prefer certain types of refuge that 

may provide them with a sense of increased security (Lima, 1993). 
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2.4- Research IV (Annex IV): 

"EVI and NDVI as proxies for multifaceted avian diversity in urban areas" 

In this article, our objectives were to investigate the capacity of EVI and NDVI as proxies for 

different facets of avian diversity (i.e., measures of taxonomic, functional, and phylogenetic 

diversity, urban tolerance, and avian specialization) and determine the better surrogate in each 

case in 15 European cities: 

Exploring the ability of these two vegetation indices to predict various bird diversity metrics 

may uncover cost-effective and efficient tools for large-scale urban diversity monitoring. It 

may also determine which index better represents specific aspects of biodiversity and 

highlights the significance of urban vegetation for avian diversity. 
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CHAPTER 3. LIST OF PUBLISHED WORK 

This thesis's core consists of peer-reviewed articles published in indexed scientific journals 

with Impact Factor ( J i m p ) . The complete articles are provided in the Annex section: 

Annex I. Spatial overlap and habitat selection of corvid species in European cities. 

Annex II. Urban noise slows down the antipredator reaction of Eurasian Magpies. 

Annex III. Flight initiation distance and refuge in urban birds. 

Annex IV. EVI and NDVI as proxies for multifaceted avian diversity in urban areas. 

The next Chapter, "Discussion," provides a commentary on these articles. 
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CHAPTER 4. DISCUSSION 

My thesis comprises four articles published in indexed scientific journals. I am the first author 

of two articles and co-author of the remaining two. My first authored publications focus on 

corvids, a group of birds, many of which thrive in urban environments. In the first paper (see 

Annex I: Research I), we investigate the urban distribution, habitat selection, and habitat 

overlap of corvids in sixteen European cities during the 2018 breeding season. The data for this 

paper was obtained from a large project funded by the Czech Science Foundation G A C R 

(project number 18-16738S). 

The second paper (see Annex II: Research II) moves to the behavioral ecology of urban corvids. 

Using the A D and FID, we investigate the impacts of urban ambient noise pollution on the 

antipredator behavior of Eurasian Magpies (Pica pica, hereafter "Magpie") in Prague in the 

2022 breeding season. Initially, we intended to include as many urban corvid species as 

possible. Our analysis focused solely on Magpies for reasons detailed in section 4.1. This paper 

was funded by the Internal Grant Competition (IGA) of the Faculty of Environmental Sciences 

at the Czech University of Life Sciences Prague (IGA 2022B0001). 

My co-authored publications are not limited to specific taxa and encompass entire urban avian 

communities. The third paper of this thesis (see Annex III: Research III) continues on the theme 

of FID and antipredator behavior. Here, we explore the role of refuge availability, proximity, 

and type on the FID and the DF of urban birds in five cities in four European countries during 

the breeding seasons of 2021 and 2022. 

The last paper in this thesis (see Annex IV: Research IV) belongs to the same large project as 

Research I, but it involves all the observed bird species, not just corvids. In this study, we 

investigate the potential of two Landsat-derived vegetation indices (NDVI and EVI) to act as 

proxies of various avian diversity indices in European cities. 

4.1- Distribution of corvids in urban environments 

Urban ecological studies focusing on corvids can highlight their advantages and disadvantages, 

identify factors promoting their presence, and inform measures to control their populations and 

mitigate their negative impacts (Benmazouz et al., 2021; Marzluff & Neatherlin, 2006). 

In Research I (see Annex I) and Research IV (see Annex IV), which are part of the G A C R 

project, fieldwork was conducted during the breeding season of 2018 by expert ornithologists 
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in several European cities. A single visit point count method was employed. Around 100 point 

counts spread evenly along a gradient of urbanization were randomly selected in each city. 

Each point was visited once for five minutes, during which all bird species heard singing or 

seen within a 50-meter radius were recorded, along with their abundance. Additional 

environmental factors were noted, including land use/land cover within the 50-meter point 

count radius, the number of people, cats, and dogs passing by in five minutes, and the average 

number of building floors. For more information on data collection, see Annex I (Section 2. 

"Materials and Methods") and Annex IV (Section "Methods"). 

For Research I, we used the subset of data concerning corvid species' presence and abundance, 

which allowed us to identify the corvid species present in European urban areas, along with 

their abundance and distribution. 

4.1.1- The Western Jackdaw, the most abundant corvid: 

Figure 1. A Western Jackdaw (Corvus monedula). Photo from Wikipedia: 
https://en.wikipedia.org/wiki/westernjackdaw 

Our results indicate that the Western Jackdaw {Corvus monedula; hereafter, "Jackdaw") is the 

most abundant corvid in the surveyed European cities. Generally sedentary in Europe, except 

in the north, where it is a short-distance migrant, the Jackdaw is omnivorous, monogamous, 

and gregarious (Svensson et al., 2010). It nests in cavities found in deciduous trees, mountains, 

sea cliffs, and buildings (Bozic, 2016; Salvati, 2002; Svensson et al., 2010). 

Despite being the most abundant corvid, the Jackdaw was not observed in Athens, Budapest, 

and Madrid. Around Madrid, Jackdaws may still be nesting within their natural habitats in 

https://en.wikipedia.org/wiki/westernjackdaw
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cliffs. Jackdaw density is declining sharply in Spain compared to the rest of Europe (Blanco et 

al., 2014, 2022). Until the early 21st century, Jackdaw pairs foraged in waste dumps around 

Madrid, especially outside the breeding season (Blanco et al., 2022). Today, however, such a 

sight might be rare, possibly due to the rubbish's low nutritional quality and high toxin levels, 

which may have affected their population over time (Meyrier et al., 2017; Plaza & Lambertucci, 

2017). Additionally, Jackdaws face high persecution in and around Madrid, contributing to 

their reduced population and avoidance of the area (Blanco et al., 2019, 2022). Similar factors 

might explain their absence in Athens and Budapest, although we could not identify studies 

addressing these issues. 

Jackdaws are at risk of population decline due to reduced nesting sites within urban areas. They 

are cavity nesters who rely on cavities in old buildings and are therefore threatened by 

renovations and modernization (Bozic, 2016; Griinwald et al., 2024; Salvati, 2002). Thus, even 

the most abundant corvid in our study was impacted by varying factors that limited their 

presence in certain cities. For that reason, long-term population monitoring is important, 

especially when species are classified as "Least Concern" and may face increased risk of 

persecution due to assumptions of overpopulation (Blanco et al., 2022). 

4.1.2- The Eurasian Magpie, the most spread corvid: 

Figure 2. A Eurasian Magpie {Pica pica). 
Photo from Wikipedia: https://en.wikipedia.org/wiki/Magpie 

https://en.wikipedia.org/wiki/Magpie
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The Magpie was the most widespread corvid detected across all the surveyed European cities. 

Like the Jackdaw, the Magpie is sedentary, omnivorous, occasionally gregarious, and usually 

found in farmlands and urban areas (Svensson et al., 2010). The species typically build their 

nests in tree crowns using roofed sticks (Svensson et al., 2010). 

Magpies were heavily persecuted in the past in some European cities (i.e., in Finland up until 

the early 1970s). However, they quickly habituated to human presence once persecution 

ceased, becoming highly successful in colonizing urban areas (Jokimaki et al., 2017, 2022). A 

recent study reported an exponential increase in the species' range in southern Spain, mainly 

attributed to urban areas (De la Cruz et al., 2024). Magpies are highly adaptable and were 

observed to modify their behaviors in urban areas to increase their survival. In urban areas, 

Magpies tend to nest higher in trees and more often in coniferous trees (as deciduous trees are 

exposed at the start of the spring), and these adaptations allow them to decrease predation risks 

from mesopredators (i.e., cats) and Carrion/Hooded Crows (Corvus corone coronetCorvus 

corone comix) and disturbance from humans (Ciebiera et al., 2021; Jokimáki et al., 2017; 

Šálek, 2020). However, these nesting behaviors may also reflect the difference in the 

availability of tree types and heights between dense city centers and suburban areas (Dupak & 

Telizhenko, 2023). Compared to Magpies, Hooded Crows show more selectivity in their 

preferred tree species and nesting heights (Dupak & Telizhenko, 2023). Still, this would show 

Magpies' adaptability and capacity to exploit the available trees in cities for nesting, explaining 

their extensive spread and presence in all surveyed cities. 
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4.1.3- The Hooded/Carrion Crow: 

Figure 3. A Carrion Crow (Corvus corone corone; left) and Hooded Crow (Corvus corone comix; right). Photos 
from Wikipedia: https://en.wikipedia.org/wiki/Carrion_crow; https://en.wikipedia.org/wiki/Hooded_crow 

In our study, we merged observations of The Hooded Crow (Corvus corone cornix) and the 

Carrion Crow (Corvus corone corone) and considered them as one species (hereafter "Crow") 

(see Annex I, section 2.4. "Classification of the Carrion Crow and the Hooded Crow" for more 

details). The Crow is a sedentary omnivore and a short-distance migrant in northern Europe 

(Svensson et al., 2010). The species breeds in open woodlands, urban areas, and within tree 

patches of farmlands, nesting in well-concealed open stick nests in tree crowns (Svensson et 

a l , 2010). 

The Crow was common, spread, and observed in all cities except the Spanish ones (Granada, 

Madrid, and Toledo). It is possible that Crows, like Jackdaws, still face persecution in Spain, 

deterring them from urban areas. 

Our study, conducted during the breeding season, found that the three most common corvids 

in European cities are the Magpie, the Jackdaw, and the Crow, which is consistent with findings 

from a study conducted in Finland during the winter season (Jokimaki et al., 2022). 

https://en.wikipedia.org/wiki/Carrion_crow
https://en.wikipedia.org/wiki/Hooded_crow
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4.1.4- Less common corvids: the Rook and the Eurasian Jay: 

Figure 4. A Rook (Corvus frugilegus; left) and a Eurasian Jay (Garrulus glandarius; right). Photos from 
Wikipedia: https://en.wikipedia.org/wiki/Rook_(bird); https://en.wikipedia.org/wiki/Jay 

The Eurasian Jay (Garrulus glandarius, hereafter "Jay") was observed in half of the cities 

surveyed (Athens, Budapest, Groningen, Ioannina, Poitiers, Poznan, Prague, and Zielona 

Göra). The Jay is an omnivore, mostly resident species that nests primarily in trees in diverse 

types of woodlands (Svensson et al., 2010). 

The Rook (Corvus frugilegus, hereafter "Rook") was less spread and abundant, only being 

present in five cities (Groningen, Poitiers, Poznan, Prague, and Tartu). The Rook is omnivorous 

(but feeds mainly on insects and earthworms), gregarious, and resident species (but migrant in 

northern Europe; Svensson et al., 2010). Colonies nest primarily in agricultural areas, making 

loose stick nests in tree patches (Svensson et al., 2010). 

In general, the Rook population in Europe is declining. The species is listed as vulnerable on 

the European Red List of Species, potentially due to legal persecution and nest site destruction 

(Krüger et al., 2020; BirdLife International, 2021). 

The Jay, a seed specialist, is expected to be less common in urban areas compared to the other 

generalist corvids in the study (Jokimäki et al., 2022). Both the Rook and the Jay were 

demonstrated to utilize urban areas more often during the winter season to benefit from the 

milder winters and abundant food while preferring more natural areas with higher quality food 

during the breeding season (Jadczyk & Drzeniecka-Osiadacz, 2013; Matsyura et al., 2016; 

Obukhova, 2018; Zimaroyeva et al., 2016). 

https://en.wikipedia.org/wiki/Rook_(bird
https://en.wikipedia.org/wiki/Jay


24 

4.1.5- The least common corvid in the European cities surveyed: 

Figure 5. A Common Raven (Corvus corax). Photo from Wikipedia: 
https://en.wikipedia.org/wiki/Common_raven 

The Common Raven {Corvus corax, hereafter "Raven") was the least observed corvid in our 

study, with only two sightings across all surveyed cities. Consequently, these observations were 

excluded from the analysis. The Raven is a sedentary, omnivorous, monogamous species and 

the largest passerine (Svensson et al., 2010). The species breeds in uplands, deserted woods, 

and cliffs, building stick nests in trees or cliff ledges (Svensson et al., 2010). Although the 

Raven may be urbanized in some European cities, the species may avoid anthropogenic areas 

because of long-term persecution and is still primarily shy and wary (Jokimaki et al., 2022; 

Svensson et al., 2010). 

Our study did not observe other corvid species that may be present in Europe. We documented 

which corvids are seen in European cities during the breeding season, identifying the most 

widespread species and those more rarely sighted. 

4.1.6- Focusing on Magpies in Research II: 

For my second first-authored article (see Annex II: Research II), we initially intended to include 

as many of the urban corvid species observed in European cities as possible. However, the 

scale of this study was much smaller as it was conducted solely in Prague, Czech Republic. In 

addition, this paper did not include all observed corvids as it focuses on the impacts of ambient 

noise on the antipredator behavior (measured by FID), which required sampling only distracted 

individuals on the ground. The Magpie was the only species we encountered frequently and 

https://en.wikipedia.org/wiki/Common_raven
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across a gradient of urban noise. Although Jackdaws were also common, they mainly were 

aggregated in two small parks in the city center where noise levels were consistently elevated 

due to proximity to the roads and metro stations. Research I showed that jackdaws are quite 

abundant but less spread than Magpies. Furthermore, we proved the tendency for Jackdaws to 

be observed in highly dense urban areas. Therefore, encountering them in areas with 

consistently elevated noise levels was not surprising. For that reason, we had to exclude 

Jackdaws from the analyses. 

As for the other species, we encountered only around 7 Rook and 7 Jay individuals, so we had 

to exclude both (Sol et al., 2018). Both species were less common than Magpies and Jackdaws 

in the previous study and, as shown by the literature, are more likely to utilize urban areas in 

the winter (Jadczyk & Drzeniecka-Osiadacz, 2013; Matsyura et al., 2016; Obukhova, 2018; 

Zimaroyeva et al., 2016). Many Jays were observed in trees rather than foraging on the ground, 

indicating they may be shyer and warier than other corvids. We avoided approaching birds 

perched in trees to reduce confounding variables, as sheltering in trees may provide a sense of 

security to birds, as shown in Research III (see Annex III and section 4.4). Consequently, our 

study was limited only to Magpies. 

4.2- Habitat selection of corvids and overlap 

Returning to Research I, we aimed to assess the corvids' habitat preferences and their habitat 

and spatial overlap. Along with the variables collected in the field, models were run to estimate 

noise pollution levels around the point counts. Information regarding light pollution levels was 

downloaded from the web (https://www.lightpollutionmap.info). For detailed information on 

noise and light pollution estimates, see Annex I (Section "2.3. Variables Studied in Terms of 

Corvid Habitat Selection"). Generalized Linear Mixed Models (hereafter "GLMM") were run 

to assess each corvid species' habitat preferences. Spatial overlap was tested using a spatial 

mismatch analysis through a Mantel test (Mantel, 1967). Probabilistic niche regions (defined 

as a 95% probability region in multivariate space) for each species were estimated according 

to the land cover/land-use composition of point counts where the species were observed 

(Swanson et al., 2015). Then, a directional probabilistic niche overlap of each pair of corvid 

species was deduced (Swanson et al., 2015). For a detailed description of the statistical 

analyses, see Annex I (Section: "2.5. Statistical Analyses"). 

http://www.lightpollutionmap.info
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Three corvids (the Magpie, Crow, and Rook) were positively correlated to open habitats (grass 

and/or bare soil cover). Food availability is one of the main factors determining the habitat 

selection of corvids in urban areas (Matsubara, 2003; Preininger et al., 2019; Yoda, 2019). 

Although the species may utilize anthropogenic food sources in urban areas, during the 

breeding season, they are more likely to depend on high-nutritional foods such as insects, 

snails, and earthworms to provide their juveniles with nutrient-dense food (Diaz, 1996; Meyrier 

et al., 2017; Preininger et al., 2019; Seed et al., 2009). Pellet analyses of urban Magpies in 

Spain showed that the species' diet mainly consisted of snails, insects, and seeds and not so 

much of birds or anthropogenic foods (De la Cruz et al., 2024). The corvids are more likely to 

encounter these resources in open habitats, such as grass and bare soil. These results are 

congruent with other research, in and out of urban regions, where corvids were positively 

linked to open spaces, such as grasslands (Mason & Macdonald, 2004; Szala et al., 2020; 

Tzortzakaki et al., 2018; Waite, 1984b; Zimaroyeva et a l , 2016). 

Meanwhile, the Jay was positively linked to tree cover. Compared to this study's other corvid 

species Jay's diet is more specialist and dependent on seeds rather than animal sources 

(Jokimaki et al., 2022; Pesendorfer et al., 2016). Jays are possibly the main factor behind the 

seed dispersal of acron (Quercus spp.) and have developed a mutualist relationship with oak 

species (Bossema, 1979; Clayton et al., 1996; Kurek et al., 2018; Moran-Lopez et al., 2015; 

Perea et al., 2011; Pons & Pausas, 2008). The species practices seed caching behavior in 

shallow ground, which favors seed germination and long-distance dispersal of oak seeds 

(Pesendorfer et al., 2016). The birds selectively choose which acorn seeds to cache, thus 

influencing the oak population compositions and potentially affecting the whole ecosystem 

dynamics, earning Jays the title of ecosystem engineers (Mitrus & Szabo, 2020; Pesendorfer et 

al., 2016). Jays select uninfected and nondamaged acorns of a certain size (suitable for 

swallowing) and potentially more nutritiously dense (Bossema, 1979; Mitrus & Szabo, 2020; 

Pons & Pausas, 2007). Therefore, Jays provide valuable ecosystem services that may aid 

habitat restoration of forests after disturbance (Pesendorfer et al., 2016). Jays are typical forest 

dwellers associated with tree cover within and outside urban areas (Matsyura et al., 2016; Pons 

& Pausas, 2008; Tzortzakaki et al., 2018). 

On the other hand, the Jackdaw was negatively associated with the bare soil cover. The built 

cover was removed from our models for being correlated to the grass and bare soil covers, so 

we believe this result may reflect the decrease in built cover rather than the actual bare soil 

cover. Other studies have found that Jackdaws were linked to higher urban densities because 



27 

they prefer these areas for nesting (cavity nesters that tend to nest within building holes; 

Liordos et al., 2021; Salvati, 2002; Zmihorski et al., 2010). Although studies have shown that 

they need a mix of open areas along with rocky /built-up areas, it may seem that the impact of 

the built cover is stronger for their habitat selection, meaning they need areas with high building 

covers and smaller open habitats where they can forage (Salvati, 2002). 

The preferred urban habitats of each corvid species seemed to reflect their habitat selection in 

natural environments and were influenced by their nesting site preferences (i.e., Jackdaw) and 

their diets (other corvids). 

A l l five corvid species had high levels of habitat overlap. The two species with the least overlap 

(although still high) were the Jackdaw and Jay. These results were expected as the Jackdaw 

prefers areas with higher build cover while the Jay prefers forested regions. The Rook had the 

smaller niche, almost fully embedded in the ones of the other species. We expect that the Rooks 

would have larger niches in the winter season, where they are more likely to resort to urban 

environments for warmer temperatures and more abundant food (Zmihorski et al., 2010). 

Despite having specific preferences, the high niche overlap between corvid species shows that 

these species are generalists that can tolerate various environments despite preferences. 

Although the species overlapped highly in their preferences, their distributions were only 

congruent with those sharing similar habitat features. The three species that selected open 

habitats (Magpies, Rooks, and Crows) were likelier to be seen simultaneously than expected 

by chance. Additionally, the presence of the Jay was positively related to that of Magpies and 

Crows. Since Jays prefer habitats with increased tree cover, while the other two species prefer 

open habitats, they may co-occur in urban parks where both habitats are abundant. The Jay's 

presence was not significantly associated with the Rooks, but this could be due to the low 

abundance of both species in the study. The Jackdaw's occurrence was not significantly related 

to any other species. Unlike the different species, Jackdaws seem to prefer densely built-up 

areas with abundant nesting sites. Jackdaws were shown to defend their nesting sites 

aggressively and tend to dominate other species (Roell, 1978). However, if that were the case 

here, we'd expect a negative association with the distribution of the species. It is more likely, 

therefore, that the different habitat preferences have caused these results. 

Since none of the species' occurrence negatively affected the presence of another and species 

with similar habitat preferences were often co-occurring, we can conclude that competition is 

not negatively impacting these species and that they are not actively avoiding areas occupied 
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by other species. Several factors may explain the lack of negative spatial associations among 

the species, particularly those with similar habitat preferences. First, disturbed environments, 

such as urban areas, may facilitate the co-existence of sympatric species by providing ample 

resources and opportunities for habitation (Moi et al., 2020). Second, these corvid species have 

only recently begun to colonize urban areas and may not have reached the environment's 

carrying capacity yet (Tobias et al., 2020). Lastly, these species may be able to share the same 

habitats due to having separation in their niches at other scales, such as food type, feeding 

behavior, and nesting site (Dupak & Telizhenko, 2023; Kulemeyer et al., 2009; Matsubara, 

2003; Waite, 1984a). 

We showed that urban habitat preferences of corvids often mirror their preferences in natural 

environments and are largely impacted by their dietary choices and nesting sites. Despite 

having particular preferences, we observed a large overlap in their niches, suggesting that these 

species are generalists who can tolerate different environments beyond their ideal habitats. 

Species with similar preferences showed congruent distributions, demonstrating that 

competition does not adversely affect their habitat use in urban regions. 

Future studies should consider other areas of niche overlap in corvids, including their nesting 

site and food resource preferences. These may show more partitioning than the simple habitats 

we studied. Behavioral studies on interspecific relationships between corvids would provide 

more insight into their co-existence (Waite, 1984a). Finally, studies can take a broader range 

of environmental gradients extending to rural, agricultural, and natural environments where 

these species are often sighted. 

4.3- FID and noise 

Research I (see Annex I) examined the habitat selection and overlap of corvids in urban areas. 

In contrast, Research II (see Annex II) explores some of the behavioral aspects of urban 

ecology, focusing on the impacts of urban noise pollution on the antipredator behavior of 

Magpies. The decision to focus solely on Magpies is explained in section 4.1.6. 

Studies suggested that urban noise might affect the antipredator behavior in two ways: by 

distracting the individual or masking predator cues (thus reducing AD) or by causing the animal 

to become more vigilant to compensate for reduced auditory detection (thus increasing A D , 

which would entail additional energy costs; (Barber et al., 2010; Chan, David Stahlman, et al., 

2010; Chan, Giraldo-Perez, et al., 2010; Evans et a l , 2018; Kern & Radford, 2016; Meillere et 
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al., 2015; Shannon et al., 2016; Zhou et al., 2019). Previous studies on the impacts of noise on 

the antipredator behavior of birds did not include A D and used FID as a proxy for predator 

detection, claiming that A D and FID are strongly correlated (Gravolin et al., 2014; Meillere et 

al., 2015; Petrelli et al., 2017). We hypothesized that the impact of noise on FID may not reflect 

the same effects on A D . 

We assumed that noise could reduce A D due to distraction and impaired hearing while 

potentially increasing FID as birds may react more quickly to threats to compensate for the 

reduced A D . So, although A D and FID are highly correlated, we hypothesized that some 

factors, such as noise, may reduce the correlation between these two measures, affecting birds' 

attention and escape responses in distinct ways. For instance, Novcic (2023) found that crows 

engaged in foraging activities delayed flight after threat detection. Therefore, the speed of 

response post-predator detection offers additional insight into the antipredator behavior. 

During the 2022 breeding season, we used standardized FID collection methods in the urban 

parks around Prague, Czech Republic. We approached distracted Magpies at a constant speed, 

recording the SD, A D , and FID (see Figure 6). We also noted the birds' age and measured noise 

levels with an environmental multimeter (13/464/0 from Brannan). Noise levels were measured 

immediately after FID collection to ensure accuracy, averaging the maximum and minimum 

levels recorded over one minute (see Annex II, section "2.1 Study area and field data 

collection" for more details). Two G L M M s were run with the SD, noise levels, and age of the 

individual as the predictors and the site as the random factor to control for variability among 

different parks. The first model used A D as the response variable, and the second used FID/AD 

(indicating escape speed post-detection; see Annex II, section "2.2 statistical analyses" for 

more details). 
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Figure 6. The Starting Distance (SD), Alert Distance (AD), and Flight Initiation Distance (FID) collection for 
Magpies. 

The models included data from 167 individuals (138 adults and 29 juveniles) across 11 sites 

(see Annex II, section "3. Results" for detailed results). Contrary to our hypotheses, we found 

no effect of noise on the A D of Magpies, and to our surprise, we found that the birds delayed 

their response after detecting a threat in noisier environments. 

A concurrent study found that Australian Magpies (Gymnorhina tibicen dorsalis) increase their 

vigilance due to noise pollution, leading the individuals to reduce their feeding rates and 

increase visual scans (Blackburn et al., 2024). Thus, increased vigilance may suffice to 

maintain consistent ADs despite noise (Tatte et al., 2019). Alternatively, some birds with wide 

visual fields might detect predators while foraging without relying heavily on auditory cues 
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and would, thus, not require increased vigilance at higher noise (Blumstein et al., 2004; 

Fernandez-Juricic et al., 2004; Lima & Bednekoff, 1999). Future studies should look into more 

precise measures of predator detection, such as using telemetric eye trackers, to confirm better 

or refute the possible impact of noise on predator detection in Magpies (Yorzinski & Piatt, 

2014). Still, in our study, we did not find any effects of noise on the displayed alertness of the 

Magpies through A D (i.e., head-turning, looking at the approaching person, or agitation). 

Contrary to our hypothesis, higher noise levels delayed the birds' escape after detecting a threat. 

