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Abstrakt

Tato práce se zabývá výpočtovými simulacemi zkoušek jednoosým tahem a tříbodovým

ohybem kompozitního vzorku složeného z elastomerové matrice a ocelových výztužných

vláken orientovaných pod různými úhly, jakož i jejich experimentální verifikací. Simu-

lace byly provedeny pomocí dvou různých modelů - bimateriálového a unimateriálového

výpočtového modelu. Při použití bimateriálového modelu, který detailně zohledňuje struk-

turu kompozitu, tzn. pracuje s matricí a jednotlivými vlákny, je zapotřebí vytvořit model

každého vlákna obsaženého v kompozitu, což přináší řadu nevýhod (pracná tvorba výpoč-

tového modelu, řádově větší množství elementů potřebných k diskretizaci v MKP systémech

a delší výpočetní časy). Na druhé straně v unimateriálovém modelu se nerozlišují jednotlivá

vlákna, pracuje se pouze s kompozitem jako celkem tvořeným homogenním materiálem a

výztužný účinek vláken je zahrnut v měrné deformační energii.

Porovnání experimentů se simulacemi ukázalo, že bimateriálový model je v dobré shodě s

experimenty, na rozdíl od unimateriálového modelu, který je schopen poskytnou odpoví-

dající výsledky pouze v případě tahového namáhání. Z tohoto důvodu byl hledán způsob,

který by umožnil rozšířit unimateriálový model o ohybovou tuhost výztužných vláken. V

roce 2007 Spencer a Soldatos publikovali rozšířený unimateriálový model, který je schopen

pracovat nejen s tahovou, ale i ohybovou tuhostí vlákna. Představený obecný model je

však založen na Cosseratově teorii kontinua a jeho praktické využití je pro jeho složitost

nemožné. Proto byl vytvořen zjednodušený model (částečně podle Spencera a Soldatose)

s vlastní navrženou formou měrné deformační energie.

Za účelem ověření nového unimateriálového modelu s ohybovou tuhostí vláken byly odvozeny

všechny potřebné rovnice a byl napsán vlastní konečno-prvkový řešič. Tento řešič je za-

ložen na Cosseratově teorii kontinua a obsahuje zmíněný anizotropní hyperelastický uni-

materiálový model zahrnující ohybovou tuhost vláken. Vzhledem k tomu, že v případě

Cosseratovy teorie jsou při výpočtu potřebné i druhé derivace posuvů, bylo nutné použít

tzv. C1 prvky, které mají spojité jak pole posuvů, tak jejich prvních derivací.

Nakonec byly provedeny nové simulace s využitím vlastního řešiče, které ukazují, že tuhost

vláken lze u nového unimateriálového modelu řídit odpovídající materiálovou konstantou.

V závěru práce je pak diskutováno, zda je nový unimateriálový model s ohybovou tuhostí
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schopen poskytnout stejné výsledky jako model bimateriálový, a to jak při tahovém tak i

ohybovém namáhání kompozitního vzorku.

Klíčová slova

hyperelasticita, anizotropie, Cosseratovo kontinuum, C1 prvky, Hermitovy polynomy, kom-

pozitní materiál, metoda konečných prvků
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Abstract

This thesis deals with composite materials made of elastomer matrix and steel reinforce-

ment fibres with various declinations. It presents computational simulations of their me-

chanical tests in uniaxial tension and three-point bending realized using finite element (FE)

method, and their experimental verification. The simulations were carried out using two

different models - bimaterial and unimaterial computational models. The bimaterial model

reflects structure of the composite in detail, i.e. it works with the matrix and individual

fibres. When the bimaterial model is used, then it is necessary to create each fibre of the

composite in the model and it makes numbers of disadvantages (creation of the model is

laborious, higher number of elements are needed for discretization of an individual fibre

in FE softwares and computational time is higher). On the other side, the unimaterial

model does not distinguish the individual fibres, but it works with a model of the whole

composite as a homogeneous material and the reinforcing effect of the fibres is included in

the strain energy density function.

Comparison between experiments and simulations shows that the bimaterial model is in

good agreement with the experiments unlike the unimaterial one being able to provide

adequate results in the case of tension load only. Hence, a new way was sought of how

to extend the unimaterial model by the bending stiffness of fibres. In 2007 Spencer and

Soldatos published a new extended unimaterial model that is able to work with both ten-

sion and bending stiffnesses of fibres. However, their model is based on Cosserat continuum

theory, it is very complicated and is not suitable for practical application. Hence, a new

simplified model was created in the thesis (partially according to the Spencer and Soldatos)

with own strain energy density function proposed.

In order to verify the new unimaterial model with bending stiffness, all the needed equa-

tions were derived and a new own finite element solver was written. This solver is based

on Cosserat continuum theory and contains the mentioned anisotropic hyperelastic uni-

material model with bending stiffness. It was necessary to use the so called C1 elements,

since the Cosserat theory works with second derivatives of displacements. The C1 elements

ensure continuity of both displacements field and their first derivatives.

Finally, new simulations were performed using the created FE solver and they show that
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the bending stiffness of fibres can be driven by the appropriate material parameter. In

conclusion of this work it is discussed whether the new unimaterial model with bending

stiffness is able to provide the same results as the bimaterial model, namely for both ten-

sion and bending loads of a composite specimen.

Keywords

hyperelasticity, anisotropy, Cosserat continuum, C1 elements, Hermite polynoms, compos-

ite material, finite element method
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1 Introduction

Composite materials can be found increasingly in many practical applications of various

specializations. These materials have many advantages, especially high strength at low

weight. A design or assessment of stress-strain state of such materials is very important

for their proper use in practise. For this purpose, computational methods based on finite

element method are commonly used. This work is focused on composite materials with

elastomer hyperelastic matrix and steel reinforcement fibres. Such composite materials can

be found e.g. in construction of tyres, nevertheless, these composite materials do not differ

so much from bio-composite materials, e.g. artery wall can be understood as a composite

material consisting of hyperelastic matrix and collagen fibres. The difference from the

technical composites mentioned above is primarily in the nonlinear behaviour of the fibres.

Nowadays, the fibre-reinforced composites can be computationally modeled essentially in

two ways. Either the matrix with individual steel fibres is modeled (bimaterial compu-

tational model) or we can use a computational model where the geometric shape of the

whole composite body is created without distinguishing the fibres (unimaterial computa-

tional model). The reinforcement effect of the fibres is then included mathematically in

the constitutive equations which include fibre directions.

The main goal of this work is to compare both levels of the mentioned computational

models and to found out if the unimaterial model is able to give the same results as the

bimaterial one. In order to this, computational simulations were carried out with both

models. A detailed description of such models can be found in chapter 4, where results

of these simulations are discussed in detail and simulations are compared with performed

experiments.

It is obvious from the results of simulations that the unimaterial model is not able to

include bending stiffness of fibres, therefore, a new model was sought which could be able

to include their bending stiffness. Among many papers an only one was found that deals

with the unimaterial model and bending stiffness of the fibres - Spencer and Soldatos in

2007 [32] introduced a new constitutive model with bending stiffness of the reinforcement

fibres. However, this model is based on the Cosserat continuum unlike conventional models

which are based on Cauchy continuum.
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The Cosserat theory of continuum is shortly mentioned in chapter 5 where only basic

knowledge is introduced needed for formulation of new constitutive equations is intro-

duced. The constitutive equations introduced by Spencer and Soldatos are described in

detail in chapter 6 where their simplified version is also presented. A new form of strain

energy density function was proposed both for nearly incompressible and incompressible

hyperelastic materials in chapters 7 and 8. The new forms of strain energy density func-

tion contain a few material parameters that have to be determined. Hence, chapter 9 deals

with a feasible determination of such material parameters. A practical implementation of

the simplified constitutive equations based on Cosserat continuum required a new finite

element solver, because there is no available solver based on the Cosserat continuum and

hyperelasticity. Hence, a new own finite element solver was written in Matlab software.

Chapter 10 deals with finite element formulation based on constraint Cosserat theory using

a new C1 element needed to ensure convergence and it presents the results obtained with

the new finite element solver.
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2 Formulations of problems and goals

Computational simulations performed by bimaterial computational model have several dis-

adventages. Due to a three-dimensional model of fibres diverted by any angle, the regular

mesh with low number of elements can not be used. Hence, a very fine mesh has to be

used with very high numbers of elements which leads to high computational times. The in-

crease of computational time is on orders of magnitude compared to the unimaterial model.

Hence, the bimaterial model should be replaced by the unimaterial one where fibres are in-

cluded mathematically in the constitutive model and the three-dimensional model of them

is not required. Material models based on directions of fibres were implemented into the

FEA systems recently and the range of their use has not yet been studied properly. The

main goal of this work is to compare both of the mentioned computational models and to

find out if the very time consuming bimaterial computational model, can be replaced by a

unimaterial model.

Main goals are:

• to perform computational simulations of uniaxial tension and bending tests with the

bimaterial computational model

• to perform computational simulations of uniaxial tension and bending tests with the

unimaterial computational model

• to compare the simulations

• to perform experiments of uniaxial tension and bending tests of composite material

• to compare simulations and experiments

• to explain differences between simulations and experiments (if any)

• to explain differences between unimaterial and bimaterial models (if any)

• to modify the unimaterial computational model in order to obtain the same results

as with the bimaterial model
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3 Hyperelasticity

The following chapter provides some basic knowledge used in hyperelastic materials. The

most of this chapter can be found in [2].

Hyperelasticity refers to a constitutive response that is derivable from an elastic free en-

ergy potential and is typically used for materials which experience large elastic deformation

(strains). Applications for elastomers such as vulcanized rubber and synthetic polymers,

along with some biological materials, often fall into this category.

The microstructure of polymer solids consists of chain-like molecules. The flexibil-

ity of these molecules allows for an irregular molecular arrangement and, as a result,

the behaviour is very complex. Polymers are usually isotropic at small deformation and

anisotropic at larger deformation as the molecule chains realign to the loading direction.

Under an essentially monotonic loading condition, however, many polymer materials can be

approximated as isotropic, which has been popular historically in the modeling of polymers.

Some classes of hyperelastic materials cannot be modeled as isotropic. An example is

represented by fibre reinforced polymer composites. Typical fibre patterns include their

unidirectional and bidirectional arrangement, and the fibres can have a stiffness that is

50-1000 times that of the polymer matrix, resulting in a strongly anisotropic material be-

haviour. Also some biomaterials, such as muscles and arteries, can represent anoter class

of anisotropic materials experiencing large deformation; their anisotropic behaviour occurs

also due to their fibrous structure.

The typical volumetric behaviour of hyperelastic materials can be grouped into two

classes. The first is represented by polymers materials that show small volumetric changes

during deformation - incompressible or nearly-incompressible materials. Examples of the

second class of materials are foams, which can experience large volumetric changes during

deformation - compressible materials.
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The available hyperelastic constitutive models of materials are derived from strain-

energy potentials that are functions of the deformation invariants. The hyperelastic mate-

rial models can be divided into several families:

• Incompressible or nearly-incompressible isotropic models (chapter 3.3)

• Compressible isotropic models (chapter 3.4)

• Invariant-based anisotropic strain-energy potentials (chapter 3.5)

3.1 Finite Strain Elasticity

A material is said to be hyperelastic if there exists an elastic potential function W (or

strain-energy density function) which is a scalar function of one of the strain or deformation

tensors, whose derivative with respect to a strain component determines the corresponding

stress component. This can be expressed by:

SIJ =
∂W

∂EIJ
= 2

∂W

∂CIJ
, (1)

where SIJ are components of the second Piola-Kirchhoff stress tensor, W is strain-energy

function per unit undeformed volume, EIJ are components of the Lagrangian strain tensor

and CIJ are components of the right Cauchy-Green deformation tensor. The Lagrangian

strain may be expressed as follows:

EIJ =
1

2
(CIJ − δIJ), (2)

where δIJ is Kronecker delta. The deformation tensor CIJ is comprised of the products of

the deformation gradients FiJ

CIJ = FkIFkJ , (3)

and deformation gradient

FiJ =
∂xi
∂XJ

= δiJ +
∂ui
∂XJ

, (4)

where XJ is coordinate of the undeformed position of a point in direction J, xi = Xi + ui

is the deformed position of the point in direction i and ui is displacement of the point in

direction i.

The Kirchhoff stress is defined

τij = FiKSKLFjL (5)
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and the Cauchy stress is obtained by:

σij =
1

J
τij =

1

J
FiKSKLFiL. (6)

The eigenvalues squared (principal stretch ratios) of Cij are λ2
1, λ

2
2, λ

2
3 and exist only if

det | CIJ − λ2
pδIJ |= 0 (7)

which can be re-expressed as

λ6
p − I1λ

4
p + I2λ

2
p − I3 = 0, (8)

where I1, I2, I3 are invariants of CIJ ,

I1 = λ2
1 + λ2

2 + λ2
3 (9)

I2 = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1 (10)

I3 = λ2
1λ

2
2λ

2
3 = J2. (11)

J is invariant of deformation gradient and represents the ratio of the deformed elastic vol-

ume over the reference (undeformed) volume of materials ([37], [38]).

3.2 Deviatoric-volumetric multiplicative split

Under the assumption that material response is isotropic, it is convenient to express the

strain-energy function in terms of strain invariants or principal stretches [39]:

W = W (I1, I2, I3) = W (I1, I2, J) (12)

or

W = W (λ1, λ2, λ3). (13)

Define the volume-preserving part of the deformation gradient, F iJ , as

F iJ = J−1/3FiJ (14)

16



and thus

J = det | F iJ |= 1. (15)

The modified principal stretch ratios and invariants are then

λp = J−1/3λp (16)

Ip = J−2/3Ip. (17)

The strain-energy potencial can then be defined as

W = W (I1, I2, J) = W (λ1, λ2, λ3, J), (18)

where the modified invariants I1, I2 or stretch ratios λ1, λ2, λ3 describe the deviatoric

(volume preserving) part of deformation, while the volumetric part of deformation can be

described independently by means of the J invariant.

The constitutive strain-energy density function W can be devided into volumetricWV and

deviatoric (often called isochoric) Wd part

W = WV (J) +Wd(I1, I2). (19)

The volumetric part WV is absolutely independent of the isochoric part Wd and the volu-

metric part WV is asumed to be only function of J as

WV (J) =
1

d
(J − 1)2, (20)

where d is compressibility parameter. The isochoric part Wd is a function of the invariants

I1, I2 of the isochoric part of the right Cauchy-Green tensor C.

3.3 Isotropic hyperelasticity - nearly incompressible materials

In the following paragraphs several forms of strain-energy potential (W ) provided for the

simulation of nearly incompressible hyperelastic materials are summarized on the basis of

[2]. In all of them volumetric change contribution is expressed separately by means of

compressibility parameter d as was described in the previous chapter (3.2).
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3.3.1 Neo-Hookean

The form Neo-Hookean strain-energy potential is

W =
µ

2
(I1 − 3) +

1

d
(J − 1)2, (21)

where µ is initial shear modulus of material.

3.3.2 Arruda-Boyce Model

The form of the strain-energy potential for Arruda-Boyce model is

W = µ

[
1

2
(I1 − 3) +

1

20λ2
L

(I
2
1 − 9) +

11

1050λ4
L

(I
3
1 − 27) +

19

7000λ6
L

(I
4
1 − 81)+

+
519

673750λ8
L

(I
5
1 − 243)

]
+

1

d

(
J2 − 1

2
− lnJ

)
, (22)

where µ is initial shear modulus of the material, λL is its limiting network stretch. As the

parameter λL tends to infinity, the model is converted into the Neo-Hookean form.

3.3.3 Gent Model

The form of the strain-energy potential for the Gent model is

W =
µJm

2
ln

(
1− I1 − 3

Jm

)−1

+
1

d

(
J2 − 1

2
− lnJ

)
, (23)

where µ is initial shear modulus of material and Jm is limiting value of I1 − 3.

3.3.4 Mooney-Rivlin

This option includes two-, three-, five-, and nine-term Mooney-Rivlin models. The form

of the strain-energy potential for a two-parameter Mooney-Rivlin model is

W = c10(I1 − 3) + c01(I2 − 3) +
1

d
(J − 1)2. (24)

The form of the strain-energy potential for a three-parameter Mooney-Rivlin model is

W = c10(I1 − 3) + c01(I2 − 3) + c11(I1 − 3)(I2 − 3) +
1

d
(J − 1)2, (25)
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The form of the strain-energy potential for five-parameter Mooney-Rivlin model is

W = c10(I1−3)+c01(I2−3)+c20(I1−3)2+c11(I1−3)(I2−3)+c02(I2−3)2+
1

d
(J−1)2, (26)

The form of the strain-energy potential for nine-parameter Mooney-Rivlin model is

W =c10(I1 − 3) + c01(I2 − 3) + c20(I1 − 3)2 + c11(I1 − 3)(I2 − 3)+

+ c02(I2 − 3)2 + c30(I1 − 3)3 + c21(I1 − 3)2(I2 − 3) + c12(I1 − 3)(I2 − 3)2+

+ c03(I2 − 3)3 +
1

d
(J − 1)2,

(27)

where c10, c01, c20, c11, c02, c30, c21, c12, c03 are material constants describing the deviatoric

part of the strain energy.

The initial shear modulus is given by

µ = 2(c10 + c01). (28)

3.3.5 Polynomial form

The polynomial form of strain-energy potential is

W =
N∑

i+j=1

cij(I1 − 3)i(I2 − 3)j +

M∑
k=1

1

dk
(J − 1)2k, (29)

where N,M, cij , dk are material constants.

A higher N may provide better fit with the exact solution, however, it may, on the other

hand, cause numerical difficulty in fitting the material constants and requires enough data

to cover the entire range of interest of deformation. Therefore a very high N value is not

usually recommended.

The Neo-Hookean model can be obtained by setting M = N = 1 and c01 = 0. Also

for M = N = 1, the two parameters Mooney-Rivlin model is obtained, while the five

parameters Mooney-Rivlin model is obtained for N = 2, and the nine parameters Mooney-

Rivlin model is obtained for N = 3. Equation (28) for the initial shear modulus is valid

here as well.
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3.3.6 Yeoh model

The Yeoh model is also called the reduced polynomial form. The strain-energy potential

is

W =
N∑
i=1

ci0(I1 − 3)i +
M∑
k=1

1

dk
(J − 1)2k, (30)

where N,M, ci0, dk are material constants.

The Neo-Hookean model can be obtained by setting M=N = 1. The initial shear modulus

is defined

µ = 2c10. (31)

3.3.7 Ogden potential

The Ogden form of strain-energy potential is based on the principal stretches of left-Cauchy

strain tensor, which has the form

W =
N∑
i=1

µi
αi

(λ
αi

1 + λ
αi

2 + λ
αi

3 − 3) +

M∑
k=1

1

dk
(J − 1)2k, (32)

where N,M,µi, αi, dk are material constants.

Similar to the Polynomial form, there is no limitation on N or M. A higher N can provide

better fit the exact solution, however, it may, on the other hand, cause numerical difficulty

in fitting the material constants and also it requests to have enough data to cover the

entire range of interest of the deformation. Therefore a value of N > 3 is not usually

recommended.

The initial shear modulus, µ, is given as

µ =
1

2

N∑
i=1

αiµi. (33)

For M = N = 1, α1 = 2, the Ogden potential is equivalent to the Neo-Hookean potential.
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3.4 Isotropic hyperelasticity - compressible foam-like materials

3.4.1 Ogden compressible foam model

The strain-energy potential of the Ogden compressible foam model is based on the principal

stretches of left-Cauchy strain tensor, which has the form

W =
N∑
i=1

µi
αi

(Jαi/3(λ
αi

1 + λ
αi

2 + λ
αi

3 )− 3) +
N∑
i=1

µi
αiβi

(J−αiβi − 1), (34)

where N,µi, αi, βi are material constants. The initial shear modulus, µ, is given as

µ =

N∑
i=1

µiαi

2
. (35)

For N = 1, α1 = −2, µ1 = −µ, β = 0.5, the Ogden option is equivalent to the Blatz-Ko

option.

3.4.2 Blatz-Ko model

The form of strain-energy potential for the Blatz-Ko model is

W =
µ

2

(
I2

I3
+ 2
√
I3 − 5

)
, (36)

where µ is initial shear modulus of material.

3.5 Anisotropic hyperelasticity

The anisotropic constitutive strain-energy density function W is defined

W = WV (J) +Wd(C,A⊗A,B⊗B), (37)

where WV is volumetric part of the strain energy and Wd is isochoric part of strain energy.

The isochoric part Wd is a function of the invariants I1, I2, I4, I5, I6, I7, I8 of the isochoric

part of the right Cauchy Green tensor C and the two constitutive material directions A,B

in the undeformed configuration. The material directions yield so-called structural tensors

A⊗A,B⊗B of the microstructure of the material, it holds

| A |= 1, | B |= 1. (38)
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Thus, the strain-energy density yields

Wd(C,A⊗A,B⊗B) =

3∑
i=1

ai(I1 − 3)i +

3∑
j=1

bj(I2 − 3)j +

6∑
k=2

ck(I4 − 1)k+

+

6∑
l=2

dl(I5 − 1)l +

6∑
m=2

em(I6 − 1)m +

6∑
n=2

fn(I7 − 1)n +

6∑
o=2

go(I8 − ς)o, (39)

The third invariant I3 is ommited here because the volumetric change is described sep-

arately by eq. (20). Invariants I1, I2 describe the contribution of the matrix, while the

other invariants describe the contribution of fibres to the strain energy density function.

In eq. (39) the irreducible basis of invariants

I1 = trC, I2 =
1

2
[(trC)2 − trC2

], I4 = ACA, I5 = AC2A,

I6 = BCB, I7 = BC2B, I8 = (AB)ACB. (40)

and the parameter ς is defined as

ς = (AB)2. (41)

3.6 Assessment of material parameters

The hyperelastic constants in the strain-energy density function of a material model deter-

mine mechanical response. Therefore, in order to obtain credible results of a hyperelastic

analysis, it is necessary to assess parameters of the material being examined. Material

constants are generally obtained for a material using experimental stress-strain data. It is

recommended that this test data be taken from several modes of deformation over a wide

range of strain components.

For hyperelastic materials, simple deformation tests (consisting of six deformation modes)

can be used to characterize the material constants. All the available laboratory test data

will be used to determine the hyperelastic material constants. Basic deformation modes

are graphically illustrated in fig. 1. Combinations of data from multiple tests will enhance

the characterization of the hyperelastic behaviour of the material.

It can be shown that apparently different loading conditions have identical deformations,
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and are thus equivalent. Superposition of tensile or compressive hydrostatic stresses on a

loaded incompressible body results in different stresses, but does not alter deformation of

a material. As depicted in fig. 2, we find that upon the addition of hydrostatic stresses,

the following modes of deformation can be identical:

1. Uniaxial Tension and Equibiaxial Compression.

2. Uniaxial Compression and Equibiaxial Tension.

3. Planar Tension and Planar Compression and Pure shear

With several equivalent modes of testing, we are left with only three independent defor-

mation states for which one can obtain experimental data.

Figure 1: Illustration of Deformation Modes. (reprint from [2])

23



Figure 2: Equivalent Deformation Modes. (reprint from [2])
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The following sections outline the development of hyperelastic stress relationships for

each independent testing mode. In the analyses, the coordinate system is chosen to coincide

with the principal directions of deformation. Thus, the right Cauchy-Green strain tensor

can be written in matrix form by

C =

[ λ2
1 0 0

0 λ2
2 0

0 0 λ2
3

]
(42)

where principal stretch ratio in the ith direction λi is

λi = 1 + εi (43)

and εi is principal value of the engineering strain tensor in the ith direction. The principal

invariants of Cij are

I1 = λ2
1 + λ2

2 + λ2
3 (44)

I2 = λ2
1λ

2
2 + λ2

1λ
2
3 + λ2

2λ
2
3 (45)

I3 = λ2
1λ

2
2λ

2
3 (46)

For each mode of deformation, a fully incompressible material behaviour is also assumed

so that third principal invariant, I3, is identically one

λ2
1λ

2
2λ

2
3 = 1. (47)

Finally, the hyperelastic Piola-Kirchhoff stress tensor, (1) can be algebraically manip-

ulated to determine components of the Cauchy (true) stress tensor. In terms of the left

Cauchy-Green strain tensor, the Cauchy stress components for a volumetrically constrained

material can be shown to be

σij = −pδij + dev

[
2
∂W

∂I1
bij − 2I3

∂W

∂I2
b−1
ij

]
(48)

where p is pressure and bij is left Cauchy-Green deformation tensor

bij = FikFjk. (49)
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3.6.1 Uniaxial tension (equivalently, equibiaxial compression)

As shown in fig. (1) a hyperelastic specimen is loaded along one of its axis during a uniaxial

tension test. For this deformation state, the principal stretch ratios in the directions

orthogonal to the ’pulling’ axis will be identical. Therefore, during uniaxial tension, the

principal stretches, λi, are given by

λ1 - stretch in direction being loaded

λ2 = λ3 - stretches in directions not being loaded.

Due to incompressibility (47)

λ2λ3 = λ−1
1 (50)

and since λ2 = λ3 we have

λ2 = λ3 = λ
−1/2
1 . (51)

For uniaxial tension, the first and second invariants then become

I1 = λ2
1 + 2λ−1

1 (52)

and

I2 = 2λ1 + λ−2
1 . (53)

Substituting the uniaxial tension principal stretch ratio values into the eq. (48), we obtain

the following stresses in the 1 and 2 directions

σ11 = −p+ 2
∂W

∂I1
λ2

1 − 2
∂W

∂I2
λ−2

1 (54)

and

σ22 = −p+ 2
∂W

∂I1
λ−1

1 − 2
∂W

∂I2
λ1 = 0. (55)

Subtracting eq. (55) from eq. (54), we obtain the principal true stress for uniaxial tension

σ11 = 2(λ2
1 − λ−1

1 )

[
∂W

∂I1
+ λ−1

1

∂W

∂I2

]
. (56)

The corresponding engineering stress is

T1 = σ11λ
−1
1 . (57)
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3.6.2 Equibiaxial tension (equivalently, uniaxial compression)

During an equibiaxial tension test, a hyperelastic specimen is equally loaded along two of

its axes, as shown in fig. (1). For this case, the principal stretch ratios in the directions

being loaded are identical. Hence, for equibiaxial tension, the principal stretches λi, are

given by

λ1 = λ2 - stretch ratios in directions being loaded

λ3 - stretch ratio in direction not being loaded.

