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ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ
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SUPERVISOR

BRNO 2014





Abstract

This thesis deals with probabilistic models for automatic speaker verification. In particu-
lar, the Probabilistic Linear Discriminant Analysis (PLDA) model, which models i–vector
representation of speech utterances, is analyzed in detail. The thesis proposes exten-
sions to the standard state-of-the-art PLDA model. The newly proposed Full Posterior
Distribution PLDA models the uncertainty associated with the i–vector generation pro-
cess. A new discriminative approach to training the speaker verification system based on
the PLDA model is also proposed.

When comparing the original PLDA with the model extended by considering
the i–vector uncertainty, results obtained with the extended model show up to 20% rela-
tive improvement on tests with short segments of speech. As the test segments get longer
(more than one minute), the performance gain of the extended model is lower, but it is
never worse than the baseline. Training data are, however, usually available in the form
of segments which are sufficiently long and therefore, in such cases, there is no gain from
using the extended model for training. Instead, the training can be performed with the
original PLDA model and the extended model can be used if the task is to test on the short
segments.

The discriminative classifier is based on classifying pairs of i–vectors into two classes
representing target and non-target trials. The functional form for obtaining the score for
every i–vector pair is derived from the PLDA model and training is based on the logistic
regression minimizing the cross-entropy error function between the correct labeling of all
trials and the probabilistic labeling proposed by the system. The results obtained with
discriminatively trained system are similar to those obtained with generative baseline,
but the discriminative approach shows the ability to output better calibrated scores.
This property leads to a better actual verification performance on an unseen evaluation
set, which is an important feature for real use scenarios.
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Abstrakt

Tato práce se zabývá pravděpodobnostńımi modely pro automatické rozpoznáváńı
řečńıka. Podrobně analyzuje zejména pravděpodobnostńı lineárńı diskriminačńı analýzu
(PLDA), která modeluje ńızkodimenzionálńı reprezentace promluv ve formě i–vektor̊u.
Práce navrhuje dvě rozš́ı̌reńı v současnosti pož́ıvaného PLDA modelu. Nově navržený
PLDA model s plným posteriorńım rozložeńım modeluje neurčitost při generováńı
i–vektor̊u. Práce také navrhuje nový diskriminativńı př́ıstup k trénováńı systému pro
verifikaci řečńıka, který je založený na PLDA.

Pokud srovnáváme p̊uvodńı PLDA s modelem rozš́ı̌reným o modelováńı neurčitosti
i–vektor̊u, výsledky dosažené s rozš́ı̌reným modelem dosahuj́ı až 20% relativńıho zlepšeńı
při testech s krátkými nahrávkami. Pro deľśı testovaćı segmenty (v́ıce než jedna minuta)
je zisk v přesnosti menš́ı, nicméně přesnost nového modelu neńı nikdy menš́ı než přesnost
výchoźıho systému. Trénovaćı data jsou ale obvykle dostupná ve formě dostatečně
dlouhých segment̊u, proto v těchto př́ıpadech použit́ı nového modelu neposkytuje žádné
výhody při trénováńı. Při trénováńı může být použit p̊uvodńı PLDA model a jeho
rozš́ı̌rená verze může být využita pro źıskáńı skóre v př́ıpadě, kdy se bude provádět
testováńı na krátkých segmentech řeči.

Diskriminativńı model je založen na klasifikaci dvojic i–vektor̊u do dvou tř́ıd
představuj́ıćıch oprávněný a neoprávněný soud (target a non-target trial). Funkcionálńı
forma pro źıskáńı skóre pro každý pár je odvozena z PLDA a trénováńı je založeno
na logistické regresi, která minimalizuje vzájemnou entropii mezi správným označeńım
všech soud̊u a pravděpodobnostńım označeńım soud̊u, které navrhuje systém. Výsledky
dosažené s diskriminativně trénovaným klasifikátorem jsou podobné výsledk̊um gener-
ativńıho PLDA, ale diskriminativńı systém prokazuje schopnost produkovat lépe kali-
brované skóre. Tato schopnost vede k lepš́ı skutečné přesnosti na neviděné evaluačńı
sadě, což je d̊uležitá vlastnost pro reálné použit́ı.

Kĺıčová slova

rozpoznáváńı mluvč́ıho, směs gaussovských rozložeńı, modelováńı v podprostoru
parametr̊u, i–vektor, pravděpodobnostńı lineárńı diskriminačńı analýza, diskriminativńı
trénováńı
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Chapter 1

Introduction

Automatic speaker recognition (SRE) is a process of comparing bio-metric signals pro-
duced by the human vocal tract and answering the question to whom the given signal
belongs or simply whether two signals were produced by the same individual.

Similarly to the DNA, image of the iris, contour lines of the fingerprints, etc. — voice
is a common type of bio-metric data, which every individual can produce and which is easy
to capture. Thanks to its nature of being easily obtained, the the bio-metric systems based
on voice find a broad use in law-enforcement and intelligence. This property, however,
is not desired in the authentication systems. Therefore, in such scenarios, the voice
verification is usually combined with other methods like knowing a secret password or
providing additional bio-metric signals. If the voice is to be a single source of bio-metric
data and the system knows the supposedly secret content of the speech and is able to use
this knowledge, then we consider the SRE system as text-dependent, otherwise we talk
about a text-independent system.

Speech is a very complex signal carrying not only the desired content, but also other
various information. After it is produced by a vocal tract (which is characteristic to every
speaker and therefore it generates most of the speaker-related information in the signal)
it passes through some environment to a point where it is recorded. This environment or
channel has a great effect on the quality of such signal, which causes the degradation in
performance of SRE systems. This behavior is, of course, an important topic for research
and we will address it in this work as well.

An SRE system is built with the assumption that the information relevant to the
speaker in the given recording is independent on the information related to channel,
language, content (in case of the text-independent system), etc. Current state-of-the-art
systems are designed to decouple the information contained in the signal into the speaker-
and channel-related parts. As already mentioned, the problem can be viewed as answering
two possible questions: (i) Who is speaking in this recording? — then we talk about the
speaker identification or (ii-a) Is it the same speaker speaking in these two (or even more)
recordings? or (ii-b) Is this speaker speaking in this recording? — then we talk about
speaker verification.

Both questions (ii-a) and (ii-b) represent a so-called speaker verification trial. If the
correct answer is “yes” then the trial is called a target trial. If “no” is the correct answer,
then we talk about a non-target trial.

1



2 1 Introduction

As we can see, speaker verification constitutes a two-class problem, where the task is
to decide whether a test utterance belongs to a given speaker, or, equivalently, whether a
set of recordings (e.g. one enrollment and one test utterance) belongs to the same speaker.

An example for the verification task can be a scenario widely used by a law enforce-
ment. Given some utterances belonging to a particular person, the goal is to search in
a collection of data and find the recordings corresponding to the given person. A speaker
verification can be turned into identification, by restricting the set of compared utterances.

Speaker identification is then a multi-class classification problem, where the task is
to assign a correct label to the utterance, where each label corresponds to one of the
speakers from the set of known speakers. The assumption, whether the test segment
belongs to the set of known speakers, constitutes two classification problems: the closed
set identification — the segment is always assumed to belong to one of the speakers, and
the open-set identification — the segment does not have to belong to any of the speakers.
The open-set problem is a more difficult scenario. If a new speaker is to be added to the
known speaker set, a procedure called enrollment is carried out. It consists of collecting
a sufficient amount of speech data, assigning it a unique speaker label and creating a
corresponding speaker model.

1.1 Designing a Speaker Recognition System

In order to build an automatic speaker recognition system, it is necessary to transform the
continuous speech in such a way that it can be used by a computer. This process consists
of sampling and quantization and the result is a discrete version of the signal. According
to the Shannon theorem and a property of human hearing, the sampling frequency is
typically 8 kHz or more.

After the discrete signal is obtained, its further parametrization has to be performed
accordingly to the type of information, which should be extracted from the signal.
In speaker recognition [Reynolds, 2002], we can consider several layers of information,
which can be extracted from the signal. Going from the lowest (acoustic) and the most
information-rich layer to the top, we can consider the following structure:

• acoustic: spectral representation of the speech conveying vocal tract information
as well as the content of the speech itself

• prosodic: features encoding the prosody (pitch, energy, syllable lengths, pauses,
etc.) (see e.g. [Adami et al., 2003, Dehak et al., 2007], for a thorough overview,
see [Kockmann, 2012], Sec. 1.3.2)

• phonetic: analysis of sequences of phonemes specific to the speaker (see
e.g. [Navrátil et al., 2003])

• idiolect: analysis of sequences of words or short phrases [Doddington, 2001]

• linguistic: analysis of linguistic patters characteristic to the speaker’s conversation
style
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Going from the lowest layer to the top, usually more training data is required to obtain
enough speaker-related information for the automatic system to perform a judgment with
requested confidence. This can be also demonstrated by a degradation in performance,
when the systems based on the presented types of information are compared on the same
amount of data [Reynolds, 2002]. Still, the information obtained by focusing on different
aspects of speech is often complementary and the individual systems exploiting different
levels of information can be successfully combined into a single system.

In the field of automatic speaker recognition, the use of systems built on top of the
spectral features is by far the most common. The systems presented in this work are also
based on this type of parametrization.

1.1.1 Feature Extraction

Methods for extracting the spectral representation of acoustic signal are based on the as-
sumption that the signal can be considered stationary within short segments (frames) of
typical duration in order of miliseconds (usually 10ms). Cutting the signal into such pieces
could be achieved by windowing the signal with a rectangular window function. However,
the sharp cuts at the borders of the window would introduce high-frequency distortion in
the spectrum. For this reason, a window function which attenuates the signal near its bor-
ders is used — typically the bell-shaped Hamming-window function [Young et al., 2006].
Considering the fact that the information in the tails of the window function is suppressed,
the window length is extended (usually to 20–25ms) and then applied with a constant
shift corresponding to the intended frame-rate (again usually 10ms). A pre-emphasis filter
can be applied before actual windowing to amplify higher frequencies. The motivations
for pre-emphasis are the psycho-acoustic findings about sensitivity of human hearing to
different frequencies [Moore, 2012].

After the actual windowing, the power magnitude Fourier spectrum is computed for
every frame, which is further parametrized into the low-dimensional representation called
feature vector. In this work, we use the Mel-Filterbank Cepstral Coefficients (MFCC) for
all presented systems.

Mel-Filterbank Cepstral Coefficients

Mel-filterbank Cepstral Coefficients have been originally introduced for Automatic Speech
Recognition (ASR) [Rabiner and Juang, 1993, Davis and Mermelstein, 1980] and since
then gained popularity in all fields of speech processing. For SRE, MFCCs have be-
come a standard method of parametrization and they usually serve as a baseline for any
newly proposed feature extraction method. Figure 1.1 shows the extraction steps of the
MFCC feature vector for a single frame of signal and Figure 1.2 is a visualization of
the frame after it is processed in different stages1. First of all, the absolute value of
the short-term Discrete Fourier Transform (DFT) is used to extract the amplitude of
the spectrum from individual frames. Then, Mel-filterbank [Rabiner and Juang, 1993] is
applied to smooth the spectrum. Mel-filterbank is a set of triangular band-limited weight-
ing functions equidistantly distributed over the Mel scale [Stevens et al., 1937], designed

1Figures 1.1 and 1.2 have been reproduced from [Burget, 2004] with kind permission of the author.
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Figure 1.1: MFCC extraction steps — the numbers above the blocks show dimensionalities
for frame lengths of 20 and 25ms at sampling frequency fs = 8000Hz.

according to the properties of human hearing to provide better resolution in the lower fre-
quencies (see Figure 1.2(c)). Given the filter bank, a vector of band energies is computed
as a weighted sum of squared values of the amplitude spectrum. An overall frame energy
(usually added as the zero-th coefficient) is computed as an average of squared samples.
Then a logarithm of the energies is taken in agreement with the human perception of
the sound loudness. Finally, the feature vector is de-correlated and its dimensionality is
reduced by projection into a certain amount of Discrete Cosine Transform (DCT) bases.

Feature Derivatives

To add a dynamic information to the static cepstral features, the consecutive feature
vectors are extended with their first, second, and/or third order derivative approximations.
These derivatives are referred to as delta, double-delta (or acceleration), and triple-delta
coefficients [Furui, 1986]. State-of-the-art SRE systems usually include first and second
order derivatives. The first order derivative for a feature vector c in frame k is computed
as a linear combination of the ±N surrounding feature vectors, i.e.:

∆c(k) =

N∑

j=−N

j c(k − j), (1.1)

where N is in our case set to 2. Higher-order derivatives can be obtained by recursively
applying the above formula to the lower-order derivatives.

Mean and Variance Normalization

It can be observed that convolutive noise will shift the means of the MFCC coefficients,
while the additive noise will shrink their variance. To cope with this unwanted effect,
which would cause the dynamics of individual recordings to vary, a simple mean and vari-
ance normalization [Boll, 1979, Openshaw and Masan, 1994] is performed on the whole
utterance with the assumption that the channel effect is constant over the entire utter-
ance. Especially in SRE and in the real-time scenarios, this normalization is performed
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Figure 1.2: MFCC extraction—visualization of MFCC extraction steps for a single frame.

locally on a sliding window of 3–5 s duration. The feature vector being normalized is then
in a center of the sliding window. We call this variant a short-time mean and variance
normalization.

The normalization is computed as follows: for a k-th frame in utterance X, the nor-
malized i-th coefficient ĉX,i(k) is computed as

ĉX,i(k) =
cX,i(k)− µX,i

σX,i
, (1.2)

where the normalization parameters mean µX,i and standard deviation σX,i are estimated
on a given utterance X.

1.1.2 Voice Activity Detection

Voice Activity Detection (VAD), also known as Speech Activity Detection (SAD) is an
important pre-processing step in most speech-processing and telecommunication appli-
cations. Its purpose is to select only those frames from the analyzed utterance, which
contain speech.

There are various approaches how to detect speech. We can consider the simple energy
thresholding, Gaussian Mixture Model (GMM) classifier or Neural Networks (NN) trained
to discriminate between speech and the rest of the audio signal.
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In this work, VAD is based on a hybrid of Artificial Neural Networks (ANN) and Hid-
den Markov Model (HMM). It is used as a phoneme recognizer trained on the SPEECH-
DAT Hungarian database [Matějka et al., 2006]. The outputs of such recognizer are
strings of phonemes, of which only those corresponding to speech are used to define speech
frames. The rest (all models of silence) is used to define the other class (non-speech). More
details about the used VAD will be given in Section 10.1.1.

1.2 Obtaining the Speaker Verification Scores

The verification score is usually obtained by evaluating statistical models as a log-
likelihood ratio between two hypotheses. The two hypotheses correspond to answers
“yes” or “no” to the verification question (either (ii-a) or (ii-b) in Introduction). How-
ever, in some cases, a score can be obtained, by using a simple metric based on a distance
between feature vectors characterizing the whole utterance, without explicitly training an
SRE system (see Chapter 5).

Essentially, there are two approaches to the modeling: generative and discriminative.
The generative approach aims at estimating the underlying distribution of the data, from
which the input features can be generated. A common method to train a generative
model is fitting its parameters to maximize the data likelihood. It is widely used for its
simplicity and robustness. One of the advantages is its ability to be adapted if sufficient
amount of new data is available. Also, some basic (but powerful) generative models can
be trained without any labels and provide such representation of data that can be directly
used for obtaining the verification score (see Section 5.3). Most of the models presented
in this work are generative and will be described in chapters 4 to 7.

Discriminative models, on the other hand, are trained to directly predict classes from
the observed data. In contrast to the generative model, given the data with corresponding
labels, parameters of these models are trained to define a separation boundary between
the classes.

In SRE, the discriminative training has originally been proposed in [Campbell, 2002,
Campbell et al., 2006], where Support Vector Machines [Vapnik, 1995] were trained in a
one-versus-many fashion, to create a model for each speaker against a cohort of impostors.
This can by seen as an asymmetric verification approach (corresponding to the question
(ii-b) in Introduction). In this work (see Chapter 9), we will build a verification system as
a single classifier trained to decide whether both utterances from a given pair correspond
to the same speaker (problem (ii-a) in introduction). We call this scenario a symmetric
verification approach.

1.2.1 Score Normalization

Score normalization techniques have become important to cope with the effects of un-
wanted variability associated with log-likelihood ratio scores [Auckenthaler et al., 2000].
The causes of the variability can be changes in the channel as well as the intra-speaker
variability that may occur across multiple sessions. Having these problems in the scores
usually points to a limited capability of the models to compensate for these unwanted
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effects.

Usually, normalization is a linear operation which consists in a global shift and scale.
The scale and shift are estimated using a separate normalization set which usually con-
sists only of impostor speakers (speakers different than those, whose scores are being
normalized). In general, normalization with shift µ and scale σ is performed as

snorm =
s− µ

σ
. (1.3)

In this work, we apply the score normalization for systems performing asymmetric verifica-
tion. Although we give the following description of different normalization techniques for
the asymmetric approach, it can be easily applied to the symmetric one as well. However,
current state-of-the-art techniques for the text-independent speaker verification usually
do not require normalization.

Zero Normalization – Z-norm

The Z-norm is generally considered to be a means for compensating with respect to inter-
speaker variability in the scores. It compensates for the biases and scales in the enrollment
model scores evaluated against the test data.

The normalization constants for speaker model M are estimated from scores obtained
by scoring a set of impostor recordings against the enrolled model and applied according
to equation (1.3). Empirically, we know that these scores follow roughly Gaussian dis-
tribution. Normalizing them to zero mean and unit variance allows us to use a global
speaker-independent verification threshold. Mathematically, we enforce that

p

(
simp − µM

σM

∣∣∣∣M
)
≈ N

(
simp − µM

σM

; 0, 1

)
. (1.4)

Figure 1.3 depicts this procedure as STEP 1.2 The advantage of Z-norm is the possibility
to pre-compute the normalization statistics offline.

Test Normalization – T-norm

In contrast to Z-norm, it is generally assumed that the T-norm compensates for inter-
session variability between the tested utterance and a set of speaker models. The nor-
malization constants have to be estimated online when scoring a test utterance X. This
utterance is scored against a set of impostor models and from the resulting scores, shift
and scale are estimated. Again, we enforce that

p

(
simp − µX

σX

∣∣∣∣X
)
≈ N

(
simp − µX

σX

; 0, 1

)
. (1.5)

The method is marked as STEP 3 in Figure 1.3.

2The picture was reproduced from [Glembek, 2012] with kind permission of the author.
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ZT-norm

ZT-norm is a combination of both above introduced techniques. It is equivalent to subse-
quently performing Z- and T-norm. The procedure consists of performing the steps 1–3
as shown in Figure 1.3: First, the Z-norm is applied to the scores of enrolled models and
T-norm models against the test utterances (steps 1 and 2). Next, T-norm parameters are
estimated on Z-normalized T-norm scores. Finally in step 3, these parameters are applied
to (again Z-normalized) test scores.

S-norm

S-norm is a technique, which takes advantage of the systems designed according to the
symmetric scenario. It can achieve a similar effect to that of ZT-norm, while performing
less computations. Usually, a single held out cohort of speakers serves as a Z-norm cohort
as well as segments for training T-norm models. Z-norm and T-norm is independently
applied to obtain two sets of normalized scores. Final scores are simply obtained by
averaging the corresponding scores from these two sets.

1.3 Motivation and Contribution

My work on the topics of this thesis started when I was building subsystems for the
NIST SRE 2010 in the team of people from Agnitio, Brno and CRIM (ABC). Later,
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during the 2010 BOSARIS workshop held in Brno, I was working on the analysis of
systems submitted by the ABC team to the NIST SRE 2010. The main focus was
on Probabilistic Linear Discriminant Analysis using i–vectors as features as it showed
excellent results in the evaluations. At that time, it was already becoming appar-
ent that PLDA and i–vectors will become a new state-of-the-art in SRE. I was also
working with Lukáš Burget on one of the research directions, where the goal was to
formulate a discriminative way of training the PLDA-like model. The goal of ob-
taining a discriminatively trained SRE system based on the PLDA was successfully
achieved [Burget et al., 2011, Cumani et al., 2011] and for a short time (until the in-
troduction of the i–vector length normalization [Garcia-Romero, 2011]), this technique
was providing the best results. I continued my work on discriminative training, dataset
design and calibration [Ferrer et al., 2012, Ferrer et al., 2011b] as a member of BUT and
SRI team in the IARPA Biometrics Exploitation & Science Technology (BEST) program.
Later on, I was working with Sandro Cumani on various topics in SRE, the main being
the extension of the PLDA model [Cumani et al., 2014], which takes into account the un-
certainty about the i–vector. As the uncertainty of the i–vector estimate depends mainly
on the duration of speech segments from which the i–vectors are extracted, the proposed
extension turned out to be effective mainly for short segments. At the same time when
developing the PLDA extension, I was also working both on a speaker- and language mod-
eling, calibration and fusion [Plchot et al., 2013] for a DARPA RATS (Robust Automatic
Transription of Speech) project in a team led by BBN Technologies. Working on RATS
allowed me to compare generative PLDA with its discriminative counterpart in a very
noisy and degraded acoustic environment.

1.3.1 Claims

The goal of this thesis is to investigate the contemporary state-of-the-art techniques in
text-independent speaker verification field. The main focus is on the analysis and fur-
ther improvement of the Probabilistic Linear Discriminant Analysis (PLDA). The main
contributions can be summarized in the following points:

• Analysis of PLDA: I analyzed the performance of presented methods on vari-
ous datasets representing different levels of acoustic signal distortions and chan-
nel variabilities. Also, a direct comparison of the main techniques considered as
the state-of-the-art before introduction of PLDA is provided on a common dataset.

• Extension of PLDA: The proposed extended PLDA model takes into account
an uncertainty of the input features, which improves performance on short speech
segments with respect to the original PLDA model.

• Discriminative training of PLDA: The proposed discriminative approach to
the PLDA model training offers an interesting alternative to the currently preferred
generative approach. Presented results suggest that the discriminatively trained
PLDA model offers well calibrated outputs and therefore poses as a viable option
for a practical use.
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1.3.2 Structure of the Thesis

The thesis is organized as follows:

• Chapter 2 introduces the composition and design of various datasets that are used
throughout this work.

• Chapter 3 describes the evaluation metrics, which are used to measure the perfor-
mance of SRE systems presented in this work.

• Chapter 4 outlines the basics of acoustic modeling and subspace methods. It
provides theoretical prerequisites for speaker modeling techniques described by this
thesis.

• Chapter 5 outlines the concept of i–vectors as features for speaker modeling.

• Chapter 6 presents the concept of the Probabilistic Linear Discriminant Analysis,
which serves as a basic model for the proposed techniques.

• Chapter 7 presents the extension of the Probabilistic Linear Discriminant Analysis
model, taking into account the uncertainty of the i–vector generation process.

• Chapter 8 discusses the problematic of i–vector normalization and presents its
application to the extended PLDA model.

• Chapter 9 presents a discriminative approach to the training of the PLDA model.

• Chapter 10 provides results and comparison of SRE systems based on the presented
techniques. The results are presented on various datasets representing different
acoustic conditions.

• Chapter 11 concludes this work.



Chapter 2

SRE Databases and Various

Evaluation Tasks

Various datasets were used throughout this work, which allowed us to explore the behavior
and performance of the speaker recognition system under different acoustic conditions.
The acoustic conditions are specific to the source of the data and usually represent a
common factor affecting the data. These factors contribute to an unwanted variability
with respect to discriminating between speakers — we want to remove it or take it into
account in our systems. The most common source of unwanted variability in the data is
the acoustic channel, through which the audio was either recorded or transmitted. It can
be a telephone line, various types of microphones used during recording, use of a specific
codec or a compression during transmission, or even distortions caused by using specific
equipment in the Radio-Link transmission.

On top of the effects of the transmission channel, we can often encounter other additive
or convolutive noise in the data. The most common sources of such noise are cross-talks
from the other side of the two-way conversation, reverberation, presence of the ambient
noise (i.e. HVAC1 noise) or background noise in the environment (i.e. common babble
noise in cafeteria).

In some situations, especially if we are designing a general system, we can expect to
encounter recordings coming from people of different nationalities talking in various situ-
ations. Therefore we are dealing with variability caused by different languages, speaking
style or age of the speakers.

In the following sections, we will describe sources of the datasets, which were used
either directly or which we modified or re-arranged in order to simulate and evaluate the
performance of speaker recognition systems in the diverse acoustic conditions.

2.1 NIST

Databases created for the purposes of the NIST SRE evaluations represent a key element
in SRE-related research and recent NIST evaluations serve as a common benchmark and

1HVAC stands for Heating Ventilation and Air-conditioning. It is a very common type of noise, which
led NIST to design a special noisy condition with such type of noise in NIST SRE 2012 evaluations.

11
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a base for designing training datasets for the SRE community. Each evaluation consists
of different common evaluation conditions — subsets of trials in the core test that satisfy
additional constraints. The constraints are usually designed to group the data according
to some characteristic such as channel, nominal length, number of utterances per trial
side, speaking style, etc.

Most of the experimental results are reported on the selected conditions of official NIST
Speaker Recognition Evaluation tasks. Especially the extended conditions defined for the
NIST SRE 2010 [NIST, 2010] are still widely used benchmark for most state-of-the-art
general SRE systems. The importance of the data released for the previous evaluations
has not weakened as these are continuously being moved into the datasets used for system
training and development.

2.1.1 NIST SRE 2012

The NIST SRE 2012 [NIST, 2012] were different than previous NIST SRE’s. In all pre-
vious evaluations, the evaluation set contained both the enrollment and the test data
newly collected from unseen speakers. In SRE 2012, however, most of the target speakers
were taken from previous SRE corpora. Furthermore, the participants were forming the
enrollment part of the trials themselves by using data released for previous evaluations.
This has resulted in having often tens of segments in the enrollment, which was not, by
far, the case before.

