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Abstract 

This thesis deals with Gaussian Mixture Subspace Modeling in automatic speaker recognition. 
The thesis consists of three parts. In the first part, Joint Factor Analysis (JFA) scoring methods 
are studied. The methods differ mainly in how they deal with the channel of the tested utterance. 
The general J F A likelihood function is investigated and the methods are compared both in terms 
of accuracy and speed. It was found that linear approximation of the log-likelihood function 
gives comparable results to the full log-likelihood evaluation while simplyfing the formula and 
dramatically reducing the computation speed. 

In the second part, i-vector extraction is studied and two simplification methods are proposed. 
The motivation for this part was to allow for using the state-of-the-art technique on small 
scale devices and to setup a simple discriminative-training system. It is shown that, for long 
utterances, while sacrificing the accuracy, we can get very fast and compact i-vector systems. 
On a short-utterance(5-second) task, the results of the simplified systems are comparable to the 
full i-vector extraction. 

The third part deals with discriminative training in automatic speaker recognition. Previous 
work in the field is summarized and—based on the knowledge from the earlier chapters of this 
work—discriminative training of the i-vector extractor parameters is proposed. It is shown 
that discriminative re-training of the i-vector extractor can improve the system if the initial 
estimation is computed using the generative approach. 
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Abstrakt 

Tato práce pojednává o modelování v podprostoru parametrů směsí gaussovských rozložení 
pro rozpoznávání mluvčího. Práce se skládá ze tří částí. První část je věnována skórovacím 
metodám při použití sdružené faktorové analýzy k modelování mluvčího. Studované metody se 
liší převážně v tom, jak se vypořádávají s variabilitou kanálu testovacích nahrávek. Metody jsou 
prezentovány v souvislosti s obecnou formou funkce pravděpodobnosti pro sdruženou faktorovou 
analýzu a porovnány jak z hlediska přesnosti, tak i z hlediska rychlosti. Je zde prokázáno, že 
použití lineární aproximace pravděpodobnostní funkce dává výsledky srovnatelné se standardním 
vyhodnocením pravděpodobnosti při dramatickém zjednodušení matematického zápisu a tím i 
zvýšení rychlosti vyhodnocování. 

Druhá část pojednává o extrakci tzv. i-vektorů, tedy nízkodimenzionálních reprezentací 
nahrávek. Práce prezentuje dva přístupy ke zjednodušení extrakce. Motivací pro tuto část 
bylo jednak urychlení extrakce i-vektorů, jednak nasazení této úspěšné techniky na jednoduchá 
zařízení typu mobilní telefon, a také matematické zjednodušení umožněňující využití numer
ických optimalizačních metod pro diskriminativní trénování. Výsledky ukazují, že na dlouhých 
nahrávkách je zrychlení vykoupeno poklesem úspěšnosti rozpoznávání, avšak na krátkých 
nahrávkách, kde je úspěšnost rozpoznávání nízká, se rozdíly úspěšnosti stírají. 

Třetí část se zabývá diskriminativním trénováním v oblasti rozpoznávání mluvčího. Jsou zde 
shrnuty poznatky z předchozích prací zabývajících se touto problematikou. Kapitola navazuje 
na poznatky z předchozích dvou částí a pojednává o diskriminativním trénování parametrů 
extraktoru i-vektorů. Výsledky ukazují, že při klasickém trénování extraktoru a následném 
diskriminatviním přetrénování tyto metody zvyšují úspěšnost. 
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Chapter 1 

Introduction 

Automatic speaker recognition (SRE) is the process of classifying audio recording based on the 
information which is relevant to the speaker in that recording. It is assumed that the process is 
independent of the channel, i.e. language, communication channel, content, etc. The problem 
can be understood from two points of view: speaker identification, and speaker verification. 

Speaker identification is a multi-class classification problem, where the task is to assign an 
utterance to a closed set of known speaker labels. A n example of such application could be a 
search engine in an audio database of university lecture recordings. If a new recording by a staff 
member is to be added to the database, the speaker can be automatically identified assigned to 
the new recording. Note that this approach fails if the speaker is a guest and his voiceprint is 
not in the database of known speakers. 

Speaker verification—on the other hand—is a two-class problem, where the task is to decide 
whether two utterances come from the same speaker or not. This task is sometimes reinterpreted 
as to decide whether an utterance belongs to a certain speaker model or not. Since the speaker 
model is assumed to have been computed from some reference utterance, the two interpretations 
of the problem are equivalent. A n example of such application could be e.g. telephone-banking 
authentication, where—apart from answering questions about e.g. mother's maiden name, date 
of birth, social security number, etc.—the voiceprint match gives yet another level of security. 
Speaker verification can be easily converted to speaker identification by restricting the set of 
compared utterances. 

Looking at the S R E problem content-wise, we can understand it as either text-dependent or 
text-independent. While text-dependent S R E looks at the content of the speech, such as pass-
phrase, the text-independent approach only exploits the information in the waveform, basically 
ignoring what is being said. Looking at the possible scenarios, text-dependent S R E system could 
be employed in a telebanking system where the user authenticates using a passphrase that only 
he or she is supposed to know, while text-independent system is more suitable for intelligence 
purposes, such as spotting a suspicious person on a telephone network. The point of interest of 
this work is text-independent speaker verification. 

1.0.1 Voice Activi ty Detection 

In most speech-processing applications including SRE, Voice Activity Detection (VAD) is run 
to choose the parts of the analyzed utterance, which do contain useful speech. There are various 
approaches to this step including mere energy thresholding, Gaussian Mixture Model (GMM) 
approaches to advanced and robust Neural Networks (NN) and Hidden Markov Models (see e.g. 
system descriptions of [NIST, nda]). 

1 
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In this work, V A D is based on hybrid Artificial Neural Networks (ANN) / Hidden Markov 
Model (HMM). It is used as phoneme recognizer trained on the S P E E C H D A T Hungarian 
database [Matějka et al., 2006]. The output of such recognizer is a string of recognized phonemes 
in the analyzed utterances. The phonemes are then clustered into two classes—silence (all mod

els of silence) and speech (all valid speech phonemes). 
In case of telephone conversations, the crosstalks are detected by comparing the speech 

energies in the overlapping string transcriptions (e.g. [Matějka et al., 2006]. The segment with 
the higher energy is considered as the original channel. 

1.0.2 Feature Extraction 

In the orders of milliseconds, the acoustic signal can be considered stationary. This assumption 
allows to split the signal into short (typically 10ms) units referred to as frames. This operation 
can be viewed as windowing of the signal by a square window function. The cuts at the borders 
of the frames introduce highfrequency distortion, therefore the rectangular window function is 
usually substituted with a bellshaped Hamming-window function [Young et al., 2006], which 
attenuates the border area of the window and therefore suppresses the unwanted distortion. 
The drawback is that the useful information in the border area is also suppressed, therefore 
the window function is usually set longer than the windows shift and the windows overlap. To 
summarize the procedure, the typical scenario is that frames are extracted every 10ms and their 
usual length is 2025ms. 

Speech information is extracted from the frames in the form of feature vectors. A feature 
vector is a lowdimensional representation of a speech frame. In this work we have used the 
MelFilterbank Cepstral Coefficients with various postprocessing steps. 

Feature Derivat ives 

To capture the time progression, the consecutive feature vectors are usually extended with their 
1 s t , 2 n d , and/or 3 r d order derivative approximations (higher orders are rarely used), commonly 
referred to as deltas, doubledeltas, and tripledeltas [Furui, 1986]. 

Feature N o r m a l i z a t i o n 

It has been observed that it is common for the dynamics of the features to vary from one 
utterance to another in a linear way, i.e. they can get biased and scaled. To deal with this sort 
of inter-session variation on the feature level, feature mean removal and variance scaling has 
been proposed (e.g. [Young et al., 2006]); for a fcth frame in utterance d, the normalized ith 
coefficient dd,i(k) is computed as 

where the normalization parameters mean ^d,i and standard deviation o~d,i are usually calculated 
from the whole utterance d. 

Shor t T ime N o r m a l i z a t i o n 

It is also common to compute the normalization parameters on short segments and apply them 
locally. For each frame, the scale and bias is computed from a short segment centered around 
the frame. This operation compensates for the withinsession variability and has proved to be 
effective for some S R E systems. The typical length of such shortwindow is 3s. 

Cd,i(k) 
Cd,i(k) - Vd£ 

&d,i 
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Figure 1.1: General symmetrical speaker verification procedure: an input trial x is given as a 
pair of utterances (di, d2) and the computation of the likelihood is conditioned by the hypotheses 
that the utterances come either from a single speaker (Jfi) or two different speakers (lxC2)-

Shor t -T ime Gauss ian iza t ion 

Not only can the features be normalized locally as mentioned in the previous section, they can 
also be warped to have standard normal distribution. This step is known as Feature Warping or 
Short-Time Gaussianization (STG) and has been proposed in [Pelecanos and Sridharan, 2006]. 
The algorithm operates on a short window of features (typically 3s). It sorts the features and 
substitutes them with corresponding values of an inverse cumulative density function (CDF) of 
a standard normal distribution. 