Utilizing incompressibility (47), we find

λ3 = λ−2
1 . (58)

For equibiaxial tension, the first and second invariants then become

I1 = 2λ2
1 + λ−4

1 (59)

and

I2 = λ4
1 + 2λ−2

1 . (60)

Substituting the principal stretch ratio values for equibiaxial tension into the Cauchy stress

eq. (48), we obtain the stresses in the 1 and 3 directions

σ11 = −p+ 2
∂W

∂I1
λ2

1 − 2
∂W

∂I2
λ−2

1 (61)

and

σ33 = −p+ 2
∂W

∂I1
λ−4

1 − 2
∂W

∂I2
λ4

1 = 0. (62)

Subtracting eq. (62) from eq. (61), we obtain the principal true stress for uniaxial tension

σ11 = 2(λ2
1 − λ−4

1 )

[
∂W

∂I1
+ λ2

1

∂W

∂I2

]
. (63)

The corresponding engineering stress is

T1 = σ11λ
−1
1 . (64)
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3.6.3 Pure shear

(Uniaxial Tension and Uniaxial Compression in Orthogonal Directions)

Pure shear deformation experiments on hyperelastic materials are generally performed by

loading thin, short and wide rectangular specimens, as shown in fig. (3). For pure shear,

plane strain is generally assumed so that there is no deformation in the ’wide’ direction of

the specimen: λ2 = 1.

Figure 3: Pure Shear from Direct Components.(reprint from [2]

Due to incompressibility (47), it is found that

λ3 = λ−1
1 . (65)

For pure shear, the first and second invariants are

I1 = λ2
1 + λ−2

1 + 1 (66)

and

I2 = λ2
1 + λ−2

1 + 1. (67)

Substituting the principal stretch ratio values for pure shear into the Cauchy stress eq.

(48), we obtain the following stresses in the 1 and 3 directions

σ11 = −p+ 2
∂W

∂I1
λ2

1 − 2
∂W

∂I2
λ−2

1 (68)

σ33 = −p+ 2
∂W

∂I1
λ−2

1 − 2
∂W

∂I2
λ2

1 = 0. (69)
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Subtracting eq. (69) from eq. (68), we obtain the principal pure shear true stress equation

σ11 = 2(λ2
1 − λ−2

1 )

[
∂W

∂I1
+
∂W

∂I2

]
(70)

The corresponding engineering stress is

T1 = σ11λ
−1
1 . (71)

3.6.4 Volumetric deformation

The volumetric deformation is described as

λ1 = λ2 = λ3 = λ, J = λ3. (72)

As nearly incompressible is assumed, we have

λ ≈ 1. (73)

The pressure, p, is directly related to the volume ratio J through

p =
∂W

∂J
. (74)

3.7 Deformation measures used in finite elasticity

Suppose that a solid is subjected to a displacement field ui(xk). Define:

• The deformation gradient and its Jacobian

FiJ = δij +
∂ui
∂XJ

J = det(F) (75)

• The right Cauchy-Green deformation tensor

C = FTF CRS = FiRFiS (76)

• The Left Cauchy-Green deformation tensor

B = FFT Bij = FiRFjR (77)
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• Invariants of the left and right Cauchy-Green deformation tensors

I1 = trC = trB (78)

I2 =
1

2
[tr(C)2 − trC2] =

1

2
[tr(B)2 − trB2] (79)

I3 = detC = detB = J2 (80)

• Stretch tensors

At each point X from reference configuration and each time, we have the following

unique polar decomposition of the deformation gradient F

F = RU = vR. (81)

This is a fundamental theorem in continuum mechanics. In (81) R is a proper

orthogonal tensor called the rotation tensor. It measures the local rotation that is

a change of local orientation. Next, in (81) U and v define unique, positive definite,

symmetric tensors, which we call the right (or material) stretch tensor and the

left (or spatial) stretch tensor, respectively. They measure local stretching (or

contraction) along their mutually orthogonal eigenvectors, that is a change of local

shape.

The positive definite and symmetric tensors U and v are introduced, so that

U2 = UU = C v2 = vv = B. (82)

• Eigenvalues and eigenvectors of strain tensors We introduce the mutually or-

thogonal and normalized set of eigenvectors {N̂a} and their corresponding eigenvalues

λa, a = 1, 2, 3, of the material tensor U as

UN̂a = λaN̂a, | N̂a |= 1, a = 1, 2, 3. (83)

Furthermore, after combining first eq. in (82) with (83) we obtain the eigenvalue

problem for C, i.e.

CN̂a = U2N̂a = λ2
aN̂a. (84)
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ClearlyU andC have the same orthonormal eigenvectors, i.e. the set {N̂a}, called the

principal referential directions (or principal referential axes). However, the

corresponding positive and real eigenvalues differ. The eigenvalues of the symmetric

tensor U are λa, called the principal stretches, while for the symmetric tensor C

we find the squares of the principal stretches denoted by λ2
a.

• Spectral decomposition

U2 = C =

3∑
a=1

λ2
aN̂a ⊗ N̂a (85)

and

U = C1/2 =
3∑

a=1

λaN̂a ⊗ N̂a (86)

• Hencky (logarithmic) strain tensor

In the material form

εlog = lnU. (87)

3.8 Stress Measures used in finite elasticity

Usually stress-strain laws are given as equations relating Cauchy stress (‘true’ stress) σij

to left or right Cauchy-Green deformation tensor. For some computations it may be more

convenient to use other stress measures. They are defined below, for convenience.

• Cauchy (true) stress

The Cauchy stress represents the force dFn
j per unit deformed area ds in the solid

and is defined by

niσij = lim
ds→0

dFn
j

ds
(88)

• Kirchhoff stress

τ = Jσ τij = Jσij (89)

• First Piola-Kirchhoff (nominal) stress

Σ = JF−1σ ΣIj = JF−1
Ik σkj (90)
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• Second Piola-Kirchhoff (material) stress

S = JF−1σF−T SIJ = JF−1
Ik σklF

−1
Jl (91)

As the applied theory deals with nearly or perfectly incompressible materials, we do not

need to distinguish between Cauchy and Kirchhoff stresses (J
.
= 1 in eq. (89)).
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4 Tension and bending tests of composite material

The main goal of this chapter is to find out if we are able to obtain the same results with an

unimaterial computational model and a bimaterial one. For this purpose, computational

simulations of uniaxial tension tests and bending tests were performed by both of the

mentioned models. Next, the simulations were compared with experiments performed with

real specimens of the composite material. Specimens were made from elastomer matrix

and contained steel fibres. Dimensions of specimens were 125x25x2.9 mm, diameter of the

fibre was 0.45mm and fibres were diverted from the longitudinal axis of the specimen by

various angles: 0◦, 15◦, 45◦, 60◦ a 90◦.

4.1 Experiments

4.1.1 Uniaxial tension tests

The first of the experiments, which were carried out on the mechanical testing device Zwick

Z020 were uniaxial tensile tests (fig. 4). Dimensions of specimens and declinations of the

fibres were mentioned above. Each test with the same declination of the fibres was repeated

three times with three various specimens. Before measuring, each specimen was pre-cycled

in order to eliminate so called Mullins effect [25] – each specimen was loaded by a total

elongation of the specimen 5 mm, then unloaded and loaded again to the same value of

elongation. Each specimen was pre-cycled by four such cycles, since the fifth cycle showed

no substantial change compared to the previous one.

The specimen was clamped into the testing jaws and an extensometer was placed in the

middle part of the specimen before measurement. Dependency between force and elonga-

tion of the specimen was obtained as an output of these tests. The measured data was

recalculated into the dependency between engineering stress and engineering strain and

can be found in [23] (or in the appendix A.3).

4.1.2 Bending tests

Bending tests followed after the uniaxial tests and the specimens used in the bending tests

were exactly the same pre-cycled specimens which had been used in the uniaxial tests.

Each specimen was put on two supports and its loading was realized in the middle part of
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Figure 4: Uniaxial tension test.

the specimen (fig. 5). Supports and load were realized throughout the entire width of the

specimen. Dependency between force and deflection of the specimen was obtained as an

output of this test. The results can be found in [23] (or in the appendix A.3).

Figure 5: Bending test.

4.2 Simulations

Simulations of the above experiments were realized using two different types of models, i.e.

bimaterial and unimaterial computational models.

4.2.1 Bimaterial FE model

This computational model contains two different materials (therefore bimaterial) – one for

fibres and one for the matrix. Hence, geometric model of matrix (block with dimensions
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125x25x2.9 mm) was created and then each fibre (cylinder with the diameter of 0.45mm)

was created inside the matrix (fig. 6).

In case of simulations of uniaxial tension tests, 2-parametric Mooney-Rivlin incompressible

hyperelastic model of material was used for matrix, which is introduced by a strain energy

density function W (or sometimes known as Helmholz free energy W=U-T.S, where U is

internal energy, T is temperature and S is entropy) in the form

W = c1(I1 − 3) + c2(I2 − 3) (92)

where c1, c2 are material parameters and I1, I2 are invariants of right Cauchy-Green tensor

of deformation. In case of simulations of bending tests, the material properties of the matrix

were defined by incompressible Yeoh third order model of material with the following form

of the strain energy density function

W = d1(I1 − 3) + d2(I1 − 3)2 + d3(I1 − 3)3. (93)

Material parameters c1, c2 or d1, d2, d3 were determined by standard procedure, i.e. from

experiments with the elastomer matrix without fibres. This includes the following experi-

ments: uniaxial tension test, equibiaxial tension test and planar tension test. Specimens for

such experiments of pure elastomer matrix were pre-cycled by 4 cycles and loaded to 100 %

strain. A reason of such pre-cycling was change in material properties of elastomer matrix –

so called Mullins effect [25]. A stress-strain curve after fifth cycle was almost the same as in

the fourth cycle, therefore, only four cycles were used for pre-cycling. After pre-cycling, the

mentioned experiments of pure elastomer matrix were performed and the measured data

was used for determination of the material parameters. The following material parameters

were found by using the least square method: c1 = 0.4727MPa, c2 = 0.6992MPa and

d1 = 4.034MPa, d2 = −306.48MPa, d3 = 16478MPa. Process of determination (curve

fitting) of these material parameters is described in detail in chapter 3.6.

The choice of hyperelastic constitutive model was based on its availability in some FEM

software and ability of a good approximation of experimental data. As was mentioned

above, for simulation of uniaxial tension tests of composites Mooney-Rivlin hyperelastic

model was used for matrix while Yeoh’s model was used in case of simulations of bending

tests. The reason of different hyperelastic models is given by the maximal achieved strain
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at each kind of test (tension or bending). The maximal strain differs at different decli-

nations of the fibres, but in general, the max. strain was around 50 % in case of tension

tests (the best approximation between experiments and hyperelastic constitutive models

in such range of strain was given by 2-parametric Mooney-Rivlin model) and only 4 % in

case of bending tests (the best approximation was achieved by Yeoh third order model).

Figure 6: Bimaterial computational model.

The steel fibres were described by linear elastic material constitutive model with well

known material parameters (Young’s modulus 210 GPa and Poisson’s ratio 0.3).

4.2.2 Unimaterial FE model

In the unimaterial computational model material behaviour of the composite material was

described by only one model of material (therefore unimaterial model), which describes

behaviour both of matrix and fibres. Hence, only a 3D geometric model of the composite

specimen was created (a block 125x25x2.9mm) without distinguishing between the matrix

and fibres and without any geometric model of the fibres. There are many anisotropic

hyperelastic models based on such principle (reinforcement effect of the fibres is included

into the strain energy function). Some of these models are for fibres which are linear elastic;

others are to able work with a nonlinear behaviour of the fibres (especially constitutive

models in the field of biomechanics). However, all these models work with unit vector of

undeformed fibre’s direction and all these models are based on an assumption of infinitely

thin fibre. Some of these models can be found in [19], [20],[4], [16].

The 3D geometric model of the composite specimen was divided into three layers as it is

depicted in fig. 7. Two outer layers (in purple color) correspond to pure elastomer matrix
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Figure 7: Unimaterial computational model.

and the middle layer (the blue one) corresponds to both fibres and elastomer matrix with

volume fraction of the fibres vf = 0.3534. Thickness of the middle layer equals to the

diameter of the fibres, i.e. 0.45 mm, and as it was mentioned above, the 3D model of

the fibres is not considered in this type of computational model. In case of simulations

of uniaxial tension tests the material description of the middle layer (i.e. matrix+fibres)

was realized by the following anisotropic hyperelastic model (it is the only one anisotropic

hyperelastic model which is implemented in ANSYS software ; more about this can be

found in [2] chapter “Hyperelasticity”)

W = c1(I1 − 3) + c2(I2 − 3) + k2(I4 − 1)2 (94)

and in case of bending tests the following model was used

W = d1(I1 − 3) + d2(I1 − 3)2 + d3(I1 − 3)3 + k2(I4 − 1)2. (95)

The material description of the outer layers (only matrix) was realized by the same

anisotropic models, i.e. eq. (94) in case of tension tests and eq. (95) in case of bend-

ing tests, but the material parameter k2 that corresponds to the fibres only (as it will be

described below) was set to zero.

Material parameters c1, c2 or d1, d2, d3 are exactly the same ones as the parameters men-

tioned in the previous chapter. By comparing strain energy density function (94) with

(92), or (95) with (93), we can see that both of these functions differ only in the term

k2(I4 − 1)2. (96)

This term relates to the fibres only, while the other terms relate to the matrix only. In-

variant I4 is square of the stretch ratio of the fibres in the fibres direction and is defined
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as

I4 = A.CA (97)

where A is unit vector of the fibres direction and C is right Cauchy-Green tensor of

deformation.

Material parameter k2 was determined under the following assumption – in case of tension

in fibres direction a stress contribution of matrix is very small (and can be neglected) in

comparison with the stress contribution of steel fibres. In such case, an average stress of

composite is basically given by stress in the fibre. Then we can calculate the stress in

the fibre for the known stretches of the fibre and determine material parameter k2, which

was in this case k2 = 9180 MPa. Determination of this material parameter is described in

chapter 9 in details.

4.3 Discussion of results

Results of computational simulations both for uniaxial tension tests and bending tests for

various declinations of fibres are depicted in appendix A.3 in comparison with the corre-

sponding experiments.

Uniaxial tension tests

First, let’s compare the results obtained by both computational simulations, i.e. by bi-

material and unimaterial computational models. All results are depicted in appendix A.3,

where the bimaterial model is always rendered by a red curve, the unimaterial one by a

green curve. As we can see from the figures related to the individual declination of the

fibres (fig. 20 to fig. 24 ), both models give almost the same results. Remind that both

computational models have the same models of material related to the matrix (including

material constants) and differ only in the material models related to the fibres. However,

the material constant k2 was determined so that the stress in the fibres of the unimaterial

model was the same as the stress in the fibres of the bimaterial model. Therefore, both

models should give the same results by principle.

In tension test with longitudinal fibres (under 0◦ - fig. 20), the unimaterial model appears

slightly stiffer than the bimaterial one. Here the stiffness of longitudinal fibres constraints
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any elongation of the specimen so that most deformation occurs between the jaws and the

fibres as shear of the rubber layer. While the thickness of this rubber layer is constant

in the unimaterial model, in the bimaterial one the same thickness occurs in the axes of

fibres only and the rubber layer is thicker anywhere else, which makes the specimen more

compliant.

Both model curves in fig. 24 should be identical in an ideal case. However the unimaterial

model appears some 10% more compliant than the bimaterial one. This difference can be

explained by the absence of steel in the unimaterial model where the fibres are replaced

by an additional member in the strain energy density function. The percentage of steel in

the material does not correspond to the percentual decrease of stiffness of the unimaterial

model because of two features of the bimaterial model:

• all the cross sections of the specimen contain some amount of rubber so that stiffness

of no cross section corresponds to the very high stiffness of steel, and the specimen

is more compliant,

• rubber in a vicinity of steel undergoes a nearly uniform triaxial stress state in tension

which emphasizes the volumetric component of strain and makes the material less

compliant.

It’s obvious from figures 20 to 24 that difference between the results of simulations using

both computational models is maximally 10% (fibres under 90◦, fig. 24). Hence, we can say

that both models under tension load give nearly the same results, therefore the bimaterial

model can be replaced (with advantages) by the unimaterial one. Comparing the results

of simulations and experiments we can see that the agreement between the results is good

in case of declination of the fibres being 0◦ (fig. 20) (simulations are at the upper bound

of the confidential interval), but in the other cases simulations and experiments disagree

(fig. 21 to fig. 24). Determining of material parameters related to the matrix (parameters

c1, c2, d1, d2 and d3) was carried out on the basis of the material tests of the pure matrix.

As it was mentioned in the previous paragraph, each specimen of the pure matrix was

pre-cycled by 100% of strain, then unloaded and loaded again to the same strain value.

The pre-cycling was repeated four times until the stress-strain curve showed no substantial

change. Composite specimens used in the uniaxial tension tests were also pre-cycled, but by
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a different strain amplitude. Each composite specimen, regardless of the fibres declination,

was loaded by 5 mm displacement. Due to the various declinations of the fibres, various

values of the strain were generated in the specimens and basically each specimen (with

various declination of the fibre) was pre-cycled by a different strain amplitude. Moreover,

the stresses and strains are not homogenous in the specimens, but they vary throughout

the specimen. Hence, it is impossible to carry out such composite experiments where the

specimen would be loaded by the same strain amplitude along its whole length.

A feasible solution how to improve the agreement between simulations and experiments can

be application of a material model which is able to take into account the Mullins effect [25]

including the various strain amplitudes, e.g. Ogden-Roxburg model [27]. However, in case

of unimaterial computational model the Ogden-Roxburg model has not been implemented

yet in any known FEM software, therefore, for practical use of this model it is necessary

to implement it first into a FEM software.

Consequently, a new group of experiments were caried out in order to check out if Mullins

effect can really cause the above differences between simulations and experiments. For

this purpose, another elastomer matrix was chosen showing negligible Mullins effect. It is

evident from fig. 8 and from others results presented in [11] that simulations are in good

agreement with the tests for all fibre declinations. Hence, the hypothesis was confirmed

that Mullins effect is responsible for the differences between simulations and experiments.

Bending tests

The bending test experiments contain the same problem as in case of tension tests, i.e.

simulations and experiments can not be compared due to various strain amplitude in the

pre-cycling of specimens. As we can see from the results in appendix A.3 related to the

bending tests, results of simulations disagree with experiments except the case with zero

declination of the fibres. I think that this discrepancy is caused again by different amplitude

in the pre-cycling in the all specimens, even in the specimen with zero declination of the

fibres. However, the agreement between simulations and experiments is good in such case

of declination, because zero declination means that fibres are substantial part of composite

material which carries most of the load (in other words contribution of the matrix is

insignificant). Therefore Mullins effect does not influence the results. For illustration,
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Figure 8: Results of the tension test and its simulation for 45◦ declination of fibres.

figure 30 represents the influence of cycling, where specimens 1 and 2 were cycled to 5 mm

of the total elongation of the specimen, while specimen 3 was cycled up to 10 mm of total

elongation. The difference in the results is obvious.

In bending test with longitudinal fibres (under 0◦ - fig. 25), the unimaterial model appears

slightly stiffer than the bimaterial one. It might be explained by different distribution of

steel throughout the height of the specimen. The structure of the unimaterial model is

sandwich-like, i.e. fictive fibres are assumed to be uniformly distributed in the middle layer

with thickness of 0.45 mm, and their tension stiffness does not depend on the distance from

the neutral axis of bending. In contrast, the fibres in the bimaterial model are cylindrical

(with the same diameter of 0.45 mm) so that the amount of steel is decreasing with distance

from the neutral axis, which makes the model more compliant.

When comparing the results of simulations with experiments we can see that both models

disagree except for the declination of 90◦ (fig. 29). At first glance, it might seem that both

models give the same results in case of declination 0◦ and 15◦ (fig. 25 and fig. 26), but

it is not the case. In this case both models give the same results till some magnitude of

deflection, but above a certain limit the unimaterial model begins with unstable behaviour,

i.e. the force is almost constant for any deflection and the simulation fails.
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It was found out upon closer examination of the material model (94) or (95) that this model

is based on assumption of infinitely thin fibres, i.e. fibres have zero bending stiffness. When

we go back to the results of simulations we can see that in case of declinations 0◦ and 15◦

(obr. 25 and obr. 26) after certain limit an instability occurred. We can see very well in

case of declinations 45◦ and 60◦ (fig. 27 and fig. 28) that the unimaterial model (i.e. model

without bending stiffness of the fibres) gives significantly softer results than the bimaterial

model (i.e. model with bending stiffness of the fibres). In case of declination of 90◦ (fig.

29), the agreement between both models is very good, since fibres do not contribute to the

composite stiffness significantly (it is basically bending of the elastomer matrix), therefore

both models (with the same material models and material parameters) must give the same

results. New experiments with negligible stiffness of the textile fibres were carried out in

order to check out if the unimaterial model is able to provide results that correspond to

experiments. It was verified in [11] that the anisotropic hyperelastic constitutive model

(in a polynomial form) is able to simulate results of tension and bending tests of fibre

composites showing large strains credibly under the following conditions:

• elastomer matrix shows negligible Mullins effect

• bending stiffness of fibres is negligible.

Next, the sensitivity analysis in [22] and fig. 9 show that bending stiffness provided by

the unimaterial model is limited. This model gives the same results as the bimaterial one

only when Young’s modulus of the fibres is up to 100 MPa. A further increase of Young’s

modulus results in disagreement between both models, and from a certain limit a further

increasing of Young’s modulus (10 000MPa) does not make sence. Based on these results

it is obvious that the unimaterial model is not able to include bending stiffness of fibres.

In contradiction to tension test, the bending test simulations with declination angle of

fibres 15◦ show a higher stiffness of the bimaterial model in comparison with experiments

(see fig. 26). This discrepancy may be caused by a specific behaviour of these specimens:

during bending only two corners (situated in the diagonal closer to the direction of fibres)

of the specimen remain in contact with the lateral supports and the other two corners go

up. The boundary conditions prescribed in the FE model, however, constrain the vertical

displacement of both ends of the specimen, i.e. of all its four corners, which makes the
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Figure 9: Bending test - impact of Young’s modulus.

specimen stiffer

After summarizing the results, we can say that in case of uniaxial tension tests both

models give the same results. Next, it was find out that in the case of bending tests the

unimaterial model doesn’t include the bending stiffness of the fibres, therefore, the model

is not able to give correct results. Hence, the unimaterial model can be used in such ap-

plications where fibres are loaded in tension (or compression) and/or in such application

where fibres don’t have significant bending stiffness (e.g. composite material with textile

fibres).

It was found out that in case of the specific rubber used in experiments the Mullins ef-

fect influences the results significantly, since (due to the various declinations of the fibres)

strains in the specimens are locally varied and also stresses and strains are not homogenous

throughout the specimen. Then each part of the specimen is loaded by different strain and

due to the Mullins effect mentioned above different stress-strain curves are applied.
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The only one paper was found, after many searches on this topic, published by Spencer

and Soldatos [32] in 2007. They introduced a new unimaterial model which is able to

include bending stiffness of the fibres. However, this model is based on Cosserat continuum

and is quite complicated for practical application. Hence, next chapter introduces basic

knowledge on Cosserat continuum and a part of chapter 6 deals with simplification of this

theory.

44



5 Cosserat theory of continuum

Classical continuum mechanics is based on the fundamental idea that all material bodies

possess continuous mass densities, and that the laws of motion and the axioms of consti-

tution are valid for every part of the body no matter how small they may be. A loss of

accuracy requiring a more general description may occur in classical continuum mechanics

if the response of a body to an external physical effect is sought, in which the length scale

is comparable to the average grain or molecular size contained in the body, because the

granular or molecular constituents of the body are excited individually. In this case, the

intrinsic motions of the constituents (microelements) must be taken into account. This

situation prevails in practical applications when the material under consideration is a com-

posite material containing macromolecules, fibres, and grains [10]. The existence and basis

of couple stress in elasticity was postulated by Voigt [35] in 1887 in connection with polar

molecules. He took an assumption into account that the interaction between two parts of

the body through an area element is transmitted not only by a force vector, but also by a

moment vector. Such assumption consists in the fact that not only force stresses, but also

couple stresses must be taken into account. The complete theory was developed in 1909 by

brothers E. and F. Cosserat [5]. In their theory being nonlinear from the very beginning

, the deformation of the body is described by a displacement vector and an independent

rotation vector, therefore each material element has six degrees of freedom. The Cosserat

brothers formulated balance equations for force stress and couple stress, but they didn’t

formulate constitutive equations.

Next works dealing with Cosserat theory were concentrated on the simplified Cosserat the-

ory (known as indeterminate couple stress theory or Cosserat pseudo continuum). In this

theory, the rotation vector is not an independent vector, although force and couple stresses

are still taken into account. The most important works are those by Truesdell and Toupin

[34], Mindlin and Tiersten [24], Toupin [33] and Eringen [6]. Next in 1964 Eringen and

Suhubi [7] introduced a general theory of a nonlinear microelastic continuum in which the

balance laws of continuum mechanics are supplemented with additional ones, and intrin-

sic motion of microelements contained in a macrovolume were taken into account. This

theory was renamed later to the micropolar theory. Basics of thermo-elasticity in terms of
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Cosserat continuum were formulated by Nowacki in 1968 [26].

This chapter was taken mainly from [10] and [26].