Similarly to the NIST SRE 2010, all speech is expected to be in English, though
English may not be the first language of some of the speakers. The acoustic channels
are represented by typical interviews recorded over various types of microphones and
telephone calls established using various handsets. To make the data more challenging
and different from previous evaluations, NIST had corrupted some of the test segments
with additive noise. The noise was represented by various samples of HVAC and crowd
babble noise. It was mixed with the original segments at various SNRs. Also, part of the
telephone recordings was collected in a naturally noisy environment. The selection of the
noisy environment was left on the decision of the person making a phone call.

Some of the experimental results will be reported on the extended conditions of the
core NIST SRE 2012 task. There are five common conditions with the following charac-
teristics [NIST, 2012]:

1. All trials involving multiple segment training and interview speech in test without
added noise in test;

2. All trials involving multiple segment training and phone call speech in test without
added noise in test;

3. All trials involving multiple segment training and interview speech with added noise
in test;

4. All trials involving multiple segment training and phone call speech with added
noise in test;



2.1 NIST 13

5. All trials involving multiple segment training and phone call speech intentionally
collected in a noisy environment in test.

Similarly to the previous evaluations, NIST does not evaluate on non-target trials formed
as different-sex trials, so in theory the trial-set can be divided into female and male subset.
However, unlike with the NIST SRE 2010, we will report results on the full set of trials.
A short summary of the conditions is given in Table 2.1.

Table 2.1: Training and test conditions of the NIST SRE 2012 evaluation. In the second
column, known and unknown denotes numbers of non-target trials formed from previously
released data and from the new data, respectively.

Condition targets known unknown Channel
1 3860 10985377 11349426 interview, no added noise
2 7354 10312118 2088834 phone call, no added noise
3 5127 12444672 4804500 interview, added noise
4 7176 9471219 124830 phone call, added noise
5 3883 5119130 77745 phone call from a noisy environment

2.1.2 NIST SRE 2010

The NIST SRE 2010 evaluations still constitute a favorite benchmark thanks to its sim-
ilarity with all previous evaluations and relative simplicity of designing the development
set for this task.

As usual, the new data were introduced to the community in SRE 2010. In addition
to the microphone channels already present in SRE 2008, seven new microphone channels
were added in 2010. The new sources of intrinsic variability were various levels of speakers’
vocal effort and conversations from speakers who participated in older speaker collections
(so called graybeard data). Also, the segments of variable lengths were added to the test.
Similarly to SRE 2012, the data are in English, however, English does not have to be the
native language of all speakers.

This evaluation is different from the previous SRE’s, not only because of increasing
amount of evaluation data, but mainly because of the new primary metric. Compared to
the earlier SRE’s, the detection cost function (DCF, see Section 3.1) serving as a primary
metric was modified. The new metric was designed to penalize false alarms more severely,
which was achieved by decreasing the cost of miss and the target trial probability. In
comparison to the NIST SRE 2008, where the cost ratio of the false-alarm to miss was
10:1, the new metric increased it 100 times to 1000:1. The two metrics of SRE 2008 and
2010 are often referred to as “old” and “new” DCF. We will describe these metrics in
detail later.

The new operating point defined by the modified metric, however, has brought another
challenge. In order to obtain statistically significant results at low false-alarm rates, the
number of trials had to be substantially increased. This was the reason for releasing an
extended set of trials short after the evaluations. The number of trials in the extended
set was nearly 6.5 million — an order of magnitude more than in the original core set.
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Most of the experimental results in Chapter 10 are reported on the extended conditions
of the core NIST SRE 2010 task. The NIST defined nine common conditions with the
following characteristics [NIST, 2010]:

1. All trials involving interview speech from the same microphone in training and test,

2. All trials involving interview speech from different microphones in training and test,

3. All trials involving interview training speech and normal vocal effort conversational
telephone test speech,

4. All trials involving interview training speech and normal vocal effort conversational
telephone test speech recorded over a room microphone channel,

5. All different telephone number trials involving normal vocal effort conversational
telephone speech in training and high vocal effort conversational telephone speech
in test,

6. All telephone channel trials involving normal vocal effort conversational telephone
speech in training and high vocal effort conversational telephone speech in test,

7. All room microphone channel trials involving normal vocal effort conversational
telephone speech in training and high vocal effort conversational telephone speech
in test,

8. All telephone channel trials involving normal vocal effort conversational telephone
speech in training and low vocal effort conversational telephone speech in test,

9. All room microphone channel trials involving normal vocal effort conversational
telephone speech in training and low vocal effort conversational telephone speech in
test.

Again, NIST defines only same-sex trials and we will report results mainly on the female
subset of all trials. The split between male and female trial subset is very often used in the
publications and the female subset is generally selected because it is slightly harder. Also,
we will concentrate on the first five conditions from the list above. The short summary
of the conditions is given in Table 2.2.

Table 2.2: Training and test conditions of the NIST SRE 2010. In the second and third
column, “tar” and “non” denote numbers of target and non-target trials, respectively.

Condition
Female Male

Training Test
tar non tar non

1 2326 449138 1978 346857 interview interview
2 8152 157394 6932 121558 interview interview
3 1958 334438 2031 303412 interview telephone
4 1751 392467 1886 364308 interview microphone
5 3704 233077 3465 175873 telephone telephone
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2.1.3 NIST SRE 2004–2008

In this work, all of the data from years 2004–2008 NIST SREs were included into the
background data set and used for training. The databases for these evaluations contain
various languages with the dominance of English.

The NIST SRE 2008 [NIST, 2008] was significant by including interview speech into
the evaluation. The interviews were recorded over several different microphones, which
allowed an exploration of the effects caused by this kind of channel variability.

The NIST SRE 2005 [NIST, 2005] and 2006 [NIST, 2006] corpora consist of telephone
call conversations recorded over land-line as well as cellular phones. Additionally, tele-
phone calls were recorded over auxiliary microphones of different kinds. More detailed
description of these datasets can be found in [Glembek, 2012] and in corresponding eval-
uation plans.

2.2 Other Datasets

To design a robust speaker recognition system with top performance, the amount of data
plays a crucial role. Especially, the amount of different speakers needs to be large in
order to model inter-speaker variability. Within the speaker recognition community, the
Switchboard and Fisher databases released by Linguistic Data Consortium (LDC) are
widely used as a part of training data and it is also the case in our systems. The detailed
description of the two databases was taken from [Glembek, 2012, Kockmann, 2012] with
the kind permission of the authors.

2.2.1 Switchboard

Switchboard 2 Phase II [Graff et al., 1999] was released in 1999 and consists of 4,472 five-
minute telephone conversations involving 679 participants which were mainly recruited
from US college campuses. Each speaker participated in at least 10 calls. Switchboard 2
Phase III [Graff et al., 2002] had been recorded between 1997 and 1998 in the American
South and consists of 2,728 calls from 640 participants (292 Male, 348 Female) which
are all native English speakers. Both of these corpora only consist of land-line calls.
Switchboard Cellular Part 1 [Graff et al., 2001] was recorded until 2000 and mainly focuses
on cellular phone technology. It consists of 1,309 calls, or 2,618 sides (1,957 GSM),
from 254 participants (129 Male, 125 Female), under varied environmental conditions.
Switchboard Cellular Part 2 [Graff et al., 2004] was released in 2004 and consists of 2,020
calls, or 4,040 sides (2,950 cellular, 2,405 female, 1,635 male), from 419 participants.

2.2.2 Fisher English

Fisher English is a collection of conversational telephone speech collected in 2003 by LDC.
The database protocol was created at LDC to address a critical need of developers trying
to build robust Automatic Speech Recognition (ASR) systems. A very large number of
participants make a few calls of short duration speaking to other participants (in English),
whom they typically do not know, about assigned topics. This maximizes inter-speaker
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variation and vocabulary breadth, although it also increases formality. The database
contains 11,699 recorded telephone conversations, each lasting up to 10 minutes.

2.3 PRISM

The last years have seen a dramatic increase in the amount of data to be processed.
The new data brought new and extended existing types of channel variabilities such as:
different speaking styles, use of a wide variety of microphones, as well as the speech
recorded with different levels of vocal effort or recorded in the noisy environment.

During our efforts to build the general-purpose and robust SRE systems for the IARPA
BEST program, we have developed a dataset focused on addressing different variabil-
ities and distortions present in the speech data. We have designed the database on
top of publicly available data and made it publicly available for the research commu-
nity [Ferrer et al., 2011b, Ferrer et al., 2011a].

The PRISM (Promoting Robustness in Speaker Modeling) evaluation set is a large
speaker recognition set based on NIST SRE data released from 2005 to 2010, where the
scope is extended to additional types of variabilities, namely noise and reverberation.
In addition, it includes variabilities already seen in one or more NIST SREs, namely
language, channel type, speech style and vocal effort level.

2.4 Data Description

The PRISM evaluation set is created using data from all NIST SREs beginning with the
year 2005 (that is, SREs 2005, 2006, 2008 and 2010). NIST SRE 2004 data, along with
Fisher and Switchboard data, are also included in the database, although used only for
training purposes, not to create evaluation trials.

The evaluation set is divided into different subsets (conditions) designed to test the
effect of various kinds of variability: language, noise, reverberation, speech style, channel,
and vocal effort. Additionally, the NIST SRE 2010 conditions for 1–side and 8–side
training are included as separate sets for the ease of comparison with previous results.

Only segments from the SRE databases of lengths that were included in the core
conditions in the corresponding evaluations are used to create trials.

The “language” condition leverages data from multiple corpora released for NIST SRE
evaluations to assess speaker recognition performance under multiple languages, including
same-language and cross-language trials. The “reverb” and “noise” conditions are created
from a clean data set that is artificially degraded at different signal-to-noise ratio (SNR)
levels, using different real noises, and different reverberation delays and room types. These
simulated sets are carefully crafted so that audio files and tools used to simulate the
corresponding degradations are all openly available and at no cost. The other conditions
use data from NIST SRE 2008 and 2010 to address the effect of channel type, speech style
and vocal effort level.

Detailed description of the individual evaluation conditions as well as the reference
results with a baseline system at the time of creation of the dataset can be found
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in [Ferrer et al., 2011b]. It is out of the scope of this work to discuss the detailed com-
position of the PRISM set, but we shall at least mention how the noisy and reverberated
conditions were created as the process demanded us to modify the original data released
by NIST.

2.4.1 Creating Noisy and Reverberated Sets

The “noise” and “reverb” sets are created by adding real noise (i.e., recorded noise sam-
ples) and reverberation to data extracted from the NIST SRE 2010 and 2008 corpora. To
limit the influence of other than noisy and reverberated channel, only clean microphone
data is selected from those corpora. Specifically, microphone 2 (lavalier microphones)
segments are chosen from both interview and telephone conversations.

In case of “noise”, we selected 15 cocktail noise samples from the free sound repository
Freesound.org [Freesound, 2010]. These noise samples were collected in bars, cafeterias,
offices, and airports. The samples were inspected to remove single-speaker foreground
speech sounds and artifacts (e.g., clicks). Afterwards, these 15 noise samples were mixed
to the clean segments at 20, 15, and 8 dB SNRs, using the publicly available filtering and
Noise adding Tool – FaNT [Hirsch, 2005]. To avoid the optimistic scenarios of matched
noise environments, different noises are added to training, enrollment, and test samples.

Reverberation is added to the clean signals using different reverberation times (RT)
of 0.3, 0.5 and 0.7 second. Initially, a set of candidate rooms were generated using the rir
tool [McGovern, 2004], which allows for the modeling of a room impulse response for
parameters of room size, microphone and speaker location, wall, floor and ceiling reflection
coefficients, speed of sound, and so on. The rooms were modeled so as to cover common
configurations of size, reflectivity, and source and microphone locations and only those
configurations resulting in RTs close to 0.3, 0.5 or 0.7 were used. In total, twelve rooms
were modeled for training (four for each RT), three for test, and three for enrollment
(one for each RT in each case). Finally, the “fconv” tool from the same toolkit was used
to generate the reverberated signals by convolving the room impulse responses with the
audio files.

2.4.2 Selected Conditions

To analyze how systems can deal with different inter-session variabilities, we chose a
representative set of PRISM conditions for reporting results. The set of conditions is
the same as already defined in [Ferrer et al., 2012]. Here, we will list the names of the
conditions with a short description. For the extensive description, we refer the reader
to [Ferrer et al., 2012, Ferrer et al., 2011b].

telp English telephone calls over telephone channel for both signals in the trial.

tela English telephone calls over either telephone or microphone channels for both signals
in the trial.

int English interviews over microphone channels for both signals in the trial.
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vel Normal vocal effort English conversations versus normal, low and high vocal effort
English conversations.

lan Trials where both signals are telephone conversations in the same language, which
can be either English, Chinese, Russian, Arabic or Thai.

noi Clean and noisy microphone interview signals with different SNR levels tested against
each other.

rev Clean and reverberated microphone interview signals with different RTs tested
against each other.

2.5 DARPA RATS

The Robust Automatic Transcription of Speech (RATS) is a DARPA-sponsored program,
with the goal of creating technology capable of accurately determining speech activity
regions, detecting key words, and identifying language and speakers, in highly degraded,
weak and/or noisy communication channels. The data sets used in RATS are obtained
by retransmitting pre-existing or newly collected telephone conversations in multiple lan-
guages over various types of channels, and aim to capture/simulate the acoustic environ-
ment present in current radio-based two-way communications systems used by the law
enforcement, emergency, air traffic control, etc.

By its nature, these radio means of communication are sensitive to many factors
which can degrade or change the quality of the transmission. The most important are
background radio interference, atmospheric conditions, used bandwidth and background
additive noise. All of these factors greatly increase the unwanted channel variability
present in the audio.

The channel distortions present in this type of data forced us to revisit every step in
the chain of technologies which lead to the final SRE system [Plchot et al., 2013]. Most
of the state-of-the-art systems are designed for much cleaner telephone conversations or
interviews recorded with high-quality microphones in relatively low-noise environment
compared to RATS data.

In order to create the speaker recognition systems for RATS, we had to begin by de-
veloping noise-robust models for voice activity detection based on both supervised and
unsupervised methods. In addition, we experimented with various types of acoustic fea-
tures in order to see their effect on the behavior of the system under noise. In this work,
however, we will limit the experiments to the standard MFCC features to demonstrate
the performance of proposed techniques under such degraded acoustic conditions.

2.5.1 Data Description

The Linguistic Data Consortium (LDC) provided the training and test data for the RATS
participants. The audio recordings were selected from existing and new data sources as
follows:

• NIST SRE 2004 (English, Arabic, Chinese, Russian, Spanish)
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• RATS-LDC (Levantine Arabic, Farsi)

• RATS-Appen (Levantine Arabic, Farsi, Pashto, Dari, Urdu)

• CallFriend Farsi

• Fisher Arabic Levantine

• Fisher English

• NIST LRE2 (various languages)

All recordings were retransmitted through 8 different noisy communication channels,
labeled by the letters A through H [Walker and Strassel, 2012]. A “push-to-talk” (PTT)
transmission protocol was used in all channels except G. PTT states produce some regions
where multiple non-transmission (NT) segments may occur. As a result, the amount of
usable audio decreases after retransmission.

It should be noted that among the data sources listed above, only the first three were
annotated with speaker labels. Data from the other sources was used to train universal
background models and i-vector extractors. We used the “dev” subset of the RATS-LDC
and RATS-Appen corpora3 to define speaker enrollment and test samples. The rest of
the RATS-LDC and RATS-Appen data, along with the NIST SRE 2004 set was used for
system training.

There is also a separate blind “progress” test set, which is used to measure year-to-year
progress on the RATS SRE task. The progress set consists of speakers from the 5 target
languages (Levantine Arabic, Farsi, Pashto, Dari, Urdu). Each speaker has 10 recording
sessions, re-transmitted over the 8 noisy channels as described above. For each speaker, 6
of the sessions are used for enrollment and 4 for testing, randomly sampled from the noisy
channels. The progress set defines multiple testing conditions, depending on the amount
of speech present in enrollment and testing samples. The following test-enroll conditions
are evaluated (numbers indicate nominal amount of speech in seconds): 120–120, 30–30,
30–10, 30–3, 10–10, 10–3, 3–10, 3–3. Unfortunately, at the time of writing this thesis, the
reference labels for this evaluation database are not available and therefore the reported
results are only on the development set, which was used for the calibration and fusion in
our RATS SRE submission.

Only recordings from the 120 s condition were released for training and development.
We therefore had to construct our own development samples for the shorter durations
from the 120 s audio files, based on our voice activity detection to simulate the “progress”
test set.

2Mostly the data from NIST Language Recognition Evaluation in 2009, re-transmitted through the
RATS channels.

3LDC catalog ids: LDC2012E49, LDC2012E63, LDC2012E69.
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Chapter 3

Evaluation Metrics and Criteria

As was mentioned earlier in Section 1.2, the speaker verification system is basically a
two-class pattern recognizer, which is expected to classify a speaker verification trial t. In
general, the verification trial can be composed of two sets of speech segments (enroll and
test) and it is assumed that all segments in the individual sets belong to a single speaker.
The classes to recognize represent two different hypotheses, which can be inferred from
the trial: (i) the same speaker hypothesis Hs saying that both sets of segments for a given
trial belong to the same speaker (often referred to as a target trial), or (ii) an opposite
proposition of different speaker hypothesis Hd saying that the two sets of segments were
uttered by two different speakers (often referred to as a nontarget trial).

In order to quantify the performance of such recognizer, we need a supervised set of
trials T, where each trial t ∈ T is associated with a label corresponding to a different- or
same-speaker hypothesis t ∈ {−1, 1}. Ultimately, the goal of the verification system is
to assign correct labels to the tested trials. During this process, two types of detection
errors can arise: false alarms (FA) — different-speaker trials are incorrectly classified
as same-speaker trials; and missed detections (Miss)1 — when the same-speaker trials
are incorrectly classified as different-speaker trials. To evaluate these error rates, it is
convenient to split the set of all trials into the sets containing only same- and different-
speaker trials denoted as Ts and Td, respectively. Then, for a given test set, we can
estimate the miss and false alarm rate as:

p(miss|T) =
Nmiss

|Ts|
,

p(fa|T) =
Nfa

|Td|
,

(3.1)

where |Ts| and |Td| are the numbers of same- and different-speaker trials, respectively,
and Nfa and Nmiss are the numbers of false alarms and missed detections made by the
system, respectively.

1The “FA” and “Miss” are adopted by NIST and widely used in the speaker recognition community.
These names of the errors correspond to the perspective of law enforcement when the system is used to
search for some suspect individual. In the field of bio-metric authentication, the terms false accept and
false reject are used to reflect the other perspective.

21
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The output of the recognizer is usually a score, which reflects the confidence of the
system. Preferably, it is a calibrated log-likelihood ratio between the two hypotheses.
Formally, the score for a trial t is given as

s = log
p(t|Hs)

p(t|Hd)
. (3.2)

The higher value of the score reflects a higher confidence for same-speaker hypothesis and
lower value for different-speaker hypothesis. Eventually, the score is converted to a hard
decision by thresholding. Moving the threshold τ changes the proportion of the two error
rates p(miss|T, τ) and p(fa|T, τ), letting the user choose the desired operating point of the
system. This way, the error rates also depend on the selected threshold.

These error rates are favorite and simple criteria to determine the costs of operating
some particular system. Often the end user of the system is able to estimate costs related
to each type of error, e.g. the time of an analyst processing false detections, or from the
other perspective, the costs related to many unsuccessful authentications while accessing
a banking account. For the user, it is then convenient to set the threshold in such a
way that the system works with an acceptable error rate of one kind and then judge the
system according to an error of the other kind. For example, a law enforcement agency
would like to set an acceptable miss rate and at the same time minimize the time spent
by analysts to process false alarms.

3.1 Detection Cost Function

Detection Cost Function (DCF) has been defined by NIST as a metric for evaluating the
verification systems, which focuses on a particular operation point of interest. With some
parameter adjustments or modifications in its definition, it serves as the primary criterion
in NIST Speaker Recognition Evaluations. It is designed to consider the overall costs
based on the two types of detection errors. For the evaluations prior to 2012, it is defined
as a weighted sum of the false alarm probability and the miss-detection probability:

DCF = Cmiss p(miss|T, τ) p(Hs) + Cfa p(fa|T, τ) p(Hd) (3.3)

with
p(Hd) = 1− p(Hs) , (3.4)

where Cmiss and Cfa are the relative costs of the detection errors, and p(Hs) and p(Hd) are
the prior probabilities for the trial being same- and different-speaker, respectively. The
triplet 〈Cmiss, Cfa, p(Hs)〉 defines the target operating point corresponding to the desired
application, for which the system is being evaluated. Note that the metric requires the
system to make hard binary decisions as an explicit speaker detection is required for each
trial. The common values, as defined by NIST for the purposes of SRE evaluations, are
given in Table 3.1. Until the 2008, NIST had used values referred to as “old DCF”. In
2010, NIST introduced the new set of values, referred to as “new DCF”. The goal in
2010 was to emphasize the importance of applications operating at very low false alarm
rates. The two metrics are shown as circles and squares in the DET plot which will be
introduced in Section 3.2 (Figure 3.1).
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Table 3.1: Common NIST DCF parameters (applications)

Cfa Cmiss p(Hs)

DCFold 1 10 0.01
DCFnew 1 1 0.001

To make the measure more intuitive and to allow the comparison of difficulty of various
evaluation sets, CDet is further normalized by CDefault — the best a-priori cost that could
be obtained without processing the input data, i.e. the one that would be obtained by
accepting or rejecting all trials, whichever is smaller:

CDefault = min

{
Cmiss p(Hs)
Cfa p(Hd)

(3.5)

and
CNorm = CDet/CDefault. (3.6)

The cost is computed from the actual hard decisions and the threshold for making decisions
is often set by an evaluee to minimize the cost on some development set. The metric is
then referred to as the actual DCF or act-DCF. NIST also computes a minimum possible
DCF, referred to as a min-DCF, by setting the optimal threshold for the given test set:

minDCF = min
τ

[Cmiss p(miss|T, τ) p(Hs)

+Cfa p(fa|T, τ) p(Hd)] .
(3.7)

The difference between the act-DCF and min-DCF is referred to as a calibration loss.
The smaller the difference, the better the system is calibrated. We will further discuss the
calibration in Section 3.4.

3.1.1 Analytically Setting the Threshold

If the scores are well-calibrated log-likelihood ratios (3.2), the user can set the score
threshold analytically to make an optimal, cost-effective Bayes decision. The parameters
of the operating point 〈Cmiss, Cfa, p(Hs)〉 can be absorbed to a single effective prior Ptar

defining the target application as

logit Ptar = logit(p(Hs)) + log
Cmiss

Cfa
. (3.8)

where the logit function is an inverse of the logistic sigmoid and is defined as

logit(x) = log
x

1− x
(3.9)

The optimal threshold for the scores, which can be interpreted as log-likelihood ratios is
then

τ = −logit Ptar. (3.10)
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Having a system which provides good log-likelihood ratios and using these rules, we can
treat the our system as an application independent recognizer and use it for a wide range
of possible applications just by correctly setting the desired operating point.

3.1.2 Primary Metric of NIST SRE 2012

Since most of the test speakers were known prior to evaluation, NIST has altered
the primary metric to reflect the situation when the two types of non-target tri-
als are evaluated: (i) known non-targets coming from the previously known speak-
ers and (ii) unknown non-targets coming from the unknown newly released speak-
ers [NIST, 2012, Martin et al., 2014]. As the official scoring metric in previous SREs
was simply a linear combination of the miss rate and the false alarm rate, for NIST SRE
2012 it was appropriate to consider two different false alarm rates — that of the known
and unknown non-targets. For the primary core and extended task, it was decided that for
the non-target trials the prior probability of a known speaker Pknown is set to 0.5. Partici-
pants of the evaluations could also submit contrastive systems which would assume that
all non-target trials would come either only from known or only from unknown speakers.
The prior probability for non-target trials being formed from known speakers is then set
to one or zero. Incorporating these two false alarm rates into (3.3), we get:

DCF = Cmiss p(miss|T, τ) p(Hs)

+ Cfa p(Hd)

× (p(faknown|T, τ)Pknown + p(faunknown|T, τ) (1− Pknown)).

(3.11)

Additionally, to emphasize the importance of a calibration over wider range of oper-
ating points, it was decided to weight the metric for two different prior probabilities of
target trials:

p(Hs 1) = 0.01 p(Hs 2) = 0.001. (3.12)

Taking into account also this fact, we normalize as:

CNorm(βk) =p(miss|T, τ)×

βk ×

{
Pknown p(faknown|T, τ)+

(1− Pknown) p(faunknown|T, τ)

}
, (3.13)

where

βk =

(
Cfa

Cmiss

)(
1− p(Hs k)

p(Hs k)

)
. (3.14)

Finally, the primary metric is an average of the cost functions for these two priors:

CPrimary =
CNorm(β1) + CNorm(β2)

2
. (3.15)



3.2 DET Plot 25

3.2 DET Plot

It is always desirable to produce a graphical representation of the performance to compare
individual systems. In the SRE community, the Detection Error Tradeoff (DET) plot is
commonly used [Martin et al., 1997] to visualize the performance over a wide range of
operating points (thresholds). This plot corresponds to a min-DCF metric in the sense
that a threshold optimization is performed on the whole evaluation set. Therefore similarly
to the min-DCF, the DET plot is not sensitive to calibration as it depends only on the
order of scores and not on their actual values. This property can be very useful for
comparing systems during development as the calibration step is usually done in the very
last phase and very often on the same test set (development set), which is used for the
system comparison.

