
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

UNIFIED ACCESS TO REQUIREMENTS IN JIRA
JEDNOTNÝ PŘÍSTUP K POŽADAVKŮM V NÁSTROJI JIRA

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR DANIEL PINDUR
AUTOR PRÁCE

SUPERVISOR Ing. JAN FIEDOR, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2023

Institut: Department of Intelligent Systems (UITS)

Student: Pindur Daniel

Programme: Information Technology

Specialization: Information Technology

Category: Web applications

Academic year: 2022/23

Assignment:

1. Study the tools for developing OSLC adapters (e.g., Eclipse Lyo) and the Requirements
Management for Jira (R4J) app.

2. Study the OSLC Requirements Management (RM) specification.
3. Design an OSLC adapter providing RM-compliant information about requirements.
4. Implement the OSLC adapter to provide RM-compliant access to the requirements in the R4J app.
5. Demonstrate the functionality of the implemented adapter by accessing and editing requirements

in one or more R4J projects through the adapter's OSLC interface.

Literature:
OSLC: https://open-services.net/
OSLC Requirements Management specification: https://docs.oasis-open-projects.org/oslc-
op/rm/v2.1/os/requirements-management-spec.html
Eclipse Lyo: https://www.eclipse.org/lyo/
R4J: https://marketplace.atlassian.com/apps/1213064/r4j-requirements-management-for-jira

Requirements for the semestral defence:
First three items of the assignment.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Fiedor Jan, Ing., Ph.D.

Head of Department: Hanáček Petr, doc. Dr. Ing.

Beginning of work: 1.11.2022

Submission deadline: 10.5.2023

Approval date: 3.11.2022

Bachelor's Thesis Assignment
148230

Unified Access to Requirements in JIRATitle:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

Abstract
The goal of this work is to create an interface for accessing requirements resources stored in
Jira Software with the Requirements for Jira (R4J) plugin using an OSLC adaptor for the
Requirements Management specification. The adaptor has been split into two to explore
the possibility of not needing the R4J plugin – one for the Jira Software (satisfying all
requirements of the Requirement Management specification) and one for the R4J plugin
(providing additional functionality). Both adaptors have been implemented by utilizing the
Eclipse Lyo tooling and the OSLC4J library. The basic overview of the fundamental tech-
nologies of OSLC, OSLC Core and Requirement Management specifications, Jira and R4J is
provided. The thesis contains a detailed summary of the adaptors’ design, implementation,
and testing process, as well as an evaluation of the results and used technologies.

Abstrakt
Cílem této práce je vytvořit rozhraní pro přístup k požadavků uloženým v Jira Software
s modulem Requirements for Jira (R4J) s využitím OSLC adaptéru pro specifikaci Správa
požadavků. Adaptér byl rozdělen na dvě části, z důvodu vyhodnocení zda je možné splňo-
vat požadavky i bez modulu R4J – jeden pro Jira Software (splňující všechny požadavky
specifikace Správa požadavků) a druhou pro modul R4J (poskytující další funkce). Oba
adaptéry byly implementovány s využitím nástrojů Eclipse Lyo a knihovny OSLC4J. Je
uveden základní přehled základních technologií OSLC, specifikací OSLC Core a Správa
požadavků, Jira a R4J. Práce obsahuje podrobné shrnutí procesu návrhu, implementace a
testování adaptérů a vyhodnocení výsledků a použitých technologií.

Keywords
OSLC, OSLC Adaptor, OSLC Requirement Management, Jira, Requirements for Jira, R4J,
Eclipse Lyo, RDF, Linked Data, REST

Klíčová slova
OSLC, OSLC Adaptér, OSLC Správa Požadavků, Jira, Requirements for Jira, R4J, Eclipse
Lyo, RDF, Propojená Data, REST

Reference
PINDUR, Daniel. Unified Access to Requirements in JIRA. Brno, 2023. Bachelor’s thesis.
Brno University of Technology, Faculty of Information Technology. Supervisor Ing. Jan
Fiedor, Ph.D.

Unified Access to Requirements in JIRA

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of Ing. Jan Fiedor, Ph.D. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

. .
Daniel Pindur

May 9, 2023

Acknowledgements
I would like to thank my supervisor Ing. Jan Fiedor, Ph.D., for his guidance and advice,
which were invaluable during the preparation of this thesis. Special thanks go to my family
and friends for their support while working on this thesis and during my studies at BUT.

Contents

1 Introduction 3
1.1 Motivation and Objectives . 3
1.2 Solution . 3
1.3 Results . 4
1.4 Structure of the Thesis . 4

2 Requirements Engineering 6
2.1 Requirements Management . 6
2.2 Requirement Management Systems . 7
2.3 Requirements Interchange Format . 7

3 OSLC – Open Services for Lifecycle Collaboration 10
3.1 Overview . 10
3.2 Fundamental Technologies . 11
3.3 OSLC Specifications . 12

3.3.1 OSLC Core Specification . 12
3.3.2 OSLC Requirement Management Specification 14

3.4 Eclipse Lyo . 16

4 Authentication 18
4.1 Basic Access Authentication . 18
4.2 Open Authorization . 18

4.2.1 OAuth 2.0 . 19

5 Adaptor Design 22
5.1 Architecture Overview . 22
5.2 Tools Selection . 23
5.3 Adaptors Modeling . 23

5.3.1 Domain Modeling . 23
5.3.2 Toolchain Modeling . 27

5.4 Mapping OSLC resources to Jira and R4J 30

6 Implementation 32
6.1 Code Architecture . 32
6.2 Configuration and Build Scripts . 32
6.3 Jira API Java SDK . 33
6.4 Authentication . 33
6.5 Creation and Update Capability . 33

1

6.6 Query Capability . 35
6.7 Bugs and Limitations . 36

7 Evaluation and Testing 37
7.1 Adaptors Testing . 37
7.2 OSLC Evaluation . 37
7.3 Jira and R4J Evaluation . 39

8 Conclusion 40

Bibliography 41

A Setup and Usage manual 45
A.1 Jira Installation . 45
A.2 R4J Installation . 45
A.3 SSL Configuration . 45
A.4 Adaptors Configuration . 46
A.5 Adaptors Usage . 46

B Contents of the included storage media 47

2

Chapter 1

Introduction

Software development is a complex process that requires careful planning and management.
Companies often use various software applications to support the development process,
such as issue tracking, version control, or requirement management systems. However, this
creates a new problem – the integration of these applications. This thesis focuses on the
integration of two such applications used for Requirement Management, Jira Software and
Requirements for Jira (R4J) plugin, using the Open Services for Lifecycle Collaboration
(OSLC) standard.

1.1 Motivation and Objectives
Requirements Engineering is a crucial part of the software development process. As such,
the management of the requirements is supported by various software applications called
Requirement Management Systems, out of which the most notable are IBM Doors and
R4J. It is often necessary to integrate these systems with other applications used in the
development process. IBM Doors NG offers a built-in OSLC interface for this purpose, but
no such support is provided in R4J. This significantly limits the possibility of migration
from IBM Doors to the R4J solution, as the companies often use the OSLC interface for
integration – e.g., Honeywell International Inc. uses the OSLC interface to provide its
clients with access to requirements. The goal of this thesis is to explore and create a
solution that will allow access to requirements stored in Jira R4J via the OSLC interface
for Requirement Management Specification.

1.2 Solution
There are two ways to add OSLC support to a web application, either as an add-on or a
standalone web application. After careful consideration, a decision was made to create the
adaptor as a standalone web application. The main reason for this decision was to reduce
the coupling between the web application and the OSLC interface, which allows for easier
maintenance and development, as well as the possibility of using the OSLC adaptor with
other web applications, besides Jira R4J, in the future.

During the initial design phase, it was also decided to split the adaptor into two separate
adaptors. One for Jira, responsible for the main functionality specified by the Requirement
Management Specification, and one for R4J, providing additional functionality, such as the
ability to create folders and link requirements to folders. This decision was made in order

3

to explore the possibility of not needing to use the R4J plugin at all and instead using
Jira directly. It also leads to the final solution being generic and less coupled to a specific
web application, allowing for easier enhancement or replacement of the underlying web
application in the future.

Both adaptors were created using Eclipse Lyo, a project containing SDKs and other
utilities used for easier development of OSLC applications. Lyo Designer was used to
create the Domain and Toolchain models, which represent the data and capabilities of both
adaptors. These models were then fed to Code Generator to generate the code skeletons,
compliant with the OSLC specification, for the adaptors. The generated skeletons were then
filled with the actual code, implementing the functionality of the adaptors and extended
with additional functionality, such as OAuth2 authentication.

1.3 Results
Both adaptors were created as standalone REST-based Java web applications built on the
Maven framework. During the development, a collection of HTTP requests was created
in Postman, detailing the example usage of created adaptors. The functionality of both
adaptors was verified by end-to-end testing, utilizing the Postman Test utility. For further
verification of the base capability of Requirement Management Specification, implemented
in Jira adaptor, a basic Python client was developed, providing the option to download and
upload all of the requirements, in the specified project, in the ReqIF format.

The mapping of the data provided by Jira and R4J API to the OSLC format was done
as generically as possible to accommodate all possible use cases, which differ significantly
between different companies. During the development, some issues and missing functional-
ity were discovered in the R4J API, resulting in the non-optimal implementation of some
of the functionality of the R4J adaptor.

The utilities and SDKs provided by Eclipse Lyo were very useful in the development and
design stages of the adaptors, greatly reducing the time needed to adopt the OSLC standard.
However, the documentation and examples provided by the Lyo project were outdated and
not detailed enough, also lacking some deeper explanation of important concepts. The con-
tents of the Requirement Management Specification were also not documented sufficiently,
compared to, for example, the Automation Domain Specification, resulting in difficulties in
the comprehension of the specification.

1.4 Structure of the Thesis
This section provides a brief overview of the structure of the thesis itself. Chapter 2 covers
the basics of requirements management and its fundamental concepts, as well as a basic
overview of requirement management systems. Chapter 3 provides a detailed description of
the OSLC standard, its concepts, the Core and Requirement Management specification, and
the tooling provided by the Lyo project. In production environments, security is a crucial
part of any application. The OSLC interface has to be secured not to allow unauthorized
access to the data. This is done by using the BASIC and OAuth2 authentication methods,
which are described in Chapter 4. Chapter 5 describes the design of the adaptors, including
the Domain and Toolchain models, as well as the resource mapping. Chapter 6 gives a
summary of the implementation approaches and challanges faced during the development of

4

the adaptors. The testing and evaluation of the created adaptors are described in Chapter 7.
The installation and usage guide can be found in Appendix A.