5.1 Deformation and microdeformation

I will distinguish between material and space description in the following text. Material

(or reference) description works with particles X determined by position (X1, X2, X3) and

attention is payed to the particle - we are observing what will happen with the particle

during the motion. Independent variables are particle and time. Material coordinates are

usually used in so called Lagrangian description.

The current configuration is taken as the reference configuration in the space description

or Eulerian description. Independent variables are position (x1, x2, x3) and time and we

are observing what will happen in a fixed part of the space.

A material point P of a body B having volume V and surface S in its undeformed and

unstressed state may be defined by its rectangular coordinates X1, X2 and X3. If the body

is allowed to move and deform under some external loads, it will occupy a region having

volume v and surface s. Referred to the same rectangular frame of reference, the new

position of the point P will be x1, x2 and x3 (fig. 10). The deformation of the body at

time t may be prescribed by a one-to-one mapping

xk = xk(X1, X2, X3, t), k = 1, 2, 3 (98)

or its inverse form

XK = XK(x1, x2, x3, t), K = 1, 2, 3. (99)

We now consider a volume element ∆V enclosed within its surface ∆S in the unde-

formed body. Let the center of mass of ∆V have the position vector X. All materials

possess certain granular or fibrous structures with different sizes and shapes. If the phys-

ical phenomenon under study has a certain characteristic length (such as wavelength),

comparable with the size of grains in the body, then the microstructure of the material

must be taken into consideration. In such situations, classical continuum mechanics should

be modified by considering the effect of the granular or fibrous character of the medium.
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Figure 10: Material and spatial coordinates. (reprint from [10])

Suppose that the element ∆V+∆S contains N discrete micromaterial elements ∆V (α)+

∆S(α)(α = 1, 2, ..., N). The position vector of a material point in the αth microelement

may be expressed as

X(α) = X + Ξ(α) (100)

where Ξ(α) is the position of a point in the microelement relative to the center of mass of

∆V + ∆S (fig. 11). Upon the deformation of the body, the position of the αth particle

will be

x(α) = x + ξ(α) (101)

where ξ(α) is the new relative position vector of the point originally located at X(α). The

relative position vector depends not only on X, t, but also on Ξ(α), i.e.

ξ(α) = ξ(α)(X,Ξ(α), t) (102)

Eringen and Suhubi [7], [8] and Eringen [9] have constructed a general theory in which

(102) is linear in Ξ(α). The basic assumption underlying this theory is the:

The material points in ∆V + ∆S undergo a homogeneous deformation about their center

of mass.

On the basis of the motion and deformation of the microelement we can distinguish:

Micromorphic materials - microelement may be deformed, moved and rotated.
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Figure 11: Deformation of microvolume. (reprint from [10])

Micropolar theory of elasticity (or Cosserat theory of elasticity) - this theory admits

only rigid microrotations of the microvolume elements about the center of mass of the

volume element.

Constrained Cosserat theory (or Indeterminate couple stress theory)- microrotations

and macrorotations are the same, only rigid motion of microelements is possible.

5.2 Strain and microstrain tensors

On the basis of the motion and inverse motion of a material point in a microelement may

be written [10]

x
(α)
k = xk(X, t) + ξ

(α)
k (103)

X
(α)
K = XK(x, t) + Ξ

(α)
K , (104)

where vectors ξ(α)
k and Ξ

(α)
K from fig. 11 are given

ξ
(α)
k = χkK(X, t)Ξ(α)

K , (105)

Ξ
(α)
K = XKk(x, t)ξ

(α)
k , (106)
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and where χkK(X, t) and XKk(X, t) are nine scalar functions in general in micromorphic

materials (for details see [10]).

The square of the arc length is calculated by forming

(ds(α))2 = dx(α).dx(α) = (CKL + 2ΓKMLΞM +
∂χkM
∂XK

∂χkN
∂XL

ΞMΞN )dXkdXL+

+2(ΨKL + χkL
∂χkM
∂XK

ΞM )dXKdΞL + χkKχkLdΞKdΞL (107)

where

CKL(X, t) =
∂xk
∂XK

∂xk
∂XL

(108)

ΨKL(X, t) =
∂xk
∂XK

∂χk
∂XL

(109)

ΓKLM (X, t) =
∂xk
∂XK

∂χkL
∂XM

. (110)

CKL is the commonly known Cauchy-Green tensor of deformation, tensors ΨKL and ΓKLM

are new tensors of microdeformation.

Let’s introduce the displacement vector u(α) (fig. 12)

u(α) = x−X + ξ −Ξ = u + ξ −Ξ (111)

where

u = x−X (112)

and

UL = u.IL = xkδkL −XL, (113)

ul = u.il = xl −XKδKl. (114)

By partial differentiation of the last two equations, we obtain

∂xk
∂XK

=

(
δLK +

∂UL
∂XK

)
δkL (115)
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Figure 12: Displacement vectors. (reprint from [10])

∂XK

∂xk
=

(
δlk −

∂ul
∂xk

)
δKl (116)

Similary, we introduce the microdisplacement tensors Φ(X, t) (material representation)

and φ(x, t) (spatial representation)

χkK = (δLK + ΦLK)δkL (117)

XKk = (δlk + φlk)δKl. (118)

Substituting (115) and (117) into tensors (108), (109) and (110), we can write

CKL = δKL +
∂UK
∂XL

+
∂UL
∂XK

+
∂UM
∂XK

∂UM
∂XL

(119)

ΨKL = δKL + ΦKL +
∂UL
∂XK

+
∂UM
∂XK

ΦML (120)

ΓKLM =
∂ΦKL

∂XM
+
∂UN
∂XK

∂ΦNL

∂XM
. (121)

These relations are valid in general for micromorphic materials and for nonlinear theory.
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5.3 Micropolar and constrained Cosserat theory

We now consider a special class of materials in which the state of microdeformation can be

described by a local rigid motion of the microelements. Materials consisting of rigid fibres

or elongated grains fall into this category. Mathematically, this specialization in the linear

theory is obtained by setting

ΦKL = −ΦLK (material notation) (122)

φkl = −φlk (spatial notation) (123)

where ΦKL, φkl are material and spatial microdisplacement tensors, respectively. It doesn’t

make sence to distinguish between material and spatial coordinates in the linear theory

since it holds

ΦKL = (δKM + ΦKM )φmlδMmδlL (124)

and when we omit members in product

ΦKL ≈ φmlδKmδlL. (125)

Next, according chapter IV. from [10], it is apparent that vector Φ

ΦK =
1

2
εKLMΦML, ΦKL = −εKLMΦM , (126)

represents an angular rotation of a microelement about the center of mass of the deformed

macrovolume element, i.e. vectors Φ ' φ represent microrotation.

Constraint Cosserat theory means that microrotations φk are the same as macro-

rotations ϕk, i.e.

φk = ϕk =
1

2
εklm

∂um
∂xl

. (127)

Velocity of the macroelement

The velocity field in material description is given by the following equation

V(X, t) = ẋ(X, t) =
∂x(X, t)

∂t
, (128)

where X is constant. If we substitute herein equation (99) for X, we can write

V(X, t) = V[X(x, t), t] = v(x, t), (129)
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where v(x, t) is a velocity field in the spatial description. Note that velocity relations

metioned above describe the movement of center of mass P or p of macroelement ∆V +∆S

or ∆v + ∆s, respectively.

Relative velocity of the microelement

Let’s establish the relative velocity of the point x+ ξ to the center of mass p (fig. 12).

Because of equation (105), we can write for velocity of a microparticle

ξ̇l = χ̇lK(X, t)ΞK (130)

and on replacing ΞK by (106) we obtain

ξ̇ = νk(x, t)ξk (131)

or

ξ̇l = νlkξk, (132)

where

νk(x, t) = χ̇K(X, t)XKk(x, t) (133)

and

νlk = χ̇lKXKk. (134)

The three vectors νk defined by equation (133) are called gyration vectors, and their

components νlk form the gyration tensor.

Gyration tensor νlk is related to the moment of inertia. In case of moment of inertia the

position of particles is multiplied by weighting factor - weight of particles, while gyration

tensor depends only on the particles position (weight of particles is not considered).

By substituting to eg. (134) from equations (117) and (118) we get

νkl = −εklM Φ̇M − εkKM εKlmΦ̇Mφm. (135)

In case of the linear theory we can write

νkl ≈ −εklM Φ̇M ' −εklmφ̇m. (136)

On introducing an axial vector νk, called the microgyration vector, by the formula

νk =
1

2
εklmνml νkl = −εklmνm, (137)
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then by comparing two last equations and with regard to the constraint Cosserat theory,

we get

νm = φ̇m = ϕ̇m =
1

2
εmlk

∂u̇k
∂xl

. (138)

Then we repeat the mentioned process of determination of relative velocity and de-

termine this relative velocity again, but now we determine the velocity of material point

X + Ξ relatively to the center of mass P (obr. 12). With help of eq. (106), we can write

Ξ̇L = ẊLk(x, t)ξk (139)

and when substituting for ξk from equation (105) we get

Ξ̇L = ẊLk(x, t)χkK(X, t)ΞK (140)

By introducing the gyration tensor in the material description

NKL = χkK(X, t)ẊLk(x, t), (141)

we can rewrite the last equation into the form

Ξ̇L = NKLΞK . (142)

Substituting to the (141) from equations (117) and (118) we get

NKL = −εKLmφ̇m − εLkmεkKMΦM φ̇m. (143)

In case of linear theory we can consider that

NKL ≈ −εKLmφ̇m ' −εKLM Φ̇M . (144)

Since microgyration tensor in material description can be written

NKL = −εKLMNM , (145)

then we can see by comparing of two last equations that

NM = Φ̇M . (146)

And for linear constraint Cosserat theory we’ll find then

φ̇ = ϕ̇ = Φ̇ = ν = N. (147)
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Total velocity

Total velocity of material point X + Ξ is then given as

V(α) = V + Ξ̇
(α)

= V + NKLΞ
(α)
K = V + ϕ̇(α). (148)

Similarly, the total velocity of the point x + ξ is given

v(α) = v + ξ̇
(α)

= v + νlkξ
(α)
k = v + ϕ̇(α). (149)

5.4 Force stress and couple stress

This chapter introduces force and moment (couple) stresses according to [26].

Let us imagine a volume element ∆V separated from the body and bounded by surface

∆S; the interactions between the particles inside and outside the separated volume are

transmitted across the surface ∆S. The transmission of the interactions across the arbitrary

element dS located on the surface ∆S is expressed by the force tdS and the moment ldS.

Consider the point x of an elastic body. To determine the stresses acting at this point, let us

imagine three coordinate planes passing through this point and perpendicular to the axes

of a rectangular Cartesian coordinate system. Let t(1) denote a force-stress vector acting

on the surface element dA1 = dx2dx3 and l(1) a similar couple-stress vector. Vectors t(1)

and l(1), both called traction in this theory, and their components, i.e. force stresses σ1j

and couple stresses m1j are shown in fig. 13.

Figure 13: Force and couple stresses. (reprint from [26])
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It is obvious from the fig. 13 that

t(1) = (σ11, σ12, σ13), l(1) = (m11,m12,m13) (150)

and similarly vectors in other coordinate planes

t(2) = (σ21, σ22, σ23), l(2) = (m21,m22,m23)

t(3) = (σ31, σ32, σ33), l(3) = (m31,m32,m33). (151)

When we consider an infinitesimal tetrahedron according to fig. 14, then

tdS = t(1)dS1 + t(2)dS2 + t(3)dS3 (152)

ldS = l(1)dS1 + l(2)dS2 + l(3)dS3. (153)

By introducing

dSi = dSni, ni = cos(n, xi), (154)

equations (152) and (153) can be then rewritten into the form

t = t(1)n1 + t(2)n2 + t(3)n3 (155)

l = l(1)n1 + l(2)n2 + l(3)n3. (156)

and these vector equations can be written in the stress components, i.e.

ti = σjinj (157)

and

li = mjinj . (158)
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Figure 14: Tetrahedron OABC. (reprint from [26])

5.5 Momentum and moment of momentum

Equations of momentum and moment of momentum are introduced in this chapter for

Cosserat continuum. This balance principles will be used in determination of constitutive

equations and are introduced both in material and spatial description. The equations in

the spatial description were taken from [10] while equations in material description were

derived.

5.5.1 Spatial description

It is obvious from fig. (12) that X is the position vector of the center of mass of a

macroelement and Ξ is the relative position vector of a microparticle to the center of mass

of macroelement. Accordingly, ∑
α

ρ
(α)
0 Ξ(α)∆V (α) = 0. (159)

With help of relation (106) the last equation can be rewritten into the form

XKk
∑
α

ρ
(α)
0 ∆V (α)ξ

(α)
k = 0 (160)

and since

ρ
(α)
0 ∆V (α) = ρ(α)∆v(α), (161)

we get

XKk
∑
α

ρ(α)∆v(α)ξ
(α)
k = 0. (162)
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Since, XKk 6= 0 the equation (162) is fulfilled if∑
α

ρ(α)ξ
(α)
k ∆v(α) = 0. (163)

This shows that the position vector x is the center of mass of the deformed macrovolume.

Consequently, the motion carries the center of mass of the undeformed macrovolume to

the center of mass of the deformed macrovolume.

Total momentum

The mechanical momentum of a microelement ∆v(α) is the product of its mass with its

velocity, namely, ρ(α)v(α)∆v(α). The total momentum of a macroelement is the vector sum

of the micromomenta of its microelements. For a micropolar body with help of relation of

total velocity of particle (149), we have

∆p =
∑
α

ρ(α)v(α)∆v(α) =
∑
α

ρ(α)(v + ξ̇
(α)

)∆v(α) = (164)

= v
∑
α

ρ(α)∆v(α) + ν ×
∑
α

ρ(α)ξ(α)∆v(α).

The last term vanishes (due to the relation (163)), and in the limit we write

dp = ρvdv. (165)

The total momentum of the body is therefore given by

p =

∫
v

ρvdv. (166)

Principle of balance of momentum

The principle of balance of momentum has the general form

D

Dt

∫
v

ρvdv = F(t) (167)

where F(t) is the resultant force acting onto the body. If we don’t consider any volume

forces then the principle of balance of momentum can be expressed by (with help of relation

(157))
d

dt

∫
v

ρvidv =

∫
∂s

σjinjds. (168)
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Total moment of momentum

The mechanical moment of momentum of a microelement is defined as the moment of its

momentum, namely,

x(α) × ρ(α)v(α)∆v(α).

The total moment of momentum of a macroelement is calculated by

∆m =
∑
α

x(α) × ρ(α)v(α)∆v(α) =
∑
α

(x + ξ(α))× ρ(α)(v + ξ̇
(α)

)∆v(α). (169)

On carrying out the multiplication, we get

∆m = x×v
∑
α

ρ(α)∆v(α)+
∑
α

ξ(α)×ρ(α)ξ̇
(α)

∆v(α)+x×
∑
α

ρ(α)ξ̇
(α)

∆v(α)−v×
∑
α

ρ(α)ξ(α)∆v(α).

(170)

The last two summations vanish, since ξ is measured from the center of mass of the

deformed macroelement and the total moment of momentum is then given by

∆m = x× v
∑
α

ρ(α)∆v(α) +
∑
α

ξ(α) × ρ(α)ξ̇
(α)

∆v(α). (171)

Due to the relations (15.8) and (15.10) in [10])∑
α

ρ(α)ξ
(α)
j ξ

(α)
l ∆v(α) = ρijl∆v (172)

and

jmi = ijjδim − imi, (173)

where i is the spatial microinertia tensor, the last term in the equation (171) can be derived

(with considering of (138)) as follows∑
α

ξ(α) × ρ(α)ξ̇
(α)

∆v(α) = ρθ∆v, (174)

where θi = jmiϕ̇m. Then the total moment of momentum of the macroelement is given by

∆m = x× v
∑
α

ρ(α)∆v(α) + ρθ∆v (175)

a the total moment of momentum of the body is

m =

∫
v

(x× ρv + ρθ)dv. (176)
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Principle of balance of moment of momentum

The principle of balance of moment of momentum has the general form

D

Dt

∫
v

(x× ρv + ρθ)dv = M(t), (177)

where M(t) is the resultant moment act on the body. Considering that no volume forces

and volume couples acting on the body, the principle of moment of momentum (with help

of relations (157), (158)) is given by

d

dt

∫
v

(εijkxjρvk + ρθi)dv =

∫
∂s

(εijkxjσlknl +mjinj)ds. (178)

5.5.2 Material description

The equations of momentum and moment of momentum in material description will be

formulated in the following part.

Total momentum

Due to the relation (eq. (15.5) in [10])

ρ0dV = ρdv (179)

the total momentum in spatial description (166) can be rewrite into the form

p =

∫
v

ρvdv =

∫
V

ρ0vdV. (180)

Principle of balance of momentum

We can write for every surface element (eq. (3.1) in [18])

tds = TdS (181)

where Cauchy traction vector t is given by equation (157) and T represents first Piola-

Kirchoff traction vector, which can be written with help of first Piola-Kirchoff stress and

outward normal of the element

Ti = PJiNJ . (182)
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With help of the two last equations and eq. (179) , we are able to derive from the principle

of balance of momentum in the spatial description (168) its equivalent in the material

description
d

dt

∫
V

ρ0vidV =

∫
∂S

PJiNJdS. (183)

Total moment of momentum

With help of relation (179), the total moment of momentum in spatial description (176)

can be rewritten into the equivalent form in material description, therefore

m =

∫
v

(x× ρv + ρθ)dv =

∫
V

(x× ρ0v + ρ0θ)dV. (184)

Principle of balance of moment of momentum

If the following equation is valid

mjinjds = MJiNJdS (185)

where mji is the couple stress of Cauchy type and MJi is couple stress of Piola type,

then the principle of balance of moment of momentum in spatial description (178) can be

rewritten to the equivalent form in material description, therefore

d

dt

∫
V

(εijkxjρ0vk + ρ0θi)dV =

∫
∂S

(εijkxjPLkNL +MJiNJ)dS. (186)

It should be noted that

θi = jmiνm (spatial description) (187)

ΘI = JMINM (material description) (188)

where N = ν (equation (147)). Due to the following equality∫
v

ρjmiνmdv =

∫
V

ρ0JMINMdV, (189)

and with respect (147), it is obvious that

JMI = jmiδMmδIi. (190)
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This result is a consequence of considered linear theory of microrotation. However, the

following equation is valid in general (more about this can be found in [10])

JMI = jmiXMmXIi. (191)

5.6 Balance of mechanical energy

The balance equations of mechanical energy are introduced in this chapter both for material

and spatial description. Derivation of these equations in case of spatial description can be

found e.g. in [10]. The equations in material description were derived.

According [18], the balance equation of mechanical energy can be written in the form

d

dt
K(t) + Pint(t) = Pext(t) (192)

where K(t) is the kinetic energy, Pint(t) is the stress power and Pext(t) is the external

mechanical power.

5.6.1 Spatial description

In order to derive the balance equation of mechanical energy, the kinetic energy, stress

power and external mechanical power have to be determined. Let’s start from the principle

of balance of momentum (168) and of moment of momentum (178), i.e. from the equations

d

dt

∫
v

ρvidv =

∫
∂s

σjinjds (193)

d

dt

∫
v

(εijkxjρvk + ρθi)dv =

∫
∂s

(εijkxjσlknl +mjinj)ds. (194)

Using Gauss-Ostrogradsky theorem and after some manipulations, the local balance equa-

tions will be obtained in the form

∂σji
∂xj

− ρv̇i = 0 (195)

∂mji

∂xj
+ εijkσjk − ρθ̇i = 0. (196)
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After introducing a spin vector as

ωi =
1

2
εijk

∂vk
∂xj

= −1

2
εijkωjk, ωjk = −εijkωi, ωjk =

1

2

(
∂vj
∂xk
− ∂vk
∂xj

)
, (197)

then after comparison with eq. (138) and also with eq.(147), it’s obvious that

ω = ϕ̇ = ν. (198)

Multiplying the local balance equations (195) by velocity vector vi, and local balance

equations (196) by spin vector ωi, (since it’s identical with vector ν ) both equations will

be integrated over the whole deformed volume of the body to obtain∫
v

ρv̇ividv =

∫
v

∂σji
∂xj

vidv (199)

∫
v

ρθ̇iωidv =

∫
v

(
∂mji

∂xj
ωi − ωjkσjk

)
dv. (200)

Next,
∂(σjivi)

∂xj
=
∂σji
∂xj

vi + σji
∂vi
∂xj

,
∂(mjiωi)

∂xj
=
∂mji

∂xj
ωi +mji

∂ωi
∂xj

. (201)

Substituting from eq. (201) to the eq. (199) and (200) and using Gauss-Ostrogradsky

theorem we get
d

dt

∫
v

1

2
ρvividv +

∫
v

σji
∂vi
∂xj

dv =

∫
∂s

σjivinjds (202)

d

dt

∫
v

1

2
ρθiωidv +

∫
v

(
mji

∂ωi
∂xj

+ ωjkσjk

)
dv =

∫
∂s

mjiωinjds. (203)

Using eq. (192) the kinetic energy is

K(t) =
1

2

∫
v

ρ(vivi + θiωi)dv =
1

2

∫
v

ρ(vivi + jmiωmωi)dv, (204)

stress power is

Pint(t) =

∫
v

(
σji

∂vi
∂xj

+mji
∂ωi
∂xj

+ ωjkσjk

)
dv (205)

and external mechanical power is

Pext(t) =

∫
∂s

(σjivinj +mjiωinj)ds. (206)
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Next, the stress power can be expressed

Pint(t) =

∫
V

ẆdV (207)

where W is a strain energy density function. Using so-called Nanson’s formula

dv = JdV, (208)

we can write

Pint(t) =

∫
V

ẆdV =

∫
v

1

J
Ẇdv =

∫
v

(
σji

∂vi
∂xj

+mji
∂ωi
∂xj

+ ωjkσjk

)
dv, (209)

where J is determinant of the deformation gradient. Then the time derivative of strain

energy density function in the spatial description has the form

Ẇ = J

(
σji

∂vi
∂xj

+mji
∂ωi
∂xj

+ ωjiσji

)
. (210)

5.6.2 Material description

The kinetic energy, stress power and external mechanical power is derived in material

description in this chapter, similary to the spatial description. Let’s start again from bal-

ance equations of momentum (183) and moment of momentum (186), but now in material

description, i.e. from equations

d

dt

∫
V

ρ0vidV =

∫
∂S

PJiNJdS (211)

d

dt

∫
V

(εijkxjρ0vk + ρ0θi)dV =

∫
∂S

(εijkxjPLkNL +MJiNJ)dS. (212)

Using Gauss-Ostrogradsky theorem and after some manipulation the local balance equation

in material description will be obtained in the form

∂PJi
∂XJ

− ρ0v̇i = 0 (213)

∂MJi

∂XJ
+ εijkFjLPLk − ρ0θ̇i = 0. (214)
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Multiplying the local balance equations (213) by velocity vector vi, the local balance equa-

tions (214) by spin vector ωi and both equations will be integrated over the undeformed

volume of the body, we get ∫
V

ρ0v̇ividV =

∫
V

∂PJi
∂XJ

vidV (215)

∫
V

ρ0θiωidV =

∫
V

(
∂MJi

∂XJ
ωi + εijkωiPLkFjL

)
dV. (216)

Next,
∂(PJivi)

∂XJ
=
∂PJi
∂XJ

vi + PJi
∂vi
∂XJ

,
∂(MJiωi)

∂XJ
=
∂MJi

∂XJ
ωi +MJi

∂ωi
∂XJ

. (217)

Substituting from eq. (217) to the eq. (215) and (216) and using Gauss-Ostrogradsky

theorem, we obtain

d

dt

∫
V

1

2
ρ0vividV +

∫
V

PJi
∂vi
∂XJ

dV =

∫
∂S

PJiviNJdS (218)

d

dt

∫
V

1

2
ρ0θ̇iωidV +

∫
V

(
MJi

∂ωi
∂XJ

+ ωjkPLkFjL

)
dV =

∫
∂S

MJiωiNJdS. (219)

With respect to the eq. (192) the kinetic energy is

K(t) =
1

2

∫
V

ρ0(vivi + θiωi)dV =
1

2

∫
V

ρ0(vivi + jmiωmωi)dV, (220)

the stress power is

Pint(t) =

∫
V

(
PJi

∂vi
∂XJ

+MJi
∂ωi
∂XJ

+ ωjkPLkFjL

)
dV (221)

and external mechanical power equals to the

Pext(t) =

∫
∂S

(PJiviNJ +MJiωiNJ)dS. (222)

Due to the eq. (207), the time derivative of strain energy density function in material

description can be written in the form

Ẇ = PJi
∂vi
∂XJ

+MJi
∂ωi
∂XJ

+ ωjkPLkFjL. (223)
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6 Hyperelastic constitutive model with bending stiffness of

fibres

The theory of finite deformations of elastic materials reinforced by fibres was founded by

Adkins and Rivlin [1]. Their theory described an isotropic elastic material with no extensi-

bility in the direction of fibres and they assumed that the reinforcing fibres lay in discrete

surfaces. Green and Adkins described the development of this theory in [15].

A different approach was established by Spencer [30]. In his theory the fibre direction is

characterized by a unit vector in the reference configuration. The fibre vector formulation

has been applied to many kinds of material behaviour. Particular applications of the the-

ory of finite elastic deformations are in Spencer [30], [31] and Rivlin [28]. Presently, this

theory based on [30] is used in various kinds of applications of composite materials, either

in industry or in composite biomaterials. Concerning examples of industrial use, readers

are referred e.g. to [17], where authors simulated response of an air-spring (rubber matrix

and textile cords) used for inhibition of vibrations of driver’s seat. On the other side, arte-

rial walls represent characteristic examples of composite biomaterials. The arterial wall is

composed mainly of isotropic matrix material (elastin) and two families of fibres (collagen).

A multi-layer model for arterial wall was proposed by Holzapfel [20].

All of the above mentioned theories are based on assumption of infinitesimaly thin

fibres. This fibre is then perfectly flexible, i.e. fibre shows zero bending stiffness.