The DET plot is derived from the empirical Receiver Operating Characteristics (ROC)
curve, which plots the detection probability as a function of false alarm probability. The
DET plot is then obtained by transforming both axes of ROC plot with a non-linear probit
transformation. After the transformation, the range of the x and y axes is moved from
[0, 1] to [−∞,+∞]. The axes x and y represent the probabilities of false alarms and miss
detections, respectively. The individual operating points of an interest can be plotted on
the DET curve, as well as the regions representing the statistical significance. In SRE,
the region of statistical significance is often determined by the Doddington’s rule of 30.
Shortly, the rule says, that for a meaningful evaluation, one needs at least 30 false alarms
and at least 30 misses. For a detailed interpretation, see appendix B of [Brümmer, 2010b]
or [Doddington, 1998]. An example of a DET and ROC plot comparing two different
systems denoted as PLDA and DPLDA on the PRISM “rev” test is shown in Figure 3.1.

3.3 Equal Error Rate

Equal Error Rate (EER) is a common measure characterizing the performance of a bio-
metric system. It is defined as a location on a ROC or DET curve, where the false alarm
rate and miss rate are equal. It can be shown [Brümmer, 2010b], that this point acts as a
scalar summary of the whole ROC curve and it is insensitive to calibration. The value of
EER gives a rough idea, how close the ROC curve is to the axes or how close is the DET
curve to the origin and therefore its value can serve as a very approximate comparison
between the systems. Even though the properties of this measure seem to be attractive, it
is not very useful in practical applications which usually operate either in a region of low
false alarm rate (e.g., authentication systems) or low miss rate (e.g., law enforcement).
In Figure 3.1, the point is shown as star mark.

3.4 Normalized Bayes Error-rate Plot

So far, the quality of calibration was presented as a difference between the act-DCF and
min-DCF values. This way, however, we can only see how good the calibration is in a single
operating point. It is useful to plot this calibration loss over a wide range of operating
points. We will use the normalized Bayes error-rate plots introduced in [Brümmer, 2010b].
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Assuming that the scores are log-likelihood ratios, we will essentially plot act-DCF and
min-DCF as a function of operating point. For every operating point, the value of act-
DCF is then computed using analytically set threshold, see (??).

It is ensured, that min-DCF ≤ act-DCF. If the two functions are close, the scores
are good log-likelihood ratios and the calibration is good, if they are very different, the
calibration is bad. A good application-independent detector can be recognized by having
a good calibration for all possible applications. Examples of these plots for a case of good
and bad calibration are given in Figure 3.2.

3.5 Calibrating the Scores

So far, we were speaking about the calibration only in the sense that the scores provided
by the system are good log-likelihood ratios. In practice, it is often not the case for
many systems and the outputs of such systems have to be transformed into log-likelihood
ratios. This is usually achieved by means of some transformation function f(s), which is
monothonic increasing. Usually a linear function

f(s) = a s+ b, (3.16)

is enough to convert scores into log-likelihod ratios. Parameters a and b are typically
found by optimizing a cross-entropy objective function on a supervised set of development
scores over a wide range of operating points [Brümmer, 2010b]. We will further discuss
the cross-entropy objective function in Section 9.3.1.
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Figure 3.1: ROC (top) and DET (bottom) curves comparing two different techniques
(PLDA and DPLDA). The three markers in each DET curve correspond to the new min-
DCF (circle), the old min-DCF (square), and the EER (star). The region, where the
values are statistically significant according to the Doddington’s rule of 30 (DR30) is
marked by the dashed blue lines.
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Figure 3.2: Normalized Bayes error-rate plots for two systems submitted to the NIST SRE
2010 evaluations. The top system based on PLDA and i–vectors represents an excellent
calibration. The bottom system based on the same i–vectors, but with cosine distance
scoring has a very bad calibration. Eval denotes the evaluation database and dev the
development database. Miss and normalized false alarm rates are also shown separately.
DR30 corresponds to the Doddington’s rule of 30. To the left of this point, there are fewer
than 30 false alarms. The vertical dashed magenta line represents the operating point of
DCFnew with p(Hs) = 0.001.



Chapter 4

Gaussian Mixture Modeling of

Acoustic Features

Gaussian Mixture Models (GMM) are a family of mixture models where the probabil-
ity density function (PDF) for each mixture (component) is a Gaussian distribution.
As the GMMs are commonly used to model the probability distribution of features in
bio-metric systems, naturally, they are widely used also in all fields of speech process-
ing. This includes speaker recognition [Reynolds et al., 2000], as well as language iden-
tification (e.g. [Torres-Carrasquillo et al., 2002]), LVCSR (e.g. [Young et al., 2006]) and
others. Generally, GMM parameters are estimated from training data using the iterative
Expectation-Maximization (EM) algorithm or, given an already pre-trained GMM model,
by Maximum A Posteriori (MAP) re-estimation.

The main role of the GMM is to estimate an underlying distribution of acoustic features
extracted from speech segments and inherently model the hidden classes, which are formed
by individual speakers, various acoustic channels or some other common properties. This
ability of unsupervised modeling of classes is later exploited by a supervised algorithm
focused on extracting the information about the distributions of particular classes, e.g.
those associated with speaker identities.

Let us define a speech segment as a set of F -dimensional acoustic features: X =
{x1,x2, . . . ,xτ}. A GMM [Bishop, 2006] is then defined as a weighted sum (mixture) of
a set of C multivariate normal distributions of the form:

p(x|G) =
C∑

c=1

w(c)N

(
x;µ(c),Σ(c)

)
, (4.1)

where p(x|G) is the probability of x given the GMM model G with C mixture components
and w(c) are individual mixture weights, also called mixing coefficients, satisfying the
constraints that w(c) ≥ 0 and

∑C
c=1w

(c) = 1. N(x;µ(c),Σ(c)) is an F -variate Gaussian

component PDF with mean µ(c) and covariance matrix Σ(c):

N

(
x;µ(c),Σ(c)

)
=

1

(2π)F/2|Σ(c)|1/2
e−

1
2
(x−µ(c))

T
Σ(c)−1

(x−µ(c)). (4.2)

The whole GMM G is then represented by parameters

λ =
〈
w(c),µ(c),Σ(c)

〉
with c = 1 . . . C, (4.3)
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or more conveniently by the supervectors and the matrix of stacked parameters as:

λ = 〈w,µ,Σ〉 =

〈

w(1)

...
w(C)


 ,



µ(1)

...
µ(C)


 ,




Σ(1) 0 · · · 0

0 Σ(2) · · · 0
...

...
. . .

...

0 0 · · · Σ(C)




〉
. (4.4)

It should be noted, that the covariance matrices can be full rank or constrained to be
diagonal. Sometimes, the parameters can be shared among the Gaussian components.
In general, the configuration with full covariance matrices needs more training data to
properly estimate all the parameters. Often, a GMM with larger amount of components
with diagonal covariance matrices is used instead of the configuration with full rank
covariance matrices.

For evaluating the GMM model given the data, and therefore also for estimating its
parameters, it is necessary to define the quantities associated with individual GMM com-
ponents. Having observed the data point xi, posterior probabilities p(c|xi), also referred

to as occupation probabilities and shortly denoted as γ
(c)
i , can be computed using the

Bayes rule:

γ
(c)
i =

w(c)N

(
xi;µ

(c),Σ(c)
)

∑C
c=1w

(c)N

(
xi;µ(c),Σ(c)

) . (4.5)

The configuration of the posterior probabilities for each feature vector is referred to as
the alignment of the data to the mixture components. In this text, we will always as-
sume, that the alignment of the feature vectors to Gaussian components is always based
on Universal Background Model (UBM).

It is also convenient to define Baum-Welch statistics. Having our speech segment X

which consists of i = 1 . . . τ feature vectors of dimensionality F and the alignment of
each feature vector xi defined by (4.5), the Baum-Welsch [Kenny et al., 2007] statistics
are defined as

N (c) =

τ∑

i=1

γ
(c)
i (4.6)

f (c) =
τ∑

i=1

γ
(c)
i xi (4.7)

S(c) =

τ∑

i=1

γ
(c)
i xixi

T . (4.8)

We refer to these as the zero-, the first-, and the second-order statistics (or cumulants),
respectively. For the simplification of the derivations, the statistics centered around the
UBM mean are defined as

f̃ (c) = f (c) −N (c)µ(c) (4.9)
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S̃(c) = S(c) − f (c)µ(c)T − µ(c)f (c)
T
+N (c)µ(c)µ(c)T. (4.10)

For further simplification, the statistics can be stacked into the form of supervector and
matrices as:

N =




N (1)I 0 · · · 0
0 N (2)I · · · 0
...

...
. . .

...
0 0 · · · N (C)I




f =



f (1)

...
f (C)




S =




S(1) 0 · · · 0
0 S(2) · · · 0
...

...
. . .

...
0 0 · · · S(C)


 ,

(4.11)

where the identity matrices in (4.11) have the same dimensionality as the feature vector.
Stacked centered statistics f̃ and S̃ are created according to the same scheme as their
non-centered versions.

4.1 Maximum Likelihood Estimate of Parameters

Given enough training data and some initial GMM configuration λ(0), we want to estimate
the new parameters, which best match the underlying distribution of the data. A possible
approach is to perform a Maximum-Likelihood (ML) estimate [Reynolds and Rose, 1995,
Bishop, 2006] and search for the solution of

λML = argmax
λ

p(X|λ). (4.12)

Assuming the statistical independence of the frames/feature vectors, the likelihood of the
data X, given the model parameters λ, is given as

p(X|λ) =
τ∏

i=1

G(xi;λ). (4.13)

Usually, the logarithm of the likelihood is required for evaluating the model and estimating
the parameters. Its basic form is given as

log p(X|λ) =
τ∑

i=1

log
C∑

c=1

w(c)N

(
xi;µ

(c),Σ(c)
)
. (4.14)
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For any choice of distributions qi(c) over the Gaussian components, we can rewrite this
likelihood as

log p(X|λ) =
τ∑

i=1

log p(xi|λ) =
τ∑

i=1

C∑

c=1

qi(c)

︸ ︷︷ ︸
1

log
p(xi, c|λ)

p(c|xi, λ)

qi(c)

qi(c)

=
τ∑

i=1

[
C∑

c=1

qi(c) log
(
w(c)N

(
xi;µ

(c),Σ(c)
))

−

C∑

c=1

qi(c) log qi(c) +

C∑

c=1

qi(c) log
qi(c)

γ
(c)
i

]
,

(4.15)

where the last term
C∑

c=1

qi(c) log
qi(c)

γ
(c)
i

= DKL(qi(c)‖γ
(c)
i ) (4.16)

corresponds to the Kullback-Leibler (KL) divergence between qi(c) and the posterior dis-

tribution p(c|xi, λ) = γ
(c)
i . Hence, if we set qi(c) to the true posterior γ

(c)
i , the KL

divergence vanishes and the likelihood can be expressed as

log p(X|λ) =
τ∑

i=1

[
C∑

c=1

γ
(c)
i log

(
w(c)N

(
xi;µ

(c),Σ(c)
))
−

C∑

c=1

γ
(c)
i log γ

(c)
i

]
. (4.17)

Using the Baum-Welch statistics, we can further rewrite the log-
likelihood [Kenny et al., 2004] and get

log p(X|λ) =

C∑

c=1

[
N (c) log

1

(2π)F/2|Σ(c)|1/2

−
1

2
tr
(
Σ(c)−1

(
S(c) − f (c)µ(c)T − µ(c)f (c)

T
+N (c)µ(c)µ(c)T

))]

−

τ∑

i=1

C∑

c=1

γ
(c)
i log

γ
(c)
i

w(c)
,

(4.18)

which is the correct likelihood, if the statistics were collected with the true posterior
distribution γ

(c)
i . If the true posterior distribution is not available and is provided via

different model, e.g. UBM, then this function serves as an approximation and a lower-
bound of the correct likelihood, since the omitted KL divergence is always non-negative.

Unfortunately, direct optimization of the parameters given the data is analytically
intractable. However, ML estimates of the parameters can be obtained iteratively by the
means of EM algorithm [Dempster et al., 1977, Bishop, 2006].

For the E-step of the EM algorithm, the auxiliary function can be constructed from
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(4.18) as

QGMM(λ, λ
(0)) =

C∑

c=1

[
N

(c)
λ0

log
1

(2π)F/2|Σ(c)|1/2

−
1

2
tr
(
Σ(c)−1

(
S
(c)
λ0
− f

(c)
λ0

µ(c)T − µ(c)f
(c)
λ0

T
+N

(c)
λ0

µ(c)µ(c)T
))]

+
C∑

c=1

logw(c).

(4.19)

By fixing the alignment of the data using the current model estimate λ(0), we obtain γi
(c)
λ0

and collect the statistics {N
(c)
λ0

, f
(c)
λ0

, S
(c)
λ0
}. In the M-step of the algorithm, the new ML

estimate of parameters is then computed as

λML = argmax
λ

QGMM(λ, λ
(0)), (4.20)

for which the update formulas are given as:

µ
(c)
ML =

1

N (c)
f (c)

Σ
(c)
ML =

1

N (c)
S(c) − µ

(c)
MLµ

(c)
ML

T

w
(c)
ML =

N (c)

τ
.

(4.21)

Repeating the E and M steps guarantees not to decrease the likelihood and iterating is
usually stopped when the likelihood increase in two consecutive iterations is smaller than
some convergence threshold. For more detailed derivations following roughly our notation,
we refer the kind reader to [Glembek, 2012].

ML can be safely used only when sufficient amount of data is available (see
e.g. [Burget et al., 2007]) and therefore this approach is used for training the UBM. For
estimating speaker models when considering the asymmetrical SRE approach (see Sec-
tion 1.2), a small amount of data is given for training. In this case a common practice is to
re-estimate only the UBM means by performing MAP adaptation [Reynolds et al., 2000].
Therefore, the speaker model, is given strictly by µ, while w and Σ are shared among all
models and are taken from the UBM.

4.2 MAP Adaptation

Another approach to estimate the GMM parameters is to use the maximum a-posteriori
criterion (MAP). This approach is often used when we already have robustly estimated
a-priori information (in our case p(λ)) about the process whose parameters we want to
estimate. The a-priori information can come from the scientific assumptions or, as in
our case, it can be estimated from previously observed data. The source of an a-priori
knowledge in speech processing is usually the ML-estimated UBM.
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Generally, the parameters are computed as

λMAP = argmax
λ

p(λ|X), (4.22)

where p(λ|X) is the posterior probability for the parameters λ given the input data X:

p(λ|X) =
p(X|λ)p(λ)

p(X)
∝ p(X|λ)p(λ). (4.23)

Inserting (4.23) into (4.22), the MAP estimation is then given as

λMAP = argmax
λ

p(X|λ)p(λ). (4.24)

As already mentioned, this approach is helpful if very little data is available and more
importantly if we have a good prior. Comparing (4.24) and (4.12), we can see ML as a
special case of MAP, where flat priors are considered. Having no information about the
prior can yield a good parameter estimate only for large training data sets.

Let us now demonstrate, how the UBM can be used as a source of prior for “adapting”
the µ. Again, we only work with µ, as it is a common practice in SRE, letting the rest
of the parameters being shared with the UBM. For the MAP estimate of weights and
covariance matrices, see [Gauvain and Lee, 1994, Reynolds et al., 2000].

Relevance MAP mean adaptation as proposed in [Reynolds et al., 2000] can be com-
puted as

µ
(c)
MAP = β(c)µ

(c)
ML +

(
1− β(c)

)
µ

(c)
UBM, (4.25)

with

β(c) =
N (c)

N (c) + r
, (4.26)

where µ
(c)
ML (see (4.37)) is the UBM mean, ML re-estimated in a single iteration of the

EM algorithm, µ
(c)
UBM is the original UBM mean and N (c) are zero-order statistics. The

adaptation constant r, often referred to as a relevance factor, acts as a trade-off between
the ML estimate and the UBM. The value of this constant is chosen by the user. It will
be shown in Section 4.3 that this update corresponds to the MAP estimate with a specific
choice of prior imposed on GMM means.

4.2.1 Speaker Verification Using Relevance MAP

If we want to do speaker verification considering the MAP-estimated mean µs from the
enrollment data as a model for a speaker s, we obtain the score as the Log-Likelihood
Ratio (LLR) between the speaker model and the UBM log-likelihood for the test utterance
Xtest. By evaluating likelihood (4.14) for both GMMs, we get:

LLR = log p(X|λs)− log p(X|λ), (4.27)

where, with c = 1 . . . C, λ =
〈
µ

(c)
UBM,Σ

(c)
UBM, w

(c)
UBM

〉
are the parameters of the UBM and

λs =
〈
µ

(c)
s ,Σ

(c)
UBM, w

(c)
UBM

〉
are the parameters representing the speaker model.
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4.3 Latent Variable Models for Speaker Recognition

In this Section, we will describe essential techniques based on Factor Analy-
sis [Bishop, 2006]. These techniques build upon the MAP estimate of the speaker-
dependent GMM, while taking into account either inter- or intra-session variability or
both of them at the same time. To study the problematic in detail, we refer the reader
to the following publications [Kenny, 2005, Kenny et al., 2007, Kenny et al., 2005a].

Let us begin with a brief description of MAP adaptation in terms of hidden variable
models by following [Kenny, 2005]. Continuing with the notation of GMM from the
previous section, we will define the speaker-dependent supervector g(s) as a latent variable
model for speaker s as

g(s) = µ+Dz(s). (4.28)

The speaker-dependent supervector is distributed according to g ∼ (µ,DDT) and a
CF × S matrix D acts as a prior on the UBM mean supervector µ. Latent variable z(s)
is a S-dimensional speaker-dependent hidden vector distributed according to the standard
normal distribution, N(z|0, I). The S in the dimensionalities of the variabilities denotes
an arbitrary positive number and will be discussed later in the end of Section 4.3.1.

The log-likelihood of data and the hidden variable is based on the general GMM
log-likelihood function as defined in Section 4.1. We will assume fixed data align-
ment [Kenny, 2005] and represent the log-likelihood by the means of the Baum-Welch
statistics collected using UBM. As already discussed in the previous section, this is an ap-
proximated log-likelihood acting as a lower-bound to the real log likelihood. Using the Uni-
versal Background Model to collect the statistics for all observations X = {x1,x2, . . . ,xτ}
corresponding to the speaker s, we get

log p(X|D, z) = G+H(z),

G =

C∑

c=1

(
N

(c)
X

log
1

(2π)F/2|Σ(c)|1/2

)
−

1

2
tr
(
Σ−1S̃X

)
,

H(z) = zTDTΣ−1f̃X −
1

2
zTDTΣ−1NXDz,

(4.29)

where Σ is a block diagonal covariance matrix of the UBM composed as in (4.3), NX,
f̃X and S̃X are stacked zero-, first- and second-order centered statistics collected with the
UBM according to (4.6), (4.9) and (4.10).

The joint log-likelihood of the observed data X and the hiden variable is given by

log p(X, z|D) = log p(X|D, z)p(z)

= KΣ + (zTDTΣ−1f̃X −
1

2
zTDTΣ−1NXDz−

1

2
zTz),

(4.30)

where the term KΣ is a constant (also referred to as a normalization term), which does
not depend on z and D. Leaving out the KΣ, the posterior of the hidden variable z, given
the data X observed for speaker s, is given as

log p(z|X) ∝ log p(X, z) ∝

(
zTDTΣ−1f̃X −

1

2
zTDTΣ−1NXDz−

1

2
zTz

)
. (4.31)
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By completion of squares, the posterior for z is also Gaussian

p(z|X) ∼ N(z|µz,Γ
−1
z ), (4.32)

with precision matrix and mean given by

Γz = (DTΣ−1NXD+ I) (4.33)

µz = Γ−1
z DTΣ−1f̃X. (4.34)

The mean of supervector posterior p(g|X) (i.e. its MAP estimate) is then given as

ĝ = µ+Dµz

= µ+D(DTΣ−1NXD+ I)−1DTΣ−1f̃X

= µ+ (NX +Σ(DDT)−1)−1f̃X.

(4.35)

By setting DDT = Σ
r
(i.e. setting D = cholΣ

r
), we can rewrite the adapted model as

ĝ = µ+ (NX + r)−1 f̃X, (4.36)

which corresponds to a heuristic prior g ∼ N(µ, Σ
r
) imposed on the mean supervector, so

we can write that

ĝ = µ+
1

NX + r
f̃X

=
r

NX + r︸ ︷︷ ︸
1−β

µ+
NX

NX + r︸ ︷︷ ︸
β

µ f̃XN
−1
X︸ ︷︷ ︸

µML

,
(4.37)

which is in agreement with the relevance MAP adaptation formula (4.25).

4.3.1 Training Prior Hyper-Parameters

In the previous section, we discussed how to artificially supply a prior by means of another
model (UBM). Now, we will describe how to train it from the data in a ML fashion. The
training objective is to maximize the likelihood of the training data p(X|D, z). Similarly
to the GMM training, the ML estimate of the parameters can be obtained by means of
EM algorithm [Brümmer, 2009]. While the other parameters {µ,Σ,w} could be also
re-estimated, here we will consider re-estimating only the matrix D. Taking the z as a
hidden variable, the EM auxiliary function is then constructed as

Q(D,D0) =
∑

s

〈log p(Xs, z|D0)〉z|Xs,w|D0
, (4.38)

where p(Xs, z|D0) is the joint probability of the observations Xs for speaker s. Considering
that

p(Xs, z|D) = log p(Xs|D, z) + log p(z) (4.39)

and p(z) being set to a standard normal distribution and kept fixed, there is no need to re-
estimate parameters of p(z), as any changes in the prior distribution can be equivalently
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accomplished by appropriately changing µ andD. Therefore, we can simplify the auxiliary
function as

Q(D,D0) =
∑

s

〈log p(Xs|z,D0)〉z|Xs,D0 . (4.40)

By looking at the expression for the joint likelihood (4.30) and realizing that KΣ does
not depend on D, we can further express the auxiliary function as

Q(D,D0) =
∑

s

〈
zTDTΣ−1f̃Xs

−
1

2
zTDTΣ−1NXs

Dz

〉

z|Xs,D0

=
∑

s

tr

[
Σ−1

(
f̃Xs
〈z〉DT −

1

2
NXs

D〈zzT〉DT

)]
,

(4.41)

where the expectations are taken over z|Xs,D0. Now, in order to minimize the auxiliary
function, we can take its derivative with respect to D and set it to zero:

∂

∂D

∑

s

tr

[
Σ−1

(
f̃Xs
〈z〉DT −

1

2
NXs

D〈zzT〉DT

)]
= 0, (4.42)

which gives ∑

s

Σ−1
(
f̃Xs
〈z〉 −NXs

D〈zzT〉
)
= 0. (4.43)

We need to solve the linear system

D(c)
∑

s

N
(c)
Xs
〈zXs

zTXs
〉 =

∑

s

f̃
(c)
Xs
〈zTXs
〉, (4.44)

where c is spanning the rows of the matrices corresponding to individual UBM compo-
nents. The expectation over the hidden variable 〈z〉 is given as a mean of the posterior
distribution of z given the D0 (see (4.34)) and 〈zzT〉 = 〈z〉〈zT〉 + Γ−1

z , where Γ−1
z is the

covariance matrix (see (4.33)) of the posterior of z given D0. Finally, the closed-form
solution for computing the hyper-parameters is :

D(c) =
∑

s

[
f̃
(c)
Xs
µzXs

(N
(c)
Xs

(µzXs
µz

T
Xs

+ Γz
−1
Xs
))−1

]
. (4.45)

The framework described in this section allows for setting different dimensionalities and
constraints for D. In theory, we could take D as a full CF × CF matrix. This would be
impractical, since the amount of parameters to train would be very large. For this reason,
D is often constrained to be diagonal or low rank. Taking D as a low-rank CF × S
matrix constraints the speaker-dependent supervector to lie in a S-dimensional subspace,
which is a widely used approach. The use of the subspace modeling will be shown in the
following sections.

4.3.2 Eigenvoice Adaptation

The main idea behind the eigenvoice adaptation [Nguyen et al., 2000, Kenny et al., 2005a,
Kenny et al., 2003] is to constrain the speaker-dependent supervectors to lie in a low-
dimensional subspace spanned by M bases. This technique is effective if low amount of
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enrollment data is available for individual speakers, as with M ≪ CF the amount of
parameters of the model is greatly reduced. Mathematically, this model can be written
as

g(s) = µ+Uy(s), (4.46)

where U is a low rank CF ×M matrix. The columns of this matrix are called eigen-
voices, because historically in ASR [Nguyen et al., 2000] they corresponded to M largest
eigenvalues of the covariance matrix of the supervectors for the speaker population. This
model corresponds to the classical MAP from the previous section and y is then speaker-
dependent latent variable with standard normal prior distribution. However, if we com-
pare y(s) and a latent variable from the classical MAP z(s), we see that the dimensionality
of y(s) is much smaller. To obtain the posterior distribution of the latent variable, we
can follow the same steps as in the previous section and get

p(y|X) ∼ N(y|µy,Γ
−1
y ), (4.47)

with precision matrix and mean given by

Γy = (UTΣ−1NXU + I) (4.48)

µy = Γ−1
y UTΣ−1f̃X. (4.49)

Also the derivations for re-estimation of hyper-parameters can be obtained by following
the same steps as in the previous section.