Two potential theories may help explain these findings. First, while the noise did not distract 

the birds from detecting predators, it may have overwhelmed their cognitive processes, leading 

to slower decision-making and response execution. Tatte et al. (2019) observed that increased 

vigilance in urban environments results in longer danger assessment and escape times despite 

unaffected ADs. Those findings align with our results and suggest that distraction might impact 

other aspects of antipredator behavior beyond predator detection (Dukas, 2002). It also shows 

that increasing vigilance may help stabilize A D but not offset an effect on escape. Second, even 

if Magpies do not rely on auditory cues for threat detection (i.e., due to having wide visual 

fields), hearing predator cues can add to visual cues, causing multisensory integration and 

potentially leading to a quicker response (Munoz & Blumstein, 2012; Partan, 2017). Under 

higher noise levels, this effect may be diminished due to the masking of predator sounds. Future 

studies should investigate these two theories. 

In this study, we showed that urban noise may slow down the reaction of Magpies without 

necessarily affecting their threat detection capacity. Nevertheless, it is crucial to remember our 

study's small scale and limited dataset. We also focused on one species, while different species 

may respond differently to urban noise (Petrelli et al., 2017). We suggest that future studies use 

other vigilance measures besides A D and FID to assess noise impacts on various aspects of 

antipredator behavior. Finally, Blackburn et al. (2024) found a combined effect of urban heat 

stress and noise. Therefore, studying the effect of noise pollution in combination with other 

stressors is necessary for the future. 

4.4- FID and refuge 

Remaining in the FID theme, Research III (see Annex III) investigates the role of refuge 

availability, type, and distance on the antipredator behavior of birds. In contrast to the previous 
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paper, this one is large-scale across five European cities in four different countries with 2900 

FIDs of 85 bird species collected. 

Research on the effects of refuge on birds has been lacking, particularly in urban regions. FID 

collection was conducted in five cities within four European countries during the breeding 

seasons of 2020 and 2021. Standard protocols were followed, similar to Research II. This paper 

sampled all observed terrestrial bird species (with a sample size > 10). Other variables were 

collected: the flock size, level of urbanization (i.e., core vs. suburban), habitat type (i.e., 

cemetery, garden, park, or other urban areas), land-use composition (within 50 m around the 

collection point), SD, FID, distance to the nearest refuge considering these types (artificial, 

bush, or tree or patch of trees), DF to the shelter, and the kind of refuge used. See Annex III 

(Section 2.1 "Study area, flight initiation distance and refuge type") for a more detailed 

description of these parameters. 

Pearson's chi-square test of independence was performed to explore the association between 

the availability of the nearest and the used refuge (i.e., artificial, bush, or tree). Then, we used 

two sets of multi-predictor Bayesian phylogenetically informed regression models to test 

associations between FID (response variable) and various predictors. The predictors in the first 

model were the mean distance of the nearest available refuge of each type, SD, flock size, land 

use composition, level of urbanization, and habitat type. In the second model, the predictors 

were DF, type of used refuge, SD, flock size, land use composition, level of urbanization, and 

habitat type. See Annex II (Section "2.2. Statistical analyses"; Section "3. Results") for the 

detailed statistical analysis. 

Trees were the most common and closest available refuge, and they were used more frequently 

as refuge despite the relative availability of other types. Thus, birds were willing to flee longer 

distances and invest more energy to seek shelter in trees even though different types of refuges 

may be closer. On the other hand, bushes and artificial structures were underused relative to 

their availability, meaning that birds likely perceive them as less secure. 

Our results demonstrate that the birds' FIDs were positively related to the distance to the nearest 

potential refuge, supporting the hypothesis that perceived predation risk increases with the 

safety distance, leading to an earlier escape (Cooper & Frederick, 2007; Ydenberg & Dil l , 

1986). 

Birds fled farther when sheltered in artificial structures and trees than bushes or ground 

landings. Birds may be willing to travel longer distances to trees followed by artificial 
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structures (such as street lamps or buildings) because they are higher and out of reach of the 

human approaching. 

FID and the DF to the refuge were positively correlated. Thus, the distance to safety impacts 

the risk assessment. These results also suggest that fearfulness is a consistent personality trait 

and can be demonstrated homogenously during predatory encounters (W. E. Cooper & Wilson, 

2007; Stankowich & Coss, 2007). Thus, fearful individuals who escape earlier will escape to 

farther shelters to avoid being caught. 

This study demonstrates that refuge proximity, availability, and type influence antipredator 

behavior in urban birds, highlighting the role of trees as preferred safe-havens. Future studies 

should investigate the role of refuge type, availability, and proximity on different taxa in 

various regions, seasons, and habitats (i.e., various types of natural and anthropogenically 

altered environments). Lastly, the associations between the refuge and antipredator behavior 

may be age and species-specific, which requires further investigation (Petelle et al., 2013). 

4.5- Remote sensing tools to survey diversity 

Previous studies have shown that remote sensing vegetation indices such as the NDVI and EVI 

are reliable, accessible, and cost-effective tools for monitoring biodiversity in urban areas 

(Bino et al., 2008; Callaghan et al., 2020; Leveau, 2019; Leveau et al., 2018). These studies, 

however, have primarily focused on a few diversity indices, mainly species richness, and have 

been confined to single-city analyses. Although avian richness may increase in urban areas, 

this often occurs at the expense of native, endemic, and rare species, which are replaced by 

widespread generalists, leading to biotic homogenization (Blair, 1996; Devictor et al., 2007; 

McKinney, 2006; McKinney & Lockwood, 1999). Therefore, it is still unclear whether these 

vegetation indices can also relay more specific information regarding the community 

composition, potentially revealing homogenization in the avian assemblages. If so, these 

indices would provide accessible, reliable, fast, and affordable means to monitor avian 

compositions since field surveys may be expensive and time-consuming, particularly at large 

scales (Palmer, 1995). 

In Research IV (see Annex IV), we examined NDVI and EVI's potential to act as surrogates 

for many avian facets of diversity. The fieldwork is the same as for Research I (see Annex I 

and section 4.1), but it involves all the bird species recorded in the bird counts, not just the 
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corvids (See Annex IV; section "Methods: Bird data collection" for the detailed fieldwork 

design). 

Landsat 30-meter resolution EVI and NDVI values were extracted using Google Earth Engine. 

For each month, 2 to 3 images were obtained for each point count for 2017, 2018, and 2019 to 

ensure sufficient images after cloud cover filtering. At each pixel, the median EVI and NDVI 

were taken to reduce the effect of outliers. Then, the mean and standard deviation (hereafter 

"sd") were calculated for each point count (50 m radius) for the months of April, May, June, 

and July (to match the fieldwork period). In the end, using the monthly averages, the overall 

averages (EVI mean and NDVI mean) and sd (EVI sd and NDVI sd) were calculated, and these 

values were used in the analyses. See Annex IV, section "Methods: EVI and NDVI estimation" 

for the detailed calculations. 

Next, the different facets of diversity describing taxonomic, functional (functional richness, 

functional evenness, and functional divergence), and phylogenetic diversity (phylogenetic 

diversity, phylogenetic species variability, and community evolutionary distinctiveness) were 

calculated based on the bird species present in each point count. We also calculated each 

community's urban tolerance mean by averaging the species' urban tolerance scores in the point 

counts. Finally, different bird specialization richness (diet, foraging behavior, foraging 

substrate, and habitat) scores were calculated for each community (at the distinct point counts). 

Each specialization richness score described the number of birds, scoring 1 for the specific 

specialization index in each community. See Annex IV (section "Methods: Facets of avian 

diversity assessment") for the detailed calculations. 

G L M M s were run to check for associations between vegetation proxies and diversity facets. 

Each diversity facet was a response variable run separately with each predictor (NDVI mean, 

NDVI sd, EVI mean, and EVI sd). So, each model consisted of one diversity metric and one 

predictor. The city was used as a random factor. See Annex IV, section "Methods: Statistical 

analyses" for a detailed description of the statistical analyses. 

The main results are summarized in Figure 7. below. See Annex IV (section "Results") for the 

full results. 
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BSR FRic FEve FDiv CED PD PSV UTM Diet ForB Forsub Hab 

EVI mean 

EVI sd 

NDVI mean 

NDVI sd 

Figure 7. Matrix representing the G L M M association types between avian diversity and community metrics and 
Landsat-derived indices. In the columns, the following response variables are: Bird species richness (BSR), 

Functional richness (FRic), Functional evenness (FEve), Functional divergence (FDiv), Community 
evolutionary distinctiveness (CED), Phylogenetic diversity (PD), Phylogenetic species variability (PSV), Urban 
Tolerance mean (UTM), Diet specialization richness (Diet), Foraging behavior specialization richness (Forb), 

Foraging substrate specialization richness (Forsub), Habitat specialization richness (Hab). In the rows, the 
following predictive variables are: EVI mean, EVI standard deviation (EVI sd), NDVI mean, and NDVI 

standard deviation (NDVI sd). Each predictive variable was assessed in separate models. Blue squares represent 
positive and significant associations. Red squares represent negative and significant associations. White squares 

represent non-significant associations. The selected best models—according to the lowest AIC and greater 
AlCWt values—are indicated with a white dot. 

Our large-scale study highlighted the capacity of NDVI and EVI to act as robust indicators of 

various facets of urban diversity. In particular, the NDVI mean was the best predictor of almost 

all indices studied. Previous studies have shown that vegetation indices can surrogate simple 

diversity metrics in urban areas (Bino et al., 2008; Leveau, 2019; Leveau et al., 2020). We have 

demonstrated that they are useful in identifying other aspects of community composition. 

Specifically, higher vegetation cover was associated with most facets of diversity studied 

(except for functional divergence). Increased vegetation was linked positively to most of these 

indices except for phylogenetic species variability, urban tolerance, and foraging substrate 

specialism. Therefore, generally, areas with higher vegetation cover support more diverse 

communities that are functionally and phylogenetically richer, with more specialists and less 

urban tolerant species. Thus, a greater NDVI mean can help identify areas with lower avian 

biotic homogenization, which may not be inferred from simple assessments of species richness 

(Petchey & Gaston, 2006). 

Our findings can have important conservational applications, showing that NDVI mean may 

be utilized to track community composition and changes. Therefore, we provide accessible and 

effective ways to monitor urban communities, enabling urban planning efforts to better 

conserve species assemblages in cities long-term (Matas-Granados et al., 2022). 
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Future studies should incorporate other remote sensing tools and indices that may enhance the 

precision of biodiversity monitoring or outperform NDVI as a biodiversity surrogate in urban 

areas (i.e., Benitez et al., 2024). 

4.6- The role of urban forestry in supporting birds 

In addition to the specific findings of each study, three of the discussed research directly 

highlight the value of urban forests, specifically trees. Research IV showed that areas with 

higher vegetation density supported communities with increased avian diversity at different 

levels, including many specialists, and showed less biotic homogenization. The promotion of 

specialists is also seen in Research I, where only the Jay, the most seed-specialist urbanized 

corvid, was associated with increased tree cover. Jays, serving as ecosystem engineers, provide 

essential ecosystem services such as seed dispersal (Mitrus & Szabo, 2020; Pesendorfer et al., 

2016). In contrast, the more generalist corvid species preferred open areas or built 

environments. Research III demonstrated that proximity to trees provided urban birds with an 

increased sense of security and allowed them to delay their escape. Birds were also willing to 

travel longer distances to seek shelter in a tree. Those findings further stress the values of urban 

forests since proximity to urban trees reduced the birds' FIDs and DF to the shelter, allowing 

them to conserve energy and improve their foraging efficiency and overall fitness (W. E. 

Cooper & Frederick, 2007; M0ller et a l , 2013). 

Although Research II does not directly support the positive role of trees, it highlights the 

negative impact of urban noise on the antipredator behavior of Magpies. Urban trees may 

mitigate or reduce this effect by acting as noise barriers (Ow & Ghosh, 2017). 

Our research further emphasizes the importance of preserving and increasing urban tree covers 

and aligns with the extensive literature on the countless values of urban forestry and ecology. 

These findings are valuable for urban planning, wildlife management, and conservation 

strategies, highlighting the need to maintain elevated tree covers in urban areas to support 

various aspects of bird ecology. 
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CHAPTER 5. CONCLUSIONS 

This thesis consists of four journal articles contributing to the quickly growing field of urban 

avian ecology. Two articles focus on corvids, a group of birds, many of whom managed to 

successfully colonize urban areas, while the other two have a larger scope that covers almost 

all of the urban avian community. One article focuses on the urban habitat selection and overlap 

(Research I), two others explore the antipredator behavior of urban birds (Research II and III), 

and the last article examines the possibility of using vegetation indices for large-scale avian 

diversity monitoring in urban areas (Research IV). 

Firstly, we found that despite having some preferences, urban corvid species overlap highly in 

their habitat niches, which shows their generalistic nature. Those with similar preferences were 

more likely to co-occur together, showing low impacts of competition. Secondly, our results 

indicate that although urban noise may not affect Magpies' capacity to detect danger, it still 

delays their reaction and escape. Therefore, urban noise may impact the antipredator behavior 

of species in complex ways that still require further investigation. Thirdly, we also show the 

value of refuge availability, type, and proximity on the antipredator behavior, specifically trees, 

which are the favored bird shelter type. Birds with closer potential refuge, especially trees, 

escaped later and for shorter distances, saving energy and potentially improving their fitness. 

Lastly, we demonstrate that vegetation indices, particularly NDVI, may be cost-effective 

proxies for multifaceted avian diversity monitoring in urban areas. Thus, we provide accessible 

tools to guide conservation efforts in urban areas and promote healthier urban environments 

for species. 

We acknowledge some of the specific limitations of our studies, which are elaborated in the 

previous section and the articles. Nevertheless, in general, all our fieldwork was conducted 

during the breeding season, which may differ from the winter season when the birds do not 

have to rear young and have reduced food sources (Moller et al., 2013; Novčič & Parača, 2022). 

Future studies should explore the impacts of urbanization on wintering bird communities. 

Although our research was limited to European countries and may not fully generalize to other 

regions with different climates, urban ecological studies in Europe can provide valuable 

insights for developing countries, helping them avoid some adverse impacts and adopt novel 

methods for study and preservation (Jokimäki et al., 2016). Still, studies in other regions, 

especially ones less represented by the literature, are heavily needed. Finally, our focus was 

solely on birds, which, although they serve as bioindicators, future research should address 
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other taxa and ecosystem dynamics (Benmazouz et al., 2021; Goodness et al., 2016; Morelli, 

Reif, et a l , 2021). 

Urbanization subjects avian communities to various challenges that uniquely impact different 

species. This thesis contributes to the extensive scientific field of urban ornithology, which 

seeks to uncover the relationship between birds and urbanization but still has endless questions 

to answer. 
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Simple Summary: Many corvid species have adapted to live in urban regions. Studying their habitat 
needs and the similarities among them would allow us to predict species' responses to global changes. 
Such studies have not been widely done on generalist species capable of surviving in different 
environments. Here, we studied the habitat needs and spatial overlap of five corvid species in sixteen 
European cities. We found significant overlap in the habitats of the corvids, although some had 
different tendencies. Three species (the Carrion/Hooded Crow, Rook, and Eurasian Magpie) selected 
open habitats (grass or bare soil). The Eurasian Jay chose more forested areas, and the Western Jackdaw 
avoided areas with bare soil cover. The species that had similar habitat tendencies also had similar 
spatial distributions. Our results show that even corvids with different tendencies overlapped highly 
in their habitats, which means they can tolerate different environmental conditions in urban areas. 

Abstract: Understanding habitat and spatial overlap in sympatric species of urban areas would aid 
in predicting species and community modifications in response to global change. Habitat overlap has 
been widely investigated for specialist species but neglected for generalists living in urban settings. 
Many corvid species are generalists and are adapted to urban areas. This work aimed to determine 
the urban habitat requirements and spatial overlap of five corvid species in sixteen European cities 
during the breeding season. A l l five studied corvid species had high overlap in their habitat selection 
while still having particular tendencies. We found three species, the Carrion/Hooded Crow, Rook, 
and Eurasian Magpie, selected open habitats. The Western Jackdaw avoided areas with bare soil cover, 
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and the Eurasian Jay chose more forested areas. The species with similar habitat selection also had 
congruent spatial distributions. Our results indicate that although the corvids had some tendencies 
regarding habitat selection, as generalists, they still tolerated a wide range of urban habitats, which 
resulted in high overlap in their habitat niches and spatial distributions. 

Keywords: Corvidae; Europe; coexistence; sympatry; urbanization; niche overlap; habitat overlap 

1. Introduction 

Although urban areas occupy less than 3% of the total land cover, their impacts reach 
areas several times larger [1,2]. Addit ionally, as the urban population is expected to rise 
to 84% i n Europe by 2050, urban land cover is expected to increase even at a greater 
speed than the population [1,3]. Urban areas are characterized by increased levels of 
anthropogenic disturbance, noise, light and air pollution, meso-predators (i.e., cats and 
dogs), and altered environments [4-6]. A s a result, new environments i n which only a 
few species can survive are created due to urbanization constraints [7], leading to urban 
communities that are biotically homogenized [8]. Biotic homogenization is characterized by 
replacing many native, specialist, and endemic species wi th a few widespread generalists, 
leading to increasingly similar communities and a reduction in global biodiversity [7,9]. 

Many corvid species are generalists that adjust to urbanization and anthropogenically 
modified areas [10-13]. Most research has reported a positive impact of urbanization on 
corvids and an increase in their abundance along urbanization gradients [14]. Corvids are 
intelligent birds wi th a large brain-to-body mass ratio whose intelligence is comparable 
to some primates [15]. Their advanced cognition is one of the reasons they are able to 
thrive amidst urbanization by increasing their innovation to better adapt to new circum
stances [15,16]. Corvids may exploit new nesting sites created wi th in artificial structures, 
such as buildings, poles, tram tracks, and power lines [14,17,18]. Moreover, their omnivore 
diet allows them to consume different urban foods [15]. Furthermore, decreased preda-
tion and persecution pressure in cities are essential factors promoting corvids' l iv ing in 
urban settings [14]. Due to the low persecution level and anthropogenic food sources in 
cities, many corvid species have habituated to humans, a factor that further fosters their 
urbanization [19]. 

In urban areas, corvids have several impacts on the environment that affect the local 
people both positively and negatively and, therefore, play a role in the ecosystem services 
and disservices [20]. Corvids provide several ecosystem services in urban areas as they 
are seed dispersers of oak and pine trees, could serve as biosensors for the early detection 
of hazardous contaminating agents (e.g., West Ni l e Virus), and are considered model 
organisms of urban ecology studies [14,21,22]. These birds also cause ecosystem disservices 
as they forage in trash cans, spread waste and possibly diseases, and are known for inducing 
agricultural and infrastructural damage and causing noise [12,14,23,24]. Corvids are nest 
predators, and their increased presence in urban areas may limit the nesting capacities of 
other species, reducing the region's biodiversity [25-29]. Therefore, detailed knowledge of 
species' habitat requirements could contribute to more efficient management of corvids 
populations i n cities when needed [29]. 

Several studies have looked into the urban habitat selection of corvids [13,30-32] and 
in Europe specifically [18,19,33-35]. Most of these studies were only conducted in one 
city or focused on a single corvid species [19]. Thus, there is still a need for large-scale, 
meta-replicating studies concerning the urban habitat selection of corvids across species 
and sites to obtain general findings [36]. 

Hutchinson defined the realized niche as the environmental conditions where a species 
can survive, reproduce, and grow despite predators and competitors [37]. The ecological 
niche governs the distribution of the species and can be considered an n-dimensional 
hypervolume, where n is the number of ecological factors considered [37,38]. Sympatric 
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species are simultaneously present in the same area [39]. Understanding habitat niche and 
spatial overlap in guilds of sympatric species in urban areas could aid in predicting both 
species and community changes in response to global change. 

Niche overlap among sympatric birds has been studied extensively in specialist species 
but neglected in generalist species wi th broader niches [40]. Some studies have addressed 
sympatry among corvids outside urban areas [41-44]. However, studies assessing habitat 
overlap i n corvids in urban areas have been lacking [40]. 

This study aims to characterize the habitat selection and the degree of spatial over
lap among five corvid species inhabiting different European cities. Specifically, we w i l l 
(1) investigate the presence and distribution of each corvid species in 16 European cities, 
(2) assess the level of spatial overlap among the five corvid species, (3) understand the level 
of overlap of their habitat selection, and (4) determine the urban features selected by each 
species. We hypothesize that due to the differences in body sizes and nest sites, the habitat 
selection of corvids w i l l differ and that species with similar habitat requirements w i l l have 
similar spatial distributions. We predict that larger species (the Car r ion /Hooded Crow; 
Corvus corone/cornix, Rook; Corvus frugilegus, and Eurasian Magpie; Pica pica) w i l l pick out 
more open sites. We believe smaller species (the Eurasian Jay; Garrulus glandarius) w i l l 
choose more vegetated, closed sites. Hole-nesting corvids (the Western Jackdaw; Corvus 
monedula) w i l l select built-up areas. We used the point count method to study the presence 
and abundance of corvids in the 16 European cities depending on the characteristics of the 
sites. We then examined the mismatch between their spatial distributions and the level of 
their habitat niche overlap and modeled the habitat selection of each corvid species. 

2. Materials and Methods 
2.1. Study Area 

In 2018, sixteen European cities (Figure 1) were surveyed during the breeding season. 
Data on corvid species' presence and abundance were collected through standardized single-
visit point counts [45,46]. We used the point count method to collect data regarding breeding 
corvids, as we were not interested in roosting corvid flocks that may only overnight in the 
cities [14]. In each city, around one hundred point counts, wi th a circle of a 50 m radius, 
were used for data collection (more information regarding the exact number of point counts 
in each city, along wi th the population and population density, is presented in Table SI). 
A l l point counts were at least 500 m from the city borders to avoid sampling transitional 
suburban regions. The distance between any two point counts was more than 100 m to avoid 
double-counting the same corvid individuals. The point counts were uniformly distributed 
along a gradient of urbanization (i.e., at the inner core area of the city, the surrounding area of 
the inner core area, and the less urbanized residential areas) in each city to sample different 
corvid species with different urban habitat preferences equally. 

2.2. Field Data Collection 

Sampling was started just after sunrise in cities other than Rovaniemi, where the sun 
does not set dur ing the mid-summer. In Rovaniemi, surveys began at 02.00 a.m. The 
surveys were ended before the heavy morning traffic started in each study area (i.e., around 
07.00 a.m.). Sampling was conducted in favorable weather conditions (no rain or strong 
wind) and for 5 min per sampling site following standard bird survey methodology used 
in previous studies on urban birds [45,47,48]. The data were collected during the peak 
breeding season depending on the city (e.g., M a y in Southern Spain vs. June i n Finland) 
to maintain a similar detectability of birds between the different cities [49]. The location 
of each point count was recorded using a GPS to find other characteristics regarding the 
site (described in the following section). A l l corvid species and individuals heard or seen 
within the 50 m radius of the point counts were recorded. Overflying individuals that d id 
not land wi thin the study circle were excluded. 
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Figure 1. Map of the sixteen European cities surveyed. 

2.3. Variables Studied in Terms ofCorvid Habitat Selection 
After the bird surveys, information regarding the vegetation cover and land use 

composition was collected to study the corvids' habitat characteristics. Local-scale variables 
were shown to have more influence on the species distribution than regional ones [50]. For 
that reason, we collected patch-level variables (the percentages of built (impervious), tree 
(single trees, lines of trees, and tree patches), bush, grass, and bare soil covers; refs. [51-54], 
a matrix level variable (the average number of bui lding floors); ref. [55], and disturbance 
variables (number of cats, dogs, and pedestrians) [6,56]; which were determined visually by 
the observers wi th in the 50 m radius point count and during the five minutes bird survey 
period. Other disturbance variables were calculated for each point count. We included 
light and noise pollution variables while assessing the habitat characteristics of the corvids 
as these variables have been shown to influence birds' habitat selection [47,57-59]. 

Each point count was georeferenced. The coordinates of each study circle were 
used to extract light pollut ion information from the VIIRS satellite (from the website: 
https:/ /www.lightpollutionmap.info). The values, precalculated on the website, were 
extracted for 2018 (here, average yearly values were used) and correspond to the Radiance 
1 0 " 9 W / c m 2 * sr (W = Watts and sr = steradian) [60]. 

Noise pollution models were performed using the open noise tool (https: / /plugins. 
qgis.org/plugins/opeNoise) for QGIS. This tool permits measuring in 2D space (e.g., 
around point counts) the mean noise from point or road sources received at fixed points 
and buildings. Noise sources were based on Urban Atlas land use categories, and buildings 
from Open Street M a p (OSM) were used as an advanced input for diffraction and noise 
reduction. Noise spreading in a 250 m range of each source (point) was calculated. The 

https://www.lightpollutionmap.info
http://qgis.org/plugins/opeNoise
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results consisted of model-based mean noise levels in dB i n a radius of 50 m around the 
point counts [60]. 

2.4. Classification of the Carrion Crow and the Hooded Crow 

In 2003, the Hooded Crow was recognized as a separate species from the Carr ion 
Crow due to the positive assortative mating of the two taxa and the reduced fitness of 
their hybrids [61]. Thus, information regarding each species separately is still lacking and 
they are often described as both species merged as one [62-65]. Debate remains regarding 
the taxonomic classification of the two taxa, where it may seem that they are sti l l in the 
early stages of speciation [66,67]. From a genetic perspective, their only main difference is 
possibly their plumage coloration [67,68]. Finally, since both taxa use similar environments 
in geographically separate areas, estimating their habitat selection and overlap separately 
may lead to misleading results. For these reasons, we merged the observations of the 
Carrion Crow and the Hooded Crow and considered them as one species. 

2.5. Statistical Analyses 

To test spatial overlap among the corvid species, we used the spatial mismatch analysis 
through a Mantel test [69] wi th the package "ade4" in R [70]. The Mantel test quantifies 
correlations between two distance matrices using the coefficient R M , which varies between 
—1 and 1 and behaves similarly to a correlation coefficient. Here, the distance matrices 
were developed among point counts on the abundance of each corvid species. Monte Carlo 
permutations, wi th 999 randomizations, were employed to test for significance. 