In order to incorporate bending stiffness into the previous theory (in [30], [31]), Spencer

considered in [32] that the strain energy density function depends not only on the defor-

mation gradient FiJ and on the unit vector of undeformed fibre AJ , but also on the space

derivatives of the deformed fibre vector GiJ , i.e.

W = W (FiJ , GiJ , AJ) (224)

where

FiJ =
∂xi
∂XJ

, GiJ =
∂bi
∂XJ

=
∂

∂XJ
(FiRAR), bi = FiRAR. (225)

However, this new theory requires including of both force and couple stresses, i.e. Cosserat

theory of continuum has to be used.
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6.1 General constitutive model

Spencer and Soldatos in [32] introduce the constitutive assumption that W depends, in

addition to the displacement gradients FiR and A, on the gradients of the deformed fibre

vectors. However, rather than including dependence on the gradients ∂ai/∂XR, it is more

convenient to introduce a vector b, with Cartesian components bi, such that

b = λa, bi = λai = AR
∂xi
∂XR

= FiRAR, (226)

and to assume that W depends instead on the gradients ∂bi/∂XR. Since stretch ratio

λ2 = ARASFiRFiS , the dependence on F, a and A is equivalent to dependence of F,b and

A. The advantage of using b rather than a is that

ḃi = AR
∂vi
∂XR

= AR
∂vi
∂xj

∂xj
∂XR

= bj
∂vi
∂xj ,

(227)

which is a simpler form than a material derivative ȧ of the fibre vector a (for more details

about material derivative ȧ refer to [30])

ȧi = (δij − aiaj)ak
∂vj
∂xk

. (228)

Therefore we postulate that

W = W (FiR, GiR, AR) (229)

where

FiR =
∂xi
∂XR

, GiR =
∂bi
∂XR

. (230)

Therefore

Ẇ =
∂W

∂FiR
ḞiR +

∂W

∂GiR
ĠiR =

∂W

∂FiR

∂vi
∂XR

+
∂W

∂GiR

∂ḃi
∂XR

. (231)

Hence

Ẇ =
∂W

∂FiR

∂xj
∂XR

∂vi
∂xj

+
∂W

∂GiR

∂xj
∂XR

∂ḃi
∂xj

= FjR

(
∂W

∂FiR

∂vi
∂xj

+
∂W

∂GiR

∂ḃi
∂xj

)
, (232)

and from (227)

FjR
∂ḃi
∂xj

=
∂xj
∂XR

∂bk
∂xj

∂vi
∂xk

+ FjRbk
∂2vi

∂xj∂xk
= GkR

∂vi
∂xk

+ FjRbk
∂2vi

∂xj∂xk
. (233)

Next, let’s introduce the rate of deformation

dij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
, (234)
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then we can write
∂vi
∂xj

= dij + ωij , (235)

where ωij is the spin tensor defined by eq. (197). From (231) and (232) with help of (233)

and (235) we get

Ẇ =

(
FjR

∂W

∂FiR
+GjR

∂W

∂GiR

)
(dij + ωij) + FjR

∂W

∂GiR
bk

∂2vi
∂xj∂xk

. (236)

We now denote the components of the symmetric σ(ij) and antisymetric σ[ij] parts of the

force stress σij , so that

σij = σ(ij) + σ[ij], σ(ij) =
1

2
(σij + σji), σ[ij] =

1

2
(σij − σji) (237)

and note that

σ(ij)ωij = 0 σ[ij]dij = 0. (238)

Now, we can rewrite strain energy density function in eq. (210) using symetric and anti-

symetric stress from eq. (237) and with help of (235) and (238) into the form

Ẇ = J

(
σ(ij)dij +mji

∂ωi
∂xj

)
. (239)

Hence, by comparing (236) and (239), we obtain[
σ(ij) −

ρ

ρ0

(
FjR

∂W

∂FiR
+GjR

∂W

∂GiR

)]
dij −

ρ

ρ0

(
FjR

∂W

∂FiR
+GjR

∂W

∂GiR

)
ωij+ (240)

+mji
∂ωi
∂xj
− ρ

ρ0
FjR

∂W

∂GiR
bk

∂2vi
∂xj∂xk

= 0.

Since dij and ωij are arbitrary, it follows that

σ(ij) =
ρ

ρ0

(
FjR

∂W

∂FiR
+GjR

∂W

∂GiR

)
, (241)

and that the coefficient of ωij in (240) is symmetric with respect to interchanges of i and

j, thus

FjR
∂W

∂FiR
+GjR

∂W

∂GiR
= FiR

∂W

∂FjR
+GiR

∂W

∂GjR
. (242)

Equation (241) is the constitutive equation for the symmetric part of the stress σ; (242) is

a restriction on the admissible forms of W, the validity of which is confirmed below. There

now remains from (240)

mji
∂ωi
∂xj
− ρ

ρ0
FjR

∂W

∂GiR
bk

∂2vi
∂xj∂xk

= 0, (243)
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or equivalently, using (197),(
−1

2
εpikmjp −

ρ

ρ0
FjR

∂W

∂GiR
bk

)
∂2vi

∂xj∂xk
= 0. (244)

It follows that the symmetric part (with respect to the indicies j and k) of the bracket

term in (244) must be zero, and therefore

−1

2
(εpikmjp + εpijmkp) =

ρ

ρ0

∂W

∂GiR
(FjRbk + FkRbj). (245)

By multiplying each side of (245) by εrik and using the ε− δ identities, there follows

2δprmjp + (δprδkj − δrjδkp)mkp = −2εerik
ρ

ρ0

∂W

∂GiR
(FjRbk + FkRbj), (246)

and hence

3mjr −mkkδrj = −2εrik
ρ

ρ0

∂W

∂GiR
(FjRbk + FkRbj) (247)

which is a constitutive equation for the couple stress mij . If we set r = j in (247), then

each side reduces to zero, and so the spherical part mkk of mij is indeterminate. This is

consistent with the observation that if mij is decomposed into its spherical and deviatoric

parts

mjr = mjr +
1

3
mkkδrj , (248)

then, beacuse ∂ωi/∂xi = 0,mkk makes no contribution to the energy balance equation

(239). This indeterminacy in the couple stress is not specific to fibre-reinforced materials,

but is a general result in couple stress theory. Using (248) we can write (247) as

mjr = −2

3
εrik

ρ

ρ0

∂W

∂GiR
(FjRbk + FkRbj), mkk = 0. (249)

Clearly, if r 6= j, then mjr = mjr. Invariance under the superposed rigid rotation x→ Qx

requires that

W (F,G,A) = W (QF, QG,A), (250)

for any ortogonal tensor Q. It follows thatW depends on the scalar products of the vectors

with components (for each fixed R)FiR and GiR, and therefore W can be expressed as a

function of the tensors

C = FTF, Γ = GTG, Λ = FTG, ΛT = GTF (251)
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and the vector A, where C,Γ,Λ,A have components, respectively,

CRS =
∂xi
∂XR

∂xi
∂XS

= FiRFiS ,

ΓRS =
∂bi
∂XR

∂bi
∂XS

= GiRGiS ,

ΛRS =
∂xi
∂XR

∂bi
∂XS

= FiRGiS ,

and

AR. (252)

However, from (251)

Γ = ΛTC−1Λ, C = ΛΓ−1ΛT , (253)

and, by the Cayley-Hamilton Theorem for C

I3C−1 = C2 − I1C + I2I. (254)

Hence Γ can be expressed in terms of C,Λ and invariants of C, and therefore W can

be expressed as a function of these quantities. Invariance under rigid rotations of the

undeformed body then requires that

W (C,Λ,A) = W (QCQT ,QΛQT ,QA), (255)

so that W can be expressed as an isotropic invariant of C,Λ,A. If the sense of the fibres

is not significant, then W must also be even in the components of A and even in the

components of Λ. In this case dependence on the vector A can be replaced by dependence

on the tensor A⊗A, but we do not impose this restriction at this stage.

Since W depends on F and G only through the tensors C and Λ, we have

∂W

∂FiR
=

∂W

∂CPQ

∂CPQ
∂FiR

+
∂W

∂ΛPQ

∂ΛPQ
∂FiR

,

∂W

∂GiR
=

∂W

∂CPQ

∂CPQ
∂GiR

+
∂W

∂ΛPQ

∂ΛPQ
∂GiR

, (256)

and, since CPQ = FkPFkQ and ΛPQ = FkPGkQ

∂CPQ
∂FiR

= δikδPRFkQ + δikδQRFkP = FiQδPR + FiP δQR,
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∂CPQ
∂GiR

= 0,

∂ΛPQ
∂FiR

= δikδRPGkQ = GiQδRP ,

∂ΛPQ
∂GiR

= δikδRQFkP = FiP δRQ. (257)

Hence from (256), using (257)

FjR
∂W

∂FiR
= FjR

(
∂W

∂CPQ

∂CPQ
∂FiR

+
∂W

∂ΛPQ

∂ΛPQ
∂FiR

)
=

= FjR

[
(FiQδPR + FiP δQR)

∂W

∂CPQ
+GiQδRP

∂W

∂ΛPQ

]
=

= FjRFiP

(
∂W

∂CPR
+

∂W

∂CRP

)
+ FjRGiP

∂W

∂ΛRP
,

GjR
∂W

∂GiR
= GjR

∂W

∂ΛPQ

∂ΛPQ
∂GiR

= GjRFiP
∂W

∂ΛPR
,

FjR
∂W

∂GiR
= FjR

∂W

∂ΛPQ

∂ΛPQ
∂GiR

= FjRFiP
∂W

∂ΛPR
. (258)

Hence from (258)

FjR
∂W

∂FiR
+GjR

∂W

∂GiR
= FjRFiP

(
∂W

∂CPR
+

∂W

∂CRP

)
+ (FjRGiP + FiRGjP )

∂W

∂ΛRP
, (259)

from which (242) follows immediately. Hence (241) and (249) can now be expressed (with

some renaming of indicies) as

σ(ij) =
ρ

ρ0

[
FiRFjS

(
∂W

∂CRS
+

∂W

∂CSR

)
+ (GiRFjS +GjRFiS)

∂W

∂ΛSR

]
, (260)

mji =
2

3
εikm

ρ

ρ0

∂W

∂ΛPR
FmP (FjRbk + FkRbj). (261)

The strain energyW is an isotropic invariant of tensorsC,Λ and vectorA. Canonical forms

for these invariants are known and can be read from tables (for example,[36] Table1). A
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list of the invariants is given in the Appendix (A.1). This list contains 33 independent

invariants which, in a general case, leads to excessively complicated constitutive equations.

In order to progress, therefore, it is necessary to make further simplifying assumptions.

There are several plausible ways in which this may be done; for example by considering

only restricted classes of deformations, as in plane strain theory discussed in [32] in Section

7, or by adopting the linearized theory which is described in [32] Section 9. In appropriate

cases, a certain simplification can be achieved by introducing the kinematic constrains of

incompressibility and/or fibre inextensibility. Another simplified theory is described in the

next section.

6.2 Dependence on fibre curvature

The following section was introduced by Spencer and Soldatos in 2007 and can be found

in [32] Section 6.

In this section it is assumed that, rather than general dependence on the gradients of b,

the strain-energy depends on the gradients of b only through the directional derivative of

the fibre vector in the fibre direction; that is, essentially, on the curvature of the fibres. In

doing this, we exclude effects due to fibre "splay" and fibre "twist", both of which feature

in liquid crystal theory, but it is plausible that in fibre composite solids the major factor

is fibre curvature.

Accordingly we make the initial assumption that the strain-energy depends on the deforma-

tion gradients ∂xi/∂XR, on the directional derivatives AR∂bi/∂XR, and on the initial fibre

direction vector A. Invariance under a superposed rigid rotation x→ Qx of the deformed

body requires that W can be expressed as a function of the scalar products, formed by

contracting on the index i, of the vectors ∂xi/∂XR = FiR, and AR∂bi/∂XR = GiRAR = κi.

These scalar products are

CRS = FiRFiS , KR = κiFiR = AS
∂xi
∂XR

∂bi
∂XS

= ΛRSAS ,

κ2 = κiκi = ARAS
∂bi
∂XR

∂bi
∂XS

= ARASΓRS . (262)
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Then invariance under rotations of the undeformed body requires thatW is an isotropic in-

variant of tensor C (components CRS ), vectorsK (components KR ) andA, and scalar κ2.

It follows from tables of invariants that W can be expressed as a function of 11 invariants.

The list of such invariants can be found in the appendix (A.2).
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7 Incompressible anisotropic hyperelastic Cosserat contin-

uum

A new form of the strain energy density function of a incompressible hyperelastic matrix

is proposed in this chapter. The new form of the strain energy density function is then

used to determine the force (260) and couple (261) stress constitutive equations defined in

the previous section. Next, derivatives of the force and couple stresses with respect to the

deformation gradient F and tensor G are introduced. Then these derivatives can be used

in a finite element implementation.

7.1 Strain energy density function

The simplified theory introduced in chapter 6.2 contains 11 independent invariants where

the first three invariants (I1, I2, I3 in A.2) correspond to the hyperelastic matrix and the rest

(I4, I5, I6, I7, I8, I9, I10, I11) to fibres. Invariants I4, I5 are able to describe only an extension

or compression of the fibre and the rest of the fibre invariants (I6, I7, I8, I9, I10, I11) expand

the description of the fibre behaviour by e.g. curvature of the fibre. Since linear elastic steel

fibres are considered in this work, all invariants with square or higher power of deformation

tensors, or invariants with mutual product of deformation tensors were neglected and only

I4 and I9 were considered as fibre invariants describing extension or compression and

bending of the fibre. Hence, the proposed form of the invariant based strain energy density

function is

W = k1(I1 − 3) + k2(I4 − 1)2 + k6I
2
9 + p(J − 1), (263)

where p is Lagrange multiplier related to incompressibility, k1, k2, k6 are material param-

eters and the invariants are defined as follows

I1 = CAA, (264)

I4 = ABCCBAC , (265)

I9 = ABΛCBAC . (266)
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The invariants which correspond to the hyperelastic matrix (I1, I2 and I3 = 1 due to

incompressibility) can be used arbitrarily in order to define any hyperelastic constitutive

model. The Neo-Hookean constitutive model was used in the introduced strain energy form

(263) for simplicity, but this one can be replaced by any other model (e.g. Mooney-Rivlin,

Polynomial, Yeoh).

7.2 Force stress

The relation between symmetric Kirchoff stress τ(ij) and symmetric Cauchy stress σ(ij) can

be written as

τ(ij) = Jσ(ij) (267)

and due to incompressibility we can write

τ(ij) = σ(ij) = FiRFjS

(
∂W

∂CRS
+

∂W

∂CSR

)
+ (GiRFjS +GjRFiS)

∂W

∂ΛSR
. (268)

In order to determine the Kirchoff’s stress, derivatives of W with respect to right Cauchy-

Green deformation tensor and lambda tensor are needed. Let’s start with the derivatives

of W with respect to the right Cauchy-Green deformation tensor

∂W

∂CRS
=
∑
n

∂W

∂In

∂In
∂CRS

+
∂W

∂J

∂J

∂CRS
(269)

and similary we can continue with derivatives with respect to tensor lambda

∂W

∂ΛSR
=
∑
n

∂W

∂In

∂In
∂ΛSR

+
∂W

∂J

∂J

∂ΛSR
, (270)

where n = 1, 4, 9. The derivatives of the strain energy density function with respect to the

appropriate invariant in eq. (269), (270) are defined

∂W

∂I1
= k1,

∂W

∂I4
= 2k2(I4 − 1),

∂W

∂I9
= 2k6I9,

∂W

∂J
= p (271)

Derivatives of appropriate invariant and J with respect to the right Cauchy-Green defor-

mation tensor are

∂I1

∂CRS
=

∂I1

∂CSR
= δRS ,

∂I4

∂CRS
=

∂I4

∂CSR
= ARAS , (272)

∂I9

∂CRS
=

∂I9

∂CSR
= 0,

∂J

∂CRS
=

∂J

∂CSR
=
J

2
C−1
RS . (273)
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Derivatives of appropriate invariant and J with respect to lambda tensor are

∂I1

∂ΛSR
= 0,

∂I4

∂ΛSR
= 0,

∂I9

∂ΛSR
= ARAS ,

∂J

∂ΛSR
= 0. (274)

After substituting to equation (268) from equations (271), (272), (273) and (274), we obtain

a final formula of the symetric force stress

τ(ij) = 2FiRFjS(k1δRS + 2k2(I4 − 1)ARAS + pJ/2C−1
RS) + 2k6I9(GiRFjS +GjRFiS)ARAS .

(275)

7.3 Couple stress

Let’s introduce a deviatoric part of Kirchoff µji and Cauchy mji couple stresses. Due to

incompressibiliy, we can write

µji = Jmji = mji, (276)

so the formula for the deviatoric part of couple stress is

µji =
2

3
εikm

∂W

∂ΛPR
FmP (FjRbk + FkRbj) (277)

After substituting from equation (274) the final formula of deviatoric part of couple stress

will be obtained in the form

µji =
4

3
εikmk6I9APARFmP (FjRbk + FkRbj). (278)

7.4 Derivatives of the force stress with respect to deformation gradient

Derivatives of the force stress (268) with respect to deformation gradient can be written

∂τ(ij)

∂FkL
=2(δikFjSMLS + FiRδjkMRL) + 2FiRFjS

∂MRS

∂FkL
+

+
∂NRS

∂FkL
(GiRFjS +GjRFiS) +NRL(GiRδjk +GjRδik),

(279)

where

MRS = k1δRS + 2k2(I4 − 1)ARAS + p
J

2
C−1
RS , (280)

∂MRS

∂FkL
= 2k2ARAS

∂I4

∂FkL
+ p

J

2

(
F−1
Lk C

−1
RS +

∂C−1
RS

∂FkL

)
(281)
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NRS = 2k6I9ARAS (282)

∂NRS

∂FkL
= 2k6ABGkBALARAS (283)

and
∂I4

∂FkL
= 2ABFkBAL. (284)

Derivatives ∂C−1
RS/∂FkL are calculated as follows:

Inverse matrix of right Cauchy-Green deformation tensor can be written

C−1
RS = F−1

Rj F
−1
Sj . (285)

Then derivation with respect to deformation gradient is

∂C−1
RS

∂FkL
=
∂F−1

Rj

∂FkL
F−1
Sj + F−1

Rj

∂F−1
Sj

∂FkL
. (286)

Now the question is how to calculate derivation of inverse deformation gradient with respect

to deformation gradient ∂F−1
Rj /∂FkL. Hence, we can write

F−1
Ri FiS = δRS (287)

and derivation of the previous equation with respect to deformation gradient is

∂F−1
Ri

∂FkL
FiS + F−1

Ri

∂FiS
∂FkL

= 0. (288)

By multiplying each side of the last equation by F−1
Sj there follows

∂F−1
Rj

∂FkL
= −F−1

RkF
−1
Lj . (289)

By substituting to (286) from (289) we obtain the final formula for derivation of inverse

Cauchy-Green deformation tensor with respect to deformation gradient in the form

∂C−1
RS

∂FkL
= −(F−1

RkC
−1
LS + F−1

Sk C
−1
RL). (290)
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7.5 Derivative of the force stress with respect to tensor G

Derivative of the force stress (268) with respect to tensor G can be written as follows

∂τ(ij)

∂GkL
=
∂NRS

∂GkL
(GiRFjS +GjRFiS) +NLS(δikFjS + δjkFiS), (291)

where
∂NRS

∂GkL
= 2k6ALFkCACARAS . (292)

7.6 Derivative of the couple stress with respect to deformation gradient

Derivative of the equation (278) can be written in the following form

∂µji
∂FkL

=
2

3
εiomk6APAR

{
δmkδLP (FjRbo + FoRbj) + FmP

[
δjkδLRbo+ (293)

+FjR
∂bo
∂FkL

+ δokδRLbj + FoR
∂bj
∂FkL

+ 2ABGkBAL(FjRbo + FoRbj)

]}
(294)

where
∂bo
∂FkL

= ARδokδLR = ALδok. (295)

7.7 Derivative of the couple stress with respect to tensor G

The derivative of the couple stress (278) according tensor G yeilds

∂µji
∂GkL

=
4

3
εikmk6ALFkCACAPARFmP (FjRbk + FkRbj). (296)
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8 Compressible anisotropic hyperelastic Cosserat continuum

8.1 Strain energy density function

The strain energy density function (263) introduced in the previous chapter "is adjusted"

now to the compressible form

W = k1(I1 − 3) + k2(I4 − 1)2 + k6I
2
9 +

1

d
(J − 1)2 (297)

where I1, I4, I9 are modified invariants defined in the following section, k1, k2, k6 are ma-

terial parameters, d is parameter of compressibility and J is defined as

J = det(F). (298)

8.2 Modified invariants

Multiplicative decomposition of the deformation gradient F into volume-changing (dila-

tional) and volume-preserving (distortional) parts is defined

F = J1/3F, C = J2/3C. (299)

The terms J1/3I and J2/3I are associated with volume-changing deformations, while F and

C = FTF are associated with volume-preserving deformations of the material. Tensors F

and C are called modified deformation gradient and modified right Cauchy-Green tensor

of deformation, respectively.

Let’s introduce modified tensor G. Tensor G is defined by equation (230), and with help

of equation (299) we can write for the modified tensor

GiJ =
∂bi
∂XJ

=
∂(F iRAR)

∂XJ
= AR

∂(J−1/3FiR)

∂XJ
. (300)

After some manipulations

GiJ = GiJJ
−1/3 − 1

3
ARJ

−1/3FiR
∂2uk

∂XJ∂XL

∂XL

∂xk
. (301)

It should be noted that in case of incompressibility, where J = 1 and it holds

∂2uk
∂XJ∂XL

∂XL

∂xk
= 0 (302)
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(proof is given in the appendix (A.4)), the equation (301) reduces to

GiJ = GiJ . (303)

Let’s introduce modified tensor Λ by the following formula

ΛRS = F iRGiS . (304)

Substituting from equations (299), (301) and after some manipulations we get the modified

tensor in the form

ΛRS = ΛRSJ
−2/3 − 1

3
ALJ

−2/3FiRFiL
∂2uk

∂XS∂XO

∂XO

∂xk
. (305)

Again, with consideration of incompressibility the last equation is reduced to form

ΛRS = ΛRS . (306)

Now, based on the previous modified tensors, modified invariants can be introduced

I1 = CAA = J−2/3CAA (307)

I4 = ABCCBAC = J−2/3ABCCBAC (308)

I9 = ABΛCBAC = J−2/3(ABΛCBAC −
1

3
I4GkOF

−1
Ok ), (309)

where invariant I4 is defined in eq. (265).

8.3 Force stress

Constitutive equation of Kirchoff stress τ(ij) is given by (268) and derivatives ∂W
∂CRS

can be

calculated in the same way as in equation (269), i.e.

∂W

∂CRS
=
∑
n

∂W

∂In

∂In
∂CRS

+
∂W

∂J

∂J

∂CRS
(310)

where n = 1, 4, 9 and

∂W

∂I1

= k1,
∂W

∂I4

= 2k2(I4 − 1),
∂W

∂I9

= 2k6I9,
∂W

∂J
=

2

d
(J − 1), (311)
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∂I1

∂CRS
=

∂I1

∂CSR
= J−2/3

(
δRS −

1

3
C−1
RSCAA

)
, (312)

∂I4

∂CRS
=

∂I4

∂CSR
= J−2/3

(
ARAS −

1

3
C−1
RSABCCBAC

)
, (313)

∂I9

∂CRS
=

∂I9

∂CSR
=

1

3
J−2/3

[
−C−1

RSABΛCBAC +GkOF
−1
Ok

(
1

3
C−1
RSI4 −ARAS

)]
, (314)

∂J

∂CRS
=
J

2
C−1
RS , (315)

Derivatives ∂W
∂ΛSR

can be calculated

∂W

∂ΛSR
=
∑
n

∂W

∂In

∂In
∂ΛSR

+
∂W

∂J

∂J

∂ΛSR
, (316)

where n = 1, 4, 9 and

∂I1

∂ΛSR
= 0,

∂I4

∂ΛSR
= 0,

∂I9

∂ΛSR
= J−2/3ARAS ,

∂J

∂ΛSR
= 0. (317)

By substituting equations (310) and (317) into eq. (268) we obtain the final form of the

Kirchoff stress

τ(ij) =2FiRFjSJ
−2/3

{
k1

(
δSR −

1

3
C−1
RSCAA

)
+ 2k2(I4 − 1)(ARAS−

− 1

3
C−1
RSABCCBAC) +

2

3
k6I9

[
−C−1

RSABΛCBAC +GpOF
−1
Op

(
1

3
C−1
RSI4−

−ARAS
)]

+
1

d
(J − 1)C−1

RSJ
−5/3

}
+ (GiRFjS +GjRFiS)2k6I9J

−2/3ARAS .