4.3.3 Channel Adaptation

So far, in previously described techniques, we did not consider the effects caused by a chan-
nel mismatch of individual recordings. Many different techniques for dealing with this
unwanted inter-session (or also often called channel) variability have been introduced in
the field of speaker recognition and in speech processing in general. Compensating for
the effect caused by observing the data for a particular speaker under various acoustic
conditions can yield substantial improvements. For speaker recognition, this compensa-
tion is especially effective, if we observe most of the possible channels during the training
of the adaptation model, e.g. observing the data from microphones that will be used to
record the target data. Then, at the test phase, when the enrollment and test data come
from different microphones, the channel mismatch will be eliminated, which will improve
performance of the system. The effect of channel mismatch can be seen Figure 4.1, where
a particular system was evaluated on the NIST SRE 2008 interview condition, where mul-
tiple microphones were used to record the data.1 It should be noted that the system pre-
sented in the Figure 4.1 is already trained with eigenchannel adaptation (see later in this
section). We can see that the application of eigenchannel adaptation did not completely
solve the channel mismatch problem, but it has narrowed the gap between the two scenar-
ios (matched and mismatched channel in enroll and test). The channel compensation can
be performed at different steps. At the feature level [Openshaw and Masan, 1994], usu-
ally cepstral mean and variance normalization (CMN, CVN) is performed as the cepstral
features are used most often in speech processing.

1The figure is a proprietary image of Lukáš Burget and was used with his kind permission.
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Figure 4.1: Example of a channel mismatch effect. The red DET curve shows a test case,
when the same microphone was used for speaker model training and for test. The blue
curve, however, shows the deterioration in performance when two different microphones
are used.

Another approach based on a channel detector and a subsequent selection of channel-
dependent model for feature adaptations was introduced in [Reynolds, 2003]. This tech-
nique is known as feature mapping and is based on transforming feature vectors into a
channel-independent space. The transformation is trained on a set of channel-dependent
models. A downside of this approach resides in the reliance on a channel detector — a
closed-set multi-class classifier. Obviously, if the test utterance comes from an unseen
channel (or unseen combination of known channel effects), the detector is likely to select
a wrong model making the whole adaptation ineffective or even detrimental.

Apart from techniques operating directly in the feature space a model-
level compensation using already introduced Factor Analysis was proposed
in [Kenny and Dumouchel, 2004] and subsequently used in the NIST SRE
in [Brümmer, 2004, Vogt et al., 2005]. In contrast to the eigenvoice adaptation,
this technique is based on finding a subspace corresponding to the unwanted variability.
Formally, we can write the model as

g(s) = µ(s) + cX(s), (4.50)

where µ(s) is the channel-independent speaker model and cX(s) corresponds to the su-
pervector defining the channel offset given the utterance X for speaker s. The channel
offset (or the channel component) is constrained to lie in a subspace defined as

cX(s) = VxX(s), (4.51)
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Figure 4.2: Comparison of the different channel compensation techniques on the complete
NIST SRE 2005 data. We see the superior performance of the eigenchannel adaptation
with respect to the Relevance-MAP baseline.

where V is a CF × R matrix with R ≪ CF and xX(s) — vector of channel factors, is
a standard normal distributed hidden variable. In practice, the test data for individual
speakers are used to adapt their models in the eigenchannel subspace. Solution to the
posterior and hyper-parameter updates can be again obtained by following the steps
in Section 4.3.

The effect of eigenchannel adaptation is shown in the Figure 4.2, on an exemplary
system of BUT (Brno University of Technology) in the NIST SRE 2005.2 For a thorough
analysis on the NIST data, see e.g. [Burget et al., 2007].

4.3.4 Joint Factor Analysis

Joint Factor Analysis (JFA) is a GMM supspace modeling techique considering both
speaker and channel variabilities [Kenny et al., 2007]. We can see it as a combination of
eigenvoice and eigenchannel MAP into a single model, where the speaker- and channel-
dependent supervector gX(s) can be factorized as

gX(s) = µ+Uy(s) +VxX(s) +Dz(s), (4.52)

where µ is a CF dimensional speaker- and channel-independent mean supervector, usu-
ally taken from the UBM, the U and V are low-rank matrices spanning the speaker and

2The figure is a proprietary image of Lukáš Burget and was used with his kind permission.
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channel subspace, respectively. D is a diagonal full-rank matrix representing the resid-
ual variability. The low-dimensional hidden variable vectors y(s) are known as speaker
factors, xX(s) as channel factors and z(s) as common factors. This model then allows for
modeling all variabilities jointly.

However, the model has undergone a series of modifications and simplifications since it
was first used (see e.g. [Kenny and Dumouchel, 2004, Kenny et al., 2005b]). As the joint
training of all parameters is very computationally expensive (for theory see [Kenny, 2005]),
various simplifications involve separate training of individual subspaces, while keeping the
other fixed, see [Kenny et al., 2005b, Kenny et al., 2008, Burget et al., 2009]. For this
kind of training, the framework previously described in Section 4.3 can be used. Also
the term Dz(s) used for modeling the residual variability was shown to be unimportant
with respect to the performance of the model [Burget et al., 2009].

As we are not going to deeply analyze the JFA in this work, we will skip the derivations
of scoring and training and refer the reader to [Glembek, 2012, Kockmann, 2012] where
a similar notation is used.
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Chapter 5

i–vector Approach

The systems based on i–vectors have become the state-of-the-art technique in the speaker
verification field [Dehak et al., 2010b]. I–vectors are also widely used in language recog-
nition [Mart́ınez et al., 2011]. Their origin is connected with the JFA technique and
the summer 2008 Johns Hopkins University workshop on Robust Speaker Recogni-
tion [Burget et al., 2008]. At that time, JFA was the state-of-the-art technique in speaker
verification and naturally, it was further investigated during the workshop. One of the
research directions was to use the speaker factors from JFA as low-dimensional features
for an SVM classifier. The results were surprisingly good and in addition, it was discov-
ered that replacing the speaker factors by channel factors still yielded a system with a
reasonable performance (around 20% EER). This finding revealed that, contrary to ex-
pectations, channel factors still contain a fair amount of speaker information. This was
verified by a successful fusion of the two systems using speaker- and channel-factors. Na-
jim Dehak then proposed to simplify the JFA model to a feature extractor with a single
subspace that would contain all variability (“total variability”). He initially called the
hidden variable a t–vector, but soon the community adopted the name “i–vector”, where
the “i” is left for interpretation.

Thanks to its simplicity, the method for i–vector extraction remained the same
for the research systems, however, the success in the production environment in-
spired several approaches to its simplification and optimization [Glembek et al., 2011,
Cumani and Laface, 2013, Cumani and Laface, 2014a].

5.1 Theoretical Background

The main idea behind the i–vector model is to transform the large utterance specific GMM
supervector s into a small subspace, while retaining most of the important variability.
From the perspective of speaker recognition, the supervector s contains both the speaker
and inter-session characteristics of a given speech segment and is modeled according to:

s = u+Tw, (5.1)

where u is the UBM GMM mean supervector, composed of C GMM components of
dimension F . T is a low-rank rectangular matrix representing M bases spanning the

43
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sub–space including important inter and intra–speaker variability in the supervector space.
The subspace defined by the matrix T is often referred to as “i–vector subspace” or “total
variability subspace”. Vector w is a realization of a latent variable W, of size M , having
a standard normal prior distribution

W ∼ N(0, I). (5.2)

We can notice, that formally, this model is almost equivalent to the eigenvoice model
described in Section 4.3.2. The difference with respect to eigenvoice model resides in tying
the latent variable to every utterance, independent of speaker. The same steps as already
described for the subspace modeling in Section 4.3 will apply also to i–vectors.

Ultimately, the aim is to estimate the parameters of the posterior distribution of the
latent variable W for each set of τ input features extracted from the given speech segment
X = {x1x2 . . .xτ}. Assuming the standard normal prior for W, the posterior distribution
is also Gaussian:

W|X ∼ N(φX,Γ
−1
X
), (5.3)

with mean vector and precision matrix as in (4.33 and 4.34):

φX = Γ−1
X
TTΣ−1f̃X

ΓX = I+
C∑

c=1

N
(c)
X

T(c)TΣ(c)−1

T(c), (5.4)

respectively. As in Chapter 4, in these equations, N
(c)
X

(4.6) are the zero–order statistics
collected with the UBM for the set of feature vectors in X. T(c) is the F ×M sub-matrix
of T corresponding to the c–th mixture component such that T =

(
T(1)T . . .T(C)T

)T
, and

f̃X is the supervector stacking the first–order statistics f̃
(c)
X

, centered (see (4.9)) around the
corresponding UBM means, Σ(c) is the UBM c–th covariance matrix, Σ is a block diagonal
matrix composed of matrices Σ(c), and γ

(c)
t is the occupation probability of feature vector

xt for the c-th Gaussian component.
The i-vector φ – a low dimensional fixed-length vector, which represents the segment

X of a variable length, is then computed as the MAP point estimate of the variable W,
i.e., the mean of the posterior distribution PW|X(w).

A Maximum-Likelihood estimate of matrix T can be obtained by following the steps
from Section 4.3.1. Each submatrix Tc can be re-estimated as in (4.45):

T(c) =
∑

X

[
f̃
(c)
X
φX(N

(c)
X

(φXφ
T
X + Γ−1

X )−1
]
. (5.5)

Note that the we do not require any speaker labels and the T matrix is trained in an
unsupervised way. The GMM subspace framework is then used as a feature extractor of
the low-dimensional vectors containing most of the relevant variability from the original
data – both useful and harmful for the target classification task. The presence of the
unwanted variability in the i–vectors has to be dealt with when using i–vectors as features
for classifiers or when using i–vectors directly for scoring.
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5.2 Linear Discriminant Analysis

As stated above, using the i–vectors as features requires us to perform a compensa-
tion for the unwanted variability. Shortly after i–vectors were introduced, this prob-
lem was tackled by means of a simple Linear Discriminant Analysis (LDA) followed by
Within-Class Covariance Normalization (WCCN) [Hatch et al., 2006, Dehak et al., 2009,
Dehak et al., 2010a]. The LDA can be used to further reduce the dimensionality of the
i–vectors and remove the dimensions corresponding to high within-class (intra-speaker)
variability caused by the channel effects present in the original data. The LDA principles
are also the basis of the Probabilistic Linear Discriminant Analysis (PLDA), nowadays
considered to be one of the state-of-the-art techniques used for speaker recognition.

The LDA is based on maximizing Fisher’s discriminant ratio – a ratio between across-
class and within-class variability. Formally, when we are given a set of D-dimensional
patterns xi belonging to K classes Ck, we are searching for a linear projection

yi = Axi, (5.6)

where A is a D′ × D transformation matrix with D′ ≤ K − 1, which maximizes the
Fisher’s criterion [Bishop, 2006]:

J(A) = tr
{
(AΣacA

T)−1(AΣacA
T)
}
, (5.7)

where Σwc and Σac are within-class and across-class covariance matrices, respectively,
which can be ML-estimated from training data as:

Σwc =

K∑

k=1

∑

n∈Ck

(xn − µk)(xn − µk)
T (5.8)

Σac =
K∑

k=1

Nk(µk − µ)(µk − µ)T (5.9)

with

µk =
1

Nk

∑

n∈Ck

xn (5.10)

µ =
1

N

K∑

k=1

Nkµk, (5.11)

where Nk is the number of patters for class k and N is the total number of patterns. The
solution for A is then given by D′ eigen vectors corresponding to the largest eigenvalues
of Σ−1

wcΣac. In the Figure 5.1, we show the meaning of LDA parameters with relation to
speaker recognition.

5.2.1 Within Class Covariance Normalization

Within-Class Covariance Normalization was first applied in speaker recognition
in [Hatch et al., 2006, Dehak et al., 2009] to SVM-based one-versus-all model for speaker
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Figure 5.1: Demonstration of the LDA (and also PLDA) assumptions about the data:
The bold points correspond to the speaker means in the i–vector space. The conditional
distributions of the i–vectors around the speaker means share a common within-class
covariance Σwc. The distribution of all speaker means is then depicted as the Gaussian
with the across-class covariance matrix Σac. For completeness, the total covariance of the
data is shown as a sum of the two covariances Σwc = Σwc +Σac.

recognition. WCCN is again a linear transformation:

znorm = Bz, (5.12)

where B is a square transformation matrix. We search for such B that after applying it to
the data z, the within-class covariance matrixΣwc as defined in (5.8) becomes identity. By
such transformation, we scale the directions in the i–vector space inversely proportional
to an estimate of the within class covariance and effectively reduce the unwanted channel
variability. The solution for this problem can be obtained by Cholesky decomposition of
BBT = Σ−1

wc :

B = chol(Σ−1
wc ). (5.13)

5.3 Cosine Distance Scoring

Before venturing into describing different variants of PLDA, which model the i–vector
generation process, we describe a simple technique using i–vectors directly for obtaining
the verification score. Najim Dehak originally proposed to classify i–vectors using Sup-
port Vector Machines [Dehak et al., 2010b], which lead to introduction of a simple cosine
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distance scoring metric that is measuring the angle between two i–vectors:

s(φ1,φ2) =
φT

1φ2

‖φ1‖‖φ1‖
. (5.14)

This metric was originally used as a SVM kernel, but later, it turned out to be a good
verification score on its own. It should be noted, that the scores obtained this way are
symmetric to swapping enroll and test i–vector.

To perform the inter-session compensation, we incorporate already discussed LDA and
WCCN into the scoring metric and obtain

s(φ1,φ2) =
(ATφ1)

TB(ATφ2)√
(ATφ1)

TB(ATφ1)
√

(ATφ2)
TB(ATφ2)

. (5.15)

It should be also noted that the scores obtained simply as a distance of two vectors
can not be interpreted as a log-likelihood ratios. If the output in form of the log-likelihood
ratios is requested, the scores have to be calibrated [Brümmer, 2010b]. To achieve a good
performance with this approach, a score normalization has to be applied. Since the scoring
is very efficient, standard techniques like ZT-norm (see Section 1.2.1) can be performed
very efficiently. We can simply add the set of i–vectors representing the T-norm utterances
to the set of enrollment i–vectors and a set of Z-norm i–vectors to the test i–vectors and
compute the whole matrix of scores. This matrix will already include all scores needed to
compute the ZT-norm statistics.
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Chapter 6

Probabilistic Linear Discriminant

Analysis

In the last four years, SRE systems based on the i–vectors and Probabilistic Linear Dis-
criminant Analysis (PLDA) became state-of-the-art. In PLDA model, an i–vector φ is
considered to be a realization of a random variable Φ, whose generation process can be
described in terms of a set of latent variables. Different PLDA models exist, which use
different numbers of hidden variables as well as different priors. The two favorite mod-
els are heavy-tailed PLDA (HTPLDA) [Kenny, 2010], where Student’s t-distribution is
imposed on the latent variables and the PLDA [Prince and Elder, 2007], which assumes
Gaussian priors.

All PLDA models for speaker recognition [Kenny, 2010] and
[Brümmer and de Villiers, 2010], however, represent the speaker identity in terms
of a latent variable Y which is assumed to be tied across all segments of the same
speaker. Usually, inter–speaker variability for a speech segment Xi is represented by
hidden variable Xi. The hidden variables Xi are assumed to be i.i.d. with respect to the
speech segments.

In the most common PLDA model, an i–vector φ is the sum of multiple terms
[Kenny, 2010]:

φ = m+Uy +Vx+ e, (6.1)

where m is the i–vector mean, y is a realization of the speaker identity variable Y, x is
the realization of channel variable X and e is the realization of the residual noise E.

The role of matrices U and V is to constrain the dimension of the subspaces for y and
x, providing the bases for a speaker subspace, often called ”eigenvoices“ and bases for a
channel subspace, usually called ”eigenchannels”. In this work, we will assume standard
normal priors for the speaker identity variable Y and channel variable X. The noise E is
assumed to be Gaussian distributed with the diagonal covariance matrix of the residual
data variability D−1:

Y ∼ N(0, I) (6.2)

X ∼ N(0, I) (6.3)

E ∼ N(0,D−1). (6.4)

49
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In case of this PLDA model, the across-class covariance matrix is defined as Σac =
UTU, which is often low rank and limits the speaker variability to live in a subspace
spanned by the columns of the reduced rank matrix U. Similarly, the within-class covari-
ance matrix is defined as Σac = VTV +D−1.

A more complex model assuming the Student’s t-distribution of the priors is com-
putationally more expensive, as it does not have a closed form solution for computing
posteriors and therefore the time required both for training and testing is significantly
increased.

The advantage of imposing more relaxed heavy-tailed priors lies in the ability of the
model to cope with the raw i–vectors without previous normalization. It was shown that
preconditioning the i–vectors by means of length normalization [Garcia-Romero, 2011]
allows the Gaussian PLDA to yield results comparable to HTPLDA. For the discussion
on the normalization of the i–vectors, see Chapter 8.

In the HTPLDA model, we would introduce scalar parameters n1, n2 and ν, referred to
as degrees of freedom, and scalar hidden variables u1, u2 and vr. Then we would assume
that

Y ∼ N(0, u−1
1 I), u1 ∼ G(n1/2, n1/2) (6.5)

X ∼ N(0, u−1
2 I), u2 ∼ G(n2/2, n2/2) (6.6)

E ∼ N(0, v−1
r D−1), vr ∼ G(ν/2, ν/2), (6.7)

where G(a, b) represents a Gamma distribution with parameters a and b.
Although, we will provide some experimental results with HTPLDA, we will concen-

trate on the variants of Gaussian PLDA.

6.1 Trial Scoring

Given the sets of enrollment and test segments forming a speaker verification trial, we
obtain a speaker verification score. In this section, we will define the score as a log-
likelihood ratio between the hypotheses that all of the segments were generated by the
same speaker and that each set of segments was generated independently by a different
speaker.

Since i–vectors are assumed independent given the hidden variables, the likelihood
that a set of n speech segments X1 . . .Xn belongs to the same speaker (hypothesis Hs)
can be evaluated as:

l (X1 . . .Xn|Hs) = PΦ1...Φn
(φ1 . . .φn|Hs)

=

∫

y

∫

x1

· · ·

∫

xn

n∏

i=1

[
PΦi|Y,Xi

(φi|y,xi)PXi
(xi) dxi

]
· PY(y)dy, (6.8)

where φi is the i–vector extracted from segment Xi, PΦ1...Φn|Hs
(φ1 . . .φn) is the joint

probability of the i–vectors given the same speaker hypothesis Hs, PX(x) and PY(y)



6.2 Simplified PLDA Model 51

are the prior distributions for X and Y, respectively. PΦ|Y,X (φ|y,x) is the conditional
distribution of an i–vector given the hidden variables. It is related to the distribution
PE(e) of the noise term by PΦ|Y,X (φ|y,x) = PE(φ−m−Uy −Vx).

In order to obtain an inference about the speaker identity, we ask the question, whether
a set of n enrollment segments Xe1 . . .Xen for a known (target) speaker and a set of m
test segments of a single unknown speaker Xt1 . . .Xtm belong to the same speaker or not.
Specifically, we want to compute the log-likelihood ratio of the segments being observed
under the same speaker and different speaker hypotheses

s = log
l (Xe1 . . .Xen ,Xt1 . . .Xtm |Hs)

l (Xe1 . . .Xen ,Xt1 . . .Xtm |Hd)
. (6.9)

Since speaker factors are assumed independent, the speaker verification log–likelihood
ratio s can be formulated as:

s = log
l (Xe1 . . .Xen ,Xt1 . . .Xtm |Hs)

l (Xe1 . . .Xen |Hs) l (Xt1 . . .Xtm |Hs)
. (6.10)

It is worth noting, that the log-likelihood ratio calculated in this way is symmetric in
terms of swapping the enroll and test sets. Also note that standard i–vector, which is
extracted by MAP point estimate of the posterior distribution ofW given X, and classified
by PLDA, does not embed the intrinsic uncertainty of its estimate. We will address this
fact in the next chapter, where we will extend the PLDA model and no longer consider
the segment X being represented by a single i–vector, by the i–vector distribution W|X.

6.2 Simplified PLDA Model

It is convenient to assume that the noise term E has a full covariance matrix, so that the
terms Vx and e in (6.1) can be merged. Therefore, in our approach, a distribution of
i–vector φ is modeled as:

φ = m+Uy + e. (6.11)

In this model, we restrict only the speaker variability to reside in the subspace spanned
by the reduced rank matrix U. The across-class covariance matrix is again defined as
Σac = UTU. Channel variability is then modeled by a full rank within-class covariance
matrix Σwc = Λ−1. Speaker factors and the residual noise priors are assumed to be
Gaussian, i.e.:

Y ∼ N(0, I) , E ∼ N(0,Λ−1) , (6.12)

where Λ is the precision matrix of noise E. According to (6.11) and (6.12), the conditional
distribution of an i–vector random variable Φ given a value y for the speaker identity Y

is:
Φ| (Y = y) ∼ N(m+Uy,Λ−1). (6.13)

Omitting the channel factors, which are now embedded in the noise term, the likelihood
that the n speech segments X1 . . .Xn belong to the same speaker can be computed by
means of a simplified expression of (6.8) as:

l(X1 . . .Xn|Hs) = PΦ1...Φn
(φ1 . . .φn|Hs)
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=

∫

y

n∏

i=1

PΦi|Y(φi|y)PY(y)dy. (6.14)

6.2.1 Closed-Form Solution for Scoring

In order to compute the likelihood of a set of n i–vectors φ1 . . .φn (or corresponding
speech segments X1 . . .Xn), we observe that the joint log-likelihood of the i–vectors and
the hidden variables is:

logPΦ1...Φn,Y(φ1 . . .φn,y|Hs) =
n∑

i=1

logPΦ|Y(φi|y) + logPY(y)

=

n∑

i=1

[
−
1

2
(φi −m−Uy)TΛ (φi −m−Uy)

]
+

1

2
yTy + k, (6.15)

where k is a constant collecting the terms that do not depend on speaker identity y. Since
equation (6.15) is a quadratic function, using “completion of squares”, we can observe that
the posterior distribution of Y given a set of i–vectors is Gaussian

Y|Φ1 . . .Φn ∼ N(ŷ,P−1), (6.16)

with precision matrix and mean:

P = I+UTΛU

ŷ = P−1UT
n∑

i=1

Λ (φi −m) . (6.17)

The likelihood that a set of segments belongs to the same speaker can be written as:

PΦ1...Φn
(φ1 . . .φn|Hs) =

P (φ1 . . .φn|y0)P (y0)

P (y0|φ1 . . .φn)
, (6.18)

where y0 is an arbitrary vector, which does not cause the denominator to be zero. For the
convenience, we can set the y0 = 0, so that Uy0 = 0 and derive a closed form solution
for the same speaker hypothesis [Brümmer and de Villiers, 2010]:

logPΦ1...Φn
(φ1 . . .φn|Hs) =

n∑

i=1

[
1

2
log |Λ| −

M

2
log 2π −

1

2
(φi −m)TΛ(φi −m)

]

−
1

2
log |P|+

1

2
ŷTPŷ −

S

2
log 2π, (6.19)

where M is the i–vector dimension, and S is the speaker factor dimension.
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6.2.2 Training of PLDA Model Parameters

Following [Brümmer, 2010a], we will derive an update of the simplified PLDA parameters
using EM algorithm with the minimum divergence step. We have already defined a global
i–vector mean m. Our training data consist of s = 1 . . . |Y| speakers, where Y is a set of all
speakers, where for every speaker s, we have i = 1 . . . ns observations. Every observation
is represented as an i–vector φs,i. The zero order statistics per speaker are simply numbers
of observations per speaker ns and the first order statistics centered around the mean m

are defined as:

fs =

ns∑

i=1

φs,i −m. (6.20)

The global zero- and second-order statistic are given by:

N =
∑

s∈Y

ns, (6.21)

S =
∑

s∈Y

ns∑

i=1

(φs,i −m)(φs,i −m)T. (6.22)

Using the precision matrix P and mean ŷ from (6.17) of the posterior distribution of
speaker factors y (6.16), we will also define auxiliary statistics Q and R accumulated
over all speakers:

Q =
∑

s∈Y

ŷsf
T
s , (6.23)

R =
∑

s∈Y

ns(P
−1
s + ysy

T
s ). (6.24)

The data likelihood for a speaker s is given by

PΦ1...Φns |Y=ys
(φ1 . . .φns

,U,Λ) =

ns∏

i=1

N(φs,i|Uys,Λ
−1)

= exp

(
−
NM

2
log(2π)−

N

2
log |Λ−1|+

+

ns∑

i=1

(−
1

2
φT

s,iΛφs,i + φT
s,iΛUys)−

1

2
yT
s U

TΛUys

)
,

(6.25)

and by omitting the terms not dependent on U and Λ, we get the EM auxiliary function
to maximize:

∑

s

〈logPΦ1...Φns |Y=ys
(φ1 . . .φns

,U,Λ)〉P (ys|φs,1...φs,ns
)

=
N

2
log|Λ| −

1

2
tr(SΛ)−

1

2
tr(RUTΛU) + tr(QΛU) + const. (6.26)
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We obtain the maximum likelihood update for U and Λ−1 by taking the derivative of EM
auxiliary function w.r.t. corresponding parameters and setting them to zero:

U = QTR−1 (6.27)

Λ−1 =
1

N
(S−UQ−QTUT +URUT)

=
1

N
(S−UQ). (6.28)

For faster convergence, we can apply minimal divergence update [Brümmer, 2009,
Kenny, 2005], and force the speaker factors to be standard normal distributed. We can
achieve this goal by rotating the maximum-likelihood estimate of U. For this purpose,
we accumulate

A =
1

|Y|

∑

s∈Y

(P−1
s + ysy

T
s ). (6.29)

And finally, a minimum divergence re-estimation of U is:

U← U chol(A)T, (6.30)

where chol(M) chol(M)T = M denotes Cholesky decomposition.
This scheme is used in an iterative way until convergence. The number of iterations

is usually small and depends mainly on the size of dataset, number of speakers and size
of the subspace. Usually ten iterations is enough, with fifty being the safe upper limit for
most scenarios.