5

Chapter 2

Requirements Engineering

This chapter briefly covers one of the main parts of requirement engineering, which is
requirements management, its fundamental concepts, and a basic overview of Jira Software
and Requirements for Jira plugin. Information provided in this overview is important for
understanding the requirements and needs of the adaptor.

2.1 Requirements Management
The aim of requirement engineering is the verification of the accomplishment of the project’s
goals and objectives. The process is divided into several successive stages, the most essential
being analysis, documentation, tracing, and change control. The purpose of this process is
to track the requirements and their status, identify inconsistencies and provide an overview
of the project progress to concerned stakeholders [14].

One of the most important parts of requirement management is traceability. It is the
ability to track and assess the state of the requirement and its changes during the de-
velopment lifecycle, providing an audit trail, usually used for reporting to stakeholders.
Traceability can be achieved by linking requirements to other artifacts – e.g., requirements,
test cases, or build stories.

Requirements

Requirements are the foundation for determining the needs of system stakeholders and the
system itself. They represent a condition or capability that must be met by a system or
product [18].

They can be divided into three main categories, functional, non-functional and safety
requirements. Functional requirements describe the system behavior or product features
(e.g., the system will send an email with a forgotten password prompt when requested by
the user), while non-functional requirements usually specify the system’s performance or
product properties (e.g., a task has to be completed under 200 ms). Safety requirements are
defined for the purpose of risk reduction and are usually specified by the industry standards
and regulations (e.g., the autonomous vehicle should not accelerate if the distance to the
object in front of it is less than 1 m).

6

2.2 Requirement Management Systems
Requirement Management System is a software tool used for the management of project
requirements during the development lifecycle. Currently, there are several different re-
quirement management systems developed by competing companies available on the mar-
ket. Some of the most popular ones are IBM Doors and Jira Software with Requirements
for Jira plugin. A high-level overview of these options is provided in the following sections,
as they are important in the context of this thesis.

IBM Doors

IBM Doors [17] is a requirement management system developed by IBM [16]. It is a
complex tool designed to handle large projects with many requirements and stakeholders.
The tool is commonly used in the aerospace, defense, and automotive industries. It provides
a wide set of features to aid in the requirement management processes, such as requirement
traceability, collaboration, and ease of integration with other IBM tools. It is also designed
in a way to help companies comply with industry standards and regulations for requirement
management and project development. The most recent version called IBM Doors NG also
provides all of the previously mentioned features through the web user interface, REST
API as well as native OSLC interface.

Jira Software and Requirements for Jira

Jira Software [19] is an issue-tracking and project management tool developed by Atlas-
sian [2]. Compared to IBM Doors, it provides a more user-friendly interface and is more
flexible, as its functionality spans across many different areas, such as project management,
test management, and bug tracking. It also allows the end customers to extend the ca-
pabilities of their Jira instance by adding plugins developed by Atlassian or third-party
developers, augmenting the original functionality, or adding completely new features. The
contents of Jira and its functionality are accessible through the web user interface or REST
API [22] with BASIC or OAuth2 authentication, further described in chapter 4. It does
not provide a native OSLC interface, but the support for OSLC can be added by installing
a third-party plugin (e.g., OSLC Connector for Jira [31] for Change Management Specifi-
cation).

Requirements for Jira (R4J) [52] is a native Jira plugin extending the capabilities
of Jira by adding support for requirements management by making use of Jira issues.
It provides the ability to manage requirements by creating a folder structure, enabling
importing and exporting in the reqIF format, enabling traceability, by utilizing the Jira link
functionality, and adding the option to export these links into a comprehensive traceability
matrix. All of these features are available both from the Jira web user interface as well as
from the R4J REST API [53]. Because the requirement management system provided by
R4J is a part of Jira, it allows for better traceability, as the requirements can not only be
linked to other requirements but also to other Jira issue types, such as bugs, stories, test
cases, and many more.

2.3 Requirements Interchange Format
Requirements Interchange Format (ReqIF) [57] is an XML-based format used for transfer-
ring and sharing requirements between requirement management systems or other tools.

7

The format defines a standardized way to describe requirements, their attributes and prop-
erties, relations between requirements, and a hierarchical structure, in which the require-
ments are contained. Each object, type, attribute, and relation contains a unique identifier
by which it can be referenced from other objects.

The document is divided into two parts, THE-HEADER, containing metadata information
about the requirement collection, and CORE-CONTENT, which is then further split into five
sections, each containing different information about the requirements:

• DATATYPES – definitions of datatypes used in the document

• SPEC-TYPES – definitions of types of requirements, its attributes and relations, the
data type of the attribute is defined by a reference to a definition in DATATYPES

• SPEC-OBJECTS – a collection of requirements and its properties, described in a format
specified in SPEC-TYPES

• SPEC-RELATIONS – a collection of relations between requirements, described in a for-
mat specified in SPEC-TYPES

• SPECIFICATIONS – requirements hierarchical tree structure

An extract of a small sample file to illustrate the structure of a ReqIF document can
be seen in Listing 2.1.

8

<?xml version="1.0" encoding="UTF-8"?>
<REQ-IF xmlns="http://www.omg.org/spec/ReqIF/20110401/reqif.xsd">

<THE-HEADER>
<REQ-IF-HEADER IDENTIFIER="654d6119-6d4f-4ab9-b43f-39e4360353ff">

<CREATION-TIME>2023-04-16T17:15:41.445316</CREATION-TIME>
<TITLE>Sample title</TITLE>

</REQ-IF-HEADER>
</THE-HEADER>
<CORE-CONTENT>

<REQ-IF-CONTENT>
<DATATYPES>

<DATATYPE-DEFINITION-STRING IDENTIFIER="Text"/>
</DATATYPES>
<SPEC-TYPES>

<SPEC-OBJECT-TYPE IDENTIFIER="FUNC-REQ" LONG-NAME="Requirement">
<SPEC-ATTRIBUTES>

<ATTRIBUTE-DEFINITION-STRING IDENTIFIER="FUNC-REQ-TXT"
LONG-NAME="Description">
<TYPE>

<DATATYPE-DEFINITION-STRING-REF>
Text

</DATATYPE-DEFINITION-STRING-REF>
</TYPE>

</ATTRIBUTE-DEFINITION-STRING>
</SPEC-ATTRIBUTES>

</SPEC-OBJECT-TYPE>
</SPEC-TYPES>
<SPEC-OBJECTS>

<SPEC-OBJECT IDENTIFIER="TEST-ID-1" LONG-NAME="Test REQ 1">
<VALUES>

<ATTRIBUTE-VALUE-STRING THE-VALUE="Test REQ description">
<DEFINITION>

<ATTRIBUTE-DEFINITION-STRING-REF>
FUNC-REQ-TXT

</ATTRIBUTE-DEFINITION-STRING-REF>
</DEFINITION>

</ATTRIBUTE-VALUE-STRING>
</VALUES>
<TYPE>

<SPEC-OBJECT-TYPE-REF>FUNC-REQ</SPEC-OBJECT-TYPE-REF>
</TYPE>

</SPEC-OBJECT>
</SPEC-OBJECTS>
<SPEC-RELATIONS />

</REQ-IF-CONTENT>
</CORE-CONTENT>

</REQ-IF>

Listing 2.1: A simple ReqIF file containing one requirement.

9

Chapter 3

OSLC – Open Services for
Lifecycle Collaboration

This chapter provides a brief overview of the OSLC (Open Services for Lifecycle Collab-
oration) [30], its fundamental technologies, and the Core and Requirement Management
specifications, which are used in this thesis.

3.1 Overview
OSLC [30] is an OASIS Open Project [28] responsible for developing a set of open specifi-
cations, which are used for easier integration of software tools. A more detailed overview
of the OSLC project can be found in the OSLC Primer [42].

The initiation of the OSLC project was driven by the increasing number of software tools,
which are used in the software development lifecycle. These tools are usually developed by
different organizations, which leads to the problem of difficult tool integration. In the past,
this was solved by developing specific translators and adaptors for each tool, which was
a time-consuming and expensive process. OSLC was created to solve this problem, by
creating a set of open specifications to integrate the resources managed by the software
tools into the web of data.

OSLC offers two different methods of data integration – Linking data via HTTP and
Linking Data via HTML User Interface [41].

Linking data via HTTP

Linking of the data via HTTP is based on OSLC-defined common tool protocol for accessing,
creating, updating, and deleting resources. The protocol is based on internet technologies
and standards, such as REST, RDF, and Linked Data, described in section 3.2. It allows any
other tool, that implements the same specification, to access any of the managed resources.
Linking of the data is done by referencing resources by HTTP URIs in the representations
of other data.

Linking Data via HTML User Interface

OSLC protocol can be used to link data via HTML user interface as well, making use of the
REST Code on demand optional constraint. This allows the client to access and display
fragments of an existing user interface, provided by the tool, without the need to implement

10

the user interface itself. This delegated user interface then enables the client to access the
resources managed by the tool.

3.2 Fundamental Technologies
OSLC is built on top of several fundamental technologies. This section lists these technolo-
gies and introduces briefly each of them. Figure 3.2 shows how these technologies are used
together to create the base for the OSLC architecture.

REST

REST (REpresentational State Transfer) [12] is a web software architecture style, describing
a set of constraints and properties, which should be followed in communication between
computer systems, most commonly between client and server. In REST architecture, the
server is responsible for exposing a common interface, which allows the client to access
resources by using standard HTTP methods. Each resource the server provides has a
unique identifier, that allows the resource to be identified unambiguously and completely.
When requested, the server responds with a representation of the resource. The client can
then use this resource to create new resources and update or delete existing resources. The
communication between the server and the client is stateless, meaning every request the
server receives can be fully understood in isolation, without the context of previous requests.
The most common HTTP methods used in REST are POST, GET, PUT, and DELETE, which
correspond to the CRUD operations (Create, Read, Update, and Delete). REST also defines
one optional constraint – Code on demand, which allows the server to send executable code
to the client, extending the functionality of the client.

RDF

RDF (Resource Description Framework) [58] is a W3C (World Wide Web Consortium) [69]
standard for representing data on the web. It describes resources in the form of a directed
graph, where information about each element is represented as a triplet – example of a single
triplet can be seen in Figure 3.1. Triplets are statements about the resource composed
of subject, predicate, and object. The subject describes the resource, and the predicate
specifies its properties and relationships, between the subject and the object. Most widely
used RDF serialization formats are Turtle [66], RDF/XML, and RDF/JSON.