1.1 Automatic Speaker Verification Procedure 

As was said in the introduction, the task of speaker verification is to detect whether a pair 
of utterances comes from the same speaker (referred to as hypothesis "K\) or from different 
speakers (hypothesis tK2). It is assumed in this work, that the utterances themselves do not 
contain speech from multiple speakers. 

The detection is based on evaluating statistical models using the data provided. It is realized 
using a 2-class classifier whose outcome is a log-likelihood ratio (LLR) of the two hypotheses. 
Following the definition of speaker verification from the previous paragraph, the diagram of 
speaker verification procedure can be seen in Figure 1.1. Note that the input to the likelihood 
function is a pair of two utterances d\ and d2—referred to as a trial x = (d\,d2)—and the 
system is generally symmetrical, i.e. the order of d\ and d2 does not matter. Mathematically, 
the score is given as 

pix^i) 
s s y m = log (1.2) 

However, the problem has traditionally been seen as a two-phase asymmetrical task. In the first 
phase of enrollment, a speaker model M i has to be trained from the utterance d\ (referred to as 
the enrollment data). Then, in the scoring phase, the score is computed as a ratio of how likely 
the utterance d2 (referred to as test data) is generated by M i and how likely it is generated 
by "any" speaker model M U B M , where U B M stands for Universal Background Model. The 
U B M approximates the distribution of all speakers. To do so, it is trained on some training set 
comprising many speakers. A diagram of such evaluation is shown in Figure 1.2. Mathematically, 
the asymmetrical problem is stated as 

(1.3) 
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utterance d\ model Aii utterance d\ model Aii 

enrollment 

utterance d-

Figure 1.2: Asymmetrical speaker verification procedure: an input trial x is given as a model 
M i and test utterance efo and the computation of the likelihood efo is conditioned by the model, 
i.e. either the probed speaker model M i or the "the model of all speakers"—the U B M . 

In this work, both described definitions are used, depending on the overall modeling method 
used. 

1.1.1 Mode l Training 

As mentioned, the detection is based on evaluating statistical models. Essentially, there are 
two approaches to modeling: generative and discriminative. The generative approach aims at 
training the models so that they are most likely to have generated the input data. This approach 
has traditionally been used due to its simplicity and flexibility. Note, that the description of 
this problem does not mention anything about classes or classification. A common method for 
estimating model parameters is e.g. maximum likelihood. 

On the other hand, discriminative training aims at training the parameters so that, when 
applied, they address the problem of class separation in a direct way. In speaker recogni
tion, discriminative training has originally been based on Support Vector Machines (SVM) 
[Vapnik, 1995, Campbell, 2002, Campbell et al., 2006]. SVMs were used in place of M i of Fig
ure 1.2 and they were trained for each speaker to best match the speaker against a cohort of 
impostors. The problem was therefore defined as one against many. In this work—as studied in 
Chapter 4.2—discriminative training will address S R E as a symmetrical problem (as shown in 
Figure 1.1). The input will be a pair of tested utterances and the classes will be given by the 
same-speaker and different-speaker hypotheses, i.e. "K\ and "K^i respectively. 

1.1.2 Score Normalization 

It has been shown in [Auckenthaler et al., 2000], that score normalization compensates for data 
mismatch. The assumption is that the impostor scores are normally distributed and the principle 
of score normalization is to apply scaling and shift to force the impostor scores to be of standard 
normal distribution. The scale and shift are estimated using separate normalization sets which 
are assumed to contain recordings from impostor speakers only. The scale and shift is applied 
as 

Snorm — • 
a 
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Zero N o r m a l i z a t i o n — Z - n o r m 

Assuming the asymmetrical approach, this method estimates the normalization constants by 
having a set of impostor recordings Z scored against the enrolled speaker model M . Mathemat
ically, we assure that 

P 
' i m p — M M 

C M 
:.: ) .v( • : " ' ^ / ' v : ( ) . i ) (1.5) 

Figure 1.3 depicts this procedure as "STEP 1". This normalization compensates for the 
acoustic mismatch between the set of "standard" test utterances and the data that were used 
to train the speaker model. The advantage of Z-norm is that the estimation of the constants 
can be performed off-line when enrolling the model. 

Test N o r m a l i z a t i o n — T - n o r m 

This method is similar to Z-norm in that a mean is subtracted and score is scaled by a standard 
deviation. When scoring an utterance d, a set of impostor models M is used to compute the 
parameters, which are then applied using (1.4). Mathematically, we assure that 

V 
•Si i m p Md ' i m p 0,1 (1.6) 

The method is marked as "STEP 3" in Figure 1.3. It compensates for the acoustic mismatch 
between the tested utterance and a set of "standard" speaker models. 

Z T - n o r m 

ZT-norm is a combination of both normalization techniques. For simplicity, let us assume that 
we have a matrix of all scores, where each row corresponds to an enrolled model and each column 
to a tested utterance. First, the Z-norm is applied to the matrix of test scores and to the matrix 
of scores of T-norm models vs. test utterances, denoted as S T E P 1 and S T E P 2 in Figure 1.3. 
Next, T-norm parameters are computed on the T-norm-test matrix, and applied to the matrix 
of (Z-normalized) test scores, denoted as S T E P 3 in Figure 1.3. 

S-norm 

S-norm has been introduced for the symmetrical systems as the Z- or T- norm concept is asym
metrical by nature. The S-norm that was used in this work is basically computed as the average 
of Z- and T-norm scores, where the cohorts are the same. 

1.2 Motivation and Contribution 

The first part of my work was done during the John Hopkins University 2008 summer work
shop [Burget et al., 2008], which consisted mainly in comparison of different scoring meth
ods for Joint Factor Analysis. M y interest was to compare the methods and analyze 
them in deep [Glembek et al., 2009]. During the workshop, Najim Dehak invented the i -
vectors [Dehak et al., 2010], which outperformed J F A and had quickly become the essence of 
the modern S R E systems. The second part of my work was inspired by Najim's work and 
the on-going Mobio project [Marcel et al., 2010], one of whose aim was to implement speaker 
verification on a cell-phone. I was interested in simplifying the i-vector extraction so that it 
could be used in Mobio. The underlying work was presented in [Glembek et al., 2011b]. At that 
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Figure 1.3: Application of ZT-norm. The boxes denote matrices of complete scores, i.e. all 
models against all scored utterances. 

very same J H U workshop, Lukas Bürget tried to train the JEA discriminatively. Later on, he 
experimented with discriminatively optimizing the P L D A [Bürget et al., 2011]. The third part 
of my work was inspired by Lukas' work and I have tried to apply the discriminative training 
framework to the i-vector system [Glembek et al., 2011a]. 

1.2.1 Claims 

The goal of this work was to analyze the contemporary state-of-the-art speaker recognition 
systems and to improve the methods not only in terms of accuracy, but also in terms of speed 
and real-world application. 

• analysis of J F A scoring methods: I systematically investigated different scoring meth
ods for J F A that different sites have been using and analyzed them in terms of anatomy, 
speed, and accuracy. 

• i-vector ex t rac t ion op t imiza t ion : The computational requirements for training the i -
vector systems and estimating the i-vectors, are too high for certain types of applications. 
In this work I introduce simplifications to the original i-vector extraction and training 
schemes, which dramatically decrease their complexity while retaining the recognition 
performance. 

• i-vector ext rac tor t r a in ing s implif icat ion: Using the new proposed method, larger 
i-vector systems can be trained as memory demands have halved. 

• d iscr iminat ive t r a in ing of i-vector extractor : I have implemented and tested the 
i-vector extractor training using discriminative criterion. The approach was tested on a 
scaled-down system and shown an improvement for the simplified i-vector extraction. 



Chapter 2 

Joint Factor Analysis 

Joint Factor Analysis (JFA) is a G M M subspace modeling technique, which has been pro
posed to model the speaker and session variabilities. It has undergone a series of modifications 
and has attracted many researcher's attention resulting in numerous interesting publications. 
However, when comparing their results, people used different functions to obtain the score 
([Kenny et al., 2007], [Vair et al., 2007], [Brummer et al., 2007]). This chapter gives a brief in
troduction to JFA, mostly from a practical point of view, i.e. it concentrates on explaining how 
the model parameters are trained and how the score is estimated with respect to the paradigms 
of JFA. 