(318)

8.4 Couple stress

The deviatoric part of Kirchoff couple stress µji is given by equation (277), where deriva-

tives ∂W
∂ΛPR

can be found from eq. (316). Then the final form of the Kirchoff couple stress

µji can be written as

µji =
4

3
εikmk6J

−2/3I9APARFmP (FjRbk + FkRbj). (319)
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8.5 Derivative of the force stress with respect to deformation gradient

Derivatives of the force stress (318) according to the deformation gradient can be written

∂τ(ij)

∂FkL
=2(δikFjSMLS + FiRδjkMRL) + 2FiRFjS

∂MRS

∂FkL
+

+
∂NRS

∂FkL
(GiRFjS +GjRFiS) +NRL(GiRδjk +GjRδik),

(320)

where

MRS =k1

(
J−2/3δSR −

1

3
C−1
RSI1

)
+ 2k2(I4 − 1)

(
J−2/3ARAS −

1

3
C−1
RSI4

)
−

+
2

3
k6I9

[
−C−1

RSI9 +GpOF
−1
Op

(
1

3
C−1
RSI4 − J−2/3ARAS

)]
+
J

d
(J − 1)C−1

RS ,

(321)

NRS = 2k6I9J
−2/3ARAS , (322)

∂MRS

∂FkL
=

1

3

∂C−1
RS

∂FkL

[
−k1I1 − 2k2(I4 − 1)I4 + 2k6I9

(
1

3
GpOF

−1
Op I4 − I9

)
+

+
3

d
J(J − 1)

]
− 1

3
k1

(
2J−2/3F−1

Lk δSR + C−1
RS

I1

∂FkL

)
+

+
2

3
k2

[
J−2/3ARAS

(
3
∂I4

∂FkL
− 2I4F

−1
Lk + 2F−1

Lk

)
+

+ C−1
RS

∂I4

∂FkL
(1− 2I4)

]
− C−1

RS

[
4

3
k6I9

∂I9

∂FkL
− 1

d
JF−1

Lk (2J − 1)

]
+

+
2

9
k6GpO

[
∂I9

∂FkL
F−1
OpC

−1
RSI4 + I9

∂F−1
Op

∂FkL
C−1
RSI4 + I9F

−1
OpC

−1
RS

∂I4

∂FkL
−

− J−2/3ARAS

(
3
∂I9

∂FkL
F−1
Op + 3I9

∂F−1
Op

∂FkL
− 2I9F

−1
Op

)]

(323)

and
∂NRS

∂FkL
= 2k6J

−2/3ARAS

(
∂I9

∂FkL
− 2

3
I9F

−1
Lk

)
. (324)

Derivatives of the inverse Cauchy-Green tensorwith respect to the deformation gradient

are given by eq. (290) and derivatives of the modified invariants are

∂I1

∂FkL
= 2J−2/3

(
−1

3
F−1
Lk CAA + FkL

)
(325)

∂I4

∂FkL
= 2J−2/3ABAC

(
−2

3
F−1
Lk CCB + δCLFkB + FkCδLB

)
(326)
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∂I9

∂FkL
= J−2/3

[
−2

3
F−1
Lk

(
ABΛCBAC −

1

3
I4GpOF

−1
Op

)
+ABGkBAL− (327)

−1

3
(FkBδLC + FkCδLB)GpOF

−1
Op +

1

3
I4GpOF

−1
OkF

−1
Lp

]
,

where
∂I4

∂FkL
= AB(δLCFkB + δLBFkC)AC (328)

and
∂F−1

Op

∂FkL
= −F−1

OkF
−1
Lp (329)

were used.

8.6 Derivative of the force stress with respect to tensor G

Derivative of the force stress (318) with respect to the tensor G can be written

∂τ(ij)

∂GkL
=2k6J

−2/3

{
AS

[
AR

∂I9

∂GkL
(GiRFjS +GjRFiS) + I9AL(δikFjS + δjkFiS)

]
−

+
2

3
FiRFjS

[
−C−1

RSABAC

(
∂I9

∂GkL
ΛCB + I9FkCδLB

)
+

+

(
1

3
C−1
RSI4 −ARAS

)(
∂I9

∂GkL
GpOF

−1
Op + I9F

−1
Lk

)}
,

(330)

where
∂I9

∂GoL
= J−2/3

(
ALFoCAC −

1

3
I4F

−1
Lo

)
(331)

and invariant I4 is defined in eq. (265).

8.7 Derivative of the couple stress with respect to deformation gradient

Derivatives of the couple stress (319) with respect to the def. gradient can be written in

the following form

∂µji
∂FkL

=
2

3
εiom

{
FmP

[
∂NPR

∂FkL
(FjRbo + FoRbj) +NPR(δjkδLRbo + FjRδokAL+

+ δokδLRbj + FoRδjkAL)

]
+NLRδkm(FjRbo + FoRbj)

}
,

(332)

where NPR or NLR are given by eq. (322) and derivative ∂NPR
∂FkL

is defined in eq. (324).
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8.8 Derivatives of the couple stress with respect to tensor G

Derivatives of the couple stress (319) with respect to the tensor G can be written in the

following form

∂µji
∂GoL

=
4

3
εikmk6J

−2/3 ∂I9

∂GoL
APARFmP (FjRbk + FkRbj), (333)

where derivatives ∂I9
∂GoL

are defined in (331).
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9 Determination of material parameters

There are several material parameters in strain energy density functions (263) or (297)

- k1, k2 and k6. that have to be determined. Material parameter k1 corresponds to the

hyperelastic matrix and its determination is described in chapter (3.6). A feasible deter-

mination of the other two parameters - k2, k6 that correspond to fibres will be described

in this chapter.

The following chapter - "9.1 Simplified approach" describes a simplified possible way how

the parameters can be determined. Note that the simplified approach is valid only for

composite materials with linear elastic fibres and with insignificant Young’s modulus of

the matrix compared to the fibres. Next, determination of the material parameter k2 is

described in chapter "9.1.1 Tension of fibres " and parameter k6 is determined in chapter

"9.1.2 Bending of fibres". Verification of material parameter k6 was not performed, there-

fore, the chapter "9.1.2 Bending of fibres" should be taken as a proposal that needs to be

verified.

Finally, homogenization techniques are discussed shortly in the last subchapter. These

techniques are able to determine material parameters generally for any composite materi-

als made of either linear or nonlinear components.

9.1 Simplified approach

9.1.1 Tension of fibres

The material parametr k2 in the strain energy density functions (94) or (95) established

in chapter 4.2.2 will be determined in this section. This determination procedure can be

also used for the same material parametr k2 occuring in eq. (263) and (297).

It is reminded that material parametr k2 corresponds to the fibres only (not to the matrix)

and is related to the invariant I4. Hence, tension or compression of the fibre can be affected

by this material parameter only.

Consider uniaxial tension loading of the incompressible composite specimen that was de-

scribed in chapter 4.2.2, with fibres in the loading direction, so that their unit vector is

AT = (1, 0, 0). (334)
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We can write from Hooke’s law for the stress σ in the composite (in the loading direction)

σ = Ec(λ− 1), (335)

where λ is the stretch ratio in the loading direction and can be defined by engineering

strain ε as

λ− 1 = ε (336)

and Ec is Young’s modulus of the composite defined by the well-known mixture rule

Ec = Emvm + Efvf . (337)

Young modulus of the elastomer matrix Em can be neglected in comparison with the Young

modulus of the steel fibres Ef (usually Em = 20 MPa and Ef = 210000 MPa), and the

volume fraction of the fibres was introduced in chapter 4.2.2 as vf = 0.3534. Next, the

stress in the incompressible (matrix) composite specimen can be also expressed as (from

eq. (275) and considering only terms that correspond to k2)

σij = 4FiRFjSk2(I4 − 1)ARAS (338)

and in the loading direction

σ11 = 4F 2
11k2(I4 − 1). (339)

Remind that

F11 =
∂x1

∂X1
= λ11 = λ (340)

and

I4 = ACA = C11 = F 2
11 + F 2

21 + F 2
31. (341)

Since uniaxial tension loading is considered then

I4 = F 2
11 = λ2 (342)

and the stress (339) can be rewritten into

σ11 = 4λ2k2(λ2 − 1). (343)

Now, it is obvious that eq. (335) equals to the eq. (339) , so we have

Ec(λ− 1) = 4λ2k2(λ2 − 1) (344)

85



and from this eq. the material parameter k2 follows in the form

k2 =
Ec(λ− 1)

4λ2(λ2 − 1)
. (345)

Considering that the stretch ratio of the fibres is growing gradually, e.g. λ = [1, 1.001, 1.002, 1.003, ....]

and using the least square method, we find that k2 = 9180 MPa.

There is another way of how to determine material parameter k2. This approach is

based on the elastic strain energy accumulated in a solid due to its elastic deformation.

Consider steel fibres under tensional load with a displacement field as follows (see appendix

A.6 for further details):

u1 =
σ

Ec
X1, u2 = −µσ

Ec
X2, u3 = −µσ

Ec
X3. (346)

Using the displacements field (346), the deformation gradient can be expressed as

F =


1 + σ

Ec
0 0

0 1− µσ
Ec

0

0 0 1− µσ
Ec


and with respect to eq. (334)

I4 =

(
1 +

σ

Ec

)2

. (347)

Next, the part of strain energy density function that corresponds to tension/compression

of the fibres is (96)

Wfibres,tens./comp. = k2(I4 − 1)2 (348)

and we can write with respect to eq. (347)

Wfibres,tens./comp. = k2

[(
1 +

σ

Ec

)2

− 1

]2

. (349)

An integration of equation (349) over the circular cross-section with diameter d gives us

the elastic strain energy per unit length of the steel fibre∫∫
S

Wfibres,tens./comp.dX2dX3 = k2
πd2

4

[(
1 +

σ

Ec

)2

− 1

]2

. (350)
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In the linear theory of elasticity, it holds for the elastic strain energy per unit length

W = 2
F 2
a

πEcd2
, (351)

where Fa is the loading force. Now, the energy obtained by equation (350) should equal

to the energy in (351), so we have

2F 2

πEcd2
= k2

πd2

4

[(
1 +

σ

Ec

)2

− 1

]2

. (352)

The material parameter k2 then can be expressed from (352) using least-squares method

for different values of the loading force Fa. Using the same condition as in the previous

paragraph (Ec = 74214 MPa, d = 0.45 mm) and loading force Fa = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

N, the material parameter yields k2 = 9200 MPa. It’s obvious by comparing with the value

obtained in the previous paragraph k2 = 9180 that the difference is insignificant (only

20MPa).

9.1.2 Bending of fibres

A feasible approach to determination of material parametr k6 occurring in the strain energy

density functions (263) and (297) will be introduced in this section. Let’s remind that

material parametr k6 corresponds to the fibres only (not to the matrix), relates to the

bending of the fibre and corresponds to the term

k6I
2
9 . (353)

Consider a deformation of the steel fibre due to a pair of couples of magnitude M applied

at the ends of the fibre. The displacement field (see appendix A.7 for further information)

can be described as follows

u1 =
M

EfJf
X1X2, u2 =

µM

2EfJf
(X2

3 −X2
2 )− M

2EfJf
X2

1 , u3 = − µM

EfJf
X2X3, (354)

where Ef is Young’s modulus of the fibres and Jf is the quadratic cross-sectional moment

of the fibres. Then components of deformation gradient can be written as

F =


1 + MX2

EfJf
MX1
EfJf

0

−MX1
EfJf

1− µMX2

EfJf

µMX3

EfJf

0 −µMX3

EfJf
1− µMX2

EfJf
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and components of tensor G are

G =


0 M

EfJf
0

− M
EfJf

0 0

0 0 0


With respect to the (334), invariant I9 equals to

I9 = AΛA =
M4X2

1

E4
fJ

4
f

(355)

and the part of the strain energy density function that corresponds to bending of the fibres

is (263)

Wfibres,bending = k6I
2
9 = k6

M4X2
1

E4
fJ

4
f

. (356)

An integration of equation (356) over a circular cross-section with diameter d gives us the

elastic strain energy per unit length of the steel fibre∫∫
S

Wfibres,bending = k6
1

12

M4πd2

E4
fJ

4
f

. (357)

The elastic strain energy per unit length in the linear theory of elasticity is

W =
M2

2EfJf
. (358)

The energy in equation (356) should equal to the energy in (358), so we have

M2

2EfJf
= k6

1

12

M4πd2

E4
fJ

4
f

(359)

and for a certain moment M the material parameter k6 can be determined.

9.2 Homogenization techniques

The unknown material parameters can be determined by methods, where heterogenous

material (e.g. fibre composite) is replaced by an equivalent homogenous one with the same

macroscopic properties. Material parameters of such equivalent homogenous material, so

called effective material properties, are determined from components of the original het-

erogenous material (i.e. from properties of the matrix and fibres).

Consider two basic approaches for obtaining the overall response of a heterogeneous medium
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- the average field theory (or the mean-field theory) and the homogenization theory. Roughly

speaking, these are physics and mathematics based theories, respectively. Here, the basic

features of these two theories are interpreted as follows [21]:

Average field theory. This theory works with the reprezentative volume element (RVE)

and is based on the fact that the effective mechanical properties measured in experiments

are relations between the volume average of the strain and stress of microscopically het-

erogeneous samples. Hence, macrofields are defined as the volume averages of the corre-

sponding microfelds, and the effective properties are determined as relations between the

averaged microfields.

Homogenization theory. This theory works with periodic structure and establishes

mathematical relations between the microfields and the macrofields, using a multi-scale

perturbation method. Then the effective properties emerge naturally as consequences of

these relations, without dependence on specific physical measurements.

A detailed description of both theories can be found in [21]. Homogenization methods

based on Cosserat continuum can be found in Forest’s works [12], [13] and [14], who deals

with both Cosserat continum and micromorphic materials.

The rest of this chapter shows the average field theory process taken from Sluis [29].

The following sections try to adapt the average field procedure presented in [29] to our

constitutive equations. Note that presented procedure is not completed and some things

have to be solved before its use in practise. However, the presented procedure can be a

good starting point for a detailed study and work with the average fields theory based on

Cosserat continuum.

Let X be the position of a material point of the macroscopic continuum, and let Y be

the position of a material point in the RVE associated with the material point X. In the

sequel, the symbols with an overstrike character represent macroscopic quantities, and the

symbols without these overstrike characters are microscopic quantities. Now let us split

up the microscopic displacement field into a rigid body motion and a part representing the

actual deformation

u(X,Y) = u0 +ϕ× v(X,Y), v(X,0) = 0, (360)
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or

ui(X,Y) = u0i + εijKϕjYK + vi(X,Y), vi(X,0) = 0, (361)

where the first two terms represent the rigid macroscopic motion (rigid translation and

rigid rotation) and the last term symbolises the (true) deformation which ultimatively

causes stresses and strains in the material.

The form of microscopic displacement field ui can be written out

u1 = u01 + ϕ2Y3 − ϕ3Y2 + v1 (362)

u2 = u02 + ϕ3Y1 − ϕ1Y3 + v2 (363)

u3 = u03 + ϕ1Y2 − ϕ2Y1 + v3. (364)

Relations between micro and macro quantities

Since the first step of the homogenization process is definition of the relations between

the macroscopic and microscopic quantities, we define the macroscopic gradient of the

displacemnt field as an average of the gradient of the microscopic displacement field,

∂ui
∂XJ

=

〈
∂ui
∂YJ

〉
=

1

V

∫
V

∂ui
∂YJ

dV (365)

where
∂ui
∂YJ

= εikJϕk +
∂vi
∂YJ

. (366)

Next, the deformation gradient then can be written out as

F iJ = δiJ +
∂ui
∂XJ

= δiJ + εikJϕk +

〈
∂ui
∂YJ

〉
(367)

and tensor G

GiJ =
∂bi
∂XJ

=
∂(F iRAR)

∂XJ
=
∂F iR
∂XJ

AR =
∂2ui

∂XJ∂XR
AR =

〈
∂2vi

∂YJ∂YR

〉
AR. (368)

True displacement field

To obtain an expression for v, we expand v into a Taylor series around the origin of the

RVE, Y=0, disregarding terms of order O(‖Y‖3) and higher, and keeping X constant,

vi(X,Y) = v0i(X) +
∂vi(X,Y)

∂YJ

∣∣∣∣
Y=0

YJ +
1

2

∂2vi(X,Y)

∂YJ∂YK

∣∣∣∣
Y=0

YJYK =
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= αiJYJ +
1

2
βiJKYJYK , (369)

where, according to (361), we have v0i(X) = 0. Taking the first and second order gradients

of this expression and averaging these expressions over the RVE volume V yields〈
∂vi
∂YJ

〉
= αiJ + βijkMk, (370)

〈
∂2vi

∂YJ∂YK

〉
= βiJK , (371)

where

Mk =
1

V

∫
V

YKdV (372)

is a geometry parameter. For example consider a cubic RVE, i.e. Y1, Y2, Y3ε[−a, a], then

Mk =
1

V

∫
V

Y1dY1dY2dY3 =
1

8a3

a∫
−a

a∫
−a

a∫
−a

Y1dY1dY2dY3 = 0 (373)

and we have 〈
∂vi
∂YJ

〉
= αiJ (374)

〈
∂2vi

∂YJ∂YK

〉
= βiJK . (375)

Considering a cubic RVE, eq. (374) and deformation gradient (367) we can write

αiJ =

〈
∂vi
∂YJ

〉
= F iJ − δiJ + εiJkϕk. (376)

Next, we can write from (368) and using (375)

GiJ =
∂F iR
∂XJ

AR =

〈
∂2vi

∂YJ∂YR

〉
AR = βiJRAR, (377)

therefore, from the last eq. (377) we have

∂F iK
∂XJ

= βiJK . (378)

Then using eq. (376) and (378), the true displacement field (369) can be written out as

vi = (F iK − δiK − εijKϕj)YK +
1

2

∂F iK
∂XJ

YJYK . (379)
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Finally, we have obtained the formulation of the displacement field in terms of macroscopic

deformation quantities

ui = u0i + (F iK − δiK)YK +
1

2

∂F iK
∂XJ

YJYK . (380)

The macroscopic potencial energy W = W (F iJ , GiJ) can be defined as a volume average

of its microscopic equivalent W = W (FiJ),

W (F iJ , GiJ) =
1

V

∫
V

W (FiJ)dY. (381)

The macroscopic quantities F iJ , GiJ can be determined using (380) and based on suitable

simulations (tension, bending of the composite material) as well as the right side of the eq.

(381). Then eq. (381) should contain only the unknown material parameters.
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10 Finite element implementation of Cosserat continuum

The new constitutive equations introduced in the chapter 6 contain, inter alia, tensor GiJ

that was introduced in (225) as

GiJ =
∂bi
∂XJ

=
∂FiRAR
∂XJ

= AR
∂2ui

∂XJ∂XR
. (382)

Next, the principle of virtual work (401) that will be introduced in the following chapter

contains the following term that, due to the constrained Cosserat theory, equals to

∂δωi
∂xj

=
1

2
εilk

∂2δuk
∂xj∂xl

. (383)

It’s obvious from both equations (382) and (383) that Cosserat continuum contains second

derivatives of the displacement field. This higher-order theory requires the so called C1

continuity in order to ensure convergence of the finite element procedure. The C1 con-

tinuity means that both displacements and their first derivatives are continuous over the

elements and their boundaries.

There is another possibility how to ensure convergence of the mentioned Cosserat contin-

uum. We can consider two unknown independent fields - displacements ui and derivatives

φiJ =
∂ui
∂XJ

, (384)

so equations (382) and (383) can be rewritten into

GiJ = AR
∂φiR
∂XJ

(385)

∂δωi
∂xj

=
1

2
εilk

∂δφkM
∂xj

F−1
Ml . (386)

Now, the equations (385) and (386) contain only first derivatives of the uknown field φiJ ,

therefore, the standard C0 continuity of the both uknown fields is sufficient for ensuring

the convergence. However, the uknown fields are not independent (they are constrained

by eq. (384)), therefore, an additional constraint (384) has to be incorporated to the finite

element equations - this was done with help of Lagrange multipliers.
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This chapter formulates the principle of virtual work of the Cosserat continuum and

introduces the finite element formulation of constrained Cosserat continuum, based on two

different approaches - Lagrange multipliers and C1 elements. The later approach ( C1

elements) was programmed in Matlab software and comparison between results obtained

on the basis of Cauchy and Cosserat continuums can be found at the end of this chapter.

10.1 Principle of virtual work

The principle of virtual work is the starting point for finite element analysis, therefore,

let’s show the derivation of this principle first.

In quasistatic mechanic the equilibrium equations for the force stress (195) are reduced

into the form
∂σji
∂xj

= 0 (387)

and the equilibrium equations for the couple stress (196) are reduced into

∂mji

∂xj
+ εijkσjk = 0. (388)

In order to obtain principle of virtual work, let’s multiply equation (387) by virtual velocity

field δui and equation (388) by virtual spin field δωi and integrate their sum over volume

v ∫
v

∂σ(ji)

∂xj
δvidv +

∫
v

(
∂mji

∂xj
δωi + εijkσjkδωi

)
dv = 0. (389)

Because of
∂

∂xj
(σjiδvi) =

∂σji
∂xj

δvi + σji
∂δvi
∂xj

(390)

∂

∂xj
(mjiδωi) =

∂mji

∂xj
δωi +mji

∂δωi
∂xj

and with help of Gauss-Ostrogradsky’s theorem, we can rewrite equation (389) into∫
v

(
σji

∂δvi
∂xj

+mji
∂δωi
∂xj

− εijkσjkδωi
)
dv =

∫
s

(tiδvi + liδωi)ds (391)

where ti = σjinj and li = mjinj are traction vectors that were introduced by eq. (157)

and (158).
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Parcial derivatives ∂δvi
∂xj

can be devided into symetric δdij and antisymetric δωij parts

∂δvi
∂xj

= δdij + δωij (392)

where

δdij =
1

2

(
∂δvi
∂xj

+
∂δvj
∂xi

)
(393)

δωij =
1

2

(
∂δvi
∂xj

− ∂δvj
∂xi

)
.

Similarly the force stress can be devided into its symmetric σ(ij) and antisymetric σ[ji]

parts

σji = σ(ij) + σ[ji] (394)

and the couple stress into its volumetric and deviatoric mji parts

mji =
1

3
miiδij +mji. (395)

Since the following relations are valid

σ(ij)δωij = 0, − εijkδωi = δωjk, δωji = −δωij , (396)

σ[ji]δdij = 0,
∂ωi
∂xi

= 0, σ(ij)δdij = σ(ij)
∂δvi
∂xj

,

then substituting (392), (394), (395) into (391) leads to the principle of virtual work in the

form ∫
v

(
σ(ij)

∂δvi
∂xj

+mji
∂δωi
∂xj

)
dv =

∫
s

(tiδvi + liδωi)ds. (397)

Obviously, the principle of virtual work depends on the symmetric part of Cauchy force

stress and on deviatoric part of Cauchy couple stress only.

Let’s introduce symmetric Kirchhoff force stress τ(ij) and deviatoric Kirchhoff couple stress

µji

τ(ij) = Jσ(ij) µji = Jmji, (398)

where

J =
dv

dV
. (399)
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Next, we will consider that the right side of equation (397) is integrated only over the

boundary where displacements or rotations are prescribed. In other words, traction vector

will not be prescribed on the body surface (no external forces or couples). Hence, and

because of δvi = δωi = 0 on su+ω, it holds∫
su+ω

(tiδvi + liδωi)ds = 0. (400)

Now, with help of (398), (399), (400), the principle of virtual work (397) can be rewritten

into the final form ∫
V

(
τ(ij)

∂δvi
∂xj

+ µji
∂δωi
∂xj

)
dV = 0. (401)

10.2 Lagrange multipliers

10.2.1 Total potential energy functional

A total potential energy functional Π is the sum of the elastic energy U accumulated in the

deformed body and potential energy V of the applied forces. But as it was mentioned in

the previous section, we will consider only deformation load realized through the prescribed

displacements and their derivatives, therefore the potencial energy V is omitted. The total

energy functional whose directional derivatives yield the principle of virtual work is

Π =

∫
V

WdV (402)

10.2.2 Total potential energy functional with constraint

In previous section (6.1) the tensor G was introduced as

GiJ = AR
∂2ui

∂XJ∂XR
. (403)

Let’s now introduce a new uknown variable φiR and rewrite tensor GiJ into the form

GiJ = AR
∂φiR
∂XJ

. (404)

Next, we will consider two different uknowns - displacements ui and their derivatives φiJ .

It’s obvious that both kinematic fields ui, φiJ are mutually dependent

φiJ =
∂ui
∂XJ

. (405)
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However, we will consider in our procedure that both fields are independent. Then the total

energy functional (402) has to be extended by the condition (405) and a new functional

Πc with constraint is then

Πc = Π +

∫
V

λiJ

(
∂ui
∂XJ

− φiJ
)
dV (406)

where λiJ are Lagrange multipliers. Directional derivatives of (406) yield the principle

of virtual work which is a basis for finite element method. The directional derivatives in

directions δvi, δϕiJ and δλiJ will be considered separately

DΠc[δv] = DΠ[δv] +

∫
V

λiJ
∂δvi
∂XJ

dV (407)

DΠc[δϕ] = DΠ[δϕ]−
∫
V

λiJδϕiJdV (408)

DΠc[δλ] =

∫
V

δλiJ

(
∂ui
∂XJ

− φiJ
)
dV (409)

where DΠ[δv] is the first term in (401), i.e.

DΠ[δv] =

∫
V

τ(ij)
∂δvi
∂xj

dV (410)

and DΠ[δϕ] can be derived from the second term of equation (401), i.e.

DΠ[δϕ] =

∫
V

µji
∂δωi
∂xj

dV =

∫
V

1

2
εiklµji

∂

∂xj
(δϕlMF

−1
Mk)dV, (411)

because

δωi =
1

2
εikl

∂δvl
∂XM

F−1
Mk =

1

2
εiklδϕlMF

−1
Mk. (412)

So the principle of virtual work can now be written in the final form∫
V

[
τ(ij)

∂δvi
∂xj

+
1

2
µjiεikl

∂

∂xj
(δϕlMF

−1
Mk) + λiJ

∂δvi
∂XJ

−

− λiJδϕiJ + δλiJ

(
∂ui
∂XJ

− φiJ
)]
dV = 0

(413)
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10.2.3 Finite element discretization

The principle of virtual work (413) can be rewritten into the following form∫
V

[
τ(ij)

∂δvi
∂XM

F−1
Mj +

1

2
εiklµji

(
∂δϕlM
∂XN

F−1
Mk + δϕlM

∂F−1
Mk

∂XN

)
F−1
Nj+

+λiJ
∂vi
∂XJ

− λiJδϕiJ + δλiJ

(
∂ui
∂XJ

− φiJ
)]
dV = 0, (414)

where
∂F−1

Mk

∂XN
= −F−1

Pk

∂FoP
∂XN

F−1
Mo = −F−1

Pk

∂φoP
∂XN

F−1
Mo. (415)

The last equation (415) was obtained on the basis of the following consideration:

FiJF
−1
Jk = δik (416)

and the derivatives of (416) are as follows

∂FiJ
∂XN

F−1
Jk + FiJ

∂F−1
Jk

∂XN
= 0, (417)

which leads to equation (415).