Subject Object
Predicate

Figure 3.1: RDF Graph Triplet (source: [54])

Linked Data

Linked Data [24] are structured data containing references to other data. This enables
computers to query and interpret the data, allowing the internet to become one big database.
The main principles of Linked Data are [25]:

1. URIs [67] are used as names to identify things

11

2. People can lookup things using HTTP URIs

3. Information returned as a result of the search are provided in an open standard format
(for example RDF)

4. Returned information contain more URIs, enabling discovery of other things

3.3 OSLC Specifications
OSLC defines a set of open specifications for integrating software tools. OSLC consists of
multiple working groups, which are each responsible for the development of a specific spec-
ification. There are two types of specifications – Core and Domain. The Core specification
provides a basis for the Domain specifications, which are then focused on a specific field,
for example, Requirement Management, Change Management, Configuration Management,
etc. This section provides a summary of the OSLC Core and Requirement Management
specifications, which are used in this thesis.

3.3.1 OSLC Core Specification

At the time of writing this thesis, the current version of OSLC Core Specification [37] is
3.0. The OSLC Core Specification defines a set of common principles, capabilities, and
restrictions, which should be common across all OSLC Domain Specifications. Specific
OSLC Domain Specification will then describe which of these capabilities are required or
optional for conformance with the specification. It also introduces several resource types
and properties with the namespace http://open-services.net/ns/core# and prefix oslc.
In the following sections, a basic overview of the core concepts is provided.

 OSLC Domains
Vocabularies Constraints

RM DM CCM QM Automation

 OSLC Core
Resource Preview Query

Discovery Delegated UI Attachments

 LDP
Containers Accept-Post Link Relations Paging

Open-World Assumptions JSON-LD Turtle Patch

 HTTP
POST GET PUT DELETE

Authentication Resource MIME Types
Content Negotiation

REST

Domains of interest that
maintain separation of
concerns and establish
collaborative value streams
through integration

Discoverability through
Minimal, discoverable, self-
describing capabilities to
enable application integration

Reducing Variability
through Self-describing,
semantically rich, linked data
resources leveraging
HATEOAS

Address Complexity
through HTTP and REST as
the standard mechanism for
distributed, loosely coupled
APIs

OSLC Change Management
3.0 and OSLC Configuration

Management 1.0
Specifications, OASIS

OSLC Core 3.0 Specification,
OASIS

LDP 1.0 Specification,
LDP.next Working Group,

W3C

HTTP 1.1 Specification, IETF

Figure 3.2: OSLC Core 3.0 architecture (source: [37], remade)

12

http://open-services.net/ns/core#

Resource Shape

OSLC works with resources, which are uniquely identified by a URI [67], and are represented
by RDF triples. Resource Shape [36] is a resource of type oslc:ResourceShape, that
describes the contents and constraints of other resources. Figure 3.3 shows a simple oriented
graph representing a Resource Shape.

property
Resource Shape

valueShape

allowedValues
Property Allowed Values

Figure 3.3: Resource Shape (source: [36], remade)

Each Resource Shape has a defined set of Properties, of type oslc:Property, which
specifies the value type and cardinality of the property. The value type of the property can
be either a reference to another Resource Shape, or a basic data type. The cardinality of
the Property specifies if the Property is required, optional, or can be present multiple times.
OSLC Core Specification defines these basic data types: XMLLiteral, boolean, dateTime,
decimal, double, float, integer, string, and langString.

Discovery

For the reasons of flexibility and to reduce coupling, the OSLC Core Specification does
not specify unequivocally which capabilities the server has to provide. Instead, it offers a
mechanism for the incremental discovery of services and capabilities the target server has
implemented. Figure 3.4 shows a diagram of the OSLC Discovery mechanism.

1..n
contains

Service Provider
Catalog

0..n
provides

Service Provider

Service

creates

0..1

defines creation
resource shape

Creation Factory

provides

0..1

defines query
result resource shape

Query Capability

Delegated Dialog
UI

Resource
Shape

Resource

0..n

references

Figure 3.4: OSLC Discovery diagram (source: [33], remade)

13

The server always has to specify the starting point of discovery, which is the Service
Provider Catalog. The Service Provider Catalog is a resource containing a list of available
Service Providers, which then contains all of the available Services. From there, the client
is able to find the URIs for Creation Factories, Dialogs, and Query services. Additional
information about the Discovery mechanism can be found in the Discovery section of the
OSLC Core Specification [33].

Basic Capabilities

OSLC Core Specification defines basic CRUD (Create, Read, Update, Delete) operations for
resources. However, the decision about which of these operations are required or optional
for which resource is specified in each of the OSLC Domain Specifications. Read, Update,
and Delete operations are performed by their respective HTTP request method to the URI
of the target resource. Create operation is performed by a POST operation to the Creation
Factory URI for a specific resource.

Delegated UI

OSLC Core Specification introduces Delegated UI [32] for resource creation – Creation
Dialog, and resource selection – Selection Dialog. Both of these dialogs are examples of
linking of the data via HTML mentioned in 3.1. Dialogs are returned as a combination of
HTML iframe and JavaScript code. The decision about which of these dialogs are required
or optional is again left up to the OSLC Domain Specification.

Query Capability

As the OSLC server manages a large number of resources, it has to provide a way for
clients to search and filter these resources. OSLC Core Specification specifies a mechanism
for this, called OSLC Query [35]. OSLC Query allows clients to look up a set of resources
by performing a GET or POST request on an oslc:queryBase URI. It offers two separate
capabilities, a full-text search, identified by the oslc.searchTerms parameter, and a query
search for resources containing specific properties and values, identified by oslc.where
parameter. Each query search must consist of at least one property, comparison operator,
and value. The result of the search is returned as a resource of type oslc:QueryResult,
which contains a list of references to the resources found (example of oslc:QueryResult
can be found seen in Listing 3.1).

Authentication and Error Responses

OSLC Core Specification provides guidance on how to handle authentication and error
responses. Allowed authentication methods are Basic Authentication and OAuth. The
details of the authentication process are further explained in Chapter 4.

All error responses should be returned as a resource of type oslc:Error [34], which
contains a human-readable message and a machine-readable error code. This enables clients
to handle errors in a generic way.

3.3.2 OSLC Requirement Management Specification

At the time of writing this thesis, the current version of OSLC Requirement Management
Specification [47] is 2.1. The specification builds on top of the OSLC Core Specification

14

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:oslc_data="http://open-services.net/ns/servicemanagement/1.0/"
xmlns:oslc="http://open-services.net/ns/core#"
xmlns:oslc_rm="http://open-services.net/ns/rm#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:foaf="http://xmlns.com/foaf/0.1/">
<oslc:ResponseInfo rdf:about="...">

<oslc:totalCount rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
>2</oslc:totalCount>
</oslc:ResponseInfo>
<rdf:Description rdf:about=".../queryRequirement">

<rdfs:member>
<oslc_rm:Requirement rdf:about="...">

...
</oslc_rm:Requirement>

</rdfs:member>
<rdfs:member>

<oslc_rm:Requirement rdf:about="...">
...

</oslc_rm:Requirement>
</rdfs:member>

</rdf:Description>
</rdf:RDF>

Listing 3.1: OSLC Query Result example

and specifies which of the capabilities are required or optional for conformance with the
specification. The main goal is to provide an extensive, but not restrictive, interface for
requirement management systems and support a wide range of integration scenarios. One of
the main requirements for an OSLC RM Server is the ability to accept and return resources
in RDF/XML, XML, and JSON. It also introduces new resource types in the namespace
of http://open-services.net/ns/rm# and with the prefix oslc_rm. These resource types
are described in the following sections.

Requirement

oslc_rm:Requirement [43] is a resource shape used for describing a single requirement
described in Section 2.1. Requirement Management Specification defines an extensive set
of properties and constraints [46] for the requirement shape, but there are few that are
especially important in the context of this work.

Each individual requirement should have a title, usually containing the name of the
requirement, and a description, which consists of the actual statement of need. These two
requisites are realized by the properties dcterms:title and dcterms:description.

15

http://open-services.net/ns/rm#

Requirements should also be able to reference other requirements or requirement col-
lections that are related to them. This is done by the properties oslc_rm:decomposedBy
and oslc_rm:decomposes, the difference being the direction of the relationship.

Requirement Collection

oslc_rm:RequirementCollection [44] is a resource shape used for describing a collection
of requirements, which constitute some statement of need. Requirement Management Spec-
ification again defines the constraints and properties for this resource shape [45], but they
are nearly the same as for oslc_rm:Requirement resource shape.

3.4 Eclipse Lyo
Eclipse Lyo [9] is an open-source project hosted by the Eclipse Foundation [7] and developed
by the OSLC community. It provides a Java SDK, as well as other utilities, to enable easier
adoption of the OSLC technologies and better developer experience. The following sections
give a concise summary of the key components of Eclipse Lyo, which are used to implement
the OSLC adaptor in this thesis.

OSLC4J SDK

OSLC4J Software Development Kit (available at Maven Repository [27]) is a set of Java
libraries used for building OSLC-compliant REST-based servers and clients. It includes
support for common OSLC capabilities, resource shapes, service provider documents, and
marshaling and unmarshaling1 of resources to Java objects.

Lyo Designer

Lyo Designer [26] is an Eclipse plugin used for the graphical design of OSLC adaptors. It
offers the capability to model the OSLC resources, their properties, and constraints, as well
as the OSLC services. For separation of concerns, Lyo Designer provides three views for
modeling different parts of the final adaptor:

• Domain Specification View – for modeling the OSLC resources, their properties,
and relationships between them

• Toolchain View – for modeling the relationships between separate adaptors and
resources, they consume and produce

• Adapter Interface View – for modeling the services and capabilities of a single
adaptor

Lyo Designer also contains a utility called Code Generator, which is capable of gen-
erating code skeletons, compliant with OSLC, from the graphical models of the adaptors
designed in Lyo Designer. The generated code is based on the OSLC4J SDK and can
be used as a starting point for the implementation of the adaptor. Out of the box, the

1Marshaling is the process of transforming the representation of data from memory into the format
used for transmission. It is used for passing the data of an Object to a remote server, with the CodeBase
attached, specifying where the implementation of the object can be found.

16

generated code contains the definitions of the OSLC resources, their properties and con-
straints, definitions of the OSLC services, and code for marshaling and unmarshaling of the
resources. The program logic (how the resources should be handled after unmarshaling)
and implementation of the services are left to be done by the developer. The generated
code contains designated places where the developer should add code, which provides the
functionality for the adaptor. This allows the code to be regenerated, upon the changes to
the model, without breaking or losing any of the underlying implementation and custom
code.

17

Chapter 4

Authentication

Authentication is the process of verifying the identity of a person or user. It is used to
restrict the server resources or functionality to only authorized users or specific groups of
users. Several different authentication methods exist, each with its own advantages and
disadvantages. This chapter gives a brief overview of BASIC and OAuth authentication
methods, which are used in this thesis to secure the OSLC adaptors as required by the
OSLC specification.