2.1 Theoretical background 

Joint factor analysis is a model used to treat the problem of speaker and session variability in 
G M M s . In this model, each speaker is represented by the means, covariance, and weights of a 
mixture of C multivariate Gaussian densities defined in some continuous feature space of dimen
sion F. The G M M for a target speaker is obtained by adapting the Universal Background Model 
(UBM) mean parameters. In Joint Factor Analysis [Kenny et al., 2007], the basic assumption 
is that a speaker- and channel- dependent supervector of means M can be decomposed into a 
sum of two supervectors: a speaker supervector s and a channel supervector c 

where s and c are normally distributed. In [Kenny et al., 2008], Kenny et al. described how the 
speaker dependent supervector and channel dependent supervector can be represented in low 
dimensional spaces. The first term in the right hand side of (2.1) is modeled by assuming that 
if s is the speaker supervector for a randomly chosen speaker then 

where m is the speaker and channel independent supervector (UBM), D is a diagonal matrix, 
V is a rectangular matrix of low rank and y and z are independent random vectors having 
standard normal distributions. In other words, s is assumed to be normally distributed with 
mean m and covariance matrix V V * + D D * . The components of y and z are respectively the 
speaker and common factors. 

The channel-dependent supervector c, which represents the channel effect in an utterance, 
is assumed to be distributed according to 

M = s + c 

s = m + V y + D z (2.2) 

c = U x (2.3) 

7 



2.1 Theoretical background 8 

where U is a rectangular matrix of low rank (known as eigenchannel matrix), x is a vector 
distributed with standard normal distribution. This is equivalent to saying that c is normally 
distributed with zero mean and covariance U U * . The components of x are the channel factors 
in factor analysis modeling. 

The underlying task in J F A is to train the hyperparameters U , V , and D on a large train
ing set. In the Bayesian framework, posterior distribution of the factors (knowing their pri
ors) can be computed using the enrollment data. The likelihood of test utterance X is then 
computed by integrating over the posterior distribution of y and z, and the prior distribution 
of x [Kenny and Dumouchel, 2004]. In [Kenny et al., 2005], it was later shown, that using mere 
M A P point estimates of y and z is sufficient. Still, integration over the prior distribution of x 
was performed. We will further show, that using the M A P point estimate of x gives comparable 
results. Scoring is understood as computing the log-likelihood ratio (LLR) between the target 
speaker model s and the U B M , for the test utterance X. 

There are many ways in which J F A can be trained and which different sites have experimented 
with. Not only the training algorithms differ, but also the results were reported using different 
scoring strategies. 

2.1.1 Frame by Frame 

Frame-by-Frame is based on a full G M M log-likelihood evaluation. The log-likelihood of utter
ance X and model s is computed as an average frame log-likelihood 1 . It is practically infeasible 
to integrate out the channel, therefore M A P point estimate of x is used. The formula is as 
follows 

T C 
log P(X|s) = log  w ^ (of, fic, £ c ) , (2.4) 

t=l c=l 

where is the feature vector at frame t, T is the length (in frames) for utterance X , C is number 
of Gaussians in the G M M , and wc, £ c , and fic the cth Gaussian weight, mean, and covariance 
matrix, respectively. 

2.1.2 Integrating over Channel Distribution 

This approach is based on evaluating an objective function as given by Equation (13) 
in [Kenny et al., 2007]: 

P(X|s) = y > P(X|s,x)^(x;0,I)dx (2.5) 

As was said in the previous paragraph, it would be difficult to evaluate this formula in the frame-
by-frame strategy. However, (2.4) can be approximated by using fixed alignment of frames to 
Gaussians, i.e., assume that each frame is generated by a single (best scoring) Gaussian. In 
this case, the likelihood can be evaluated in terms of the sufficient statistics. If the statistics 
are collected in the Baum-Welch way, the approximation is equal to the G M M E M auxiliary 
function, which is a lower bound to (2.5). The closed form (logarithmic) solution is then given 

XA11 scores are normalized by frame length of the tested utterance, therefore the log-likelihood is average. 
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as: 

c 
logP(X|s) = E J V e l o g ( 2 7 r ) F / 2 | S e | 1 / 2 

- ^ ( S ^ S O - ^ l o g l L l 

+ ^ | | L - 1 / 2 U * S - 1 F S | | 2 (2.6) 

where for the first term, C is the number of Gaussians, iV c is the data count for Gaussian c, F 
is the feature vector size, S c is covariance matrix for Gaussian c. These numbers will be equal 
both for U B M and the target model, thus the whole term will cancel out in the computation of 
the log-likelihood ratio. 

For the second term of (2.6), X is the block-diagonal matrix of separate covariance matrices 
for each Gaussian, S s is the second order moment of X around speaker s given as 

S s = S - 2diag(Fs*) + diag(Nss*), (2.7) 

where S is the CF x CF block-diagonal matrix whose diagonal blocks are uncentered second 
order cumulants S c . This term is independent of speaker, thus will cancel out in the L L R 
computation (note that this was the only place where second order statistics appeared, therefore 
are not needed for scoring). F is a CF x 1 vector, obtained by concatenating the first order 
statistics. N is a CF x CF diagonal matrix, whose diagonal blocks are NcIp, i.e., the occupation 
counts for each Gaussian (Ip is F x F identity matrix). 

The L in the third term of (2.6) is given as 

L = I + U * £ _ 1 N U , (2.8) 

where I is a C F x C F identity matrix, U is the eigenchannel matrix, and the rest is as in the 
second term. The whole term, however, does not depend on speaker and will cancel out in the 
L L R computation. 

In the fourth term of (2.6), let L 1 / / 2 be a lower triangular matrix, such that 

L = L 1 / 2 L 1 / 2 * (2.9) 

i.e., L - V 2 i s 

the inverse of the Cholesky decomposition of L . 
As was said, terms one and three in (2.6), and second order statistics S in (2.7) will cancel 

out. Then the formula for the score is given as 
Q i n t(X|s) = tr(S- 1 diag(Fs*)) 

+^tr(5r 1 diag(Nss*)) 

+ ^ | | L - 1 / 2 U * S - 1 F S | | 2 (2.10) 

2.1.3 Channel Point Estimate 

This function is similar to the previous case, except for the fact, that the channel factor x is 
known. This way, there is no need for integrating over the whole distribution of x, and only its 
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point estimate is taken for L L R computation. The formula is directly adopted from [Kenny, 2005] 
(Theorem 1), (Th 

c 
l o g j P ( X | s , x ) = 

c=l 

- ^ ( E ^ S ) 

+ M * E _ 1 F + ^ M * N E _ 1 M , (2.11) 

where M is given by (2.1). In this formula, the first and second terms cancel out in L L R 
computation, leading to scoring function 

Q X ( X | s , x ) = M * E " 1 F 

+ ^ M * N E - 1 M , (2.12) 

hence 
L L R X ( X | s ) = Q X ( X | s , x s ) - Q X ( X | U B M , x U B M ) , (2.13) 

where X U B M is a channel factor estimated using U B M , and x s is a channel factor estimated 
using speaker s. 

2.1.4 U B M Channel Point Estimate 

In [Vair et al., 2007], the authors assumed, that the shift of the model caused by the channel 
is identical both to the target model and the U B M 2 . Therefore, the x factor for utterance X is 
estimated using the U B M and then used for scoring. Formally written: 

L L R L P T ( X | s ) = Q X ( X | S , X U B M ) 

- Q X ( X | U B M , x U B M ) (2.14) 

Note, that when computing the L L R , the U x in the linear term of (2.11) will cancel out, leaving 
the compensation to the quadratic term of (2.11). 

2.1.5 Linear Scoring 

Let us keep the L P T assumption and let m c be the channel compensated U B M : 

m c = m + c. (2-15) 

Furthermore, let us assume, that we move the origin of supervector space to m c . 

M = M - m c (2.16) 

F = F - N m c . (2.17) 

Eq. (2.12) can now be rewritten to 

Q X M O D ( X | M , x ) = M * E _ 1 F 

+ ^ M * N £ _ 1 M . (2.18) 

2The authors identified themselves under abbreviation LPT, therefore we will refer to this approach as to L P T 
assumption 
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When approximating (2.18) by the first order Taylor series (as a function of M ) , only the linear 
term is kept, leading to 

Qi in (X |M,x) = M ' S ^ F (2.19) 

Realizing, that the channel compensated U B M is now a vector of zeros, and substituting (2.19) 
to (2.14), the formula for computing the L L R simplifies to 

L L R l i n ( X | s , x) = ( V y + D z ) * S " 1 ( F - N m - Nc ) . (2.20) 

o 

L L R 

linear score 

/ ^ l t LLRfbf 
full score i 

quadratic score ^ 7 i 

/ / 
/ ' 1 \& 

/ 1 1 \ «J / 1 \ o 

U B M target G M M mean space 
model 

Figure 2.1: A n illustration of the scoring behavior for frame-by-frame, L P T , and linear scoring. 

Given the fact, that the P-function is a lower bound approximation of the real frame-by-
frame likelihood function, there are cases, when the L P T original function fails. Fig. 2.1 shows 
that the linear function can sometimes be a better approximation of the full L L R . 

2.2 Experimental setup 

2.2.1 Test Set 

The results of our experiments are reported on the De t l and Det3 conditions of the NIST 2006 
speaker recognition evaluation (SRE) dataset [NIST, ndb]. 

The real-time factor was measured on a special test set, where 49 speakers were tested 
against 50 utterances. The speaker models were taken from the t-norm cohort, while the test 
utterances were chosen from the original z-norm cohort, each having approximately 4 minutes, 
totally giving 105 minutes. 