Chapter 7

Full Posterior Distribution PLDA

Model

In this chapter, we will demonstrate, how to extend the standard PLDA model, where we
considered the utterance to be sufficiently well represented by a single i–vector. We will
show that the simple and effective PLDA framework can still be used even if a speech
segment is no more represented by a single i–vector but by its posterior distribution.
In particular, we will derive the formulation of likelihood for a standard Gaussian PLDA
model based on the i–vector posterior distribution, and propose a new PLDA model where
the inter–speaker variability is assumed to have an utterance–dependent distribution. We
will show that it is possible to rely on the standard PLDA framework simply replacing
the PLDA likelihood definition.

It is well known, that the goodness of the i–vector estimate depends mainly on the
covariance of the distribution, which accounts for the “uncertainty” of the i–vector ex-
traction process. This ucertainity of the i–vector estimate is however not exploited by
many standard and popular classifiers based on i–vectors, such as the ones based on co-
sine distance scoring [Dehak et al., 2010b], PLDA [Kenny, 2010], discriminative PLDA
[Burget et al., 2011] or SVMs [Cumani et al., 2013].

The i–vector covariance depends on the zero–order statistics estimated using a UBM
for the set of observed features (see equation (5.4) in Chapter 5). These statistics are
affected by several factors such as the noise level, the channel characteristics, and the
acoustic content of the observed features, but the predominant factor is the number of
the observed feature frames – duration of a given utterance. Shorter utterances tend to
produce larger covariances, so that i–vector estimates become less reliable.

7.1 Incorporating the I–vector Posterior Distribu-

tion into PLDA

The standard i–vector, which is extracted by MAP point estimate of the posterior distri-
bution of W given X (see (5.3)) does not embed the intrinsic uncertainty of its estimate.
Remembering the likelihood computation for the standard PLDA (see 6.8), we can extend
this model by considering all possible i–vectors, which correspond to the speech segments
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X1 . . .Xn.
We refer to this new model as the PLDA based on the Full Posterior Distribution

(FPD–PLDA) ofW given X. As previously mentioned, we now assume that every segment
X is no longer represented by a single i–vector corresponding to the most likely value of
the latent variable w in the i–vector model (5.1). Instead, segment X will be represented
by the i–vector extractor distribution W|X (see (5.3)). Therefore, the uncertainty in
i–vector estimate will be taken into account. In the following text, we will refer to the
posterior distribution W|X simply as to i–vector posterior distribution.

The PLDA model allows computing the likelihood of a speech segment given a realiza-
tion w of the random variable W|X. The likelihood of a set of segments X1 . . .Xn, thus,
can be evaluated by integrating the PLDA likelihood (see equations (6.8) and (6.15)) over
all possible realizations following the posterior distribution W|X1 . . .Xn.

l (X1 . . .Xn|Hs) =

∫

w1

· · ·

∫

wn

PW1...Wn
(w1 . . .wn|Hs)

n∏

i=1

[
PWi|Xi

(wi)dwi

]
, (7.1)

where the first factor is the likelihood of the segments according to the original PLDA
model given realizations w1, . . . ,wn of the i–vector posterior random variables, computed
as in (6.8), and the second factor is the posterior probability of realizations w1, . . . ,wn

representing segments X1 . . .Xn according to the i–vector extractor model. Using the form
of (6.8) in (7.1), the likelihood can be rewritten as:

l (X1 . . .Xn|Hs) =

∫

w1

· · ·

∫

wn

∫

y

∫

x1

· · ·

∫

xn

n∏

i=1

[
PWi|Y,Xi

(wi|y,xi)

· PXi
(xi)PWi|Xi

(wi) dxidwi

]
PY(y)dy . (7.2)

It is worth noting that, if the posterior for W|X is replaced by a delta distribution
centered in the posterior mean δ(φX), the likelihood of the original PLDA model using
MAP–estimated i–vectors, given by (6.8), is obtained.

7.2 Extending the Classical Simplified PLDA

We will continue with the derivations using the simplified PLDA model introduced in
previous Section 6.2. Starting from the point where we introduced the likelihood of a set
of segments given the same-speaker hypothesis in (6.14), we introduce the full i–vector
posterior into the equation and we get:

l (X1 . . .Xn|Hs) =

∫

wi

· · ·

∫

wn

∫

y

PY(y) ·

n∏

i=1

[
PWi|Y(wi|y)PWi|Xi

(wi)dwi

]
dy

=

∫

y

PY(y)
n∏

i=1

[ ∫

wi

PWi|Y(wi|y)PWi|Xi
(wi)dwi

]
dy. (7.3)
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According to the Gaussian assumptions given in (5.3) and (6.12), the inner integral can
be computed as

∫

wi

PWi|Y(wi|y)PWi|Xi
(wi)dwi =

∫

wi

1

(2π)
M
2
∣∣Λ−1

∣∣ 12
e−

1
2
(wi−m−Uy)TΛ(wi−m−Uy)

·
1

(2π)
M
2

∣∣Γ−1
i

∣∣ 12
e−

1
2
(wi−φi)

TΓi(wi−φi)dwi, (7.4)

where φi and Γi are the mean and precision matrix of Wi|Xi computed as in (5.4).
Integral (7.4) can be interpreted as the convolution of two Gaussian distributions, leading
to

l(X1 . . .Xn|Y = y) =

n∏

i=1

1

(2π)
M
2
∣∣Λ−1 + Γ−1

i

∣∣ 12
(7.5)

· e(φi−m−Uy)T(Λ−1+Γ
−1
i )

−1
(φi−m−Uy).

Comparing (7.5) and (6.15), we can see that now the covariance matrix of noise becomes
segment-dependent as [Λ−1 + Γ−1]. Considering the similarity of both models, we can
say that the FPD-PLDA can be equivalently represented (likelihood calculation can be
“simulated”) by the standard PLDA modeling the usual i–vectors (i.e. i–vector posterior
means), while assuming modified utterance dependent prior imposed on residual noise

Ei ∼ N
(
0,
[
Λ−1 + Γ−1

i

])
. (7.6)

7.3 Scoring with FPD-PLDA

The log–likelihood that a set of segments belongs to the same speaker can be obtained by
means of the same steps followed for the standard Gaussian PLDA model, just using the
modified likelihood in (7.5). The new PLDA model can be described as:

φ = m+Uy + e , (7.7)

as in (6.11), but with a segment–dependent distribution of the residual noise E . The
i–vector associated to the speech segment Xi is again the mean φi of the i–vector posterior
Wi|Xi, but the priors of the PLDA parameters are given by:

Ei ∼ N(0,Λ−1 + Γ−1
i ) ∼ N(0,Λ−1

eq,i) ,Y ∼ N(0, I) , (7.8)

where
Λeq,i =

(
Λ−1 + Γ−1

i

)−1
. (7.9)

In the following text, to simplify the notation, we will refer to distributions without
explicitly naming the corresponding hidden variable, e.g., we will write P (y) rather than
PY(y).
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To compute the likelihood of a set of n i–vectors φ1 . . .φn (i.e., of the set of speech
segments X1 . . .Xn), we follow the same steps as in the previous section 6.2.2 on the
standard PLDA. Similarly to (6.15), we observe that the joint log–likelihood of the i–
vectors and the hidden variables is:

logP (φ1 . . .φn,y|Hs) =
n∑

i=1

logP (φi|y) + logP (y)

=

n∑

i=1

[
−
1

2
(φi −m−Uy)TΛeq,i (φi −m−Uy)

]
(7.10)

+
1

2
yTy + k,

The posterior distribution of y given a set of i–vectors is again Gaussian:

y|φ1 . . .φn ∼ N(ŷ,P−1), (7.11)

with parameters:

P = I+
n∑

i=1

UTΛeq,iU (7.12)

ŷ = P−1UT
n∑

i=1

Λeq,i (φi −m) . (7.13)

The likelihood of a set of segments belonging to the same speaker can be written as

P (φ1 . . .φn|Hs) =
P (φ1 . . .φn|y0)P (y0)

P (y0|φ1 . . .φn)
, (7.14)

which is the same form as in the original PLDA and setting y0 = 0 for convenience will
produce a result similar to equation (6.19). Using (7.11), and (7.5) we finally get

logP (φ1 . . .φn|Hs) =
n∑

i=1

[
1

2
log |Λeq,i| −

M

2
log 2π −

1

2
(φi −m)TΛeq,i(φi −m)

]

−
1

2
log |P|+

1

2
ŷTPŷ −

S

2
log 2π, (7.15)

where M is the i–vector dimension, and S is the speaker factor dimension. Note again,
the difference to the standard PLDA lies in the segment-based Λeq,i, which greatly affects
the computational complexity of scoring. We will compare the complexity to the classical
PLDA in section 7.5.

7.4 Parameter Estimation

The model presented in (7.7) allows obtaining a simple expression for computing the
log–likelihood ratio of a speaker recognition trial. However, it does not allow the update
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formulas to be easily derived. An equivalent expression of (7.7), where the contributions of
the i–vector posterior covariance and of the residual noise are decoupled, is more suitable
for the estimation of model parameters [Kenny et al., 2013]. To this extent, the segment–
dependent residual term Ei can be written as:

Ei = CiXi + E, (7.16)

where Ci is is given by the Cholesky decomposition CiC
T
i = Γ−1

i , Xi is a standard
Gaussian distributed random variable, Xi ∼ N(0, I), and E is the PLDA residual term
introduced in (6.12). The corresponding PLDA model is then given by:

φi = m+Uy +Cixi + ei, (7.17)

where xi is a realization of Xi. It is worth noting that (7.17) formally corresponds to
the PLDA model in (6.1) with the channel subspace matrix V replaced by a segment–
dependent matrix Ci. The same steps to derive the EM algorithm for the PLDA
model (6.1) can be easily modified to estimate the parameters of the FPD–PLDA model.
The details of the derivation of the EM algorithm can be found in [Kenny et al., 2013]
or [Brümmer, 2010a] with modifications related to this model. We will again fol-
low [Brümmer, 2010a] to derive the re-estimation formulas.

Let us start with observing the speaker s as an i–vector φs,i and decomposing it
according to (7.17). For the simplicity, we will assume zero mean m as i–vectors can be
centered:

φs,i = Uys +Cs,ixs,i + es,i. (7.18)

The parameters of the model are λ = 〈U,Λ〉, where Λ is the precision matrix of the
posterior distribution of e defined in (6.12). Matrices Cs,i are given for each segment and
represent the uncertainty in i–vector estimate.

7.4.1 Data

We will use similar notation as in Section 6.2.2. Y is the set of all speakers and for each
speaker s ∈ Y, we have i = 1 . . . ns observations. Each observation is represented by a
single i–vector φs,i and a segment-depend matrix Cs,i. Let us stack all i–vectors of speaker
s into a M × ns matrix

Φs =
[
φ1 . . .φs,ns

]
, (7.19)

where M is the dimensionality of the i–vector and also let the Xs be the matrix of all
hidden variables xs,i

Xs = [xs,1 . . .xs,ns
] . (7.20)

We will also need to define sufficient statistics as in the case with standard PLDA, but
here, assuming zero mean, the formulas will simplify. The global zero-order statistics for
all observations and speakers are given as

N =
∑

s∈Y

ns, (7.21)
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and the second-order statistics for all observations are given as

S =
∑

s∈Y

ns∑

i=1

φs,iφ
T
s,i. (7.22)

7.4.2 Log-Likelihood

For speaker s, the log-likelihood of the data is given by

log p(Φs|ys,Xs,λ) =
ns∑

i=1

logN(φs,i|Uys +Cs,ixs,i,Λ
−1) (7.23)

=

ns∑

i=1

(
−
1

2
φT

s,iΛφs,i + φT
s,iΛUys + φT

s,iΛCs,ixs,i

−
1

2
yT
s U

TΛUys − yT
s U

TΛCs,ixs,i −
1

2
xT
s,iC

T
s,iΛCs,ixs,i

−
M

2
log(2π)−

1

2
log |Λ|

)
.

7.4.3 Hidden Variable Distributions

The joint prior for the hidden variables and speaker s is defined as

p(Xs,ys) = p(Xs) p(ys)

log p(Xs,ys) = −
1

2
yT
s ys −

1

2
tr(XT

s Xs) + const. (7.24)

To define the posteriors of the hidden variables, we will define auxiliary substitutions.
Note that here, in contrast with standard PLDA, the terms will be segment-dependent,
as we are given segment-dependent matrix Ci in our model:

Js,i = CT
s,iΛU (7.25)

Ks,i = CT
s,iΛCs,i + I. (7.26)

The joint posterior probability of the hidden variables can be assembled from two factors
as

p(Xs,ys|Φs,λ) = p(Xs|ys,Φs,λ) p(ys|Φs,λ). (7.27)

The posterior probability p(ys|Φs,λ) = N(ys|ŷs,P
−1
s ) was already defined in (7.11). The

corresponding precision matrix Ps and mean ŷs are defined by equations (7.12) and (7.13).

To define the posterior probability log p(xs,i|ys,Φs,λ), we take the joint probability
log p(Φs,ys,xs). By summing (7.23) and (7.24) and ignoring the terms not dependent on
xs,i, we obtain
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log p(xs,i|ys,Φs,λ) ∝ φT
s,iΛCs,ixs,i − yT

s U
TΛCs,ixs,i

−
1

2
xT
s,iC

T
s,iΛCs,ixs,i −

1

2
xT
s,ixs,i

= xT
s,i(C

T
s,iΛφs,i − Jys)−

1

2
xT
s,iKs,ixs,i. (7.28)

By using completion of squares and by summing over all segments xs,i, we can write

log p(Xs|ys,Φs,λ) =

ns∑

i=1

N(xs,i|x̂s,i,K
−1
s,i ), (7.29)

where

x̂s,i = K−1
s,i (C

T
s,iΛφs,i − Js,iys). (7.30)

7.4.4 Evidence

The log evidence, which is guaranteed to increase in every consecutive iteration of the EM
algorithm, is useful to monitor the convergence of the training. It is defined as a marginal
log-likelihood of the observations given the system parameters:

L(λ) =
∑

s∈Y

log p(Φs|λ)

=
∑

s∈Y

log
p(Φs|ys,Xs,λ) p(ys) p(Xs)

p(Xs|ys,Φs,λ) p(ys|Φs,λ)
. (7.31)

7.4.5 E-step

The EM auxiliary function is

Q(λ,λ0) =
∑

s∈Y

〈log p(Φs|ys,Xs,λ)〉Xs,ys|Φs,λ0
(7.32)

=
N

2
log|Λ| −

1

2
tr(SΛ)

−
1

2

∑

s∈Y

ns∑

i=1

tr(Rxxs,i
CT

s,iΛCs,i +Rxys,iU
TΛCs,i +RT

xys,i
CT

s,iΛU+RyysU
TΛU)

+
1

2

∑

s∈Y

ns∑

i=1

tr(Tys,i
ΛU +UTΛTT

ys,i
+Txs,i

ΛCs,i +CT
s,iΛTT

xs,i
),

where auxiliary substitutions are:

Tys,i
= ŷsφ

T
s,i (7.33)

Txs,i
=
〈
x̂s,i(ys,i)

T
〉
ys|Φs,λ0

φT
s,i (7.34)

= K−1
s,i (C

T
s,iΛφs,iφ

T
s,i − Js,iTys,i

).
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To define the cross-correlations Ryys , Rxys,i and Rxxs,i
it is useful to realize that the joint

distribution over two variables can be expressed (see section 2.3.3 of [Bishop, 2006]) as a
Gaussian

p(xs,i,ys|Φ,λ) = N

([
xs,i

ys

]∣∣∣∣
[
xs,i

ŷs

]
,

[
Σxxs,i

Σxys,i

ΣT
xys,i

P−1
s

])
, (7.35)

where

xs,i = K−1
s,i (Cs,iΛφs,i − Js,iŷs) (7.36)

Σxxs,i
= K−1

s,i +K−1
s,iJs,iP

−1
s Js,iK

−1
s,i (7.37)

Σxys,i = −K
−1
s,iJs,iP

−1
s (7.38)

and finally we get

Ryys =
〈
ysy

T
s

〉
= P−1

s + ŷsŷ
T
s (7.39)

Rxys,i =
〈
xs,iy

T
s,i

〉

= Σxys,i + xs,ix
T
s,i

= K−1
s,i (C

T
s,iΛTys,i

− Js,iRyys) (7.40)

Rxxs,i
=
〈
xs,ix

T
s,i

〉

= Σxxs,i
+ xs,ix

T
s,i

= K−1
s,i (C

T
s,iΛφs,iφ

T
s,iΛCs,i −CT

s,iΛTT
ys,i

JT
s,i−

− Js,iTys,i
ΛCs,i + Js,iRyysJ

T
s,i)K

−1
s,i +K−1

s,i . (7.41)

7.4.6 M-step

Taking the derivative of EM auxiliary function (7.32) with respect to U and setting it to
zero yields the maximum-likelihood re-estimation of U as

U =
∑

s∈Y

ns∑

i=1

(
TT

ys,i
−Cs,iRxys,i

)(∑

s∈Y

nsRyys

)−1

. (7.42)

Differentiating (7.32) w.r.t. Λ gives

Λ−1 =
S

N
+

1

N

∑

s∈Y

ns∑

i=1

(
Cs,iRxxs,i

CT
s,i +Cs,iRxys,iU

T +URT
xys,i

CT
s,i

+URyysU
T −UTys,i −TT

ys,i
UT −Cs,iTxs,i

−TT
xs,i

CT
s,i

)
. (7.43)

Finally, we can also apply minimum divergence step in the same way as with the classical
PLDA. We will transform the maximum likelihood estimate of the U in such a way that
we force the speaker factor posteriors to be distributed according to the standard normal
prior. We accumulate

A =
1

|Y|

∑

s∈Y

ns∑

i=1

〈
ys,iy

T
s,i

〉
=

1

|Y|

∑

s∈Y

P−1
s + ŷsŷ

T
s (7.44)
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and the minimum-divergence re-estimation of U is given by

U← U chol(A)T. (7.45)

7.5 Complexity Analysis

The straightforward implementations of classical PLDA and FPD–PLDA have similar
computational complexity. However, in practical scenarios, some of the terms required
for the evaluation of the PLDA log–likelihood ratio (6.10) can be pre–computed. These
pre-computations allow for fast scoring, at the cost of a slight increase of the memory
requirements for the PLDA model and for the target models. Unfortunately, some of
these optimizations cannot be done for FPD–PLDA, which is thus a more accurate but
slower approach. In the following we analyze the computational complexity of PLDA and
FPD–PLDA implementations optimized for the most common scenario. This scenario is
the speaker detection task where the system has to score several test sets, whose numbers
of segments are known in advance, against a fixed set of target speakers. In particular,
each set of segments of a single test speaker has to be verified against the segments of
a known, fixed set of target speakers. Since all targets are known in advance, target–
dependent (enrollment-depend) optimizations can be performed offline. The NIST SRE
2012 evaluation [NIST, 2012] follows this protocol. However, even for the previous eval-
uations, where each trial had to be scored independently it was possible to speed–up the
scoring for the complete evaluation, without violating its rules, because all enrollment
segments were indeed known in advance.

In this scenario, as will be shown in sub-sections 7.5.2 and 7.5.3, a smart imple-
mentation of PLDA allows some of the terms required for the evaluation of the speaker
verification log–likelihood ratio to be pre–computed, thus the per–trial scoring complexity
is greatly reduced. Different optimizations are possible for FPD–PLDA depending on the
duration of the enrollment segments. For short segments, FPD–PLDA does not allow
the pre–computation of most of the terms of the scoring function, thus its complexity
cannot be reduced. However, if the enrollment segments are long enough, their i–vector
posteriors can be safely approximated by their MAP point estimates, and the per–trial
complexity of the proposed technique can be reduced.

7.5.1 Log–likelihood Computation

The complexity of the log–likelihood computation accounts for two separate contribu-
tions. The first contribution is the complexity of operations that can be independently
performed on target or test sets, which will be referred to as per–enroll and per–test
terms, respectively. The second contribution is the per–trial complexity, i.e. the complex-
ity of the terms which jointly involve the enrollment and the test sets. This distinction
is not relevant for the näıve scoring implementations. Is relevant, instead, in the “fixed
set of target speakers scenarios” because the per–enroll terms can be pre–computed, and
per–test terms need to be computed only once regardless of the number of target speakers.

We will analyze both per–test and per–trial complexity of the PLDA and FPD–PLDA
models. It is worth noting that the complexity of a complete system should account also
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for the complexity of the extraction of the acoustic features and of the i–vectors. The
computation of the i–vector covariance matrix, for each segment, has complexity O(M3)
[Glembek et al., 2011], which, as we will see, dominates the other costs.

Since we compute the speaker variable y posteriors on different sets of segments, we
explicitly condition the parameters of the posterior distributions of y (7.11) to a generic
set G as:

PG = I+
∑

i∈G

UTΛeq,iU

ŷG = P−1
G UT

∑

i∈G

Λeq,i (φi −m) . (7.46)

The index of the sum in this equation, and in the following equations, is to be interpreted
as running over all the segments of the set. Replacing (7.15) in (6.10), the speaker
verification log–likelihood ratio for an enrollment set E and a test set T can be written
as:

llr(E, T ) = log
l(E, T |Hs)

l(E|Hs)l(T |Hs)

=−
1

2
log
∣∣P(E,T )

∣∣+ 1

2
ŷT
(E,T )P(E,T )ŷ(E,T )

+
1

2
log
∣∣P(E)

∣∣− 1

2
ŷT
(E)P(E)ŷ(E)

+
1

2
log
∣∣P(T )

∣∣− 1

2
ŷT
(T )P(T )ŷ(T )

+
S

2
log 2π

= σ(E, T )− σ(E)− σ(T ) +
S

2
log 2π, (7.47)

where the scoring function σ is defined as:

σ(G) = −
1

2
log
∣∣P(G)

∣∣+ 1

2
ŷT
(G)P(G)ŷ(G). (7.48)

Since the computation of σ(E) and σ(T ) cannot be more expensive than the computation
of σ(E, T ), we restrict our analysis to this term of the log–likelihood ratio.

7.5.2 Complexity of the Standard PLDA

As shown in Section 7.3, standard PLDA corresponds to a FPD–PLDA with Γ−1
i = 0

for all i–vectors. Thus, Λeq,i = Λ for all i–vectors, and the speaker variable posterior
parameters become:

P(E,T ) = I+ (nE + nT )U
TΛU

ŷ(E,T ) = P−1
(E,T )U

TΛ

(∑

i∈E

(φi −m) +
∑

i∈T

(φi −m)

)
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= P−1
(E,T ) (FE + FT ) , (7.49)

where nE and nT are the numbers of enrollment and test segments respectively, FE and
FT are the projected first order statistics

FE = M
∑

i∈E

(φi −m) , FT = M
∑

i∈T

(φi −m) , (7.50)

and M = UTΛ is an S×M matrix with S and M being the size of the speaker subspace
and dimensionality of i–vectors, respectively. Using these definitions, the scoring function
σ(E, T ) can be rewritten as:

σ(E, T ) =−
1

2
log
∣∣P(E,T )

∣∣ + FT
EP

−1
(E,T )FT

+
1

2
FT

TP
−1
(E,T )FT +

1

2
FT

EP
−1
(E,T )FE . (7.51)

Computing the projected statistics (7.50) has complexity O(NM +MS), where N is the
number of speech segments in the set. It is worth noting that the FE and FT statistics are
per-enroll and per–test computations because they can be computed for the enrollment
and test sets independently.

Näıve Scoring Implementation

The computation of the score function σ(E, T ), given the FG statistics, requires computing
P−1

(E,T ) and its log–determinant. These computations have complexity O(S3) because, for

standard PLDA, the term UTΛU can be pre-computed. Given P−1
(E,T ), scoring σ(E, T )

has complexity O(S2). The same considerations apply to the less expensive computation
of σ(E) and σ(T ). Thus, the overall per–trial complexity is O(S3).

Speaker Detection with Known Enrollment Sets

In the näıve implementation, the computation and inversion of P(E,T ) dominates the
scoring costs. However, in standard PLDA this factor varies only with the number (nT +
nE) of the enrollment and test segments (7.49). When each set of enrollment segments
Ek, and the number of test segments nT , are known, it is possible to pre–compute the
corresponding P−1

(Ek,T ), and its log–determinant. Moreover, since the statistics FEk
are also

known in advance, the terms of the scoring function 1
2
FT

Ek
P−1

(Ek ,T ) can be pre–computed. It
is worth noting that these terms are small S–sized vectors. Since the term depending only
on the test statistics FT must be evaluated just once for the whole set of K targets, its
computation has a per–test, rather than a per–trial, cost. Every function σ(Ek, T ) can be
computed with complexity O(S), each term σ(Ek) can be easily pre–computed. Given the
statistics, the term σ(T ) has a per–enroll and per–test complexity of O(S2). The overall
per-enroll and per–test cost, including statistics computations, is then O(NM + MS),
whereas the per–trial cost is O(S).
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7.5.3 Full Posterior Distribution PLDA

The main difference between the standard PLDA and the FPD–PLDA approach is that in
PLDA P(E,T ) depends just on the number of i–vectors in the set (7.49), whereas in FPD–
PLDA it also depends on the covariance of each i–vector in the test set T (see (7.46)).
This does not allow for applying the same optimizations as illustrated in the previous
section to the FPD–PLDA.

The speaker variable posterior parameters can still be written as:

P(E,T ) = I+ (Λeq,E +Λeq,T )

ŷ(E,T ) = P−1 (Feq,E + Feq,T ) ,
(7.52)

where
Feq,G = UT

∑

i∈G

Λeq,i (φi −m)

Λeq,G = UT

(∑

i∈G

Λeq,i

)
U,

(7.53)

and the scoring function σ(E, T ) can be rewritten as:

σ(E, T ) =−
1

2
log
∣∣∣P−1

(E,T )

∣∣∣+ 1

2
FT

eq,EP
−1
(E,T )Feq,E

+
1

2
FT

eq,TP
−1
(E,T )Feq,T + FT

eq,EP
−1
(E,T )Feq,T . (7.54)

Computing the posterior parameters (7.52) has a complexity O(NM3 + M2S), mainly
due to the computation of Λeq,i, and is much higher than the O(NM +MS) complexity
of standard PLDA approach. However, these computations are required only for a new
target or test speaker. These costs are comparable to the costs O(NM3) of the i–vector
extraction [Glembek et al., 2011]. Given the statistics, P(E,T ) can be computed with com-
plexity O(S2) and its inversion complexity is O(S3). The computation of the remaining
terms requires O(S2), thus the overall per–trial complexity is O(S3). Since the posterior
parameter P(E,T ) cannot be pre–computed as in standard PLDA, the per–trial complexity
is the same also for the fixed set of target speakers scenarios.