4.1 Basic Access Authentication
BASIC (Basic Access Authentication) was first defined as a part of HTTP 1.0 specifica-
tion [15], but the standard has been since superseded and redefined as part of its own
RFC [63]. As its name suggests, BASIC is the most fundamental method of verifying the
identity of a client against a server. It utilizes the HTTP Authorization header and pro-
vides the server with the credentials of the client in the form of Authorization: Basic
<credentials>. The credentials are provided as a string, encoded in base64 [62], containing
the username and password joined by a colon.

The main advantage of using BASIC authentication is its ease of implementation. It
is supported by most of the available frameworks and does not require any cryptographic
operations. However, it is also the most vulnerable one, as the credentials are sent in plain
text, which makes it susceptible to interception by a third-party and potential credentials
theft. Most of these insecurities can be mitigated by using TLS to encrypt the communica-
tion between client and server, but it is still not a recommended method for authentication
in production environments.

4.2 Open Authorization
OAuth (Open Authorization) is a standard for delegated authentication and authoriza-
tion, which stemmed from the need to enable the end users to authenticate in third-party
applications and services using their credentials from another service, which acts as the au-
thorization server. Originally, this was done by sharing the credentials with the third-party
application, which then used them to authenticate the user. This method was vulnerable
to the same security issues as BASIC authentication, and on top of that, it also allowed
the third-party application to access and read the user’s credentials. OAuth was created
to mitigate these problems and create a standardized way for services to offer authenti-

18

cation and authorization to third-party applications without the need to share the users’
credentials between them. The standard was first introduced as OAuth 1.0 [64], which used
asymmetric cryptography to encrypt and verify the credentials, but was later superseded
by OAuth 2.0 [65], which is easier to implement, as it leaves the encryption and verification
of the credentials origin to TLS protocol. The next section provides a brief overview of
OAuth 2.0 and its authentication workflow.

4.2.1 OAuth 2.0

OAuth 2.0 is a standard published as a reaction to new use cases. It is not backward
compatible with OAuth 1.0. The standard enforces that all of the communication between
the client and the authorization server is done using HTTPS.

Several different roles are defined by the standard:

• Resource owner – entity capable of granting access to a protected resource

• Resource server – server containing the resources, capable of authorization using
the access tokens

• Client – third party application, which is requesting access to resources on the re-
source server on behalf of the resource owner

• Authorization server – issues access tokens to resource owner after successful au-
thentication and authorization

Code Grants

The standard also defines four authorization grants, ways for a client to obtain the access
token. For simplicity, only the most common one, Authorization Code Grant, is described,
as it is the one used in this thesis.

ClientResource
owner

Resource
server

Authorization
server

Request data

Request data

Unauthorized

Authorization code request

Redirect to login/authorization prompt

Authenticated and scope approved

Authorization code

Access token request
with authorization code, client ID and client secret

Access and Refresh tokens

Request data with access token

Requested data

Requested data

Figure 4.1: OAuth 2.0 Authorization Code Grant flow diagram

19

Authorization Code Grant is a two-step process to obtain the access token. The
user is first redirected to the authorization server with a request to obtain an authorization
code. The authorization server authenticates the user and asks him for approval to grant
the client specified scope of access to resources on the resource server. After the approval,
the user is redirected back to the client with the authorization code. The client then uses
the code together with client ID and client secret to make a request to the authorization
server to obtain the access token. The authorization server then verifies the authorization
code and issues the access token. The whole process is depicted in Figure 4.1.

Proof Key for Code Exchange

PKCE (Proof Key for Code Exchange) [51] builds on top of Authorization Code Grant to
further secure the process. It adds a secret called Code Verifier. Code Verifier is then to
transformed into a value called Code Challenge, which is sent together with the authoriza-
tion code request. Code Verifier is then sent together with the authorization code as a
part of the access token request. The authorization server issues a new access token only
if the received Code Verifier matches the one used to generate the Code challenge. The
modified flow is depicted in Figure 4.2. This removes the risk of the authorization code
being intercepted and used to generate the access token, as the authorization server will
not create the access token without the Code Verifier, which is not part of the intercepted
response.

ClientResource
owner

Resource
server

Authorization
server

Request data

Request data

Unauthorized

Authorization code request with Code Challenge

Redirect to login/authorization prompt

Authenticated and scope approved

Authorization code

Access token request
with authorization code, client ID, client secret and Code Verifier

Access and Refresh tokens

Request data with access token

Requested data

Requested data

Generate Code Verifier
and Code Challenge

Validate Code Verifier
against Code Challenge

Figure 4.2: OAuth 2.0 Proof Key for Code Exchange flow diagram

20

Access and Refresh Tokens

After successful authorization against the authorization server, the client is issued an access
token. The client then uses this token to access the resources available on the resource
server by sending it with each HTTP request in the Authorization header. Access tokens
can be either an opaque string, called a bearer token, or a sender-constrained token. Sender-
constrained tokens can be used only to authorize requests sent by the same client to whom
the token was issued. This is usually achieved by asymmetric cryptography of the token. To
comply with the standard, the token cannot convey user identity or any other information
about the user.

Together with the access token, the authorization server also issues a refresh token,
which can be used to generate a new access token without user interaction with the autho-
rization server. This allows the authorization server to issue access tokens with a shorter
expiration time, reducing the impact of the token being intercepted and stolen.

Scopes

Compared to OAuth 1.0, OAuth 2.0 also introduces the concept of OAuth Scopes, allow-
ing the authorization server to issue access tokens with various limitations on access to
resources. The scopes are defined by the resource server. The requested scope is part of the
authorization request to the authorization server and is bound to the access token generated
as a result of the authorization. This can be used to limit the generated access token to
read-only access, which is useful for third-party applications that do not need to modify
the resources on the resource server.

21

Chapter 5

Adaptor Design

This chapter details the process of designing the Jira and R4J adaptors, as well as the
decisions made during the process and the reasoning behind them. The chapter is divided
into several sections, each detailing different steps of the design process.

5.1 Architecture Overview
There are two possible ways how to add the OSLC capabilities to a third-party web ap-
plication – either by extending the application via a plugin or by creating a separate self-
contained application that acts as a middle-man between the third-party application and
the user. Both of these approaches can be used to create the adaptor for Jira and R4J, as
Jira allows the creation of third-party plugins and exposes its data through the REST API.
At the start of the design process, a decision was made to keep the adaptor as generic as
possible, to allow the option to turn it into a generic adaptor for requirement management
specification in the future. This would allow its use with other third-party requirement
management applications by utilizing the strategy design pattern [5] to switch the data-
access layer of the adaptor. With this in mind, the second approach, to create a standalone
web application, was chosen, as there is no way to create a plugin that would be compatible
with every possible third-party application.

After careful consideration of the capabilities and data exposed by both Jira and R4J,
it was determined that the best option would be to split the adaptor into two separate
adaptors, one for Jira and the second for R4J. This is in line with the decision to keep
the adaptor as generic as possible. The Jira adaptor would be responsible for satisfying
the requirements of the OSLC Core and Requirement Management Specification. The R4J
adaptor would add some additional functionality provided by R4J while not putting any
restrictions on what functionality has to be provided by any other third-party requirement
management applications in order to be compatible with the generic adaptor. These adap-
tors can then be used together to provide the full functionality, or users can opt to use only
the Jira adaptor if they do not need the additional functionality or do not have an active
subscription to the R4J plugin. The Jira adaptor still retains compliance with the OSLC
Core and Requirement Management Specification while used alone.

22

5.2 Tools Selection
One of the initial steps of the design process was the selection of the language, libraries,
and tooling that would be used to implement the adaptors. At the time the design process
started, there were only two real language options available for consideration, being C# and
Java.

The OSLC4Net [49] library for C#, developed by the OSLC team, was in an unusable
state at the time, as it has been overlooked and not maintained for a long time. It has
recently started getting some attention at the time of writing this thesis, so if the library
is brought up to date and additional tooling is developed, it might become a viable option
in the future.

Because of the state of OSLC4Net, the only viable option left was to use Java with the
well-maintained OSLC4J SDK, together with the Eclipse Lyo tooling for the development
of OSLC applications. The code generator included in Eclipse Lyo generates the code
skeletons for the adaptors as Eclipse Jetty servers [8] equipped with Apache Maven [1] for
dependency management and build automation.

5.3 Adaptors Modeling
After tooling selection, the next step in the design process was to model the adaptors
themself. The modeling was done using the Eclipse Lyo modeling tool, which also provides
the ability to generate code skeletons from the created models. Most of the modeling
process is based on the tutorials [38] [48] [10] and examples [39] [11] provided by the OSLC
community, as well as adaptor models for Unite [68]. The modeling of the adaptors can be
separated into two steps, domain modeling – modeling the resources accepted and exposed
by the adaptor, and toolchain modeling – modeling the functionality and capabilities of the
adaptor, both of which are described in the following sections.

5.3.1 Domain Modeling

The domain models were created based on the OSLC Core and Requirement Management
specifications, with the data exposed by Jira and R4J APIs taken into consideration. The
requirements and restrictions placed on the oslc and oslc_rm are defined in the Require-
ment Management specification using the MUST, MUST NOT, SHOULD, SHOULD NOT and MAY
keywords. The main goal was to create models compliant with the standards while tak-
ing into account their extensibility in the future and without creating any limitations by
coupling them with Jira or R4J-specific resources. This lead to the separation into oslc,
oslc_rm, jira and jira_r4j models. The oslc and oslc_rm models were modeled using
the models provided by Lyo project [40] as a base.

OSLC Core Domain

The OSLC Core domain model is specified by the OSLC Core specification described
in 3.3.1. As every OSLC-compliant adaptor has to implement the OSLC Core specifi-
cation, the domain model provides the base resources of the OSLC Core vocabulary as well
as other basic namespaces used for the definition of other resources – namely RDF [59],
RDFS [60], Dublin Core [6] and FOAF [13]. The OSLC Core domain model can be seen in
Figures 5.1 and 5.2.

23

Figure 5.1: OSLC Core Domain Model Diagram (Exported from Lyo modeling tool)

24

Figure 5.2: OSLC Core Model Diagram (Exported from Lyo modeling tool)

OSLC Requirement Management Domain

The OSLC Requirement Management domain model defines the oslc_rm:Requirement and
oslc_rm:RequirementCollection resources based on the models from the Lyo project.
Properties that are not required by the Requirement Management specification and are
not needed in this thesis have been removed, and the representations have been extended
by the properties defined in jira namespace. The graphical representation can be seen in
Figure 5.3.