2.2.2 Feature Extraction 

In our experiments, we used cepstral features, extracted using a 25 ms Hamming window. 19 
mel frequency cepstral coefficients together with log energy are calculated every 10 ms. This 
20-dimensional feature vector was subjected to feature warping [Pelecanos and Sridharan, 2006] 
using a 3 s sliding window. Delta and double delta coefficients were then calculated using a 
5 frames window giving a 60-dimensional feature vectors. These feature vectors were modeled 
using G M M and factor analysis was used to treat the problem of speaker and session variability. 

Segmentation was based on the B U T Hungarian phoneme recognizer [Schwarz et al., 2006] 
and relative average energy thresholding. Also short segments were pruned out, after which the 
speech segments were merged together. 
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2.2.3 J F A Training 

We used gender independent Universal Background Models, which contain 2048 Gaussians. This 
U B M was trained using L D C releases of Switchboard II, Phases 2 and 3; switchboard Cellular, 
Parts 1 and 2 and NIST 2004-2005 SRE. The (gender independent) factor analysis models were 
trained on the same quantities of data as the U B M . 

Our J F A is composed by 300 speaker factors, 100 channel factors, and diagonal matrix 
D . While U was trained on the NIST data olny, D and V were trained on two disjoint sets 
comprising NIST and Switchboard data. 

2.2.4 Normalization 

A l l scores, as presented in the previous sections, were normalized by the number of frames in the 
test utterance. In case of normalizing the scores (zt-norm), we worked in the gender dependent 
fashion. We used 220 female, and 148 male speakers for t-norm, and 200 female, 159 male 
speakers for z-norm. These segments were a subset of the J F A training data set. 

2.2.5 Hardware and Software 

The frame-by-frame scoring was implemented in C+-1- code, which calls A T L A S functions for 
math operations. Matlab was used for the rest of the computations. Even though C+-1- produces 
more optimized code, the most C P U demanding computations are performed via the tuned math 
libraries that both Matlab and C+-1- use. This fact is important for measuring the real-time 
factor. The machine on which the real-time factor (RTF) was measured was a Dual-Core A M D 
Opteron 2220 with cache size 1024 K B . For the rest of the experiments, computing cluster was 
used. 

2.3 Results 

Table 2.1 shows the results without any score normalization. The reason for the loss of perfor
mance in the case of L P T scoring could possibly be due to bad approximation of the likelihood 
function around U B M , i.e., the inability to adapt the model to the test utterance (in the U 
space only). Fig. 2.1 shows this case. 

Table 2.1: Comparison of different scoring techniques in terms of EER and DCF. No score 
normalization was performed here. 

Det l Det3 
E E R D C F E E R D C F 

Frame-by-Frame 4.70 2.24 3.62 1.76 
Integration 5.36 2.46 4.17 1.95 
Point estimate 5.25 2.46 4.17 1.96 
Point estimate L P T 16.70 6.84 15.05 6.52 
Linear 5.53 2.97 3.94 2.35 

Table 2.2 shows the results after application of zt-norming. While the frame-by-frame scoring 
outperformed all the fast scorings in the un-normalized case, normalization is essential for the 
other methods. 
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Table 2.2: Comparison of different scoring techniques in terms of EER and DCF. zt-norm was 
used as score normalization. 

Det l Det3 
E E R D C F E E R D C F 

Frame-by-Frame 2.96 1.50 1.80 0.91 
Integration 2.90 1.48 1.78 0.91 
Point estimate 2.90 1.47 1.83 0.89 
Point estimate L P T 3.98 2.01 2.70 1.36 
Linear 2.99 1.48 1.73 0.95 

2.3.1 Speed 

The aim of this experiment was to show the approximate real time factor of each of the systems. 
The time measured included reading necessary data connected with the test utterance (features, 
statistics), estimating the channel shifts, and computing the likelihood ratio. Any other time, 
such as reading of hyper-parameters, models, etc. was not comprised in the result. Each mea
suring was repeated 5 times and averaged. Table 2.3 shows the real time of each algorithm. 
Surprisingly, the integration L L R is faster then the point estimate. This is due to implementa-

Table 2.3: Real time factor for different systems 

Time [s] R T F 
Frame-by-Frame 1010 l .ôOe- 1 

Integration 50 7.93e"3 

Point estimate 160 2.54e"2 

Point estimate L P T 36 5.71e"3 

Linear 13 2.07e"3 

tion, where the channel compensation term in the integration formula is computed once per an 
utterance, while in the point estimate case, each model needs to be compensated for each trial 
utterance. 

2.4 Conclusions 

We have showed a comparison of different scoring techniques that different sites have recently 
used in their evaluations. While, in most cases, the performance does not change dramatically, 
the speed of evaluation is the major difference. The fastest scoring method is the Linear scoring. 
It can be implemented by a simple dot product, allowing for fast scoring of huge problems (e.g., 
z-, t- norming). 



Chapter 3 

i-vectors 

The i-vector systems have become the state-of-the-art technique in the speaker verification field 
[Dehak et al., 2010]. They provide an elegant way of reducing the large-dimensional input data 
to a small-dimensional feature vector while retaining most of the relevant information. The 
technique was originally inspired by Joint Factor Analysis framework. 

The history of i-vectors is dated to summer 2008 J H U workshop on Robust Speaker Recog
nition [Burget et al., 2008]. At that time, J F A was the state-of-the-art technique and it was the 
centerpoint of interest among the workshop researchers. One of the directions was to use J F A as 
feature extraction. Various experiments were carried out on the J F A factors; S V M classification 
was studied, and different measures were tested to substitute the (fairly complicated) SVMs. 
There was an unofficial internal competition between the S V M and the dot-product sub-teams 
which was usually reflected in building touch-rugby or frisbee teams. Nevertheless, both teams 
found that using the channel factors for speaker detection gives around 20% E E R and when 
fusing with the speaker factors, noticeable improvement was gained. Najim Dehak then came 
up with the idea of reducing the complexity of J F A to having only one multivariate hidden vari
able that would carry the total-variability information. He has originally called it the t-vector 
as for "total", but the community quickly adopted the term i-vectors as for "intermediate", 
"intervening", "intelligent", "informative", "identity", etc. 

The computational requirements for training the i-vector systems and estimating the i -
vectors, however, are too high for certain types of applications. In this paper we propose 
simplifications to the original i-vector extraction and training schemes, which would dramati
cally decrease their complexity while retaining the recognition performance. 

Our main motivation was running robust speaker verification systems on small scale devices 
such as mobile phones, as well as speeding up the process of speaker verification in real-time 
systems. 

3.1 Theoretical background 

Let us first state the motivation for the i-vectors. The main idea is that the speaker- and 
channel-dependent G M M supervector s can be modeled as: 

s = m + T w (3.1) 

where m is the U B M G M M mean supervector, T is a low-rank matrix representing M bases 
spanning subspace with important variability in the mean supervector space, and w is a standard 
normal distributed vector of size M. 

14 
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For each observation X , the aim is to estimate the parameters of the posterior probability of 
w: 

p(w|X) = % ; w I , L " 1 ) (3.2) 

The i-vector is the M A P point estimate of the variable w, i.e. the mean w j of the posterior 
distribution p(w|X). It maps most of the relevant information from a variable-length observation 
X to a fixed- (small-) dimensional vector. T is referred to as the i-vector extractor. 

3.1.1 Data 

The input data for the observation X is given as a set of zero- and first-order statistics — n j 
and fx- These are extracted from F dimensional features using a G M M U B M with C mixture 
components, defined by a mean supervector m, component covariance matrices Y^c\ and a vector 
of mixture weights u. For each Gaussian component c, the statistics are given respectively as: 

t 
= £ Ä (3-4) 

= £ 7 < c > (3-3) 
t 

F(«0 -

t 
(c) 

where is the feature vector in time t, and 7^ is its occupation probability. The complete zero-

and first-order statistics supervectors are fx = (f^ , . . . , fjj^ ^ , and nx = . . . , . 
For convenience, we center the first order statistics around the U B M means, which allows 

us to treat the U B M means effectively as a vector of zeros: 

<- 0 

Similarity, we "normalize" the first-order statistics and the matrix T by the U B M covaricances, 
which again allows us to treat the U B M covariances as an identity matrix 1: 

f W <_ S ( c ) - ^ f W 

S( c» <- I 

where S ' c ^ _ 2 is a Cholesky decomposition of an inverse of £ ( c ) , and is a .F x M sub-matrix 

of T corresponding to the c mixture component such that T = , . . . , ^ . 

