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Abstrakt 

Tato práce se zabýva výpočtovými simulacemi zkoušek jednoosým tahem a tříbodovým 

ohybem kompozitního vzorku složeného z elastomerové matrice a ocelových výztužných 

vláken orientovaných pod různými úhly, jakož i jejich experimentální verifikací. Simu­

lace byly provedeny pomocí dvou různých modelů ­ bimateriálového a unimateriálového 

výpočtového modelu. Při použití bimateriálového modelu, který detailně zohledňuje struk­

turu kompozitu, tzn. pracuje s matricí a jednotlivými vlákny, je zapotřebí vytvořit model 

každého vlákna obsaženého v kompozitu, což přináší řadu nevýhod (pracná tvorba výpoč­

tového modelu, řádově větší množství elementů potřebných k diskretizaci v M K P systémech 

a delší výpočetní časy). Na druhé straně v unimateriálovém modelu se nerozlišují jednotlivá 

vlákna, pracuje se pouze s kompozitem jako celkem tvořeným homogenním materiálem a 

výztužný účinek vláken je zahrnut v měrné deformační energii. 

Porovnání experimentů se simulacemi ukázalo, že bimateriálový model je v dobré shodě s 

experimenty, na rozdíl od unimateriálového modelu, který je schopen poskytnou odpoví­

dající výsledky pouze v případě tahového namáhání. Z tohoto důvodu byl hledán způsob, 

který by umožnil rozšířit unimateriálový model o ohybovou tuhost výztužných vláken. V 

roce 2007 Spencer a Soldatos publikovali rozšířený unimateriálový model, který je schopen 

pracovat nejen s tahovou, ale i ohybovou tuhostí vlákna. Představený obecný model je 

však založen na Cosseratově teorii kontinua a jeho praktické využití je pro jeho složitost 

nemožné. Proto byl vytvořen zjednodušený model (částečně podle Spencera a Soldatose) 

s vlastní navrženou formou měrné deformační energie. 

Za účelem ověření nového unimateriálového modelu s ohybovou tuhostí vláken byly odvozeny 

všechny potřebné rovnice a byl napsán vlastní konečno­prvkový řešič. Tento řešič je za­

ložen na Cosseratově teorii kontinua a obsahuje zmíněný anizotropní hyperelastický uni­

materiálový model zahrnující ohybovou tuhost vláken. Vzhledem k tomu, že v případě 

Cosseratovy teorie jsou při výpočtu potřebné i druhé derivace posuvů, bylo nutné použít 

tzv. C 1 prvky, které mají spojité jak pole posuvů, tak jejich prvních derivací. 

Nakonec byly provedeny nové simulace s využitím vlastního řešiče, které ukazují, že tuhost 

vláken lze u nového unimateriálového modelu řídit odpovídající materiálovou konstantou. 

V závěru práce je pak diskutováno, zda je nový unimateriálový model s ohybovou tuhostí 
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schopen poskytnout stejné výsledky jako model bimateriálový a to jak při tahovém tak i 

ohybovém namáhání kompozitního vzorku. 

Klíčová slova 

hyperelasticita, anizotropie, Cosseratovo kontinuum, C 1 prvky, Hermitovy polynomy, kom­

pozitní materiál, metoda konečných prvků 
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Abstract 

This thesis deals with composite materials made of elastomer matrix and steel reinforce­

ment fibres with various declinations. It presents computational simulations of their me­

chanical tests in uniaxial tension and three-point bending realized using finite element (FE) 

method, and their experimental verification. The simulations were carried out using two 

different models - bimaterial and unimaterial computational models. The bimaterial model 

reflects structure of the composite in detail, i.e. it works with the matrix and individual 

fibres. When the bimaterial model is used, then it is necessary to create each fibre of the 

composite in the model and it makes numbers of disadvantages (creation of the model is 

laborious, higher number of elements are needed for discretization of an individual fibre 

in F E softwares and computational time is higher). On the other side, the unimaterial 

model does not distinguish the individual fibres, but it works with a model of the whole 

composite as a homogeneous material and the reinforcing effect of the fibres is included in 

the strain energy density function. 

Comparison between experiments and simulations shows that the bimaterial model is in 

good agreement with the experiments unlike the unimaterial one being able to provide 

adequate results in the case of tension load only. Hence, a new way was sought of how 

to extend the unimaterial model by the bending stiffness of fibres. In 2007 Spencer and 

Soldatos published a new extended unimaterial model that is able to work with both ten­

sion and bending stiffnesses of fibres. However, their model is based on Cosserat continuum 

theory, it is very complicated and is not suitable for practical application. Hence, a new 

simplified model was created in the thesis (partially according to the Spencer and Soldatos) 

with own strain energy density function proposed. 

In order to verify the new unimaterial model with bending stiffness, all the needed equa­

tions were derived and a new own finite element solver was written. This solver is based 

on Cosserat continuum theory and contains the mentioned anisotropic hyperelastic uni­

material model with bending stiffness. It was necessary to use the so called C 1 elements, 

since the Cosserat theory works with second derivatives of displacements. The C 1 elements 

ensure continuity of both displacements field and their first derivatives. 

Finally, new simulations were performed using the created F E solver and they show that 
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the bending stiffness of fibres can be driven by the appropriate material parameter. In 

conclusion of this work it is discussed whether the new unimaterial model with bending 

stiffness is able to provide the same results as the bimaterial model, namely for both ten­

sion and bending loads of a composite specimen. 

Keywords 

hyperelasticity, anisotropy, Cosserat continuum, C 1 elements, Hermite polynoms, compos­

ite material, finite element method 
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1 Introduction 

Composite materials can be found increasingly in many practical applications of various 

specializations. These materials have many advantages, especially high strength at low 

weight. A design or assessment of stress-strain state of such materials is very important 

for their proper use in practise. For this purpose, computational methods based on finite 

element method are commonly used. This work is focused on composite materials with 

elastomer hyperelastic matrix and steel reinforcement fibres. Such composite materials can 

be found e.g. in construction of tyres, nevertheless, these composite materials do not differ 

so much from bio-composite materials, e.g. artery wall can be understood as a composite 

material consisting of hyperelastic matrix and collagen fibres. The difference from the 

technical composites mentioned above is primarily in the nonlinear behaviour of the fibres. 

Nowadays, the fibre-reinforced composites can be computationally modeled essentially in 

two ways. Either the matrix with individual steel fibres is modeled (bimaterial compu­

tational model) or we can use a computational model where the geometric shape of the 

whole composite body is created without distinguishing the fibres (unimaterial computa­

tional model). The reinforcement effect of the fibres is then included mathematically in 

the constitutive equations which include fibre directions. 

The main goal of this work is to compare both levels of the mentioned computational 

models and to found out if the unimaterial model is able to give the same results as the 

bimaterial one. In order to this, computational simulations were carried out with both 

models. A detailed description of such models can be found in chapter 4, where results 

of these simulations are discussed in detail and simulations are compared with performed 

experiments. 

It is obvious from the results of simulations that the unimaterial model is not able to 

include bending stiffness of fibres, therefore, a new model was sought which could be able 

to include their bending stiffness. Among many papers an only one was found that deals 

with the unimaterial model and bending stiffness of the fibres - Spencer and Soldatos in 

2007 [32] introduced a new constitutive model with bending stiffness of the reinforcement 

fibres. However, this model is based on the Cosserat continuum unlike conventional models 

which are based on Cauchy continuum. 
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The Cosserat theory of continuum is shortly mentioned in chapter 5 where only basic 

knowledge is introduced needed for formulation of new constitutive equations is intro­

duced. The constitutive equations introduced by Spencer and Soldatos are described in 

detail in chapter 6 where their simplified version is also presented. A new form of strain 

energy density function was proposed both for nearly incompressible and incompressible 

hyperelastic materials in chapters 7 and 8. The new forms of strain energy density func­

tion contain a few material parameters that have to be determined. Hence, chapter 9 deals 

with a feasible determination of such material parameters. A practical implementation of 

the simplified constitutive equations based on Cosserat continuum required a new finite 

element solver, because there is no available solver based on the Cosserat continuum and 

hyperelasticity. Hence, a new own finite element solver was written in Matlab software. 

Chapter 10 deals with finite element formulation based on constraint Cosserat theory using 

a new C 1 element needed to ensure convergence and it presents the results obtained with 

the new finite element solver. 
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2 Formulations of problems and goals 

Computational simulations performed by bimaterial computational model have several dis-

adventages. Due to a three-dimensional model of fibres diverted by any angle, the regular 

mesh with low number of elements can not be used. Hence, a very fine mesh has to be 

used with very high numbers of elements which leads to high computational times. The in­

crease of computational time is on orders of magnitude compared to the unimaterial model. 

Hence, the bimaterial model should be replaced by the unimaterial one where fibres are in­

cluded mathematically in the constitutive model and the three-dimensional model of them 

is not required. Material models based on directions of fibres were implemented into the 

F E A systems recently and the range of their use has not yet been studied properly. The 

main goal of this work is to compare both of the mentioned computational models and to 

find out if the very time consuming bimaterial computational model, can be replaced by a 

unimaterial model. 

Main goals are: 

• to perform computational simulations of uniaxial tension and bending tests with the 

bimaterial computational model 

• to perform computational simulations of uniaxial tension and bending tests with the 

unimaterial computational model 

• to compare the simulations 

• to perform experiments of uniaxial tension and bending tests of composite material 

• to compare simulations and experiments 

• to explain differences between simulations and experiments (if any) 

• to explain differences between unimaterial and bimaterial models (if any) 

• to modify the unimaterial computational model in order to obtain the same results 

as with the bimaterial model 
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3 Hyperelasticity 

The following chapter provides some basic knowledge used in hyperelastic materials. The 

most of this chapter can be found in [2]. 

Hyperelasticity refers to a constitutive response that is derivable from an elastic free en­

ergy potential and is typically used for materials which experience large elastic deformation 

(strains). Applications for elastomers such as vulcanized rubber and synthetic polymers, 

along with some biological materials, often fall into this category. 

The microstructure of polymer solids consists of chain-like molecules. The flexibil­

ity of these molecules allows for an irregular molecular arrangement and, as a result, 

the behaviour is very complex. Polymers are usually isotropic at small deformation and 

anisotropic at larger deformation as the molecule chains realign to the loading direction. 

Under an essentially monotonie loading condition, however, many polymer materials can be 

approximated as isotropic, which has been popular historically in the modeling of polymers. 

Some classes of hyperelastic materials cannot be modeled as isotropic. A n example is 

represented by fibre reinforced polymer composites. Typical fibre patterns include their 

unidirectional and bidirectional arrangement, and the fibres can have a stiffness that is 

50-1000 times that of the polymer matrix, resulting in a strongly anisotropic material be­

haviour. Also some biomaterials, such as muscles and arteries, can represent anoter class 

of anisotropic materials experiencing large deformation; their anisotropic behaviour occurs 

also due to their fibrous structure. 

The typical volumetric behaviour of hyperelastic materials can be grouped into two 

classes. The first is represented by polymers materials that show small volumetric changes 

during deformation - incompressible or nearly-incompressible materials. Examples of the 

second class of materials are foams, which can experience large volumetric changes during 

deformation - compressible materials. 
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The available hyperelastic constitutive models of materials are derived from strain-

energy potentials that are functions of the deformation invariants. The hyperelastic mate­

rial models can be divided into several families: 

• Incompressible or nearly-incompressible isotropic models (chapter 3.3) 

• Compressible isotropic models (chapter 3.4) 

• Invariant-based anisotropic strain-energy potentials (chapter 3.5) 

3.1 Finite Strain Elasticity 

A material is said to be hyperelastic if there exists an elastic potential function W (or 

strain-energy density function) which is a scalar function of one of the strain or deformation 

tensors, whose derivative with respect to a strain component determines the corresponding 

stress component. This can be expressed by: 

_ aw _ aw 
SlJ-dETj-2dcTy ( 1 ) 

where Su are components of the second Piola-Kirchhoff stress tensor, W is strain-energy 

function per unit undeformed volume, EJJ are components of the Lagrangian strain tensor 

and Cu are components of the right Cauchy-Green deformation tensor. The Lagrangian 

strain may be expressed as follows: 

EIj = \(CIJ-5Ij), (2) 

where Su is Kronecker delta. The deformation tensor Cu is comprised of the products of 

the deformation gradients F , j 

C u = FkIFkJ, (3) 

and deformation gradient 

where Xj is coordinate of the undeformed position of a point in direction J, Xi = Xi + Ui 

is the deformed position of the point in direction i and Ui is displacement of the point in 

direction i. 

The Kirchhoff stress is defined 

Uj = FiKSKLFjL (5) 
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and the Cauchy stress is obtained by: 

1 1 
Gij = -jTij = -jFiKSKLFiL- (6) 

The eigenvalues squared (principal stretch ratios) of Cij are X\, A | , A3 and exist only if 

det I C / j - \2

p6u |=0 (7) 

which can be re-expressed as 

\ l - h \ l + h \ 2

p - h = U, (8) 

where I\, 12,^3 are invariants of Cu, 

h=\l + \l + A | (9) 

h = \ 2 \ 2

2 + A^A| + X2X2 (10) 

/3 = xjxlxl = J2. (11) 

J is invariant of deformation gradient and represents the ratio of the deformed elastic vol­

ume over the reference (undeformed) volume of materials ([37], [38]). 

3.2 Deviatoric-volumetric multiplicative split 

Under the assumption that material response is isotropic, it is convenient to express the 

strain-energy function in terms of strain invariants or principal stretches [39]: 

W = W{h,h,h) = W{h,h,J) (12) 

or 

W = W ( A i , A 2 , A 3 ) . (13) 

Define the volume-preserving part of the deformation gradient, Fij, as 

Fij = J-1/3Fij (14) 
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and thus 

J = det I Fu |= 1. (15) 

The modified principal stretch ratios and invariants are then 

A„ = J " 1 / 3 A, (16) 

I p — J ^ 7p. (17) 

The strain-energy potenciál can then be defined as 

W = W(I1,I2 
J) = W(X1,X2,X3,J) (18) 

where the modified invariants I\,l2 or stretch ratios Ai,A2,A3 describe the deviatoric 

(volume preserving) part of deformation, while the volumetric part of deformation can be 

described independently by means of the J invariant. 

The constitutive strain-energy density function W can be devided into volumetric Wy and 

deviatoric (often called isochoric) Wd part 

The volumetric part Wy is absolutely independent of the isochoric part Wd and the volu­

metric part Wy is asumed to be only function of J as 

where d is compressibility parameter. The isochoric part Wd is a function of the invariants 

I\,l2 of the isochoric part of the right Cauchy-Green tensor C. 