The nicheROVER package of R [71] was used to estimate the probabilistic niche regions 
of each species. For each species, point counts where the species was present were used, 
and then a directional probabilistic niche overlap of each pair of corvid species was deduced 
for their habitat selection [72]. The niche region is defined as "a 95% probability region 
in multivariate space", estimated using 1000 Monte Carlo draws and alpha = 0.95. Niche 
overlap is then calculated as the posterior probability that an indiv idual from the first 
species was found wi th in the niche region of the other species and vice versa [72]. The 
advantages of this approach are that it gives a directional niche overlap metric (overlap 
of species A into B is different from that of species B into A ) and that it accounts for 
uncertainty using a Bayesian framework. Furthermore, this method is not sensitive to 
sample size [72]. The latter is particularly useful for calculating overlap among species 
wi th different distributions, such as in the case of some pairs of species in our study (i.e., 
the Western Jackdaw and all other species studied) [73]. 

Generalized Linear Mixed Models (GLMMs) using a binomial distribution were fitted 
to assess the characteristics of the habitats used by each corvid species by relating the 
presence/absence of a corvid species i n a point count to the respective predictors. The 
predictors tested were: the number of cats, dogs, bui ld ing floors, and pedestrians; the 
percentage of grass, tree, bare soil, and bush cover; and the amount of light and noise 
pollution wi th in 50 m around the point counts. The percentage of the built area was 
dropped for being highly correlated to the percentage of grass cover (VIF > 6). The city 
(n = 14; Rovaniemi and Zielona Gora were excluded from the models for having missing 
values in the light and noise pollut ion predictors, making the sample size for the mod
els n = 1288) was incorporated as the random factor to account for variation among the 
different cities. R package "lme4" was used to fit the models [74]. "Dredging" was used 
from the R package " M u M I n " [75] to form and rank all possible model combinations using 
the predictors. Second-order Akaike Information Criterion (AICc) was used to select the 
best models. Mode l averaging was performed on top models wi th A A I C c < 4 (detailed in 
Supplementary Table S2) to address problems related to selection uncertainty [76] using 
the M u M I n package. 

A l l analyses were performed using R software version 4.0.3 [77]. 



Animals 2023,13,1192 6 of 16 

3. Results 

After removing only two observations of the Common Raven (Corvus corax), 2324 corvid 
individuals belonging to five species (the Carr ion/Hooded Crow, Rook, Western Jackdaw, 
Eurasian Jay, and Eurasian Magpie) were recorded in 1462 point counts surveyed in sixteen 
European cities (Figures 1 and SI). 

The Eurasian Magpie was the species most spread in the study area. It was observed in 
all cities (Figures S2 and S3). The Western Jackdaw was the most abundant corvid and was 
detected in most cities except Athens, Budapest, and Madr id . The Carr ion/Hooded Crow 
was present in most surveyed cities except Granada, M a d r i d , and Toledo. The Eurasian 
Jay was observed in eight cities (Athens, Budapest, Groningen, Ioannina, Poitiers, Poznan, 
Prague, and Zielona Gora). The Rook was the least detected and least abundant corvid and 
was only present in five of the sixteen studied cities (Groningen, Poitiers, Poznan, Prague, 
and Tartu). 

3.1. Spatial Overlap 

The distribution of the Car r ion /Hooded Crow was congruent wi th that of the Rook, 
Eurasian Jay, and Eurasian Magpie (Table 1). The distribution of the Eurasian Magpie was 
also slightly congruent with those of the Rook and Eurasian Jay. The spatial distribution of 
the Western Jackdaw d id not match that of any other corvid. The spatial distributions of 
the Rook and the Eurasian Jay were not congruent. Congruent distributions mean that the 
species pair had a similar variation in abundance across the point counts. 

Table 1. Spatial overlap test. Results of Mantel tests between the spatial distributions of each pair of 
corvid species, with 999 Monte Carlo permutations. The table shows the statistic R M of the test and 
the simulated p-values. Values with a p-value < 0.05 are in bold. 

Variables Correlated R M p- Value 

Carrion/Hooded Crow x Rook 0.100 <0.01 
Carrion/Hooded Crow x Western Jackdaw -0.010 >0.05 
Carrion/Hooded Crow X Eurasian Jay 0.110 <0.01 
Carrion/Hooded Crow X Eurasian Magpie 0.150 <0.001 
Rook x Western Jackdaw 0.035 >0.05 
Rook x Eurasian Jay -0.016 >0.05 
Rook x Eurasian Magpie 0.084 <0.01 
Western Jackdaw x Eurasian Jay -0.002 >0.05 
Western Jackdaw x Eurasian Magpie 0.010 >0.05 
Eurasian Jay X Eurasian Magpie 0.080 <0.01 

3.2. Habitat Selection 

The probabilistic niche overlap between two species is not necessarily identical. This 
approach gives a directional niche overlap metric (overlap of species A into B is different 
from that of species B into A ) [72]. The overlap of habitat use was high between each 
pair of corvids, wi th the probability of overlap of al l pairs being higher than 80%, except 
for the Rook (Figure 2). The probability that any corvid indiv idual overlaps the habitat 
niche region of the Rook was below 40%. O n the other hand, the probability that a Rook 
individual would overlap the habitat niche region of any other corvid was higher than 85%. 

Specifically, the percent cover of bare soil and grass were the two most important 
variables to characterize the habitat use of all corvid species (Table 2). The Carr ion/Hooded 
Crow presence was positively correlated to bare soil and also to grass cover as the Rook. 
The presence of the Western Jackdaw was negatively correlated to the cover of bare soil. 
The Eurasian Jay's presence was positively correlated to the percentage of tree cover. The 
Eurasian Magpie's presence positively correlated to bare soil, grass cover, and noise level. 
However, it was negatively correlated to the number of pedestrians present. N o corvid 
species' presence was significantly correlated to the number of cats, dogs, bui lding floors 
or the amount of light wi th in the 50 m radius. 
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Carrion/Hooded Craw Eurasian Magpie Rook Western Jackdaw 

35 BO BE 100 60 70 30 B0 100 3E B0 B5 100 20 30 40 50 

Overlap Probability (%) - Niche Region Size: 95% 

Figure 2. Posterior distribution of the probabilistic niche overlap metric for corvid species in urban 
areas, considering the land use composition. The posterior mean and 95% credible interval are 
indicated with black lines and give the probability that species displayed in rows overlap onto those 
displayed in columns. 

Table 2. Habitat selection models. Results of the model averaged coefficients of the GLMMs relating 
corvid species' presence/absence to urban habitat characteristics. The predictors include the noise 
and light pollution, the percentage of bare soil, grass, tree, and bush cover, and the number of 
pedestrians, cats, and dogs present in the 50 m radius around the point counts. The city (n = 14) 
was used as a random factor. A separate model was run for each corvid species. For each species, 
dredging was used to generate all models based on the various combinations of predictors. Models 
with AAICc < 4 (top models are detailed in Supplementary Table S2.) were averaged to give the 
results in the table. Estimates with a p-value < 0.05 are in bold. 

Variable Estimate S E z-Value p-Value 

Carrion/Hooded Crow 
Intercept -3.050 0.737 4.141 p < 0.001 
Bare soil 0.022 0.007 2.977 0.003 
Building floors 0.068 0.048 1.421 0.155 
Bush 0.002 0.008 0.192 0.848 
Cats -0.019 0.083 0.224 0.823 
Dogs 0.118 0.074 1.595 0.111 
Grass 0.016 0.005 3.200 0.001 
Light -0.000 0.004 0.058 0.954 
Noise -0.007 0.011 0.587 0.557 
Pedestrians -0.008 0.004 1.756 0.079 
Tree -0.000 0.006 0.069 0.945 
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Table 2. Cont. 

Variable Estimate S E z-Value p-Value 

Rook 
Intercept -5.551 1.952 2.843 0.004 
Bare soil 0 .019 0.017 1.115 0.265 
Building floors 0.173 0.139 1.246 0.213 
Bush -0.044 0.026 1.706 0.088 
Cats 0.012 0.292 0.041 0.968 
Dogs -0.390 0.291 1.343 0.179 
Grass 0, .034 0.011 2.947 0.003 
Light -0.016 0.016 0.990 0.322 
Noise 0 .004 0.031 0.139 0.890 
Pedestrians -0.010 0.019 0.512 0.609 
Tree -0.034 0.018 1.923 0.055 

Western Jackdaw 
Intercept -1.605 0.7629 2.104 0.035 
Bare soil -0.016 0.0070 2.350 0.019 
Building floors 0.053 0.038 1.374 0.170 
Bush -0.008 0.008 0.922 0.357 
Cats 0.043 0.086 0.498 0.619 
Dogs -0.140 0.084 1.665 0.096 
Grass -0.009 0.005 1.736 0.083 
Light 0.004 0.003 1.304 0.192 
Noise -0.009 0.011 0.800 0.424 
Pedestrians 0.000 0.002 0.198 0.843 
Tree -0.010 0.006 1.557 0.120 

Eurasian Jay 
Intercept -4.795 1.551 3.092 0.002 
Bare soil 0.005 0.012 0.419 0.675 
Building floors -0.238 0.135 1.766 0.077 
Bush 0.017 0.013 1.331 0.183 
Cats 0.131 0.105 1.250 0.211 
Dogs 0.089 0.112 0.796 0.426 
Grass 0.010 0.010 1.041 0.298 
Light -0.012 0.009 1.322 0.186 
Noise 0.026 0.021 1.237 0.216 
Pedestrians -0.027 0.015 1.767 0.077 
Tree 0.019 0.009 2.186 0.029 

Eurasian Magpie 
Intercept -2.914 0.695 4.191 <0.001 
Bare soil 0.015 0.006 2.776 0.006 
Building floors 0.021 0.030 0.709 0.478 
Bush 0.002 0.007 0.245 0.806 
Cats 0.004 0.075 0.053 0.957 
Dogs -0.025 0.062 0.401 0.689 
Grass 0.027 0.004 6.644 <0.001 
Light -0.003 0.003 1.151 0.250 
Noise 0.021 0.009 2.359 0.018 
Pedestrians -0.012 0.004 3.385 <0.001 
Tree -0.003 0.005 0.645 0.519 

4. Discussion 
4.1. Corvids' Abundance and Distribution in Urban Areas 

The Eurasian Magpie was the most widespread species and present in a l l sixteen 
surveyed European cities (Figures SI and S2). The species started colonizing Eurasian 
cities during the second half of the twentieth century [34,78,79]. Magpies are omnivorous 
and sedentary, traits facilitating a bird's presence in urban environments [80]. Eurasian 
Magpies could modify their behavior to adapt to urban areas and have already undergone 
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synurbanization in several cities [31,33-35,81]. For example, the bird tends to nest higher 
in trees as urbanization levels increase [32,33,35]. In urban areas, the Eurasian Magpie 
increases the share of the nests it builds in conifers, especially in early spring when decid
uous trees are leafless and exposed [33,34]. These adaptations probably allow Eurasian 
Magpie individuals to avoid human disturbance and nest predation from pets and Carrion 
Crows [32-34]. The decrease in persecution is another apparent reason for the urbanization 
of the Eurasian Magpie [34]. 

The Corvus genus is an especially successful genus within the Corvidae family. Their 
successful global expansion (as they occupy al l continents but Antarctica) is due to their 
capacity to disperse over long distances and their high ability to survive in suboptimal and 
adapt to new environments [10]. The Western Jackdaw was the most abundant species 
(Figures SI and S2). A s a cavity nester, the species has adapted to use buildings and 
other anthropogenic cavities for nesting in urban areas [11,17,82,83]. In Slovenia, a study 
found that more than 80% of Western Jackdaw pairs nest in buildings [17]. The Western 
Jackdaw is also an omnivore and somewhat sedentary, so adaptation to urbanization is no 
surprise [84]. 

The Car r ion /Hooded Crow was also abundant and widespread (Figures SI and S2). 
The Carr ion/Hooded Crow has also been frequently associated wi th urbanization, anthro-
pogenically modified areas, and anthropogenic food resources [12]. The Carr ion/Hooded 
Crow has benefitted from the decreased persecution [85]. The Car r ion /Hooded Crow, 
Western Jackdaw, and Eurasian Magpie were the three most common corvids observed in a 
study conducted during the winter season in urban areas of Finland [19]. 

Our study, conducted during the breeding season, showed that the Eurasian Jay 
and Rook were the least spread and abundant species (Figures SI and S2). The densities 
of the Rook are declining in Europe, and the bird has been listed as vulnerable on the 
European Red List of Birds [86]. Addit ionally, the Rook and Eurasian Jay have been 
previously demonstrated to utilize cities more often during the winter, perhaps to use 
warmer temperatures and ample food supplies. For the breeding season, both species 
probably move to nearby villages to nest and feed in more natural areas, which explains 
the low number of their records in our sample [11,87-89]. In addition, the Eurasian Jay has 
not yet become urbanized in some regions, such as Finland [19]. 

4.2. Corvids' Urban Habitat Selection 

Understanding the habitat requirements of corvids in urban areas could aid efforts 
to control their populations and reduce their negative impacts [14,29]. Our large-scale 
study investigated the urban habitat of five corvid species i n sixteen European cities 
during the breeding season. Al though some species showed different habitat selections, 
the majority (the Car r ion /Hooded Crow, Rook, and Eurasian Magpie) were positively 
linked to open spaces (grass and bare soil cover; Table 2). This selection may be related to 
their feeding habits because various studies have shown that the abundance and habitat 
selection of corvids in cities were influenced by food availability [12,24,40]. Although they 
use anthropogenic food sources such as waste disposal sites, they also rely on insects, 
snails, and earthworms, especially during the breeding season, to provide their juveniles 
wi th nutritious food [12,15,84,90]. Therefore, their presence increases near open grass 
and bare soil fields where they could be foraging for these valuable resources. Another 
advantage of open habitats is the early detection of predators since few structures obscure 
their vis ion [91]. A s corvids are relatively heavy birds, they require longer to flee from 
approaching predators, so early detection of predators may be valuable [92]. Other studies 
also found a positive correlation between open spaces and corvids wi th in and outside of 
urban areas, especially grasslands [18,89,93-95]. The Western Jackdaw was the only corvid 
negatively impacted by bare soil cover (Table 2). Here, the percentage of the built surface 
was dropped from the models as it was highly and negatively correlated to the portion of 
grass and, to a lesser extent, bare soil. More extensive coverage of bare soil would translate 
to a smaller cover of built-up areas. Unl ike the other corvids in this study, the Western 
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Jackdaw, as a cavity nester, is known to nest in buildings [17,32,82,83], which could explain 
its negative correlation to bare soil cover, resulting from reduced built-up areas and, thus, 
nesting sites. Outside of urban areas, the Western Jackdaws are found in farmlands, rocky 
habitats, or a mix of both, where they can have nesting and feeding sites [83]. Other studies 
found a positive correlation between the Western Jackdaw abundance and city centers or 
densely built-up areas [52,83,96]. Within urban areas, Salvati (2002), found that the optimal 
habitat of the Western Jackdaw consists of a mixture of old buildings, ruderal zones, open 
areas, and small green areas [83]. From our results, it seems that the built cover is the 
most important of these factors and that Western Jackdaws may choose regions wi th more 
extensive built cover and smaller open land covers for breeding. There might even be a 
mismatch between the nest sites of urban Western Jackdaw individuals and their optimal 
foraging habitats [84], which suggests regular movements of the species between nesting 
sites (in cities) and foraging sites (their surroundings), and hence an effect of city size on 
the Western Jackdaw's presence. The Eurasian Jay was not linked to the cover of the open 
areas (Table 2). It was the only corvid in this study positively influenced by tree cover. It is 
not surprising as the Eurasian Jay has been considered a typical forest dweller associated 
wi th forest cover [11,97], is still in the process of colonizing urban areas [93,98], and is 
more correlated to the least urbanized sectors of a city [99]. Moreover, the Eurasian Jay 
may actively increase the tree cover of a city because this species is considered an efficient 
disperser of acorn through a mutualistic relationship with oak species [97,100,101]. Another 
study showed a positive correlation between the Eurasian Jay and woody vegetation in an 
urban area, matching our findings [93]. None of the corvids studied seemed to be impacted 
by the amount of light (Table 2). These results differ from those of another study that found 
that the densities of the Rook and Eurasian Magpie increased wi th light pollut ion levels 
and decreased wi th the noise level in southern Poland [58]. The different spatial scales 
and the fact that the former study was conducted during the winter season may explain 
these differences. In contrast, our results only showed a positive relationship between noise 
pollution and the presence of the Eurasian Magpie and no impact on other corvids (Table 2). 
Some species may benefit from higher noise levels due to the disruption of predator-prey 
interactions, which may be the case of the Eurasian Magpie [59]. The Eurasian Magpie 
was also the most widespread corvid in our study. Both results suggest that the Eurasian 
Magpie is a flexible corvid and the most tolerant to urban noise pollution in the European 
cities studied. Still , a l l corvid species studied are wel l adapted to urban noise and not 
heavily impacted by it. Similarly, another study found that the Eurasian Magpie and 
Western Jackdaw were l inked to areas wi th increased noise levels [52]. The Eurasian 
Magpie was also the only corvid impacted by the density of pedestrians. The amounts of 
cats and dogs affected none of the corvids studied. Al though these mesopredators may 
be more abundant i n urban areas, predation rates are lower as they may be relying on 
anthropogenically abundant food, shifting their diets away from vertebrate prey, something 
corvids may have caught up wi th [6,102]. 

4.3. Corvids' Spatial and Habitat Overlap 

The habitat selection of the corvids could explain their spatial distributions and level of 
habitat overlap. The distribution of the Western Jackdaw was not congruent with any other 
corvid (Table 1). We assume this is due to the Western Jackdaw's preference for built-up 
and heavily dense areas [96], unlike the other corvids. The Car r ion /Hooded Crow, Rook, 
and Eurasian Magpie were l inked to open spaces, and their distributions were congruent 
(Tables 1 and 2). The Eurasian Jay was the only one related to the tree cover, unlike other 
corvids, its distributions matched those of the Eurasian Magpie and Carr ion/Hooded Crow. 
This could be due to their occurrence in large urban open spaces, such as parks, where large 
open spaces and tree covers coincide, benefiting both species similarly. The distribution of 
the Eurasian Jay was not congruent with that of the Rook. We assume this is caused by the 
low presence of both species in this study. 
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We found a high overlap in this study's habitat niches of al l five corvid species 
(Figure 2). High habitat overlap of four corvids (the Carr ion/Hooded Crow, Rook, Western 
Jackdaw, and Eurasian Magpie) was also found in winter in agricultural areas in Britain [95]. 
Here, except for the Rook, the probability that any corvid overlapped another corvid's 
habitat niche region was very high [95]. The probability that another corvid overlapped 
the niche of the Rook was low but high the other way around. This indicates that the 
Rook has a smaller niche region, almost completely embedded i n the different corvids' 
niches. We expect Rooks to broaden their urban habitat niches during the winter when 
they are more likely to occupy this environment [96]. The Eurasian Magpie, followed by 
the Carr ion/Hooded Crow, had the largest niches that highly overlap and almost embed to 
a large extent within them the majority of the habitat niches of other species. The Eurasian 
Magpie also had the largest overlap i n foraging behavior wi th other corvids in another 
study [41]. As for the Western Jackdaw and Eurasian Jay, although they highly overlapped, 
they had the least habitat niche overlap between them, perhaps because the Eurasian 
Jay selected more natural areas [98], and was correlated to tree cover, while the Western 
Jackdaw may select built-up areas [83,96]. 

While some corvids seemed to select similar habitats in urban areas (the Eurasian 
Magpie, Car r ion /Hooded Crow, and Rook), others had different tendencies (the Western 
Jackdaw and Eurasian Jay), they still overlapped quite extensively in their habitat niches 
(Table 1, Figure 2). In addition, although their niches highly overlapped, the corvids 
distributions were congruent only wi th those wi th similar tendencies. We can infer that 
corvids can tolerate a wide array of ecological conditions in urban regions but still have 
some preferences [14]. They are intelligent birds with an omnivore diet which aids them in 
broadening their ecological niches by adapting to novel environments and using different 
foods [12,15,16]. Thus, behavioral adaptations might play an essential role in adapting 
species to novel environments, especially in unstable or disturbed ones [10]. The high 
habitat overlap paired wi th increased congruent distributions between species of similar 
habitat selection could also be explained by the fact that birds have only started to colonize 
urban areas recently. Their urban populations may not have yet reached the carrying 
capacity and resource limitations of the environment, and thus, the pressure upon those 
closely related species that need to acquire interspecific differentiation may be sti l l too 
weak, enabling their coexistence even in the presence of broad niche overlap [103,104]. In 
addition, high disturbance regimes, such as urban areas, tend to allow the coexistence 
of generalists wi th overlapping niches [105]. Alternatively, since their habitats overlap 
largely, we think other factors, unaccounted for in this study, may determine separation in 
their resource use. For example, while four corvids highly overlapped in their foraging 
habitats, their overlap in their prey type intakes was low [41]. Moreover, vast morphological 
differences in the skulls of corvids were noted, which were attributed to their differences 
in foraging modes [106]. In an urban study, two sympatric crow species were found to 
differ in feeding behaviors and feeding habitat, while their food preferences overlapped 
extensively [40]. Thus, interspecific relationships (i.e., territoriality and dominance) may 
also impact their use of shared resources. Corvids may demonstrate aggressive behavior 
against other species when foraging if the overlap is high or avoid an area if another species 
is feeding [41]. Corvids also change their feeding preferences in larger flocks, indicating 
that interspecific relationships may impact resource use [107]. A study assessed four corvid 
species' segregation i n using a refuse dump and found temporal (daily and seasonal) 
differentiation in its use by the different corvids [42]. Kleptoparasitism by the Carr ion 
Crow against the other corvids was noted, which may have contributed to the temporal 
segregation in using this shared resource [42]. 

Since our study was conducted during the breeding season only, and some corvids 
(i.e., the Rook and Eurasian Jay) were shown to utilize urban areas more often during the 
winter, we expect different levels of habitat niche overlap among the corvids during the 
winter season, especially as wintering birds were shown to be more generalist in their 
habitats than breeding birds [11,19,87-89]. M a n y corvids were previously found to use 
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urban areas for nocturnal roosting [14,17]. Our data collection was only conducted in the 
morning and focused on breeding corvids but future research could investigate corvid 
habitat use at different times of the day. Furthermore, other corvids that may be urbanized 
in Europe have not been reported in our study (i.e., the Common Raven of which we only 
had two observations that were then dropped) [19]. Thus, other factors than the conditions 
of our study may determine their presence [19]. 

5. Conclusions 

We studied the distribution, habitat selection, and spatial and habitat niche overlap 
of five corvid species in sixteen European cities during the breeding season. We found 
that three corvids were quite spread and abundant (The Car r ion /Hooded Crow, Western 
Jackdaw, and Eurasian Magpie), while two were less present (the Rook and Eurasian Jay). 
H i g h habitat overlap has been observed among the five studied corvids. Al though their 
habitats highly overlapped, the species still had some tendencies in their habitat selection. 
Three corvid species selected urban areas wi th open spaces (the Car r ion /Hooded Crow, 
Rook, and Eurasian Magpie). The Eurasian Jay was l inked to increased tree cover. The 
Western Jackdaw was negatively correlated to bare soil cover. Species wi th similar habitat 
selection had congruent distribution. Our results are not surprising since corvids are highly 
adaptable generalists expected to have broad niches and, therefore, overlap in their habitats 
and spaces [14,29]. We assume that other factors, to be investigated in future studies, may 
impact their sympatric relationships, habitat, and spatial overlap, such as the season, time 
of day, interspecific interactions, and dietary preferences and habits [40-42,95,107]. 
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Urban areas are known to have high levels of noise pollution, which can impact 
an animal's antipredator behavior. Noise can either distract the animal or mask 
the sounds of a predator, increasing the animal's vulnerability to predation. 
However, the prey may increase vigilance in noisier environments, thus 
reducing energy and t ime spent on other activities. Alert Distance (AD) refers 
to the distance at which an animal becomes alert to a potential predator 
approaching. Flight Initiation Distance (FID) is the distance f rom the potential 
predator at which the animal flees. We studied the impact of ambient noise 
pollution on the AD and a corrected FID (FID/AD) of Eurasian Magpies (Pica pica) 
using a field investigator as a potential predator walking towards birds at a 
constant speed. We found that the noise level did not affect the AD. Still, noise 
had a negative effect on the Eurasian Magpies' FID/ADs, suggesting that noise 
may slow their reaction to a potential threat but not their ability to detect it. Thus, 
our research highlights that urban noise pollution can increase an individual's 
vulnerability to predation, even when predators are still detectable. Ambient 
noise may distract the bird by diverting some of its limited attention and causing a 
delayed response to the predators. Alternatively, noise could be masking auditory 
cues that would have otherwise been added together with visual cues to cause 
an enhanced response. More research is necessary to understand the effects of 
noise pollution on the antipredator behavior of birds in urban areas, taking into 
account the specific strategies and adaptations of each species. 

KEYWORDS 

flight initiation distance, alert distance. Pica pica, alertness, escape behavior, threat 
detection, vigilance 

1 Introduction 
U r b a n areas are filled w i th anthropogenic sounds f rom traffic, industr ia l , and 

commercial activities (Warren et al., 2006). Sounds are not inherently problematic, as 

most animals use them for c o m m u n i c a t i o n and survival (Sun a n d Nar ins , 2005; 

Sordello et al., 2020). However, after a certain threshold, human-made sounds begin to 
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cause disruptions to wildlife and, thus, turn into "noise pol lut ion" 

(Sordello et al., 2020). The extent of disturbance is relative and 

varies based o n species tolerance levels (Sordello et al., 2020). Noise 

pol lut ion may interfere wi th wildlife by masking their natural 

sounds, affecting communica t ion and essential auditory signals 

crucial for survival (Sun and Nar ins , 2005; Slabbekoorn and 

Ripmeester, 2008; Barber et al., 2010). Addi t iona l ly , noise has 

been observed to elevate stress levels i n numerous animal species, 

leading to complex and diverse implications for their physiological 

systems (Kight and Swaddle, 2011). 