The volume integral in the virtual work equation (414) is taken over the reference config-

uration advantageously, since we can take the given initial shape of the solid as reference,

whereas the deformed configuration is unknown.

The displacements field ui and virtual velocity field δvi, as well as derivatives field φiJ and

virtual gradient of velocity field δϕiJ are specified in an arbitrary point within the solid

by interpolating between nodal values in some convenient way,

ui(X) = Na(X)uai , δvi(X) = Na(X)δvai (418)

φiJ(X) = Ma(X)φaiJ , δϕiJ(X) = Ma(X)δϕaiJ . (419)

Here, X denotes coordinates of an arbitrary point in the reference configuration and uai , φ
a
iJ

are unknown displacements and derivatives respectively in each node. Na and Ma are

standard C0 shape functions and Lagrange multipliers can be interpolated linearly over

the element with 4 multiplier’s nodes

λiJ = OaλaiJ , δλiJ = OaδλaiJ . (420)
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Now, we can discretize the principle of virtual work (414) by substituting (418), (419) and

(420) ∫
V

(
τ(ij)

∂Na

∂XM
F−1
Mj + λbiJO

b∂N
a

∂XJ

)
dV.δuai +

∫
V

Oa
(
∂N b

∂XJ
ubi − φbiJM b

)
dV.δλaiJ+

+

∫
V

[
1

2
εiklµji

(
∂Ma

∂XN
F−1
Mk −M

aF−1
Pk

∂φoP
∂XN

F−1
Mo

)
F−1
Nj − λ

b
lMO

bMa

]
dV.δφalM = 0 (421)

10.2.4 Newton-Raphson iterative procedure

Since equation (421) must hold for all independent virtual fields δuai , δφ
a
lM and λaiJ , we

have ∫
V

(
τ(ij)

∂Na

∂XM
F−1
Mj + λbiJO

b∂N
a

∂XJ

)
dV = 0, (422)

∫
V

[
1

2
εiklµji

(
∂Ma

∂XN
F−1
Mk −M

aF−1
Pk

∂φoP
∂XN

F−1
Mo

)
F−1
Nj − λ

b
lMO

bMa

]
dV = 0, (423)

and ∫
V

Oa
(
∂N b

∂XJ
ubi − φbiJM b

)
dV = 0. (424)

Nonlinear equations (422), (423) and (424) can be solved using Newton-Raphson iterative

process whereby given a solution estimate xk at iteration k. A new value is obtained in

terms of an increment by establishing the linear approximation [3]

R(xk+1) ≈ R(xk) +D(R(xk)), [u] +D(R(xk)), [φ] +D(R(xk)), [λ], (425)

where symbol "D( )" means directional derivatives in the specified direction "[ ]".

Let’s now calculate gradually the directional derivatives (425) of equations (422), (423)

and (424).

Eq.(422):

D(R(xk)), [u] =

∫
V

(
∂τ(ij)

∂ubn

∂Na

∂XM
F−1
Mj + τ(ij)

∂Na

∂XM

∂F−1
Mj

∂ubn

)
.∆ubndV, (426)

where
∂τ(ij)

∂ubn
=
∂τ(ij)

∂FkL

∂FkL
∂ubn

=
∂τ(ij)

∂FkL

∂N b

∂XL
δnk (427)
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FoP = δoP +
∂uo
∂Xp

= δoP +
∂N b

∂XP
ubo (428)

and similary as in (415) we have

∂F−1
Mj

∂ubn
= −F−1

Mo

∂N b

∂XP
F−1
Pj δon. (429)

After substituting (427), (428) and (429) into (426) we obtain the final form of directional

derivative

D(R(xk)), [u] =

∫
V

(
∂τ(ij)

∂FkL

∂Na

∂XM

∂N b

∂XL
F−1
Mj .∆u

b
k−τ(ij)

∂Na

∂XM

∂N b

∂XL
F−1
MkF

−1
Lj .∆u

b
k

)
dV. (430)

Next,

D(R(xk)), [φ] =

∫
V

∂τ(ij)

∂φpQ

∂Na

∂XM
F−1
Mj .∆φ

b
pQdV (431)

where
∂τ(ij)

∂φpQ
=
∂τ(ij)

∂GkL

∂GkL
∂φpQ

=
∂τ(ij)

∂GkL
AR

∂M b

∂XL
δkpδQR (432)

GkL = AR
∂φkR
∂XL

= AR
∂M b

∂XL
φbkR. (433)

Therefore, the final form of directional derivative (430) is

D(R(xk)), [φ] =

∫
V

∂τ(ij)

∂GkL

∂Na

∂XM

∂M b

∂XL
F−1
MjAR.∆φ

b
kRdV. (434)

And directional derivative of (422) in the direction λ is

D(R(xk)), [λ] =

∫
V

∂Na

∂XJ
Ob.∆λbiJdV. (435)

Let’s continue with eq.(423). Since we can write

∂µji
∂ubq

=
∂µji
∂FrS

∂FrS
∂ubq

(436)
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and with help of equations (428) and (429) the directional derivative in the direction u

yields after some manipulations

D(R(xk)), [u] =

∫
V

{
∂Ma

∂XN

∂N b

∂XD

[
∂µji
∂FcD

F−1
MkF

−1
Nj − µji(F

−1
McF

−1
DkF

−1
Nj+

+ F−1
MkF

−1
NcF

−1
Dj )

]
+Ma ∂N

b

∂XD

∂φoP
∂XN

[
−
∂µji
∂FcD

F−1
PkF

−1
MoF

−1
Nj+

+ µji(F
−1
Pc F

−1
DkF

−1
MoF

−1
Nj + F−1

PkF
−1
McF

−1
DoF

−1
Nj + F−1

PkF
−1
MoF

−1
NcF

−1
Dj )

]}
.∆ubcdV.

(437)

Next, we can write
∂µji
∂φcD

=
∂µji
∂GsT

∂GsT
∂φcD

(438)

and with help of eq. (433) the directional derivative in direction φ yields

D(R(xk)), [φ] =

∫
V

1

2
εiklF

−1
Nj

[
∂µji
∂GsT

∂M b

∂XT
AD

(
∂Ma

∂XN
F−1
Mk −M

aF−1
Pk

∂φoP
∂XN

F−1
Mo

)
−

− µjiMa ∂M
b

∂XN
F−1
DkF

−1
Ms

]
.∆φbsDdV

(439)

and directional derivative in direction λ is

D(R(xk)), [λ] = −
∫
V

MaOb.∆λblMdV. (440)

It follows the last three directional derivatives of eq. (424)

D(R(xk)), [u] =

∫
V

Oa
∂N b

∂XJ
.∆ubidV, (441)

D(R(xk)), [φ] = −
∫
V

OaM b.∆φbiJdV, (442)

and

D(R(xk)), [λ] = 0. (443)

After application of the Newton-Raphson procedure to the previous directional derivatives

we get a system of three linear equations

Kuu
aibk.∆u

b
k +Kuφ

aibkR.∆φ
b
kR +Kuλ

aJb.∆λ
b
iJ = −Rai (444)
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Kφu
alMbc.∆u

b
c +Kφφ

alMbsD.∆φ
b
sD +Kφλ

ab .∆λ
b
lM = −RalM (445)

Kλu
aJb.∆u

b
i +Kλφ

ab .∆φ
b
iJ +Kλλ

ab .∆λ
b
iJ = −RaiJ (446)

where residuum Rai is given by the left side of eq. (422), RalM by the left side of eq. (423),

and RaiJ by the left side of eq. (424). The stiffness matrixes that result from directional

derivatives are

Kuu
aibk =

∫
V

∂Na

∂XM

∂N b

∂XL

(
∂τ(ij)

∂FkL
F−1
Mj − τ(ij)F

−1
MkF

−1
Lj

)
dV, (447)

Kuφ
aibkR =

∫
V

∂τ(ij)

∂GkL

∂Na

∂XM

∂M b

∂XL
F−1
MjARdV, (448)

Kuλ
aJb =

∫
V

∂Na

∂XJ
ObdV, (449)

Kφu
alMbc =

∫
V

{
∂Ma

∂XN

∂N b

∂XD

[
∂µji
∂FcD

F−1
MkF

−1
Nj − µji(F

−1
McF

−1
DkF

−1
Nj+

+ F−1
MkF

−1
NcF

−1
Dj )

]
+Ma ∂N

b

∂XD

∂φoP
∂XN

[
−
∂µji
∂FcD

F−1
PkF

−1
MoF

−1
Nj+

+ µji(F
−1
Pc F

−1
DkF

−1
MoF

−1
Nj + F−1

PkF
−1
McF

−1
DoF

−1
Nj + F−1

PkF
−1
MoF

−1
NcF

−1
Dj )

]}
dV,

(450)

Kφφ
alMbsD =

∫
V

1

2
εiklF

−1
Nj

[
∂µji
∂GsT

∂M b

∂XT
AD

(
∂Ma

∂XN
F−1
Mk −M

aF−1
Pk

∂φoP
∂XN

F−1
Mo

)
−

− µjiMa ∂M
b

∂XN
F−1
DkF

−1
Ms

]
dV,

(451)

Kφλ
ab = −

∫
V

MaObdV, (452)

Kλu
aJb =

∫
V

Oa
∂N b

∂XJ
dV, (453)

Kλφ
ab = −

∫
V

OaM b.∆φbiJdV, (454)
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and

Kλλ
ab = 0. (455)

10.3 Hermite C1 elements

10.3.1 Construction of shape functions

Consider a third order polynom in the form

f(ξ) = a+ bξ + cξ2 + dξ3, (456)

and its derivative
∂f(ξ)

∂ξ
= b+ 2cξ + 3dξ2. (457)

Next, consider a one-dimensional element with two nodes. We need to construct four

different shape functions satisfying the following requirements:

• the value of the first shape function ϕ1 equals to one at the first node and is zero at

the other node. The first derivative of the first shape function ϕ1 equals to zero at

both nodes,

• the value of the second shape function ϕ2 equals to one at the second node and is

zero at the other node. The first derivative of the second shape function ϕ2 equals

to zero at both nodes,

• the value of the third shape function Φ1 equals to zero at both nodes. The first

derivative of the third shape function Φ1 equals to one at the first node and is zero

at the other node,

• the value of the fourth shape function Φ2 equals to zero at both nodes. The first

derivative of the fourth shape function Φ2 equals to one at the second node and is

zero at the other node.

Let’s construct the first shape function which equals to one at node 1 at the coordinate

ξ = −1, equals to zero at node 2 at the coordinate ξ = 1, and its derivatives are zero at

both nodes. For this purpose, substitute appropriate coordinates to the equations (456),
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Figure 15: Shape function at node 1.

(457) and set the left hand side of these eqautions to the required values at the appropriate

nodes

1 = a− b+ c− d (458)

0 = a+ b+ c+ d (459)

0 = b− 2c+ 3d (460)

0 = b+ 2c+ 3d. (461)

The above system of four equations was solved for four unknows a, b, c, d with the

following result

a =
1

2
, b = −3

4
, c = 0, d =

1

4
(462)

and the shape function that is depicted in fig. (15) can be written in the form

ϕ1 =
1

4
(1− ξ)2(2 + ξ). (463)

Repeat the same process mentioned above and construct the third shape function, i.e.

find the third shape function that equals to zero at both nodes (i.e. at coordinates ξ = ±1)

and the first derivative of the third shape function equals to one at the first node and is
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zero at the other node. So we have

0 = a− b+ c− d (464)

0 = a+ b+ c+ d (465)

1 = b− 2c+ 3d (466)

0 = b+ 2c+ 3d. (467)

Then the unknowns are

a =
1

4
, b = −1

4
, c = −1

4
, d =

1

4
(468)

and the third shape function is (see also fig. (16))

Φ1 =
1

4
(1− ξ)2(1 + ξ). (469)

The same procedure was repeated and the second and fourth shape functions were found

(see also fig. (16))

ϕ2 =
1

4
(1 + ξ)2(2− ξ), (470)

Φ2 =
1

4
(1 + ξ)2(ξ − 1). (471)

An extension to a three dimensional 8 nodes element can be written in the form

N1 = ϕ1(ξ1)ϕ1(ξ2)ϕ1(ξ3) N5 = ϕ1(ξ1)ϕ1(ξ2)ϕ2(ξ3)

N2 = ϕ2(ξ1)ϕ1(ξ2)ϕ1(ξ3) N6 = ϕ2(ξ1)ϕ1(ξ2)ϕ2(ξ3)

N3 = ϕ2(ξ1)ϕ2(ξ2)ϕ1(ξ3) N7 = ϕ2(ξ1)ϕ2(ξ2)ϕ2(ξ3)

N4 = ϕ1(ξ1)ϕ2(ξ2)ϕ1(ξ3) N8 = ϕ1(ξ1)ϕ2(ξ2)ϕ2(ξ3) (472)

O1 = Φ1(ξ1)ϕ1(ξ2)ϕ1(ξ3) O5 = Φ1(ξ1)ϕ1(ξ2)ϕ2(ξ3)

O2 = Φ2(ξ1)ϕ1(ξ2)ϕ1(ξ3) O6 = Φ2(ξ1)ϕ1(ξ2)ϕ2(ξ3)

O3 = Φ2(ξ1)ϕ2(ξ2)ϕ1(ξ3) O7 = Φ2(ξ1)ϕ2(ξ2)ϕ2(ξ3)

O4 = Φ1(ξ1)ϕ2(ξ2)ϕ1(ξ3) O8 = Φ1(ξ1)ϕ2(ξ2)ϕ2(ξ3) (473)
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Figure 16: Shape functions.
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P1 = ϕ1(ξ1)Φ1(ξ2)ϕ1(ξ3) P5 = ϕ1(ξ1)Φ1(ξ2)ϕ2(ξ3)

P2 = ϕ2(ξ1)Φ1(ξ2)ϕ1(ξ3) P6 = ϕ2(ξ1)Φ1(ξ2)ϕ2(ξ3)

P3 = ϕ2(ξ1)Φ2(ξ2)ϕ1(ξ3) P7 = ϕ2(ξ1)Φ2(ξ2)ϕ2(ξ3)

P4 = ϕ1(ξ1)Φ2(ξ2)ϕ1(ξ3) P8 = ϕ1(ξ1)Φ2(ξ2)ϕ2(ξ3) (474)

Q1 = ϕ1(ξ1)ϕ1(ξ2)Φ1(ξ3) Q5 = ϕ1(ξ1)ϕ1(ξ2)Φ2(ξ3)

Q2 = ϕ2(ξ1)ϕ1(ξ2)Φ1(ξ3) Q6 = ϕ2(ξ1)ϕ1(ξ2)Φ2(ξ3)

Q3 = ϕ2(ξ1)ϕ2(ξ2)Φ1(ξ3) Q7 = ϕ2(ξ1)ϕ2(ξ2)Φ2(ξ3)

Q4 = ϕ1(ξ1)ϕ2(ξ2)Φ1(ξ3) Q8 = ϕ1(ξ1)ϕ2(ξ2)Φ2(ξ3) (475)

Substitution of shape functions (463), (470), (469) and (471) to the expressions (472),

(473), (474) and (475) results in the final forms of the shape functions. These final forms

can be found in the appendix (A.5).

The approximation of the displacement field is then

ui = Nauai +Oaαai + P aβai +Qaγai , (476)

where a corresponds to the node number (a=1..8) and uai , α
a
i , β

a
i , γ

a
i are the unknown

displacements and slopes in the i-th node, respectively. Next, approximation of deformation

gradient F and tensor G can be written

FiJ = δiJ +
∂ui
∂XJ

= δiJ +
∂Na

∂XJ
uai +

∂Oa

∂XJ
αai +

∂P a

∂XJ
βai +

∂Qa

∂XJ
γai , (477)

GiJ =
∂(FiRAR)

∂XJ
= AR

∂2ui
∂XJ∂XR

= (478)

= AR

(
∂2Na

∂XJ∂XR
uai +

∂2Oa

∂XJ∂XR
αai +

∂2P a

∂XJ∂XR
βai +

∂2Qa

∂XJ∂XR
γai

)
.

SinceNa (or any other shape function) depends on the natural coordinatesNa = Na(ξ1, ξ2, ξ3),

we need to determine how the first and second parcial derivatives (479) in previous equa-

tions can be calculated

∂Na

∂XJ
,
∂Oa

∂XJ
,
∂P a

∂XJ
,
∂Qa

∂XJ
,

∂2Na

∂XJ∂XR
,

∂2Oa

∂XJ∂XR
,

∂2P a

∂XJ∂XR
,

∂2Qa

∂XJ∂XR
. (479)

107



In order to obtain them, we can write

∂Na

∂XJ
=
∂Na

∂ξi

∂ξi
∂XJ

, (480)

∂2Na

∂XJ∂XR
=

∂

∂XJ

(
∂Na

∂ξi

∂ξi
∂XR

)
=

∂ξj
∂XJ

∂

∂ξj

(
∂Na

∂ξi

∂ξi
∂XR

)
= (481)

=
∂2Na

∂ξj∂ξi

∂ξi
∂XJ

∂ξj
∂XR

+
∂Na

∂ξi

∂2ξi
∂XJ∂XR

.

An approximation of the undeformed coordinates was considered as follows

Xi = MaXa
i , (482)

where Ma are the shape functions which are given in the appendix (A.5).

10.3.2 Finite element discretization

The principle of virtual work (401) is a basis for finite element discretization, therefore,

let’s start with this equation and rewrite it into a more suitable form∫
V

(
τ(ij)

∂δvi
∂XM

F−1
Mj + µji

∂δωi
∂XM

F−1
Mj

)
dV = 0. (483)

We can write for virtual spin field

δωi =
1

2
εikl

∂δvl
∂xk

=
1

2
εikl

∂δvl
∂XN

F−1
Nk (484)

and for its deriatives

∂δωi
∂XM

=
1

2
εikl

∂

∂XM

(
∂δvl
∂XN

F−1
Nk

)
=

1

2
εikl

(
∂2δvl

∂XM∂XN
F−1
Nk +

∂δvl
∂XN

∂F−1
Nk

∂XM

)
. (485)

The last equation contains derivatives of inverse of the deformation gradient with respect

to the undeformed coordinates. These derivatives can be expressed by the following con-

sideration and procedure

FoNF
−1
Nk = δok (486)

and derivatives of the last equation with respect to the undeformed coordinates are

∂FoN
∂XM

F−1
Nk +

∂F−1
Nk

∂XM
FoN = 0. (487)
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After some manipulations the final form of the respective derivatives will be obtained

∂F−1
Nk

∂XM
= −F−1

No

∂FoP
∂XM

F−1
Pk = −F−1

No

∂2uo
∂XM∂XP

F−1
Pk . (488)

Now, substitution of the last equation into eq. (485) gives the final form of derivatives of

the virtual spin field

∂δωi
∂XM

=
1

2
εikl

(
∂2δvl

∂XM∂XN
F−1
Nk −

∂δvl
∂XN

∂2uo
∂XM∂XP

F−1
NoF

−1
Pk

)
. (489)

If we substitute the last equation (489) into the principle of virtual work (483), we can

obtain the final form of the principle of virtual work that will be used later in the dis-

cretization process∫
V

[
τ(ij)

∂δvi
∂XM

F−1
Mj +

1

2
µjiεiklF

−1
Mj

(
F−1
Nk

∂2δvl
∂XM∂XN

− ∂δvl
∂XN

∂FoP
∂XM

F−1
NoF

−1
Pk

)]
dV = 0. (490)

Now, let’s recall the approximation of displacements field (476)

ui = Nauai +Oaαai + P aβai +Qaγai , (491)

and similarly to this formula let’s introduce an approximation of the velocity field in the

form

δvi = Naδvai +Oaδαai + P aδβai +Qaδγai . (492)

Equation (492) can be substituted now into the principle of virtual work (490)∫
V

{
τ(ij)F

−1
Mj

(
∂Na

∂XM
δvai +

∂Oa

∂XM
δαai +

∂P a

∂XM
δβai +

∂Qa

∂XM
δγai

)
+

+
1

2
µjlεlkiF

−1
Mj

[
F−1
Nk

(
∂2Na

∂XM∂XN
δvai +

∂2Oa

∂XM∂XN
δαai +

∂2P a

∂XM∂XN
δβai +

∂2Qa

∂XM∂XN
δγai

)
− F−1

NoF
−1
Pk

∂FoP
∂XM

(
∂Na

∂XN
δvai +

∂Oa

∂XN
δαai +

∂P a

∂XN
δβai +

∂Qa

∂XN
δγai

)]}
dV = 0

(493)
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and it can be rewritten into the form{∫
V

[
τ(ij)F

−1
Mj

∂Na

∂XM
+

1

2
µjlεlkiF

−1
Mj

(
F−1
Nk

∂2Na

∂XM∂XN
− F−1

NoF
−1
Pk

∂FoP
∂XM

∂Na

∂XN

)]
dV

}
δvai +

+

{∫
V

[
τ(ij)F

−1
Mj

∂Oa

∂XM
+

1

2
µjlεlkiF

−1
Mj

(
F−1
Nk

∂2Oa

∂XM∂XN
− F−1

NoF
−1
Pk

∂FoP
∂XM

∂Oa

∂XN

)]
dV

}
δαai +

+

{∫
V

[
τ(ij)F

−1
Mj

∂P a

∂XM
+

1

2
µjlεlkiF

−1
Mj

(
F−1
Nk

∂2P a

∂XM∂XN
− F−1

NoF
−1
Pk

∂FoP
∂XM

∂P a

∂XN

)]
dV

}
δβai +

+

{∫
V

[
τ(ij)F

−1
Mj

∂Qa

∂XM
+

1

2
µjlεlkiF

−1
Mj

(
F−1
Nk

∂2Qa

∂XM∂XN
− F−1

NoF
−1
Pk

∂FoP
∂XM

∂Qa

∂XN

)]
dV

}
δγai = 0.

(494)

Since δvi, δαi, δβi, δγi are independent and arbitrary, previous equations (494) will be zero

if∫
V

[
τ(ij)F

−1
Mj

∂Na

∂XM
+

1

2
µjlεlkiF

−1
Mj

(
F−1
Nk

∂2Na

∂XM∂XN
− F−1

NoF
−1
Pk

∂FoP
∂XM

∂Na

∂XN

)]
dV = 0 (495)

∫
V

[
τ(ij)F

−1
Mj

∂Oa

∂XM
+

1

2
µjlεlkiF

−1
Mj

(
F−1
Nk

∂2Oa

∂XM∂XN
− F−1

NoF
−1
Pk

∂FoP
∂XM

∂Oa

∂XN

)]
dV = 0 (496)

∫
V

[
τ(ij)F

−1
Mj

∂P a

∂XM
+

1

2
µjlεlkiF

−1
Mj

(
F−1
Nk

∂2P a

∂XM∂XN
− F−1

NoF
−1
Pk

∂FoP
∂XM

∂P a

∂XN

)]
dV = 0 (497)

∫
V

[
τ(ij)F

−1
Mj

∂Qa

∂XM
+

1

2
µjlεlkiF

−1
Mj

(
F−1
Nk

∂2Qa

∂XM∂XN
− F−1

NoF
−1
Pk

∂FoP
∂XM

∂Qa

∂XN

)]
dV = 0. (498)

The system of four nonlinear equations (495), (496), (497) and (498) was obtained when

discretization was applied and this system will be solved by Newton-Raphson iterative

procedure in the following section.