3.1.2 Parameter Estimation 

As described in [Kenny, 2005] and with the data transforms from previous section, for an obser
vation X , the corresponding i-vector is computed as a point estimate: 

w x = L - V f x (3.5) 

1Part of the factor estimation is a computation of T ' S 1f, where the decomposed S 1 can be projected to 
the neigboring terms, see [Kenny, 2005] for detailed formulae. 
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where L is the precision matrix of the posterior distribution, computed as: 

C 
L x = I + ^2 i V x

C ) T ( c ) , T ( c ) (3.6) 
c=l 

The computational complexity of the whole estimation for one observation is 0(CFM + CM2 + 
M 3 ) . The first term represents the T ' f x multiplication. The second term represents the sum 
in (3.6) and includes the multiplication of L ^ 1 with a vector. The third term represents the 
matrix inversion. 

The memory complexity of the estimation is 0(CFM + CM2). The first term represents 
the storage of all the input variables in (3.5), and the second term represents the pre-computed 
matrices in the sum of (3.6). 

Note that the computation complexity grows quadratically with M in the sum of (3.6), and 
linearily with C. This becomes the bottle-neck in the i-vector computation, resulting in high 
memory and C P U demands. 

3.1.3 Mode l Training 

Model hyper-parameters T are estimated using the same E M algorithm as in case of 
J F A [Kenny, 2005]. Note that our algorithm makes use of an additional minimum divergence 
update step [Kenny et al., 2007, Brummer, 2009], which yields a quicker convergence, but is not 
described here. 

In the E step, the following accumulators are collected using all training observations i: 

C = J2Wi (3.7) 
i, 

A ( c ) = E A r i c ) ( ^ " 1 + w ^ ) ( 3- 8) 
i, 

where Wj and L j are the estimates from (3.5) and (3.6) for observation i. The M step update is 
given as follows: 

T W = C A ^ " 1 (3.9) 

3.2 Simplification 1: Constant G M M Component Alignment 

In this method, we apply the assumption that the G M M component alignment is constant 
across segments, i.e. the posterior occupation probabilities 7 ^ in (3.3) are replaced by their 
prior probabilities represented by the U B M G M M weights. The new zero-order statistics are 
then: 

N%] = Jc)Nx (3.10) 

where u/ c) is the G M M U B M weight of component c, and Nx = J2*j=i N% ^ Substituting N%

c) 

in (3.6) by from (3.10), we get 

L x = I + i V X W (3.11) 

where 
c 

W = ^ U / C ) T ( C ) ' T ( C ) (3.12) 
c=l 
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Exploiting this simplification in the i-vector extractor training can be done at two stages: 
substituting Lj in (3.8) by (3.11), and substituting in (3.8) by (3.10). Based on our 
experiments, only the former turned out to be effective, therefore we will not report any results 
with the latter one. 

Note that W in (3.12) is independent of data and can be pre-computed. Its resulting size is 
M x M yielding faster computation and less memory demands. The computational copmlexity 
of this algorithm reduces to 0(CFM + M 3 ) with the dominating inversion step. The memory 
complexity reduces to 0(CFM + M 2 ) . 

3.3 Simplification 2: I-vector Extractor Orthogonalization 

Let us assume, that we can find a linear (orthogonal) transformation G which would orthog-
onalize all individual per-component sub-matrices T ( C ) . Orthogonalizing T would diagonalize 
L j , which would need to be rotated back using G . We can then express (3.6) as 

L x = G ( _ 1 ) L x G " 1 (3.13) 

where 
c 

L J ^ G ' G + ^ J V ^ G ' T W ' T W G (3.14) 
c=l 

Assuming that L x is diagonal, we can rewrite it as 

L x = Diag (diag(G'G) + V n x ) (3.15) 

where V is a M x C matrix whose cth column is diag(G'T^ c^ T ^ G ) . Diag(-) maps a vector to a 
diagonal matrix, while diag(-) maps a matrix diagonal to a vector. Combining (3.13) and (3.5), 
we get 

w x = G L ^ G ' T ' f j (3.16) 

The computational complexity of this approach is 0(CFM) as we can effectively simplify the 
matrix inversion to a vector element-wise inversion. The memory complexity is 0(CFM + 
M 2 + CM), where M 2 represents the extra diagonalization matrix G , and CM represents V 
from (3.15). 

The task is to estimate the orthogonalization matrix G . Let us take a look at two approaches 
we investigated: 

3.3.1 Eigen-decomposition 

Let W be the weighted average per-component covariance matrix from (3.12). We assume W 
to be a full-rank matrix with M linearly independent eigenvectors. Then W can be factorized 
as 

W = Q A Q " 1 (3.17) 

where Q is a square M x M matrix whose i th column is the eigenvector qj of W and A is a 
diagonal matrix whose diagonal elements are the corresponding eigenvalues. Matrix Q clearly 
orthogonalizes the space given by W , therefore we can set G = Q. 
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3.3.2 Heteroscedastic Linear Discriminant Analysis 

If the average covariance matrix W from (3.12) is close to diagonal, then the eigen-decomposition 
is not effective in diagonalizing the per-component covariances. 

H L D A is a supervised method, which allows us to derive such projection that best de-
correlates features associated with each particular class (maximum likelihood linear trans
formation for diagonal covariance modeling [Kumar, 1997]). A n efficient iterative algo
rithm [Gales, 1999] was used in our experiments to estimate matrix G . In our task, the classes 
were defined as Gaussian mixture components. The within-class covariance matrices were given 
by T ( C ) T ( c \ and the occupation counts were provided as the mixture weights u/ c). 

Note that the well known Linear Discriminant Analysis (LDA) can be seen as special case 
of H L D A , where it is assumed that covariance matrices of all classes are the same. 

3.4 Experimental setup 

3.4.1 Feature Extraction 

In our experiments, we used cepstral features, extracted using a 25 ms Hamming window. 19 
Mel frequency cepstral coefficients together with log-energy were calculated every 10 ms. This 
20-dimensional feature vector was subjected to short time mean and variance normalization 
using a 3s sliding window. Delta and double delta coefficients were then calculated using a 
5-frame window giving 60-dimensional feature vectors. 

Segmentation was based on the B U T Hungarian phoneme recognizer and relative average 
energy thresholding. Also, short segments were pruned out, after which the speech segments 
were merged together. 

3.4.2 System Training 

One gender-independent universal background model was represented as a diagonal covariance, 
2048-component G M M . It was trained using L D C releases of Switchboard II, Phases 2 and 3: 
switchboard Cellular, Parts 1 and 2 and NIST 2004-2005 SRE. 

One (gender-dependent) i-vector extractor was trained on the female part of the following 
telephone data: NIST S R E 2004, NIST S R E 2005, NIST S R E 2006, Switchboard II Phases 2 
and 3, Switchboard Cellular Parts 1 and 2, Fisher English Parts 1 and 2 giving 8396 female 
speaker in 1463 hours of speech, and 6168 male speakers in 1098 hours of speech (both after 
voice activity detection). 

Originally, 400 dimensional i-vector extractor was chosen as a reference. As mentioned later, 
training of the 800 dimensional system got feasible using one of the proposed methods. We 
trained such system to demonstrate the potentials of the proposed methods. 

3.4.3 Scoring and Normalization 

The same technique as in [Dehak et al., 2010] was used. The extracted i-vectors were scaled down 
using an L D A matrix to 200 dimensions, and further normalized by a within-class covariance 
matrix. Both of these matrices were gender-dependent and were estimated on the same data as 
the i-vector extractor, except the Fisher data was excluded, resulting in 1684 female speakers in 
715 hours of speech and 1270 male speakers in 537 hours of speech. 
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Cosine distance of the two input vectors was used as the raw score: 

/ \ (Wtarge t , W t e s t ) ; g 1 Q i 
SCOre ( W t a r g e t , W t e s t ) = T, ^"[7]j [7 (3.18) 

11 W t a r g e t || | | W t e s t || 

The cosine distance scores were normalized using gender-dependent s-
norm [Brummer and Strasheim, 2009] with a cohort of 400 speakers having 2 utterances 
per speaker. 

3.4.4 Test Setup 

The results of our experiments are reported on the female part of the Condition 5 (telephone-
telephone) of the NIST 2010 speaker recognition evaluation (SRE) dataset [NIST, ndb]. The 
recognition accuracy is given as a set of equal error rate (EER), and the normalized D C F as 
defined both in the NIST 2010 S R E task ( D C F n e w ) and the previous S R E evaluations ( D C F o l d ) . 

The speed and memory performance of i-vector extraction were tested on a set of 50 randomly 
chosen utterances from the MIXER05 database. The input data (given as a set of fixed-size zero-
and first-order statistics) and all of the input parameters were included in the general memory 
requirements. The following algorithm-specific terms were pre-computed (thus not included in 
the reported times), and comprised in the algorithm-specific memory requirements: 

. X ( C ) ' X ( C ) i n ( 3 6 ) 

• W in (3.12) 

• G and T ^ G in (3.13) and (3.16), and V in (3.15) 

The algorithms were tested in M A T L A B (R2009b) 64-bit, running in a single thread and the 
default double-precision mode. The machine was an Intel(R) Xeon(R) C P U X5670 2.93GHz, 
with 36GB R A M . 