3.3 Isotropic hyperelasticity - nearly incompressible materials 

In the following paragraphs several forms of strain-energy potential (W) provided for the 

simulation of nearly incompressible hyperelastic materials are summarized on the basis of 

[2]. In all of them volumetric change contribution is expressed separately by means of 

compressibility parameter d as was described in the previous chapter (3.2). 

W = Wy(J)+Wd(I1,I2). (19) 

Wy(J) = -(J-lf (20) 
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3.3.1 Neo-Hookean 

The form Neo-Hookean strain-energy potential is 

^ = f(A-3) + i (J - l ) 2 , (21) 

where \x is initial shear modulus of material. 

3.3.2 Arruda-Boyce Model 

The form of the strain-energy potential for Arruda-Boyce model is 

W = n 

- 5 1 9 „ ( 7 ? - 2 4 3 ) 
673750A 8/ 1 ' + 1ä('LY1-"'J^ 

where \x is initial shear modulus of the material, \l is its limiting network stretch. As the 

parameter A^ tends to infinity, the model is converted into the Neo-Hookean form. 

3.3.3 Gent Model 

The form of the strain-energy potential for the Gent model is 

^ " ( i - 7 ^ T + K ^ - < 4 
where \x is initial shear modulus of material and Jm is limiting value of I\ — 3. 

3.3.4 Mooney-Rivlin 

This option includes two-, three-, five-, and nine-term Mooney-Rivlin models. The form 

of the strain-energy potential for a two-parameter Mooney-Rivlin model is 

W = cio(7i - 3) + c 0 i ( 7 2 - 3) + 1(J - l ) 2 . (24) 

The form of the strain-energy potential for a three-parameter Mooney-Rivlin model is 

W = cio(7i - 3) + c 0 i ( 7 2 - 3) + c i i (7 i - 3)(J 2 - 3) + -U - l ) 2 , (25) 
a 
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The form of the strain-energy potential for five-parameter Mooney-Rivlin model is 

W = c i o ( T i - 3 ) + c o i ( T 2 - 3 ) + c 2 o ( 7 i - 3 ) 2 + c i i ( 7 i - 3 ) ( 7 2 - 3 ) + c 0 2 ( T 2 - 3 ) 2 + i ( J - l ) 2 , (26) 

The form of the strain-energy potential for nine-parameter Mooney-Rivlin model is 

W =cio(7i - 3) + c 0 i ( 7 2 - 3) + 020(7! - 3) 2 + c i i (7 i - 3)(72 - 3) + 

+ c 0 2 (7 2 - 3) 2 + c 3 0 (7 i - 3) 3 + p2i(Ti - 3) 2 (7 2 - 3) + c i 2 (7! - 3)(72 - 3) 2 + (27) 

+ c 0 3 (7 2 - 3) 3 + i ( J - l ) 2 , 

where cio, coi, c2o, en, co2, C30, c 2 i , c i 2 , C03 are material constants describing the deviatoric 

part of the strain energy. 

The initial shear modulus is given by 

M = 2(cio + c 0 i ) . (28) 

3.3.5 Polynomial form 

The polynomial form of strain-energy potential is 

N M 

W = ^(h - 3)*(72 - 3y + T(J - l ) 2 " , (29) 
i+j=l k=l k 

where N, M, Cij, dk are material constants. 

A higher N may provide better fit with the exact solution, however, it may, on the other 

hand, cause numerical difficulty in fitting the material constants and requires enough data 

to cover the entire range of interest of deformation. Therefore a very high N value is not 

usually recommended. 

The Neo-Hookean model can be obtained by setting M = N = 1 and coi = 0. Also 

for M = N = 1, the two parameters Mooney-Rivlin model is obtained, while the five 

parameters Mooney-Rivlin model is obtained for N = 2, and the nine parameters Mooney-

Rivlin model is obtained for N = 3. Equation (28) for the initial shear modulus is valid 

here as well. 
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3.3.6 Yeoh model 

The Yeoh model is also called the reduced polynomial form. The strain-energy potential 

is 
N M 

W = Y/ Cio(h -W + Y, ~ i ) 2 " ' ( 3 ° ) 
i=l k=l k 

where N, M, ao, dk are material constants. 

The Neo-Hookean model can be obtained by setting M = N = 1. The initial shear modulus 

is defined 
M = 2c i 0 . (31) 

3.3.7 Ogden potential 

The Ogden form of strain-energy potential is based on the principal stretches of left-Cauchy 

strain tensor, which has the form 

N M 

W=Y: £w+a?+XT - 3)+Y: UJ - ^r, m 
i=l k=l 

where N, M, fii, a,i, dk are material constants. 

Similar to the Polynomial form, there is no limitation on N or M . A higher N can provide 

better fit the exact solution, however, it may, on the other hand, cause numerical difficulty 

in fitting the material constants and also it requests to have enough data to cover the 

entire range of interest of the deformation. Therefore a value of N > 3 is not usually 

recommended. 

The initial shear modulus, fi, is given as 

N 

1 • \^Y^anxi. (33) 
i=l 

For M = N = 1, OL\ = 2, the Ogden potential is equivalent to the Neo-Hookean potential. 
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3.4 Isotropic hyperelasticity - compressible foam-like materials 

3.4.1 Ogden compressible foam model 

The strain-energy potential of the Ogden compressible foam model is based on the principal 

stretches of left-Cauchy strain tensor, which has the form 

N N 

W = ^ ^(J^HXT + XT +\?) - 3) + £ - ^ ( J - a A - 1), (34) 

where N, /jj, o;j, /3j are material constants. The initial shear modulus, / j , is given as 
N 

M = ^ ^ - (35) 

For N = l , a i = — 2 , / i i = — /x, j3 = 0.5, the Ogden option is equivalent to the Blatz-Ko 

option. 

3.4.2 Blatz-Ko model 

The form of strain-energy potential for the Blatz-Ko model is 

^ = 1 ( 1 + 2 ^ - 5 ) , (36) 

where /j is initial shear modulus of material. 

3.5 Anisotropic hyperelasticity 

The anisotropic constitutive strain-energy density function W is defined 

W = WV(J) + Wd(C, A ® A , B ® B ) , (37) 

where Wy is volumetric part of the strain energy and Wd is isochoric part of strain energy. 

The isochoric part Wd is a function of the invariants I\, 12-, 14,15, I7, Is of the isochoric 

part of the right Cauchy Green tensor C and the two constitutive material directions A , B 

in the undeformed configuration. The material directions yield so-called structural tensors 

A ® A, B ® B of the microstructure of the material, it holds 

A | = 1 , | B | = 1 . (38) 
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Thus, the strain-energy density yields 

3 3 6 

Wd(C, A ® A, B ® B) = ^ Oi(7i - 3)< + £ 6,(72 - 3)J' + ] T c f c(7 4 - l ) f c + 
i=l j=l k=2 

6 6 6 6 

+ ] T d,(75 - 1)' + Y, em(h - l ) m + E / ™ ( J 7 - ! ) " + E » o ( 7 8 " 0 ° . (39) 

1=2 m=2 n=2 o=2 

The third invariant -Z3 is ommited here because the volumetric change is described sep­

arately by eq. (20). Invariants I\,l2 describe the contribution of the matrix, while the 

other invariants describe the contribution of fibres to the strain energy density function. 

In eq. (39) the irreducible basis of invariants 

7 i = trC, I2 = ^[{trC)2 - trC2}, 7 4 = A C A , 7 5 = A C 2 A , 

7 6 = B C B , 7 7 = B C 2 B , 7 8 = (AB)ACB. (40) 

and the parameter <j is defined as 

? = (AB) 2 . (41) 

3.6 Assessment of material parameters 

The hyperelastic constants in the strain-energy density function of a material model deter­

mine mechanical response. Therefore, in order to obtain credible results of a hyperelastic 

analysis, it is necessary to assess parameters of the material being examined. Material 

constants are generally obtained for a material using experimental stress-strain data. It is 

recommended that this test data be taken from several modes of deformation over a wide 

range of strain components. 

For hyperelastic materials, simple deformation tests (consisting of six deformation modes) 

can be used to characterize the material constants. A l l the available laboratory test data 

will be used to determine the hyperelastic material constants. Basic deformation modes 

are graphically illustrated in fig. 1. Combinations of data from multiple tests will enhance 

the characterization of the hyperelastic behaviour of the material. 

It can be shown that apparently different loading conditions have identical deformations, 
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and are thus equivalent. Superposition of tensile or compressive hydrostatic stresses on a 

loaded incompressible body results in different stresses, but does not alter deformation of 

a material. As depicted in fig. 2, we find that upon the addition of hydrostatic stresses, 

the following modes of deformation can be identical: 

1. Uniaxial Tension and Equibiaxial Compression. 

2. Uniaxial Compression and Equibiaxial Tension. 

3. Planar Tension and Planar Compression and Pure shear 

With several equivalent modes of testing, we are left with only three independent defor­

mation states for which one can obtain experimental data. 

6 

9 
UniaxialTension 

• 4 4 4 -

Uniaxial Compression 

i i I 
Equibiaxial Tension 

.t f t t t t 
Equibiaxial Compression 

T T T T T T 
Planar Tension 

M M 
Planar Compression 

Figure 1: Illustration of Deformation Modes, (reprint from [2]) 
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t 
UniaxialTension Hydrostatic Compression Equibiaxial Compression 

4- + 
Uniaxial Compression Hydrostatic Tension Equibiaxial Tension 

Planar Tension Hydrostatic Compression Planar Compression 
(Plane Strain Assumption) 

Figure 2: Equivalent Deformation Modes, (reprint from [2]) 
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The following sections outline the development of hyperelastic stress relationships for 

each independent testing mode. In the analyses, the coordinate system is chosen to coincide 

with the principal directions of deformation. Thus, the right Cauchy-Green strain tensor 

can be written in matrix form by 

C 

A? 0 0 

0 A2, 0 

0 0 A§ 

(42) 

where principal stretch ratio in the ith direction A, is 

Xi = 1 + Ei (43) 

and Ei is principal value of the engineering strain tensor in the ith direction. The principal 

invariants of Ca are 

I\ — A 2 + A2; + A | (44) 

h — A 2 A | + A2A§ + A^A§ (45) 

73 — \ \ \ \ \ \ (46) 

For each mode of deformation, a fully incompressible material behaviour is also assumed 

so that third principal invariant, Is, is identically one 

\\\\\\ 1. (47) 

Finally, the hyperelastic Piola-Kirchhoff stress tensor, (1) can be algebraically manip­

ulated to determine components of the Cauchy (true) stress tensor. In terms of the left 

Cauchy-Green strain tensor, the Cauchy stress components for a volumetrically constrained 

material can be shown to be 

-p8jj + dev dh • 
2T d W b ~ l (48) 

where p is pressure and bij is left Cauchy-Green deformation tensor 

(49) 
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3.6.1 Uniaxial tension (equivalently, equibiaxial compression) 

As shown in fig. (1) a hyperelastic specimen is loaded along one of its axis during a uniaxial 

tension test. For this deformation state, the principal stretch ratios in the directions 

orthogonal to the 'pulling' axis will be identical. Therefore, during uniaxial tension, the 

principal stretches, Aj, are given by 

Ai - stretch in direction being loaded 

A2 = A3 - stretches in directions not being loaded. 

Due to incompressibility (47) 

A 2 A 3 = A 7 1 (50) 

and since A2 = A3 we have 

A 2 = A 3 = A " 1 / 2 . (51) 

For uniaxial tension, the first and second invariants then become 

h = \\ + 2A7 1 (52) 

and 

/ 2 = 2Ai + A 7 2 . (53) 

Substituting the uniaxial tension principal stretch ratio values into the eq. (48), we obtain 

the following stresses in the 1 and 2 directions 

< r i l = _ p + 2 _ A | _ 2 _ A r 2 { 5 4 ) 

and 
dW 1 dW 

022 = -p+ 2 ^ p A 7 1 - = 0. (55) 
oh oh 

Subtracting eq. (55) from eq. (54), we obtain the principal true stress for uniaxial tension 

(56) a n = 2(A 2 - A7 1 ) 

The corresponding engineering stress is 

dW , 1dW 
+ A 7 1 

dh 1 dh 
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3.6.2 Equibiaxial tension (equivalently, uniaxial compression) 

During an equibiaxial tension test, a hyperelastic specimen is equally loaded along two of 

its shown in fig. (1). For this case, the principal stretch ratios in the directions 

being loaded are identical. Hence, for equibiaxial tension, the principal stretches Aj, are 

given by 

Ai = A2 - stretch ratios in directions being loaded 

A3 - stretch ratio in direction not being loaded. 

Utilizing incompressibility (47), we find 

A3 = AT/2. (58) 

For equibiaxial tension, the first and second invariants then become 

h = 2A 2 + A 7 4 (59) 

and 

/ 2 = A 4 + 2A7 2 . (60) 

Substituting the principal stretch ratio values for equibiaxial tension into the Cauchy stress 

eq. (48), we obtain the stresses in the 1 and 3 directions 

dW , dW , 
< r i l = _ p + 2 _ A | _ 2 _ A r 2 { 6 1 ) 

and 

.33 = ^ + 2 ^ - 2 ^ = 0. (62) 

Subtracting eq. (62) from eq. (61), we obtain the principal true stress for uniaxial tension 

(63) a u = 2(A 2 - A7 4 ) + A 2 

dh 1 dh 

The corresponding engineering stress is 

T i ^ n A r / 1 . (64) 
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3.6.3 Pure shear 

(Uniaxial Tension and Uniaxial Compression in Orthogonal Directions) 

Pure shear deformation experiments on hyperelastic materials are generally performed by 

loading thin, short and wide rectangular specimens, as shown in fig. (3). For pure shear, 

plane strain is generally assumed so that there is no deformation in the 'wide' direction of 

the specimen: A 2 = 1. 

Figure 3: Pure Shear from Direct Components.(reprint from [2] 

Due to incompressibility (47), it is found that 

A 3 = A 7 1 . (65) 

For pure shear, the first and second invariants are 

h = A? + A 7 2 + 1 (66) 

and 

/ 2 = A 2 + A 7 2 + 1. (67) 

Substituting the principal stretch ratio values for pure shear into the Cauchy stress eq. 