OSLC Jira and R4J Domains

The jira and jira_r4j namespaces define properties and resources that represent resources
and properties native to Jira and R4J. The jira_r4j:Folder has been defined in a way
where it references oslc_rm:Requirement and oslc_rm:RequirementCollection, instead
of the other way around, to allow the use of the Jira adaptor independently of the R4J
adaptor. The models can be seen in Figure 5.3.

25

Figure 5.3: OSLC Requirement Management Domain Model Diagram (Exported from Lyo
modeling tool)

26

5.3.2 Toolchain Modeling

As discussed before, the adaptor has been split into R4J and Jira adaptors. The adaptor
interfaces can be seen in Figure 5.4. The Jira adaptor manages the oslc_rm and jira re-
sources and properties, while the R4J adaptor is dependent on these resources and produces
jira_r4j resources.

Both adaptors have been modeled according to the OSLC Core Discovery principles
discussed in Section 3.3.1 and thus contain Service Provider Catalogs, Service Providers
and Services for each managed resource. Eclipse Lyo also provides the option to add
Authentication to the adaptor models, which results in the generation of the authentication
and authorization code skeletons for Basic and OAuth methods during the code generation
process. This option has been added for both adaptors.

Figure 5.4: Adaptor Interfaces Diagram (P – produces, C – consumes)

Jira Adaptor

The Jira adaptor provides the oslc_rm:Requirement, oslc_rm:RequirementCollection,
foaf:Person and jira:Project resources.

It exposes only limited functionality for the foaf:Person and jira:Project resources,
allowing only read-only access to the data through the GET endpoint and Selection Dialog,
as these resources are not meant to be created or updated using the adaptor.

In accordance with the Requirement Management specification, the Jira adaptor pro-
vides full CRUD functionality (as described in section 3.3.1) for the oslc_rm:Requirement
and oslc_rm:RequirementCollection resources, as well as Query capability, Creation Di-
alog and Selection Dialog.

A graphical representation of the Jira adaptor functionality and capabilities can be seen
in Figure 5.5.

R4J Adaptor

The R4J adaptor manages the jira_r4j:Folder resource, which represents a folder from
the R4J tree folder structure. To enable users to use the R4J folder structure to its full
extent, the adaptor provides full CRUD functionality for the resource. To further enable
users and enhance the usability of the adaptor, the Query Capability, Creation Dialog, and
Selection Dialog have been added to the adaptor.

A graphical overview of the R4J adaptor functionality and capabilities can be seen in
Figure 5.6.

27

Figure 5.5: Jira Adaptor Functionality Diagram (Exported from Lyo modeling tool)

28

Figure 5.6: R4J Adaptor Functionality Diagram (Exported from Lyo modeling tool)

29

5.4 Mapping OSLC resources to Jira and R4J
Three important aspects have to be considered when designing the mapping of OSLC
resources to their Jira and R4J counterparts. This section details these aspects and the
design decisions made as a result.

Generic nature of the adaptor

The first is the generic nature of the adaptor for Requirement Management specification,
taking into consideration the fact that requirement management applications, different from
Jira, might not have exactly the same data structure and thus the mapping has to be flexible
enough to allow for the use of the adaptor with other applications in the future. This had
the biggest impact on the design of the unique identifier of the oslc_rm:Requirement and
oslc_rm:RequirementCollection resources. Jira provides two ways to uniquely identify
the issues:

• id – a unique immutable number assigned to each issue upon creation

• key – a unique immutable string identified assigned to each issue upon creation,
consisting of a project key and a number, which identifies the issue within the project

Neither of these options is ideal, as the id would require all the other requirement man-
agement applications to identify resources strictly by a number and the key would require
the existence of the concept of a project in every requirement management application,
both of which limit the generic usability of the adaptor. Based on these observations, a
new unique string-based identifier has been added and mapped to the dcterms:identifier
property of the oslc_rm:Requirement and oslc_rm:RequirementCollection resources.
As the identifier is string based, it leaves the decision of the format of the identifier up to the
user or underlying application. To enable the users to query the resources by the Jira na-
tive identifiers as well, they have been mapped to the jira:jiraId and oslc:shortTitle,
respectively.

Infrastucture limitations

The second aspect that has been considered are the limitations that can be placed on the
Jira instances by infrastructure teams. In bigger companies, this concerns Honeywell as
well, the Jira is usually used by a variety of teams, each having different use cases. To
ensure the needs of each of these teams are satisfied without introducing any issue schema-
breaking changes, the extent of the Jira instance configuration is limited and managed by
a separate infrastructure team. The adaptor must be configurable to allow for the use with
Jira instances with different configurations while still providing the same functionality.

The main configuration points of Jira, which are important in the context of this thesis,
are:

• issue_type – the type of the issue, which determines the fields available for the issue

• issue_link – the type of the link between two issues

• field – the field representing a property of the issue

30

Ideally, two new issue_types should be added to the Jira configuration to represent
the oslc_rm:Requirement and oslc_rm:requirementCollection resources, however, it
is possible to use any two of the existing issue_types native to the Jira base configura-
tion as well. The same applies to the oslc_rm:decomposes and oslc_rm:decomposedBy
properties, which are mapped to a singular issue_link, with each representing a different
direction of the link.

The last problem point of the configuration is the newly added string-based identifier
dcterms:identifier property. The adaptor allows two ways to store the identifier in the
Jira issue:

1. labels – the identifier is stored in the labels field together with the values of the
property dcterms:subject

2. custom_field – the identifier is stored in a custom field

Limitations of the Jira and R4J

The last, but not least, aspect that impacted how the mapping of the resources was designed,
is the limited modifiability of some of the Jira and R4J resources and how these resources
are provided by the Jira and R4J APIs.

There is no way to add a custom field to the representation of the Jira project, result-
ing in the inability to use anything except the numeric project id as the project’s unique
identifier. A similar issue was identified with the identifier for the jira_r4j:Folder re-
source, which is identified uniquely by the numeric id, only in the context of the project it
belongs to. To comply with the OSLC Core specification, each resource has to be uniquely
identified within the context of the whole adaptor. As a solution to this problem, the
jira_r4j:Folder resource is uniquely identified by the combination of the folder id and
the project key in the form of <project_key>-<folder_id>. This is still in line with the
idea of the generic nature of the adaptor, as the project and folder identifiers are defined as
part of the jira an jira_r4j namespaces and are not part of the generic oslc_rm domain
model.

31

Chapter 6

Implementation

This chapter details the implementation of the adaptors, including the challenges and prob-
lems faced during the implementation and the solutions to these problems.

6.1 Code Architecture
Code Generator from the Lyo project was used to generate the code skeletons for the adap-
tors based on the models defined in Section 5.3. The code skeletons were generated as two
separate Java jetty [8] projects based on the Maven [1] framework. These generated projects
contain the definitions of each service the adaptor was modeled to provide, definitions of
the modeled resources, and base implementation of the BASIC and OAuth authentication.

A third project was created to contain the shared code and functionality between both
adaptors. This project contains Helper and Builder classes, which provide static func-
tions to abstract away some of the data manipulation and condition checking. The shared
project also implements ConfigurationProvider and SessionProvider as Singletons [4]
and provide both adaptors with an easy way to access the configuration and session data.

To unify the way both adaptors access and modify the resources provided by the Jira
and R4J APIs, the Facade [3] design pattern was used. A facade was created for each
resource type, which provides the adaptors with a unified interface to access and modify
the resources of the given type. All of these facades extend the BaseFacade implemented
in the shared project, which enables the facades to access the Jira and R4J Clients.

6.2 Configuration and Build Scripts
To support different configurations needed because of the infrastructure limitations, as
discussed in Section 5.4, the adaptors have to be configurable using an external configuration
file. The configuration file is a JSON file specifying the different configuration points of the
adaptor, such as the issueType for the representation of resources, the issueLinkType that
should be used for relations, the Url of the Jira instance, enabled authentication methods
and much more.

Build scripts for Linux-based systems were created to simplify the build and start-up
process of the adaptors. These scripts are written in Bash and utilize the Maven console
functionality to build and run the adaptors. The scripts first build the contents of the
shared project and then both of the adaptors, as they are dependent on the shared project.
During the start-up, the scripts validate the presence of configuration files as well as the

32

response of the started adaptors. If the adaptors are not started successfully, the scripts
terminate with an error message.

6.3 Jira API Java SDK
Atlassian provides developers with a Java SDK for the Jira API [20]. This SDK contains
the implementation of several asynchronous Jira API clients, class representation for Jira
resources, response parsers, and base support for authentication and authorization. To
support all of the functionality required by the adaptors, some clients had to be extended,
and some new clients had to be implemented utilizing the existing underlying infrastructure.

The authorization of the requests sent by the clients is handled by the implementations
of the AuthenticationHandler interface. The implementation of BASIC authentication is
provided by the SDK. However, an implementation for token-based authorization had to
be implemented to support OAuth2 authentication. The implemented solution is further
described in the following section.

6.4 Authentication
The Code Generator from the Lyo project generates the base implementation of the BASIC
authentication and OAuth1.a1 authorization. However, this implementation is not usable
in the context of the Jira and R4J adaptors, as the generated code treats the adaptors as
authentication authorities. This means it expects the adaptors to validate the users’ creden-
tials and provide the users with authorization codes and access tokens. The authentication
and authorization have to be handled by the Jira instance, which is the authentication
authority in this case.

It was decided to use the OAuth2 authentication instead of OAuth1.a as it is a more
modern and secure authentication method while being easier to implement and use. A de-
cision was made to use the OAuth2 Authorization Code Grant, summarized in Section 4.2.1,
with the requests for authorization codes and access tokens being handled by the Jira in-
stance. This is still in line with the OSLC Core specification, as it does not require the
adaptors to support or handle the authentication. To support the discoverability of the end-
points for the authorization and token, their URLs were added to the ServiceProvider
resources of the adaptors.

The authorization of the requests to the adaptors, either by BASIC credentials or
OAuth2 access tokens, is handled by forwarding the contents of Authorization header
from the request to the Jira and R4J clients.

6.5 Creation and Update Capability
This section details how the creation and update flows have been implemented for the
Requirement, RequirementCollection, and Folder resources. As both Requirement and
RequirementCollection resources are saved as Jira issues with different issueType, they
share the underlying generic implementation for Issue creation and update.