Birds are an example o f fauna adversely affected by noise, as 

they rely o n acoustic communicat ion and signals to interact wi th 

their environment (Francis et al., 2009; H u and Cardoso, 2009; 

Petrelli et al., 2017). Birds use their songs to communicate wi th 

mates, brood, and conspecifics, attract partners, and establish 

d o m i n a n c e (Ca tchpo le a n d Slater, 2003; S l a b b e k o o r n a n d 

Ripmeester, 2008). A u d i t o r y cues also serve birds to detect 

approaching predators and send and receive signals to and from 

their conspecifics about predation threats (Hol len and Radford, 

2009). Birds are considered model organisms i n urban ecology and 

good indicators o f habitat quality as they are easy to spot and study 

and are responsive to anthropogenic habitat alterations (Marzluff, 

2008; C r o c i et al., 2008). 

Intense ambient noise may impact an an imals antipredator 

behavior i n various ways (Shannon et al., 2016). O n the one hand, 

noise may hinder the individual 's ability to detect threats (either by 

masking auditory cues o f the predator or by distracting the prey; 

Barber et al., 2010; C h a n et al., 2010a; Z h o u et al., 2019), increasing 

the predation threat for the animal (Chan et al., 2010a; C h a n et al., 

2010b). O n the other hand, noise may lead the animal to augment 

its vigilance (as an attempt to compensate for its compromised 

hearing or by perceiving the noise as a direct threat i n itself; Meil lere 

et al., 2015; K e r n and Radford, 2016; Shannon et al., 2016; Evans 

et al., 2018). However, increased vigilance wou ld entail additional 

energy costs and keep the animal from optimal foraging and other 

activities (Ke rn a n d Radford , 2016). Thus , urban noise may 

disturb an animal ' s ant ipredator behavior i n two opposing, 

unfavorable manners. 

Several studies investigated the impacts of noise pol lut ion on 

the antipredator behavior o f birds (Gravol in et al., 2014; Meillere 

et al., 2015; Petrelli et al., 2017; Evans et al., 2018; Z h o u et al., 2019; 

Merra l l and Evans, 2020). Various methods were used, such as 

observing vigilant behavior (Evans et al., 2018), willingness to visit 

feeders (Merra l l and Evans, 2020), response to alarm calls (Zhou 

et al., 2019), and others. Few have used the Flight Initiation Distance 

(hereafter F I D ; Gravol in et al., 2014; Meil lere et al., 2015; Petrelli 

et al., 2017). 

F I D is among the most wide ly investigated ant ipredator 

behaviors used extensively i n behavioral ecology studies to assess 

fear, risk-taking, evolution, or adaptation (Moller , 2021). F I D is the 

dis tance f r o m an a d v a n c i n g danger (usua l ly a researcher 

approaching the animal under standard conditions) that leads an 

animal to flee (Blumstein, 2003). Aler t Distance (hereafter A D ) is 

the distance before F I D , at which the animal becomes aware of the 

predator and actively observes it before fleeing (Fernandez-Juricic 

et al., 2001). The F I D must compromise between flight costs and 

benefits to stay put and resume current activity (Moller , 2008). For 

example, i n urban areas, where humans are commonly around, 

energet ica l ly cos t ly cons tant fleeing w o u l d put b i rd s at a 

disadvantage at the expense o f op t imal foraging (Cooper and 

Frederick, 2007). Thus, urban birds have lower fear responses 

than their rural counterparts and prioritize investing their energy 

in other activities, such as foraging and reproducing (Cooper and 

Frederick, 2007; Tryjanowski et al., 2016; M o r e l l i et al., 2019; Diaz 

et al., 2021). They save energy by delaying flight and actively 

moni tor ing the predator un t i l the costs o f remaining put are 

higher than those o f fleeing current activity (Price, 2008). 

A l t h o u g h a few s tud ie s i n v e s t i g a t e d the i m p a c t s o f 

noise p o l l u t i o n o n the F I D o f bi rds (Mei l l e re et al . , 2015; 

Petrelli et al., 2017), no study has also studied its impact o n A D 

(but see Shannon et al., 2016 i n a study o n Prairie Dogs; Cynomys 

ludovicianus). Mos t studies do not account for A D and use F I D as a 

proxy for the animals ' capacity to detect danger since the two are 

highly correlated (Blumstein et al., 2005). However, we hypothesize 

that high levels o f noise pol lut ion may have different impacts o n the 

alertness and antipredator response of animals and that F I D alone 

may not be sufficient to reflect the effects of noise o n the attention of 

individuals. For example, noise may reduce the birds' capacity to 

perceive the sounds o f approaching predators (Barber et al., 2010; 

Chan et al., 2010b; Z h o u et al., 2019), leading to a lower A D . 

However, birds exposed to more noise may be more stressed, 

leading them to flee sooner after they detect the danger, as shown 

in previous studies (Meillere et al., 2015). 

Therefore, we think it is valuable to study the impacts o f urban 

noise o n A D and F I D i n a b i rd study regarding noise pollution, 

which has not yet been done to our knowledge. This approach may 

highlight two opposing ways urban noise may impact an animal's 

antipredator behavior (either by distracting the animal or causing it 

to increase its vigilance) that are not mutually exclusive. 

M a n y corvid species, including the Eurasian Magpie (Pica pica), 

have s p r e a d i n t o u r b a n areas ( B e n m a z o u z et a l . , 2021 ; 

A b o u Zeid et al., 2023). Their behavioral flexibility has allowed 

them to adapt to u rban areas by m o d i f y i n g their behavior 

(Benmazouz et al., 2021). For example, Eurasian Magpies tend to 

raise the heights o f their nests i n trees as urbanization intensity 

increases to avoid disturbances from humans and predation from 

Hooded Crows (Corvus comix; Šálek et al., 2020; X u et al., 2020; 

Ciebiera et al., 2021). Thus, Eurasian Magpies are ideal subjects for 

studying urban noise's ecological implications on animal behavior. 

This study aims to investigate the effect o f noise pol lut ion on 

Eurasian Magpies ' antipredator behavior i n urban areas dur ing the 

breeding season. The specific objectives are 1) to study the variation 

of A D and F I D / A D o f Eurasian Magpies across a gradient o f urban 

noise and 2) to investigate the consistency o f the impact o f noise on 

threat detection and speed of the escape response. W e hypothesize 

two potential reactions o f Eurasian Magpies against increased noise: 

a) reduction i n the birds' A D due to masking or distraction or b) 

increase i n A D due to heightened vigilance. Addi t ional ly , we expect 

that F I D / A D may be increased so the Eurasian Magpies can 

compensate for reduced hearing by reacting more qu ick ly to 

perceived threats. W e think noise's impact o n threat detection 

may not be congruent wi th the escape response, even though the 
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two may be highly correlated. T o investigate these hypotheses, we 

modeled the effect of ambient noise o n the A D and F I D / A D of 

Eurasian Magpies i n Prague, taking into account other confounding 

variables, such as the Starting Distance (hereafter SD, the distance 

that separates the researcher from the b i rd at the start o f the 

sampling), the age o f the individual , and the site surveyed. 

2 Methods 

2.1 Study area and f ie ld data co l lec t ion 

The fieldwork was conducted i n Prague, Czechia, during the 

breeding season o f 2022 (with more than 95% o f data collected from 

m i d - M a y unti l mid-July and before noon). Public parks and green 

areas wi th large Eurasian Magpie populations were surveyed o n days 

that were not rainy or strongly windy (Beauford number < 3). 

Standardized A D and F I D collection methods were used (Blumstein, 

2003). O n l y Eurasian Magpie individuals who were o n the ground 

were sampled. W h e n an individual was detected, the field researcher 

( F A Z , wearing s imi lar inconspicuous dark clothes) began the 

collection by dropping a small marker (made o f cotton and cloth 

not to attract the b i rds attention) behind their back to mark the 

Starting Distance (SD). The researcher began approaching the b i rd 

slowly and at a steady speed. Another marker was dropped when the 

b i rd started to exhibit alert behavior to the advancing person 

(looking at the field investigator, displaying cautious behavior, 

turning its head, etc.; Fernandez-Juricic et al., 2001). A th i rd 

marker was dropped when the b i r d escaped (by j u m p i n g or 

flying). T h e n , the researcher w o u l d stand i n the bi rd 's last 

occupied spot and collect information regarding the noise level. 

T h e a m b i e n t n o i s e l e v e l ( d B A ) was m e a s u r e d u s i n g a 

Mult i funct ional environment meter 13/464/0 from Brannan by 

collecting the m i n i m u m and m a x i m u m noise levels detected by 

the tool i n 1 minute right after each individual was approached. The 

mean noise level was calculated as the average o f the m a x i m u m and 

m i n i m u m collected wi th in the minute. This was done to ensure that 

measured noise reflected the noise levels when the individual was 

approached. W e also took note o f the individual's age (juvenile vs. 

adult). Juveniles were identified by smaller body sizes and shorter 

tails. Addit ional ly, we counted all Eurasian Magpies i n the flock near 

the sampled individual and the density of people present wi thin a 

radius o f 50 meters around the sampling point. After taking note of 

all these variables, the investigator measured the SD, A D , and F I D 

from the birds' last perch to the respective marker using a surveyor's 

tape. W e d i d not approach individuals who were alert before the start 

of the collection (More l l i et al., 2022). T o reduce pseudo-replication 

bias, we avoided resampling the same individuals. Sites (parks or 

other green areas) wi th only one observation were also dropped. 

2.2 Statist ical analyses 

W e calculated the ratio o f F I D to A D ( F I D / A D ) . Since the 

m a x i m u m distance the ind iv idua l can take flight at is constrained 

by the A D , it is necessary to use a corrected flight distance 

(Shannon et al., 2016). Several authors have used the distance 

separating A D and F I D ( A D - F ID) as a corrected flight distance 

(also termed Buffer Distance or Assessment Interval; Fernandez-

Juricic et a l , 2002; Shannon et a l , 2016; Tatte et a l , 2019). 

However, calculating the corrected flight distance i n this way 

gives an absolute number and does not relay the relationship 

between F I D and A D . Therefore, a better way to adjust F I D for A D 

is to look at the proport ions ( F I D / A D ) . W e used the F I D / A D ratio 

as a corrected flight response measure. H i g h F I D / A D indicates a 

small difference between F I D and A D , suggesting a fast escape 

after threat detection. In contrast, smaller F I D / A D shows a larger 

difference between the two measures and, thus, a slower escape 

after threat detection. 

SD and A D were root square transformed to approach a 

normal dis t r ibut ion. A l l continuous variables were scaled and 

centered. Pearson's correlat ion coefficients were calculated to 

check the correlat ion among the SD and A D and SD and F I D / 

A D measures. 

Generalized Linear M i x e d Models (hereafter G L M M s ) were 

performed to assess the impact o f ambient urban noise o n the 

Eurasian Magpies ' A D and F I D / A D . A D and F I D / A D were the 

response variables, while the mean noise level was the predictor. 

The age o f the individual (juvenile or adult) and the SD were also 

predictors, as they were previously demonstrated to impact the 

antipredator responses of birds (Blumstein, 2003; Kalb et al., 2019). 

Since all data was collected i n Prague, we can assume a similar 

predation risk across the collected data. Addi t ional ly , the site (or 

park) was used as a random factor to reduce confounding variables 

(such as the variability among human activity i n different sites and 

the type o f vegetation cover), wh ich may impact the antipredator 

behavior (Radvan et al., 2023). 

Since most Eurasian Magpies sampled were alone or i n very 

smal l flocks (93% o f sampled ind iv idua l s had two or fewer 

conspecifics nearby), we have not included the flock size i n the 

models. Similarly, we have not included the human density around 

the sampled individuals since human density was similar across 

observations, wi th 75% o f observations having five or fewer people 

wi th in a 50 m radius around the sampled individual . 

T h e m o d e l s w e r e fit u s i n g the R p a c k a g e " l m e 4 " 

(Bates et al. , 2014). The R package "lmerTest" was used to 

derive p-values using Satterthwarte's degrees o f freedom method 

(Kuznetsova et al., 2017). The Var i a t ion Inflation Factor (VIF) was 

calculated f rom the "car" package to assess mul t ico l l inear i ty 

among the predictors, but none was detected (all V I F < 5; Fox 

et al., 2007). Plots o f residuals against fitted values were evaluated 

visually for further mode l val idat ion. Cook ' s distance values were 

used to detect influential observations, but none were found. The 

condi t ional R 2 (the propor t ion o f variance explained by fixed and 

random effects and marginal R 2 (the ratio o f variance presented by 

the fixed effects only) were calculated to explore the models ' 

performance us ing the r2 func t ion f r o m the 'performance ' 

package o f R (Liidecke et al., 2021) 

A l l analyses were performed using R software version 4.3.0 

(R Core Team, 2022). 
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3 Results 
Initially, we sampled 169 Eurasian Magpie individuals at 13 

different sites. After removing sites wi th single observations, 167 

individuals remained (138 adults and 29 juveniles) at 11 sites. O n 

average, around 6 Eurasian Magpies were sampled i n one session. 

M e a n ambient sound levels ranged f rom 43.0 to 63.2 d B A , 

averaging 50.4 ± 5 . 1 (SD) d B A . M i n noise ranged from 38.0 to 

56.7 and averaged 44.9 ± 4.1 d B A . M a x noise ranged from 45.6 to 

77.0, averaging 55.9 ± 7.2 d B A . The average SD, A D , and F I D / A D 

values for adults, juveniles, and all data are presented i n Table 1. 

SD and A D were positively correlated ( r ( 1 6 5 ) = 0.84, p-value < 

0.001; Figure 1). SD was negatively correlated wi th the F I D / A D 

ratio ( r ( 1 6 5 ) = -0.37, p-value < 0.001; Figure 1). 

A s for the results o f the G L M M s the SD had a significant 

positive impact o n the A D (Table 2); juveniles had significantly 

longer A D s than adults (Table 2). The noise level d i d not show a 

significant effect o n the A D o f the Eurasian Magpies (Table 2). The 

SD and noise levels had a significant negative effect o n the F I D / A D 

ratio, while the age d i d not seem to have any (Table 3; Figure 2). 

4 Discussion 

Surviv ing predat ion attempts requires efficiently detecting 

predators and assessing their danger level (Lukas et al., 2021). 

Here, we studied the impacts of ambient urban noise o n Eurasian 

Magpies' alertness to predators and antipredator response through 

A D and F I D / A D under a gradient of urban noise. W e found no 

significant effect o f noise o n A D , but increased noise negatively 

impacted the Eurasian Magpies ' F I D / A D ratios. 

4.1 Noise and alertness 

W e found no impact o f the ambient noise levels on the A D of 

the Eurasian Magpies surveyed. Several studies have shown that 

many birds (especially ground foraging species) spend more time 

vigilant and visually scanning for predators i n noisier environments 

and less time feeding to compensate for their reduced hearing 

abilities (Qu inn et al., 2006; Ware et al., 2015; Kle t t -Mingo et al., 

2016; Partan, 2017; Evans et al., 2018). W e had predicted that such 

an increase i n vigilance might lead to a rise i n the A D s o f the 

Eurasian Magpies. Tatte et al. (2019) found that although birds i n 

urban areas were more vigilant (assessed by the proxy o f the head-

raising behavior o f birds), there was no correlation between the 

TABLE 1 The mean Start ing Distance (SD), Alert Distance (AD), and Flight 
In i t iat ion Distance (FIDl/AD + Standard Deviat ion for adults, juveni les, 
and al l Eurasian Magpie individuals. 

SD (m) AD (m) FID/AD 

Adults (n=138) 33.71 ± 13.04 25.26 ± 10.40 0.57 ± 0.23 

Juveniles (n=29) 33.32 ± 9.10 28.02 ± 8.88 0.58 ± 0.18 

A l l data (n=167) 33.64 ± 12.42 25.74 ± 10.19 0.57 ± 0.22 

increase i n vigilance and the detection o f predators ( A D ) . Some 

birds may be able to detect threats while foraging wi th their heads 

down due to their wide visual field, making them less reliant on 

sound cues, and thus, they may not need to compensate for reduced 

hear ing by increas ing vigi lance ( L i m a and Bednekoff, 1999; 

Blumstein et al., 2004; Fernandez-Juricic et al., 2004). However, 

this also means that those birds may detect a predator before 

displaying vigilant behavior or looking directly at it, wh ich is the 

criteria for measuring A D (Blumstein et al., 2004). Therefore, we 

can not entirely deny the possible impact o f noise pol lut ion on the 

Eurasian Magpies ' capacity to detect danger. Still, there seems to be 

no variation i n their displayed vigilant behavior. The noise may still 

impact the predator detection capacity o f the Eurasian Magpies, but 

it could need larger samples to confirm or a different technique to 

assess (Blumstein et al., 2004). 

4.2 Noise and escape 

Although the Eurasian Magpies d i d not seem to have modified 

alertness, they re sponded more s l o w l y to threats a n d had 

significantly smaller F I D / A D ratios under noisier condi t ions. 

Meillere et al. (2015) found an opposite trend i n breeding female 

House Sparrows (Passer domesticus). However, the birds were rural 

birds that were exposed to chronic noise for only two months, while 

in our study, the Eurasian Magpies surveyed are urban individuals 

that have been exposed to urban noise longer and have adapted to 

the presence o f humans i n urban parks and may view them as less of 

a threat than the rural House Sparrows. In addit ion, different 

species may react differently to noise. Another study found a 

negative correlation between the level o f noise and the F I D of 

ground foraging b i rd species, indicating a delayed escape, similar to 

our results, but found a different trend i n flycatching and canopy-

gleaning species (Petrelli et al., 2017). Therefore, the impact o f noise 

pol lut ion o n the antipredator behavior of birds may be species-

specific. A similar pattern to our study was discovered i n a non-

avian species, the Caribbean Hermi t Crab (Coenobita clypeatus), 

which was slower to respond to simulated images of a silent 

predator when exposed to noise and the authors suggested the 

distracted prey hypothesis (Chan et al., 2010a; C h a n et al., 2010b). 

Since individuals have l imi ted attention, they must divide it among 

relevant s t imul i and processes (i.e., foraging and vigilance; Dukas, 

2004; Washburn and Taglialatela, 2006). Addi t iona l s t imuli , such as 

anthropogenic noise, may distract an an imal by causing it to 

involuntarily shift some o f its l imi ted attention to it and away 

f rom the relevant tasks at hand , w h i c h w o u l d increase its 

vulnerabi l i ty to predat ion (Dukas, 2004; C h a n et al., 2010b). 

Increased noise may also be related to increased traffic or human 

presence, w h i c h c o u l d create add i t iona l s imultaneous v isua l 

distractions to w h i c h the b i r d may be diver t ing some o f its 

attention. Here, we also measured the A D to confirm whether the 

impact of noise o n the escape behavior can also reflect the alertness 

levels o f the individuals. W e found no noise effect on the Eurasian 

Magpies' A D . Therefore, our results do not directly support the 

distracted prey hypothesis i n terms of their capacity to detect the 

predator. The Eurasian Magpies studied may have taken longer to 
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FIGURE 1 

The correlat ion between (A) Alert Distance (AD) and Starting Distance (SD) and (B) SD and the Flight Initiation Distance/Alert Distance (FID/AD) ratio 
of Eurasian Magpies surveyed. Envelopes around linear regression lines represent the 95% Conf idence Intervals, n = 167. 

assess the level o f threat the approaching person poses due to their 

attention being d iv ided among several tasks and their b ra in 

processes being overwhelmed at increased noise levels. In this 

case, it cou ld be that the noise is not interfering wi th their 

capacity to receive visual s t imul i from the predator but rather 

distracting and slowing down their decision-making process or 

execution o f their response (Dukas, 2002). Tatte et al. (2019) found 

that birds i n urban areas were more vigilant but delayed their escape 

after detect ing the threat a n d suggested that the increased 

distractions i n urban areas, inc luding noise, may explain their 

results (Chan et al., 2010b). O u r study supports their suggestion 

as Eurasian Magpies took longer to assess threat as background 

noise increased. 

Another non-mutually exclusive explanation could be that the 

background noise may be masking relevant auditory cues, such as the 

footfalls o f the approach ing predator (Barber et a l . , 2010; 

Zhou et al., 2019). Al though the Eurasian Magpies still seem to 

detect the predator normally, their perception of auditory cues 

may be i m p a i r e d u n d e r h i g h e r no ise . A n i m a l s resor t to 

mult isensory integrat ion to lessen envi ronmenta l uncertainty 

( M u n o z a n d B l u m s t e i n , 2012; Pa r t an , 2017) . M u l t i s e n s o r y 

in tegra t ion relies o n different s t i m u l i f r om several sensory 

modalities during decision-making, such as during antipredator 

behavior ( M u n o z and Blumstein, 2012). S t imul i are considered 

"redundant" i f they lead to a similar response i n the same direction 

(i.e., escaping the threat; Partan et al., 2009). W h e n presented 

together, redundant s t imul i interact, leading to three possible 

behaviors o f the recipient: equivalence (response is not different 

from when st imuli are presented alone), enhancement (response is 

more intense), and antagonism (response is reduced; Partan and 

Marler, 2005; M u n o z and Blumstein, 2012). A t lower noise, the 

Eurasian Magpies would receive auditory and visual cues from the 

predator, which may lead to an enhanced response and cause them to 

flee faster from farther distances than Eurasian Magpies approached 

at noisier conditions. In other avian and non-avian studies, visual and 

auditory cues were shown to lead to an enhanced antipredator 

response. For example, Free-living Hoatzins (Opisthocomus hoazin) 

were more alert and escaped more quickly when approached by loud 

tourists than silent ones (Karp and Root, 2009). In addition, when 

combined, auditory and visual cues o f predators instigated stronger 

and faster antipredator responses from a fish species when presented 

separately (Lukas et al., 2021), and w i l d squirrels' response to 

conspecific's alarm call was enhanced i n the presence o f both 

auditory and visual elements (Partan et al., 2009). In our study 

higher level urban noise may have been masking auditory predator 

cues and, thus, decreasing the information received by the Eurasian 

TABLE 2 Alert Distance (AD) mode l . 

Variable Estimate SE t value Lower 95% CI Upper 95% CI p-value 

Intercept -0.03 0.08 -0.40 -0.19 0.13 0.70 

SD 0.82 0.04 19.9 0.74 0.90 <0.001 

Noise (dBA) 0.01 0.04 0.24 -0.08 0.10 0.81 

Age (juvenile) 0.22 0.10 2.11 0.02 0.42 0.04 

Results of the Generalized Linear Mixed Model (GLMM) relating A D to the predictors. The predictors include the starting Distance (SD), the individual's age (juvenile and adult), and the 
ambient noise level (dBA). Site (n - 11) was used as a random factor in the model. The AD is the response variable. We report estimates with the Standard Error (SE), 95% Confidence Intervals 
(CI), andp-values. Conditional R 2 (the proportion of variance explained by both fixed and random effects) - 0.75, and marginal R 2 (the ratio of variance explained by the fixed effects) - 0.70. 
Estimates with a CI not overlapping zero are considered significant and presented in bold, n - 167. 
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TABLE 3 Flight In i t iat ion Distance (FID)/Alert Distance (AD) models. 

Variable Estimate SE t value Lower 95% CI Upper 95% CI p-value 

Intercept -0.01 0.15 -0.10 -0.33 0.30 0.93 

SD -0.37 0.07 -5.12 -0.51 -0.23 < 0.001 

Noise (dBA) -0.20 0.08 -2.59 -0.36 -0.04 0.01 

Age (juvenile) 0.08 0.18 0.45 -0.27 0.44 0.65 

Results of the Generalized Linear Mixed Models (GLMM) relating FID/AD ratio to the predictors. The predictors include the starting Distance (SD), the individual's age (juvenile and adult), and 
the ambient noise level (dBA). Site (n = 11) was used as a random factor in the model. The ratio of FID/AD is the response variable. We report estimates with the Standard Error (SE), 95% 
Confidence Intervals (CI), andp-values. Conditional R 2 (the proportion of variance explained by both fixed and random effects) - 0.35, and marginal R 2 (the ratio of variance explained by the 
fixed effects) - 0.18. Estimates with a CI not overlapping zero are considered significant and presented in bold, n = 167. 

Magpies even i n the presence o f normally perceived visual cues and 

preventing an enhanced response, which would explain the decreased 

F I D / A D ratio at higher levels o f noise while A D is unaffected. 

However, to confirm that combined auditory and visual predator 

cues cause an enhanced antipredator behavior i n urban Eurasian 

Magpies, future experiments must follow the "multiple s t imul i 

framework" proposed by M u n o z and Blumstein (2012). 

Finally, it is crucial to stress that while we made diligent efforts 

to control variables, the nature of our fieldwork study introduces the 

possibility of uncontrolled confounding variables. Consequently, 

the observed impact o f noise on F I D / A D may be influenced by 

other unaccounted-for variables that may have emerged during the 

fieldwork. W e suggest future c o n t r o l l e d settings where the 

researchers manipulate the noise levels to confirm better direct 

effects o f noise o n the antipredator behavior o f Eurasian Magpies. 

Here, we d i d not include human density i n the models as we 

found a similar human activity across observations. W e believe that 

human density was similar as we have visited the field under 

c o m p a r a b l e w e a t h e r c o n d i t i o n s a n d t i m e s o f the day . 