7.5.4 Asymmetric Full Posterior Distribution PLDA

In some applications, the target speaker segments have long enough duration, so that
replacing the corresponding i–vector posterior distribution by a MAP point estimate has
a negligible impact on the term Λeq,E. In this case, it is possible to narrow the complexity
gap between standard PLDA and FPD–PLDA, because the i–vector covariance is taken
into account only for the test segments. Thus, we refer to this approach as Asymmetric
Full Posterior Distribution PLDA. Since MAP–approximated i–vectors are used for the
target speakers, the computational complexity of σ(E) becomes equivalent to the one of
the standard PLDA. The per–trial complexity with respect to the standard FPD–PLDA
approach can be reduced because the same test set is scored against a fixed set of target
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Table 7.1: Comparison of the log–likelihood computation complexity for three implementations
of PLDA. Per–segment costs should be multiplied by the number of segments N of a given
speaker. Per–speaker costs do not depend on the number of speaker segments. These costs refer
to PLDA only, without considering the contribution of i–vector extraction.

System
Per–segment Per–enroll, per-test Per–trial

costs fixed costs costs

Näıve PLDA M MS S3

Optimized PLDA M MS S

Standard FPD–PLDA M3 M2S S3

Asymmetric FPD–PLDA M3 M2S S2

speakers. In particular, the covariance of the posterior of the speaker identity variable

P(E,T ) = I+ nEU
TΛU +

∑

i∈T

UTΛeq,iU (7.55)

depends only on the test i–vector covariance, and on the number of enrollment segments.
If the number of target segments per speaker is fixed, computing the term P−1

(Ek,T ) for each
target speaker becomes a per–test cost because it can be computed only once. Computing
the scoring function, given P−1

(Ek,T ), has thus complexity O(S2).

Table 7.1 summarizes the results presented in this section. The costs have been divided
into per–segment costs, depending on the number N of segments in the set, per–enroll
and per-test fixed costs, and the per–trial costs.

The FPD-PLDA approach has a notably higher complexity that standard PLDA.
The Asymmetric FPD-PLDA reduces the per–trial cost by a factor S, speeding–up the
scoring computation when the number of target speakers is high. However, the duration
of the enrollment segments affects the accuracy of the approximation, and possibly the
performance gain with respect to the standard PLDA.
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Chapter 8

I–vector Pre-Processing

The need of normalizing or transforming data, which are taken as inputs to various models,
always originates from the fact that the data do not comply to the model’s assumptions.
It is not different in the case of i–vectors and various probabilistic models (in particular
different variants of PLDA) for speaker recognition.

We assume that i–vectors are standard-normal distributed and both speaker and chan-
nel effects modeled by the Gaussian PLDA are additive, statistically independent and
normally distributed. In [Kenny, 2010], Patrick Kenny clearly demonstrated that these
assumptions are not satisfied, which leads to a sub-optimal performance of the model.
Additionally, the score normalization was needed (S-norm, see Section 1.2.1) to obtain
better results contradicting the intuition that a good generative model should produce
well calibrated likelihood ratios which do not need to be further normalized.

The Gaussian assumptions effectively prohibited larger deviations from the mean —
like the phenomena of having groups of outliers (“Black Swans”) or observing channel
effects very different from the ones present in the training data. Introducing the heavy-
tailed version of the PLDA and relaxing the Gaussian assumptions by imposing Student’s t
priors on the hidden variables of the PLDA model brought significant improvements over
the Gaussian PLDA model.

This model, although successful, is unfortunately burdened by its high complexity
both in the training and scoring phase. It was obvious that in order to make the Gaussian
PLDA competitive with HT-PLDA, the non-Gaussian behavior of the i–vectors needs to
be eliminated or alternatively Gaussian behavior needs to be enforced.

A simple method of normalizing i–vectors to suit the Gaussian PLDA model was
introduced in [Garcia-Romero, 2011]. The normalization generally consists of two steps:
data whitening and length normalization. Whitening is the process where we enforce the
total covariance matrix of i–vectors to be identity. The whitening can be performed as

φwht = D1/2ETφ, (8.1)

where E and D are the orthogonal matrix of eigenvectors (in columns of E) and diago-
nal matrix of eigenvalues of the total covariance matrix estimated on training i–vectors,
respectively. Length normalization is a nonlinear transformation where we divide each
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i–vector by its norm and transform it to a vector of unit length:

φnorm =
φ

‖φ‖
. (8.2)

8.1 Gaussianization of the Data

The superior results obtained with the HT-PLDA suggested that instead of assuming
standard normal prior for the hidden variable in the i–vector model, we should consider
that it follows Student’s t-distribution. According to [Lyu et al., 2009], multivariate Stu-
dent’s t-distribution falls into the Elliptically Symmetric Densities (ESD) and therefore
nonlinear transformation, which brings the samples of ESD family into a Gaussian dis-
tribution needs to be found. The technique proposed in [Lyu et al., 2009] called Radial
Gaussianization (RG) consists of two steps. First, the ESD is transformed into a Spher-
ically Symmetric Density (SSD) by a linear whitening transformation learned from the
data samples of the ESD. Second, the distribution of the lengths of the whitened data
φwht is non-linearly transformed. The idea behind the nonlinear length transformation
g(‖φwht‖) is based on the fact that the lengths of vectors sampled from the multivariate
Gaussian distribution follow a Chi distribution with D degrees of freedom, where D is
the dimensionality of the vectors. The transformation is then given as a composition of
the inverse cumulative Chi distribution with the cumulative distribution of the length
random variable r = ‖φwht‖:

g(‖φwht‖) = F−1
χ Fr(‖φwht‖). (8.3)

To accurately estimate the cumulative distribution of the length random variable, all of
the data (especially evaluation data) need to be observed. This fact however violates the
NIST SRE rules of processing each trial independently. For these reasons, the replace-
ment of the second step in the gaussianization process by transforming the vector to unit
length was proposed. It was shown in [Garcia-Romero, 2011] that performing the length
normalization does not bring any performance degradation in comparison with properly
estimating the nonlinear transformation from the data.

8.1.1 Length Normalization

Performing a transformation of the data into the unit length indeed again violates the
Gaussian assumptions as the samples drawn from the high-dimensional standard normal
Gaussians lie far away from the unit sphere. In fact, the samples are mostly present in a
thin shell of a multidimensional sphere, of which distance from the origin is increasing with
the dimensionality of data. If we are considering 600−dimensional i–vectors and knowing
that the distribution of lengths of standard-normal distributed i–vectors follows Chi dis-
tribution, inner radius would be approximately 24 (see the mode of the Chi distribution
in Figure 8.1).

When comparing the actual lengths of the i–vectors extracted from the training data
and held out evaluation data, we observe completely different distributions of the lengths.
In Figure 8.1, we present a situation of the i–vectors extracted for the Domain Adaptation
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Challenge [MITLL, 2103]. There are three different datasets (training, adaptation and
evaluation set) used in the Adaptation Challenge coming from various LDC data collec-
tions. The training set consists of all telephone calls from the all speakers taken from
Switchboard-I and Switchboard-II (all phases) corpora. The adaptation set is composed
of all telephone calls from all speakers taken from the NIST SRE data collections from
years 2004, 2005, 2006 and 2008. Finally, the evaluation set is the telephone data from
NIST SRE 2010 evaluations.
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Figure 8.1: Histograms of the i–vector length distributions of three sets of Domain Adap-
tation Challenge. The probability density function of Chi distribution with 600 degrees of
freedom depicted in black represents the distribution of 600 dimensional standard normal
distributed vectors.

Not only we can observe a considerable shift in the lengths distributions of the individ-
ual databases, but all distributions have a longer right tail. The PDF of Chi distribution
with 600 degrees of freedom representing the distribution of 600 dimensional standard nor-
mal distributed vectors is depicted in black color. As the i–vector extractor was trained on
the training data, the i–vector length distribution of this dataset is closest to the expected
distribution.

These shifts between datasets indeed lead to problems. As pointed out in
[Garcia-Romero, 2011], the shift in the i–vector lengths would introduce a global scal-
ing in the obtained scores (see equations 6.19 or 9.10). Scaling could be partly recovered
by means of linear calibration. However, especially in the cases, when the evaluation data
come from different sources, there would be more such scalings and one global calibration
would not be sufficient to overcome this problem.

It is also interesting to observe the shift introduced by a different gender. Surprisingly,
it is smaller than the shift between telephone databases. It is important to note, that the
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training data for i–vector extractor contained recordings from both genders. The situation
is depicted on Figure 8.2, where the NIST SRE 2010 telephone data are split into female
(f) and male (m) recordings.
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Figure 8.2: Histograms of the i–vector length distributions of female and male parts of
the evaluation dataset from the Adaptation Challenge.

By performing normalization to unit length, we place all i–vectors on a surface of a
common unit sphere and effectively greatly compress all distances between them. Also, we
replace a distribution of their lengths by a constant. With a proper scaling, the constant
could be even set into the mode of the Chi distribution, which in the end is not necessary.
This way, we made the distribution of the i–vector lengths closer to the distribution of
lengths of the i–vectors following standard-normal distribution. We also avoided problems
with the score scaling. It is important to note, that before actual length normalization,
we must ensure that the i–vectors are normalized to zero mean. Although zero mean of
the i–vectors is also assumed by the i–vector extraction model, it is often not the case
for i–vectors extracted from some held-out data. After all of these transformations, the
PLDA is trained on normalized i–vectors. Alternatively, the cosine scoring can be directly
performed.

8.2 Application to Full Posterior Distribution

This section presents the length normalization applied to the i–vector posterior dis-
tribution. A straightforward approach is to replace the i–vector distribution W|X by

Ŵ = W|X
‖W|X‖

, which forces all realizations of Ŵ to lie on the unit sphere. However, since

the resulting random variable Ŵ would not be Gaussian distributed, it would not be pos-
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sible to rely on the simple derivations of Section 6.2, and to avoid the higher complexity
introduced by the use of a non Gaussian distribution.

Alternatively, the length normalization can be seen as a non–linear transformation
F (φ0) of the observed i–vector φ0, which can be approximated by its first order Taylor
expansion around the i–vector itself. The expansion is given by:

F (φ) = F (φ0) + JF (φ0)(φ− φ0) + o(‖φ− φ0‖), (8.4)

where JF (φ0) is the Jacobian of F computed at φ0 and F is the function F (x) = x
‖x‖

.
The linear transformation which approximates the length normalization function around
the i–vector is then:

F̂ (φ) = F (φ0) + JF (φ0)(φ− φ0) = v +
(I− vvT)

‖φ0‖
φ (8.5)

where v = φ0

‖φ0‖
and I is the identity matrix.

The extension to the full i–vector posterior consists in computing the first order Taylor
expansion of F centered at the posterior distribution mean φX, and applying the resulting
linear transformation to the i–vector posterior W|X ∼ N(φX,Γ

−1
X
). The expansion of F

around φX is:

F̂ (φX) = vX +
(I− vXv

T
X)

‖φX‖
φX = vX +AφX , (8.6)

where vX = φX

‖φX‖
and A =

(I−vXv
T
X
)

‖φX‖
. Thus, the transformed distribution is given by:

Ŵ ∼ N

(
F̂ (φX),AΓ−1

X AT
)

∼ N

(
φX

‖φX‖
,

1

‖φX‖
2 (I− vXv

T
X)Γ

−1
X
(I− vXv

T
X)

)
. (8.7)

Expression (8.7) can be further approximated as:

W ∼ N

(
φX

‖φX‖
,

Γ−1
X

‖φX‖
2

)
. (8.8)

In the experimental section, we show that these linearizations of the length normalization
are effective. In particular, the approximation (8.8) allows a simplification of (8.7) without
incurring any performance degradation. We will refer to (8.7) as “Projected Length
Normalization” (FPD1), and to (8.8) as “Length Normalization” (FPD2).
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Chapter 9

Discriminative Training of PLDA

In this chapter, we propose to estimate verification scores using a discriminative model
rather than a generative PLDA model. More specifically, the speaker verification score
for a pair of i-vectors is computed using a function having the functional form derived
from the standard PLDA model. The parameters of the function, however, are estimated
using a discriminative training criterion. We use an objective function that directly ad-
dresses the speaker verification task, i.e. the discrimination between “same-speaker” and
“different-speaker” trials. In other words, a binary classifier that takes a pair of i-vectors
as an input, is trained to answer the question of whether or not the two i-vectors come
from the same speaker. We show that the functional form derived from PLDA can be
interpreted as a binary linear classifier in a non-linearly expanded space of i-vector pairs.
We have experimented with two discriminative linear classifiers: linear support vector
machines (SVM) and logistic regression. The advantage of logistic regression is its prob-
abilistic interpretation: the linear output of this classifier can be directly interpreted as
the desired log-likelihood ratio verification score. We will concentrate more on training
with logistic regression and we will use the abbreviation DPLDA (Discrminative PLDA)
for such systems later in Chapter 10.

There has been previous work on discriminative training for speaker recognition,
such as GMM-SVM [Campbell et al., 2006]. This and similar approaches, however, do
not directly address the objective of discriminating between same-speaker and different-
speaker trials. Instead, SVMs are trained as discriminative models representing each
target speaker. As a consequence, this approach cannot fully benefit from discriminative
training, as there is a very limited number of positive examples (usually only one enroll-
ment segment) available for training of each model. In contrast, in our approach, a model
is trained using a large number of positive and negative examples, each of which is one of
many possible same-speaker or different-speaker trials that can be constructed from the
training segments.

The very same idea of discriminatively training a PLDA-like model for speaker verifi-
cation was originally proposed in [Brümmer, 2006] and some initial work has been done
in [Burget et al., 2008]. At that time, however, speaker factors extracted using Joint Fac-
tor Analysis (JFA) [Kenny et al., 2007] were used as a suboptimal input for the classifier,
and state-of-the-art performance was not achieved.
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9.1 Original Model

In order to effectively deploy the discriminative approach to speaker recognition, we need
to derive an efficient scheme for obtaining scores for the training examples. We will build
our model on previously presented LDA principles and consider a special form of PLDA,
a two-covariance model, where the simplification is obtained by merging together the
residual noise and inter-session components. In this model, both speaker and inter-session
variabilities are modeled using across-class and within-class full covariance matrices Σac

and Σwc. The two-covariance model is a generative linear-Gaussian model, where latent
vectors y representing speakers (or more generally classes) are assumed to be distributed
according to prior distribution

p(y) = N(y;µ,Σac). (9.1)

For a given speaker represented by a vector ŷ, the distribution of i-vectors is assumed to
be

p(φ|ŷ) = N(φ; ŷ,Σwc). (9.2)

The maximum likelihood estimates of the model parameters, µ, Σac, and Σwc, can be
obtained by means of EM algorithm similar to the previous sections. Alternatively, if we
want to only obtain a reasonable initialization of the parameters for the discriminative
training, the parameters can be directly estimated on the training data as for standard
LDA. The training data (i-vectors) come from a database comprising recordings of many
speakers (to capture across-class variability), each recorded in several sessions (to capture
within-class variability).

9.2 Verification Score of a Trial

To obtain an effective way of scoring, we will consider a trial to be composed only by two
i–vectors (φ1, φ2). Note, that multi-session scoring, when more i–vectors are available
for enroll or test or both, can be easily achieved by averaging the corresponding i–vectors
and using the resulting means as single i–vectors. The averaging of i–vectors does not
cause any significant problems or deterioration of the performance [Villalba et al., 2013]
and in fact is widely used in the community.

We will follow the same steps as in Section 6.2.1 but with the constraint of a single
i–vector per enroll and test parts of the evaluation trial. In the case of a same-speaker
trial (hypothesis Hs), a single vector ŷ representing a particular speaker is generated
from the prior p(y), for which both φ1 and φ2 are generated from p(φ|ŷ). For a different-
speaker trial (hypothesis Hd), two vectors ŷ1, ŷ2) representing two different speakers are
independently generated from p(y). For each, one of the i-vectors φ1 and φ2 is generated.
The speaker verification score can be again calculated as a log-likelihood ratio between
the two hypotheses Hs and Hd as

s = log
p(φ1,φ2|Hs)

p(φ1,φ2|Hd)
. (9.3)
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The joint likelihood of the two independent i–vectors being generated from a particular
speaker factor ŷ is the product of two likelihoods:

p(φ1,φ2|ŷ) = p(φ1|ŷ) p(φ2|ŷ). (9.4)

Considering the hypothesis Hs that these two i–vectors can be generated by any speaker
common for both of them, we marginalize over all possible speakers:

p(φ1,φ2|Hs) =

∫
p(φ1,φ2|y) p(y)dy. (9.5)

For the different speaker hypothesis Hd, we again marginalize over all possible speakers
and compute the likelihood of the i–vectors being generated independently by any two
speakers:

p(φ1,φ2|Hd) =

∫
p(φ1|y1) p(y1) dy1

∫
p(φ2|y2) p(y2) dy2,

= p(φ1) p(φ2). (9.6)

Plugging the conditional likelihoods (9.5) and (9.6) into the log-likelihood ration (9.3) we
obtain

s = log
p(φ1,φ2|Hs)

p(φ1,φ2|Hd)
(9.7)

= log

∫
p(φ1|y)p(φ2|y)p(y)dy

p(φ1)p(φ2)
. (9.8)

The integrals, which can be interpreted as convolutions of Gaussians, can be evaluated
analytically giving

s = logN

([
φ1

φ2

]
;

[
µ

µ

]
,

[
Σtot Σac

Σac Σtot

])

− logN

([
φ1

φ2

]
;

[
µ

µ

]
,

[
Σtot 0

0 Σtot

])
, (9.9)

where the total covariance matrix is given as Σtot = Σac +Σwc. By expanding the log of
Gaussian distributions and simplifying the final expression, we obtain

s = φT
1Λφ2 + φT

2Λφ1 + φT
1Γφ1 + φT

2Γφ2

+ (φ1 + φ2)
T
c+ k, (9.10)

where

Γ = −
1

4
(Σwc + 2Σac)

−1 −
1

4
Σ−1

wc +
1

2
Σ−1

tot

Λ = −
1

4
(Σwc + 2Σac)

−1 +
1

4
Σ−1

wc

c = ((Σwc + 2Σac)
−1 −Σ−1

tot)µ
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k = log |Σtot| −
1

2
log |Σwc + 2Σac| −

1

2
log |Σwc|

+µT (Σ−1
tot − (Σwc + 2Σac)

−1)µ. (9.11)

We recall that the computation of a bilinear form xTAy can be expressed in terms of the
Frobenius inner product as xTAy = 〈A,xyT〉 = vec(A)Tvec(xyT), where vec(·) stacks
the columns of a matrix into a vector. Therefore, the log-likelihood ratio score can be
written as a dot product of a vector of weights wT, and an expanded vector ϕ(φ1,φ2)
representing a trial:

s = wTϕ(φ1,φ2)

=




vec(Λ)
vec(Γ)

c

k




T 


vec(φ1φ
T
2 + φ2φ

T
1 )

vec(φ1φ
T
1 + φ2φ

T
2 )

φ1 + φ2

1


 . (9.12)

Hence, we have obtained a generative generalized linear classifier [Bishop, 2006], where
the probability for a same-speaker trial can be computed from the log-likelihood ratio
score using the sigmoid activation function as

p(Hs|φ1,φ2) = σ

(
log

p(φ1,φ2|Hs)

1− p(φ1,φ2|Hs)
+ log

p(Hs)

1− p(Hs)

)
= σ(s+ logit(p(Hs))). (9.13)

Adding the logit(p(Hs)) score, which adjusts the constant k in the vector of weights,
allows for setting different priors for both hypotheses.

9.3 Discriminative Classifiers

In this section, we describe how we train the weights w directly, in order to discriminate
between same-speaker and different-speaker trials, without having to explicitly model the
distributions of i-vectors. To represent a trial, we keep the same expansion ϕ(φ1,φ2)
as defined in (9.12). Hence, we reuse the functional form for computing verification
scores that provided excellent results with generative PLDA. We consider two standard
discriminative linear classifiers, namely logistic regression and SVMs.

9.3.1 Logistic Regression

The set of training examples r1 . . . r|T| ∈ T, which we continue referring to as training
trials, comprises both different-speaker and same-speaker trials. By trial r we understand
a combination of two i–vectors r = (φ1,φ2). By introducing the variable for trial, our
score for a particular trial becomes sr = wTϕ(r) = wTϕ(φ1,φ2). Let us also define the
coding scheme t ∈ {−1, 1} to represent labels for the different-speaker, and same-speaker
trials, respectively. Assigning each trial a log-likelihood ratio sr and the correct label tr,
the log probability of recognizing the trial correctly can be expressed as

log p(tr|r) = − log(1 + exp(−srtr)). (9.14)
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This is easy to see from equation (9.13) and recalling that σ(−s) = 1− σ(s). In the case
of logistic regression, the objective function to maximize with respect to the optimized
parameters w is the log posterior probability of correct labeling of all training examples,
i.e. the sum of expressions (9.14) evaluated for all training trials.

Q =
∑

r∈T

log p(tr|sr(w)) (9.15)

=
∑

r∈T

−log (1 + exp(−trsr(w))) (9.16)

Equivalently, this can be expressed by minimizing the cross-entropy error function, which
is a sum over all training trials

E(w) =
∑

r∈T

αrELR(trsr) (9.17)

where the logistic regression loss function

ELR(trsr) = log(1 + exp(−trsr)) (9.18)

is simply the negative log probability (9.14) of correctly recognizing a trial.
To control over-fitting to training data and to keep the optimized parameters from

reaching large values, we can introduce a regularization by adding a penalty term to the
error function. The simplest form of the regularization penalty is the sum of squares of
all parameters, leading to a modified error function

Ẽ(w) =
∑

r∈T

αrELR(trsr) +
λ

2
‖w‖2, (9.19)

where ‖w‖2 = wTw and the coefficient λ is a constant controlling the tradeoff between the
error function and the regularizer. This L2 regularizer can be extended by incorporating
a prior knowledge of the parameters w and therefore allow it to limit the distance of the
optimized parameters from some particular offset (for example the parameters estimated
from the generative model). The error function then takes the form of

Ẽ(w) =
∑

r∈T

αrELR(trsr) +
λ

2
‖w − ŵ‖2. (9.20)

This regularization can be seen as imposing an isotropic Gaussian prior on the param-
eters [Bishop, 2006]. The ŵ defines the mean of the isotropic Gaussian prior and the
regularization constant λ can be seen as a parameter to control the variance of this prior.

The coefficients αr allow us to weight individual trials. When set to zero, it can be used
to “turn off” some unwanted trials – for example same i–vector trials or cross-gender trials.
We use these coefficients also to assign different weights to same-speaker and different-
speaker trials. This allows us to select a particular operating point, around which we want
to optimize the performance of our system without relying on the proportion of same-
and different-speaker trials in the training set. The advantage of using the cross-entropy
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objective for training is that it reflects performance of the system over a wide range of
operating points (around the selected one). We can show that by setting the α coefficients
proportional to the number of same- (|T1|) and different-speaker trials (|T2|) as

1
2log(2)|T1|

and 1
2log(2)|T2|

, our error function without regularization becomes

ET(w) =
1

2log(2)

(
1

|T1|

∑

r∈T

log(1 + exp(sr(w))) +
1

|T2|

∑

r∈T

log(1 + exp(sr(w)))

)
(9.21)

= Cllr,w(T),

which is the Cllr performance measure for the speaker verification task as defined
in [Brümmer and du Preez, 2006]. This probabilistic behavior of the logistic regression
classifier is one of its advantages against the SVM as it trains the weights so that the
score sr = wTϕ(r) = wTϕ(φ1,φ2) can be interpreted as the log-likelihood ratio between
hypotheses Hs and Hd, and therefore, the calibration step is not so necessary.