3.5 Results 

In the following section, we will reference the systems according to the i-vector dimensionality 
and to the extraction method used. Baseline stands for the original method as in Sec. 3.1.2, 
and simple 1 and simple 2 reference to the proposed simplifications. 

Table 3.1 summarizes the systems with respect to verification accuracy. Fig. 3.1 visualizes 
the different systems on a constellation plot. The "800 baseline" system is clearly the winner, 
however "800 simple 2 - H L D A " is a tight competitor to the "400 baseline". 

3.5.1 Speed and Memory 

As described earlier in Sec. 3.4.4, the computation time does not include reading of the necessary 
data and pre-computation of some terms. The results are reported in Tab. 3.2. The dominating 
complexity of matrix inversion makes "simple 2" faster than "simple 1", as described in Sec. 3.2 
and 3.3. 

Tab. 3.3 shows memory allocation for different systems. We see that for most of the current 
hardware configurations, the baseline systems could be a problem. 

Note that prior to the scoring, W C C N and L D A dimensionality reduction are applied to the 
i-vectors (see Sec. 3.4.3). Projecting this linear transformation directly into the leftmost G of 
(3.16) could further decrease the complexity of the "simple 2" algorithm. 
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• 400 simple 1 
O 400 simple 2 - eigen 
• 400 simple 2 - HLDfl) 
0 800 baseline 
ir 800 simple 1 
A 800 simple 2 - eigen 
* 800 simple 2 - HLD̂ I 

Figure 3.1: Constellation plot of the individual systems 

Table 3.1: Comparison of the proposed i-vector extraction methods in terms of normalized DCFs 
and EER 

D C F n e w D C F o l d E E R 

400 baseline 0.5395 0.1651 3.58 
400 simple 1 0.6664 0.2124 4.62 
400 simple 2 -- eigen 0.6627 0.2065 4.40 
400 simple 2 -- H L D A 0.6236 0.1899 4.19 
800 baseline 0.4956 0.1468 3.05 
800 simple 1 0.6057 0.1976 4.06 
800 simple 2 -- eigen 0.5414 0.1879 3.92 
800 simple 2 -- H L D A 0.5694 0.1822 3.84 

3.5.2 Simplification 1 in Training 

While none of the simplifications had positive contribution to the test accuracy, the training 
phase simplification results in negligible accuracy changes while exploiting some of the speed 
and memory advantages as described in the previous section. Table 3.4 shows the difference. 

Time and memory complexity of collecting the accumulators A from (3.8) is almost identical 
to the computation of L j in (3.6). The proposed method still keeps the same accumulator 
collection, however, avoiding the expensive computation of (3.6) decreases the E step time and 
memory complexity by a factor of 2. 

3.5.3 The M O B I O Experiments 

This experiment shows the methods with the scaled-down system that was used on the cell 
phone as the part of the M O B I O project [S. Marcel (IDIAP), ]. 

The V A D is essentially the same as in the rest of the experiments except the Czech phoneme 
recognizer was used instead of Hungarian. The features were 20-dimensional M F C C ' s aug
mented with their first- and second-order derivatives. Short-time cepstral mean and variance 
normalization was applied over 3s windows. 

The average length of each utterance for the M O B I O database is around 5 seconds. There
fore, we had to join all utterances from one speaker together for training the i-vector extractor. 



3.6 Conclusions 21 

Table 3.2: Comparison of the proposed i-vector extraction methods in processing speed. 

absolute [sec] relative to 400 baseline 

400 baseline 13.70 100.00% 
400 simple 1 1.01 7.37% 
400 simple 2 0.54 3.94%, 
800 baseline 65.75 480.00% 
800 simple 1 3.64 26.57%, 
800 simple 2 1.11 8.10%, 

Table 3.3: Comparison of the proposed i-vector extraction methods in memory allocation (in 
MB). The "constant" term depends on the i-vector dimensionality. 

constant algorithm specific total 

400 baseline 422.96 2,500.00 2,923.00 
400 simple 1 » 1.22 424.18 
400 simple 2 55 7.47 430.43 
800 baseline 802.84 10,000.00 10,802.84 
800 simple 1 33 4.88 807.83 
800 simple 2 33 17.38 820.23 

The extractor was gender-independent, 256G and 128G are tested, s-norm was applied. The 
train-set for the i-vector extractor and W C C N and L D A training was the same as in the previous 
experiments. Testing was performed on the original (short) utterances. 

Table 3.5 shows the results. It is apparent that the difference between the methods is not 
as noticeable as in the NIST case. The reason is that the test segments are much shorter than 
the ones of NIST. This results in much broader posterior distributions of the i-vectors, i.e. the 
scale of L _ 1 , which corresponds to overall performance degradation, after which, the methods 
start to perform similarly. 

3.6 Conclusions 

We managed to reduce the memory requirements and processing time for the i-vector extractor 
training so that higher dimensions can be now used while retaining the recognition accuracy. As 
for i-vector extraction, we managed to reduce the complexity of the algorithm with sacrificing 
little recognition accuracy, which makes this technique usable in small-scale devices. 

As a practical result, Simplification 1 was used in the M O B I O project, when porting a 
speaker verification system on a mobile phone platform. 

Not only did we manage to scale down the complexity of the system in terms of real-world 
applications, but also we have prepared a set of simplified formulas which could potentially find 
use in a future research, such as discriminative training. 
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Table 3.4: Comparison of the proposed i-vector extractor training methods in terms of normalized 
DCFs and EER 

D C F n e w D C F o l d E E R 

400 baseline 0.5460 0.1722 3.40 
400 simple 1 0.5376 0.1729 3.42 

Table 3.5: Comparison of the proposed i-vector extractor training methods in terms of normalized 
DCFs and EER for MO BIO 

female male 

D C F o l d E E R D C F o l d E E R 

128G baseline 
128G simple 1 

0.0632 
0.0635 

13.55 
14.08 

0.0597 
0.0607 

14.50 
15.19 

256G baseline 
256G simple 1 

0.0588 
0.0580 

12.94 
12.29 

0.0599 
0.0599 

14.36 
13.81 



Chapter 4 

Discriminative Training 

Recently, systems based on i-vectors [Dehak et al., 2010, Kenny, 2010] (extracted from cepstral 
features) have provided superior performance in speaker verification. The so-called i-vector is an 
information-rich low-dimensional fixed-length vector extracted from the feature sequence repre
senting a speech segment. A speaker verification score is produced by comparing two i-vectors 
corresponding to the segments in the verification trial. The function taking two i-vectors as an 
input and producing the corresponding verification score is designed to give the log-likelihood 
ratio between the "same-speaker" and "different-speaker" hypotheses. Best performance is cur
rently obtained with Probabilistic Linear Discriminant Analysis (PLDA) [Kenny, 2010]—a gen
erative model that models i-vector distributions allowing for direct evaluation of the desired 
log-likelihood ratio verification score (see Section 4.1.4 for details). 

In [Burget et al., 2011], it was shown that discriminatively training the P L D A parameters 
can lead to improvement in recognition performance. In this paper, we go deeper in the 
speaker recognition chain and we show that a similar discriminative training framework can 
be adopted for training the parameters of the i-vector extractor. We apply this technique 
in two kinds of i-vector extractor. In the first case, the traditional extraction—as proposed 
in [Dehak et al., 2010]—is studied. It will be further referred to as the full i-vector extractor. 
Its parameters are given by a single matrix T . In the second case, the simplified extraction 
(referred to as "Simplification 2" in [Glembek et al., 2011b]) is addressed. Its parameters are 
given by three matrices—T, G , and V . It will be further referred to as the simplified i-vector 
extractor. 

4.1 Theoretical background 

The i-vectors provide an elegant way of reducing large-dimensional input data to a small-
dimensional feature vector while retaining most of the relevant information. The technique 
was originally inspired by Joint Factor Analysis (JFA) framework introduced in [Kenny, 2005, 
Kenny et al., 2007]. 

The main idea is that the speaker- and channel-dependent Gaussian Mixture Model (GMM) 
supervector s can be modeled as: 

s = m + T w (4.1) 

where m is the Universal Background Model (UBM) G M M mean supervector, T is a low-
rank matrix representing M bases spanning subspace with important variability in the mean 
supervector space, and w is a latent variable of size M with standard normal distribution. 

23 
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For each observation X , the aim is to compute the parameters of the posterior probability 
of w: 

p(w|X) = ^ ( w ; w x , L - 1 ) (4.2) 

The i-vector cf> is the Maximum a Posteriori (MAP) point estimate of the variable w, i.e., the 
mean w j of the posterior distribution p(w|X). It maps most of the relevant information from a 
variable-length observation X to a fixed- (small-) dimensional vector. L j is the precision of the 
posterior distribution. 