Add i t i ona l l y , we believe that any slight difference i n h u m a n 
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FIGURE 2 

The association between the Flight Initiation Distance/Alert Distance 
(FID/AD) ratios and the noise level (dBA). The envelope around the 
linear regression line represents the 95% Confidence Interval, n = 167. 

density across different parks wou ld be accounted for wi th in the 

random factor of the park. 

4.3 An t ip redator behavior and age 

W e found that juvenile Eurasian Magpies had significantly 

l o n g e r A D s t h a n adu l t s . T h e i r F I D / A D ra t ios were no t 

significantly different, meaning that younger birds detect threats 

earlier but take a similar time to respond. Other studies found 

conflicting results between juvenile and adult antipredator behavior 

where some found that juveniles were more vigilant (similar to our 

results, i.e., de Jong et al., 2021; M o h r i n g et al., 2022), others found 

the opposite to be true (i.e., K o c h and Paton, 2014; Kalb et al., 2019), 

while some found no significant differences between the two age 

groups (i.e., B i o n d i et al., 2020). In some species, behavioral 

plasticity allows individuals to change their behavior across their 

lifetime based o n different selective pressures (Petelle et al., 2013). 

In urban areas, juveniles may still have not habituated well to the 

increased presence of humans and may still be wearier o f people 

than their adult counterparts. Eurasian Magpies may increase their 

tolerance to people throughout their lives. In urban areas where 

humans are increasingly present and generally harmless, birds 

would benefit from reducing their fear o f humans to decrease 

energy loss and missed opportunit ies due to constant fleeing 

(Cooper and Frederick, 2007; Diaz et al., 2021). Alternatively, 

adults and juveniles may have different priorities while balancing 

the trade-off between vigilance and other activities, especially when 

adults are foraging for offsprings dur ing the breeding season, such 

as when the experiment was conducted. 

5 Conclusions 

D u r i n g the breeding season, we assessed the effects o f urban 

noise po l lu t ion o n the antipredator behavior o f Euras ian Magpies 

i n Prague. W e found that noise may not interfere w i th Eurasian 

Magpies ' capacity to detect danger but increases their t ime to 

respond to it. W e propose that the impact o f noise o n the escape 

behavior may not always reflect the same pattern i n its capacity to 

detect the predator and suggest that future studies investigating 

the impact o f noise o n the escape behavior consider both aspects 

of the antipredator behavior. W e also r ecommend future studies 

to compare different aspects o f attention and to find the best 
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proxies o f predator detect ion (such as us ing telemetric eye 

trackers) since birds may detect the approaching person before 

displaying alertness to it, and A D may not always be a very 

precise measure o f predator detection ( Y o r z i n s k i and Piatt, 2014; 

Tatte et a l , 2019). 

Data availability statement 
The original contributions presented i n the study are included 

in the article/Supplementary Mater ia l . Further inquiries can be 

directed to the corresponding author. 

Funding 
The author(s) declare that financial support was received for the 

research, authorship, and/or publication o f this article. The project 

was supported by I G A Faculty o f Environmental Sciences C Z U 

Prague "Investigating the impacts o f urban noise pol lut ion o n the 

antipredator behavior o f foraging corvids - N o . 2022150001". 

Acknowledgments 

W e wou ld l ike to thank the two reviewers for their suggestions, 

which have greatly improved the quality o f our manuscript. 

Ethics statement 
Eth ica l approva l was not requi red for the study i n v o l v i n g 

a n i m a l s i n a c c o r d a n c e w i t h the l o c a l l e g i s l a t i o n a n d 

ins t i tu t iona l requirements because no Euras ian Magp ies were 

caught or t rapped. A l l i nd iv idua l s s tudied were present i n publ ic 

parks or green areas. The A D a n d F I D o f foraging Euras ian 

Magpies were de te rmined by s lowly approach ing them un t i l 

they flushed (by j u m p i n g or flying away). The experiments on ly 

cause b r ie f a n d m i n i m a l dis turbance to the bi rds a n d are no 

different than the regular background disturbance u rban birds 

face i n p u b l i c p a r k s b y o t h e r v i s i t o r s . T h u s , the field 

experiments c o m p l y w i t h the current laws o f the Czech ia and 

require no special permits . 

Author contributions 

F A : Conceptualizat ion, Data curation, Fund ing acquisition, 

Investigation, Methodology , Vi sua l i za t ion , W r i t i n g - or ig ina l 

draft, W r i t i n g - rev iew & ed i t ing . YB: C o n c e p t u a l i z a t i o n , 

Me thodo logy , Supervis ion , W r i t i n g - review & edi t ing . A S : 

Investigation, W r i t i n g - review & editing. F M : Conceptualization, 

Methodology, Supervision, W r i t i n g - review & editing. 

Conflict of interest 
The authors declare that the research was conducted i n the 

absence of any commercial or financial relationships that could be 

construed as a potential conflict of interest. 

The author(s) declared that they were an editorial board 

member o f Frontiers, at the time o f submission. This had no 

impact o n the peer review process and the final decision. 

Publisher's note 

A l l claims expressed i n this article are solely those o f the authors 

and do not necessarily represent those o f their affiliated organizations, 

or those of the publisher, the editors and the reviewers. A n y product 

that may be evaluated i n this article, or claim that may be made by its 

manufacturer, is not guaranteed or endorsed by the publisher. 

Supplementary material 

The Supplementary Mater ia l for this article can be found online 

at: https://www.frontiersin.org/articles/10.3389/fevo.2024.1345971/ 

full#supplementary- material 

References 
Abou Zeid, F., Morelli, F., Ibanez-Alamo, J. D., Diaz, M . , Reif, J., Jokimaki, J., et al. 

(2023). Spatial overlap and habitat selection of corvid species in european cities. 
Animals 13, 1192. doi: 10.3390/anil3071192 

Barber, J. R., Crooks, K R., and Fristrup, K M . (2010). The costs of chronic noise exposure 
for terrestrial organisms. Trends Ecol Evol. 25, 180-189. doi: 10.1016/j.tree.2009.08.002 

Bates, D., Maechler, M . , Bolker, B., and Walker, S. (2014). Ime4: Linear mixed-effects 
models using Eigen and S4. R Packageversion 1. 1-4. Available at: https://cran.r-project. 
org/web/packages/lme4/index.html. 

Benmazouz, I., Jokimaki, J., Lengyel, S., Juhasz, L., Kaisanlahti-Jokimaki, M.-L. , 
Kardos, G., et al. (2021). Corvids in urban environments: A systematic global. Animals 
11 (11), 1-24. doi: 10.3390/anil 1113226 

Biondi, L. M . , Fuentes, G. M . , Cordoba, R. S., Bo, M . S., Cavalli, M . , Paterlini, C. A., 
et al. (2020). Variation in boldness and novelty response between rural and urban 
predatory birds: The Chimango Caracara, Milvago chimango as study case. Behav. 
Processes 173, 104064. doi: 10.1016/j.beproc.2020.104064 

Blumstein, D. T. (2003). Flight-initiation distance in birds is dependent on intruder 
starting distance. /. Wildl Manage 67, 852-857. doi: 10.2307/3802692 

Blumstein, D . T., Fernandez-Juricic, E. , Ledeea, O., Larsen, E., Rodriguez-
Prieto, I., and Zugmeyer, C. (2004). Avian risk assessment: effects of perching 
height and detectabi l i ty . Ethology 110, 273-285 . d o i : 10.11 l l / j . 1 4 3 9 -
0310.2004.00970.x 

Blumstein, D . T., Fernandez-Juricic, E., Zollner, P. A. , and Garity, S. C. (2005). Inter
specific variation in avian responses to human disturbance. /. Appl. Ecol. 42, 943-953. 
doi: 10.HH/j.1365-2664.2005.01071.x 

Catchpole, C. K., and Slater, P. J. B. (2003). Bird song: biological themes and 
variations (Cambridge, United Kingdom: Cambridge university press). 

Chan, A . A . Y. H . , David Stahlman, W., Garlick, D., Fast, C. D., Blumstein, D. T., and 
Blaisdell, A . P. (2010a). Increased amplitude and duration of acoustic stimuli enhance 
distraction. Anim. Behav. 80, 1075-1079. doi: 10.1016/j.anbehav.2010.09.025 

Frontiers in Ecology and Evolution 07 frontiersin.org 

https://www.frontiersin.org/articles/10.3389/fevo.2024.1345971/
https://cran.r-project
http://10.HH/j.1365-2664.2005.01071.x
http://frontiersin.org


Abou-Ze id et al. 10.3389/fevo.2024.1345971 

Chan, A . A . Y. H . , Giraldo-Perez, P., Smith, S., and Blumstein, D. T. (2010b). 
Anthropogenic noise affects risk assessment and attention: The distracted prey 
hypothesis. Biol. Lett. 6, 458-461. doi: 10.1098/rsbl.2009.1081 

Ciebiera, O., Czechowski, P., Morelli, F., Piekarski, R., and Bochehski, M . (2021). 
Selection of urbanized areas by magpie pica pica in a medium size city in Poland. 
Animals 11, 1738. doi: 10.3390/anil 1061738 

Cooper, W . E., and Frederick, W. G. (2007). Optimal flight initiation distance. /. 
Theor. Biol. 244, 59-67. doi: 10.1016/j.jtbi.2006.07.011 

Croci, S., Butet, A. , and Clergeau, P. (2008). Does urbanization filter birds on the 
basis of their biological traits? Condor 110, 223-240. doi: 10.1525/cond.2008.8409 

de Jong, M . E., Nicolaus, M . , Fokkema, R. W., and Loonen, M . J. J. E. (2021). State 
dependence explains individual variation in nest defence behaviour in a long-lived bird. 
/. Anim. Ecol. 90, 809-819. doi: 10.1111/1365-2656.13411 

Diaz, M . , Grim, T., Marko, G., Morelli, F., Alamo, J. D. I., and Jokimaki, J. (2021). 
Effects of climate variation on bird escape distances modulate community responses to 
global change. Sci. Rep. 1-10, 12826. doi: 10.1038/s41598-021-92273-l 

Dukas, R. (2002). Behavioural and ecological consequences of limited attention. 
Philos. Trans. R. Soc. B: Biol. Sci. 357, 1539-1547. doi: 10.1098/rstb.2002.1063 

Dukas, R. (2004). Causes and consequences of limited attention. Brain Behav. Evol. 
63, 197-210. doi: 10.1159/000076781 

Evans, J. C , Dall, S. R. X . , and Kight, C. R. (2018). Effects of ambient noise on zebra 
finch vigilance and foraging efficiency. PloS One 13, e0209471. doi: 10.1371/ 
journal.pone.0209471 

Fernandez-Juricic, E., Erichsen, J. T., and Kacelnik, A . (2004). Visual perception 
and social foraging in birds. Trends Ecol. Evol. 19, 25-31. doi : 10.1016/ 
j.tree.2003.10.003 

Fernandez-Juricic, E., Jimenez, M . D., and Lucas, E. (2001). Alert distance as an 
alternative measure of bird tolerance to human disturbance: Implications for park 
design. Environ. Conserv. 28, 263-269. doi: 10.1017/S0376892901000273 

Fernandez-Juricic, E., Jimenez, M . D., and Lucas, E. (2002). Factors affecting intra-
and inter-specific variations in the difference between alert distances and flight 
distances for birds in forested habitats. Can. J. Zool 80, 1212-1220. doi: 10.1139/z02-
104 

Fox, J., Friendly, G. G., Graves, S., Heiberger, R., Monette, G., Nilsson, H . , et al. 
(2007). The car package Vol . 1109 (Vienna, Austria: R Foundation for Statistical 
Computing), 1431. 

Francis, C. D., Ortega, C. P., and Cruz, A . (2009). Noise pollution changes avian 
communities and species interactions. Curr. Biol. 19, 1415-1419. doi: 10.1016/ 
j.cub.2009.06.052 

analysisGravolin, I., Key, M . , and Li l l , A . (2014). Boldness of urban Australian 
magpies and local traffic volume. Avian Biol. Res. 7, 244-250. doi: 10.3184/ 
175815514X14151981691872 

Hollen, L. I., and Radford, A. N . (2009). The development of alarm call behaviour in 
mammals and birds. Anim. Behav. 78, 791-800. doi: 10.1016/j.anbehav.2009.07.021 

Hu, Y. , and Cardoso, G. C. (2009). Are bird species that vocalize at higher frequencies 
preadapted to inhabit noisy urban areas? Behav. Ecol. 20, 1268-1273. doi: 10.1093/ 
beheco/arpl31 

Kalb, N . , Anger, F., and Randier, C. (2019). Flight initiation distance and escape 
behavior in the black redstart (Phoenicurus ochruros). Ethology 125, 430-438. 
doi: 10.1111/eth.l2867 

Karp, D. S., and Root, T. L. (2009). Sound the stressor: How Hoatzins (Opisthocomus 
hoazin) react to ecotourist conversation. Biodivers Conserv. 18, 3733-3742. 
doi: 10.1007/sl0531-009-9675-6 

Kern, J. M . , and Radford, A . N . (2016). Anthropogenic noise disrupts use of vocal 
information about predation risk. Environ, pollut. 218, 988-995. doi: 10.1016/ 
j.envpol.2016.08.049 

Kight, C. R., and Swaddle, J. P. (2011). How and why environmental noise impacts 
animals: an integrative, mechanistic review. Ecol. Lett. 14, 1052-1061. doi: 10.1111/ 
ele.2011.14.issue-10 

Klett-Mingo, J. I., Pavon, I., and G i l , D. (2016). Great tits, Parus major, increase 
vigilance time and reduce feeding effort during peaks of aircraft noise. Anim. Behav. 
115, 29-34. doi: 10.1016/j.anbehav.2016.02.021 

Koch, S. L., and Paton, P. W. C. (2014). Assessing anthropogenic disturbances to 
develop buffer zones for shorebirds using a stopover site. /. Wildlife Manage. 78, 58-67. 
doi: 10.1002/jwmg.631 

Kuznetsova, A. , Brockhoff, P. B., and Christensen, R. H . B. (2017). lmerTest package: 
tests in linear mixed effects models. /. Stat. Softw 82 (13), 1-26. doi: 10.18637/ 
jss.v082.il 3 

Lima, S. L., and Bednekoff, P. A. (1999). Back to the basics of antipredatory vigilance: 
can nonvigilant animals detect attack? Anim. Behav. 58, 537-543. doi: 10.1006/ 
anbe.1999.1182 

Ludecke, D., Ben-Shachar, M . S., Patil, I., Waggoner, P., and Makowski, D. (2021). 
performance: A n R package for assessment, comparison and testing of statistical 
models. /. Open Source Softw 6 (60), 3139. doi: 10.21105/joss.03139 

Lukas, J., Romanczuk, P., Klenz, H . , Klamser, P., Arias Rodriguez, L., Krause, J., et al. 
(2021). Acoustic and visual stimuli combined promote stronger responses to aerial 
predation in fish. Behav. Ecol. 32, 1094-1102. doi: 10.1093/beheco/arab043 

Marzluff, J. M . (2008). Island biogeography for an urbanizing world how extinction 
and colonization may determine biological diversity in human-dominated landscapes. 
In J. M . Marzluff, et al. Urban Ecosyst. Boston, M A : Springer, doi: 10.1007/978-0-387-
73412-5_23 

Meillere, A. , Brischoux, F., and Angelier, F. (2015). Impact of chronic noise exposure 
on antipredator behavior: A n experiment in breeding house sparrows. Behav. Ecol. 26, 
569-577. doi: 10.1093/beheco/aru232 

Merrall, E. S., and Evans, K. L. (2020). Anthropogenic noise reduces avian feeding 
efficiency and increases vigilance along an urban-rural gradient regardless of species' 
tolerances to urbanisation. /. Avian Biol. 51, 1-8. doi: 10.1111/jav.02341 

Mohring, B., Angelier, F., Jaatinen, K., Steele, B., Lonnberg, E., and Ost, M . (2022). 
Drivers of within-and among-individual variation in risk-taking behaviour during 
reproduction in a long-lived bird. Proc. R. Soc. B 289, 20221338. doi: 10.1098/ 
rspb.2022.1338 

Moller, A . P. (2008). Flight distance of urban birds, predation, and selection for 
urban life. Behav. Ecol. Sociobiol 63, 63-75. doi: 10.1007/s00265-008-0636-y 

Moller, A . P. (2021). Risk-taking behaviour as a central concept in evolutionary 
biology. World at Our Fingertips, 301-314. doi: 10.1093/oso/9780198851738.003.0017 

Morelli , F., Benedetti, Y., Diaz, M . , Grim, T., Ibanez-Alamo, J. D., Jokimaki, J., et al. 
(2019) . Contagious fear: Escape behavior increases with flock size in European 
gregarious birds. Ecol. Evol. 9, 6096-6104. doi: 10.1002/ece3.5193 

Morelli , F., Mikula, P., Blumstein, D. T., Diaz, M . , Marko, G., Jokimaki, J., et al. 
(2022). Flight initiation distance and refuge in urban birds. Sci. Total Environ. 842, 
156939. doi: 10.1016/j.scitotenv.2022.156939 

Munoz, N . E., and Blumstein, D. T. (2012). Multisensory perception in uncertain 
environments. Behav. Ecol. 23, 457-462. doi: 10.1093/beheco/arr220 

Partan, S. R. (2017). Multimodal shifts in noise: switching channels to communicate 
through rapid environmental change. Anim. Behav. 124, 325-337. doi: 10.1016/ 
j.anbehav.2016.08.003 

Partan, S. R., Larco, C. P., and Owens, M . J. (2009). Wi ld tree squirrels respond with 
multisensory enhancement to conspecific robot alarm behaviour. Anim. Behav. 77, 
1127-1135. doi: 10.1016/j.anbehav.2008.12.029 

Partan, S. R., and Marler, P. (2005). Issues in the classification of multimodal 
communication signals. Am. Nat. 166, 231-245. doi: 10.1086/431246 

Petelle, M . B., McCoy, D. E., Alejandro, V. , Martin, J. G. A. , and Blumstein, D. T. 
(2013). Development of boldness and docility in yellow-bellied marmots. Anim. Behav. 
86, 1147-1154. doi: 10.1016/j.anbehav.2013.09.016 

Petrelli, A . R., Levenhagen, M . J., Wardle, R., Barber, J. R., and Francis, C. D. (2017). 
First to flush: The effects of ambient noise on songbird flight initiation distances and 
implications for human experiences with nature. Front. Ecol. Evol. 5. doi: 10.3389/ 
fevo.2017.00067 

Price, M . (2008). The impact of human disturbance on birds: A selective review. Aust. 
Zoologist 34, 163-196. doi: 10.7882/fs.2008.023 

Quinn, J. L., Whittingham, M . J., Butler, S. J., and Cresswell, W . (2006). Noise, 
predation risk compensation and vigilance in the chaffinch fringilla coelebs. J. Avian 
Biol. 37, 601-608. doi: 10.1111/j.2006.0908-8857.03781.x 

Radvan, M . , Rendall, A . R., and Weston, M . A. (2023). The habitat connectivity 
hypothesis of escape in urban woodland birds. Behav. Ecology 34 (2), 297-305. 
doi: 10.1093/beheco/aracl27 

R Core Team. (2022). R: A language and environment for statistical computing. 
Available online at: https://www.R-project.org/. 

Salek, M . , Gri l l , S., and Riegert, J. (2020). Nest-site selection of an avian urban 
exploiter , the Eurasian magpie Pica pica , across the urban-rural gradient. /. Vertebr 
Biol. 70 (1), 20086.11. doi: 10.25225/jvb.20086 

Shannon, G., Crooks, K. R., Wittemyer, G., Fristrup, K. M . , and AngelonL L. M . 
(2016). Road noise causes earlier predator detection and flight response in a free-
ranging mammal. Behav. Ecol. 27, 1370-1375. doi: 10.1093/beheco/arw058 

Slabbekoorn, H . , and Ripmeester, E. A . P. (2008). Birdsong and anthropogenic noise: 
Implications and applications for conservation. Mol. Ecol. 17, 72-83. doi: 10.1111/ 
J.1365-294X.2007.03487.X 

Sordello, R., Ratel, O., de Lachapelle, F. F., Leger, C , Dambry, A. , and Vanpeene, S. 
(2020) . Evidence of the impact of noise pollution on biodiversity: A systematic map. 
Environ. Evid 9, 1-27. doi: 10.1186/sl3750-020-00202-y 

Sun, J. W . C , and Narins, P. M . (2005). Anthropogenic sounds differentially affect 
amphibian call rate. Biol. Conserv. 121, 419-427. doi: 10.1016/j.biocon.2004.05.017 

Tatte, K., Ibanez-Alamo, J. D., Marko, G., Mand, R., and Moller, A . P. (2019). 
Antipredator function of vigilance re-examined: vigilant birds delay escape. Anim. 
Behav. 156, 97-110. doi: 10.1016/j.anbehav.2019.08.010 

Tryjanowsld, P., Moller, A . P., Morelli, F., Biaduri, W., Brauze, T., Ciach, M . , et al. 
(2016). Urbanization affects neophilia and risk-taking at bird-feeders. Sci. Rep. 6,28575. 
doi: 10.1038/srep28575 

Ware, H . E., McClure, C. J. W., Carlisle, J. D., Barber, J. R., and Daily, G. C. (2015). A 
phantom road experiment reveals traffic noise is an invisible source of habitat 
degradation. Proc. Natl. Acad. Sci. U.S.A. 112, 12105-12109. doi: 10.1073/ 
pnas.1504710112 

Warren, P. S., Katti, M . , Ermann, M . , and Brazel, A . (2006). Urban bioacoustics: It's 
not just noise. Anim. Behav. 71, 491-502. doi: 10.1016/j.anbehav.2005.07.014 

Frontiers in Ecology and Evolution 08 frontiersin.org 

http://jss.v082.il
https://www.R-project.org/
http://frontiersin.org


Abou-Ze id et al. 10.3389/fevo.2024.1345971 

Washburn, D. A. , and Taglialatela, L. A . (2006). "Attention as it is manifest across 
species," in Comparative cognition: Experimental explorations of animal intelligence 
(Oxford, United Kingdom: Oxford University Press), 127-142. doi: 10.1093/acprof:oso/ 
9780195377804.003.0008 

Xu, Y., Cao, Z., and Wang, B. (2020). Effect of urbanization intensity on nest-site selection by 
Eurasian Magpies (Pica pica). Urban Ecosyst. 23, 1099-1105. doi: 10.1007/sl 1252-020-00996-2 

Yorzinski, J. L., and Platt, M . L. (2014). Selective attention in peacocks during 
predator detection. Anim. Cognit. 17, 767-777. doi: 10.1007/sl0071-013-0708-x 

Zhou, Y . , Radford, A . N . , and Magrath, R. D . (2019). W h y does noise reduce 
response to alarm calls? Experimental assessment of masking, distraction and 
greater vigilance in wild birds. Funct. Ecol. 33, 1280-1289. doi: 10.1111/1365-
2435.13333 

Frontiers in Ecology and Evolution 09 frontiersin.org 

http://frontiersin.org


87 

Annex III. Flight initiation distance and refuge in urban birds. 

Federico Morelli*, Peter Mikula, Daniel T. Blumstein, Mario Diaz, Gabor Marko, Jukka 

Jokimäki, Marja-Liisa Kaisanlahti-Jokimäki, Kristina Floigl, Farah Abou Zeid, Anastasiia 

Siretckaia, Yanina Benedetti, 2022. 

Author contributions: 

Data collection, F .M. , P .M. , M.D. , G .M. , J.J., M . - L . K . - J . , K.F. , F.A.Z., A.S., and Y . B . ; 

hypotheses, F . M . and Y . B . ; statistical analyses, F . M . and P.M. ; writing - original draft, F .M. , 

P.M., D.T.B., and Y . B . ; writing - review & editing, F .M. , P .M. , D.T.B, Y . B . , M.D. , G.M. , 

J.J., M . - L . K . - J . , K.F. , F.A.Z., and A.S. 



Science of the Total Environment 842 (2022) 156939 

h L b b V l h K 

Contents lists available at ScienceDirect 

Science of the Total Environment 

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / s c i t o t e n v 

f - y 
v. y 

Flight initiation distance and refuge in urban birds 
Federico Morelli a'*, Peter Mikula b , Daniel T. Blumsteinc, Mario Diaz d , Gábor Marko e , 
Jukka Jokimáki f , Marja-Liisa Kaisanlahti-Jokimáki f , Kristina Floigl a, Farah Abou Zeid a , 
Anastasiia Siretckaia a , Yanina Benedettia 

a Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Kamýcká 129, CZ-165 00 Prague 6, CzechRepublic 
b Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65 Bmo, Czech Republic 
c Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA 
d Department ofBiogeography and Global Change, Museo Nacionál de Ciencias Naturales (BGC-MNCN-CSIC), E-28006 Madrid Spain 
e Department of Plant Pathology, Institute of Plant Protection, Hungarian University of Agriculture andLife Sciences, Měnesi ut 44, Budapest 1118, Hungary 
f Nature Inventory and EIA-services, Arctic Centre, University of Lapland, P. O. Box 122, FI-96101 Rovaniemi, Finland 

H I G H L I G H T S G R A P H I C A L A B S T R A C T 

Flight initiation distance (FID) is consid
ered a proxy of antipredator behaviour. 
We investigated changes in FID of birds in 
relation to refuge type and availability. 
We found that birds preferred tree refuges 
over artificial and bush refuges. 
Birds escaped earlier if the distance to the 
nearest available refuge was longer. 
Birds fled longer distances to the refuge 
when were more afraid (with longer FID). 

Legend 

J Refuge type (tree, bush or artificial) 

Availability of nearest refuge (%] 

Use of refuge regarOing its ava ability it:. 