9.3.2 Gradient Evaluation

In order to numerically optimize the parameters w of the classifier, we want to evaluate
the gradient of the error function

∇E(w) =
∑

r∈T

αr

∂E(trsr)

∂sr

∂sr
∂w

+ λw, (9.22)

where the derivation of the loss function E(trsr), w.r.t. score sr, depends on the particular
choice of the loss function. For the logistic regression loss function, it is

∂ELR(trsr)

∂sr
= −trσ(−trsr). (9.23)

Finally, the derivation of the score w.r.t. the classifier parameters just gives the expanded
trial vector

∂s

∂w
=

∂

∂w
wTϕ(φ1,φ2) = ϕ(φ1,φ2). (9.24)

9.3.3 Efficient Score and Gradient Evaluation

Given a trained classifier, we can obtain a verification score for a trial by forming the
expanded vector ϕ(φ1,φ2) and computing the dot product (9.12). However, as we have
already seen, the same score can be obtained using the two original i-vectors φ1,φ2 and
using formula (9.10), which is both memory and computationally efficient. Now, consider
two sets of i-vectors stored as columns of matrices Φe and Φt. For illustration, let us call
these sets enrollment and test trials, although they play symmetrical roles in our scoring
scheme. We can efficiently score each enrollment trial against each test trial and obtain
the full matrix of scores as
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S = 2ΦT
e ΛΦt

+((ΦT
e Γ) ◦Φ

T
e )11

T + 11T(Φt ◦ (ΓΦt))

+ΦT
e c1

T + 1cTΦT
t + k, (9.25)

where ◦ denotes the Hadamard, or “entrywise” product. Terms 1 and 11T represent
the vector and the matrix of ones, respectively. Similarly, the näıve way of evaluat-
ing the gradient would be to explicitly expand every training trial and then to apply
equations (9.22) to (9.24). However, again taking into account the functional form for
computing scores (9.10), the gradient can be evaluated much more efficiently without any
need for explicit trial expansion. Let all the i-vectors, which we have available for training,
be stored in columns of a matrix Φ. Now consider forming a training trial using every
possible pair of i-vectors from the matrix. Let sij be the score for the trial formed by the
i-th and j-th columns of Φ calculated using the parameters w for which we wish to evalu-
ate the gradient. Let tij and αij be the corresponding label and trial weight, respectively.
Further, let dij be the corresponding derivation of loss function E(tijsij) w.r.t. the score
sij given in (9.23) or (9.29) depending on the loss function used. The gradient can now
be efficiently evaluated as

∇E(w) =




∇ΛL
∇ΓL
∇cL
∇kL


 =




2 · vec
(
ΦGΦT

)

2 · vec
(
Φ[ΦT ◦ (G11T)]

)

2 · 1T[ΦT ◦ (G11T)]
1TG1


+ λw, (9.26)

where elements of matrix G are gij = dij · αij . The form of the gradient, allowing us to
split the training i–vectors into two different sets of “enrollment” i–vectors Φe and “test”
i–vectors Φt, can be written as

∇E(w) =




∇ΛL
∇ΓL
∇cL
∇kL


 =




vec
(
ΦeGΦT

t +ΦtGΦT
e

)

vec
(
Φe[Φ

T
e ◦ (G11T )] + [(11TG) ◦Φt]Φ

T
t

)

vec
(
1T [ΦT

e ◦ (G11T )] + [(11TG) ◦Φt]1
T
)

1TG1


+ λw. (9.27)

9.3.4 Support Vector Machines

For the completeness, we will show how to train SVMs using the proposed scheme. The
detailed analysis of this problem for the SVM is given in [Cumani et al., 2013]. We will
focus on putting the SVM approach to the relation with previously described LR. It is
straightforward to find the relation between SVM and LR as we can see both approaches as
a particular instance of the unconstrained convex regularized risk minimization problem.
To formulate the classifier as the SVM, we just need to insert a hinge loss function EL1

instead of logistic regression loss function (9.18) into (9.20) and minimize it with respect
to w. The hinge loss function is defined as

EL1(trsr) = max(0, 1− trsr). (9.28)

and its derivative with respect to scores sr is defined as

∂EL1(trsr)

∂sr
=

{
0 if trsr ≥ 1

−tr otherwise.
(9.29)
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Figure 9.1: Loss functions for logistic regression and SVM.

This way, we obtain an SVM, which is a classifier optimizing the separation margin
between the classes, whereas LR minimizes the cross-entropy error function. Alternatively,
one can see the hinge loss function as a piecewise approximation to the logistic regression
loss function. Therefore, one can assume that the score s = wTϕ(r) obtained from an
SVM classifier will still be a reasonable approximation to the log-likelihood ratio (after a
linear calibration). Both loss functions are shown in Figure 9.1.

SVM Training

As an SVM in its basic definition is a linear classifier, it can extend it to a non-linear clas-
sifier by applying the so called “kernel trick”[Boser et al., 1992], where every dot product
between two examples is replaced by a non-linear kernel function. In our case, every
training example is represented by a non-linear expansion of two i–vectors forming trial
(see (9.12)). We will show that a second degree polynomial kernel

K(r1, r2) = (rT1 r2 + 1)2, (9.30)

where r1 = [φaφb], r2 = [φw φz] represent two different speaker verification trials, is
equivalent to the dot product between two training examples. The kernel

K(r1, r2) = K([φaφb] , [φw φz])

= (φT
aφw + φT

b φz + 1)2 (9.31)

can be rewritten as:
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K(r1, r2) = φT
aφwφ

T
wφa + φT

b φzφ
T
z φb (9.32)

+ 2φT
aφwφ

T
z φb + 2φT

aφw + 2φT
b φz + 1

=
〈
φaφ

T
a ,φwφ

T
w

〉
+
〈
φbφ

T
b ,φzφ

T
z

〉

+ 2
〈
φaφ

T
b ,φwφ

T
z

〉
+ 2φT

aφw + 2φT
b φz + 1

=
〈
[φa φb 1] [φaφb 1]

T , [φw φz 1] [φw φz 1]
T
〉
, (9.33)

where 〈A,B〉 is a dot product between two matrices. We can observe a feature mapping
in the structure of the expanded kernel function:

ϕ̃(φ1,φ2) = vec([φ1φ2 1] [φ1φ2 1]
T) ∼




vec(φ1φ
T
2 )

vec(φ2φ
T
1 )

vec(φ1φ
T
1 )

vec(φ2φ
T
2 )

φ1

φ1

φ2

φ2

1




, (9.34)

where ∼ denotes the equivalence of vectors ignoring the order of their elements. We can
now see the kernel K(r1, r2) as the dot product of two expansions:

K(r1, r2) = ϕ̃(φaφb)
Tϕ̃(φwφz). (9.35)

Taking the likelihood in (9.10) and halving its unknown parameter c as c̃ = c/2, so that
the linear term of the log-likelihood becomes 2c̃(φ1 +φ2), the expansion of the i–vectors
given in (9.12) becomes

ϕ(φ1,φ2) =




vec(φ1φ
T
2 + φ2φ

T
1 )

vec(φ1φ
T
1 + φ2φ

T
2 )

2(φ1 + φ2)
1


 (9.36)

and it is easy to verify that the two expansions:

ϕ(φaφb)
Tϕ(φwφz) = ϕ̃(φaφb)

Tϕ̃(φwφz) (9.37)

are equivalent and therefore correspond to the same kernel.
Having defined the kernel function, we can now train the SVM by solving either dual or

primal optimization problem. The SVM classifiers are often trained using a dual problem,
where the Gram matrix of all dot products between every pair of training samples has to
be evaluated. In our case, the trials are formed by pairs of i–vectors which results in a
complexity O(|T|2) or O(n4) with n being the number of all i–vectors in the training set.
Since the size of the training set can be easily tens of thousands of i–vectors, the resulting
Gram matrix would be unacceptably large. Therefore, it is better to tackle the problem
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by formulating an efficient evaluation of the loss function gradient and using a general
solver to solve the primal problem as shown in [Cumani et al., 2013].

Recently, an optimization for the pairwise SVM training was proposed
in [Cumani and Laface, 2014b], where discarding the non-contributing training pairs leads
to a substantial reduction of number of support vectors. Authors show that the number
of support vectors can grow linearly with the number of speakers, instead of quadratically
with the number of training pairs, which allows for using this technique for larger training
datasets, and also to use the dual formulation for SVM training.

9.3.5 Numerical Optimization

The experiments conducted with the logistic regression classifier are using numerical
optimization methods based on the iterative “trust-region Newton-conjugate-gradient”
method described in [Lin et al., 2008, Nocedal and Wright, 2006] and “Limited-memory
BFGS” (L-BFGS) [Nocedal, 1980, Nocedal and Wright, 2006]. The two methods provide
the same results, while the first uses a conjungate-gradient for the Hessian inversion and
the latter keeps updating certain amount of vectors which implicitly represent the inverse
Hessian approximation.

Trust-region Newton-conjugate Gradient Method

The “trust region” corresponds to the spherical region built around the current guess of
the solution of the optimization problem where the approximate model is built. The idea
of the algorithm is to “trust” the model only in this region, which corresponds to the fact
that the general nonlinear approximations, e.g. quadratic approximation fit the original
function only locally. This region is adjusted with the consecutive iterations – it can be
enlarged if the approximate model fits the problem well, otherwise it is reduced.

The core of the optimization is based on the Newton’s optimization method, where the
gradient and an inverse of the Hessian are used for faster convergence. As the evaluation
of the Hessian or its inversion would in our case be very memory and computationally
expensive operations, the conjugate-gradient method is used for the inversion and the
update step is computed by means of Hessian-vector multiplication. These properties
require a particular implementation of the algorithm to provide a function which efficiently
computes only such multiplication without computing the whole Hessian matrix. An
effective way to compute this second order Hessian-vector product is a “complex step
differentiation”[Shampine, 2007], however, due to the numerical requirements and code
optimization, we resorted to using a real-step numerical approximation, where the product
is expressed in terms of two very close gradient vectors.

9.3.6 Limited-memory BFGS Method

The “BFGS” in the name of the method stands for the names of the four people who
independently discovered it in 1970: Broyden, Fletcher, Goldfarb and Shanno. Later,
the method was modified by Nocedal [Nocedal, 1980] who introduced a memory efficient



9.3 Discriminative Classifiers 85

variant suitable for larger problems. The L-BFGS method for unconstrained optimiza-
tion is usually implemented as a line search method, where BFGS approximation to the
inverse of the Hessian is used to obtain the search direction in every iteration. It was
shown [Nocedal and Nash, 1991, Liu et al., 1989] that methods based on this scheme of
iterative updating are effective for large scale nonlinear problems and compete well with
approximate iterative Newton methods.

Implementations of the Optimizers

The implementation of the Trust-region Newton method was taken from the code devel-
oped for the BOSARIS toolkit [Brümmer and de Villiers, 2010]. This toolkit allows for
building various objective functions by a composition of the basic multivariate and twice
differentiable functions. Each atomic function has to be able to compute the function
value and also, if requested, provide the first and second-order partial derivatives in or-
der to allow for a back-propagation of the gradient for the evaluation of the complete
composite gradient.

During the time, we also used the L-BFGS as it was readily available in the SciPy
library for the Python programming language. In fact, the SciPy optimization package is
a wrapper around the Nocedal’s implementation in Fortran.
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Chapter 10

Experimental Results

This chapter will present results obtained with the presented techniques on various
datasets. First, to put the techniques into the historical context, we will present a short
description and performance comparison of the past state-of-the-art techniques on a com-
mon SRE 2010 dataset in Section 10.1. In Section 10.2, we will take the standard PLDA
without any i–vector normalization as a baseline and show (still on SRE 2010 dataset)
the effects of discriminatively trained PLDA and i–vector length normalization. Next, we
will concentrate on the analysis of PLDA and DPLDA in diverse acoustic conditions (Sec-
tion 10.3). Finally, we will compare all presented PLDA techniques on NIST SRE 2012
dataset (Section 10.4). The superiority of the full-posterior PLDA for short segments,
where the uncertainty of extracted i–vectors is high, will be demonstrated on modified
NIST SRE 2010 datasets. The modifications consists only in truncating the enrollment
and test segments into various lengths in order to simulate the scenario when low amount
of data is available for i–vector estimation.

10.1 Overview of Techniques

We will present a comparison of the PLDA with previous techniques considered as state-
of-the-art before introduction of i–vectors and PLDA. All systems are built on top of
comparable training datasets. There can be only minor changes in the training lists
introduced by the corrections and small modifications during the years of development
and refinement of the database labels.

10.1.1 Common Setup

To present a fair comparison of the SRE techniques, we built all of the corresponding
systems on top of the architecture designed for ABC submission for the NIST SRE 2010
evaluations [Brümmer et al., 2010b]. All systems with exception of the JFA system share
the same feature extraction, voice activity detection and UBM. For the JFA system,
gender-dependent UBM was used.

87
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Feature Extraction

We use 19-dimensional MFCC coefficients + log energy with analysis window of 20 ms
and a shift of 10ms. Corresponding delta and double delta coefficients are computed
resulting in 60-dimensional feature vectors.

After removing the silence, we apply short-time Gaussianization with window of 300
frames. On the border sides of the feature vector sequence, only 150 frames are used. We
let the window grow or shrink in the beginning or in the end of the sequence.

Voice Activity Detection

Speech/silence segmentation is based on a hybrid of Artificial Neural Networks and Hidden
Markov Model [Schwarz et al., 2006]. It is used as a phoneme recognizer trained on the
SPEECHDAT Hungarian database [Matějka et al., 2006]. The outputs are phonemes
clustered into two classes: “speech” (all speech phonemes) and “silence” (all models for
silence). The resulting clusters of speech and silence are then post-processed using a
relative average energy thresholding. The rules are invented heuristically in order to
overcome the problems of false speech detection and in case of 2-channel data to avoid
cross-talks. The process is as follows:

1. If the average energy of the “speech” segment is lower than the maximum energy
in the whole utterance minus 30 dB, then the segment is labeled as “silence”. This
step is done for every utterance.

2. For the 2-channel files: If the energy in the other channel is greater than the max-
imum energy minus 3 dB in the channel which is being processed, the segment is
also labeled as “silence”.

It should be noted that for data where NIST provided ASR transcripts (interview data)
only rule 1 of the post-processing was applied. The cross-talks were eliminated by marking
all of the segments where interviewer was speaking as “silence”. Note that we will not
show results on interview data in this section, but the very same VAD will be used also
in the other experiments, where we test on all conditions, which include also these data.

UBM and I–vector Extractor

A gender-independent universal background model is represented by a full-covariance,
2048-component GMM. The UBM and gender-dependent i–vector extractors were trained
on NIST SRE 2004, 2005 and 2006, Switchboard II Phases 2 and 3, and Switchboard
Cellular Parts 1 and 2 and Fisher English Parts 1 and 2. The variance flooring was
used in each iteration of EM algorithm during the UBM training. We extracted 400-
dimensional i–vectors for the cosine distance and PLDA systems. The analysis regarding
the use of diagonal and full-covariance UBM was performed in [Matějka et al., 2011].

Data for Score Normalization

For the systems, where the score normalization is necessary, we were using NIST SRE
2004, 2005 and 2006 data. This data were filtered in such a way that there were at least
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five sessions for each speaker.

10.1.2 Individual Systems

We will briefly describe individual compared systems. Some of these systems were part of
the ABC NIST SRE 2010 and more variants were trained to suit particular test conditions.
We shall concentrate only on the most common extended telephone-telephone condition
(condition 5) and therefore describe only telephone systems. Generally the modification
for other conditions is based only on a different selection of training data. For the details,
see [Brümmer et al., 2010b].

Relevance MAP and Eigenchannel Adaptation

Scores from both systems were normalized by zt-norm using 200 speakers for the z-norm
and t-norm segments. In case of the eigenchannel adaptation, 50 eigenchannels were
trained on the same data as for the score normalization.

JFA

A gender dependent telephone system was trained using data from NIST 2004, 2005, 2006,
Switchboard II Phases 2 and 3, and Switchboard Cellular Parts 1 and 2. The numbers
of eigenvoices and eigenchannels we 300 and 100, respectively. Both eigenchannel and
eigenvoice matrices were randomly initialized and then trained with 10 EM iterations of
maximum likelihood followed by the minimum divergence step. The training was done
always separately for each subspace (eigenvoices and eigenchannels) with the other fixed.
No matrix for the residual variability was used.

The scores were normalizes with zt-norm using 200 speakers for the z-norm and t-norm
segments.

Cosine Distance

We follow an already described (see Section 5.3) scheme of intersession variability com-
pensation by means of the LDA followed by the WCCN. 400-dimensional i–vectors were
reduced by LDA into 200 dimensions. The LDA transformation matrix was trained sep-
arately for male and female subset on the same data as i–vector extractor, except the
Fisher data that was excluded.

We used simplified symmetrical normalization (s-norm, see Section 1.2.1). Gender
dependent s-norm cohort was created by 400 speakers.

PLDA

Standard PLDA models are also gender dependent and trained using 400 dimensional
i-vectors extracted from 21663 segments from 1384 female speakers and 16969 segments
from 1051 male speakers from NIST SRE 2004, NIST SRE 2005, NIST SRE 2006, Switch-
board II Phases 2 and 3, and Switchboard Cellular Parts 1 and 2. The configuration of
the PLDA was 90 eigenvoices, eigenchannels are full rank with dimensionality 400. This
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particular configuration was tuned to give the best results for DCFnew, while having sub-
optimal performance at the DCFold and EER. In the case of PLDA, no score normalization
was used.

10.1.3 Results

In Figure 10.1, we can observe the evolution of the SRE systems. Clearly, the introduction
of the channel adaptation has dramatically improved the performance, especially when
the system was evaluated on data coming from different collection or simply containing
channel effects not present during the UBM training.

JFA was another milestone, which greatly improved the performance at the time when
it was introduced. Surprisingly, the effect is not so big on the NIST SRE 2010. However
this technique led to the introduction of i–vectors and we can observe another substantial
gain in the performance with the cosine distance scoring of i–vectors.

If we compare PLDA with the cosine distance scoring, we do not see much of a dif-
ference between the two systems. In fact, the cosine distance scoring is better on the low
miss-rate region of the DET curve. However, this situation has changed in favor of PLDA
after applying length normalization.
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Figure 10.1: Comparison of SRE techniques on female subset of NIST SRE 2010 condi-
tion 5
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Table 10.1: Comparison of different SRE techniques on a female subset of extended
condition 5 (tel-tel) from the NIST SRE 2010 evaluation.

System DCFnew DCFold EER
Relevance MAP 0.92 0.54 15.65
Eigenchannel adaptation 0.81 0.25 5.17
JFA 0.75 0.22 4.74
Cosine distance 0.48 0.14 2.88
PLDA 0.41 0.14 3.52

Detailed results showing the favorite metrics are provided in Table 10.1.

10.1.4 Analysis of the Calibration

If we assume, that the final scores provided by the system can be interpreted as the
calibrated log-likelihood ratios, then a user of the system is able to analytically select a
desired operating point, which best suits his needs and respects the prior probabilities of
target and non-target trials present in his data. Here we analyze the actual performance
of JFA, cosine distance a and PLDA system over a range of operating points expressed by
the effective prior (see Section 3.4). In an ideal situation when system provides perfectly
calibrated scores, the actual performance on the evaluation data would be the same as
the theoretical best performance expressed by the minDCF metric.

Comparison of the actual performance of individual systems is shown on Figure 10.2.
All of the scores of these three systems were calibrated by linear calibration trained on a
subset of NIST SRE 2008 data. It can be observed that modeling i–vectors by PLDA has
greatly reduced the loss in an actual performance and even if the minDCF is comparable
to the cosine distance scoring, the PLDA system has a better practical use as it provides
better calibrated scores. When comparing the JFA with the cosine distance scoring of
i–vectors, we see similarly problematic calibration. Even though JFA is a generative
classifier, its complexity was probably the cause for the bigger difference between the
scores obtained on the development set and the scores on an unknown evaluation set.
Other comparisons can be seen in the presentation of the ABC system submitted for the
NIST SRE 2010 evaluation [Brümmer et al., 2010a].

10.2 Evolution of the PLDA

After the NIST SRE 2010 evaluation, PLDA was in the center of the interest of
the research community. Shortly after the NIST workshop and Odyssey 2010 con-
ference in Brno, we have introduced a discriminative way of training the PLDA pa-
rameters. It was the BOSARIS workshop in Brno, where both the training using
SVM [Cumani et al., 2013] and logistic regression [Burget et al., 2011] were developed.

In Figure 10.3, we can observe the effect of both discriminatively trained PLDA, length
normalization and additional condition-dependent mean normalization (mean of the train-
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Figure 10.2: Normalized Bayes error-rate plots for three systems evaluated on the female
subset of extended condition 5 (tel-tel) of the NIST SRE 2010. The top system is the
JFA, in the middle is the i–vector system with cosine distance scoring and in the bottom
is the PLDA system without length normalization.
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Table 10.2: Comparison of the PLDA variants on extended condition 5 (tel-tel) from the
NIST SRE 2010 evaluation.

Female Subset Male Subset
System DCFnew DCFold EER DCFnew DCFold EER
PLDA 0.40 0.15 3.57 0.42 0.13 2.86
DPLDA-LR 0.40 0.12 2.94 0.39 0.10 2.22
DPLDA-SVM 0.39 0.11 2.35 0.31 0.08 1.55
PLDA+length norm. 0.35 0.10 2.33 0.32 0.08 1.73
PLDA+length norm.+MR 0.32 0.09 1.98 0.29 0.07 1.30
HT-PLDA 0.34 0.11 2.22 0.33 0.08 1.47

ing i–vectors coming from the telephone data was removed from the evaluation data). All
of the PLDA systems are trained on the same dataset as described in the previous section.
The baseline PLDA system represented by the blue DET curve is taken from the previous
section, the red DET curve represents the discriminatively trained PLDA system, with
no length normalization or other transformation of i–vectors. DPLDA was trained with
all of the parameters initialized as matrices of zeros. The target prior probability was set
to 0.001 to reflect the NIST SRE 2010 primary metric. The regularization was performed
by means of early stopping during this experiment. It took approximately 30 iterations
for the algorithm to converge.

The Magenta line represents the system with length normalization that was tuned to
get the best overall results for all NIST SRE 2010 conditions. In this system, i–vectors
were first reduced into 150 dimensions and then the PLDA with both full rank matrices
representing speaker and channel subspaces was trained. The last system represented
by the black DET curve is a modification of the magenta system which consists only
in the condition dependent mean normalization. This has further improved the PLDA
system on the telephone condition. It should be noted, that this approach was specific to
the particular training list used during these experiments. During our other experiments
with the PLDA, we have extended our training list with the additional telephone and
microphone data and the positive effect of this condition-dependent mean normalization
was reduced.

The discriminative training can apparently deal with the non-Gaussian behavior of
the i–vectors and produce significantly better results than the baseline PLDA. However,
the discriminative PLDA did not keep the winner’s laurel for long time. Shortly after this
approach was developed, the length normalization was introduced, and standard PLDA
with the i–vector pre-processing, as described in chapter 8, has reached the performance
of the heavy-tailed version of the PLDA. It should be noted that the length normaliza-
tion applied on i–vectors before DPLDA training did not noticeably change the result.
Also the DET-curve for the HT-PLDA would practically overlap with the magenta curve
representing the standard PLDA with length normalization.

The comparison of all systems on both female and male subset is provided in Ta-
ble 10.2. We also include an SVM variant of the DPLDA system, which was trained on
the same dataset and with same i–vectors as the other systems [Cumani et al., 2011].

An analysis of the calibration loss for the DPLDA system is shown in Figure 10.4. The
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Figure 10.3: Comparison of PLDA systems on female subset of NIST SRE 2010 condi-
tion 5: Blue system is a standard PLDA without length normalization, red DET curve
represents discriminatively trained PLDA (DPLDA), magenta and black correspond to
the standard PLDA system with length normalization and additional condition dependent
mean normalization.

scores were calibrated by a linear calibration trained on a subset of NIST SRE 2008 data
in the same way in the previously presented systems. In comparison with the standard
PLDA and other techniques, the calibration on the DPLDA scores was better, especially
around the desired operating point (DCFnew).

10.3 Analysis of DPLDA in Different Acoustic Con-

ditions

After the introduction of the length normalization, we were naturally frustrated by the
lower performance of DPLDA versus the standard PLDA. When we were looking at the
DET curves of DPLDA evaluated on the training data, it was obvious that the discrim-
inative training can separate almost all training examples. This behavior encouraged us
to test the model under various more difficult conditions and with different training data.
The ideal opportunity was to use, at that time recently developed, PRISM set (see sec-
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Figure 10.4: Normalized Bayes error-rate plots for DPLDA system evaluated on the female
subset of NIST SRE 2010 condition 5. This figure can be compared with Figure 10.2.

tion 2.3) and later on much more difficult data released under the RATS (see section 2.5)
program. Although we did not achieve a broad success with the discriminative model,
there are some cases where DPLDA can outperform PLDA with length normalization.

10.3.1 Analysis on the PRISM Set

In this series of experiments, the training set, which is common for the UBM, i–vector
extractor and PLDA has changed. Similarly to the previous experiments, the training set
contains data from Fisher 1 and 2, Switchboard phase 2 and 3 and Switchboard cellphone
phases 1 and 2. In addition to the Fisher and Switchboard, also data from the speakers not
present in the PRISM evaluation sets and coming from NIST SRE evaluations of the years
2004-2010 are included. We also included segments with added noise and reverberation.
The detailed description of the sets is given in [Ferrer et al., 2011b]. To represent different
types of channel variability, we chose the same PRISM subsets as in [Ferrer et al., 2012]
and briefly described in section 2.3.

Apart from the change in the datasets, we used a gender-dependent 2048-component
diagonal covariance UBM and the dimensionality of i–vectors was raised to 600. With
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the increase of i–vector dimensionality, we reduced also the LDA compression to 200
dimensions prior to the baseline Gaussian PLDA training. In this case, we did not use any
condition-dependent mean removal. The feature extraction and voice activity detection
remained the same as described in section 10.1.1.

The DPLDA system parameters were always initialized from zeros and an initial con-
figuration was inspired by the baseline PLDA system with the dimensionality of both
speaker and channel subspaces set to 200. We will show a set of representative exper-
iments conducted on various channel conditions during our search for an ideal DPLDA
configuration.

Tuning the Regularization

The first experiments performed on the PRISM set were devoted to tuning the regular-
ization parameter, which we did not address in the previous DPLDA system. We took
the initial configuration of DPLDA and swept the values of regularization parameter.

We present the results of the sweep in various conditions in figures 10.5 and 10.6.
The bold blue DET curve represents our baseline Gaussian PLDA system (marked as
GPLDA), while the others represent different DPLDA systems trained with various values
of the regularization constant. The dashed light-blue lines represent boundaries of the
“Doddington’s rule of 30” (see Section 3.2) computed from the baseline PLDA. For each
system, we compute the DCFnew value and represent it by a color point.