4.1.1 Sufficient statistics 

The input data for the observation X is given as a set of zero- and first-order statistics — n j 
and fx- These are extracted from F dimensional features using a G M M U B M with C mixture 
components, defined by a mean supervector m, component covariance matrices , and a vector 
of mixture weights u. For each Gaussian component c, the statistics are given respectively as 

ivf ) = £ 7 < c > (4.3) 
t 

t 
(c) 

where ô  is the feature vector in time t, and 7 T is its occupation probability. The complete zero-

and first-order statistics supervectors are fx = (f^ , • • •, f j ^ ^ , and nx = \ . . . , N^^j . 
For convenience, we center the first-order statistics around the U B M means, which allows 

us to treat the U B M means effectively as a vector of zeros: 

f w <_ 4 c ) _ j v x
C W C ) 

<- 0 
Similarly, we "normalize" the first-order statistics and the matrix T by the U B M covariances, 
which again allows us to treat the U B M covariances as an identity matrix: 1 

f(?) <_ s ( c H f ( ? ) 

s( c » <- I 

where 5]'c-)_ 2 is a Cholesky decomposition of an inverse of £ ( c ) , and T( c) is an F x M submatrix 

of T corresponding to the c mixture component such that T = , . . . , T ^ ) 
4.1.2 i-vector extraction 

As described in [Kenny, 2005] and with the data transforms from the previous section, for an 
observation X , the corresponding i-vector is computed as a point estimate: 

0 X = L ^ T ' f x (4.5) 

where L is the precision matrix of the posterior distribution, computed as 
c 

L x = I + N^T^'T^ (4.6) 
c=l 

1Part of the factor computation is the evaluation of T ' S x f, where the decomposed S 1 can be projected to 
the neighboring terms, see [Kenny, 2005] for detailed formulae. 
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4.1.3 i-vector extraction—simplified version 

According to [Glembek et al., 2011b], the i-vector extraction can be simplified to reduce the 
computation complexity. Assuming there is a linear (orthogonal) transformation G that would 
orthogonalize all individual per-component submatrices T( c ) , the i-vector extraction can be 
expressed as 

0 X = G L ^ G ' T ' f x (4.7) 

where 
L x = Diag (I + V n x ) (4.8) 

where V is an M x C matrix whose cth column is diag(G'T^ c^ T ^ G ) . Diag(-) maps a vector 
to a diagonal matrix. 

4.1.4 P L D A 

To facilitate comparison of i-vectors in a verification trial, we use a Probabilistic Linear Discrim
inant Analysis (PLDA) model [Prince and Elder, 2007, Kenny, 2010]. It can be seen as a special 
case of J F A with a single Gaussian component. Given a pair of i-vectors, P L D A allows to com
pute the log-likelihood for the same-speaker hypothesis and for the different-speaker hypothesis. 
One can directly evaluate the log-likelihood ratio of the same-speaker and different-speaker trial 
using 

s(01,0 2 ) = (f>jA(f>2 + (f>2A(f)l + (f>jT(f)l + 4>2~r<i>2 

+ (fa + fcfc + k, (4.9) 

where A , T, c, k are derived from the parameters of P L D A as in [Burget et al., 2011]. 

4.1.5 i-vector length normalization 

P L D A assumes that the input i-vectors are normally distributed. However, in earlier studies 
([Kenny, 2010]), it has been shown that this assumption is not met. 

Length normalization [Dehak et al., 2010, Garcia-Romero, 2011] of the i-vectors forces them 
to lie on a unity sphere, which brings them closer to the Gaussian distribution shell where most 
of the probability density mass is concentrated. The transformation is given as 

0 = 7T71T = - $ = ( 4 - 1 0 ) 11011 v 7 ^ 

4.2 Discriminative classifier 

We describe how we train the i-vector extractor parameters 9 in order to discriminate between 
same-speaker and different-speaker trials, without having to explicitly model the distributions 
of i-vectors. 

The set of training examples, which we continue referring to as training trials, comprises 
both different-speaker, and same-speaker trials. Let us use the coding scheme t G {—1,1} to 
represent labels for the different-speaker, and same-speaker trials, respectively. Assigning each 
trial a log-likelihood ratio s and the correct label t, the log probability of recognizing the trial 
correctly can be expressed as 

log p(t !</>!, <f>2) = ~ log(l + exp(-si)) . (4.11) 
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In the case of logistic regression, the objective function to be maximized is the log probability 
of correctly classifying all training examples, i.e., the sum of expressions (4.11) evaluated for 
all training trials. Equivalently, this can be expressed by minimizing the cross-entropy error 
function, which is a sum over all training trials 

N A 
E{0) = Y,anELR{tnsn) + -\\0 - 6>ML|| 2, (4.12) 

n=l 

where the logistic regression loss function 

ELR(ts) = log(l + exp(-ta)) (4.13) 

is simply the negative log probability (4.11) of correctly recognizing a trial. We have also added 
the regularization term ^ ||0 — # M L ||2> where A is a constant controlling the trade-off between the 
error function and the regularizer, and #ML is the original maximum-likelihood estimate of the 
given parameter. This kind of regularization is similar to the sum-of-squares penalty; however, 
it controls the distance from the original parameters rather than the parameter range itself. 
This way, optimizing the error function fine tunes the already good parameters. 

The coefficients an allow us to weight individual trials. Specifically, we use them to assign 
different weights to same-speaker and different-speaker trials. This allows us to select a particular 
operating point, around which we want to optimize the performance of our system without 
relying on the proportion of same- and different-speaker trials in the training set. The advantage 
of using the cross-entropy objective for training is that it reflects performance of the system over 
a wide range of operating points (around the selected point). 

4.2.1 Gradient evaluation 

In order to numerically optimize the parameters 9, we want to express the gradient of the error 
function 

VE(9) = J2 an

dELfQ

nSn) + \{9 - 0 M L ) . (4.14) 
n=l 

We see that the loss function ELR{tnsn) is not directly dependent on 9; therefore, the chain rule 
must be subsequently applied. 

Let us start by deriving the loss function w.r.t. the direct parameters of Elr 

dELR = dELR Os 
09 ds 09 [ ' ' 

The first r.h.s. fraction of (4.15) is defined as 

dELR{ts) 
Os 

ta(-ts), (4.16) 

where cr(-) is the logistic function. Noting that the score s is a function of a length-normalized 
i-vector pair 

S = s ( 0 i , 0 2 ) , 

we get 
0sn = g ( 0 1 , 0 2 ) 0(f)1 g ( 0 1 , 0 2 ) 0(f)2 

09 0 0 ! 09 002 99 1 ' ' 
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From (4.9), knowing that A and T are symmetrical, we can derive 

sJhM = 2 ^ A + 2 ^ r + c (4.18) 

Note that the two sides of the trial can be swapped so that an analogous equation applies when 
deriving w.r.t. 0 2 . Again, we apply the chain rule to derive through the length normalization: 

d± = d±d± u m 

dG dcj)dG K ' ' 

where 
d(j) 1 
a* M V 1 - » ' ) ' 

We get the full derivatives by applying the chain fule for differentials. In the case of the full 
i-vector extractor, the derivative can be expressed a 

dE(T) 
dT 

where N,- is a diagonal matrix, whose entries are (A^ ( 1 ) , • • • , , Nf], • • • , Nf], • • •), where 

every Nf of \ij is expanded to match the feature dimensionality. For the simplified i-vector 
extraction, the derivatives of the parameters are 

dE(T) 
dT ^ Jdd> 

.7 = 1 

E ' ^ e t j ' G ' (4.22) 

dE(G) 
dG 

j 
fairs w,*1) (4'23) 

3=1 

where the o stands for the Hadamard product. 

4.2.2 Experimental Setup 

Test setup 

The results of our experiments are reported on the female part of Condition 5 of the NIST 2010 
SRE dataset [NIST, nda]. The recognition accuracy is given in terms of equal error rate (EER), 
and the normalized D C F as defined in both NIST 2010 S R E ( D C F n e w ) and the previous S R E 
evaluations (DCF 0 id) . 
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Feature E x t r a c t i o n 

In our experiments, we used cepstral features, extracted using a 25 ms Hamming win
dow. 19 Mel frequency cepstral coefficients together with log energy were calculated ev
ery 10 ms. This 20-dimensional feature vector was subjected to short time Gaussianiza-
tion [Pelecanos and Sridharan, 2006] using a 3 s sliding window. Delta and double delta co
efficients were then calculated using a five-frame window giving a 60-dimensional feature vector. 

Segmentation was based on the Brno University of Technology (BUT) Hungarian phoneme 
recognizer and relative average energy thresholding. Also, short segments were pruned out, after 
which the speech segments were merged. 

Sys tem Setup 

One gender-independent U B M was represented as a diagonal covariance, 64-component G M M . 
It was trained using L D C releases of Switchboard II Phases 2 and 3, Switchboard Cellular Parts 
1 and 2, and NIST 2004-2005 SRE. 

The initial i-vector extractor T was trained on the female portion of the following telephone 
data: NIST S R E 2004, NIST S R E 2005, NIST S R E 2006, Switchboard II Phases 2 and 3, Switch
board Cellular Parts 1 and 2, Fisher English Parts 1 and 2, giving 8396 female speakers in 1463 
hours of speech. The dimensionality of the i-vectors was set to 400. The initial orthogonalization 
matrix G was computed using H L D A , as described in Section 3.3.2. Length normalization was 
applied after i-vector extraction. 