A R T I C L E I N F O 

Editor: Rafael Mateo Soria 

Keywords: 
Birds 
Escape behaviour 
Human disturbance 
Refuge distance 
Trees 
Urban habitats 

A B S T R A C T 

Risk-taking in birds is often measured as the flight initiation distance (FID), the distance at which individuals take 
flight when approached by a potential predator (typically a human). The ecological factors that affect avian FID 
have received great attention over the past decades and meta-analyses and comparative analyses have shown that 
FID is correlated with body mass, flock size, starting distance of the approaching human, density of potential predators, 
as well as varying along rural to urban gradients. However, surprisingly, only few studies (mainly on reptiles and mam
mals) have explored effects of different types of refugia and their availability on animal escape decisions. 
We used Bayesian regression models (controlling for the phylogenetic relatedness of bird species) to explore changes in 
escape behaviour recorded in European cities in relationship to the birds' distance to the nearest refuge and distance 
fled to the refuge. In our analyses, we also included information on the type of refuge, built-up and vegetation 
cover, starting distance, flock size, urbanization level, and type of urban habitat. We found that birds preferred tree 
refuges over artificial and bush refuges. Birds escaped earlier if the distance to the nearest refuge of any type was longer 
and if birds fled longer distances to the refuge. FID was shorter when birds used bushes as refugia or landed on the 
ground after flushing compared to using artificial refugia. Similarly, the distance fled to a refuge was shortest when 
using bushes, and increased when escaping to artificial substrates and trees. Birds were more timid in suburban 
than core areas of cities, cemeteries than parks, and in areas with higher bush cover but lower cover of built-up 
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areas and trees. Our findings provide novel information regarding the importance of refuge proximity and type as 
factors affecting the escape behaviour of urban birds. 

1. Introduction 

There are three different defensive mechanisms that can be adopted for 
a prey when facing a predatory threat: avoiding detection through camou
flage, evading the capture by escaping and trying to deter the predator 
(Kalb et al. , 2019). However, the most common action for a prey 
confronting a predatory threat is to escape (Lima and D i l l , 1990). A n 
early escape can reduce foraging efficiency or increase physiological 
costs, while, on the other hand, a delayed escape can increase the risk of 
mortality due to predation (Ydenberg and Di l l , 1986). In birds, tearfulness 
and willingness to take a risk is frequently estimated as the flight initiation 
distance (FID) when an individual bird is approached by a human under 
standardized conditions. Across species, FID is typically positively corre
lated wi th body size, perhaps because larger species which live longer 
and delay their reproduction minimize mortality due to predation by taking 
fewer risks (Virkkala and Lehikoinen, 2014; Wasser and Sherman, 2010), 
and they take a longer time to get airborne and thus avoid capture 
(Fernandez-Juricic et al. , 2006; Hemmingsen, 1951; Moller , 2008a; 
Weston et al., 2012). Finally, the number of birds in a flock can positively 
affect FID, probably due to "many eyes" scanning and increased vigilance 
(Morell i et al., 2019; Pulliam, 1973). The flock size seems to be more re
lated to FID than to the distance moved during the escape (Tatte et al., 
2018). 

Among the environmental factors affecting FID, many studies have fo
cused on the characteristics of habitat related to a degree of urbanization 
(Samia et al., 2017), interactions between predators and prey (Moller, 
2008b), predator abundance (Diaz et al. , 2022, 2013), level of stress of 
individuals (Tablado et al. , 2021), as wel l as the time of day and season 
when FID is measured (Mikula et al., 2018; Piratelli et al . , 2015). FID 
could be modulated by food abundance, being shorter in areas with lower 
food availability (Moller et al . , 2015). Variation in the weather also can 
affect the escape behaviour, with FIDs expected to decrease with increasing 
temperature and precipitation (Diaz et al., 2021). Additionally, some re
searchers suggested that birds are able to adapt their escape behaviour 
strategies to specific characteristics of human-modified habitats, including 
a road's speed limit (Legagneux and Ducatez, 2013) or the type and inten
sity of human activities (Morelli et al., 2018). 

Shelter is a key factor regulating many aspects of predator-prey interac
tions (Berryman and Hawkins, 2006). Although FID is well-studied in rela
tion to several ecological factors, and despite that the type and distance to 
refuge is predicted to affect escape responses (Cooper and Frederick, 
2007; Ydenberg and Di l l , 1986), the empirical effects of refuge characteris
tics are still poorly known and understood. Most of the studies on the effects 
of refuge characteristics on escape behaviour focused on mammals 
(Bonenfant and Kramer, 1996; D i l l and Houtman, 1989) and reptiles 
(Martin and Lopez, 2003; Zani et al., 2009), with only sporadic reports on 
birds (e.g. Blumstein et al., 2004; Hall et al., 2020; Moller, 2012). Although 
objects used by birds as refuges, including trees, bushes or artificial struc
tures, are important components of the landscape occupied, no systematic 
research was conducted to quantify the main effects of refuge characteris
tics on FID in European birds. This is important, since behavioral responses 
of animals to human disturbance can have important implications for 
conservation and management (Weston et al., 2012). In the wildlife tourism 
sector as well as in urban areas, wildlife managers can use FID in sensitivity 
and tolerance analyses, which permit them to identify areas beyond which 
animals are less disturbed by humans (Fernandez-Juricic et al. , 2005; 
Livezey et al., 2016; Samia et al., 2015). 

We expect that birds approached by predators and/or humans select 
among available refuges based on the characteristics of the surrounding 
environment, and the distance and type of available refuge. Thus, we 
hypothesized that birds escape earlier when the available refuge is far 

(i.e. FID w i l l be positively associated wi th potential refuge distance), 
since a short distance to a potential refuge should decrease the real or 
perceived risk of predation (Di l l and Houtman, 1989; Stankowich and 
Blumstein, 2005). This is because we expect that when birds are farther 
away from a potential refuge, the time to reach that refuge is longer, there
fore their risk of being captured is higher. Additionally, considering that 
FID is a measure of tearfulness, we can also expect that birds escaping 
early (longer FID) w i l l fly longer distances to the used refuge (Tatte et al., 
2018). A previous study showed a positive association between FID and 
distance fled after the escape, mainly for larger birds, suggesting that the 
distance fled is also an informative measure of antipredator behaviour in 
birds (Tatte et al. , 2018). Escape distances of birds may also be affected 
by vegetation structure and decrease wi th increasing cover of trees and 
bushes which are often used as refuges by birds (Fernandez-Juricic et al., 
2002). Some refuge types may be perceived as safer than other types of ref
uges (Lima, 1993) and are related to predator avoidance strategies. 

The aim of this study is to compare the escape distances (measured as 
FID) of birds in relation to distance to the potential refuge, distance fled 
to the refuge, refuge type and its availability in urban areas in four 
European countries. First, we explored how the availability of different 
types of refuges affect frequency of their use by birds and whether the dis
tance fled to the refuge differed between the different types of refuges. We 
then employed multi-predictor Bayesian phylogenetically informed regres
sion models controlling for the effects of several potentially important 
factors such as starting distance, flock size, levels of urbanization or habitat 
type. 

2. Methods 

2.1. Study area, flight initiation distance and refuge type 

Data on the flight initiation distance (FID) of birds were collected in 
urban areas in five cities in four European countries (Table SI) during the 
breeding seasons of 2020 and 2021. The data were mainly collected during 
the first 4 h after sunrise (6:00-10:00) on weekdays when it was not raining 
or excessively windy (Beaufort number < 2). Observers used binoculars to 
identify birds that were foraging or engaged in "relaxed behaviour" (i.e. 
roosting or preening). Each individual bird was approached in a straight 
line by the observer walking at a slow, constant speed. The starting distance 
was estimated as the distance between the observer and the target when the 
observer started the approach toward the target (Blumstein, 2013). FID was 
measured as the distance between the observer and the point where the 
bird started to escape (fleeing or running). We collected data from as 
many bi rd species as possible by systematic searches of the study areas, 
but avoided sampling the same individual twice by moving to another 
site immediately after a bird was sampled. Highly vigilant birds (individ
uals clearly nervous, or altered by the presence of humans before the start 
of the approach), or birds sitting on their nests were avoided. 

Flock size was defined as the number of conspecifics moving or foraging 
together; individuals in the flock were close to each other and were visually 
separated from individuals that were not occurring in the same flock. No 
mixed-species flocks were approached in this study. 

Each sampled site was classified regarding the level of urbanization into 
two categories: core (central, densely inhabited and well-urbanized parts of 
the city) and suburban (areas peripherical to the city centre); the main type 
of habitat: cemetery, garden, other urban areas (streets, any other urban 
type of green area) or park. The surrounding area around the FID sampling 
points was described in terms of land use, considering a fixed radius of 50 m 
around the observer. We estimated the land use cover in terms of percent
age of built-up areas, trees, bushes, and grass. We used the following defini
tion of bush and tree: A bush is a multi-stemmed short woody plant 
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branching at or near the ground, while a tree is a tall perennial plant with a 
single self-supporting woody stem (Gotmark et al., 2016). Additionally, in 
our study, trees were often taller than bushes (> 4 m). 

From the point where the target bird was observed, we estimated the 
distance to the nearest available refuge, considering the following types: 
artificial (e.g. electric wire, fence, statue, monument, signal pole, etc.), 
bush, or tree or patch of trees. We also calculated the mean distance to 
the nearest available refuge of each type. 

After flushing the bird and measuring FID, we recorded the type of 
refuge used by the b i rd (artificial, bush, or tree) and the distance fled to 
such refuge from the point of escape. If the bird flew away without using 
a refuge (e.g. it landed on the ground) or was impossible to identify it, 
the fields "type of refuge" and "distance to refuge" were not filled. 

2.2. Statistical analyses 

First, a preliminary exploration of the data was performed by using all of 
the data, without considering any phylogenetic relationships between bird 
species. A Pearson's chi-square test of independence was performed to ex
amine the relationship between availability of the nearest and the selected 
refuge, among all types of refuges (i.e. artificial, bush, or tree). For this test, 
if the bird flew and then landed on the ground, this was not considered as a 
refuge (approx. 30 % of total observations). The distance fled to the used 
refuge was compared among the different types of refuges using a Games-
Howell paired test (Triola, 2012). 

Second, we considered the non-independence in data values regarding 
the b i rd species. We used only species wi th >10 observations, because 
such sampling provides reliable estimates of FID (Sol et al., 2018). During 
the data selection procedure, we excluded al l observations for mallards 
(Anas platyrhynchos) and other waterbirds as we wanted to focus on terres
trial birds. We tested associations between FID (response variable) and a set 
of predictors and covariates by multi-predictor Bayesian phylogenetically 
informed regression models, using the 'brms' v. 2.6.13 package (Burkner, 

2017). In the first model, we modelled FID as a function of mean distance 
of the nearest available refuge of each type, starting distance, flock size, 
land use composition (built-up cover, bush cover, grass cover, tree cover), 
level of urbanization (core, suburban) and habitat type (cemetery, garden, 
other urban areas, park). The category grass cover was excluded from the 
modelling procedure to avoid multicollinearity issues, since it was strongly 
negatively correlated with built-up cover (r = — 0.64, p < 0.05). 

In the second model, we modelled FID as a function of the distance fled 
to the refuge, type of used refuge (artificial, bush, tree; birds which landed 
on ground were also included in the analyses to control for their effect), 
starting distance, flock size, land use composition, level of urbanization, 
and habitat type. 

To control for statistical non-independence due to shared ancestry 
among species (Paradis, 2011), we included species as a random factor 
and a phylogenetic covariance matrix in the models. We randomly 
downloaded 100 species-level phylogenies (using the "Hackett backbone") 
from BirdTree web tool (http://birdtree.org) (Jetz et al., 2012). We then 
constructed the maximum credibility tree (using these 100 trees) using 
maxCladeCred function in the 'phangorn' v. 2.8.1 package (Schliep, 2011) 
and created a phylogenetic covariance matrix using inverseA function in 
the ' M C M C g l m m ' v. 2.32 package (Hadfield, 2010). We controlled for 
spatial variation by including country as a random factor in the models. 
We excluded al l observations wi th missing information on all predictors 
(for sample sizes in each test, see figures and tables). We also fitted models 
that used species as a random factor but did not incorporate the phyloge
netic covariance matrix; we compared both types of models using the 
widely applicable information criterion (WAIC) and the leave-one-out 
information criterion (LOOIC) using the ' loo' package (Vehtari et al., 
2017) and found that both model types provided qualitatively almost iden
tical results but phylogenetically informed models were slightly better 
(although differences in WAIC and LOOIC values were <2 i n a l l cases). 
Hence, we report only results of the phylogenetically informed models in 
the main text (for results of non-phylogenetic models, see Table S3-4). 

66.7% 

Legend 

i t Refuge type (tree, bush or artificial) 

Availability of nearest refuge (%) 

Use of refuge regarding its availability (%) 

More than expected 

Less than expected 

61.9% 

Fig. 1 . Schematic representation of the mean availability of the nearest refuge of each type and mean effective use of each type of refuge by birds in urban habitats. 
Availability and use are showed in percentage. The sum of availability of nearest refuges reaches the 100 %. The percentage of use of each type of refuge is calculated as 
the rate between effective use regarding the total availability of such type of nearest refuge, so values are unlinked among different types of refuge. The colour and thin of 
arrows indicate if the type of refuge is used more (light blue) or less (light red) than expected regarding its availability. N = 1506. 
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Fig. 2 . Association between flight initiation distance (FID, m) and (a) mean nearest available refuge distance (m) and (b) distance fled to the used refuge (m), for birds 
sampled in this study. Envelopes around linear regression lines are 95 % confidence intervals. N = 2816 (mean nearest available refuge distance) and N = 2458 
(distance fled to the used refuge). 

Models were fitted using a Gaussian family and a log-link function. For 
each model, we ran four Markov Chain Monte Carlo chains wi th default 
priors (i.e. uninformative, flat priors for fixed effects) and used 4000 
sampling iterations (2000 iterations as a warm-up period). To minimize 
the occurrence of divergent transitions, we increased the target average 
proposal acceptance probability to 0.999 and the maximum tree depth to 
15 (Burkner, 2017). Mode l diagnostics indicated a good model conver
gence wi th an R of 1 or close to 1 and sufficient effective sample size in 
the bulk and in the tails of the distribution (Vehtari et al., 2021). A l l contin
uous predictors were centred and scaled. For each model, we calculated the 
conditional R 2 (the proportion of variance explained by fixed and random 
effects) and marginal R 2 (the proportion of variance explained by the 
fixed effects only) using r2_bayes function in the 'performance' v. 0.8.0 
package (Ludecke et al., 2021). A l l statistical analyses and data explorations 
were performed wi th R software v. 4.1.2 (R Development Core Team, 
2021). 

3. Results 

A total of 2900 FID observations were collected for 85 bi rd species 
recorded in four European countries (Table SI) . The most frequently 
observed bird species were Columba palnmbus, Passer domesticus, Columba 
livid, Picapica, Turdus merula and Parus major, accounting for >59.2 % of 
the total observations (Table S2). Overall , bird species wi th the longest 
FID were Sturnus urdcolor and Picus viridis (mean FID >17 m, JV = 51 and 
25 observations, respectively). The two species wi th shortest FID were 
Columba livia and Corvus corone (mean FID = 4 and 4.2 m, JV = 312 and 
37 observations, respectively). Considering all species together, the mean 
values of FID across the five European cities ranged from 4.1 m (standard 
deviation = 2.7 m) (Budapest, Hungary) to 11.6 m (standard deviation = 
8.8 m) (Toledo, Spain) (Table SI). 

The most common nearest type of refuge available i n a l l sampling 
sites was tree and tree patches (981 cases), followed by artificial structures 
(289 cases) and bush (237 cases) (Fig. 1). The mean distances to the nearest 
refuge available varied from 4.9 m ( ± 4.4 m standard deviation) (Toledo, 
Spain) to 13.5 m ( ± 10.7 m) (Rovaniemi, Finland) (Table SI). Considering 
the relative availability of each type of refuge, trees were overused as refuge 
while bush and artificial structures were underused ( X 2 = 58.09, df = 2, 
p < 0.001; Fig. 1). 

Birds escaped earlier (i.e. had a longer FID) when the mean distance to 
nearest refuge of each type and starting distance were longer (Fig. 2; 

Table 1). Birds escaped earlier in suburban than in core areas of the cities, 
in areas wi th higher bush cover and lower built-up and tree cover, and in 
cemeteries than in parks (Fig. 3; Table 1). 

The results of the second model identified a marginally significant effect 
that birds escaped earlier when they were farther from the used refuge 
(Fig. 2; Table 2). FID differed between birds using different types of refuges: 
FID was shorter when birds escaped to bushes or landed on the ground com
pared to escaping to an artificial refuge (Fig. 2; Table 2). Avian FID also in
creased wi th starting distance and bush cover and were longer in suburban 
than core city areas. Conversely, FID decreased wi th increasing built-up 

Table 1 
Results of a multi-predictor Bayesian phylogenetically informed regression model 
exploring the associations between flight initiation distance (response variable) 
and a set of predictors: mean distance to the nearest refuge of each type, starting 
distance, flock size, land use composition (built-up cover, bush cover, tree cover), 
level of urbanization (core, suburban) and habitat type (cemetery, garden, other ur
ban areas, park). The model incorporated a species (and a phylogenetic covariance 
matrix) and country as random factors to control for statistical phylogenetic and 
spatial non-independence in data values. We report parameter estimates with their 
standard errors (SE) and 95 % credible intervals, conditional R 2 (the proportion of 
variance explained by fixed and random effects) and marginal R 2 (the proportion 
of variance explained by the fixed effects only). Significant results (i.e., those where 
credible intervals do not cross zero) are highlighted in bold. JV = 2309 observations 
and 34 species. 

Variables Estimate SE Lower 95 % CI Upper 95 

Fixed factors 
Intercept 2.06 0.38 1.30 2.83 
Distance to nearest refuge 0.07 0.01 0.05 0.10 
Starting distance 0.19 0.01 0.17 0.21 
Flock -0 .01 0.01 -0 .04 0.01 
Built-up cover - 0 . 0 9 0.02 - 0 . 1 3 - 0 . 0 6 
Bush cover 0.06 0.02 0.02 0.09 
Tree cover - 0 . 0 5 0.02 - 0 . 0 9 -0 .01 
Urban level (Suburban) 0.25 0.03 0.20 0.30 
Habitat (Garden) -0 .15 0.10 -0 .35 0.03 
Habitat (Other urban) 0.04 0.07 -0 .09 0.18 
Habitat (Park) - 0 . 2 5 0.05 - 0 . 3 5 - 0 . 1 4 

Random factors 
Country 0.60 0.44 0.20 1.79 
Species 0.44 0.07 0.33 0.60 
Conditional R 2 0.40 0.37 0.42 
Marginal R 2 0.12 0.01 0.31 
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Fig. 3. Association between flight initiation distance (FID, m) of birds and level of urbanization (core or suburban) in the four countries sampled in this study (Czech Republic, 
Finland, Hungary and Spain). Box plots show the median (the bar in the middle of rectangles), upper and lower quartiles (length of rectangles), maximum and minimum 
values (whiskers), mean values (red rhombus), and raw FID values (small gray dots). N total = 2878 (Czech Republic, core = 701, suburban = 354; Finland, core = 
158, suburban = 208; Hungary, core = 207, suburban = 175; Spain, core = 688, suburban = 387). 

habitat and tree cover and was shorter in parks than in cemeteries 
(Table 2). Finally, we found that birds flew longer distances to an artificial 
or tree refuge than when they aimed for a bush refuge (Games-Howell 
paired test, p < 0.001 for comparison bush vs. artificial, p < 0.001 for com
parison bush vs. tree, Fig. SI). 

4. Discussion 

We found that risk perception in birds and their escape decisions were 
affected by distance to the refuge and type of refuge used, as we l l as by 
the built up area and vegetation cover. We found that birds escaped earlier 
when the potential or used refugia were farther (illustrating how distance 
to safety influenced risk assessment), and in areas wi th high bush cover 
but low built-up and tree cover (illustrating that for the species studied, 
this type of cover was obstructive rather than protective). Birds also fled 
farther when they used artificial and trees as refuges, rather than bushes, 
or when they landed on the ground. Finally, we also found that FID of 
birds included in this study was related to some of well-studied factors 
such as starting distance and the level of urbanization. Hence, our results 
suggest that several environmental factors related to the availability and 
characteristics of refuges affect avian antipredator behaviour and their de
cision when and where to escape. 

The main findings of this study are related to the birds' escape response 
in relation to the distance to the available and used refuge. We found that 
birds escaped earlier if: (a) the potential refuge was farther away, and 
(b) birds had to fly longer distances to the refuge. This final statement 
was only marginally significant in the modelling procedure, but the 
positive association was more clear when exploring FID on bi rd species 
wi th larger samples (Fig. S2). Similar findings have been reported for 
diverse animals, including fishes, reptiles, and mammals. For common 
wall lizards (Podarcis rrmrahs) the distance to the nearest refuge alters es
cape behaviour (Amo et al., 2005). Similarly to our findings, gray squirrels 
(Sciurus carolinensis) (Dil l and Houtman, 1989), woodchucks (Marmota 
monax) (Bonenfant and Kramer, 1996), Cuban curly-tailed lizards 
(Leiocephakis carinatus) (Cooper, 2007), broad-headed skinks (Eumeces 
laticeps) (Cooper, 1997), and African c ichl id fishes (Melanochromis 
chipokae) (Di l l , 1990) escaped earlier as distance to refuge increased. In 
contrast to Tatte et al. (2018), we found that FID of birds generally 
increases with the distance to the nearest available refuge in urban green 
areas, supporting a prediction of optimal escape theory (Cooper and 
Frederick, 2007; Ydenberg and D i l l , 1986). This implies that birds base 
their escape decisions also on the relative time required to reach the refuge. 
Thus, birds could be more afraid of a predatory threat when farther away 
from a potential refuge. 
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Table 2 
Results of a multi-predictor Bayesian phylogenetically informed regression model 
exploring the associations between flight initiation distance (response variable) 
and a set of predictors: distance fled to refuge, type of used refuge (artificial, bush, 
tree; ground category - even if was not classified as a type of refuge - was also in
cluded), starting distance, flock size, land use composition (built-up cover, bush 
cover, tree cover), level of urbanization (core, suburban) and habitat type (ceme
tery, garden, other urban areas, park). The model incorporated species (and a phy-
logenetic covariance matrix) and country as random factors to control for statistical 
phylogenetic and spatial non-independence in data values. We report parameter es
timates with their standard errors (SE) and 95 % credible intervals, conditional R 2 

(the proportion of variance explained by fixed and random effects) and marginal 
R 2 (the proportion of variance explained by the fixed effects only). Significant and 
marginally significant results (i.e., those where credible intervals do not cross zero 
or slightly cross zero, respectively) are highlighted in bold and italics, respectively. 
N = 1953 observations and 33 species. 

Variables Estimate SE lower 95 % CI upper 95 

Fixed factors 
Intercept 2.11 0.34 1.44 2.77 
Distance fled to refuge 0.02 0.01 -0 .00 0.04 
Refuge type (Bush) -0.66 0.12 -0.91 -0.43 
Refuge type (Ground) -0.26 0.06 -0.37 -0 .15 
Refuge type (Tree) -0 .05 0.05 -0 .14 0.04 
Starting distance 0.21 0.01 0.19 0.23 
Flock -0 .02 0.02 -0 .06 0.01 
Built-up cover -0.11 0.02 -0.16 -0 .07 
Bush cover 0.06 0.02 0.03 0.10 
Tree cover -0.05 0.02 -0.08 -0 .01 
Urban level (Suburban) 0.22 0.03 0.16 0.28 
Habitat (Garden) -0 .11 0.10 -0 .31 0.08 
Habitat (Other urban) 0.06 0.07 -0 .09 0.20 
Habitat (Park) -0.18 0.06 -0.29 -0 .06 

Random factors 
Country 0.51 0.37 0.17 1.53 
Species 0.38 0.07 0.28 0.53 
Conditional R 2 0.43 0.40 0.45 
Marginal R 2 0.19 0.02 0.39 

Additionally, we found that longer FIDs were associated wi th longer 
distances fled to the refuge, independently of the type of refuge selected. 
A relationship between FID and distance fled to the refuge is relatively 
poorly understood, and has been mosdy studied in lizards (Cooper, 2007; 
Cooper and Wilson, 2007). A previous study in birds already found a posi
tive association between FID and fleeing distance, but only in heavier 
species (Tatte et al., 2018). Our study covering tens of bird species, found 
a similar pattern suggesting pre- and post-disturbance symmetry in their 
fear; birds with longer FIDs are also birds that escaped farther. This result 
supports the hypothesis that individual level of tearfulness is a personality 
trait and, hence, is consistent among different phases of a predatory 
encounter (Cooper and Wilson, 2007; Stankowich and Coss, 2007); shyer 
individuals have longer FIDs and fled longer distances than bolder individ
uals. Yet, studies of yellow-bellied marmots (Marmota flaviventef) suggest 
that boldness may be age-specific (Petelle et al., 2013). Future avian studies 
would benefit from testing identified individuals (Blumstein, 2019) and it 
would be interesting to identify animal groups which adopt different escape 
strategies. 

We also found that FID and distances fled were influenced by the avail
ability of various types of refugia, with earlier escapes and longer distances 
fled when using artificial structures and trees as refugia than bush or land
ing on the ground. The earlier escape and longer distance fled to trees (de
spite their prevalence) may be explained by preferences (Fig. 1). The 
generally low distance fled to bush refuge may indicate that birds often 
feed in the proximity of this type of refuge. Some previous studies found 
no relationship between escape distances of birds and vegetation structure 
and type of area cover (Rodriguez-Prieto et al., 2009), but we provide evi
dence that vegetation and built-up cover may affect escape decision 
(Fernandez-Juricic et al., 2002; Morel l i et al., 2018). These findings may 
further support the observation that birds in our sample tended to prefer 
trees as refuges and were wil l ing to flee longer distances to trees. Artificial 
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structures (e.g. street lamps or buildings), although not used as frequently 
as trees, may be perceived by birds as safer refuges because they are typi
cally higher than bushes and, hence, birds might respond to approaching 
humans by decreasing their escape distances in built-up areas with preva
lent artificial structures and be wil l ing to flee farther when using an artifi
cial refuge. In the visited urban parks and cemeteries, the cover of green 
areas identified as a potential refuge (bush and trees) was not particularly 
higher in suburban areas than in core city areas (Fig. S3). More work on 
how birds perceive the built environment is necessary to develop wildlife-
friendly cities (Uchida et al., 2021). 