(48), we obtain the following stresses in the 1 and 3 directions 

dW , dW , 
*n = - P + 2—\\-2—A- (68) 

dW , dW , a33 = -p + 2—A"2-2—\j = 0. (69) 
Oil Ol2 
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Subtracting eq. (69) from eq. (68), we obtain the principal pure shear true stress 

a n = 2(\j - A7 2 ) 
dW dW 
~dh+~dh 

The corresponding engineering stress is 

Ti = CTnA1

1. 

3.6.4 Volumetric deformation 

The volumetric deformation is described as 

Ai = A 2 = A3 = A, J = A 3 . 

As nearly incompressible is assumed, we have 

A w l . 

The pressure, p, is directly related to the volume ratio J through 

dW 
P OJ 

3.7 Deformation measures used in finite elasticity 

Suppose that a solid is subjected to a displacement field Ui{xk). Define: 

• The deformation gradient and its Jacobian 

Fu = 5ij + ^ - J = det(F) 
OX j 

• The right Cauchy-Green deformation tensor 

C = F F CRS = FiRFiS 

The Left Cauchy-Green deformation tensor 

B — F F Bij — FÍRFJR 
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Invariants of the left and right Cauchy-Green deformation tensors 

Ix = trC = trB (78) 

h = ~[tr(C)2 - trC2} = -[tr(B)2 - trB2} (79) 

h = detC = detB = J2 (80) 

• Stretch tensors 

At each point X from reference configuration and each time, we have the following 

unique polar decomposition of the deformation gradient F 

F = R U = vR. (81) 

This is a fundamental theorem in continuum mechanics. In (81) R is a proper 

orthogonal tensor called the rotation tensor. It measures the local rotation that is 

a change of local orientation. Next, in (81) U and v define unique, positive definite, 

symmetric tensors, which we call the right (or material) stretch tensor and the 

left (or spatial) stretch tensor, respectively. They measure local stretching (or 

contraction) along their mutually orthogonal eigenvectors, that is a change of local 

shape. 

The positive definite and symmetric tensors U and v are introduced, so that 

U 2 = U U = C v 2 = vv = B. (82) 

• Eigenvalues and eigenvectors of strain tensors We introduce the mutually or­

thogonal and normalized set of eigenvectors {Na} and their corresponding eigenvalues 

A a , a = 1, 2, 3, of the material tensor U as 

U N f l = A f l N f l , | N a | = l , a = 1,2,3. (83) 

Furthermore, after combining first eq. in (82) with (83) we obtain the eigenvalue 

problem for C , i.e. 

C N a = U 2 N a = A 2 N a . (84) 
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Clearly U and C have the same orthonormal eigenvectors, i.e. the set {Na}, called the 

principal referential directions (or principal referential axes). However, the 

corresponding positive and real eigenvalues differ. The eigenvalues of the symmetric 

tensor U are A a , called the principal stretches, while for the symmetric tensor C 

we find the squares of the principal stretches denoted by X2,. 

• Spectral decomposition 

3 

U 2 = C = ^ A 2 N a ® N a (85) 
a=l 

and 
3 

U = C1'2 = A „ N a ® N a (86) 

a=l 

• Hencky (logarithmic) strain tensor 

In the material form 

eiog = ln\J. (87) 

3.8 Stress Measures used in finite elasticity 

Usually stress-strain laws are given as equations relating Cauchy stress ('true' stress) a%j 

to left or right Cauchy-Green deformation tensor. For some computations it may be more 

convenient to use other stress measures. They are defined below, for convenience. 

• Cauchy (true) stress 

The Cauchy stress represents the force dF™ per unit deformed area ds in the solid 

and is defined by 
dFf 

HiGij = km —f- (88) 
ds^o ds 

• Kirchhoff stress 

r = Jcr Tij = Jaij (89) 

• First Piola-Kirchhoff (nominal) stress 

S = J F - V E/ j = JF'^kj (90) 
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• Second Piola-KirchhofF (material) stress 

S = J F " 1 c r F - T Su = J F - V f c z F " 1 (91) 

As the applied theory deals with nearly or perfectly incompressible materials, we do not 

need to distinguish between Cauchy and Kirchhoff stresses (J = 1 in eq. (89)). 
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4 Tension and bending tests of composite material 

The main goal of this chapter is to find out if we are able to obtain the same results with an 

unimaterial computational model and a bimaterial one. For this purpose, computational 

simulations of uniaxial tension tests and bending tests were performed by both of the 

mentioned models. Next, the simulations were compared with experiments performed with 

real specimens of the composite material. Specimens were made from elastomer matrix 

and contained steel fibres. Dimensions of specimens were 125x25x2.9 mm, diameter of the 

fibre was 0.45mm and fibres were diverted from the longitudinal axis of the specimen by 

various angles: 0°, 15°, 45°, 60° a 90°. 

4.1 Experiments 

4.1.1 Uniaxial tension tests 

The first of the experiments, which were carried out on the mechanical testing device Zwick 

Z020 were uniaxial tensile tests (fig. 4). Dimensions of specimens and declinations of the 

fibres were mentioned above. Each test with the same declination of the fibres was repeated 

three times with three various specimens. Before measuring, each specimen was pre-cycled 

in order to eliminate so called Mullins effect [25] - each specimen was loaded by a total 

elongation of the specimen 5 mm, then unloaded and loaded again to the same value of 

elongation. Each specimen was pre-cycled by four such cycles, since the fifth cycle showed 

no substantial change compared to the previous one. 

The specimen was clamped into the testing jaws and an extensometer was placed in the 

middle part of the specimen before measurement. Dependency between force and elonga­

tion of the specimen was obtained as an output of these tests. The measured data was 

recalculated into the dependency between engineering stress and engineering strain and 

can be found in [23] (or in the appendix A.3). 

4.1.2 Bending tests 

Bending tests followed after the uniaxial tests and the specimens used in the bending tests 

were exactly the same pre-cycled specimens which had been used in the uniaxial tests. 

Each specimen was put on two supports and its loading was realized in the middle part of 
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Figure 4: Uniaxial tension test. 

the specimen (fig. 5). Supports and load were realized throughout the entire width of the 

specimen. Dependency between force and deflection of the specimen was obtained as an 

output of this test. The results can be found in [23] (or in the appendix A.3). 

Figure 5: Bending test. 

4.2 Simulations 

Simulations of the above experiments were realized using two different types of models, i.e. 

bimaterial and unimaterial computational models. 

4.2.1 Bimaterial F E model 

This computational model contains two different materials (therefore bimaterial) - one for 

fibres and one for the matrix. Hence, geometric model of matrix (block with dimensions 
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125x25x2.9 mm) was created and then each fibre (cylinder with the diameter of 0.45mm) 

was created inside the matrix (fig. 6). 

In case of simulations of uniaxial tension tests, 2-parametric Mooney-Rivlin incompressible 

hyperelastic model of material was used for matrix, which is introduced by a strain energy 

density function W (or sometimes known as Helmholz free energy W=U-T.S, where U is 

internal energy, T is temperature and S is entropy) in the form 

where c\, c 2 are material parameters and I\, J 2 are invariants of right Cauchy-Green tensor 

of deformation. In case of simulations of bending tests, the material properties of the matrix 

were defined by incompressible Yeoh third order model of material with the following form 

of the strain energy density function 

Material parameters c i , c 2 or di,d2,d^ were determined by standard procedure, i.e. from 

experiments with the elastomer matrix without fibres. This includes the following experi­

ments: uniaxial tension test, equibiaxial tension test and planar tension test. Specimens for 

such experiments of pure elastomer matrix were pre-cycled by 4 cycles and loaded to 100 % 

strain. A reason of such pre-cycling was change in material properties of elastomer matrix -

so called Mullins effect [25]. A stress-strain curve after fifth cycle was almost the same as in 

the fourth cycle, therefore, only four cycles were used for pre-cycling. After pre-cycling, the 

mentioned experiments of pure elastomer matrix were performed and the measured data 

was used for determination of the material parameters. The following material parameters 

were found by using the least square method: ci = 0.4727MPa, c 2 = 0.6992MPa and 

di = 4.034MPa, d2 = -306 .48MPa, ds = 16478MPa. Process of determination (curve 

fitting) of these material parameters is described in detail in chapter 3.6. 

The choice of hyperelastic constitutive model was based on its availability in some F E M 

software and ability of a good approximation of experimental data. As was mentioned 

above, for simulation of uniaxial tension tests of composites Mooney-Rivlin hyperelastic 

model was used for matrix while Yeoh's model was used in case of simulations of bending 

tests. The reason of different hyperelastic models is given by the maximal achieved strain 

VF = c i ( / i - 3 ) + c 2 ( / 2 - 3 ) (92) 

W = d i ( / i - 3) + d2(h - 3) 2 + da(h - 3) 3 . (93) 
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at each kind of test (tension or bending). The maximal strain differs at different decli­

nations of the fibres, but in general, the max. strain was around 50 % in case of tension 

tests (the best approximation between experiments and hyperelastic constitutive models 

in such range of strain was given by 2-parametric Mooney-Rivlin model) and only 4 % in 

case of bending tests (the best approximation was achieved by Yeoh third order model). 

Figure 6: Bimaterial computational model. 

The steel fibres were described by linear elastic material constitutive model with well 

known material parameters (Young's modulus 210 GPa and Poisson's ratio 0.3). 

4.2.2 Unimaterial F E model 

In the unimaterial computational model material behaviour of the composite material was 

described by only one model of material (therefore unimaterial model), which describes 

behaviour both of matrix and fibres. Hence, only a 3D geometric model of the composite 

specimen was created (a block 125x25x2.9mm) without distinguishing between the matrix 

and fibres and without any geometric model of the fibres. There are many anisotropic 

hyperelastic models based on such principle (reinforcement effect of the fibres is included 

into the strain energy function). Some of these models are for fibres which are linear elastic; 

others are to able work with a nonlinear behaviour of the fibres (especially constitutive 

models in the field of biomechanics). However, all these models work with unit vector of 

undeformed fibre's direction and all these models are based on an assumption of infinitely 

thin fibre. Some of these models can be found in [19], [20],[4], [16]. 

The 3D geometric model of the composite specimen was divided into three layers as it is 

depicted in fig. 7. Two outer layers (in purple color) correspond to pure elastomer matrix 
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Figure 7: Unimaterial computational model. 

and the middle layer (the blue one) corresponds to both fibres and elastomer matrix with 

volume fraction of the fibres Vf = 0.3534. Thickness of the middle layer equals to the 

diameter of the fibres, i.e. 0.45 mm, and as it was mentioned above, the 3D model of 

the fibres is not considered in this type of computational model. In case of simulations 

of uniaxial tension tests the material description of the middle layer (i.e. matrix+fibres) 

was realized by the following anisotropic hyperelastic model (it is the only one anisotropic 

hyperelastic model which is implemented in A N S Y S software ; more about this can be 

found in [2] chapter "Hyperelasticity") 

W = c i ( / i - 3) + c2(I2 - 3) + k2(h - l ) 2 (94) 

and in case of bending tests the following model was used 

W = d i (J i - 3) + d2(h - 3) 2 + d3(h - 3) 3 + k2(h ~ I) 2 - (95) 

The material description of the outer layers (only matrix) was realized by the same 

anisotropic models, i.e. eq. (94) in case of tension tests and eq. (95) in case of bend­

ing tests, but the material parameter k2 that corresponds to the fibres only (as it will be 

described below) was set to zero. 

Material parameters c\, c2 or di,d2, d3 are exactly the same ones as the parameters men­

tioned in the previous chapter. By comparing strain energy density function (94) with 

(92), or (95) with (93), we can see that both of these functions differ only in the term 

k2(h ~ I) 2 - (96) 

This term relates to the fibres only, while the other terms relate to the matrix only. In­

variant I4 is square of the stretch ratio of the fibres in the fibres direction and is defined 
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as 

h = A . C A (97) 

where A is unit vector of the fibres direction and C is right Cauchy-Green tensor of 

deformation. 

Material parameter ki was determined under the following assumption - in case of tension 

in fibres direction a stress contribution of matrix is very small (and can be neglected) in 

comparison with the stress contribution of steel fibres. In such case, an average stress of 

composite is basically given by stress in the fibre. Then we can calculate the stress in 

the fibre for the known stretches of the fibre and determine material parameter &2, which 

was in this case = 9180 MPa . Determination of this material parameter is described in 

chapter 9 in details. 

4.3 Discussion of results 

Results of computational simulations both for uniaxial tension tests and bending tests for 

various declinations of fibres are depicted in appendix A.3 in comparison with the corre­

sponding experiments. 

Uniaxial tension tests 

First, let's compare the results obtained by both computational simulations, i.e. by bi-

material and unimaterial computational models. A l l results are depicted in appendix A.3, 

where the bimaterial model is always rendered by a red curve, the unimaterial one by a 

green curve. As we can see from the figures related to the individual declination of the 

fibres (fig. 20 to fig. 24 ), both models give almost the same results. Remind that both 

computational models have the same models of material related to the matrix (including 

material constants) and differ only in the material models related to the fibres. However, 

the material constant ki was determined so that the stress in the fibres of the unimaterial 

model was the same as the stress in the fibres of the bimaterial model. Therefore, both 

models should give the same results by principle. 

In tension test with longitudinal fibres (under 0° - fig. 20), the unimaterial model appears 

slightly stiffer than the bimaterial one. Here the stiffness of longitudinal fibres constraints 
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any elongation of the specimen so that most deformation occurs between the jaws and the 

fibres as shear of the rubber layer. While the thickness of this rubber layer is constant 

in the unimaterial model, in the bimaterial one the same thickness occurs in the axes of 

fibres only and the rubber layer is thicker anywhere else, which makes the specimen more 

compliant. 

Both model curves in fig. 24 should be identical in an ideal case. However the unimaterial 

model appears some 10% more compliant than the bimaterial one. This difference can be 

explained by the absence of steel in the unimaterial model where the fibres are replaced 

by an additional member in the strain energy density function. The percentage of steel in 

the material does not correspond to the percentual decrease of stiffness of the unimaterial 

model because of two features of the bimaterial model: 

• all the cross sections of the specimen contain some amount of rubber so that stiffness 

of no cross section corresponds to the very high stiffness of steel, and the specimen 

is more compliant, 

• rubber in a vicinity of steel undergoes a nearly uniform triaxial stress state in tension 

which emphasizes the volumetric component of strain and makes the material less 

compliant. 