10.3.3 Newton-Raphson iterative procedure

The nonlinear system of equations above will be solved similarly to chapter 10.2.4 using

Newton-Raphson method. Hence, let’s calculate the directional derivatives of eq. (495) in
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direction [u]

D(R(xk)), [u] =

∫
V

{
∂τ(ij)

∂ubn
F−1
Mj

∂Na

∂XM
+ τ(ij)

∂F−1
Mj

∂ubn

∂Na

∂XM
+

+
1

2
µjlεlki

∂F−1
Mj

∂ubn

(
F−1
Nk

∂2Na

∂XM∂XN
− F−1

NoF
−1
Pk

∂Na

∂XN

∂FoP
∂XM

)
+

+
1

2

∂µjl
∂ubn

εlkiF
−1
Mj

(
F−1
Nk

∂2Na

∂XM∂XN
− F−1

NoF
−1
Pk

∂Na

∂XN

∂FoP
∂XM

)
+

+
1

2
µjlεlkiF

−1
Mj

[
∂F−1

Nk

∂ubn

∂2Na

∂XM∂XN
−
∂F−1

No

∂ubn
F−1
Pk

∂Na

∂XN

∂FoP
∂XM

−

− F−1
No

∂F−1
Pk

∂ubn

∂Na

∂XN

∂FoP
∂XM

− F−1
NoF

−1
Pk

∂Na

∂XN

∂

∂ubn

(
∂FoP
∂XM

)]}
dV.∆ubn

(499)

Since the deformation gradient is given by

FkL = δkL +
∂uk
∂XL

= δkL +
∂N b

∂XL
ubk +

∂Ob

∂XL
αbk +

∂P b

∂XL
βbk +

∂Qb

∂XL
γbk, (500)

we can write
∂FkL
∂ubn

=
∂N b

∂XL
δkn (501)

∂τ(ij)

∂ubn
=
∂τ(ij)

∂FkL

∂FkL
∂ubn

=
∂τ(ij)

∂FkL

∂N b

∂XL
δkn

∂µjl
∂ubn

=
∂µjl
∂FrS

∂FrS
∂ubn

=
∂τ(ij)

∂FrS

∂N b

∂XS
δrn

and
∂F−1

Mj

∂ubn
= −F−1

Mk

∂N b

∂XQ
F−1
Qj δnk. (502)

Substituting (501) and (502) back into (499), the final form of the directional derivatives

D(R(xk)), [u] can be obtained

D(R(xk)), [u] =

∫
V

[
∂Na

∂XM

∂N b

∂XL

(
∂τ(ij)

∂FkL
F−1
Mj − τ(ij)F

−1
MkF

−1
Lj

)
+

+
1

2
εlri

∂N b

∂XS

(
∂µjl
∂FkS

F−1
Mj − µjlF

−1
MkF

−1
Sj

)(
F−1
Nr

∂2Na

∂XM∂XN
−

− F−1
NoF

−1
Pr

∂Na

∂XN

∂FoP
∂XM

)
+

1

2
µjlεlriF

−1
Mj

(
−F−1

Nk

∂N b

∂XS
F−1
Sr

∂2Na

∂XM∂XN
+

+ F−1
Nk

∂N b

∂XS
F−1
So F

−1
Pr

∂Na

∂XN

∂FoP
∂XM

+ F−1
NoF

−1
Pk

∂N b

∂XS
F−1
Sr

∂Na

∂XN

∂FoP
∂XM

−

− F−1
NkF

−1
Pr

∂Na

∂XN

∂2N b

∂XM∂XP

)]
dV.∆uk

(503)
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Hence, the stifness matrix resulting from the previous directional derivatives is

Kuu
aibk =

∫
V

[
∂Na

∂XM

∂N b

∂XL

(
∂τ(ij)

∂FkL
F−1
Mj − τ(ij)F

−1
MkF

−1
Lj

)
+

+
1

2
εlri

∂N b

∂XS

(
∂µjl
∂FkS

F−1
Mj − µjlF

−1
MkF

−1
Sj

)(
F−1
Nr

∂2Na

∂XM∂XN
−

− F−1
NoF

−1
Pr

∂Na

∂XN

∂FoP
∂XM

)
+

1

2
µjlεlriF

−1
Mj

(
−F−1

Nk

∂N b

∂XS
F−1
Sr

∂2Na

∂XM∂XN
+

+
∂Na

∂XN

∂N b

∂XS

∂FoP
∂XM

(
F−1
NkF

−1
So F

−1
Pr + F−1

NoF
−1
PkF

−1
Sr

)
−

− F−1
NkF

−1
Pr

∂Na

∂XN

∂2N b

∂XM∂XP

)]
dV,

(504)

When the above mentioned process is repeated in order to calculate the rest of the

directional derivatives of eqs. (495), (496), (497) and (498) in directions [u], [α], [β] and

[γ], the following stiffness matrixes can be obtained:

Kuα
aibk =

∫
V

[
∂Na

∂XM

∂Ob

∂XL

(
∂τ(ij)

∂FkL
F−1
Mj − τ(ij)F

−1
MkF

−1
Lj

)
+

+
1

2
εlri

∂Ob

∂XS

(
∂µjl
∂FkS

F−1
Mj − µjlF

−1
MkF

−1
Sj

)(
F−1
Nr

∂2Na

∂XM∂XN
−

− F−1
NoF

−1
Pr

∂Na

∂XN

∂FoP
∂XM

)
+

1

2
µjlεlriF

−1
Mj

(
−F−1

Nk

∂Ob

∂XS
F−1
Sr

∂2Na

∂XM∂XN
+

+
∂Na

∂XN

∂Ob

∂XS

∂FoP
∂XM

(
F−1
NkF

−1
So F

−1
Pr + F−1

NoF
−1
PkF

−1
Sr

)
−

− F−1
NkF

−1
Pr

∂Na

∂XN

∂2Ob

∂XM∂XP

)]
dV,

(505)

Kuβ
aibk =

∫
V

[
∂Na

∂XM

∂P b

∂XL

(
∂τ(ij)

∂FkL
F−1
Mj − τ(ij)F

−1
MkF

−1
Lj

)
+

+
1

2
εlri

∂P b

∂XS

(
∂µjl
∂FkS

F−1
Mj − µjlF

−1
MkF

−1
Sj

)(
F−1
Nr

∂2Na

∂XM∂XN
−

− F−1
NoF

−1
Pr

∂Na

∂XN

∂FoP
∂XM

)
+

1

2
µjlεlriF

−1
Mj

(
−F−1

Nk

∂P b

∂XS
F−1
Sr

∂2Na

∂XM∂XN
+

+
∂Na

∂XN

∂P b

∂XS

∂FoP
∂XM

(
F−1
NkF

−1
So F

−1
Pr + F−1

NoF
−1
PkF

−1
Sr

)
−

− F−1
NkF

−1
Pr

∂Na

∂XN

∂2P b

∂XM∂XP

)]
dV,

(506)
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Kuγ
aibk =

∫
V

[
∂Na

∂XM

∂Qb

∂XL

(
∂τ(ij)

∂FkL
F−1
Mj − τ(ij)F

−1
MkF

−1
Lj

)
+

+
1

2
εlri

∂Qb

∂XS

(
∂µjl
∂FkS

F−1
Mj − µjlF

−1
MkF

−1
Sj

)(
F−1
Nr

∂2Na

∂XM∂XN
−

− F−1
NoF

−1
Pr

∂Na

∂XN

∂FoP
∂XM

)
+

1

2
µjlεlriF

−1
Mj

(
−F−1

Nk

∂Qb

∂XS
F−1
Sr

∂2Na

∂XM∂XN
+

+
∂Na

∂XN

∂Qb

∂XS

∂FoP
∂XM

(
F−1
NkF

−1
So F

−1
Pr + F−1

NoF
−1
PkF

−1
Sr

)
−

− F−1
NkF

−1
Pr

∂Na

∂XN

∂2Qb

∂XM∂XP

)]
dV,

(507)

Kαu
aibk =

∫
V

[
∂Oa

∂XM

∂N b

∂XL

(
∂τ(ij)

∂FkL
F−1
Mj − τ(ij)F

−1
MkF

−1
Lj

)
+

+
1

2
εlri

∂N b

∂XS

(
∂µjl
∂FkS

F−1
Mj − µjlF

−1
MkF

−1
Sj

)(
F−1
Nr

∂2Oa

∂XM∂XN
−

− F−1
NoF

−1
Pr

∂Oa

∂XN

∂FoP
∂XM

)
+

1

2
µjlεlriF

−1
Mj

(
−F−1

Nk

∂N b

∂XS
F−1
Sr

∂2Oa

∂XM∂XN
+

+
∂Oa

∂XN

∂N b

∂XS

∂FoP
∂XM

(
F−1
NkF

−1
So F

−1
Pr + F−1

NoF
−1
PkF

−1
Sr

)
−

− F−1
NkF

−1
Pr

∂Oa

∂XN

∂2N b

∂XM∂XP

)]
dV,

(508)

Kαα
aibk =

∫
V

[
∂Oa

∂XM

∂Ob

∂XL

(
∂τ(ij)

∂FkL
F−1
Mj − τ(ij)F

−1
MkF

−1
Lj

)
+

+
1

2
εlri

∂Ob

∂XS

(
∂µjl
∂FkS

F−1
Mj − µjlF

−1
MkF

−1
Sj

)(
F−1
Nr

∂2Oa

∂XM∂XN
−

− F−1
NoF

−1
Pr

∂Oa

∂XN

∂FoP
∂XM

)
+

1

2
µjlεlriF

−1
Mj

(
−F−1

Nk

∂Ob

∂XS
F−1
Sr

∂2Oa

∂XM∂XN
+

+
∂Oa

∂XN

∂Ob

∂XS

∂FoP
∂XM

(
F−1
NkF

−1
So F

−1
Pr + F−1

NoF
−1
PkF

−1
Sr

)
−

− F−1
NkF

−1
Pr

∂Oa

∂XN

∂2Ob

∂XM∂XP

)]
dV,

(509)
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Kαβ
aibk =

∫
V

[
∂Oa

∂XM

∂P b

∂XL

(
∂τ(ij)

∂FkL
F−1
Mj − τ(ij)F

−1
MkF

−1
Lj

)
+

+
1

2
εlri

∂P b

∂XS

(
∂µjl
∂FkS

F−1
Mj − µjlF

−1
MkF

−1
Sj

)(
F−1
Nr

∂2Oa

∂XM∂XN
−

− F−1
NoF

−1
Pr

∂Oa

∂XN

∂FoP
∂XM

)
+

1

2
µjlεlriF

−1
Mj

(
−F−1

Nk

∂P b

∂XS
F−1
Sr

∂2Oa

∂XM∂XN
+

+
∂Oa

∂XN

∂P b

∂XS

∂FoP
∂XM

(
F−1
NkF

−1
So F

−1
Pr + F−1

NoF
−1
PkF

−1
Sr

)
−

− F−1
NkF

−1
Pr

∂Oa

∂XN

∂2P b

∂XM∂XP

)]
dV,

(510)

Kαγ
aibk =

∫
V

[
∂Oa

∂XM

∂Qb

∂XL

(
∂τ(ij)

∂FkL
F−1
Mj − τ(ij)F

−1
MkF

−1
Lj

)
+

+
1

2
εlri

∂Qb

∂XS

(
∂µjl
∂FkS

F−1
Mj − µjlF

−1
MkF

−1
Sj

)(
F−1
Nr

∂2Oa

∂XM∂XN
−

− F−1
NoF

−1
Pr

∂Oa

∂XN

∂FoP
∂XM

)
+

1

2
µjlεlriF

−1
Mj

(
−F−1

Nk

∂Qb

∂XS
F−1
Sr

∂2Oa

∂XM∂XN
+

+
∂Oa

∂XN

∂Qb

∂XS

∂FoP
∂XM

(
F−1
NkF

−1
So F

−1
Pr + F−1

NoF
−1
PkF

−1
Sr

)
−

− F−1
NkF

−1
Pr

∂Oa

∂XN

∂2Qb

∂XM∂XP

)]
dV,

(511)

Kβu
aibk =

∫
V

[
∂P a

∂XM

∂N b

∂XL

(
∂τ(ij)

∂FkL
F−1
Mj − τ(ij)F

−1
MkF

−1
Lj

)
+

+
1

2
εlri

∂N b

∂XS

(
∂µjl
∂FkS

F−1
Mj − µjlF

−1
MkF

−1
Sj

)(
F−1
Nr

∂2P a

∂XM∂XN
−

− F−1
NoF

−1
Pr

∂P a

∂XN

∂FoP
∂XM

)
+

1

2
µjlεlriF

−1
Mj

(
−F−1

Nk

∂N b

∂XS
F−1
Sr

∂2P a

∂XM∂XN
+

+
∂P a

∂XN

∂N b

∂XS

∂FoP
∂XM

(
F−1
NkF

−1
So F

−1
Pr + F−1

NoF
−1
PkF

−1
Sr

)
−

− F−1
NkF

−1
Pr

∂P a

∂XN

∂2N b

∂XM∂XP

)]
dV,

(512)
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Kβα
aibk =

∫
V

[
∂P a

∂XM

∂Ob

∂XL

(
∂τ(ij)

∂FkL
F−1
Mj − τ(ij)F

−1
MkF

−1
Lj

)
+

+
1

2
εlri

∂Ob

∂XS

(
∂µjl
∂FkS

F−1
Mj − µjlF

−1
MkF

−1
Sj

)(
F−1
Nr

∂2P a

∂XM∂XN
−

− F−1
NoF

−1
Pr

∂P a

∂XN

∂FoP
∂XM

)
+

1

2
µjlεlriF

−1
Mj

(
−F−1

Nk

∂Ob

∂XS
F−1
Sr

∂2P a

∂XM∂XN
+

+
∂P a

∂XN

∂Ob

∂XS

∂FoP
∂XM

(
F−1
NkF

−1
So F

−1
Pr + F−1

NoF
−1
PkF

−1
Sr

)
−

− F−1
NkF

−1
Pr

∂P a

∂XN

∂2Ob

∂XM∂XP

)]
dV,

(513)

Kββ
aibk =

∫
V

[
∂P a

∂XM

∂P b

∂XL

(
∂τ(ij)

∂FkL
F−1
Mj − τ(ij)F

−1
MkF

−1
Lj

)
+

+
1

2
εlri

∂P b

∂XS

(
∂µjl
∂FkS

F−1
Mj − µjlF

−1
MkF

−1
Sj

)(
F−1
Nr

∂2P a

∂XM∂XN
−

− F−1
NoF

−1
Pr

∂P a

∂XN

∂FoP
∂XM

)
+

1

2
µjlεlriF

−1
Mj

(
−F−1

Nk

∂P b

∂XS
F−1
Sr

∂2P a

∂XM∂XN
+

+
∂P a

∂XN

∂P b

∂XS

∂FoP
∂XM

(
F−1
NkF

−1
So F

−1
Pr + F−1

NoF
−1
PkF

−1
Sr

)
−

− F−1
NkF

−1
Pr

∂P a

∂XN

∂2P b

∂XM∂XP

)]
dV,

(514)

Kβγ
aibk =

∫
V

[
∂P a

∂XM

∂Qb

∂XL

(
∂τ(ij)

∂FkL
F−1
Mj − τ(ij)F

−1
MkF

−1
Lj

)
+

+
1

2
εlri

∂Qb

∂XS

(
∂µjl
∂FkS

F−1
Mj − µjlF

−1
MkF

−1
Sj

)(
F−1
Nr

∂2P a

∂XM∂XN
−

− F−1
NoF

−1
Pr

∂P a

∂XN

∂FoP
∂XM

)
+

1

2
µjlεlriF

−1
Mj

(
−F−1

Nk

∂Qb

∂XS
F−1
Sr

∂2P a

∂XM∂XN
+

+
∂P a

∂XN

∂Qb

∂XS

∂FoP
∂XM

(
F−1
NkF

−1
So F

−1
Pr + F−1

NoF
−1
PkF

−1
Sr

)
−

− F−1
NkF

−1
Pr

∂P a

∂XN

∂2Qb

∂XM∂XP

)]
dV,

(515)
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Kγu
aibk =

∫
V

[
∂Qa

∂XM

∂N b

∂XL

(
∂τ(ij)

∂FkL
F−1
Mj − τ(ij)F

−1
MkF

−1
Lj

)
+

+
1

2
εlri

∂N b

∂XS

(
∂µjl
∂FkS

F−1
Mj − µjlF

−1
MkF

−1
Sj

)(
F−1
Nr

∂2Qa

∂XM∂XN
−

− F−1
NoF

−1
Pr

∂Qa

∂XN

∂FoP
∂XM

)
+

1

2
µjlεlriF

−1
Mj

(
−F−1

Nk

∂N b

∂XS
F−1
Sr

∂2Qa

∂XM∂XN
+

+
∂Qa

∂XN

∂N b

∂XS

∂FoP
∂XM

(
F−1
NkF

−1
So F

−1
Pr + F−1

NoF
−1
PkF

−1
Sr

)
−

− F−1
NkF

−1
Pr

∂Qa

∂XN

∂2N b

∂XM∂XP

)]
dV,

(516)

Kγα
aibk =

∫
V

[
∂Qa

∂XM

∂Ob

∂XL

(
∂τ(ij)

∂FkL
F−1
Mj − τ(ij)F

−1
MkF

−1
Lj

)
+

+
1

2
εlri

∂Ob

∂XS

(
∂µjl
∂FkS

F−1
Mj − µjlF

−1
MkF

−1
Sj

)(
F−1
Nr

∂2Qa

∂XM∂XN
−

− F−1
NoF

−1
Pr

∂Qa

∂XN

∂FoP
∂XM

)
+

1

2
µjlεlriF

−1
Mj

(
−F−1

Nk

∂Ob

∂XS
F−1
Sr

∂2Qa

∂XM∂XN
+

+
∂Qa

∂XN

∂Ob

∂XS

∂FoP
∂XM

(
F−1
NkF

−1
So F

−1
Pr + F−1

NoF
−1
PkF

−1
Sr

)
−

− F−1
NkF

−1
Pr

∂Qa

∂XN

∂2Ob

∂XM∂XP

)]
dV,

(517)

Kγβ
aibk =

∫
V

[
∂Qa

∂XM

∂P b

∂XL

(
∂τ(ij)

∂FkL
F−1
Mj − τ(ij)F

−1
MkF

−1
Lj

)
+

+
1

2
εlri

∂P b

∂XS

(
∂µjl
∂FkS

F−1
Mj − µjlF

−1
MkF

−1
Sj

)(
F−1
Nr

∂2Qa

∂XM∂XN
−

− F−1
NoF

−1
Pr

∂Qa

∂XN

∂FoP
∂XM

)
+

1

2
µjlεlriF

−1
Mj

(
−F−1

Nk

∂P b

∂XS
F−1
Sr

∂2Qa

∂XM∂XN
+

+
∂Qa

∂XN

∂P b

∂XS

∂FoP
∂XM

(
F−1
NkF

−1
So F

−1
Pr + F−1

NoF
−1
PkF

−1
Sr

)
−

− F−1
NkF

−1
Pr

∂Qa

∂XN

∂2P b

∂XM∂XP

)]
dV,

(518)
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Kγγ
aibk =

∫
V

[
∂Qa

∂XM

∂Qb

∂XL

(
∂τ(ij)

∂FkL
F−1
Mj − τ(ij)F

−1
MkF

−1
Lj

)
+

+
1

2
εlri

∂Qb

∂XS

(
∂µjl
∂FkS

F−1
Mj − µjlF

−1
MkF

−1
Sj

)(
F−1
Nr

∂2Qa

∂XM∂XN
−

− F−1
NoF

−1
Pr

∂Qa

∂XN

∂FoP
∂XM

)
+

1

2
µjlεlriF

−1
Mj

(
−F−1

Nk

∂Qb

∂XS
F−1
Sr

∂2Qa

∂XM∂XN
+

+
∂Qa

∂XN

∂Qb

∂XS

∂FoP
∂XM

(
F−1
NkF

−1
So F

−1
Pr + F−1

NoF
−1
PkF

−1
Sr

)
−

− F−1
NkF

−1
Pr

∂Qa

∂XN

∂2Qb

∂XM∂XP

)]
dV,

(519)

The Newton-Raphson proces applied above results in the following system of four linear

equations

Kuu
aibk.∆u

b
k +Kuα

aibk.∆α
b
k +Kuβ

aibk.∆β
b
k +Kuγ

aibk.∆γ
b
k = Rai (520)

Kαu
aibk.∆u

b
k +Kαα

aibk.∆α
b
k +Kαβ

aibk.∆β
b
k +Kαγ

aibk.∆γ
b
k = Sai (521)

Kβu
aibk.∆u

b
k +Kβα

aibk.∆α
b
k +Kββ

aibk.∆β
b
k +Kβγ

aibk.∆γ
b
k = T ai (522)

Kγu
aibk.∆u

b
k +Kγα

aibk.∆α
b
k +Kγβ

aibk.∆β
b
k +Kγγ

aibk.∆γ
b
k = Uai , (523)

where residua Rai , S
a
i , T

a
i and Uai are given by the left hand side of equations (495), (496),

(497) and (498), respectively.

10.3.4 Numerical integration

In order to evaluate the integrals introduced in the previous section in the stifnesses K, a

numerical integration, so called Gauss integration, was used.

Let’s consider a 1D element with n integration points. Then Gauss integration gives an

exact result for a 2n - 1 order polynom. The mentioned integrals contain polynoms of

the fifth order maximally corresponding to one variable, therefore, three integration points

(n = 3 ) have to be used at least in order to obtain accurate values of the integrals and

to achive convergence of the solution. That means n3 integration points in 3D, i.e. 27
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integration points in total per each 3D element. Then the Gauss integration scheme to be

used for such element can be written as follows∫ +1

−1

∫ +1

−1

∫ +1

−1
f(ξ1, ξ2, ξ3)dξ1dξ2dξ3 =

3∑
I=1

3∑
J=1

3∑
K=1

wIwJwKf(ξI1 , ξ
J
2 , ξ

K
3 ) (524)

where f is the function to be integrated, wI , wJ , wK are weighting factors and ξI1 , ξJ2 , ξK3

are locations of integration points. When considering

j = 1..3, k = 1..3, l = 1..3 and i = 32(l − 1) + 3(k − 1) + j,

the weighting factors and locations of the integration points can be generated by the

following scheme

wi = νjνkνl, ξi1 = ηj , ξi2 = ηk, ξi3 = ηl, (525)

where

η1 = −0.7745966692, η2 = 0, η3 = 0.7745966692 (526)

and

ν1 = 0.5555555555 ν2 = 0.8888888888 ν3 = 0.5555555555. (527)

The first three weighting factors and coordinates of integration points are presented in

table 1, as an example.

point w ξ1 ξ2 ξ3

1 0.1714677640 -0.7745966692 -0.7745966692 -0.7745966692

2 0.2743842241 0 -0.7745966692 -0.7745966692

3 0.1714677640 0.7745966692 -0.7745966692 -0.7745966692

...

Table 1: Weighting factors and coordinates of the first three integration points

10.4 Results of simulations using Hermite C1 elements

The finite element implementation introduced in chapter 10.3 was applied to write a new

finite element solver in MATLAB software as a so called "m" file. The MATLAB m-file

reads the input text file, runs the solver and generates an output text file with results. The
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input file contains information about nodes, elements, and prescribed boundary conditions

and can be created in a text editor or using an other finite element software. The output

text file contains results such as displacements, strains and stresses in the nodes, and this

output file can be opened in the free finite element software Calculix in order to show the

results in a graphical representation.

In order to verify the theory presented in this thesis with the new constitutive equations

comprehending the bending stiffness on the basis of Cosserat continuum, a simple three-

point bending test was simulated using the new finite element solver created specifically

for this purpose (m-file). A very simple unimaterial finite element model was created with

two planes of symetry and a very rough mesh - fig. 17 (this model is called unimaterial

Cosserat model hereafter). The model contained 8 finite elements in total with each

element having 8 nodes and 27 integration points. The applied boundary conditions are

presented in fig. 18.

Figure 17: Meshed simplified model.

The strain energy density function presented in (297) was used in the simulations with

the following material parameters: k1 = 1 MPa, k2 = 1400 MPa, d = 0.0001, while

different values of k6 were considered. Remember that parameters k1, d correspond to the

hyperelastic matrix and parameters k2, k6 correspond to the fibres, where k2 represents

their tension (compression) stiffness and k6 their bending stiffness. Hence, the values of

k6 = 0, k6 = 100 and k6 = 1000 were considered in order to see if the new model is able to

consider different bending stiffnesses of the fibres.

The three-point bending test was also simulated in Ansys software using unimaterial finite

element model based on "classical" Cauchy contiuum (this model is called unimaterial

Cauchy model) with the aim to compare the results with the unimaterial Cosserat model.
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Figure 18: Prescribed boundary conditions.
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The unimaterial Cauchy model contained 8 elements in total and either 8 or 20 nodes and

either 8 or 27 integration points per each element. The used strain energy density function

had the following form

W = k1(I1 − 3) + k2(I4 − 1)2 +
1

d
(J − 1)2. (528)

If we compare the strain energy density function (528) used in the unimaterial Cauchy

model with eq. (297) used in the unimaterial Cosserat model, we can see that both models

use almost the same strain energy density function except for the term containing parametr

k6. As it was mentioned in previous chapters, the unimaterial Cauchy model is not able

to include the bending stiffness of fibres, therefore this model does not contain material

parameter k6 that corresponds to bending of fibres and Cosserat theory.

Results of simulations using both Cosserat and Cauchy unimaterial models are depicted

in fig. 19. In this figure the abbreviation "Cauchy" means that Cauchy unimaterial

model was used and the numbers 185 or 186 mean hexahedron elements (according to

Ansys software) with 8 or 20 nodes respectively. The abbreviation "FULL" or "Reduced"

means that either full integration with 27 integration points or reduced integration with 8

integration points was used. Next, "Cosserat" means that results were obtained using the

unimaterial Cosserat model with different values of material parameter k6.

When we compare first the results obtained by Cauchy model , we can see that the 20

nodes element with the higher number of integration points (186 FULL - 27 int. points )

gives stiffer response than the same element with the lower number of integration points

(186 Reduced - 8 int. points) and the 8 nodes element with 8 int. points (Cauchy 185)

gives the stiffest response among the Cauchy models. So we can draw conclusion - an

increasing number of integration points makes the resulting behaviour stiffer and the 8

nodes element gives stiffer results than the 20 nodes one.

Let’s pay attention to the Cosserat models now. As we know, the unimaterial Cosserat

model uses 8 nodes elements with 27 integration points. The strain energy density function

(297) used in Cosserat model is reduced into the strain energy density function (528) of

the Cauchy model when using k6 = 0. Hence, both models (Cosserat k6 = 0 and Cauchy

185) should give the same results. However, we can see from fig. 19 that Cosserat model

with k6 = 0 gives results a little bit stiffer than Cauchy 185 model. This can be explained
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Figure 19: Simulations - bending test.

on the basis of the number of integration points, as mentioned above - a higher number

of integration points gives stiffer resulting behaviour (Cosserat k6 = 0 has 27 int. points

while Cauchy 185 has 8 int. points only).

Finally, we can see from the same figure that the increasing parameter k6 increases stiffness

of the resulting curves, i.e. in contrast to the Cauchy models, the unimaterial Cosserat

model is able to take the bending stiffness of the fibres into account .
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11 Conclusion

This thesis deals with computational simulations of composite material made of elastomer

matrix and steel fibres. Two different approaches were considered in the simulations – bima-

terial and unimaterial computational models. The bimaterial model reflects the structure

of the composite material in detail, i.e. it works with matrix and each individual fibre.

On the other side, fibres are not created in the unimaterial model and their reinforcement

effect is included in the strain energy density function. Since fibres are not modelled, the

unimaterial computational model has a significantly lower number of elements, and conse-

quently the computational time decreases significantly.

Computational simulations of uniaxial tension and bending tests of composite material were

performed using both (bi- and unimaterial) computational models. The results showed that

both models give the same results in simulations of uniaxial tension tests, but they dis-

agree significantly in simulations of bending tests. It was found out that the disagreement

is caused by the assumption of infinitesimaly thin fibres in the unimaterial model causing

a zero bending stiffness of the fibres. Hence, the unimaterial computational model is not

able to take the bending stiffness of fibres into account and consequently it can work with

tension (or compression) load only.