Our results also confirmed some findings previously demonstrated in 
birds. We found a positive and significant association between FID and 
starting distance which has been widely identified birds, including 
European urban populations (Blumstein, 2013; Mikula et al., 2021; Tatte 
et al. , 2018). In addition, we found that, overall, FID of birds was longer 
in suburban areas i f compared wi th core areas of the city, wi th the only 
exception of Budapest (Hungary) (see Fig. 3). This result is congruent 
with numerous previous studies showing a significant effect of the urbani
zation gradient on avian escape behaviour, wi th consistently longer avian 
FID in rural than urban habitats (Moller et al., 2015; Samia et al., 2017, 
2015) or FID decreasing wi th the proximity to the city centre (Battle 
et al., 2016; Matsyura et al. , 2015). Birds from suburban areas could be 
more sensitive to approaching humans than their conspeciftcs from the 
core city areas, because they are less tolerant of anthropogenic disturbances 
(Botsch et al., 2018; Samia et al., 2015; Tryjanowski et al., 2020). Interest
ingly, we found that birds in cemeteries were shier (escaped earlier) than 
birds in parks. This is in contrast wi th previous European study which 
sampled FID of birds during breeding season 2014 i n Czech Republic, 
France, Italy and Poland and found the opposite pattern (Morel l i et al., 
2018). This may indicate that differences in avian FID between parks and 
cemeteries may be temporally variable and differ between various coun
tries (Morelli et al., 2018). 

In conclusion, the present study found that escape decision of birds and 
their willingness to take a risk is affected by their distance to the potential 
refuge, the availability of different refuge types as wel l as vegetation and 
built-up cover. Environmental characteristics related to the potential refuge 
distribution and availability have been neglected in studies on escape be
haviour of animals, and birds in particular. This study indicates that avian 
escape behaviour takes into account refuge proximity and type as wel l as 
the general structure of the surrounding environment. Future studies 
could explore how the availability of refuges and their types interact with 
spatial and temporal heterogeneity in humans and predator activity and 
affect avian antipredator behaviour. 
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Abstract 

Most ecological studies use remote sensing to analyze broad-scale biodiversity 

patterns, focusing mainly on taxonomic diversity in natural landscapes. One of 

the most important effects of high levels of urbanization is species loss 

(i.e., biotic homogenization). Therefore, cost-effective and more efficient methods 

to monitor biological communities' distribution are essential. This study explores 

whether the Enhanced Vegetation Index (EVI) and the Normalized Difference 
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Vegetation Index (NDVI) can predict multifaceted avian diversity, urban 

tolerance, and specialization in urban landscapes. We sampled bird communities 

among 15 European cities and extracted Landsat 30-meter resolution EVI and 

NDVI values of the pixels within a 50-m buffer of bird sample points using 

Google Earth Engine (32-day Landsat 8 Collection Tier 1). Mixed models were 

used to find the best associations of EVI and NDVI, predicting multiple avian 

diversity facets: Taxonomie diversity, functional diversity, phylogenetic diversity, 

specialization levels, and urban tolerance. A total of 113 bird species across 

15 cities from 10 different European countries were detected. EVI mean was the 

best predictor for foraging substrate specialization. NDVI mean was the best pre

dictor for most avian diversity facets: taxonomie diversity, functional richness 

and evenness, phylogenetic diversity, phylogenetic species variability, community 

evolutionary distinctiveness, urban tolerance, diet foraging behavior, and habitat 

richness specialists. Finally, EVI and NDVI standard deviation were not the best 

predictors for any avian diversity facets studied. Our findings expand previous 

knowledge about EVI and NDVI as surrogates of avian diversity at a continental 

scale. Considering the European Commission's proposal for a Nature Restoration 

Law calling for expanding green urban space areas by 2050, we propose NDVI as 

a proxy of multiple facets of avian diversity to efficiently monitor bird community 

responses to land use changes in the cities. 

K E Y W O R D S 
avian specialization, biodiversity, bird, enhanced vegetation index, normalized difference 
vegetation index, remote sensing, urban tolerance, VI IRS night-time lights 

I N T R O D U C T I O N 

Worldwide urbanization is rising, and approximately 60% 
of the world's population is expected to live in cities by 
2030 (United Nations, 2017). Urbanization is a significant 
threat to biodiversity, modifying biotic and abiotic ecosys
tem characteristics (Grimm et al., 2008) through fragmen
tation or replacing natural habitats (Sklenicka, 2016; 
Williams et al., 2009). At the same time, urbanization gen
erates new habitats suitable for a few species capable of 
adapting to novel urban environments (McKinney, 2002, 
2006). Unsurprisingly then, taxonomic (Marzluff, 2001), 
functional (Devictor et al., 2007), and phylogenetic 
(Ibanez-Alamo et al., 2016; Morelli et al., 2016; Sol et al., 
2014) diversity decreased in urban environments com
pared with their rural or natural counterparts. More specif
ically, along an urbanization gradient, species richness 
generally decreases (e.g., Melles et al., 2003). However, it 
may peak at intermediate levels of urbanization (Batary 
et al., 2018; Blair, 1996; Jokimaki & Suhonen, 1993; 
Leveau & Leveau, 2005). Although even some urban areas 
show increased taxonomic diversity (Blair, 1996), it usually 
consists of the replacement of local native species, also 
called "urban avoiders" (Blair, 1996), by increasingly 

spreading non-natives (Devictor et al., 2008; McKinney, 
2002, 2006), and the predominance of generalist species, 
generally more tolerant to high urbanized areas (Devictor 
et al., 2008). Consequently, urbanization leads to biotic 
homogenization (McKinney, 2002, 2006). 

Bird assemblages are affected by local resources and 
how they use suitable habitats (Croci et al., 2008). 
Therefore, local environmental factors better explain bird 
species richness (BSR) and composition than regional and 
landscape factors, suggesting that site-specific management 
strategies can improve avian diversity in cities (Croci et al., 
2008; Evans et al., 2009). Managing green areas within 
cities could increase avian diversity (Croci et al., 2008). 
For example, there are a greater number of native bird 
species, less urban-tolerant species, in those areas com
posed predominantly of native vegetation (Blair, 1996). 
Conversely, few species, principally non-native ones, more 
urban tolerant, dominate areas at higher built-up land 
cover levels (Blair, 1996). At intermediate levels of urbani
zation, avian assemblages can be composed of native and 
non-native species. Therefore, an important first step in 
urban development planning is understanding factors 
influencing avian diversity (Stagoll et al., 2012). Moreover, 
to successfully carry out land management plans, it is 
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necessary to quantify the relationship between avian diver
sity and habitat features (Mcfarland et al., 2012). 

The decline of biodiversity affects species richness 
and functional richness, increasing taxonomie and func
tional biotic homogenization (Ibarra et al., 2015). Indeed, 
the biotic homogenization process substitutes specialists 
with generalist species, both spatially and temporally 
(McKinney, 2006; Sol et al., 2014). Specialist species 
occupy narrower niches. For example, they exploit partic
ular habitats and limited portions of available resources 
(Clavel et al., 2011). In contrast, generalist species use a 
wider range of habitats and greater diversity of available 
resources (Ducatez et al., 2015; Irschick et al., 2005). 
Thus, species responses to habitat loss would depend on 
the degree of specialization (Webb, 2010), favoring those 
with wider niche breadths to survive in more degraded 
habitats and increasing the risk of extinction of those 
with a high degree of specialization (Davies et al., 2004; 
McKinney & Lockwood, 1999). Recently, Callaghan, 
Benedetti, et al. (2020) highlighted a negative association 
between avian species specialization and their urban tol
erance. Thus, considering that biodiversity involves many 
facets (Carmona et al., 2012), conservation ecologists 
claimed to apply a more integrative approach to estimate 
biodiversity by disentangling different facets of species 
assemblages (Carmona et al., 2012; Zupan et al., 2014), 
mainly in urbanized landscapes (Devictor et al., 2007; 
Morelli, Benedetti, Ibáflez-Álamo, et al., 2021). The differ
ent responses of taxonomie diversity, functional diversity, 
and phylogenetic diversity to environmental gradients lead 
to different patterns in their spatial distribution (Bässler 
et al., 2016; Devictor et al., 2010; Tucker & Cadotte, 2013). 
For these reasons, conserving different facets of biodiver
sity, such as taxonomie, functional, and phylogenetic 
diversity, including also, specialization and urban toler
ance assessments, are relevant for a comprehensive under
standing of biodiversity drivers (Dehling et al., 2014; Grass 
et al., 2015), and applying more effective conservation 
strategies (Brooks et al., 2006; Lee & Jetz, 2008). 

Monitoring species distribution using traditional field 
surveys is challenging and logistically expensive. Thus, 
standardized evaluations of the environmental conditions 
with an adequate spatial resolution (Seto et al., 2004). 
In addition, species distribution surveys in large areas are 
challenging for ecologists and fieldworkers since they 
require high sampling effort (Palmer, 1995). Therefore, 
developing new methods of assessing species diversity using 
environmental variables could easily provide more insights 
into the anthropogenic and natural disturbances affecting 
biodiversity (Rocchini et al., 2010, 2016). In recent years, 
the constant availability of multispectral remote-sensed 
imagery has led to the widespread use of imagery with a 
growing resolution and quality (Huang et al., 2021). 

The quality of images is adequate for the evaluation of vari
ous vegetation aspects such as canopy phenology, seasonal 
changes in the leaf area, and gross primary production (Liu 
et al., 2011; Muraoka et al., 2013; Turner et al., 2005), as well 
as the floristic composition, vegetation height, and struc
ture, vitality and age (Lausch et al., 2016). So, the use of 
remote sensing tools largely improved the ability to monitor 
biodiversity and ecosystem functioning at large scales pro
viding useful information on the species distribution, repro
ductive fitness (Regos et al., 2021), and population 
abundance (Arenas-Castro et al., 2019) when facing spatial 
and temporal changes (Lausch et al., 2016). Among many 
vegetation indices, Normalized Difference Vegetation 
Index (NDVI hereafter) and Landsat-derived Enhanced 
Vegetation Index (EVI hereafter) are the most commonly 
used to obtain vegetation information (Huete, Didan, 
Miura, & Rodriguez, 2002; Mildrexler et al., 2009; Peckham 
et al., 2008). Many studies demonstrated the capacity of EVI 
and NDVI global-based vegetation indices to track vegeta
tion characteristics and changes at different spatial scales 
(Dobson et al., 2015; Gonsamo, 2010; Nieto et al., 2015; 
Turner et al., 2001) and across long time series (Dutrieux 
et al., 2015; Pettorelli et al., 2005; Semeraro et al., 2019). Both 
vegetation indices share many spectral-domain attributes. 
For this reason, they are complementary in identifying vege
tation changes and canopy biophysical parameters (Huete & 
Justice, 1999; Semeraro et al., 2019). EVI and NDVI values 
are calculated based on the visible red and near-infrared 
spectral reflectance (top-of-atmosphere—TOA or surface 
reflectance). Specifically, the NDVI value calculation uses 
the visible red and near-infrared spectral reflectance from all 
land surface types, including vegetated surfaces (Huete & 
Justice, 1999). The index varies between —1 and 1, indicating 
different vegetation levels from vegetation-free cover up to 
high vegetation biomass (Pettorelli, 2013; Tucker, 1979). 
Several studies showed that NDVI value is positively related 
to the biomass of vegetation (Matsushita et al., 2007), vegeta
tion structure (Caruso et al., 2017), as well as, the amount of 
leaf chlorophyll (Lausch et al., 2016), and leaf area coverage 
(Wang et al., 2005). NDVI is one of the most used 
global-based vegetation index. NDVI is characterized by 
removing the noise produced by ever-changing sun angles, 
topography, clouds or shadow, and atmospheric conditions 
(Huete, 1988; Zhengxing et al., 2003). EVI is an "optimized" 
vegetation index from NDVI developed to reduce some 
atmospheric conditions and canopy background noise and 
is more receptive to canopy structural variations, including 
leaf area index (LAI), canopy type, plant physiognomy, and 
canopy architecture (Huete, Didan, Miura, & Rodriguez, 
2002; Huete & Justice, 1999). Similarly to NDVI, EVI values 
calculation uses spectral reflectance, either TOA or surface, 
in the visible red and near-infrared spectra. However, 
unlike NDVI, EVI uses the blue band for the atmospheric 
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correction and constant soil factor (Liu & Huete, 2019). 
For these reasons, EVI is demonstrated to be more reliable 
in low and high vegetation cover and adjusts to soil influ
ence, canopy background signals, and atmospheric effects 
on vegetation index values (Gao et al., 2000; Liu & 
Huete, 2019). Thus, many researchers have preferred the 
EVI index in their studies (e.g., Boles et al., 2004; Nagler 
et al., 2005; Soudani et al., 2006; Waring et al., 2006). How
ever, both vegetation indices have different constraints and 
do not provide direct measures of the vegetation attributes 
but act as proxies (Son et al., 2014). Other studies focusing 
on NDVI and EVI comparisons showed contrasting results 
in their capacities to obtain information on the vegetation 
attributes (Son et al., 2014). One commonly recognized 
obstacle with NDVI is its lower sensitivity at high vegeta
tion biomass (Huete, 1988; Zhengxing et al., 2003) and the 
effects of atmospheric and background soil reflectance 
(Huang et al., 2021; Huete & Justice, 1999). Conversely, 
EVI surpasses these constraints, increasing the detection 
accuracy in regions at high biomass (Semeraro et al., 2019). 
However, EVI is more affected by the topography, becom
ing a challenge in hilly terrains (Matsushita et al., 2007). 

NDVI and EVI are the most common vegetation indices 
used in ornithological studies (Bae et al., 2018; Bonthoux 
et al., 2018; Cooper et al., 2020; Hobi et al., 2017; Leveau 
et al., 2020; Pettorelli et al., 2011; W u et al., 2013). Both vege
tation indices have been documented as excellent proxies 
for primary productivity (e.g., Box et al., 1989; Cramer 
et al., 1999) and the spatiotemporal distribution of vegeta
tion (Pettorelli et al., 2005). Because primary productivity 
influences the diversity and distribution of species (Wright, 
1983), EVI and NDVI were identified as good predictors of 
avian diversity in several studies. Specifically, several 
authors found a positive relationship between EVI and 
NDVI with avian species richness in both natural (Bae et al., 
2018; Cooper et al., 2020; Hobi et al., 2017; Hurlbert & 
Haskell, 2003; Mcfarland et al., 2012; St-Louis et al., 2009) 
and urban areas (Bino et al., 2008; Callaghan, Major, et al., 
2020; Leveau, 2019; Leveau et al., 2018, 2020). Some studies 
on urban areas found contrasting associations between 
NDVI and avian diversity (Bae et al., 2018; Leveau et al., 
2020). For example, Bae et al., 2018, found a positive associa
tion between NDVI and species richness, displaying a con
cave curve. While for functional and phylogenetic diversity, 
the association was negative and characterized by a convex 
curve. These results (Hawkins, Porter, & Diniz-Filho, 
2003) demonstrated that the productivity-diversity corre
lation has not had a universal form (Hawkins, Porter, & 
Diniz-Filho, 2003). In addition, most of the urban studies 
were mainly conducted in single or few urbanized locali
ties (e.g., cities, towns) (Argentina: Leveau et al., 2018, 
2020; Leveau, 2019; Brazil: Souza et al., 2019; Jerusalem: 
Bino et al., 2008; Taiwan: L in et al., 2008), potentially 
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limiting the transferability of such results to different cities 
at a national or continental scale. Therefore, more studies 
on a larger geographical scale (e.g., Callaghan, Major, 
et al., 2020) are needed to discover EVI or NDVI potential 
in tracking multifaceted avian diversity changes in urban 
areas. 

The spectral heterogeneity hypothesis argued for a pos
itive correlation between habitat heterogeneity and species 
diversity (Palmer et al., 2002; Rocchini et al., 2010). It was 
demonstrated in several taxa, for example, vascular plants 
(Foody & Cutler, 2006; Gould, 2000; Levin et al., 2007), 
lichens (Waser et al., 2004), ants (Lassau et al., 2005), birds 
(Bino et al., 2008; St-Louis et al., 2009), and mammals 
(Oindo & Skidmore, 2002). Accordingly, many studies 
demonstrated a positive association between the spatial 
heterogeneity of vegetation (assessed by EVI and NDVI 
spatial standard deviation) with species richness (Bacaro 
et al., 2011; Bergen et a l , 2007; Coops et al., 2009; Culbert 
et al., 2012; Price et al., 2013) by monitoring and quantify
ing significant vegetation characteristics (e.g., change of 
broadleaf vegetation LAI or the phenological heterogeneity 
of vegetation layers) (Davi et al., 2006; Qiao et al., 2019). 
However, many mechanisms can change these associa
tions when focusing on different facets of avian diversity 
or habitats (e.g., urban areas). Consequently, more studies 
are essential to understand better the associations between 
surrogates of habitat heterogeneity (as EVI or NDVI stan
dard deviations) with each facet of avian diversity in cities. 

Since each diversity component discloses different 
attributes of avian communities, more efficient monitor
ing across large regions in a short period should be essen
tial to support urban avian diversity. Accordingly, more 
specific vegetation indices as proxies for each facet of avian 
diversity metrics can help to indicate potential vulnerabil
ities of avian communities facing climatic and land uses 
changes. Therefore, in this study, we investigated and 
compared the capacity of EVI and NDVI (as most 
common proxies of primary productivity and vegetation 
heterogeneity proxies) to determine the best-fitted 
surrogate of every single facet composing avian diversity 
(e.g., taxonomic, functional, and phylogenetic diversity, 
urban tolerance, and avian specialization) in 15 different 
European cities. We hypothesized that increasing primary 
productivity and vegetation heterogeneity should increase 
levels of avian taxonomic, functional, and phylogenetic 
diversity according to the (1) productivity-diversity rela
tionship (Wright, 1983) and (2) habitat-heterogeneity 
hypothesis (MacArthur & MacArthur, 1961). Regarding 
avian specialization, we hypothesized that increasing the 
cover of vegetation biomass (primary productivity) and 
vegetation heterogeneity could be associated with a 
higher number of avian species that are less urban toler
ant and more specialized. 
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M E T H O D S 

Bird data collection 

Data on bird presence and abundance were collected dur
ing the breeding season along a continent-wide latitudinal 

gradient in 15 European cities (Figure 1; Appendix SI: 
Table SI). The bird survey period was performed between 
early Apri l and late July 2018. The field surveys started by 
considering the differences in the study areas' seasons to 
mitigate potential issues associated with avian detectability 
(e.g., early Apri l in southern Spain and the end or late May 

60° N 

50° N 

40° N 

20° E 

F I G U R E 1 Loca t ion of the 15 different European cities used i n this study: Prague (Czech Republ ic) ; Tar tu (Estonia); 

Jyvaskyla (Finland) ; T u r k u (Finland) ; Poitiers (France); Athens and Ioannina (Greece); Budapest (Hungary); Pesaro (Italy); 

Gron ingen (Netherlands); Poznari and Zielona Gora (Poland); Granada, Madr id , and Toledo (Spain). See detailed results i n 

Benedetti & More l l i (2022). 
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in northern Finland) (Kery et al., 2005). Local expert orni
thologists performed avian surveys to reduce potential bias 
due to different skills. 

One observer (the same local expert ornithologists for 
each city) surveyed the avian composition early morning 
(from 6:00 to 10:00) only during good weather conditions 
(no rain and heavy winds). Approximately one hundred 
5-min single-visit point counts (hereafter referred to as 
"sample site") per city distributed evenly along an urban
ization gradient. A l l birds, visually or acoustically identi
fied to the species level, were recorded. More specifically, 
the sample sites consisted of a fixed area with a 50-m 
radius. Sample sites were located in urbanized areas and 
were recorded with a GPS in decimal degrees (DD). 
According to GPS technical specifications from the man
ufacturer (Garmin), the horizontal GPS accuracy was 
within ±5-10 m, and the vertical accuracy was within 
±15-38 m under normal conditions. A l l sample sites 
were distanced by at least 200 m, a standardized method 
in ecology (Bibby et al., 1992). This survey was designed 
to obtain data about the distribution and abundance of 
diurnal songbirds (Bibby et al., 1992). Additionally, we 
excluded the raptors, nocturnal species, and aerial feeders 
(i.e., swallows and swifts) from the analysis because the 
sample site method is inappropriate for estimating their 
abundance. 

EVI and NDVI estimation 

We calculated the EVI and NDVI . EVI is an extension of 
NDVI, which approximates vegetation and canopy struc
ture with improved sensitivity in high biomass regions 
(Huete, Didan, Miura, Rodriguez, Gao, & Ferreira, 2002; 
Jiang et al., 2008). The EVI and NDVI values fluctuate 
from —1 to 1, where positive values correspond to the 
cover of vegetated areas, while negative ones are for 
water bodies, snow, clouds, and non-vegetated surfaces 
(Holben, 1986; Vermote, 2013). To calculate EVI and 
NDVI, we used Google Earth Engine (Gorelick et al., 
2017) to conduct our analysis, using the USGS Landsat 
8 Collection 1 Tier 1 imagery (see details in the Google 
Earth Engine catalog here: https://developers.google.com/ 
earth-engine/datasets/catalog/LANDSAT_LC08_C02_Tl_ 
RT_TOA). Landsat 8 provides 30-m resolution data, with 
a temporal resolution of one image in -16 days. Therefore, 
2 or 3 images per month were obtained for each sample 
site (i.e., bird survey). To overcome the potentially limited 
number of images for a given sample site, we used scenes 
from 2017, 2018, and 2019 (expanding 1 year to either side 
of the bird surveys), averaging any potential interannual 
variation in vegetation changes. This expanded time scale 
was also necessary as we filtered for cloud cover on a 
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per-pixel basis, meaning that if only 1 year was used, some 
pixels could potentially have no imagery for a given 
month. We filtered the data using the BQA bit 4, filtering 
out pixels associated with cloud cover—this is a quality 
assessment variable provided by the USGS, associated with 
the Landsat 8 imagery. We also removed pixels with low 
cloud shadow confidence. After this filtering, we collapsed 
the remaining scenes for each pixel by taking the median 
EVI and NDVI at each pixel, minimizing the potential of 
outliers in the imagery. For each sampling site (i.e., bird 
survey), we calculated the mean and standard deviation 
value of the pixels within a 50-m buffer (corresponding to 
the bird survey 50-m sample site) separately for April , 
May, June, and July (corresponding to the bird survey 
period). We tested this robustness by calculating the mean 
and standard deviation of the pixels with a 150-m buffer 
but found that the values were strongly correlated with 
the 50-m buffer values (Appendix SI: Figure SI). 

Finally, using monthly EVI and N D V I values 
(considering Apr i l to July period to match the bird sur
vey period), we calculated the average (EVI mean and 
NDVI mean) and standard deviation (EVI sd and NDVI sd). 
As detailed above, these mean values are the median 
pixel values within each buffer. EVI and NDVI mean 
values were strongly correlated with monthly values of 
EVI (Appendix SI: Figure S2) and N D V I (Appendix SI: 
Figure S3). 

Facets of avian diversity assessment 

A bird community is the total list of bird species present 
in each sample site. We assessed each bird community's 
different facets of avian diversity: taxonomic, functional, 
and phylogenetic diversity (Appendix SI: Table S2). 
The first facet corresponds to taxonomic diversity regard
ing BSR (Magurran, 2004). The second facet includes 
three metrics related to functional diversity: functional 
richness (FRic), functional evenness (FEve), and func
tional divergence (FDiv) (Villeger et al., 2008). A l l func
tional diversity metrics were calculated through the " F D " 
package in R (Laliberte et al., 2015; Laliberte & Legendre, 
2010) by using the avian niche database comprising 
73 different traits (Pearman et al., 2014) (Appendix SI: 
Table S3). The third facet involves three metrics related 
to phylogenetic diversity: phylogenetic diversity (PD) 
(Faith, 1992), phylogenetic species variability (PSV) 
(Helmus et al., 2007), and community evolutionary dis
tinctiveness (CED). We built the phylogenetic tree with 
the relationships among the species in each sample site, 
using genetic data from a total of 6663 taxa (Jetz et al., 
2012), provided in BirdTree (https://birdtree.org/subsets/). 
PD and PSV metrics were estimated using the "picante" 

https://developers.google.com/
http://birdtree.org/subsets/
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package for R (Kembel et al., 2010). Finally, CED was 
assessed to determine the mean ED score for each bird 
community considering all species present (see details in 
Benedetti & Morelli, 2022) in a community (sample site) 
(Morelli et al., 2016; Tucker et al., 2016). We obtained the 
species ED score (Isaac et al., 2007; Redding et al., 2008) 
from the following online database: from https://www. 
edgeofexistence.org/edge-lists/ (Zoological Society of 
London, 2008). 

Then, we calculated an urban tolerance mean (UTM) 
for every community (i.e., sample site) as species gener
ally show responses to urbanization along a continuum. 
We used species-specific urban tolerance scores from 
Callaghan, Benedetti, et al., 2020. This method uses eBird 
citizen science data and VIIRS night-time lights to pro
vide species-specific preferences for or against urbaniza
tion (for more details, see Callaghan, Major, et al., 2020). 
Then, we took the mean of the species-specific urban tol
erance scores (UTM) across all species at that sample site 
(Appendix SI: Table S2). 