It's obvious from figures 20 to 24 that difference between the results of simulations using 

both computational models is maximally 10% (fibres under 90°, fig. 24). Hence, we can say 

that both models under tension load give nearly the same results, therefore the bimaterial 

model can be replaced (with advantages) by the unimaterial one. Comparing the results 

of simulations and experiments we can see that the agreement between the results is good 

in case of declination of the fibres being 0° (fig. 20) (simulations are at the upper bound 

of the confidential interval), but in the other cases simulations and experiments disagree 

(fig. 21 to fig. 24). Determining of material parameters related to the matrix (parameters 

c i , C2, di, di and 03) was carried out on the basis of the material tests of the pure matrix. 

As it was mentioned in the previous paragraph, each specimen of the pure matrix was 

pre-cycled by 100% of strain, then unloaded and loaded again to the same strain value. 

The pre-cycling was repeated four times until the stress-strain curve showed no substantial 

change. Composite specimens used in the uniaxial tension tests were also pre-cycled, but by 
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a different strain amplitude. Each composite specimen, regardless of the fibres declination, 

was loaded by 5 mm displacement. Due to the various declinations of the fibres, various 

values of the strain were generated in the specimens and basically each specimen (with 

various declination of the fibre) was pre-cycled by a different strain amplitude. Moreover, 

the stresses and strains are not homogenous in the specimens, but they vary throughout 

the specimen. Hence, it is impossible to carry out such composite experiments where the 

specimen would be loaded by the same strain amplitude along its whole length. 

A feasible solution how to improve the agreement between simulations and experiments can 

be application of a material model which is able to take into account the Mullins effect [25] 

including the various strain amplitudes, e.g. Ogden-Roxburg model [27]. However, in case 

of unimaterial computational model the Ogden-Roxburg model has not been implemented 

yet in any known F E M software, therefore, for practical use of this model it is necessary 

to implement it first into a F E M software. 

Consequently, a new group of experiments were caried out in order to check out if Mullins 

effect can really cause the above differences between simulations and experiments. For 

this purpose, another elastomer matrix was chosen showing negligible Mullins effect. It is 

evident from fig. 8 and from others results presented in [11] that simulations are in good 

agreement with the tests for all fibre declinations. Hence, the hypothesis was confirmed 

that Mullins effect is responsible for the differences between simulations and experiments. 

Bending tests 

The bending test experiments contain the same problem as in case of tension tests, i.e. 

simulations and experiments can not be compared due to various strain amplitude in the 

pre-cycling of specimens. As we can see from the results in appendix A.3 related to the 

bending tests, results of simulations disagree with experiments except the case with zero 

declination of the fibres. I think that this discrepancy is caused again by different amplitude 

in the pre-cycling in the all specimens, even in the specimen with zero declination of the 

fibres. However, the agreement between simulations and experiments is good in such case 

of declination, because zero declination means that fibres are substantial part of composite 

material which carries most of the load (in other words contribution of the matrix is 

insignificant). Therefore Mullins effect does not influence the results. For illustration, 
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Figure 8: Results of the tension test and its simulation for 45° declination of fibres. 

figure 30 represents the influence of cycling, where specimens 1 and 2 were cycled to 5 mm 

of the total elongation of the specimen, while specimen 3 was cycled up to 10 mm of total 

elongation. The difference in the results is obvious. 

In bending test with longitudinal fibres (under 0° - fig. 25), the unimaterial model appears 

slightly stiffer than the bimaterial one. It might be explained by different distribution of 

steel throughout the height of the specimen. The structure of the unimaterial model is 

sandwich-like, i.e. Active fibres are assumed to be uniformly distributed in the middle layer 

with thickness of 0.45 mm, and their tension stiffness does not depend on the distance from 

the neutral axis of bending. In contrast, the fibres in the bimaterial model are cylindrical 

(with the same diameter of 0.45 mm) so that the amount of steel is decreasing with distance 

from the neutral axis, which makes the model more compliant. 

When comparing the results of simulations with experiments we can see that both models 

disagree except for the declination of 90° (fig. 29). At first glance, it might seem that both 

models give the same results in case of declination 0° and 15° (fig. 25 and fig. 26), but 

it is not the case. In this case both models give the same results t i l l some magnitude of 

deflection, but above a certain limit the unimaterial model begins with unstable behaviour, 

i.e. the force is almost constant for any deflection and the simulation fails. 
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It was found out upon closer examination of the material model (94) or (95) that this model 

is based on assumption of infinitely thin fibres, i.e. fibres have zero bending stiffness. When 

we go back to the results of simulations we can see that in case of declinations 0° and 15° 

(obr. 25 and obr. 26) after certain limit an instability occurred. We can see very well in 

case of declinations 45° and 60° (fig. 27 and fig. 28) that the unimaterial model (i.e. model 

without bending stiffness of the fibres) gives significantly softer results than the bimaterial 

model (i.e. model with bending stiffness of the fibres). In case of declination of 90° (fig. 

29), the agreement between both models is very good, since fibres do not contribute to the 

composite stiffness significantly (it is basically bending of the elastomer matrix), therefore 

both models (with the same material models and material parameters) must give the same 

results. New experiments with negligible stiffness of the textile fibres were carried out in 

order to check out if the unimaterial model is able to provide results that correspond to 

experiments. It was verified in [11] that the anisotropic hyperelastic constitutive model 

(in a polynomial form) is able to simulate results of tension and bending tests of fibre 

composites showing large strains credibly under the following conditions: 

• elastomer matrix shows negligible Mullins effect 

• bending stiffness of fibres is negligible. 

Next, the sensitivity analysis in [22] and fig. 9 show that bending stiffness provided by 

the unimaterial model is limited. This model gives the same results as the bimaterial one 

only when Young's modulus of the fibres is up to 100 MPa . A further increase of Young's 

modulus results in disagreement between both models, and from a certain limit a further 

increasing of Young's modulus (10 OOOMPa) does not make sence. Based on these results 

it is obvious that the unimaterial model is not able to include bending stiffness of fibres. 

In contradiction to tension test, the bending test simulations with declination angle of 

fibres 15° show a higher stiffness of the bimaterial model in comparison with experiments 

(see fig. 26). This discrepancy may be caused by a specific behaviour of these specimens: 

during bending only two corners (situated in the diagonal closer to the direction of fibres) 

of the specimen remain in contact with the lateral supports and the other two corners go 

up. The boundary conditions prescribed in the F E model, however, constrain the vertical 

displacement of both ends of the specimen, i.e. of all its four corners, which makes the 
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Bending test (fibres 30°) 

Figure 9: Bending test - impact of Young's modulus. 

specimen stiffer 

After summarizing the results, we can say that in case of uniaxial tension tests both 

models give the same results. Next, it was find out that in the case of bending tests the 

unimaterial model doesn't include the bending stiffness of the fibres, therefore, the model 

is not able to give correct results. Hence, the unimaterial model can be used in such ap­

plications where fibres are loaded in tension (or compression) and/or in such application 

where fibres don't have significant bending stiffness (e.g. composite material with textile 

fibres). 

It was found out that in case of the specific rubber used in experiments the Mullins ef­

fect influences the results significantly, since (due to the various declinations of the fibres) 

strains in the specimens are locally varied and also stresses and strains are not homogenous 

throughout the specimen. Then each part of the specimen is loaded by different strain and 

due to the Mullins effect mentioned above different stress-strain curves are applied. 

43 



The only one paper was found, after many searches on this topic, published by Spencer 

and Soldatos [32] in 2007. They introduced a new unimaterial model which is able to 

include bending stiffness of the fibres. However, this model is based on Cosserat continuum 

and is quite complicated for practical application. Hence, next chapter introduces basic 

knowledge on Cosserat continuum and a part of chapter 6 deals with simplification of this 

theory. 
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5 Cosserat theory of continuum 

Classical continuum mechanics is based on the fundamental idea that all material bodies 

possess continuous mass densities, and that the laws of motion and the axioms of consti­

tution are valid for every part of the body no matter how small they may be. A loss of 

accuracy requiring a more general description may occur in classical continuum mechanics 

if the response of a body to an external physical effect is sought, in which the length scale 

is comparable to the average grain or molecular size contained in the body, because the 

granular or molecular constituents of the body are excited individually. In this case, the 

intrinsic motions of the constituents (microelements) must be taken into account. This 

situation prevails in practical applications when the material under consideration is a com­

posite material containing macromolecules, fibres, and grains [10]. The existence and basis 

of couple stress in elasticity was postulated by Voigt [35] in 1887 in connection with polar 

molecules. He took an assumption into account that the interaction between two parts of 

the body through an area element is transmitted not only by a force vector, but also by a 

moment vector. Such assumption consists in the fact that not only force stresses, but also 

couple stresses must be taken into account. The complete theory was developed in 1909 by 

brothers E. and F. Cosserat [5]. In their theory being nonlinear from the very beginning 

, the deformation of the body is described by a displacement vector and an independent 

rotation vector, therefore each material element has six degrees of freedom. The Cosserat 

brothers formulated balance equations for force stress and couple stress, but they didn't 

formulate constitutive equations. 

Next works dealing with Cosserat theory were concentrated on the simplified Cosserat the­

ory (known as indeterminate couple stress theory or Cosserat pseudo continuum). In this 

theory, the rotation vector is not an independent vector, although force and couple stresses 

are still taken into account. The most important works are those by Truesdell and Toupin 

[34], Mindlin and Tiersten [24], Toupin [33] and Eringen [6]. Next in 1964 Eringen and 

Suhubi [7] introduced a general theory of a nonlinear microelastic continuum in which the 

balance laws of continuum mechanics are supplemented with additional ones, and intrin­

sic motion of microelements contained in a macrovolume were taken into account. This 

theory was renamed later to the micropolar theory. Basics of thermo-elasticity in terms of 
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Cosserat continuum were formulated by Nowacki in 1968 [26]. 

This chapter was taken mainly from [10] and [26]. 

5.1 Deformation and microdeformation 

I will distinguish between material and space description in the following text. Material 

(or reference) description works with particles X determined by position {X\,X2, A3) and 

attention is payed to the particle - we are observing what will happen with the particle 

during the motion. Independent variables are particle and time. Material coordinates are 

usually used in so called Lagrangian description. 

The current configuration is taken as the reference configuration in the space description 

or Eulerian description. Independent variables are position {x\,X2,£3) and time and we 

are observing what will happen in a fixed part of the space. 

A material point P of a body B having volume V and surface S in its undeformed and 

unstressed state may be defined by its rectangular coordinates X\, X2 and A 3 . If the body 

is allowed to move and deform under some external loads, it will occupy a region having 

volume v and surface s. Referred to the same rectangular frame of reference, the new 

position of the point P will be x\,X2 and £3 (fig. 10). The deformation of the body at 

time t may be prescribed by a one-to-one mapping 

xk = xk(X1,X2,X3,t), k = 1,2,3 (98) 

or its inverse form 

XK = XK(Xl,X2,xs,t), K = 1,2,3. (99) 

We now consider a volume element AV enclosed within its surface AS in the unde­

formed body. Let the center of mass of AV have the position vector X . A l l materials 

possess certain granular or fibrous structures with different sizes and shapes. If the phys­

ical phenomenon under study has a certain characteristic length (such as wavelength), 

comparable with the size of grains in the body, then the microstructure of the material 

must be taken into consideration. In such situations, classical continuum mechanics should 

be modified by considering the effect of the granular or fibrous character of the medium. 
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Figure 10: Material and spatial coordinates, (reprint from [10]) 

Suppose that the element AV+AS contains N discrete micromaterial elements AV^-\-

AS^a\a = 1 , 2 , N ) . The position vector of a material point in the ath microelement 

may be expressed as 

X ( a ) = X + S ( a ) (100) 

where 3 ^ is the position of a point in the microelement relative to the center of mass of 

AV + AS (fig. 11). Upon the deformation of the body, the position of the ath particle 

will be 

x ^ = x + ^ (101) 

where £(-a*> is the new relative position vector of the point originally located at X*-"*1. The 

relative position vector depends not only on X , t, but also on H( Q), i.e. 

£(a) = £ ( « ) ( x , E ( Q ) , i ) (102) 

Eringen and Suhubi [7], [8] and Eringen [9] have constructed a general theory in which 

(102) is linear in S^a\ The basic assumption underlying this theory is the: 

The material points in AV + AS undergo a homogeneous deformation about their center 

of mass. 

On the basis of the motion and deformation of the microelement we can distinguish: 

Micromorphic materials - microelement may be deformed, moved and rotated. 

47 



Figure 11: Deformation of microvolume. (reprint from [10]) 

Micropolar theory of elasticity (or Cosserat theory of elasticity) - this theory admits 

only rigid microrotations of the microvolume elements about the center of mass of the 

volume element. 

Constrained Cosserat theory (or Indeterminate couple stress theory)- microrotations 

and macrorotations are the same, only rigid motion of microelements is possible. 

5.2 Strain and microstrain tensors 

On the basis of the motion and inverse motion of a material point in a microelement may 

be written [10] 

4a) =xk(X,t) + &) (103) 

XP =XK(x,t) + EP, (104) 

where vectors and from fig. 11 are given 

i a ) =XkK&,t)zP, (105) 

•P =XKk(X,t)^a\ (106) 
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and where XkK(X-,t) and Xxfc(X, t) are nine scalar functions in general in micromorphic 

materials (for details see [10]). 

The square of the arc length is calculated by forming 

(ds^f = dx<a>.dx<«) = [CKL + 2YKML~M + d**Md**NZMEN)dXkdXL+ 

+ 2 ( * X L + XkL d*JlM EM)dXKdEL + XkKXkLdEKdEL (107) 
oxK 

where 

CKL is the commonly known Cauchy-Green tensor of deformation, tensors ^>KL and TKLM 

are new tensors of microdeformation. 