1OAuth1.a [29] is a revised specification of the OAuth1.0 addressing a session fixation attack

33

Issue Resource

The creation of the Jira issues is implemented as a sequence of validation and creation
steps. The order of these steps is as follows:

1. Validate that the issue contains all required properties for its creation

2. Validate that all issues linked by decomposedBy exist

3. Validate that all issues linked by decomposes exist

4. Validate that the specified project exists

5. Validate that the specified issueType exists in the context of the project (issueType
to be used for Requirement and RequirementCollection resources is specified by
the configuration)

6. Validate that no issue with the same identifier exists

7. Validate that the fields for storing subject and identifier properties exists for
the specified issueType (the fields for subject and identifier are specified by the
configuration)

8. Create issue with the specified properties

9. Update the created issue with the decomposedBy and decomposes links

The update functionality is implemented in a similar way to the create functionality,
the main difference being that the update validates if the issue with the specified identifier
exists and if it is of the correct issueType. To correctly update the links between the
issues, the existing links created by the adaptor are removed before the new links from the
updated resource are created.

Folder Resource

The creation of the R4J folder resources is implemented as a chain of validation and creation
steps. The order of these steps is as follows:

1. Validate that the folder contains all required properties for its creation

2. Validate that the specified project exists

3. Validate that the specified parentFolder exists

4. Validate that the parentFolder does not contain a folder with the same name as the
one being created

5. Validate that all issues linked by contains exist while validating the issueType of
the issues as well

6. Create folder

7. Update the created folder with the contains links

The update is done in a similar way to the create functionality, except the update
validates if the folder with the specified identifier exists. To assert that the folder contains
only the issues specified in the update, all of the issues currently linked to the folder are
removed, and then new links are created.

34

6.6 Query Capability
The skeletons and endpoints for the query capability were generated by the Code Genera-
tor. However, the generated implementation was missing oslc.searchTerms parameters,
which are required by the Requirement Management Specification. The oslc.searchTerms
parameter was added to each of the generated implementations, thus enabling a full-text
search of the resources.

As for the oslc.where parameter, there was no library for parsing the oslc.where
query available at the time of writing this thesis. Therefore a simplified implementation of
the oslc.where query parser was created, which supports the basic query capabilities for
common use cases, as the full implementation of the query parser is well beyond the scope
of this thesis because of the complexity of the OSLC Query Language.

The following sections describe how the parsed query was translated for the Jira and
R4J APIs.

Jira Resources

For querying the oslc_rm:Requirement and oslc_rm:RequirementCollection resources,
which are saved as Jira issues, the JQL (Jira Query Language) [21] was used. The JQL is
SQL-like query language, which can be passed as a parameter to the search issues endpoint
of the Jira API in the jql parameter.

To map the parsed query to the JQL, an IssueTranslator was implemented utilizing
the JiraQueryBuilder mapping each property of the OSLC resources to its counterpart in
the Jira issue. Example of the mapping can be seen in Figure 6.1.

.../queryRequirement / oslc_rm:decomposes=<…/Requirement/TEST-2>oslc.where= and dcterms:subject in %5B”SUB-1”,”SUB-2”%5D

issuetype = "Bug" AND (issueLinkType = "blocks" AND issue in linkedIssues (TEST-2)) AND Labels IN (SUB-1,SUB-2)

Figure 6.1: Visualisation of a simple oslc.where query mapping to JQL (oslc.prefix is
omitted for brevity)

R4J Resources

The R4J API does not support any query language resulting in the inability to retrieve the
data corresponding to the requested jira_r4j:Folder resources only. To overcome this
limitation, a non-ideal but functional solution was implemented – retrieve the whole folder
tree structure and filter the results on the adaptor side. This solution is not ideal as it
requires the adaptor to retrieve a potentially enormous amount of data, which can result
in performance issues.

To mitigate the performance issue, the adaptor could cache the retrieved folder tree
structure and only retrieve it if the structure was modified since the last retrieval. The
problematic part of this solution is how to determine if the structure was modified. The
R4J API does not provide this metadata for the folder tree structure. A suitable solution
might be to check if any issue from the project with the modifed timestamp greater than
the timestamp of the cached tree structure exists, regardless if they belong to the tree
structure. However, this would require investigation if the performance of this solution

35

would be better than the performance of the non-cached approach. Either way, the extent
of this solution is beyond the scope of this thesis.

6.7 Bugs and Limitations
During the implementation, several bugs, issues, and limitations were discovered. This
section goes over them and describes how they were resolved or mitigated.

R4J API Bug

An issue was discovered during the implementation of the folder update functionality.
The R4J API returns 500 – Internal Server Error when updating a folder with the
parentFolder set to the ROOT of the directory structure, even though the folder is updated
correctly. This issue was reported to the R4J API team, and a temporal workaround was
implemented in the adaptor. The temporary solution ignores the 500 – Internal Server
Error, validates if the folder was updated correctly, and if validation passes, the update is
considered successful.

Clients memory leak

During the testing of the adaptor, a memory leak was discovered in the clients. The leak was
caused by the clients not closing the HTTP connections after the request was completed.
It is unknown if this bug is in the implementation provided by the Jira API SDK or if it
was caused by the extensions built on top of it. The created solution caches references to
all the connections opened by the clients during the processing of a single request to the
adaptor and closes them after the request is completed.

Contributors

Both the definitions Requirement and RequirementCollection contain the contributors
property. The Jira API exposes a changelog property in the issue resource, which contains
the information about changes done to the issue and who performed them. However, there
is a limitation in the Jira API, which does not allow the retrieved changelog to exceed 500
entries. This can result in the contributors property not containing all the contributors
for issues with a large number of changes. Currently, there is no solution for this issue.

Issue types

Some issueTypes require additional fields to be set when creating the issue (e.g., Epic
requires the Epic Name field to be set). The adaptor has no way to verify if the custom
required fields are set. Thus, the create operation can fail and result in a 500 – Internal
Server Error.

A problem arises when the issueTypes specified in the configuration file for both
Requirement and RequirementCollection are the same. This results in the adaptor
not being able to distinguish between the two resource types and thus returning the
Requirement resources as RequirementCollection resources and vice versa.

It is left up to the users of the adaptor to ensure a valid issueTypes are specified in
the configuration file, which does not require any additional fields to be set.

36

Chapter 7

Evaluation and Testing

This chapter contains the evaluation of the implemented adaptors and used technologies,
as well as an overview of the testing of both adaptors.

7.1 Adaptors Testing
The created adaptors fully comply with the OSLC Core and Requirement Management
specifications by providing all of the required resources, properties, and functionality. The
Jira adaptor can be used alone to fully manage requirements in Jira. However, there is no
way to differentiate between requirements and other issues as long as they have the same
issueType. The R4J adaptor provides a solution for this by allowing the user to retrieve
all of the requirements based on if they were added to the R4J folder tree structure.

The Jira and R4J adaptors have been end-to-end tested using the Postman [50] tool.
The testing was done by creating a collection of requests, which tests the basic and query
functionality of the adaptors. The collection is comprised of 361 HTTP requests and 446
tests. The collection can be exported as a JSON file and used by a continuous integration
tool to validate that the changes to adaptors did not introduce any functionality breaks. An
example of the flow of the test validating the problematic update functionality for folders
with parentFolder set to ROOT discussed in Section 6.7 can be seen in Figure 7.1. The full
collection of tests can be found in the test/postman directory in the source code.

To further validate the functionality of the Jira adaptor, a Python client for the adaptor
has been created. This client provides a simple interface for importing and exporting
requirements from Jira in the ReqIF format through the adaptor by utilizing the rdflib [55]
and reqif [56] python libraries. The importing and exporting have been successfully tested
by an example ReqIF file provided by Honeywell, testing the functionality of the adaptor
in a real-world use case.

7.2 OSLC Evaluation
The OSLC Core specification is well-written and easy to follow. However, the OSLC Re-
quirement Management specification is not detailed enough, which significantly impacts its
comprehensibility. The specification does not provide any examples of how the resources
should look nor any diagrams explaining the relations between the resources. Compared to
the OSLC Automation Management specification, which provides both examples and dia-
grams, the OSLC Requirement Management specification could use some improvements.

37

The Eclipse Lyo tooling greatly reduces the complexity and time cost of creating an
OSLC adaptor. However, the initial time investment in setting up the tooling is quite high,
as well as the learning curve of the tooling. The documentation for the tooling is outdated
and does not reflect the current state of the tooling. As a result, it is really hard to find
any information about the tooling and how to use it. The learning curve of the tooling
could be greatly reduced by providing a video or text-based tutorial detailing the process
of creating an adaptor from start to finish.

Jira AdaptorPostman R4J Adaptor

Create Requirement with ID-1

201 - CREATED

Create Requirement Collection with ID-2

201 - CREATED

Create Requirement with ID-3

201 - CREATED

Create Requirement Collection with ID-4

201 - CREATED

Create folder with parentFolder=ROOT and contains=[ID-1, ID-2]

201 - CREATED

Get created folder

200 - OK

Update created folder title, description and contains to [ID-3, ID-4]

200 - OK

Validate that the title has been updated

Get updated folder

200 - OK

Validate that the description has been updated

Validate that the contains has been updated

Validate that the parent folder has not been changed

Delete updated folder

200 - OK

Get deleted folder

404 - NOT FOUND

Figure 7.1: Example of the test flow for the Folder Update (Red – test assertions)

38

7.3 Jira and R4J Evaluation
The creation of the OSLC adaptors for Jira and R4J has been greatly impacted by the
quality of the Jira and R4J API. The Jira API is well-designed and well-documented,
providing a solid foundation for the creation of the Jira adaptor. The R4J API, on the other
hand, lacks documentation, is designed a bit insufficiently, and is missing some important
features, such as a query capability on the folder endpoint.

The development has also been greatly accelerated by the use of the Jira API SDK,
which provides a great base for the creation of clients for the Jira API.

39

Chapter 8

Conclusion

The goal of this thesis was to provide unified access to requirements stored in Jira and R4J
through the OSLC interface. For this purpose, the OSLC Core and Requirement Manage-
ment specifications were first described in the context of Jira and R4J, and an overview
of the tools that can be utilized to aid with the OSLC adoption was given. Afterward, a
detailed description of the whole adaptor creation process was provided.

Two adaptors have been designed and implemented as a part of this thesis – the ad-
ditional Jira adaptor, which fully satisfies the OSLC Core and Requirement Management
specifications, and the R4J adaptor, which provides the folder functionality from R4J. The
adaptors have been tested and evaluated by a collection of 361 HTTP requests using the
Postman test suit, proving their functionality and usability. Moreover, a Python command
line client has been created for the Jira adaptor, providing a simple interface for importing
and exporting requirements from Jira in the ReqIF format.