Finally, we assessed avian specialization richness for 
each avian community (i.e., sample site). We used the avian 
species-specific specialization index estimated by Morelli 
et al., 2019 for different ecological traits: diet, foraging 
behavior, foraging substrate, and habitat (see details in 
Appendix SI: Table S3). The specialization richness in each 
sample site is estimated by the number of bird species with 
a specialization value equal to 1 (Benedetti et al., 2022; 
Morelli et al., 2019; Morelli, Benedetti, Hanson, & Fuller, 
2021), see more details in Benedetti & Morelli, 2022. Thus, 
avian specialization richness types estimated were diet spe
cialization richness (Diet), foraging behavior specialization 
richness (Forb), foraging substrate specialization richness 
(Forsub), and habitat specialization richness (Hab). 

Statistical analyses 

We explored EVI and NDVI values (mean and sd) associ
ations with taxonomic, functional, and phylogenetic 
diversity, specialization types, and U T M . These associa
tions were examined using Generalized Linear Mixed 
Models (GLMMs). Models were fitted by maximum likeli
hood using the package "nlme" and "lme4" in R (Bates 
et al., 2015; Pinheiro et al., 2019). Each diversity facet 
(Taxonomic diversity: Species richness; Functional diver
sity: Functional diversity, functional evenness, and func
tional divergence; Phylogenetic diversity: Phylogenetic 
diversity, phylogenetic species variability, and commu
nity evolutionary distinctiveness; U T M ; and four speciali
zation types: Diet, foraging behavior, foraging substrate, 
and habitat) (see detailed description in Appendix SI: 
Table S2) was established as a response variable and was 

modeled separately. EVI and NDVI (mean and sd) were 
designated as predictors individually. They were modeled 
separately (each predictor for each response variable) 
since we aimed to evaluate the single capacity of EVI and 
NDVI (mean and sd) as surrogates of each avian diversity 
facet. EVI and NDVI mean showed a high level of collin-
earity (Appendix SI: Figure S3). The city was included as 
a random factor in the models. Geographical coordinates 
were not included as predictors, considering the redun
dancy of using cities as a random factor. 

The response variables based on count data (e.g., BSR 
and all specialization richness types) were tested for 
overdispersion by employing the "aods3" package in R 
(Lesnoff & Lancelot, 2018). Therefore, a ratio between 
the sum of squared Pearson residuals and the residual 
degrees of freedom lower than one (<1) indicates no 
overdispersion issues (Agresti, 1990). Then, BSR and each 
type of specialization richness were modeled following a 
Poisson distribution. The normality assumptions of 
response variables based on continuous data (e.g., U T M , 
phylogenetic and functional diversity facets) were tested 
employing the "MASS" package (Venables & Ripley, 2002) 
in R. To normalize data not following a normal distribu
tion, we log-transformed using the "rcompanion" package 
in R (Salvátore Mangiafico, 2021). Finally, the variables 
were modeled following a Gaussian distribution (Box & 
Cox, 1964). 

The Akaike information criterion (AIC) was used to 
determine the "best" model explaining variation in the 
data of each significant model when exploring EVI or 
NDVI predictors (Burnham & Anderson, 2002). The model 
selection and multimodel inference were performed using 
the package "AlCcmodavg" in R (Mazerolle, 2016). The 
model with the lowest AIC and greater Akaike informa
tion criterion weighted (AlCWt) is considered the best 
model (Mazerolle, 2016). Thus, this study evaluated the 
best proxies' avian diversity facets among all EVI or NDVI 
indices explored. 

Finally, the goodness of fit of each model was assessed 
by assessing the conditional R2 (which considers the vari
ance by the fixed and random effects) and marginal R2 

(which considers the variance by the fixed effects) using 
the function "rsquared" from the package "piecewiseSEM" 
(Lefcheck, 2016). 

The correlation between predictors was performed 
using the "corrgram" function in R (Wright, 2018) to pro
duce a matrix correlogram including the correlation value 
obtained by the Pearson correlation coefficient. 

Confidence intervals for the significant variables selected 
in the best model were calculated by the Wald method using 
the "MASS" package in R (Venables & Ripley, 2002). 

A l l modeling procedures, statistical tests, and data 
explorations were performed with R software v. 4.1.3 

https://www
http://edgeofexistence.org/edge-lists/
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(R Development Core Team, 2019) and considered results 
statistically significant when the p-value was lower 
than 0.05. 

RESULTS 

In this study, 1382 sample sites were surveyed in 15 differ
ent European cities (Figure 1, Appendix SI: Table SI). 
A total of 113 avian species (see details in Benedetti & 
Morelli, 2022) and 31,760 individuals were recorded. The 
mean of total BSR across all 1382 sample sites was 7.23 
species (minimum: 1, maximum: 24 species). The EVI 
mean values in 50-m buffers vary between 0.040 and 
0.734, considering all sample sites. In contrast, the EVI sd 
values fluctuate between 0.006 and 0.248. NDVI mean 
values fluctuate between 0.048 and 0.684. At the same 
time, the NDVI sd values vary from 0.007 to 0.292. Consid
ering only significant predictors, the values of conditional 
R2 vary from 0.540 (for NDVI mean as a predictor of phy-
logenetic diversity [PD]) to 0.155 (for NDVI sd as a predic
tor of community evolutionary distinctiveness [CED]). The 
values of marginal R2 ranged from 0.22 (for NDVI mean as 
a predictor of urban tolerance [UTM]) to 0.004 (for EVI sd 
and NDVI sd as predictors for habitat specialization rich
ness [Hab]) (Appendix SI: Table S4). 

EVI and NDVI as proxies of avian diversity 

The number of species (BSR), functional richness (FRic), 
community evolutionary distinctiveness (CED), and phy-
logenetic diversity (PD) values of avian communities 
were positively associated with all indices investigated 
(e.g., EVI mean, EVI sd, NDVI mean, and NDVI sd). 
Conversely, phylogenetic species variability (PSV) was 
negatively associated (Table 1, Figure 2, Appendix SI: 
Figures S3-S6). In addition, functional divergence (FDiv) 
was not related to any EVI and NDVI indices used in this 
study, and functional evenness (FEve) was significantly 
related only to EVI and NDVI mean (Table 1, Figure 2, 
Appendix SI: Figures S3-S6). NDVI mean was the best 
proxy for BSR, FRic, FEve, CED, PD, and PSV as it 
carries between 99% and 67% of the cumulative model 
weight and has the lowest AIC (Table 1, Figure 2, 
Appendix SI: Figures S3-S6). 

EVI and NDVI as proxies of avian urban 
tolerance 

The U T M values were negatively associated with all indi
ces, EVI and NDVI (both mean and sd). NDVI mean is 
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the selected best model, as it carries 99% of the cumula
tive model weight and has the lowest AIC score (Table 2, 
Figure 2, Appendix SI: Figures S3-S6). 

EVI and NDVI as proxies of avian 
specialization 

Bird assemblages characterized by a high number of diet 
(Diet), Foraging behavior (Forb), and Habitat (Hab) 
specialist species were positively associated with all indices 
investigated (e.g., EVI mean, EVI standard deviation, NDVI 
mean, and NDVI sd) (Table 3, Figure 2, Appendix SI: 
Figures S3-S6). Those areas characterized by the greater 
number of foraging substrate specialists (Forsub) were neg
atively related to EVI, and NDVI mean. NDVI mean was 
the best proxy for Diet, Forb, and Hab specialist species as it 
carries between 77 and 55% of the cumulative model weight 
and has the lowest AIC (Table 1, Figure 2, Appendix SI: 
Figures S3-S6). Finally, both EVI mean was the selected 
best model for Forsub, as it carries 69% of the cumulative 
model weight and has the lowest AIC score (Table 3, 
Figure 2, Appendix SI: Figures S3-S6). 

DISCUSSION 

Our analysis provides the first assessment investigating 
the ability of Landsat-derived EVI and NDVI as proxies 
of different facets of avian diversity (e.g., taxonomic, 
functional, and phylogenetic diversity, urban tolerance, 
and avian specialization) in urban landscapes across 
15 European cities. We found that EVI mean as a surro
gate of primary productivity was associated significantly 
with most avian diversity facets. However, EVI was the 
best predictor only for foraging substrate specialization. 
Specifically, EVI mean was negatively correlated to the 
number of bird species specialized in foraging substrate. 
Indicating a lower number of birds specialized in a par
ticular foraging substrate are likely found in areas charac
terized by higher values of EVI mean. This finding could 
indicate a lower availability of potential foraging sub
strates (e.g., bare soil, artificial surfaces, and/or body 
water characterized) at higher cover vegetation. Most pre
vious studies focused on the association between EVI 
(mean and standard deviation) and BSR (e.g., Callaghan, 
Major, et al., 2020; Cooper et al., 2020; Farwell et al., 2020; 
Hobi et al., 2017). Such studies were performed mainly in 
forest and rural areas (e.g., grassland and farmland). 
Instead, our findings are the first evidence that the EVI is 
significantly associated with multiple facets of avian diver
sity in urban areas and, most importantly, is the best pre
dictor of foraging substrate specialization. 



E C O L O G I C A L A P P L I C A T I O N S 9 of 17 

T A B L E 1 Results of fixed-effect parameters i n the G L M M model performed i n this study, accounting for variations i n the following diversity 

metrics: Bi rd species richness (BSR), Functional richness (FRic), Functional evenness (FEve), Functional divergence (FDiv), Communi ty 

evolutionary distinctiveness (CED) , Phylogenetic diversity (PD), and Phylogenetic species variability (PSV), concerning the following predictors: 

E V I mean, E V I standard deviation (EVI sd), N D V I mean, N D V I standard deviation ( N D V I sd). Mode l = Individual models. 

Model ES SE tlz p-value A I C Delta AIC A l C W t 

Response variable: Bird species richness 

E V I mean 1.384 0.109 12.75 <0.001 3845.91 10.38 0.01 

E V I sd 2.731 0.354 7.71 <0.001 3949.75 114.22 0 

NDVI mean 1.481 0.113 13.10 <0.001 3835.53 0 0.99 

N D V I sd 2.975 0.389 7.65 <0.001 3950.98 115.45 0 

Response variable: Functional richness 

E V I mean 1.454 0.238 6.110 <0.001 2142.16 4.74 0.09 

E V I s d 3.891 0.840 4.630 <0.001 2157.56 20.15 0 

NDVI mean 1.581 0.243 6.504 <0.001 2137.41 0 0.91 

N D V I sd 4.544 0.928 4.894 <0.001 2155.12 17.7 0 

Response variable: Functional evenness 

E V I mean 0.437 0.052 8.458 <0.001 -598.88 5.86 0.05 

E V I sd 0.459 0.177 2.587 0.0098 -537.29 67.45 0 

NDVI mean 0.467 0.053 8.834 <0.001 -604.77 0 0.95 

N D V I sd 0.306 0.197 1.558 0.1195 -533.07 71.67 0 

Response variable: Functional divergence 

E V I mean 0.007 0.004 1.648 0.100 -4767.79 0.45 0.25 

E V I s d 0.017 0.014 1.202 0.230 -4766.59 1.65 0.14 

NDVI mean 0.008 0.004 1.802 0.072 -4768.24 0 0.31 

N D V I sd 0.028 0.016 1.731 0.0839 -4768.11 0.13 0.30 

Response variable: Community evolutionary distinctiveness 

E V I mean 0.073 0.006 12.815 <0.001 -4184.500 1.4 0.33 

E V I sd 0.100 0.022 4.616 <0.001 -4055.203 130.7 0 

NDVI mean 0.075 0.006 12.880 <0.001 -4185.899 0 0.67 

NDVT sd 0.087 0.024 3.620 <0.001 -4047.140 138.8 0 

Response variable: Phylogenetic diversity 

E V I mean 2.318 0.248 9.340 <0.001 2217.973 4.28 0.11 

E V I s d 5.243 0.895 5.861 <0.001 2267.243 53.55 0 

NDVI mean 2.433 0.254 9.593 <0.001 2213.690 0 0.89 

N D V I sd 5.738 0.990 5.796 <0.001 2267.969 54.28 0 

Response variable: Phylogenetic species variability 

E V I mean -0.328 0.026 -12.550 <0.001 -1603.509 6.94 0.03 

E V I sd -0.459 0.098 -4.665 <0.001 -1480.491 129.95 0 

NDVI mean -0.343 0.027 -12.877 <0.001 -1610.445 0 0.97 

NDVT sd -0.391 0.110 -3.573 <0.001 -1471.652 138.79 0 

Note: Each predictor was modeled separately for each response variable. The significant and selected model—according to the lowest AIC value and higher 
AlCWt—is evidenced in bold. Additionally, conditional R2 (variance explained by fixed and random effects) and marginal R2 (variance explained by the fixed 
effects) assessed for each model are reported in Appendix SI: Table S4. 
Abbreviations: AIC, Akaike information criterion; AlCWt, Akaike information criterion weighted; ES, estimate; SE, standard error. 

On the other hand, NDVI mean was significantly 
associated with most avian diversity facets. Specifically, it 
was positively correlated with BSR, functional richness, 

functional evenness, community evolutionary distinctive
ness, phylogenetic diversity, and the number of diet and 
habitat specialists in urbanized areas. However, NDVI 
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EVI 

BSR FRic FEve FDiv CED PD PSV UTM Diet Forb Forsub Hab 

F I G U R E 2 Matr ix representing the G L M M association types between avian diversity and communi ty metrics and Landsat-derived 

indices. In the columns, the following responses variables are: B i rd species richness (BSR), Funct ional richness (FRic) , Funct ional evenness 

(FEve), Funct ional divergence (FDiv) , Communi ty evolutionary distinctiveness (CED) , Phylogenetic diversity (PD), Phylogenetic species 

variability (PSV), Urban Tolerance mean ( U T M ) , Diet specialization richness (Diet), Foraging behavior specialization richness (Forb), 

Foraging substrate specialization richness (Forsub), Habitat specialization richness (Hab). In the rows, the following predictive variables are: 

E V I mean, E V I standard deviation ( E V I sd), N D V I mean, and N D V I standard deviation ( N D V I sd). Each predictive variable was assessed i n 

separate models. Blue squares represent positive and significant associations. Red squares represent negative and significant associations. 

White squares represent non-significant associations. The selected best models—according to the lowest A I C and greater A l C W t values—are 

indicated w i t h a white dot. See detailed results i n Tables 1-3. 

T A B L E 2 Results of fixed-effect parameters i n the G L M M model performed i n this study, accounting for variations i n Urban Tolerance 

mean ( U T M ) , concerning the following predictors: E V I mean, E V I standard deviation ( E V I sd), N D V I mean, N D V I standard deviation 

( N D V I sd). 

Model ES SE t/z p-value AIC Delta AIC A l C W t 

Response variable: Urban tolerance mean 

E V I mean -4.380 0.221 -19.854 <0.001 3961.821 9.70 0.01 

E V I sd -7.251 0.855 -8.479 <0.001 4237.844 285.72 0 

NDVI mean -4.605 0.228 -20.176 <0.001 3952.123 0 0.99 

N D V T s d -6 .394 0.980 -6.524 <0.001 4265.989 313.87 0 

Note: Model, Individual models. Each predictor was modeled separately for each response variable. The significant and selected model—according to the 
lowest AIC value and higher AlCWt—is evidenced in bold. Additionally, conditional R2 (variance explained by fixed and random effects) and marginal R2 

(variance explained by the fixed effects) assessed for each model are reported in Appendix SI: Table S4. 
Abbreviations: AIC, Akaike information criterion; AlCWt, Akaike information criterion weighted; ES, estimate; SE, standard error. 

mean was correlated negatively to phylogenetic species 
variability, urban tolerance, and foraging substrate spe
cialism. Simultaneously, except for foraging substrate 
specialization, NDVI mean was the best predictor of all 
avian diversity metrics explored in this study. Hence, 
urban areas with high NDVI mean values were character
ized by a greater number of bird species (Ibafiez-Alamo 
et al., 2016), high functional richness, and phylogenetical 
diversity (Morelli, Benedetti, Ibafiez-Alamo, et al., 2021), 
and also a greater number of avian specialists. In agree
ment, previous studies found higher species richness and 
phylogenetic diversity associated with low-density urban 
areas, which we can assume greater NDVI mean values 
(Ibafiez-Alamo et al., 2016; Morelli et al., 2016; Morelli, 
Benedetti, Ibafiez-Alamo, et al., 2021). Conversely, in areas 
with high values of NDVI mean, avian assemblages were 
barely correlated phylogenetically and with few urban 

tolerant species and foraging substrate specialists. 
Our results show that a greater vegetation cover supports 
urban areas with avian assemblages taxonomically less 
related and with a greater number of native species. 
Therefore, greater NDVI mean values can identify urban 
areas with lower avian biotic homogenization (Morelli, 
Benedetti, Ibafiez-Alamo, et al., 2021). Accordingly, most 
studies focused on NDVI as a proxy of avian diversity 
found positive associations between NDVI and BSR and 
functional diversity (Bailey et al., 2004; Gillespie, 2005; 
Hurlbert & Haskell, 2003; Levin et al., 2007; Seto et al., 
2004). Leveau et al. (2020) found a negative correlation 
between NDVI and community evolutionary distinctive
ness in Argentine, contrasting our findings. Such discrep
ancies could be associated with the sampling size 
differences between both studies or the bird species com
posing such avian assemblages. For example, the overall 
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T A B L E 3 Results of fixed-effect parameters i n the G L M M model performed i n this study, accounting for variations i n each category of 

specialization richness: Diet (Diet), Foraging behavior (Forb), Foraging substrate (Forsub), and Habitat (Hab) concerning the following 

predictors: E V I mean, E V I standard deviation ( E V I sd), N D V I mean, N D V I standard deviation ( N D V I sd). 

Model ES SE tlz p-Value AIC Delta AIC A l C W t 

Response variable: Diet richness 

E V I mean 0.857 0.180 4.750 <0.001 3823.02 0.46 0.44 

E V I s d 2.276 0.610 3.735 <0.001 3831.9 9.34 0.01 

NDVI mean 0.905 0.189 4.784 <0.001 3822.56 0 0.55 

N D V I sd 2.405 0.688 3.498 <0.001 3833.59 11.03 0 

Response variable: Foraging behavior richness 

E V I mean 0.696 0.133 5.123 <0.001 4678.76 0.48 0.28 

E V I s d 2.197 0.430 5.110 <0.001 4680.38 2.11 0.12 

NDVI mean 0.733 0.140 5.248 <0.001 4678.28 0 0.35 

N D V I sd 2.555 0.486 5.255 <0.001 4679.02 0.74 0.24 

Response variable: Foraging substrate richness 

EVI mean -0.694 0.182 -3.806 <0.001 3715.79 0 0.69 

E V I s d -0.517 0.616 -0.840 0.4008 3729.63 13.84 0 

N D V I mean -0.678 0.189 -3.595 <0.001 3717.42 1.63 0.31 

N D V I s d 0.006 0.691 0.009 0.993 3730.34 14.55 0 

Response variable: Habitat richness 

E V I mean 1.424 0.294 4.844 <0.001 2356.12 2.41 0.23 

E V I s d 3.358 0.880 3.815 <0.001 2365.31 11.59 0 

NDVI mean 1.590 0.314 5.072 <0.001 2353.72 0 0.77 

N D V I s d 3.817 1.001 3.795 <0.001 2365.5 11.79 0 

Note: Model, Individual models. Each predictor was modeled separately for each response variable. The significant and selected model—according to the 
lowest AIC value and higher AlCWt—is evidenced in bold. Additionally, conditional R2 (variance explained by fixed and random effects) and marginal R2 

(variance explained by the fixed effects) assessed for each model are reported in Appendix SI: Table S4. 
Abbreviations: AIC, Akaike information criterion; AlCWt, Akaike information criterion weighted; ES, estimate; SE, standard error. 

avian assemblages in European cities can be characterized 
by higher community evolutionary distinctiveness than 
those found in Argentine (Ibanez-Alamo et al., 2016; 
Morelli et al., 2016). These differences can be related to the 
presence of Upupa epops in some urban areas, a species 
characterized by a high evolutionary distinctiveness score. 

Our findings indicate that the mean values of NDVI 
and EVI are suitable as proxies for monitoring different 
facets of avian diversity in urban areas. However, NDVI 
mean was the best predictor for most avian diversity met
rics. Considering that both vegetation indices are surro
gates of primary productivity (Huete, Didan, Miura, 
Rodriguez, Gao, & Ferreira, 2002), these findings are con
sistent with the species-energy hypothesis (Wright, 1983). 
Such a hypothesis claims that the species diversity of ver
tebrates (including birds) and invertebrates should 
increase with energy availability (Evans & Gaston, 2005; 
Hawkins, Field, et al., 2003; Lennon et al., 2004). Accord
ingly, our results show that areas at high productivity 
levels (greater vegetation biomass), represented by high 
EVI and NDVI values, support avian assemblages with a 

high number of native species, more diverse functionally, 
less related phylogenetically, and more distinctive spe
cies. Therefore, in such areas, we can expect a greater 
number of avian specialist species, particularly in diet 
and foraging behavior. 

Regarding vegetation heterogeneity, several studies 
demonstrated the ability of EVI sd and NDVI sd to repre
sent vegetation heterogeneity (Seto et al., 2004). Similar 
to EVI and NDVI mean, our results showed that EVI sd 
and NDVI sd were significantly and positively associated 
with most avian diversity facets. Instead, they were nega
tively correlated to phylogenetic species variability and 
urban tolerance. We expected such results because het
erogeneous environments provide a greater diversity of 
microhabitats and niches potentially suitable as refugia, 
substrate, and other resources for the organisms (Keppel 
et al., 2011; Stein et al., 2014; Tews et al., 2004). 
Nonetheless, EVI sd and N D V I sd were not the best pre
dictors for any avian diversity facets studied since they 
exhibited an overall lower performance than the other 
predictors. 
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C O N C L U D I N G R E M A R K S A N D 
P E R S P E C T I V E S 

Previous studies demonstrated that each satellite sensor 
(e.g., Landsat, Sentinel, or Gaofen) provides different veg
etation indices values. Such differences can affect the 
accuracy of the assessment of the vegetation attributes 
(Wu et al., 2020; Zhao et al., 2018). The search for the 
"best" proxy should consider the trade-offs among 
vegetation index effectiveness, economic costs, and spatio-
temporal resolution for each band and sensor type. 
Therefore, further studies could apply this framework by 
exploring other potential proxies of avian diversity metrics 
by using spectral indices based on other bands such as 
SWIR band (e.g., NDWI, Normalized Difference Water 
Index) or linear band transformations (e.g., TCT, Tasseled 
Caps Transformation), and by also examining different sat
ellite sensors (e.g., Sentinel-2A, Sentinel-2B, WorldView-2). 
Additionally, we encourage that upcoming studies should 
expand the temporal monitoring scheme to detect changes 
in avian assemblages of urban areas. 

The World Cities Report 2020 (United Nations Human 
Settlements Programme, 2022), jointly with the New Urban 
Agenda (United Nations, 2017) and the European Biodiver
sity Strategy for 2030 (EC, 2020), recognizes the value of 
urban green areas in removing carbon from the atmo
sphere and safeguarding biodiversity. Such programs call 
for different measures to promote green space areas, 
increasing environmental resilience in human settlements. 
Accordingly, our results indicate that greater cover of green 
areas can support different facets of urban avian diversity. 
For this reason, efficient conservation strategies in cities 
should be considered: (1) Maintaining different types of 
green-area habitats, not only forests and urban parks 
(Nguyen et al., 2020), but also larger urban greenspaces to 
preserve connectivity in the city (Callaghan et al., 2018; 
EC, 2020; Nguyen et al., 2020; United Nations, 2017); and 
(2) Restoring vegetation cover to support avian communi
ties confronting climate change (EC, 2020). Additionally, 
we recommend long-term and broader spatial monitoring 
of different avian diversity metrics in urban areas using 
NDVI mean to detect temporal and spatial changes in 
avian assemblages. Therefore, such approaches can help 
to explore the potential vulnerabilities of bird assemblages 
facing climatic and land-use changes and promote more 
efficient landscape restoration and urban planning, congru-
ently with biodiversity conservation. 

In summary, we tested the efficiency of remote sens
ing measurements as proxies' of multiple facets of avian 
diversity using data from several European cities, consid
ering that: (1) most articles focusing on vegetation indices 
and avian diversity metrics are based on single-city stud
ies; (2) assess proxies of avian diversity in urban areas is 

B E N E D E T T I E T A L . 

essential given that the spectral indices can find different 
technical limitations (e.g., higher reflectance from differ
ent material types) if compared to natural or rural areas 
(Xue & Su, 2017); and (3) several facets of avian diversity 
were not previously assessed (e.g., phylogenetic related-
ness, urban tolerance, and different specialization traits 
of avian assemblages) even though they can mirror 
undetected biotic homogenization (Petchey & Gaston, 
2006). Our findings showed that although all vegetation 
indices explored in this study were significantly related to 
most avian diversity facets, NDVI mean was the best 
explanatory vegetation index for avian diversity in urban 
areas. 
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Earth Engine catalog: https://developers.google.com/ 
earth-engine/datasets/catalog/LANDSAT_LC08_C02_Tl_ 
RT_TOA. The avian niche database, comprising 73 differ
ent traits, was obtained from Pearman et al. (2014) and is 
available in the supplementary material at https:// 
onlinelibrary.wiley.com/doi/10.llll/geb.12127. Phylogeny 
data for birds were downloaded from BirdTree https:// 
birdtree.org/subsets/ using the list avian species subset 
from Benedetti and Morelli (2022) in Figshare at https:// 
doi.org/10.6084/m9.figshare.19780285.vl. Evolutionary dis
tinctiveness score for birds were downloaded from https:// 
www.edgeofexistence.org/edge-lists/ by searching for "ED 
scores-birds". Species specific urban tolerance scores were 
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