Let's introduce the displacement vector (fig. 12) 

u ( a ) = x - X + | - 3 = u + £ - S (111) 

where 

u = x - X (112) 

and 

C/L = u.IL = xk5kL - XL, (113) 

ui = u.U = xi - XKSKi- (114) 

By partial differentiation of the last two equations, we obtain 

9 X K ^ K + | ^ W (H5) dXK V dXK 
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d-^=Uk-p-)sKl (116) 
dxk V dxkJ 

Similary, we introduce the microdisplacement tensors $(X, t) (material representation) 

and 0(x, t) (spatial representation) 

XkK = (SLK + $LK)6kL (117) 

%Kk = (Sik + (pik)Sici- (118) 

Substituting (115) and (117) into tensors (108), (109) and (110), we can write 

r a dUK dUL dUudUu n i q , 
C K L = 6 K L + dx-L

 + dx^ + dx^dx^ ( 1 1 9 ) 

* K L = + $KL + ^ L + ^ $ M L (120) 

d&KL 8UNd&NL 
r x L M = ^ 7 + ^ ^ 7 - ( 1 2 1 ) 

These relations are valid in general for micromorphic materials and for nonlinear theory. 
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5.3 Micropolar and constrained Cosserat theory 

We now consider a special class of materials in which the state of microdeformation can be 

described by a local rigid motion of the microelements. Materials consisting of rigid fibres 

or elongated grains fall into this category. Mathematically, this specialization in the linear 

theory is obtained by setting 

$ K L = —&LK (material notation) (122) 

4>ki = — 4>ik (spatial notation) (123) 

where & K L , <t>kl a r e material and spatial microdisplacement tensors, respectively. It doesn't 

make sence to distinguish between material and spatial coordinates in the linear theory 

since it holds 

®KL = (<>KM + ®KM)(f>ml<iMm5lL (124) 

and when we omit members in product 

®KL ~ (pml^KmSlL- (125) 

Next, according chapter IV. from [10], it is apparent that vector 3? 

$K = ^KLM^ML, ®KL = -^KLM^M, (126) 

represents an angular rotation of a microelement about the center of mass of the deformed 

macrovolume element, i.e. vectors ~ </> represent microrotation. 

Constraint Cosserat theory means that microrotations <pk are the same as macro-

rotations (fk, i.e. 

A 1 d U m /107\ 
q>k = <Pk = 7ieklm-^—• (127) 2 dxi 

Veloc i ty of the macroelement 

The velocity field in material description is given by the following equation 

V ( X , t ) = x ( X , t ) = ^ £ (128) 

where X is constant. If we substitute herein equation (99) for X , we can write 

V ( X , t ) = V[X(x , t ) , t ] = v (x , t ) , (129) 
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where v(x, t) is a velocity field in the spatial description. Note that velocity relations 

metioned above describe the movement of center of mass P or p of macroelement AV + AS 

or Av + A s , respectively. 

Relative velocity of the microelement 

Let's establish the relative velocity of the point x + £ to the center of mass p (fig. 12). 

Because of equation (105), we can write for velocity of a microparticle 

^ = XiK(*,t)ZK (130) 

and on replacing EK by (106) we obtain 

£ = i/*(x,*)& (131) 

or 

ii = "iktk, (132) 

where 

"k(x, t) = x j c ( X , t)XKk(x, t) (133) 

and 

vik = XlK%Kk- (134) 

The three vectors vk defined by equation (133) are called gyration vectors, and their 

components v\k form the gyration tensor. 

Gyration tensor v\k is related to the moment of inertia. In case of moment of inertia the 

position of particles is multiplied by weighting factor - weight of particles, while gyration 

tensor depends only on the particles position (weight of particles is not considered). 

By substituting to eg. (134) from equations (117) and (118) we get 

Vkl = -CfcZM^M - ^kKM^Klm^M^m- (135) 

In case of the linear theory we can write 

VM ~ -CfcZM^M — -CfcZm^m- (136) 

On introducing an axial vector uk, called the microgyration vector, by the formula 

Vk = ^klm^ml vkl = -^klm^m, (137) 
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then by comparing two last equations and with regard to the constraint Cosserat theory, 

we get 

X -
 1

 d i i k f1ia\ 
2 OXi 

Then we repeat the mentioned process of determination of relative velocity and de­

termine this relative velocity again, but now we determine the velocity of material point 

X + S relatively to the center of mass P (obr. 12). Wi th help of eq. (106), we can write 

H L = ± L f c ( x , t ) £ f c (139) 

and when substituting for from equation (105) we get 

EL = ± L f c ( x , t ) x f c x ( X , t)EK (140) 

By introducing the gyration tensor in the material description 

KKL = x f c x ( X , t)± Lfc(x, t), (141) 

we can rewrite the last equation into the form 

EL = mKLEK. (142) 

Substituting to the (141) from equations (117) and (118) we get 

= —(-KLm^m ~ ^Lkm^kKM^M^m- (143) 

In case of linear theory we can consider that 

^KL ~ -eKLm4>m ^ ~eKLM^M- (144) 

Since microgyration tensor in material description can be written 

? l K L = -exLM^M, (145) 

then we can see by comparing of two last equations that 

KM = $ M - (146) 

And for linear constraint Cosserat theory we'll find then 

= = $ = = 9t. (147) 
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Total velocity 

Total velocity of material point X + S is then given as 

V<a> = V + S ( A ) = V + mKLEP = V + (148) 

Similarly, the total velocity of the point x + £ is given 

v ( « ) = v + = v + ^ ( « ) = v + ^ (a) ( 1 4 g ) 

5.4 Force stress and couple stress 

This chapter introduces force and moment (couple) stresses according to [26]. 

Let us imagine a volume element AV separated from the body and bounded by surface 

AS; the interactions between the particles inside and outside the separated volume are 

transmitted across the surface AS. The transmission of the interactions across the arbitrary 

element dS located on the surface AS is expressed by the force tdS and the moment IdS. 

Consider the point x of an elastic body. To determine the stresses acting at this point, let us 

imagine three coordinate planes passing through this point and perpendicular to the axes 

of a rectangular Cartesian coordinate system. Let t ^ denote a force-stress vector acting 

on the surface element dAi = dxidx^ and l*-1*1 a similar couple-stress vector. Vectors t ^ 

and both called traction in this theory, and their components, i.e. force stresses o\j 

and couple stresses m\j are shown in fig. 13. 

Figure 13: Force and couple stresses, (reprint from [26]) 
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It is obvious from the fig. 13 that 

t ( 1 ) = (<th, cri2,(7i3), = ( m i i , m i 2 , m i 3 ) (150) 

and similarly vectors in other coordinate planes 

t ( 2 ) = (021,022 , 0 2 3 ) , 1 (2) = (77121, 77122, 77123) 

t ( 3 ) = ( 0 3 1 , 0 3 2 , 0 3 3 ) , 1 (3) = (77131,77132,77133). (151) 

When we consider an infinitesimal tetrahedron according to fig. 14, then 

tdS = t^dSi + t^dS2 + t{3)dS3 (152) 

US = lwdS1 + l^dS2 + l[3)dS3. (153) 

By introducing 

dSi = dSrii, rii = cos(n,Xi), (154) 

equations (152) and (153) can be then rewritten into the form 

t = t ^ m + t^n2 + t^n3 (155) 

1 = l ^ m + l ( 2 ) 7 i 2 + 1 ( 3 )773. (156) 

and these vector equations can be written in the stress components, i.e. 

tL = OjiUj (157) 

and 

lL = mjiUj. (158) 
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n 

l l , :'dS. 

r ds 2 f 3 'dS 3 

Figure 14: Tetrahedron O A B C . (reprint from [26]) 

5.5 Momentum and moment of momentum 

Equations of momentum and moment of momentum are introduced in this chapter for 

Cosserat continuum. This balance principles will be used in determination of constitutive 

equations and are introduced both in material and spatial description. The equations in 

the spatial description were taken from [10] while equations in material description were 

derived. 

5.5.1 Spatial description 

It is obvious from fig. (12) that X is the position vector of the center of mass of a 

macroelement and S is the relative position vector of a microparticle to the center of mass 

of macroelement. Accordingly. 

(159) 
Q 

With help of relation (106) the last equation can be rewritten into the form 

(160) 
Q 

and since 

, ( « ) A F ( « ) = p ( a ) A u ( a ) (161) 

we get 

(162) 
a 
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Since, Xxk 7̂  0 the equation (162) is fulfilled if 

£y«)f( aW a> = 0. (163) 
a 

This shows that the position vector x is the center of mass of the deformed macrovolume. 

Consequently, the motion carries the center of mass of the undeformed macrovolume to 

the center of mass of the deformed macrovolume. 

Total momentum 

The mechanical momentum of a microelement Av^ is the product of its mass with its 

velocity, namely, The total momentum of a macroelement is the vector sum 

of the micromomenta of its microelements. For a micropolar body with help of relation of 

total velocity of particle (149), we have 

Ap = Ypia)via)Av(a) =Ypia)(.v + i{a))Av(a) = (164) 
a a 

= V E P(a)Av(a) + v x E P{oL)i{oL)Av{a). 
a a 

The last term vanishes (due to the relation (163)), and in the limit we write 

dp = pvdv. (165) 

The total momentum of the body is therefore given by 

p = / pvdv. (166) 

Principle of balance of momentum 

The principle of balance of momentum has the general form 

J pvdv = F(t) (167) 
V 

where F(i) is the resultant force acting onto the body. If we don't consider any volume 

forces then the principle of balance of momentum can be expressed by (with help of relation 

(157)) 

— j pvidv = j OjiTijds. (168) 
v ds 
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Total moment of momentum 

The mechanical moment of momentum of a microelement is defined as the moment of its 

momentum, namely, 

x(") x p(a)v(a)Av(a). 

The total moment of momentum of a macroelement is calculated by 

A m = ^ x ( « ' x / a M a ) A u ( a » = ^ ( x + e ( a ) ) x ^ f v + ^ j A ^ 1 . (169) 
a a 

On carrying out the multiplication, we get 

A m = xx v P{a) + ^ &] x p ^ i ( a ) Av^ + x x ^ p{a)i{a) A ^ - v x ^ P(a)&] A v ( a ) . 
a a a a 

(170) 

The last two summations vanish, since £ is measured from the center of mass of the 

deformed macroelement and the total moment of momentum is then given by 

Am = x x v ^ p ( a W a ) + ^ ^ a ) x p ^ ^ A v ^ l (171) 
a a 

Due to the relations (15.8) and (15.10) in [10]) 

£ P ( Q ) £ J Q ) £ ? Q ) Av{a) = pijAv (172) 
Q 

and 

jmi — ijjfiim imii (173) 

where i is the spatial microinertia tensor, the last term in the equation (171) can be derived 

(with considering of (138)) as follows 

Y |(«)
 x
 p^i(a)Av^ = p9Av, (174) 

Q 

where 9i = jmnpm. Then the total moment of momentum of the macroelement is given by 

Am = x x v ^ p ( a ) A « ( a ) + p 0 A « (175) 
Q 

a the total moment of momentum of the body is 

m = J (x x pv + p9)dv. (176) 
V 
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Principle of balance of moment of momentum 

The principle of balance of moment of momentum has the general form 

D 
Dt 

J(x x pv + p9)dv = M(t), (177) 

where M(t) is the resultant moment act on the body. Considering that no volume forces 

and volume couples acting on the body, the principle of moment of momentum (with help 

of relations (157), (158)) is given by 

^- J(tijkXjpvk + p9i)dv = j(eijkXj<Jikni + mjirij)ds. (178) 
v ds 

5.5.2 Material description 

The equations of momentum and moment of momentum in material description will be 

formulated in the following part. 

Total momentum 

Due to the relation (eq. (15.5) in [10]) 

p0dV = pdv (179) 

the total momentum in spatial description (166) can be rewrite into the form 

p = / pvdv = / p0vdV. (180) 
v 

Principle of balance of momentum 

We can write for every surface element (eq. (3.1) in [18]) 

tds = TdS (181) 

where Cauchy traction vector t is given by equation (157) and T represents first Piola-

Kirchoff traction vector, which can be written with help of first Piola-Kirchoff stress and 

outward normal of the element 

Ti = PjiNj. (182) 
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With help of the two last equations and eq. (179) , we are able to derive from the principle 

of balance of momentum in the spatial description (168) its equivalent in the material 

description 

J poVidV = J PjiNjdS. (183) d_ 
dt 

v as 

Total moment of momentum 

With help of relation (179), the total moment of momentum in spatial description (176) 

can be rewritten into the equivalent form in material description, therefore 

m = J(x x pv + pG)dv = J(x x p0v + p09)dV. (184) 
v V 

Principle of balance of moment of momentum 

If the following equation is valid 

mjiUjds = MjiNjdS (185) 

where rriji is the couple stress of Cauchy type and MJI is couple stress of Piola type, 

then the principle of balance of moment of momentum in spatial description (178) can be 

rewritten to the equivalent form in material description, therefore 

j- J(tijkXjPoVk + p09i)dV = j(€ijkXjPLkNL + MjiNj)dS. (186) 

v as 

It should be noted that 

Oi = jmiVm (spatial description) (187) 

0 / = JMI^-M (material description) (188) 

where = v (equation (147)). Due to the following equality 

PJmiVmdv = / p0JMiyiMdV, (189) 

v V 

and with respect (147), it is obvious that 

J MI = jmi&Mm&Ii- (190) 
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This result is a consequence of considered linear theory of microrotation. However, the 

following equation is valid in general (more about this can be found in [10]) 

JMI = jmi%Mm%Ii- (191) 

5.6 Balance of mechanical energy 

The balance equations of mechanical energy are introduced in this chapter both for material 

and spatial description. Derivation of these equations in case of spatial description can be 

found e.g. in [10]. The equations in material description were derived. 

According [18], the balance equation of mechanical energy can be written in the form 

jtK(t)+Pint(t) = Pext(t) (192) 

where K(t) is the kinetic energy, Pintif) is the stress power and Pext(t) is the external 

mechanical power. 