The generic implementation of the adaptors implementation allows for the work to be
continued and built upon in the future. Some of the possible improvements for future work
include:

• Folder query optimalization – the optimalization of the folder query by using
caching as discussed in Section 6.6

• Generic Requirement Management adaptor – the creation of a generic adaptor,
which would be able to work with any Requirement Management tool

• Full OSLC Query support – the addition of the full OSLC Query support to the
adaptors by creating a parser for the full extent of the OSLC Query language

40

Bibliography

[1] Apache Maven [online]. [cit. 2023-04-26]. Available at: https://maven.apache.org/.

[2] Atlassian [online]. [cit. 2023-04-07]. Available at: https://www.atlassian.com/.

[3] Dive Into Design Patterns – Facade Design Pattern [online]. [cit. 2023-04-29].
Available at: https://refactoring.guru/design-patterns/facade.

[4] Dive Into Design Patterns – Singleton Design Pattern [online]. [cit. 2023-04-29].
Available at: https://refactoring.guru/design-patterns/singleton.

[5] Dive Into Design Patterns – Strategy Design Pattern [online]. [cit. 2023-04-26].
Available at: https://refactoring.guru/design-patterns/strategy.

[6] Dublin Core [online]. [cit. 2023-04-27]. Available at: http://purl.org/dc/terms/.

[7] Eclipse [online]. [cit. 2023-04-07]. Available at: https://www.eclipse.org/.

[8] Eclipse Jetty [online]. [cit. 2023-04-26]. Available at: https://www.eclipse.org/jetty/.

[9] Eclipse Lyo [online]. [cit. 2023-04-07]. Available at: https://www.eclipse.org/lyo/.

[10] Eclipse Lyo – Toolchain Designer & Lyo Store Tutorial [online]. [cit. 2023-04-26].
Available at: https://www.youtube.com/watch?v=tZxPzlSTdeM.

[11] Experimental OSLC Bugzilla application [online]. [cit. 2023-04-26]. Available at:
https://github.com/OSLC/lyo-adaptor-bugzilla.

[12] Fielding, R. T. Architectural Styles and the Design of Network-based Software
Architectures. Irvine, CA, 2000. Dissertation. University of California, Irvine.
Available at: https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

[13] Friend of a Friend [online]. [cit. 2023-04-27]. Available at:
http://xmlns.com/foaf/0.1/.

[14] Hood, C., Wiedemann, S., Fichtinger, S. and Pautz, U. Requirements
Management: The Interface Between Requirements Development and All Other
Systems Engineering Processes. 2008th ed. Springer, 2007. ISBN 978-3540476894.

[15] Hypertext Transfer Protocol – HTTP/1.0 [online]. [cit. 2023-04-22]. Available at:
https://www.w3.org/Protocols/HTTP/1.0/spec.html.

[16] IBM [online]. [cit. 2023-04-21]. Available at: https://www.ibm.com/us-en/.

41

https://maven.apache.org/
https://www.atlassian.com/
https://refactoring.guru/design-patterns/facade
https://refactoring.guru/design-patterns/singleton
https://refactoring.guru/design-patterns/strategy
http://purl.org/dc/terms/
https://www.eclipse.org/
https://www.eclipse.org/jetty/
https://www.eclipse.org/lyo/
https://www.youtube.com/watch?v=tZxPzlSTdeM
https://github.com/OSLC/lyo-adaptor-bugzilla
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://xmlns.com/foaf/0.1/
https://www.w3.org/Protocols/HTTP/1.0/spec.html
https://www.ibm.com/us-en/

[17] IBM Engineering Requirements Management DOORS Next [online]. [cit. 2023-04-06].
Available at: https://www.ibm.com/products/requirements-management-doors-next.

[18] IEEE. ISO/IEC/IEEE International Standard – Systems and software engineering
Vocabulary. 2017, [cit. 2023-04-20]. Available at:
https://standards.ieee.org/ieee/24765/6800/.

[19] Jira [online]. [cit. 2023-04-07]. Available at: https://www.atlassian.com/software/jira.

[20] Jira API Java SDK [online]. [cit. 2023-04-29]. Available at:
https://developer.atlassian.com/server/jira/platform/java-apis/.

[21] Jira Query Language [online]. [cit. 2023-04-30]. Available at:
https://support.atlassian.com/jira-service-management-cloud/docs/use-advanced-
search-with-jira-query-language-jql/.

[22] Jira REST API [online]. [cit. 2023-04-20]. Available at:
https://developer.atlassian.com/cloud/jira/software/rest/intro/.

[23] Jira Software Server Download [online]. [cit. 2023-05-04]. Available at:
https://www.atlassian.com/software/jira/update.

[24] Linked Data [online]. [cit. 2023-04-06]. Available at:
https://www.w3.org/standards/semanticweb/data.

[25] Linked Data Design Issues [online]. [cit. 2023-04-06]. Available at:
https://www.w3.org/DesignIssues/LinkedData.html.

[26] Lyo Designer [online]. [cit. 2023-04-07]. Available at: https:
//oslc.github.io/developing-oslc-applications/eclipse_lyo/lyo-designer.html.

[27] Maven OSLC4J [online]. [cit. 2023-04-07]. Available at:
https://mvnrepository.com/artifact/org.eclipse.lyo.oslc4j.core/oslc4j-core/4.1.0.

[28] OASIS Open Project [online]. [cit. 2023-04-06]. Available at:
https://www.oasis-open.org/.

[29] OAuth 1.0 Revision A [online]. [cit. 2023-05-08]. Available at:
https://oauth.net/core/1.0a/.

[30] Open Services for Lifecycle Collaboration [online]. [cit. 2023-04-05]. Available at:
https://open-services.net/.

[31] OSLC Connector for Jira [online]. [cit. 2023-04-21]. Available at:
https://marketplace.atlassian.com/apps/1222299/oslc-connector-for-jira.

[32] OSLC Core Delegated UI [online]. [cit. 2023-04-06]. Available at:
https://docs.oasis-open-projects.org/oslc-op/core/v3.0/os/dialogs.html.

[33] OSLC Core Discovery [online]. [cit. 2023-04-06]. Available at:
https://docs.oasis-open-projects.org/oslc-op/core/v3.0/os/discovery.html.

[34] OSLC Core Error [online]. [cit. 2023-04-07]. Available at:
https://docs.oasis-open-projects.org/oslc-op/core/v3.0/os/core-vocab.html#Error.

42

https://www.ibm.com/products/requirements-management-doors-next
https://standards.ieee.org/ieee/24765/6800/
https://www.atlassian.com/software/jira
https://developer.atlassian.com/server/jira/platform/java-apis/
https://support.atlassian.com/jira-service-management-cloud/docs/use-advanced-search-with-jira-query-language-jql/
https://support.atlassian.com/jira-service-management-cloud/docs/use-advanced-search-with-jira-query-language-jql/
https://developer.atlassian.com/cloud/jira/software/rest/intro/
https://www.atlassian.com/software/jira/update
https://www.w3.org/standards/semanticweb/data
https://www.w3.org/DesignIssues/LinkedData.html
https://oslc.github.io/developing-oslc-applications/eclipse_lyo/lyo-designer.html
https://oslc.github.io/developing-oslc-applications/eclipse_lyo/lyo-designer.html
https://mvnrepository.com/artifact/org.eclipse.lyo.oslc4j.core/oslc4j-core/4.1.0
https://www.oasis-open.org/
https://oauth.net/core/1.0a/
https://open-services.net/
https://marketplace.atlassian.com/apps/1222299/oslc-connector-for-jira
https://docs.oasis-open-projects.org/oslc-op/core/v3.0/os/dialogs.html
https://docs.oasis-open-projects.org/oslc-op/core/v3.0/os/discovery.html
https://docs.oasis-open-projects.org/oslc-op/core/v3.0/os/core-vocab.html#Error

[35] OSLC Core Query [online]. [cit. 2023-04-06]. Available at:
https://docs.oasis-open-projects.org/oslc-op/query/v3.0/os/oslc-query.html.

[36] OSLC Core Resource Shape [online]. [cit. 2023-04-06]. Available at:
https://docs.oasis-open-projects.org/oslc-op/core/v3.0/os/resource-shape.html.

[37] OSLC Core Specification 3.0 [online]. [cit. 2023-04-06]. Available at:
https://docs.oasis-open-projects.org/oslc-op/core/v3.0/os/oslc-core.html.

[38] OSLC Domain Modelling Workshop [online]. [cit. 2023-04-26]. Available at:
https://oslc.github.io/developing-oslc-applications/eclipse_lyo/domain-
specification-modelling-workshop.html.

[39] OSLC Lyo Adaptor Sample Modelling [online]. [cit. 2023-04-26]. Available at:
https://github.com/OSLC/lyo-adaptor-sample-modelling.

[40] OSLC Lyo Domains [online]. [cit. 2023-04-26]. Available at:
https://github.com/eclipse/lyo/tree/master/domains.

[41] OSLC Primary Integration Techniques [online]. [cit. 2023-04-06]. Available at:
https://open-services.net/resources/oslc-primer/#primary-oslc-integration-
techniques.

[42] OSLC Primer [online]. [cit. 2023-04-06]. Available at:
https://open-services.net/resources/oslc-primer.

[43] OSLC Requirement Management Requirement [online]. [cit. 2023-04-07]. Available at:
http://open-services.net/ns/rm#Requirement.

[44] OSLC Requirement Management Requirement Collection [online]. [cit. 2023-04-07].
Available at: http://open-services.net/ns/rm#RequirementCollection.

[45] OSLC Requirement Management Requirement Collection Constraints [online]. [cit.
2023-04-07]. Available at: https://docs.oasis-open-projects.org/oslc-op/rm/v2.1/
os/requirements-management-shapes.html#h3_RequirementCollectionShape.

[46] OSLC Requirement Management Requirement Constraints [online]. [cit. 2023-04-07].
Available at: https://docs.oasis-open-projects.org/oslc-op/rm/v2.1/os/
requirements-management-shapes.html#h3_RequirementShape.

[47] OSLC Requirements Management Specification 2.1 [online]. [cit. 2023-04-06]. Available
at: https://docs.oasis-open-projects.org/oslc-op/rm/v2.1/os/requirements-
management-spec.html.

[48] OSLC Toolchain Modelling Workshop [online]. [cit. 2023-04-26]. Available at:
https://oslc.github.io/developing-oslc-applications/eclipse_lyo/toolchain-
modelling-workshop.html.

[49] OSLC4Net Github [online]. [cit. 2023-04-26]. Available at:
https://github.com/OSLC/oslc4net.

[50] Postman [online]. Available at: https://www.postman.com/.