Real experiments (tension and bending tests) of composite material were carried out with

the aim to compare the results of simulations with experimental results. However, the

experiments have shown that mechanical properties of the elastomeric matrix are highly

dependent on the pre-cycling of specimens (so called Mullins effect). The specimen that

was pre-cycled to a certain value of elongation (or strain) showed different mechanical

properties from another specimen pre-cycled to another elongation value. Since there is a

nonhomogeneous strain state in the composite specimen (due to fibres), each part of the

specimen is loaded by another value of elongation (strain) and due to mentioned Mullins

effect the stress-strain curve is changed. To compare such experiments with simulations it

would be necessary to use such material models in simulations that are able to account for

pre-cycling of the elastomeric matrix and can work with different amplitude of elongation

(or strain).

In order to verify the hypothesis that in case of tension tests the disagreement between
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experiments and simulations was caused by Mullins effect, new experiments with another

elastomer matrix were carried out. A new elastomer matrix was chosen showing a very low

Mullins effect. Then experiments and simulations of uniaxial tension tests were in mutual

agreement for both (bi- and unimaterial) computational models.

The next goal was to extend the unimaterial model by bending stiffness of the fibres. In

2007 Spencer and Soldatos published new constitutive equations based on Cosserat contin-

uum that are able to work with bending stiffness of the fibres under large strain conditions.

Cosserat continuum is more general than Cauchy continuum, it considers both displace-

ments and rotations as independent variables and works with force and couple stresses.

However, the equations introduced by Spencer and Soldatos are very complicated and very

difficult for practical application. Hence, a system of simplified constitutive equations was

formulated in the thesis on the basis of the equations introduced by Spencer and Soldatos.

After determination of the simplified constitutive equations (valid under restrictions for

bending load of the fibres being parallel and straight in the undeformed state), a new form

of strain energy density function was introduced. This form can be decoupled into three

main parts – the first part corresponds to the hyperelastic elastomer matrix, the second

one to tension (or compression) of the fibres and the third part relates to bending of the

fibres.

In order to verify whether the new unimaterial model with bending stiffness is able to

work with bending stiffness of fibres correctly, a new finite element (FE) solver had to be

written. It was not possible to use any commercial or available FE solver, since the new

solver was based on Cosserat continuum and included a new strain energy density function

with new constitutive equations comprehending additional variables. Hence, after deter-

mination of finite element formulation, the new FE solver was written in Matlab software.

Since the Cosserat theory leads to the second derivatives of displacements, it was necessary

to use also the so called C1 elements in order to ensure the convergence of the solution.

In C1 elements both displacements field and derivatives of displacements are continuous

over the elements and at their boundaries. Hence, a new 8 nodes C1 element with Hermite

polynoms as shape functions was proposed in the thesis.

A simplified three-point bending test was simulated using the new FE solver in order to

verify that the new unimaterial model based on Cosserat continuum is able to comprehend

124



the bending stiffness of fibres. It was shown that the bending stiffness of fibres can be

driven by changing the appropriate material parameter and the new solver gives results

comparable with standard hyperelastic models for a negligible influence of the bending

stiffness of fibres. In this way, the capability of the new model was verified.

This work showed that standard unimaterial models available in commercial software are

able to provide the same results as the bimaterial ones and being in agreement with real

experiments in the case of tension (or compression) tests only. Next, it was shown that,

the standard unimaterial models are not able to include any stiffness of the fibres when

they are bended. Therefore, the extension of the unimaterial model was introduced in

this work, and this extension allows us to incorporate the bending stiffness of fibres into

the unimaterial model. Then the proposed unimaterial model can be used correctly under

both tension (compression) and bending loads.
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12 List of the most frequented symbols

All symbols are described immediatly after their introduction in the appropriate chapter,

therefore, the following list of used symbols shows only the most frequented symbols that

are used in this work.

A, AI unit vector of undeformed fibres

b no name vector defined by eq. (226)

B, Bij left Cauchy - Green deformation tensor

C, CIJ right Cauchy - Green deformation tensor

E, EIJ Lagrangian strain tensor

Ec Young’s modulus of composite material

Ef Young’s modulus of fibres

Em Young’s modulus of matrix

F, FiJ deformation gradient

G, GiJ no name tensor defined in (230)

J volume ratio

K(t) kinetic energy

Kαβ
abcd stiffness matrix

l couple-stress vector (Cauchy)

m total moment of momentum

mji Cauchy couple-stress tensor

mji deviatoric part of Cauchy couple-stress tensor

mii spherical part of Cauchy couple-stress tensor

M, MJi first Piola-Kirchoff couple-stress tensor

nj , Nj outward normal of deformed and undeformed body respectively

Na shape functions

Oa shape functions

p hydrostatic pressure (Lagrange multiplier)

126



p total momentum

Pext(t) external mechanical power

Pint(t) internal mechanical power (stress power)

P a shape functions

P, PIj first Piola-Kirchoff force-stress tensor

Qa shape functions

S, SIJ second Piola-Kirchoff force-stress tensor

t time

t force-stress vector (Cauchy)

u, ui displacement vector

uai unknown displacements at node a

U right (mateial) stretch tensor

v deformed volume

vf volume fraction of fibres

vm volume fraction of matrix

v left (spatial) stretch tensor or velocity vector

V undeformed volume

W strain energy density function

Wd deviatoric part of strain energy density function

Wv volumetric part of strain energy density function

x, xi position vector in deformed system; deformed coordinates

X, Xi position vector in reference (undeformed) system; undeformed coordinates
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αai unknown slopes at node a

βai unknown slopes at node a

γai unknown slopes at node a

δij Kronecker’s delta

εij engineering strain

εlog Hencky(logarithmic) strain tensor

εijk Levi-Civita symbol

φk components of microrotation vector

ϕk components of macrorotation vector

νk components of microgyration vector

νkl gyration tensor

λi principal stretch ratios

λiJ Lagrange multipliers

ΛRS no name tensor defined in (251)

µji Kirchoff couple-stress tensor

µji, µii deviatoric and spherical part of Kirchoff couple-stress tensor respectively

Π total potential energy functional

ρ density

σij Cauchy force-stress tensor

σ(ij) symmetric part of Cauchy force-stress tensor

σ[ji]) antisymmetric part of Cauchy force-stress tensor

τij Kirchoff force-stress tensor

ωi, ωij spin vector and spin tensor respectively

128



A Appendixes

A.1 Invariants of general constitutive model (Cosserat continuum)

The strain energy density function depends on tensors C,Λ and unit vector A as was

mentioned in chapter 6. The strain energy density function can be expressed as a function

of 33 independent invariants. These invariants are introduced into this appendix (or can

be found in the appendix A in [32] or in table 1 in [36]).

Symbols Λs and Λa are symmetric and antisymmetric part respectively of the tensor Λ,

then

Λ = Λs + Λa, ΛT = Λs −Λa, 2Λs = Λ + ΛT , 2Λa = Λ−ΛT (529)

The 33 independent invariants:

I1 = trC, I2 = 1
2 [(trC)2 − trC2], I3 = detC, I4 = ACA, I5 = AC2A,

I6 = trΛs = trΛ, I7 = trΛ2
s, I8 = trΛ2

a, I9 = trΛ3
s,

I10 = trCΛs = trCΛ, I11 = trC2Λs = trC2Λ, I12 = trCΛ2
s,

I13 = trC2Λ2
s, I14 = trCΛ2

a, I15 = trC2Λ2
a, I16 = trC2Λ2

aCΛa,

I17 = trΛsΛ
2
a, I18 = trΛ2

sΛ
2
a, I19 = trΛ2

sΛ
2
aΛsΛa, I20 = AΛsA = AΛA,

I21 = AΛ2
sA, I22 = AΛ2

aA, I23 = ACΛsA, I24 = ACΛaA,

I25 = AC2ΛaA, I26 = AΛaCΛ2
aA, I27 = AΛsΛaA, I28 = AΛ2

sΛaA,

I29 = AΛaΛsΛ
2
aA, I30 = trCΛsΛa, I31 = trC2ΛsΛa, I32 = trCΛ2

sΛa,

I33 = trCΛ2
aΛsΛa. (530)
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A.2 Invariants of simplified constitutive model (Cosserat continuum)

It was considered in chapter 6.2 that strain energy density function depends on the tensor

C, vectorsK, A and scalar κ2. The strain energy density function can be then expressed as

a function of 11 independent invariants. These invariants are introduced into this appendix.

I1 = trC, I2 = 1
2 [(trC)2 − trC2], I3 = detC, I4 = ACA, I5 = AC2A,

I6 = K.K = AΛTΛA, I7 = KCK = AΛTCΛA, I8 = KC2K = AΛTC2ΛA,

I9 = A.K = AΛA, I10 = ACK = ACΛA, I11 = AC2K = AC2ΛA. (531)

Next:

∂I1

∂C
= I,

∂I2

∂C
= I1I−C,

∂I3

∂C
= I2I− I1C + C2,

∂I4

∂C
= A⊗A,

∂I5

∂C
= A⊗ (CA) + (CA)⊗A,

∂I6

∂C
= 0,

∂I7

∂C
= (ΛA)⊗ (ΛA),

∂I8

∂C
= (ΛA)⊗ (CΛA),

∂I9

∂C
= 0,

∂I10

∂C
= A⊗ (ΛA),

∂I11

∂C
= A⊗ (CΛA),

∂I1

∂Λ
= 0,

∂I2

∂Λ
= 0,

∂I3

∂Λ
= 0,

∂I4

∂Λ
= 0,

∂I5

∂Λ
= 0,

∂I6

∂Λ
= 2ΛA⊗A,

∂I7

∂Λ
= 2(CΛA)⊗A,

∂I8

∂Λ
= 2(C2ΛA)⊗A,

∂I9

∂Λ
= A⊗A,

∂I10

∂Λ
= (CA)⊗A,

∂I11

∂Λ
= (C2A)⊗A. (532)
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A.3 Results of simulations and experiments

The results of simulations and experiments of tension and bending tests are presented in

this appendix

Uniaxial tension tests

Figure 20: Tension test - fibres 0◦.

Figure 21: Tension test - fibres 15◦.
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Figure 22: Tension test - fibres 45◦.

Figure 23: Tension test - fibres 60◦.
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Figure 24: Tension test - fibres 90◦.
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Bending tests

Figure 25: Bending test - fibres 0◦.

Figure 26: Bending test - fibres 15◦.
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Figure 27: Bending test - fibres 45◦.

Figure 28: Bending test - fibres 60◦.
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Figure 29: Bending test - fibres 90◦.

Figure 30: Bending test - fibres 90◦. Influence of cycling.
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A.4 Proof of the equation (302)

In this appendix we give a proof of the relation (302)

∂2uk
∂XJ∂XL

∂XL

∂xk
=

∂2xk
∂XJ∂XL

∂XL

∂xk
= 0. (533)

This proof can be also found in [30] and is valid in case of incompressibility.

By a well-known property of determinants and using the incompressibility relation

∂(x1, x2, x3)

∂(X1, X2, X3)
= 1 (534)

we have

εijk
∂xi
∂XR

∂xj
∂XS

∂xk
∂XT

= εRST
∂(x1, x2.x3)

∂(X1, X2, X3)
= εRST . (535)

We differentiate this with respect to XP , which gives

εijk

(
∂2xi

∂XP∂XR

∂xj
∂XS

∂xk
∂XT

+
∂2xj

∂XP∂XS

∂xi
∂XR

∂xk
∂XT

+
∂2xk

∂XP∂XT

∂xi
∂XR

∂xj
∂XS

)
= 0, (536)

and multiply by
∂XR

∂x1

∂XS

∂x2

∂XT

∂x3

to obtain

εijk

(
∂2xi

∂XP∂XR

∂XR

∂x1
δj2δk3 +

∂2xj
∂XP∂XS

∂XS

∂x2
δi1δk3 +

∂2xk
∂XP∂XT

∂XT

∂x3
δi1δj2

)
= 0. (537)

Then, for example

εijk
∂2xi

∂XP∂XR

∂XR

∂x1
δj2δk3 =

∂2x1

∂XP∂XR

∂XR

∂x1
, (538)

and adding the three terms of this kind in (537), we have

∂2xi
∂XP∂XR

∂XR

∂xi
= 0. (539)

137



A.5 Shape functions

Hermite C1 shape functions

N1 =
1

64
(1− ξ1)2(2 + ξ1)(1− ξ2)2(2 + ξ2)(1− ξ3)2(2 + ξ3)

N2 =
1

64
(1 + ξ1)2(2− ξ1)(1− ξ2)2(2 + ξ2)(1− ξ3)2(2 + ξ3)

N3 =
1

64
(1 + ξ1)2(2− ξ1)(1 + ξ2)2(2− ξ2)(1− ξ3)2(2 + ξ3)

N4 =
1

64
(1− ξ1)2(2 + ξ1)(1 + ξ2)2(2− ξ2)(1− ξ3)2(2 + ξ3)

N5 =
1

64
(1− ξ1)2(2 + ξ1)(1− ξ2)2(2 + ξ2)(1 + ξ3)2(2− ξ3)

N6 =
1

64
(1 + ξ1)2(2− ξ1)(1− ξ2)2(2 + ξ2)(1 + ξ3)2(2− ξ3)

N7 =
1

64
(1 + ξ1)2(2− ξ1)(1 + ξ2)2(2− ξ2)(1 + ξ3)2(2− ξ3)

N8 =
1

64
(1− ξ1)2(2 + ξ1)(1 + ξ2)2(2− ξ2)(1 + ξ3)2(2− ξ3)

O1 =
1

64
(1− ξ1)2(1 + ξ1)(1− ξ2)2(2 + ξ2)(1− ξ3)2(2 + ξ3)

O2 =
1

64
(1 + ξ1)2(ξ1 − 1)(1− ξ2)2(2 + ξ2)(1− ξ3)2(2 + ξ3)

O3 =
1

64
(1 + ξ1)2(ξ1 − 1)(1 + ξ2)2(2− ξ2)(1− ξ3)2(2 + ξ3)

O4 =
1

64
(1− ξ1)2(1 + ξ1)(1 + ξ2)2(2− ξ2)(1− ξ3)2(2 + ξ3)

O5 =
1

64
(1− ξ1)2(1 + ξ1)(1− ξ2)2(2 + ξ2)(1 + ξ3)2(2− ξ3)

O6 =
1

64
(1 + ξ1)2(ξ1 − 1)(1− ξ2)2(2 + ξ2)(1 + ξ3)2(2− ξ3)

O7 =
1

64
(1 + ξ1)2(ξ1 − 1)(1 + ξ2)2(2− ξ2)(1 + ξ3)2(2− ξ3)

O8 =
1

64
(1− ξ1)2(1 + ξ1)(1 + ξ2)2(2− ξ2)(1 + ξ3)2(2− ξ3)
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P1 =
1

64
(1− ξ1)2(2 + ξ1)(1− ξ2)2(1 + ξ2)(1− ξ3)2(2 + ξ3)

P2 =
1

64
(1 + ξ1)2(2− ξ1)(1− ξ2)2(1 + ξ2)(1− ξ3)2(2 + ξ3)

P3 =
1

64
(1 + ξ1)2(2− ξ1)(1 + ξ2)2(ξ2 − 1)(1− ξ3)2(2 + ξ3)

P4 =
1

64
(1− ξ1)2(2 + ξ1)(1 + ξ2)2(ξ2 − 1)(1− ξ3)2(2 + ξ3)

P5 =
1

64
(1− ξ1)2(2 + ξ1)(1− ξ2)2(1 + ξ2)(1 + ξ3)2(2− ξ3)

P6 =
1

64
(1 + ξ1)2(2− ξ1)(1− ξ2)2(1 + ξ2)(1 + ξ3)2(2− ξ3)

P7 =
1

64
(1 + ξ1)2(2− ξ1)(1 + ξ2)2(ξ2 − 1)(1 + ξ3)2(2− ξ3)

P8 =
1

64
(1− ξ1)2(2 + ξ1)(1 + ξ2)2(ξ2 − 1)(1 + ξ3)2(2− ξ3)

Q1 =
1

64
(1− ξ1)2(2 + ξ1)(1− ξ2)2(2 + ξ2)(1− ξ3)2(1 + ξ3)

Q2 =
1

64
(1 + ξ1)2(2− ξ1)(1− ξ2)2(2 + ξ2)(1− ξ3)2(1 + ξ3)

Q3 =
1

64
(1 + ξ1)2(2− ξ1)(1 + ξ2)2(2− ξ2)(1− ξ3)2(1 + ξ3)

Q4 =
1

64
(1− ξ1)2(2 + ξ1)(1 + ξ2)2(2− ξ2)(1− ξ3)2(1 + ξ3)

Q5 =
1

64
(1− ξ1)2(2 + ξ1)(1− ξ2)2(2 + ξ2)(1 + ξ3)2(ξ3 − 1)

Q6 =
1

64
(1 + ξ1)2(2− ξ1)(1− ξ2)2(2 + ξ2)(1 + ξ3)2(ξ3 − 1)

Q7 =
1

64
(1 + ξ1)2(2− ξ1)(1 + ξ2)2(2− ξ2)(1 + ξ3)2(ξ3 − 1)

Q8 =
1

64
(1− ξ1)2(2 + ξ1)(1 + ξ2)2(2− ξ2)(1 + ξ3)2(ξ3 − 1)
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Lagrange C0 shape functions

M1 =
1

8
(1− ξ1)(1− ξ2)(1− ξ3)

M2 =
1

8
(1 + ξ1)(1− ξ2)(1− ξ3)

M3 =
1

8
(1 + ξ1)(1 + ξ2)(1− ξ3)

M4 =
1

8
(1− ξ1)(1 + ξ2)(1− ξ3)

M5 =
1

8
(1− ξ1)(1− ξ2)(1 + ξ3)

M6 =
1

8
(1 + ξ1)(1− ξ2)(1 + ξ3)

M7 =
1

8
(1 + ξ1)(1 + ξ2)(1 + ξ3)

M8 =
1

8
(1− ξ1)(1 + ξ2)(1 + ξ3)
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A.6 Displacement field of axially loaded bar

This appendix deals with derivation of the deformation field in an axially loaded bar. The

field is used in chapter 9.1.1.

Let’s consider a uniform prismatic bar made of a homogenous and isotropic linear elastic

material with its mantle free of surface tractions. One end of the bar is loaded by a

uniformly distributed surface traction σ, acting along the axis of the bar, the centroid of

the other end is rigidly clamped to prevent rigid motion of the bar, and the clamped end

is loaded to keep the bar in equilibrium.

The stress field is

σ11 = σ, σ22 = σ33 = σ12 = σ23 = σ31 = 0. (540)

From Hooke’s law we obtain

ε11 =
σ

E
, ε22 = −µσ

E
, ε33 = −µσ

E
, ε12 = ε23 = ε31 = 0. (541)

Hence,
∂u1

∂X1
=
σ

E
,
∂u2

∂X2
= −µσ

E
,
∂u3

∂X3
= −µσ

E
, (542)

∂u1

∂X2
+
∂u2

∂X1
= 0,

∂u2

∂X3
+
∂u3

∂X2
= 0,

∂u3

∂X1
+
∂u1

∂X3
= 0. (543)

Integration of equations (542) results in

u1 =
σ

E
X1 + f1(X2, X3),

u2 = −µσ
E
X2 + f2(X1, X3),

u3 = −µσ
E
X3 + f3(X1, X2). (544)

Substitution from (544) into (543) yields

∂f1

∂X2
+
∂f2

∂X1
= 0,

∂f2

∂X3
+
∂f3

∂X2
= 0,

∂f3

∂X1
+
∂f1

∂X3
= 0. (545)

Recalling that f1 is a function of X2 and X3, f2 is a function of X1 and X3, f3 is a function

of X1 and X2, we conclude from (545) that

∂2f1

∂X2
2

=
∂2f1

∂X2
3

=
∂2f2

∂X2
1

=
∂2f2

∂X2
3

=
∂2f3

∂X2
1

=
∂2f3

∂X2
2

= 0. (546)

141



Hence,

f1 = c11 + c12X2 + c13X3 + c1X2X3,

f2 = c22 + c21X1 + c23X3 + c2X1X3,

f3 = c33 + c31X1 + c32X2 + c3X1X2, (547)

where c11, c12, ..c32, c1, ..c3 are constants. We now substitute (547) into (545) to obtain

c12 + c21 + (c1 + c2)X3 = 0,

c23 + c32 + (c2 + c3)X1 = 0,

c31 + c13 + (c3 + c1)X2 = 0. (548)

Since these equations must hold for all points inside the bar, it holds

c12 = −c21, c23 = −c32, c31 = −c13

c1 + c2 = c2 + c3 = c3 + c1 = 0. (549)

The second set of equations (549) gives

c1 = c2 = c3 = 0. (550)

By substitution of (550) and (549) into (547) and then into (544), we obtain

u1 =
σ

E
X1 + c12X2 + c13X3 + c11,

u2 = −µσ
E
X2 − c12X1 + c23X3 + c22,

u3 = −µσ
E
X3 − c13X1 − c23X2 + c33. (551)
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Since u1 = u2 = u3 = 0 at the centroid X1 = X2 = X3 = 0 of the bar, (551) yields

c11 = c22 = c33 = 0. (552)

In order to eliminate rigid rotations of the bar(
∂u1

∂X2
− ∂u2

∂X1

)
= 0,

(
∂u2

∂X3
− ∂u3

∂X2

)
= 0,

(
∂u3

∂X1
− ∂u1

∂X3

)
= 0 (553)

at (0,0,0). That is, a small region around the centroid of the cross-section at X3 = 0 is

rigidly clamped. Equations (551) and (553) give

c12 = c13 = c23 = 0. (554)

Thus, the displacement field in the bar is given by

u1 =
σ

E
X1, u2 = −µσ

E
X2, u3 = −µσ

E
X3. (555)
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A.7 Displacement field of bended beam

This appendix contains derivation of deformation field in the bended beam. Let’s consider

deformation of a straight prismatic bar, made of a homogenous linear elastic isotropic

material, due to a pair of couples of magnitude M applied onto the ends of the beam.

Let’s assume that plane sections of the beam normal to its undeformed centreline remain

planar and normal to the deformed centreline. X1 axis is coincident with the centreline

and X2 axis is in the opposite direction as is the direction of deflection of the beam. Let’s

assume that the stresses in the beam are given by

σ11 =
M

J
X2, σ22 = σ33 = σ12 = σ23 = σ31 = 0, (556)

where J is the moment of inertia of the cross-section with respect toX3 axis. Using Hooke’s

law we obtain

ε11 =
M

EJ
X2, ε22 = −µM

EJ
X2, ε33 = −µM

EJ
X2,

ε12 = ε23 = ε31 = 0. (557)

Hence,
∂u1

∂X1
=

M

EJ
X2,

∂u2

∂X2
= −µM

EJ
X2,

∂u3

∂X3
= −µM

EJ
X2, (558)

∂u1

∂X2
+
∂u2

∂X1
= 0,

∂u2

∂X3
+
∂u3

∂X2
= 0,

∂u3

∂X1
+
∂u1

∂X3
= 0. (559)

By integration of the first equation of the (558) we find

u1 =
M

EJ
X1X2 + f(X2, X3). (560)

From (559) it follows that

∂u1

∂X2
= − ∂u2

∂X1
,

∂u1

∂X3
= − ∂u3

∂X1
. (561)

Substitution of (560) into (561) results in

∂u2

∂X1
= − M

EJ
X1 −

∂f

∂X2
,

∂u3

∂X1
= − ∂f

∂X3
. (562)

Hence,

u2 = − M

2EJ
X2

1 −
∂f

∂X2
X1 + h(X2, X3),
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u3 = − ∂f

∂X3
X1 + g(X2, X3) (563)

where g and h are unknown functions of X2 and X3. Now we substitute (563) into last two

equations in (558) to obtain

− ∂
2f

∂X2
2

X1 +
∂h

∂X2
= −µM

EJ
X2, − ∂2f

∂X2
3

X1 +
∂g

∂X3
= −µM

EJ
X2. (564)

These equations hold for all values of X1, therefore

− ∂
2f

∂X2
2

= 0,
∂h

∂X2
= −µM

EJ
X2,

− ∂
2f

∂X2
3

= 0,
∂g

∂X3
= −µM

EJ
X2. (565)

An integration of these equations gives

f = βX2 + γX3 + c+X2X3d,

g = −µM
EJ

X2X3 + g0(X2)

h = − µM
2EJ

X2
2 + h0(X3). (566)

Substituting (566) into (560) and (563) and then into (559), we have

−2X1d+
dh0

dX3
+
dg0

dX2
− µM

EJ
X3 = 0. (567)

This equation holds at every point in the bar if and only if

d = 0, h0 = − µM
2EJ

X2
3 + αX3 + a, g0 = −αX2 + b. (568)

Then

u1 =
M

EJ
X1X2 + βX2 + γX3 + c

u2 = − M

2EJ
X2

1 − βX1 −
µM

2EJ
X2

2 +
µM

2EJ
X2

3 + αX3 + a

u3 = −γX1 −
µM

EJ
X2X3 − αX2 + b. (569)
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Constants a, b, c, α, β and γ represent the rigid body motion of the bar. In order to deter-

mine these constants, we fix the beam at the origin by fixing an element of the X1 axis,

and an element of the X1X2 plane at the origin. Thus

u1 = u2 = u3 =
∂u2

∂X1
=
∂u3

∂X1
=
∂u2

∂X3
= 0 (570)

at (0,0,0). From conditions (570) it follows that

a = b = c = β = γ = α = 0. (571)

Therefore, the displacement field of the bended beam is

u1 =
M

EJ
X1X2,

u2 =
µM

2EJ
(X2

3 −X2
2 )− M

2EJ
X2

1 ,

u3 = −µM
EJ

X2X3. (572)
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