P L D A was trained using the same data set as the T matrix. Only the Fisher portion was 
trimmed off, reducing the amount of data by approximately 50%. The across-class covariance 
matrix (eigen-voices) was of rank 90, and the within-class covariance matrix (eigen-channels) 
was full-rank. 

The training dataset for the discriminative training was identical to the dataset of P L D A . 
The cross-entropy function was evaluated on the complete trial set, i.e., all training samples 
were scored against each other, giving 378387 same-speaker trials, and over 468 million different-
speaker trials. 

N u m e r i c a l op t imiza t ion 

The numerical optimization of the parameters was performed in matlab using the optimiza
tion and differentiation tools in the BOSARIS Toolkit [Brummer and de Villiers, 2010]. It 
uses the trust region Newton conjugate gradient method, as described in [Lin et al., 2008, 
Nocedal and Wright, 2006]. In addition to the first derivatives as given in Section 4.2.1, this 
method needs to evaluate the second order Hessian-vector product [Pearlmutter, 1994], which 
can be effectively computed via the 'complex step differentiation' [Shampine, 2007]. 

Different values for the regularization coefficient A were tested. Good convergence and stabil
ity were observed when setting it to 0.2 for the full i-vector extractor parameters, and 0.8 for the 
simplified version. In the case of the simplified version, the matrices G and T were optimized 
subsequently. It was found, however, that even though optimizing V kept on decreasing the 
error function, it would always decrease the recognition performance on the test set. Different 
regularizers were also tested; however, it turned out that together with good initialization, the 
discriminative training works only as a "fine-tuner" of the initial parameters. Target prior p(Ji\) 

was set to 0.001 accroding to NIST2010 requirement. 
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Table 4.1: Comparison of ML and discriminatively trained full i-vector extractors in terms of 
normalized DCFs and EER 

D C F n e w D C F 0 i d E E R 

M L 0.6678 0.2200 4.74 
discriminative 0.6548 0.2122 4.26 

Table 4.2: Comparison of ML and discriminatively trained simplified i-vector extractors in terms 
of normalized DCFs and EER 

D C F n e w D C F o l d E E R 

M L 0.7496 0.2710 6.18 
discriminative 0.6691 0.2403 5.41 

Resul ts 

Table 4.1 shows the situation when training the full i-vector extractor. There is only a slight 
improvement in performance. In the case of the simplified i-vector extractor, the improvement 
is more apparent—see Table 4.2 for results. We see that the simplified system is still worse than 
the full one; however, discriminative training has shown its potential. 

Iteration Iteration 

(a) No regularization (b) With regularization, A = 0.2 

Figure 4.1: Plot of the objecitve function (Cur) and the E E R w.r.t. number of optimization iter
ations in discriminative training of the full ivector extractor. We can see the effect of regularizing 
the optimization—after the third iteration the E E R is monotonically decreasing. 



Chapter 5 

Conclusions 

5.1 Summary 

In the first part of my work, I present comparison of different methods for scoring test utter
ances using the Joint Factor Analysis models. The methods differ in how they deal with the 
channel of the tested utterance. The work was inspired by the fact that many sites used JFA 
in slightly different ways and comparison of the results among sites was influenced not only by 
the methodology of training their systems, but also by the scoring procedures. 

The first method is based on evaluating the real log-likelihood functions (frame-by-frame) 
for both the U B M and for the probed model—for each of the two, the channel factors are esti
mated separately and dealt with as point estimates—and the log-likelihood ratio is computed. 
The rest of the methods are based on approximating the likelihood functions using the fixed-
alignment assumption, which allows for using the zero- and first-order statistics and simplifies 
the log-likelihood computation to a quadratic function of the model. It was shown that using the 
point estimates—as in the frame-by-frame case— with the fixed-alignment approximation and 
applying zt-norm gives results almost identical to the frame-by-frame approach, which confirms 
that the fixed-alignment is a good assumption. It was also shown that integrating the quadratic 
function over the posterior distribution of the channel factors gives results comparable to the 
point-estimate approach. This is due to the fact that the posterior distribution is sharp on 
long-enough utterances—in our case, the approximate length of the utterances was 2.5 min
utes, which makes the point estimate a good approximation of the real posterior distribution. 
Estimating the channel point-estimate using the U B M only, and applying it to both likelihood 
functions of the likelihood ratio has shown to lead to worse results when used with the quadratic 
scoring. However, omitting the quadratic term—which can be interpreted as first-order Taylor 
series approximation—leads to further simplification of the log-likelihood function. Not only the 
computation of the whole log-likelihood ratio reduces to a simple dot-product function, but also 
the accuracy of the system is comparable to frame-by-frame approach. This method also allows 
for fast scoring of large-scale evaluation sets, especially when all-against-all scoring is needed. 
For experimental usage, linear scoring was found to be approximately 80 times faster than the 
frame-by-frame approach. 

In the second part, the extraction of i-vectors was studied. I have proposed two simplifications 
to the i-vector computation. Both methods are based on approximating the covariance of the 
posterior distribution of the i-vector. The first method approximates the zero-order statistics by 
mere scaling of the G M M weights by the number of data-points. This way, I managed to reduce 
the memory requirements and processing time for the i-vector extractor training so that higher 
dimensions can be now used while retaining the recognition accuracy. As for i-vector extraction, 

30 
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I managed to reduce the complexity of the algorithm with sacrificing recognition accuracy by 
20-30%, which makes this technique usable in small-scale devices. It was shown that for short 
utterances (in average 5 sec), the method performs similarly as the standard i-vector extraction. 
The results, with the equal error rates in the range of 12%, however, are dramatically worse 
than when using long utterances (which are typical in the NIST evaluations). The posterior 
distributions in both methods are very broad which makes the point estimates of the i-vector 
almost equally uncertain. As a practical result, Simplification 1 was used in the M O B I O project, 
when porting a speaker verification system on a mobile phone platform. 

The second simplification is based on orthogonalization of the subspace and assuming that 
the posterior covariance is diagonal. Compared to the previous simplification, this approach 
leads to better performance both in terms of speed and accuracy. The degradation of accuracy 
for this technique, compared to the standard i-vector extraction, is around 17% on E E R on the 
NIST2010 data. 

In the third part, discriminative training in automatic speaker recognition was studied and 
adapted for the i-vector system. The objective for the training, as used in this work, is the 
cross-entropy. The work follows on previous experiments where the same objective was used for 
training the eigen-voices matrix of JFA, and later for training the parameters of P L D A . I have 
applied the technique both to the original i-vector extractor and to its simplified version, where 
orthogonal subspace is assumed. In both cases, the discriminative training was effective: 10% 
relative improvement was achieved for the standard i-vector extraction and 15% relative in the 
simplified case. The optimization was performed numerically and it it was found out that mere 
discriminative training does not work by itself. Rather, good initialization has to be provided— 
in our case the standard M L estimat. Discriminative training is then used to "fine-tune" the 
parameters. 

5.2 Future Work 

5.2.1 Low-hanging Fruit 

Most of the ideas for future work are inspired by the last part of my work, i.e., the discriminative 
training. In this work, I summarized discriminative training of P L D A and I have described 
discriminative training of the i-vector extractor. However, for the later one, I have always used 
generatively trained P L D A . In this sense, the first thing that might be worth experimenting 
with is joint discriminative training of multiple parts of the speaker recognition system. 

In my i-vector extractor discriminative training, I have always built the training set as a 
complete list of all possible trials, i.e., all-against-all strategy. It would be interesting to try to 
experiment with different trial sets. Another interesting experiment would be to cut the training 
utterances into large number of shorter segments. This thought is inspired by experiments in 
other fields of speech processing, such as language recognition [Matějka et al., 2006], where M M I 
technique started to be successful only when using short segments. 

5.2.2 Long-term Plans 

Concerning i-vector extraction with P L D A backend, it would also be interesting to discrimi-
natively optimize the i-vector extraction while concerning simultaneous M L estimation of the 
P L D A parameters. This would make the parameters of the P L D A dependent on the i-vector 
extractor and the discriminative objective function dependent also on P L D A parameters, which 
would be ML-updated based on the changing i-vectors (where i-vectors depend on changing 
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the parameters of i-vector extractor). This corresponds to an additional indirect dependence of 
the objective function on the i-vector extractor parameters, which has to be taken into account 
when evaluating gradient of the objective function w.r.t. the i-vector extractor parameters. This 
problem is similar to the one in discriminatively trained feature extraction used in ASR, namely 
f M P E [Povey et al., 2005]. 

As for the long-term plans, I am very interested in using subspace modeling in combina
tion with other distributions. I have already experimented with channel compensation of the 
multinomial distribution [Glembek et al., 2008] and it has been shown in [Kockmann, 2012, 
Soufifar et al., 2011, D'Haro et al., 2012] that similar approach can be used for i-vector-like ex
traction for discrete data. 
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