43

https://docs.oasis-open-projects.org/oslc-op/query/v3.0/os/oslc-query.html
https://docs.oasis-open-projects.org/oslc-op/core/v3.0/os/resource-shape.html
https://docs.oasis-open-projects.org/oslc-op/core/v3.0/os/oslc-core.html
https://oslc.github.io/developing-oslc-applications/eclipse_lyo/domain-specification-modelling-workshop.html
https://oslc.github.io/developing-oslc-applications/eclipse_lyo/domain-specification-modelling-workshop.html
https://github.com/OSLC/lyo-adaptor-sample-modelling
https://github.com/eclipse/lyo/tree/master/domains
https://open-services.net/resources/oslc-primer/#primary-oslc-integration-techniques
https://open-services.net/resources/oslc-primer/#primary-oslc-integration-techniques
https://open-services.net/resources/oslc-primer
http://open-services.net/ns/rm#Requirement
http://open-services.net/ns/rm#RequirementCollection
https://docs.oasis-open-projects.org/oslc-op/rm/v2.1/os/requirements-management-shapes.html#h3_RequirementCollectionShape
https://docs.oasis-open-projects.org/oslc-op/rm/v2.1/os/requirements-management-shapes.html#h3_RequirementCollectionShape
https://docs.oasis-open-projects.org/oslc-op/rm/v2.1/os/requirements-management-shapes.html#h3_RequirementShape
https://docs.oasis-open-projects.org/oslc-op/rm/v2.1/os/requirements-management-shapes.html#h3_RequirementShape
https://docs.oasis-open-projects.org/oslc-op/rm/v2.1/os/requirements-management-spec.html
https://docs.oasis-open-projects.org/oslc-op/rm/v2.1/os/requirements-management-spec.html
https://oslc.github.io/developing-oslc-applications/eclipse_lyo/toolchain-modelling-workshop.html
https://oslc.github.io/developing-oslc-applications/eclipse_lyo/toolchain-modelling-workshop.html
https://github.com/OSLC/oslc4net
https://www.postman.com/

[51] Proof Key for Code Exchange by OAuth Public Clients [online]. [cit. 2023-04-22].
Available at: https://datatracker.ietf.org/doc/html/rfc7636.

[52] R4J – Requirements for Jira [online]. [cit. 2023-04-20]. Available at: https:
//marketplace.atlassian.com/apps/1213064/r4j-requirements-management-for-jira.

[53] R4J – Requirements for Jira REST API [online]. [cit. 2023-04-20]. Available at:
https:
//easesolutions.atlassian.net/wiki/spaces/REQ4J/pages/1490616345/REST+API+2.0.

[54] RDF Primer [online]. [cit. 2023-04-22]. Available at:
https://www.w3.org/TR/rdf11-concepts/.

[55] RDFLib [online]. [cit. 2023-05-01]. Available at:
https://rdflib.readthedocs.io/en/stable/.

[56] ReqIF [online]. [cit. 2023-05-01]. Available at: https://pypi.org/project/reqif/.

[57] Requirements Interchange Format (ReqIF) [online]. [cit. 2023-04-21]. Available at:
https://www.omg.org/spec/ReqIF/1.2/PDF.

[58] Resource Description Framework [online]. [cit. 2023-04-05]. Available at:
https://www.w3.org/RDF/.

[59] Resource Description Framework [online]. [cit. 2023-04-27]. Available at:
http://www.w3.org/1999/02/22-rdf-syntax-ns#.

[60] Resource Description Framework Schema [online]. [cit. 2023-04-27]. Available at:
http://www.w3.org/2000/01/rdf-schema#.

[61] Running Jira applications over SSL or HTTPS [online]. [cit. 2023-05-04]. Available at:
https://confluence.atlassian.com/adminjiraserver/running-jira-applications-
over-ssl-or-https-938847764.html.

[62] The Base16, Base32, and Base64 Data Encodings [online]. [cit. 2023-04-22]. Available
at: https://www.rfc-editor.org/rfc/rfc4648.html.

[63] The ’Basic’ HTTP Authentication Scheme [online]. [cit. 2023-04-21]. Available at:
https://datatracker.ietf.org/doc/html/rfc7617.

[64] The OAuth 1.0 Protocol [online]. [cit. 2023-04-22]. Available at:
https://www.rfc-editor.org/rfc/rfc5849.

[65] The OAuth 2.0 Authorization Framework [online]. [cit. 2023-04-21]. Available at:
https://www.rfc-editor.org/rfc/rfc6749.

[66] Turtle [online]. [cit. 2023-04-06]. Available at: https://www.w3.org/TR/turtle/.

[67] Uniform Resource Identifier (URI): Generic Syntax [online]. [cit. 2023-04-06].
Available at: https://www.rfc-editor.org/rfc/rfc2396.

[68] VeriFIT – Unite [online]. [cit. 2023-04-26]. Available at:
https://pajda.fit.vutbr.cz/verifit/unite.

[69] World Wide Web Consortium [online]. [cit. 2023-04-06]. Available at:
https://www.w3.org/.

44

https://datatracker.ietf.org/doc/html/rfc7636
https://marketplace.atlassian.com/apps/1213064/r4j-requirements-management-for-jira
https://marketplace.atlassian.com/apps/1213064/r4j-requirements-management-for-jira
https://easesolutions.atlassian.net/wiki/spaces/REQ4J/pages/1490616345/REST+API+2.0
https://easesolutions.atlassian.net/wiki/spaces/REQ4J/pages/1490616345/REST+API+2.0
https://www.w3.org/TR/rdf11-concepts/
https://rdflib.readthedocs.io/en/stable/
https://pypi.org/project/reqif/
https://www.omg.org/spec/ReqIF/1.2/PDF
https://www.w3.org/RDF/
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
https://confluence.atlassian.com/adminjiraserver/running-jira-applications-over-ssl-or-https-938847764.html
https://confluence.atlassian.com/adminjiraserver/running-jira-applications-over-ssl-or-https-938847764.html
https://www.rfc-editor.org/rfc/rfc4648.html
https://datatracker.ietf.org/doc/html/rfc7617
https://www.rfc-editor.org/rfc/rfc5849
https://www.rfc-editor.org/rfc/rfc6749
https://www.w3.org/TR/turtle/
https://www.rfc-editor.org/rfc/rfc2396
https://pajda.fit.vutbr.cz/verifit/unite
https://www.w3.org/

Appendix A

Setup and Usage manual

This chapter covers the installation and usage of the adaptors for Jira and R4J on the Linux
operating system.

A.1 Jira Installation
The Jira Software Server can be donwloaded from the Atlassian website [23] as a tar.gz
archive. The installation is done by extracting the archive to a directory of choice – this
directory will be referred to as JIRA_INSTALL_DIR. Before running Jira, it is necessary to
configure the folder, in which the data will be stored. This is done by environment variables
JIRA_HOME – the configured forlder will be referred to as JIRA_HOME_DIR. The Jira server
can now be started by running the JIRA_INSTALL_DIR/bin/start-jira.sh script and will
be available on localhost:8080 after the startup is completed. The Jira server can be
stopped by running the JIRA_INSTALL_DIR/bin/stop-jira.sh script.

A.2 R4J Installation
The Requirements for Jira plugin can be added to the Jira instance by any administrator
account by installing it from the Atlassian Marketplace found in Administration → Manage
apps.

A.3 SSL Configuration
The BASIC authentication method does not require communication over HTTPS and be
therefore used without any additional configuration. However, one of the requirements
presented by the OAuth2 standard is for the communication to be done over HTTPS, so if
this method is to be used, it is necessary to configure the Jira server to use TLS.

Jira SSL Configuration

The Jira server can be configured to use TLS by following the official Atlassian documen-
tation [61]. The configuration is done by creating a KeyStore in the JIRA_HOME_DIR direc-
tory, generating a certificate and configuring the Jira server to use specified KeyStore in
JIRA_INSTALL_DIR/conf/server.xml file. After the configuration is done, the Jira server
has to be restarted. In order for the OAuth redirect to work, it is necessary to change the

45

Base URL in the Jira Administration → System → General Configuration to use HTTPS
instead of HTTP.

Adaptors SSL Configuration

The adaptors now have to be configured to use the same certificate as creted in the pre-
vious step. The easiest way to do this is to download the certificate from the browser
and import it into the Java KeyStore used by the adaptors. The KeyStore is located in
JAVA_HOME/lib/security/cacerts with the default password changeit. The certificate
can be added by running the following command:
keytool -import -noprompt -alias localhost -file /Downloads/localhost.pem
-keystore default-java/lib/security/cacerts -storepass changeit

A.4 Adaptors Configuration
The adaptors have to be configured before they can be used. The configuration is done by
providing a JSON file in the config folder with the name configuration.json. The struc-
ture and meaining of each of the configuration options is described in a config/README.md
file.

A.5 Adaptors Usage
Build and execution scripts are provided with the adaptors. The adaptors can be started
by running the run_jira.sh to start only the Jira adaptor, or run_all.sh to start both
adaptors. Both of these scripts support the -b flag, which builds the adaptors before
running them. Upon startup the presence of the configuration file is checked, the adaptors
are started and validated for successful startup. The adaptors can be stopped by pressing
Ctrl+C in the terminal window, in which they are running. By default he Jira adaptor is
started on localhost:8081 and the R4J adaptor on localhost:8082, but these ports can
be changed in the poml.xml files of the adaptors.

46

Appendix B

Contents of the included storage
media

• code – source code of the adaptors, including the build and execution scripts, config-
uration files, README.md files and python ReqIF client

• doc – thesis text in PDF format and source LATEXfiles

• libs – libraries used by the adaptors and the ReqIF client

47

	Introduction
	Motivation and Objectives
	Solution
	Results
	Structure of the Thesis

	Requirements Engineering
	Requirements Management
	Requirement Management Systems
	Requirements Interchange Format

	OSLC – Open Services for Lifecycle Collaboration
	Overview
	Fundamental Technologies
	OSLC Specifications
	OSLC Core Specification
	OSLC Requirement Management Specification

	Eclipse Lyo

	Authentication
	Basic Access Authentication
	Open Authorization
	OAuth 2.0

	Adaptor Design
	Architecture Overview
	Tools Selection
	Adaptors Modeling
	Domain Modeling
	Toolchain Modeling

	Mapping OSLC resources to Jira and R4J

	Implementation
	Code Architecture
	Configuration and Build Scripts
	Jira API Java SDK
	Authentication
	Creation and Update Capability
	Query Capability
	Bugs and Limitations

	Evaluation and Testing
	Adaptors Testing
	OSLC Evaluation
	Jira and R4J Evaluation

	Conclusion
	Bibliography
	Setup and Usage manual
	Jira Installation
	R4J Installation
	SSL Configuration
	Adaptors Configuration
	Adaptors Usage

	Contents of the included storage media