Tuning the regularization parameter is important, as we can see from figures 10.5 and
10.6, that too little or too much regularization leads to poor results. After the sweep, we
finally chose the regularization value of 0.1 for our next experiments. We can observe that
with the exception of the “lan” condition (second graph in figure 10.5), where trials are
formed by two telephone conversations of the same language (English, Chinese, Russian,
Arabic or Thai), the baseline is always better in the low-false-alarm regions and therefore
also on the DCFnew metric. In some other conditions (“tela” and “noi”), the DPLDA can
match or slightly outperform the baseline in the region of higher false alarm rates. In the
reverberated data (“rev” condition), the DPLDA did not outperform our baseline at any
operating point.
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Figure 10.5: Tuning of the regularization for the DPLDA: Blue system represents the gen-
erative PLDA baseline. The X and Y in format DPLDA X Y in the legends correspond
to the regularization constant and number of training iterations, respectively.
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Figure 10.6: Tuning of the regularization for the DPLDA: Blue system represents the gen-
erative PLDA baseline. The X and Y in format DPLDA X Y in the legends correspond
to the regularization constant and number of training iterations, respectively.
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Training with Matched Datasets

Having the test conditions conveniently divided according to different nuisance attributes,
we also tested the DPLDA in the matched-training scenario. We divided our training
according to three criteria: “NOI” – 4035 segments representing only the segments with
added noise, “TELPHN ENG” – 24300 of only clean English telephone segments and
“TELPHN” for all 39604 clean telephone segments. We wanted to test whether the
algorithm can find a better solution for a hard condition (noisy data), by training only
on such data and not being overwhelmed by the vast majority of trials formed from the
easier clean data. Also we wanted to test the scenario, where we minimize the variability
and train on the clean data very closely representing the test data. This would be training
on only English clean telephone data and testing on a corresponding condition. We also
included training on all telephone data which brings more variability, but increases the
amount of training data.

We present the results of selected experiments for different conditions and different
training sets in figures 10.7 and 10.8. It is clear that using all available data for training
(56348 segments) gives the best results. Even in the scenarios with relatively large training
set on English telephone data and English telephone tests (Figure 10.8, top graph), we
were not able to achieve better performance than with the system trained with all training
data. The trend is always in favor of more data regardless the target test. These findings
lead us to the intuition that the discriminative training of PLDA needs even more, and at
the same time harder, training data in order to reasonably generalize and compete with
the standard PLDA.
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Figure 10.7: Analysis of DPLDA when training on matched data and other training
sets. Top graph corresponds to testing on English interviews recorded over different
microphones. Bottom graph corresponds to testing on data with added noise.
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Figure 10.8: Analysis of DPLDA when training on matched data and other training
sets. Top graph corresponds to testing on English telephones. Bottom graph corresponds
to testing on trials formed from normal vocal effort English conversations in enroll and
various vocal efforts in test.
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10.3.2 Analysis on RATS Data

Evaluating SRE performance on the RATS data poses many more challenges than sim-
ply taking the state-of-the-art system and running it on the data. This extremely noisy
data has brought a lot of attention to developing different variants of robust acoustic
features and voice activity detection. It would be out of the scope of this work to dis-
cuss the RATS-specific techniques and we refer the reader to a general system descrip-
tion [Plchot et al., 2013] of our submission for the RATS evaluation in 2013, from which
we derive our baseline system.

Our systems again use the same configuration of MFCC features with the exception of
using 25ms analysis window versus 20ms. We train a diagonal, 2048-component, gender-
independent UBM and extract 600-dimensional i–vectors. It should be noted, that the
baseline system we use here is not exactly the same as listed in the system description.
The systems presented there use much larger set for training the PLDA system, which
would make our experiments with DPLDA very time-consuming and expensive. All of
our systems submitted for the RATS evaluation were duration-independent, which will
be also the baseline scheme for our experiments here.

It is important to mention the composition of the training set for PLDA. After tuning
the composition of our training data, the general consensus was to use as many short
cuts from the segments as possible along with the original long segments. The reason
for this composition is greatly influenced by the evaluations, where the emphasis is put
on the performance obtained on the 30 s and 10 s cuts. There is also a 3 s and 120 s test
condition in RATS SRE evaluation protocol. The 120 s condition is getting less attention
as the program goals for this test were mostly achieved. The 3 s condition was considered
too hard especially in the first two phases of the RATS project and we did not focus on
tuning for these durations.

The final training list for our baseline PLDA system was a compromise between the
performance on the short duration segments and a reasonable amount of data for training
the DPLDA system. In total, it contained 210 thousand segments, out of which 70 thou-
sand were randomly selected 30 s cuts and another 70 thousand were randomly selected
10s cuts. The training of PLDA followed the same recipe as previously described, with
LDA dimensionality reduction to 200 dimensions and length normalization. Correspond-
ing DPLDA systems were trained using parameters initialized to zeros. As the trials in
the RATS SRE evaluations are defined as multi-session (6 enrollment segments versus one
test), our development test sets also follow this scheme. In order to obtain the scores with
the DPLDA system, we used i–vector averaging to represent the multi-session trial as a
standard one-to-one i–vector trial. We performed the multi-session scoring with standard
PLDA, but it should be noted that doing the averaging does not significantly change the
results.

Results of the experiments reported on the metrics of the RATS program are summa-
rized in table 10.3. We report only results obtained on the RATS Patrol team development
test sets as the key for the official evaluation set of the program was not available at the
time of writing this text.

It can be seen that training both systems on the whole dataset yields slightly worse
performance than training a duration-dependent system. Also the DPLDA system is
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Table 10.3: Comparison of the PLDA and DPLDA systems trained on all data, 10s
segments or 30 s segmets. Results are given on the RATS Patrol development sets. 30s-
30 s and 10s-10 s correspond to the duration of the enrollment and test utterances. The
metrics are FA 10, which correspond to the false alarm rate at miss rate 10% and MISS 2.5
is a miss rate at false alarm rate 2.5%. EER stands for equal-error rate.

30 s – 30 s 10 s – 10 s
System FA 10 MISS 2.5 EER FA 10 MISS 2.5 EER
PLDA all 3.53 13.36 6.21 10.04 27.01 10.04
DPLDA all 3.68 13.89 6.30 10.03 28.11 10.02
PLDA 30 s 3.32 12.62 6.06 9.99 26.41 9.99
DPLDA 30 s 3.12 12.09 5.81 9.29 26.43 9.66
PLDA 10 s 3.54 13.21 6.17 9.29 25.75 9.65
DPLDA 10 s 3.48 13.24 6.08 9.01 25.94 9.49

performing slightly worse than the PLDA system when trained on all data. The situation
has finally turned in favor of DPLDA when training duration-dependent systems. In these
scenarios, the DPLDA outperformed PLDA on almost all metrics.

So much as we can be pleased by finally obtaining results that could beat the PLDA
with length normalization, it is fair to note that with classical PLDA, we are able to use
much larger datasets for training and build a big, well performing and condition inde-
pendent system. In fact, the best systems in our submission for RATS 2014 evaluations
were using more than 2.5 million segments of various lengths for training. Even with
our parallel implementation of DPLDA training, it is unfeasible to experiment with such
systems.

10.4 Full Posterior Distributions PLDA

In case of short speech segments, the covariance of the i–vector posterior distribution is
large (i.e. the i–vector estimated as a MAP point estimate does not sufficiently approx-
imate its posterior distribution). The proposed Full Posterior Distribution PLDA model
address this problem by integrating over all possible realizations of i–vectors generated
from its posterior distribution. We will show that this approach is superior to the stan-
dard PLDA in case of short segments (less than 60 seconds). In case of long segments,
the i–vector obtained as a MAP point estimate is already a good representation of the
i–vector posterior distribution and we will show that in such cases the newly proposed
model is equivalent to the original PLDA.

As the focus of FPD-PLDA is mainly on short utterances, we defined a dataset that
consists of speech segments, from NIST SRE10 extended core condition, which were cut,
after Voice Activity Detection, to obtain segments of variable duration in the range 3–30,
10–30, 3-60, and 10–60 seconds, respectively. These sets of segments have been scored ac-
cording to the official NIST SRE 2010 conditions 1–5 [NIST, 2010], which are summarized
in Table 2.2.

We used a similar configuration of cepstral features as in the previous experimiments.
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Using a 25 ms Hamming window with the shift of 10ms, we extract 19 MFCC coeffi-
cients together with log-energy. These 20-dimensional feature vectors were subjected to
short time mean and variance normalization using a 3 s sliding window. Delta and dou-
ble delta coefficients were then computed using a 5-frame window giving 60-dimensional
feature vectors. Voice activity detection was performed in the same way as described
in Section 10.1.1.

The i–vector extractor was based on a 2048–component full-covariance gender-
independent UBM, trained using NIST SRE 2004–2006 data. Gender-dependent i–vector
extractors for the baseline system (marked as “std” in the tables) were trained using the
data of NIST SRE 2004–2006, Switchboard II Phases 2 and 3, Switchboard Cellular Parts
1 and 2, Fisher English Parts 1 and 2.

All experiments were performed using i–vector posteriors with dimensionality 400.
The PLDA was trained with a speaker variability sub–space of dimensionality 120, and
full channel variability sub–space. Although both female and male speaker tests were
performed, we report more detailed results on the female datasets only, because the NIST
SRE 2010 core test on female speakers is known to be more difficult, thus more often
compared in the literature. The results on the male speakers confirm the ones reported for
female speakers, as will be shown in 10.7. It should be also noted that for all experiments
with FPD-PLDA on NIST SRE 2010, the standard approach to scoring was used (see
sections 7.5.3 and 7.5.4). The effect of asymmetric FPD-PLDA will be demonstrated
later when testing on NIST SRE 2012.

Table 10.4 summarizes the results of the tests performed on the NIST SRE 2010 female
extended conditions, including the core condition (condition 5), in terms of percent Equal
Error Rate and normalized minimum Detection Cost Function (DCFold and DCFnew) as
defined by NIST for SRE08 and SRE10 evaluations [NIST, 2010]. In this table, the PLDA
and FPD–PLDA systems are compared using the original interview data, or telephone
conversations, without any cut. Labels “tel” and “tel+mic” refer to the datasets used for
training the PLDA parameters, including telephone data only, or additional microphone
data. Labels “Std” and “FPD” refer to the standard and the Full Posterior Distribution
PLDA, respectively. The first row rows gives the baseline results, obtained using standard
PLDA trained on telephone data only. Second row shows a situation when standard PLDA
is used for training the model parameters and the FPD-PLDA is used for scoring. In the
third row, the FPD-PLDA was used both for training and scoring. The last three rows
show the effect of adding microphone data in training the PLDA parameters: sensible
performance improvement with respect to telephone-only list is obtained, excluding, as
expected, the tel–tel condition 5.

Results are given for the five NIST 2010 conditions. It can be observed that the
matched conditions 5 and 1 — tel–tel and int–int, respectively, achieve the best results,
whereas the difficulty of the task decreases from condition 2 to condition 4. The same
trend is confirmed for all experimental conditions, shown in the table 10.4, and later it
will be also the case for the other tests using variable duration segments.

The new model not only keeps the accuracy of the standard model for long segments,
but also shows a small improvement for EER and DCFold in three conditions (2,3,4). The
third and last row present the effect of using the i–vector covariance also in training.
Since the training segments have long durations and corresponding i–vectors are already
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good estimates of the i–vector posterior distribution, the results are similar to the ones
reported in the second fifth row where the standard PLDA is used for training.

Since the systems trained with the “tel” list perform worse than those trained with the
“tel+mic” list, all the remaining experiments on the NIST 2010 data, have been performed
with the latter. In its first three rows, Table 10.5 compares the performance of the
PLDA and FPD–PLDA classifiers using the two length–normalization methods described
in Chapter 8 on the 3–60 seconds cuts. The results of the last row show that again, there
is no advantage in using the full i–vector posterior in training the PLDA models. The
effect of the two length–normalization approaches is comparable, thus in the following we
will present only the results obtained with the Projected Length Normalization (FPD2)
(8.8).

The tests on variable duration cuts, randomly chosen from the extended NIST
SRE2010 female set, are shown in Table 10.6. FPD–PLDA shows always a relative
improvement, quite small for long enough segments, but up to 20% depending on the
average duration of the small cuts. The results given in Table 10.7 confirm same trends
in performance for male speakers.
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Table 10.4: Results for the core extended NIST SRE2010 female tests in terms of % EER, normalized minDCFold×1000 and normalized minDCFnew×1000
using different training lists and PLDA models. Label “tel” and “tel+mic” refer to the datasets used for training the PLDA, including or not microphone
data. “Std” and “FPD” labels refer to standard PLDA and FPD–PLDA, respectively. I–vector posterior length–normalization is performed by means of
(8.8).

List Train Test
condition 2 condition 3 condition 4 condition 1 condition 5

EER DCFold DCFnew EER DCFold DCFnew EER DCFold DCFnew EER DCFold DCFnew EER DCFold DCFnew

tel Std Std 4.2 224 641 2.5 113 445 1.7 102 411 2.0 84 346 2.0 100 339
tel Std FPD 3.9 214 638 2.3 111 462 1.6 101 419 1.7 81 346 2.0 100 346
tel FPD FPD 3.9 214 635 2.4 110 450 1.6 99 415 1.8 79 345 2.0 98 336

tel+mic Std Std 2.6 124 460 2.2 103 405 1.1 65 303 1.8 68 258 1.9 105 335
tel+mic Std FPD 2.3 114 455 2.1 103 402 1.0 60 296 1.7 63 254 2.0 103 347
tel+mic FPD FPD 2.3 112 455 2.0 100 396 1.0 59 288 1.6 60 253 2.0 101 344
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Table 10.5: Results for cuts of 3–60 second test data, using different length–normalization approaches. The PLDA parameters are trained using both
microphone and telephone data. Labels “Std” and “FPD” refer to standard PLDA and FPD–PLDA, respectively, and the numeric suffix of FPD
corresponds to the i–vector posterior length–normalization method.

Train Test
condition 2 condition 3 condition 4 condition 1 condition 5

EER DCFold DCFnew EER DCFold DCFnew EER DCFold DCFnew EER DCFold DCFnew EER DCFold DCFnew

Std Std 9.1 384 812 7.8 368 832 7.3 312 695 7.0 273 630 6.7 337 729
Std FPD1 (eq. 8.7) 6.7 327 791 6.1 343 838 5.2 259 676 4.8 232 603 6.2 322 722
Std FPD2 (eq. 8.8) 6.7 328 791 6.2 343 838 5.2 259 676 4.7 232 603 6.2 323 722
FPD2 FPD2 6.5 327 796 6.3 355 837 5.0 255 676 4.6 229 601 6.3 328 731
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Table 10.6: Results for cuts of variable duration test data, randomly chosen from the extended NIST SRE2010 female tests, in terms of % EER, normalized
minDCFold × 1000 and normalized minDCFnew × 1000 using different PLDA models. The PLDA parameters are trained using both microphone and
telephone data, labels “Std” and “FPD” refer to standard PLDA and FPD–PLDA, respectively. I–vector posterior length–normalization is performed
by means of (8.8).

Test Duration
condition 2 condition 3 condition 4 condition 1 condition 5

EER DCFold DCFnew EER DCFold DCFnew EER DCFold DCFnew EER DCFold DCFnew EER DCFold DCFnew

Std 3–30 12.4 531 921 11.3 521 915 11.1 441 864 9.8 405 794 10.6 493 915
FPD 3–30 9.8 474 901 9.3 498 929 8.3 382 849 7.6 327 756 9.7 475 912

Std 10–30 9.0 431 890 8.6 429 900 6.6 318 820 7.0 317 707 7.6 390 856
FPD 10–30 7.7 388 873 7.5 417 893 5.7 285 785 5.5 278 650 7.2 373 836

Std 3–60 9.1 384 812 7.8 368 832 7.3 312 695 7.0 273 630 6.7 337 729
FPD 3–60 6.7 328 791 6.2 343 838 5.2 259 676 4.7 232 603 6.2 323 722

Std 10–60 7.0 318 787 5.0 283 777 4.7 227 636 4.9 211 558 4.9 265 701
FPD 10–60 5.7 283 761 4.8 271 806 3.9 200 603 4.1 176 555 4.7 260 693

Std Full 2.6 124 460 2.2 103 405 1.1 65 303 1.8 68 258 1.9 105 335
FPD Full 2.3 114 455 2.1 103 402 1.0 60 296 1.7 63 254 2.0 103 347
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Table 10.7: Results for cuts of variable duration test data, randomly chosen from the extended NIST SRE2010 male tests, See Table 10.6
captions.

Test Duration
condition 2 condition 3 condition 4 condition 1 condition 5

EER DCFold DCFnew EER DCFold DCFnew EER DCFold DCFnew EER DCFold DCFnew EER DCFold DCFnew

Std 3–30 8.3 379 825 9.8 448 923 8.9 364 766 6.0 280 697 9.4 436 857
FPD 3–30 6.2 325 795 8.0 432 929 6.6 308 747 4.3 224 641 8.6 419 842

Std 10–30 5.7 286 777 6.8 368 892 5.8 273 701 4.2 192 607 6.7 326 811
FPD 10–30 4.7 243 741 6.1 326 877 5.1 240 665 3.1 157 529 6.3 308 771

Std 3–60 5.8 259 645 6.3 284 753 5.9 247 596 4.5 182 464 6.3 286 692
FPD 3–60 4.1 204 605 5.6 276 819 4.1 194 540 3.0 136 402 5.3 269 697

Std 10–60 3.8 196 609 5.1 251 738 3.5 172 547 2.5 116 402 4.6 224 627
FPD 10–60 2.9 159 565 4.5 231 744 3.0 149 523 2.0 88 370 4.2 218 631

Std Full 1.1 57 270 1.9 86 353 1.2 47 200 0.6 28 138 1.5 82 310
FPD Full 0.9 47 249 1.7 83 356 1.1 45 192 0.5 24 121 1.4 84 319
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10.5 Comparison on NIST 2012

Pooled results for female and male speakers are reported in Table 10.8 for the NIST 2012
SRE evaluation experiments described below. In these experiments, the acoustic features
were again 60–dimensional MFCCs, modeled with a 2048 components full–covariance
UBM. The i–vector dimension was increased to 600. Moreover, Linear Discriminant Anal-
ysis was performed to reduce the i–vector dimensionality to 200, before applying i–vector
whitening and length normalization. Since the resulting i–vectors are already small, no
dimensionality reduction was applied for the speaker subspace, i.e. the speaker subspace
in PLDA was set to 200. The UBM was trained on speech segments taken from the NIST
2004, 2005, 2006, 2008 and 2010 evaluation corpora, and from the enrollment set of NIST
2012 evaluation. Additionally, the Fisher, Switchboard Phase 2 and Switchboard Cellular
datasets were used to train the i–vector extractor. For training the PLDA, only Switch-
board Phase 2 and Switchboard Cellular datasets were were added to the NIST datasets.
Due to the enormous amount of trials involved in the evaluation (some tens of millions), we
did not test the complete FPD–PLDA approach. Since NIST 2012 enrollment segments
are on average quite long, we were able to test FPD–PLDA according to the Asymmetric
FPD–PLDA approach described in Section 7.5.4. Moreover, we had empirical evidence
that representing a target speaker by means of a single i–vector, computed as the average
of all its i–vectors, provides higher accuracy with respect to the standard multi–session
PLDA scoring. The same approach was, thus, followed for obtaining the FPD–PLDA
scores.

The results comparing standard PLDA and Asymmetric FPD–PLDA are given in
Table 10.8 in terms of minimum and actual Cprimary. Note, that in contrast to min-
DCF, there is no analytic version of the “minimum” Cprimary. By “minimum”, we mean a
Cprimary as defined by NIST, but with calibration performed on the evaluation data, while
the “actual” denotes a correct calibration trained on the development set of scores. The
development scores were formed out of NIST SRE 2004–2010 data, which were truncated
to the expected duration (NIST has released the information about the average duration
of test segments before evaluation). Also, the crowd and the HVAC noise was added to
the portion of this data.

These results show that the Asymmetric FPD–PLDA is almost equivalent to the stan-
dard PLDA. For minimum Cprimary, there is an improvement for conditions 2 and 5, which
include short and variable duration segments. An excellent result have been obtained with
discriminatively trained PLDA in terns of the actual Cprimary, where the calibration loss
for DPLDA system is low compared to the other two techniques. This can can indi-
cate that the scores from DPLDA are more “robust” (even though less discriminable
for conditions 2, 4, 5) in terms of being good log-likelihood ratios than scores obtained
from generative PLDA. These results confirm that DPLDA is a technique with a built-in
calibration, which is a very useful property for a real use scenario.
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Table 10.8: NIST SRE 2012 core-extended test: comparison of DPLDA, PLDA and Asymmetric FPD–PLDA on minimum and actual Cprimary.
The numbers associated to the conditions refer to the mean duration of the segments, after voice activity detection, and to the corresponding
standard deviation.

System

Condition 1 Condition 2 Condition 3 Condition 4 Condition 5
interview phone call interview phone call phone call

without added noise without added noise with added noise phone with added noise from a noisy environment
45s – 41 56s – 48 75s – 37 110s – 56 57s – 48

DPLDA (min) 0.230 0.261 0.206 0.287 0.249

PLDA (min) 0.255 0.206 0.244 0.265 0.222

FPD–PLDA (min) 0.253 0.193 0.241 0.264 0.211

DPLDA (act) 0.250 0.300 0.215 0.339 0.333

PLDA (act) 0.336 0.292 0.294 0.370 0.342

FPD–PLDA (act) 0.336 0.292 0.293 0.389 0.344
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Chapter 11

Conclusions

This work proposes two variants of the Probabilistic Discriminant Analysis, which, in
its standard form, is currently considered as the state-of-the art technique in the text-
independent speaker recognition. Preceding state-of-the art techniques have been put into
the context with the standard PLDA, which also serves as a baseline for the proposed
modifications. The performed comparison of all techniques on the NIST SRE 2010 dataset
presents a historical progress in the SRE technology. In Figure 10.1, we can identify two
milestones in the SRE technology. It is an introduction of the channel compensation
techniques and using i–vectors as low-dimensional, information-rich features for modeling.

Discriminative PLDA

The functional form of the standard PLDA model for evaluating the speaker verification
trial has been used as the basis for designing the discriminative approach to training of
PLDA parameters. A single discriminative model then directly addresses the symmetric
speaker verification task: a discrimination between the same- and different-speaker trial
formed by two i–vectors. Although the discriminative training was initially bringing
substantial improvements with respect to the original PLDA, after the application of
the length normalization of i–vectors, the standard PLDA model achieves slightly better
performance in the minimum DCF and EER metrics.

The performed comparative study of PLDA and DPLDA in various acoustic envi-
ronments has also shown slightly better overall performance of the standard generative
PLDA in terms of minimum DCF and EER evaluation metrics. In the domain of highly
degraded RATS data, the discriminative approach has shown small improvements in the
duration-dependent systems with respect to generative baseline. These experiments, how-
ever, show a theoretical best possible performance not taking into account any calibration
loss.

Minimizing the cross-entropy error function as an objective for discriminative training
of DPLDA forces the system to output scores in form of calibrated log-likelihood ratios
for the wide range of operating points. The possibility of weighting individual trials
allows for focusing on the area around the desired operating point of the system already
during training, which makes the consecutive calibration step less necessary. The quality
of the calibration of the DPLDA scores has been confirmed by the experiments where the
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calibration loss on an unseen evaluation set is lower than for the other PLDA variants.
Note that all systems are calibrated using separate development set. The low calibration
loss for the DPLDA suggests that its scores are not that data-set specific and it is not so
necessary to calibrate for each evaluation data-set. This behavior is a desirable property
in a real use scenario, where the actual error rates matter much more than the theoretical
minimum error rates.

Full Posterior Distribution PLDA

A generative PLDA model that exploits the uncertainty of the i-vector extraction process
has been presented. The basic principle is the formulation of the PLDA likelihood, which
has been derived for a Gaussian PLDA model based on the i–vector posterior distribution.
The new formulation of likelihood evaluation defines a new PLDA model, where the intra–
speaker variability is assumed to have a segment–dependent distribution.

Taking into account the posterior distribution of all i–vectors representing an utterace
also leads to the need to normalizing this distribution in line with the already established
length normalization of i–vectors. Two i–vector pre–processing techniques complying
with the new PLDA model have been proposed and their effects were compared in terms
of system accuracy. It was shown that an approximate version of a linearized length
normalization is sufficiently accurate.

The complexity of the PLDA and FPD–PLDA implementations has been analyzed
and an Asymmetric FPD–PLDA approach has been proposed. The asymmetric approach
allows for a substantial complexity reduction in a practical detection scenario with known
target speakers.

The results obtained both on the extended core tests and on short cuts of different
duration of the NIST SRE 2010, and on the extended tests of NIST SRE 2012, confirm
that the FPD–PLDA outperforms PLDA mostly for short test segments with variable
duration. No loss in the performance has been observed for the standard tests containing
long test segments. It was also experimentally demonstrated that for the scenarios when
sufficiently long utterances are available for training the PLDA model, we can use the
standard PLDA for training and FPD-PLDA for scoring. Therefore in most real use
cases, there is no need to perform more expensive FPD-PLDA training.

Future Work

FPD-PLDA can clearly outperform the baseline when testing on short utterances and
DPLDA excels at producing well-calibrated scores. Therefore both techniques present
a viable option for a real use and should be evaluated in production systems. In my
opinion, there are more unknowns in the discriminative approach to be explored. A
possible direction for future research could be to address the problem of overtraining
the model on the training data and propose more sophisticated ways of regularization.
Also an automatic forming of all possible trials in the discriminative training by taking
all possible i–vector pairs does not correspond to the real test and could be redesigned.
For example, forming the trials out of the same utterance, just recorded over different
microphone introduces many artificial positive examples, should be avoided. From the
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perspective of the functional form for scoring, other blocks can be added to simulate the
i–vector pre-processing or condition-dependent calibration.
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