5.6.1 Spatial description 

In order to derive the balance equation of mechanical energy, the kinetic energy, stress 

power and external mechanical power have to be determined. Let's start from the principle 

of balance of momentum (168) and of moment of momentum (178), i.e. from the equations 

d 

dt 
pvidv = / ajiUjds (193) 

d_ 

d~t 
jkXjpvk + p9i)dv = j (eijkXjaikni + mjin^ds. (194) 

v ds 

Using Gauss-Ostrogradsky theorem and after some manipulations, the local balance equa­

tions will be obtained in the form 

t * - « = 0 (195) 

din'' 

-Q^1 + eijk&jk ~ pOi = 0. (196) 
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After introducing a spin vector as 

1 dvk 1 If dvj dvk 

then after comparison with eq. (138) and also with eq.(147), it's obvious that 

CJ = <p = v . (198) 

Multiplying the local balance equations (195) by velocity vector Vi, and local balance 

equations (196) by spin vector uji, (since it's identical with vector v ) both equations will 

be integrated over the whole deformed volume of the body to obtain 

/

dcr 
—^Vidv (199) 
dxj 

V V 

J pQiUJidv = J {-^r^i ~ UjkVjk^jdv. (200) 
V V 

Next, 
d(ajiVi) doji dvi d(mjiUJi) drriji dui 

"V = » + > ^ = ~^~ui + mJi-^~- ( 2 0 1 ) 
OXj OXj OXj OXj OXj OXj 

Substituting from eq. (201) to the eq. (199) and (200) and using Gauss-Ostrogradsky 

theorem we get 

^ / -f>ViVidv+ / ajiQ^rdv = / OjiViTijds (202) 
v v ds 

d\ J \ p ^ i U J i d v J r J (ymji^~. + UjkCTjk^Jdv = J rrijiUJinjds. (203) 
v ds 

Using eq. (192) the kinetic energy is 

K(t) = \ J p(viVi + 9iUJi)dv = 7} J p(viVi+ jmiujmuji)dv, (204) 

V V 

stress power is 

V a j i ~dx- + m j i ~dx- + U J j k ( T j k ) d v (205^ 
v ^ 

and external mechanical power is 

Pextif) = j ((TjiViUj +rrijiUJinj)ds. (206) 

as 
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Next, the stress power can be expressed 

Pint(t) = I WdV (207) 
V 

where W is a strain energy density function. Using so-called Nanson's formula 

dv = JdV, (208) 

we can write 

Pint{t) = J WdV = J jWdv = J ( a j i ^ L + m j i ^ . + U}jkajk^dv, (209) 

V v v 

where J is determinant of the deformation gradient. Then the time derivative of strain 

energy density function in the spatial description has the form 

aji^j + mji~&x~ + UjiCrji) • (21°) 

5.6.2 Material description 

The kinetic energy, stress power and external mechanical power is derived in material 

description in this chapter, similary to the spatial description. Let's start again from bal­

ance equations of momentum (183) and moment of momentum (186), but now in material 

description, i.e. from equations 

d 
dt 

j poVidV = J PjiNjdS (211) 

V OS 

d 
dt 

J(eijkxjPovk + po9i)dV = J (eijkXjPLkNL + MjiNj)dS. (212) 
v as 

Using Gauss-Ostrogradsky theorem and after some manipulation the local balance equation 

in material description will be obtained in the form 

" Poii = 0 (213) 

dMj 
dXj 

+ eijkFjLPLk - p09i = 0. (214) 
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Multiplying the local balance equations (213) by velocity vector Vi, the local balance equa­

tions (214) by spin vector Wj and both equations will be integrated over the undeformed 

volume of the body, we get 

poViVidV = J ^^vidV (215) 
V V 

j p06iUJidV = j + ZijkUiPLkFjL^j dV. (216) 

v v 
Next, 

d(PjiVi) dPji dvi djMjjUJi) dMji dcoi 

- ^ x T = dx-jVi+Jidx-y - ^ x r = ^xJ^ + M-HdXj- ( 2 1 7 ) 

Substituting from eq. (217) to the eq. (215) and (216) and using Gauss-Ostrogradsky 

theorem, we obtain 

d J\poviVidV + J pJi~^dV = J PjmNjdS (218) 
dtj 2' 

v v as 

jt j ^poÖiUidV + J ^Mji-^- + ujkPLkFjL^J dV = J MjiOJiNjdS. 

v v as 

With respect to the eq. (192) the kinetic energy is 

(219) 

K(t) = \ j poiviVi + 6iüJi)dV = \ / po{viVi + jmiujmuJi)dV, (220) 

V V 

the stress power is 

Pint{t) = J ( P j i ^ j +
 MJi^tj + "jkPLkFjL^j dV (221) 

V 

and external mechanical power equals to the 

Pext(t) = J (PjmNj + MjiUiNj)dS. (222) 

as 

Due to the eq. (207), the time derivative of strain energy density function in material 

description can be written in the form 

W = P j i dYj + M j i W~j + u i k P L k F i L • (223) 
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6 Hyperelastic constitutive model with bending stiffness of 

fibres 

The theory of finite deformations of elastic materials reinforced by fibres was founded by 

Adkins and Rivlin [1]. Their theory described an isotropic elastic material with no extensi­

bility in the direction of fibres and they assumed that the reinforcing fibres lay in discrete 

surfaces. Green and Adkins described the development of this theory in [15]. 

A different approach was established by Spencer [30]. In his theory the fibre direction is 

characterized by a unit vector in the reference configuration. The fibre vector formulation 

has been applied to many kinds of material behaviour. Particular applications of the the­

ory of finite elastic deformations are in Spencer [30], [31] and Rivlin [28]. Presently, this 

theory based on [30] is used in various kinds of applications of composite materials, either 

in industry or in composite biomaterials. Concerning examples of industrial use, readers 

are referred e.g. to [17], where authors simulated response of an air-spring (rubber matrix 

and textile cords) used for inhibition of vibrations of driver's seat. On the other side, arte­

rial walls represent characteristic examples of composite biomaterials. The arterial wall is 

composed mainly of isotropic matrix material (elastin) and two families of fibres (collagen). 

A multi-layer model for arterial wall was proposed by Holzapfel [20]. 

A l l of the above mentioned theories are based on assumption of infinitesimaly thin 

fibres. This fibre is then perfectly flexible, i.e. fibre shows zero bending stiffness. 

In order to incorporate bending stiffness into the previous theory (in [30], [31]), Spencer 

considered in [32] that the strain energy density function depends not only on the defor­

mation gradient Fij and on the unit vector of undeformed fibre Aj, but also on the space 

derivatives of the deformed fibre vector Gij, i.e. 

W = W(FiJ,GiJ,Aj) (224) 

where 
(JT • f)h • f) 

Fu = ^ r , Gij = —^ = —-(FiRAR), h = FiRAR. (225) 

However, this new theory requires including of both force and couple stresses, i.e. Cosserat 

theory of continuum has to be used. 
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6.1 General constitutive model 

Spencer and Soldatos in [32] introduce the constitutive assumption that W depends, in 

addition to the displacement gradients FiR and A , on the gradients of the deformed fibre 

vectors. However, rather than including dependence on the gradients dai/dXR, it is more 

convenient to introduce a vector b, with Cartesian components bi, such that 

dx' 
b = Aa, bi = \ a i = AR—^- = FiRAR, (226) 

oXR 

and to assume that W depends instead on the gradients dbi/dXR. Since stretch ratio 

A 2 = ARAsFiRFis, the dependence on F, a and A is equivalent to dependence of F, b and 

A. The advantage of using b rather than a is that 

k = A R ^ = A R ^ p - = bjpi_ ( 2 2 7 )  
HdXR

 HdxjdXR

 JdXj, v ' 

which is a simpler form than a material derivative a of the fibre vector a (for more details 

about material derivative a refer to [30]) 

dv• 
a-i = (Sij - diaj)ak-^-. (228) 

Therefore we postulate that 

where 

Therefore 

W = W(FiR,GiR,AR) (229) 

ú t d W i7 dW • _ dW dví dW dh 
W ~ dF7/M + dGTR

GM ~ dF-RdX-R

 + dG-RdX-R

 ( 2 3 1 ) 

Hence 

d W dxi d v i d W dxi d b i - F ( d W d v i d W d b i \ (232) 
dFiR dXR dxj dGiR dXR dxj j R \ dFiR dxj dGiR dxjj' 

and from (227) 

dh dxj dbk dvi d2Vi dvi d2Vi 
OXj oXR OXj OXk OXjOXk OXk OXjOXk 

Next, let's introduce the rate of deformation 
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then we can write 
dv 

dij+ujij, (235) 

where uiij is the spin tensor defined by eq. (197). From (231) and (232) with help of (233) 

and (235) we get 

( dW dW \ dW d2Vi 
W = {F>«m« + G'«3G^){i" + ««> + 

We now denote the components of the symmetric PUJ\ and antisymetric cr̂ -j parts of the 

force stress CTJJ, SO that 

Gij = + <7[ij], = ^iPij + <7ji), = -^Pij ~ Vji) (237) 

and note that 

a(ij)UJij = 0 C[ij}dij = 0. (238) 

Now, we can rewrite strain energy density function in eq. (210) using symetric and anti­

symetric stress from eq. (237) and with help of (235) and (238) into the form 

W = j(a{ij)dij + m j i ^ j . (239) 

Hence, by comparing (236) and (239), we obtain 

p („ dW „ 9W\ 
a { i J ) - 7 o { F j R d F - R

+ G j R d G - J 

a ( dW dW 

doji p dW d2Vi 
+rriji rjft, Ofc = 0. 

dxj po dGiR dxjdxk 

Since dij and uiij are arbitrary, it follows that 

' « > - £ ( ^ + G ' W ( 2 4 1 ) 

and that the coefficient of uiij in (240) is symmetric with respect to interchanges of i and 

j, thus 
dW dW dW dW 
dFiR dGiR dFjR dGjR 

Equation (241) is the constitutive equation for the symmetric part of the stress er; (242) is 

a restriction on the admissible forms of W, the validity of which is confirmed below. There 

now remains from (240) 

duji p dW d2Vj 
mjix iR ~xr<— T.—T;— = 0, (243 

dxj po dGiR oxjdxk 

67 



or equivalently, using (197). 

1 p „ dW , \ d2Vi . , 

• 2 ^ m * " toFsadG^bk) dx~dx-k = °- ( 2 4 4 ) 

It follows that the symmetric part (with respect to the indicies j and A;) of the bracket 

term in (244) must be zero, and therefore 

1 p dW 
-^{£pikmjp + epijmkp) = — ^—{FjRbk + FkRbj). (245) 

By multiplying each side of (245) by erik and using the e — 5 identities, there follows 

p dW 
25prmjp + (5pr5kj - 5rj5kp)mkp = -2eerik — ———(FjRbk + FkRbj), (246) 

Po O^iR 

and hence 
p dW 

3mjr - mkk5rj = -2erik — —-—(FjRbk + FkRbj) (247) 
po oGiR 

which is a constitutive equation for the couple stress rriij. If we set r = j in (247), then 

each side reduces to zero, and so the spherical part mkk of rriij is indeterminate. This is 

consistent with the observation that if rriij is decomposed into its spherical and deviatoric 

parts 

rrijr = rrijr + ^mkk5rj, (248) 

then, beacuse duii/dxi = 0,mkk makes no contribution to the energy balance equation 

(239). This indeterminacy in the couple stress is not specific to fibre-reinforced materials, 

but is a general result in couple stress theory. Using (248) we can write (247) as 

_ 2 p dW _ 
mjr = - ^ r i k — —-^(FjRbk + FkRbj), mkk = 0. (249) 

3 po oGiR 

Clearly, if r 4 j, then rrTjr = rrijr. Invariance under the superposed rigid rotation x —> Q x 

requires that 

W ( F , G , A ) = W(QF,QG,A), (250) 

for any ortogonal tensor Q. It follows that W depends on the scalar products of the vectors 

with components (for each fixed R)FiR and Gm, and therefore W can be expressed as a 

function of the tensors 

C = F T F , T = G T G , A = F T G , A T = G T F (251) 
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and the vector A , where C , T, A , A have components, respectively, 

dxi dxi 
dXR dXs 

dbi dbi 
dXR dXs 

A-RS = wr^wrp- = FiRGis, 
dXR dXs 

and 

However, from (251) 

AR. (252) 

T = A T C _ 1 A , C = A r _ 1 A T , (253) 

and, by the Cayley-Hamilton Theorem for C 

/3C-1 = C 2 - hC + I2l. (254) 

Hence T can be expressed in terms of C , A and invariants of C , and therefore W can 

be expressed as a function of these quantities. Invariance under rigid rotations of the 

undeformed body then requires that 

W(C, A , A ) = W(QCQT, Q A Q T , Q A ) , (255) 

so that W can be expressed as an isotropic invariant of C , A , A . If the sense of the fibres 

is not significant, then W must also be even in the components of A and even in the 

components of A . In this case dependence on the vector A can be replaced by dependence 

on the tensor A ® A , but we do not impose this restriction at this stage. 

Since W depends on F and G only through the tensors C and A , we have 

dW _ dW dCpq dW dAPQ 

8FiR dCpQ dFiR OAPQ dFiR 

dW _ dW dCpQ | OW dApQ 
dGiR dCpQ dGip dApQ dGm 

and, since CPQ = FkPFkQ and APQ = FkPGkQ 

dCPQ 

dF R 
5ik5pRFkQ + Sik5QRFkp = FiQdpp + FIPSQR, 
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dCpQ 

dG R 

dApQ 
dFiR 

ÖikÖRpGkQ = GiQÖRp, 

OAPQ 
dG 

Hence from (256), using (257) 

dW 

ÖikÖRQFkP = FipÓRQ. 

F. jR 
( dW^dCpq t dW dApQ 

Jr'Q 8FiR

 FjR{dCPQ dFiR + dApQ dFiR 

(257) 

F, 
dW dW 

(FiQÖpR + FipÖQp)— h GiQÖRp-
Jr'Q dA PQ 

( dW dW \ dW 
F j R F i P [dČp-R + dČR-p) + Fi*GiPdÄ^> 

aw aw OAPQ _ aw 

iR dApQ dGiR OAPR1 

F; 
dW 

JRdGiR -

Hence from (258) 

F jR 
dW dApQ 

dApQ dGiR 
FJRFÍP 

dW 
d APR 

(258) 

aw aw „ „ ( aw aw \ _ _ ^ _ , aw / o r n , 

from which (242) follows immediately. Hence (241) and (249) can now be expressed (with 

some renaming of indicies) as 

(ij) 
p_ 
Po 

' „ f 8W dW \ ,„ „ _ . dW 
(260) 

mji = -€ikm — — Fmp(FjRbk + FkRbj). (261) 
3 po OApR 

The strain energy W is an isotropic invariant of tensors C, A and vector A. Canonical forms 

for these invariants are known and can be read from tables (for example,[36] Tablel). A 
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list of the invariants is given in the Appendix (A . l ) . This list contains 33 independent 

invariants which, in a general case, leads to excessively complicated constitutive equations. 

In order to progress, therefore, it is necessary to make further simplifying assumptions. 

There are several plausible ways in which this may be done; for example by considering 

only restricted classes of deformations, as in plane strain theory discussed in [32] in Section 

7, or by adopting the linearized theory which is described in [32] Section 9. In appropriate 

cases, a certain simplification can be achieved by introducing the kinematic constrains of 

incompressibility and/or fibre inextensibility. Another simplified theory is described in the 

next section. 

6.2 Dependence on fibre curvature 

The following section was introduced by Spencer and Soldatos in 2007 and can be found 

in [32] Section 6. 

In this section it is assumed that, rather than general dependence on the gradients of b, 

the strain-energy depends on the gradients of b only through the directional derivative of 

the fibre vector in the fibre direction; that is, essentially, on the curvature of the fibres. In 

doing this, we exclude effects due to fibre "splay" and fibre "twist", both of which feature 

in liquid crystal theory, but it is plausible that in fibre composite solids the major factor 

is fibre curvature. 

Accordingly we make the initial assumption that the strain-energy depends on the deforma­

tion gradients dxi/dXR, on the directional derivatives ARdbi/dXR, and on the initial fibre 

direction vector A . Invariance under a superposed rigid rotation x —> Q x of the deformed 

body requires that W can be expressed as a function of the scalar products, formed by 

contracting on the index i, of the vectors dxi/dXR = FiR, and ARdbi/dXR = GiRAR = Ki. 

These scalar products are 

CRS = FIRFIS 
KR = KiFiR = As 

dxi dbi 
^RSAS dXR dXs 

K2 = KiKi = ARAS 

dbi dbi 
dXR dXs 

ARASTRS. (262) 
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Then invariance under rotations of the undeformed body requires that W is an isotropic in­

variant of tensor C (components CRS ), vectors K (components KR ) and A , and scalar n2. 

It follows from tables of invariants that W can be expressed as a function of 11 invariants. 

The list of such invariants can be found in the appendix (A.2). 
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7 Incompressible anisotropic hyperelastic Cosserat contin­

uum 

A new form of the strain energy density function of a incompressible hyperelastic matrix 

is proposed in this chapter. The new form of the strain energy density function is then 

used to determine the force (260) and couple (261) stress constitutive equations defined in 

the previous section. Next, derivatives of the force and couple stresses with respect to the 

deformation gradient F and tensor G are introduced. Then these derivatives can be used 

in a finite element implementation. 

7.1 Strain energy density function 

The simplified theory introduced in chapter 6.2 contains 11 independent invariants where 

the first three invariants {h,h,h in A.2) correspond to the hyperelastic matrix and the rest 

(I4,15,16,1-?, Is, Ig, ho, hi) to fibres. Invariants h, h are able to describe only an extension 

or compression of the fibre and the rest of the fibre invariants (h,h, Is, Ig, ho, hi) expand 

the description of the fibre behaviour by e.g. curvature of the fibre. Since linear elastic steel 

fibres are considered in this work, all invariants with square or higher power of deformation 

tensors, or invariants with mutual product of deformation tensors were neglected and only 

h and Ig were considered as fibre invariants describing extension or compression and 

bending of the fibre. Hence, the proposed form of the invariant based strain energy density 

function is 

where p is Lagrange multiplier related to incompressibility, k\,k2,kQ are material param­

eters and the invariants are defined as follows 

W = h(h - 3) + k2(h - I ) 2 + hll+p(J - 1) (263) 

h = CAA (264) 

h = A-BCCBA-C (265) 

Ig = ABACBAC- (266) 
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The invariants which correspond to the hyperelastic matrix (Ji, I2 and ^3 = 1 due to 

incompressibility) can be used arbitrarily in order to define any hyperelastic constitutive 

model. The Neo-Hookean constitutive model was used in the introduced strain energy form 

(263) for simplicity, but this one can be replaced by any other model (e.g. Mooney-Rivlin, 

Polynomial, Yeoh). 

7.2 Force stress 

The relation between symmetric Kirchoff stress TUJ-\ and symmetric Cauchy stress OUJ) can 

be written as 

T(ij) = Ja(ij) (267) 

and due to incompressibility we can write 

( dW dW \ dW 
r(,l) = a(i„ = FmF,s( — + — j + {GmF,s + G,RF,s) — . (268) 

In order to determine the Kirchoff's stress, derivatives of W with respect to right Cauchy-

Green deformation tensor and lambda tensor are needed. Let's start with the derivatives 

of W with respect to the right Cauchy-Green deformation tensor 

aw = ^ o w din aw dj 
dCRS ^ d I n d C R S dJ dCRS

 [ ' 

and similary we can continue with derivatives with respect to tensor lambda 

dW _ ^ d W dln dW dJ 
^dIn~dA^R~+ a / M ^ ' ( } 

where n = 1,4, 9. The derivatives of the strain energy density function with respect to the 

appropriate invariant in eq. (269), (270) are defined 

dW dW 7 / t \ dW dW , „ , _ = * , , _ = 2 f e ( / 4 _ 1 ) , - = 2 M > — =p (271) 

Derivatives of appropriate invariant and J with respect to the right Cauchy-Green defor­

mation tensor are 

9 h 9 h 5RS, ^ = ^ = ARAS, (272) 
dCps dCsn dCps dCsR 

dlq dla dJ dJ J 
dCps dCsR dCps dCsR 2 

CRS- (273) 
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Derivatives of appropriate invariant and J with respect to lambda tensor are 

dl\ dl± dig . . dJ , „ 
°. l ^ - = 0> ^ T J L = A R A S , 777— = 0. (274) dASR dASR dASR dASR 

After substituting to equation (268) from equations (271), (272), (273) and (274), we obtain 

a final formula of the symetric force stress 

r(ij) = 2FiRFjS(k16RS + 2k2(h - l)ARAs+pJ/2CR

l

s) + 2k6I9(GiRFjS + GjRFiS)ARAs. 

(275) 

7.3 Couple stress 

Let's introduce a deviatoric part of Kirchoff JIji and Cauchy rUji couple stresses. Due to 

incompressibiliy, we can write 

JIji = Jrriji = niji, (276) 

so the formula for the deviatoric part of couple stress is 

2 dW 
fJ-ji = gCifem gjVpR

 Fmp{FjRbk + FkRbj) (277) 

After substituting from equation (274) the final formula of deviatoric part of couple stress 

will be obtained in the form 

4 
fJ-ji = -eikmk§hApARFmP(FjRbk + FkRbj). (278) 

7.4 Derivatives of the force stress with respect to deformation gradient 

Derivatives of the force stress (268) with respect to deformation gradient can be written 

° ' t i j ) --2(SikFjSMLS + FiR5jkMRL) + 2FiRFjS

dMl!S 

dFkL

 v J* "° " l J" " l J* dFkL 

dNRS 

+ —(GiRFjS + GjRFiS) + NRL(GiR5jk + GjR5ik), 
OtkL 

(279) 

where 

MRS = h5RS + 2k2{h - l)ARAs+p^CRl, (280) 

^ = 2 k 2 A R A s ^ - + Pi ( M + ^ ) (281) 
dFkL

 n °dFkL " 2 \ L k H b dFkL 
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NRS = 2k6I9ARAs (282) 

— ^ = 2k6ABGkBALARAs (283) 
Oi'kL 

and 
9 / 4 2 ^ B F f c B ^ L . (284) 

dFkL 

Derivatives dC^s/dFkL are calculated as follows: 

Inverse matrix of right Cauchy-Green deformation tensor can be written 

CRS = Fn-Fsr (285) 

Then derivation with respect to deformation gradient is 

Now the question is how to calculate derivation of inverse deformation gradient with respect 

to deformation gradient dF^j/dFki. Hence, we can write 

F^Fis = 5RS (287) 

and derivation of the previous equation with respect to deformation gradient is 

By multiplying each side of the last equation by Fg^ there follows 

By substituting to (286) from (289) we obtain the final formula for derivation of inverse 

Cauchy-Green deformation tensor with respect to deformation gradient in the form 

d^ = -(FR^CIs + F^CRl). (290) 
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7.5 Derivative of the force stress with respect to tensor G 

Derivative of the force stress (268) with respect to tensor G can be written as follows 

dr{ij) _ 8NRS 

dGkL dGkL 

where 

(GiRFjS + GjRFis) + NLS(SikFjS + SjkFiS), (291) 

— ^ = 2k6ALFkCAcARAs. (292) 

dGkL 

7.6 Derivative of the couple stress with respect to deformation gradient 

Derivative of the equation (278) can be written in the following form 

5jkSLRb0+ (293) 
dJL •• 2 

T T T T 1 = -£iomkQApAR\ 6mk5Lp(FjRb0 + FoRbj) + FmP 

Oi'kL 3 

db db-
+FjR—^- + 8ok5RLb3 + FoR—-^- + 2ABGkBAL{FjRb0 + FoRbj (294) 

where 
db 

" ARSok5LR = ALSok. (295) dFkL 

7.7 Derivative of the couple stress with respect to tensor G 

The derivative of the couple stress (278) according tensor G yeilds 

4 
-eikmk6ALFkcAcApARFmP(FjRbk + FkRbj). (296) 

dpji 4 

dGkT, 3 
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8 Compressible anisotropic hyperelastic Cosserat continuum 

8.1 Strain energy density function 

The strain energy density function (263) introduced in the previous chapter "is adjusted" 

now to the compressible form 

W = fci(7i - 3) + fc2(74 - l ) 2 + k6f9 + \{J~ I ) 2 (297) 

where are modified invariants defined in the following section, ki,k2,kQ are ma­

terial parameters, d is parameter of compressibility and J is defined as 

J = det(F). (298) 

8.2 Modified invariants 

Multiplicative decomposition of the deformation gradient F into volume-changing (dila-

tional) and volume-preserving (distortional) parts is defined 

F = J 1 / 3 ]? , C = J 2 / 3 C . (299) 

The terms J 1 / 3 I and J 2 / 3 I are associated with volume-changing deformations, while F and 

C = F ^ F are associated with volume-preserving deformations of the material. Tensors F 

and C are called modified deformation gradient and modified right Cauchy-Green tensor 

of deformation, respectively. 

Let's introduce modified tensor G . Tensor G is defined by equation (230), and with help 

of equation (299) we can write for the modified tensor 

T dh d(FiRAR) djJ-WFut) 
G u = dXj= oxj = dxj • ( 3 0 0 ) 

After some manipulations 

It should be noted that in case of incompressibility, where J = 1 and it holds 

d2uk dXL 

dXjdXL dxk 

0 (302) 
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(proof is given in the appendix (A.4)) , the equation (301) reduces to 

Gu = dj. (303) 

Let's introduce modified tensor A by the following formula 

ARS = FiRGiS. (304) 

Substituting from equations (299), (301) and after some manipulations we get the modified 

tensor in the form 

AR S = AW-/* - i ^ ^ / s F , H F i i _ | | L _ ^ £ . ( 3 0 5 ) 

Again, with consideration of incompressibility the last equation is reduced to form 

A H S = A R S . (306) 

Now, based on the previous modified tensors, modified invariants can be introduced 

Ii = CAA = J - 2 / 3 C A A (307) 

7 4 = ABCCBAC = J-2/SABCCBAC (308) 

I9 = ABACBAc = J-2/3(ABACBAc - \hGk0Föl), (309) 

where invariant Z4 is defined in eq. (265). 

8.3 Force stress 

Constitutive equation of Kirchoff stress is given by (268) and derivatives QQRS can be 

calculated in the same way as in equation (269), i.e. 

dw = ^ d w din dw dj 
dCRS ^ dln dCRS

 + dJ dCRS

 [ ' 

where n = 1,4, 9 and 

dW dW - dW - dW 2 
^ - = fci, -Z- = 2k2(U ~ 1), ^ = 2k6I9, ^ - = - ( J - l ) , (311) 
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dh _ dh 

9CRS 9CSR 
j - ^ { 5 R S - \ c - R i c A A y 

dU dl4 

9CRS dCsn 
J " 2 / 3 (ARAS - \C^SABCCBAC^J , 

(312) 

(313) 

dig 1 dig 
dCRS dCSR 3 

j-2/3 -CRIABACBAC + GtoF0l {^CRSh - ARA< (314) 

dJ _ J_r-i 
dCRS~ 2Crs> 

Derivatives ^ can be calculated 

dW y , 8W dln | d\Y OJ 

(315) 

(316) 
dASR ^ dIndASR dJ OASR' 

where n = 1,4, 9 and 

911 dig T 0/0 . . 9 J , „ , 

9 A 5 I ? 9 A 5 H 9 A 5 H 9 A 5 H 

By substituting equations (310) and (317) into eq. (268) we obtain the final form of the 

Kirchoff stress 

rm =2FiRF3sJ-2/3\k1 {^SR - \CRICAA^J + 2k2(I4 - 1)(ARA& 

- -CR\ABCCBAc) + -k6I9 - C R S A B A C B A C + G P 0 F 0 P I - C R S I 4 (318) 

ARAS^J + -D{J - 1 ) C ^ J " 5 / 3 | + (GIRFJS + GJRFiS)2k6IgJ-2/SARAS. 

8.4 Couple stress 

The deviatoric part of Kirchoff couple stress JL^ is given by equation (277), where deriva-

ind from eq. (316). Thei 

Jlji can be written as 

tives g | ~ can be found from eq. (316). Then the final form of the Kirchoff couple stress 

4 
3* 

fJ-ji = ^ikniKJ 2/3IgApARFmp(FjRbk + FkRbj) (319) 
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8.5 Derivative of the force stress with respect to deformation gradient 

Derivatives of the force stress (318) according to the deformation gradient can be written 

--2(SikFjSMLS + FiR5jkMRL) + 2 F i R F j S

9 M u S 

dFkL dFkL 

dNRS 

(320) 
+ -S~F—(Gi R Fjs + GjRFis) + NRL(GiR5jk + GjR5ik), 

O r k L 

where 

MRS =h (j-2/s8SR - I ^ R S 1 ^ + 2 f c2(/4 - 1) (j-2/3ARAs - \CRIi^J 

2 -
-CRSI9 + Gp0F0p ^ - o ^ j i l(lczlU- J-2/3ARAs 

(321) 

NRS = 2k6I9J-2/3ARAs, (322) 

dMRS = l d C ^ 
dFkL 3 dFkL 

-hh - 2k2(I4 ~ 1)14 + 2A: 6 / 9 ( -GpoF^U -Ig) + 

and 

+ 5 j ( j - D 

2, 
+ 3 f c 2 

i f c l ( 2 J - ^ - ^ + C - ^ - ) + 

5 / 4 

+ C ^ ^ ( l - 2 / 4 ) ° H 5 

+ gk6Gpo 
dig 

+ 
dh 

I :iARAs{ ' 1 " Op 

(323) 

(324) 

Derivatives of the inverse Cauchy-Green tensorwith respect to the deformation gradient 

are given by eq. (290) and derivatives of the modified invariants are 

dh 
M t r 2 J - 2 ' i - \ F ^ + F ^ ) 

(325) 

dh 
m l 

2J-2'2ABAC oFLk CCB + SciFkB + FkcSLB (326) 
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dig 
0FkL 

j-2/3 F^l (ABKCBAC - \hGpoF^j + A B G K B A L - (327) 

where 

and 

were used. 

\{FkB8LC + FkC5LB)GpoF0p + \hGp0F0lFL^ 

dh 
8Fi kL 

AB(5LCFKB + 5 L B F K C ) A C 

0P0P _ 77-1 77-1 
dFkL ~ bOk^LV 

(328) 

(329) 

8.6 Derivative of the force stress with respect to tensor G 

Derivative of the force stress (318) with respect to the tensor G can be written 

dG kL 

dl — 
A R — ^ { G I R F J S + GJRFIS) + I9AL(5IKFJS + 5JKFIS) 

OGkL 

+ ^FiRFjS -CRlABAc 

dig 

+ ( -GRS1^ - A R A s i\dGKL

KJPu±Op 

dGkL 

( dig 

kCB + IgFkc$LB ) + (330) 

GPoF0 + IgF1 Lk r> 

where 

dGoL 

and invariant Z4 is defined in eq. (265). 

^ - j M A L F O C A c - \ U F - L l (331) 

8.7 Derivative of the couple stress with respect to deformation gradient 

Derivatives of the couple stress (319) with respect to the def. gradient can be written in 

the following form 

Ofi 31 
dFkL 3 

tiom \ Fmp 
dNpR 
dFkL 

(FjRbQ + FoRbj) + NPR(5jk5LRb0 + FjR5okAL+ 

+ 5ok5LRbj + FoR5jkAL) + NLR5km(FjRb0 + FoRbj) 
(332) 

where NpR or NLR are given by eq. (322) and derivative dQpPH is defined in eq. (324). 
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8.8 Derivatives of the couple stress with respect to tensor G 

Derivatives of the couple stress (319) with respect to the tensor G can be written in the 

following form 

5^ = teikmhJ-2/3^^ApARFmP(FjRbk + FkRbj), (333) 

where derivatives QQ9 are defined in (331). 
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9 Determination of material parameters 

There are several material parameters in strain energy density functions (263) or (297) 

- ki,k2 and ke. that have to be determined. Material parameter k\ corresponds to the 

hyperelastic matrix and its determination is described in chapter (3.6). A feasible deter­

mination of the other two parameters - k2,k§ that correspond to fibres will be described 

in this chapter. 

The following chapter - "9.1 Simplified approach" describes a simplified possible way how 

the parameters can be determined. Note that the simplified approach is valid only for 

composite materials with linear elastic fibres and with insignificant Young's modulus of 

the matrix compared to the fibres. Next, determination of the material parameter ki is 

described in chapter "9.1.1 Tension of fibres " and parameter k% is determined in chapter 

"9.1.2 Bending of fibres". Verification of material parameter k% was not performed, there­

fore, the chapter "9.1.2 Bending of fibres" should be taken as a proposal that needs to be 

verified. 

Finally, homogenization techniques are discussed shortly in the last subchapter. These 

techniques are able to determine material parameters generally for any composite materi­

als made of either linear or nonlinear components. 

9.1 Simplified approach 

9.1.1 Tension of fibres 

The material parametr in the strain energy density functions (94) or (95) established 

in chapter 4.2.2 will be determined in this section. This determination procedure can be 

also used for the same material parametr k2 occuring in eq. (263) and (297). 

It is reminded that material parametr corresponds to the fibres only (not to the matrix) 

and is related to the invariant I4. Hence, tension or compression of the fibre can be affected 

by this material parameter only. 

Consider uniaxial tension loading of the incompressible composite specimen that was de­

scribed in chapter 4.2.2, with fibres in the loading direction, so that their unit vector is 

A T = (1,0,0). (334) 
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We can write from Hooke's law for the stress a in the composite (in the loading direction) 

a = Ec(\-l), (335) 

where A is the stretch ratio in the loading direction and can be defined by engineering 

strain e as 

A — 1 = £ (336) 

and Ec is Young's modulus of the composite defined by the well-known mixture rule 

Ec = Emvm + EfVf. (337) 

Young modulus of the elastomer matrix Em can be neglected in comparison with the Young 

modulus of the steel fibres Ef (usually Em = 20 M P a and Ef = 210000 MPa), and the 

volume fraction of the fibres was introduced in chapter 4.2.2 as Vf = 0.3534. Next, the 

stress in the incompressible (matrix) composite specimen can be also expressed as (from 

eq. (275) and considering only terms that correspond to k2) 

oi3 = AFiRFjSk2(h - l)ARAs (338) 

and in the loading direction 

a n = 4Fnk2(h-l). (339) 

Remind that 

F l 1 = Ml = A n = A ( 3 4 0 ) 

and 

h = A C A = C i i = + Fl + Fl. (341) 

Since uniaxial tension loading is considered then 

/4 = Fl = A 2 (342) 

and the stress (339) can be rewritten into 

an = 4X2k2(X2 - 1). (343) 

Now, it is obvious that eq. (335) equals to the eq. (339) , so we have 

EC(X - 1) = 4A 2fc 2(A 2 - 1) (344) 
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and from this eq. the material parameter ki follows in the form 

Ec(\ ~ 1) (345) 
z 4 A 2 ( A 2 - 1 ) ' 

Considering that the stretch ratio of the fibres is growing gradually, e.g. A = [1,1.001,1.002,1.003,....] 

and using the least square method, we find that ki = 9180 MPa . 

There is another way of how to determine material parameter k^. This approach is 

based on the elastic strain energy accumulated in a solid due to its elastic deformation. 

Consider steel fibres under tensional load with a displacement field as follows (see appendix 

A.6 for further details): 

ui = — I i , u2 = - — A 2 , us = —X%. (346) 
EJC hic hic 

Using the displacements field (346), the deformation gradient can be expressed as 

1 + 0 0 

0 1 - *g 0 

0 0 1 - If 

and with respect to eq. (334) 

1 + (347) 

Next, the part of strain energy density function that corresponds to tension/compression 

of the fibres is (96) 

Wfibres,tens./cornP. = ^(h ~ I ) 2 (348) 

and we can write with respect to eq. (347) 

W f ihres,tens. / comp. 1 + 
E, 

1 (349) 

A n integration of equation (349) over the circular cross-section with diameter d gives us 

the elastic strain energy per unit length of the steel fibre 

^^fibres,tens 
ird2 

./compßX2dX3 — k,2—— 1 (350) 
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In the linear theory of elasticity, it holds for the elastic strain energy per unit length 

F2 

W = 2 ^ ^ , (351) nEcd2' 

where Fa is the loading force. Now, the energy obtained by equation (350) should equal 

to the energy in (351), so we have 

2F2 

irErd2 k2 

ird 
1 + 

E, 
1 (352) 

The material parameter k2 then can be expressed from (352) using least-squares method 

for different values of the loading force Fa. Using the same condition as in the previous 

paragraph (Ec = 74214 MPa, d = 0.45 mm) and loading force Fa = [1, 2, 3,4, 5, 6, 7, 8, 9,10] 

N , the material parameter yields k2 = 9200 MPa . It's obvious by comparing with the value 

obtained in the previous paragraph k2 = 9180 that the difference is insignificant (only 

20MPa). 

9.1.2 Bending of fibres 

A feasible approach to determination of material parametr ke occurring in the strain energy 

density functions (263) and (297) will be introduced in this section. Let's remind that 

material parametr ke corresponds to the fibres only (not to the matrix), relates to the 

bending of the fibre and corresponds to the term 

(353) 

Consider a deformation of the steel fibre due to a pair of couples of magnitude M applied 

at the ends of the fibre. The displacement field (see appendix A.7 for further information) 

can be described as follows 

M 
Ul -X1X2, u2 (x! - x. 

M 
-Xi X2X3, (354) 

EfJf ~ ~ 2EfJf

 2 E

f J f EfJf 

where Ef is Young's modulus of the fibres and Jf is the quadratic cross-sectional moment 

of the fibres. Then components of deformation gradient can be written as 

1 + MX2  
EfJf 

MXX  
EfJf 

0 

M I i 
EfJf 

_ fiMX2  
EfJf 

[iMX3 

" EfJf 

0 
fiMX3  

EfJf 
_ nMX2 

EfJf J 
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and components of tensor G are 

0 
M  

EfJf 

0 

M 
EfJf 

0 0 

0 0 

With respect to the (334), invariant Ig equals to 

Ig = A A A 
MAX2 

(355) 

and the part of the strain energy density function that corresponds to bending of the fibres 

is (263) 
A/f4 Y? 

(356) 
2 _ MAXl 

Wfibres,bending — k§Ig — /CQ —-g ^ . 

A n integration of equation (356) over a circular cross-section with diameter d gives us the 

elastic strain energy per unit length of the steel fibre 

. 1 M4ird2 

W J Hires, bending ™6 ^ 4 j " 4 ' 

The elastic strain energy per unit length in the linear theory of elasticity is 

w M 2 

(357) 

The energy in equation (356) should equal to the energy in (358), so we have 

(358) 

kn 
1 M^d2 

2EfJf °12 EfJf 

and for a certain moment M the material parameter k§ can be determined. 

(359) 

9.2 Homogenization techniques 

The unknown material parameters can be determined by methods, where heterogenous 

material (e.g. fibre composite) is replaced by an equivalent homogenous one with the same 

macroscopic properties. Material parameters of such equivalent homogenous material, so 

called effective material properties, are determined from components of the original het­

erogenous material (i.e. from properties of the matrix and fibres). 

Consider two basic approaches for obtaining the overall response of a heterogeneous medium 
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- the average field theory (or the mean-field theory) and the homogenization theory. Roughly 

speaking, these are physics and mathematics based theories, respectively. Here, the basic 

features of these two theories are interpreted as follows [21]: 

Average field theory. This theory works with the reprezentative volume element (RVE) 

and is based on the fact that the effective mechanical properties measured in experiments 

are relations between the volume average of the strain and stress of microscopically het­

erogeneous samples. Hence, macrofields are defined as the volume averages of the corre­

sponding microfelds, and the effective properties are determined as relations between the 

averaged microfields. 

Homogeniza t ion theory. This theory works with periodic structure and establishes 

mathematical relations between the microfields and the macrofields, using a multi-scale 

perturbation method. Then the effective properties emerge naturally as consequences of 

these relations, without dependence on specific physical measurements. 

A detailed description of both theories can be found in [21]. Homogenization methods 

based on Cosserat continuum can be found in Forest's works [12], [13] and [14], who deals 

with both Cosserat continum and micromorphic materials. 

The rest of this chapter shows the average field theory process taken from Sluis [29]. 

The following sections try to adapt the average field procedure presented in [29] to our 

constitutive equations. Note that presented procedure is not completed and some things 

have to be solved before its use in practise. However, the presented procedure can be a 

good starting point for a detailed study and work with the average fields theory based on 

Cosserat continuum. 

Let X be the position of a material point of the macroscopic continuum, and let Y be 

the position of a material point in the R V E associated with the material point X. In the 

sequel, the symbols with an overstrike character represent macroscopic quantities, and the 

symbols without these overstrike characters are microscopic quantities. Now let us split 

up the microscopic displacement field into a rigid body motion and a part representing the 

actual deformation 

u (X, Y ) = u 0 + <p x v ( X , Y ) , v ( X , 0) = 0, (360) 
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or 

Ui(X, Y ) = u0i + CijKlfjYK + V i ( X , Y ) , Vi(X, 0) = 0, (361) 

where the first two terms represent the rigid macroscopic motion (rigid translation and 

rigid rotation) and the last term symbolises the (true) deformation which ultimatively 

causes stresses and strains in the material. 

The form of microscopic displacement field Ui can be written out 

ui = uoi + Tp2Y3 - Tp3Y2 + vi (362) 

U2 = U02 + ¥3Yl ~ + V2 (363) 

U3 = u03 + Jp^Yi - y2Yi + v3. (364) 

Relations between micro and macro quantities 

Since the first step of the homogenization process is definition of the relations between 

the macroscopic and microscopic quantities, we define the macroscopic gradient of the 

displacemnt field as an average of the gradient of the microscopic displacement field, 

_ I dUi \ _ 1 f dut_dV ( 3 6 5 ) 

dXj \dYj) V J dYj 
v 

where 

d Y j — ™ d Y j 

Next, the deformation gradient then can be written out as 

d u i - i
 dyi (oRR\ tikJ^k + ^r- (-306) 

Fij = 5ij + 7j-^- = Su + eikjlpk + ( j (367) 

and tensor G 

_ dh _ d(FlRAR) _ dFiR _ _ / \ 
G * J " " d~x\j " a x J A * " " \ W j B r R / A R ' ( 3 6 8 ) 

True displacement field 

To obtain an expression for v, we expand v into a Taylor series around the origin of the 

R V E , Y = 0 , disregarding terms of order 0 ( | | Y | | 3 ) and higher, and keeping X constant, 

U i ( X , Y ) =^oi(X) + 
dvi(X,Y) 

dYj 
l f l ^ X . Y ) 
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= a i J Y j + ^PUKYJYK, (369) 

where, according to (361), we have uoi(X) = 0. Taking the first and second order gradients 

of this expression and averaging these expressions over the R V E volume V yields 

/ dv- \ 
\Wj) = a i J + l 3 i ^ M k ' (37°) 

/ d2Vj \ 

\dYjdYK/ 

where 

PiJK, (371) 

Mk = \z I YKdV (372) 
V 

is a geometry parameter. For example consider a cubic R V E , i.e. Y i , Y2, Yze[—a, a], then 
v 

a a a 

Mk = ^ J YxdYxdY2dYz = ^LJ J J Y1dY1dY2dY3 = 0 (373) 
V —a —a —a 

and we have 

( s & ) - ° « ( 3 7 4 ) 

( A ) - * " - ( 3 7 5 ) 

Considering a cubic R V E , eq. (374) and deformation gradient (367) we can write 

OLiJ = (J^~^ = FiJ ~ SiJ + tiJkVk- (376) 

Next, we can write from (368) and using (375) 

B « = f ^ R = ( r a ) a R = / J " R 3 R ' <377» 

therefore, from the last eq. (377) we have 

9-^J = PiJK- (378) 

Then using eq. (376) and (378), the true displacement field (369) can be written out as 

Vi = (FiK - 5iK - eijK^)YK + X--^-YjYK. (379) 
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Finally, we have obtained the formulation of the displacement field in terms of macroscopic 

deformation quantities 

U i = uoi + (FÍK - ôiK)YK + \^4^YjYK. (380) 
2 dXj 

The macroscopic potenciál energy W = W(FÍJ,GÍJ) can be defined as a volume average 

of its microscopic equivalent W = W(Fjj), 

W(FiJ,Gu) = ^J W(Fij)dY. (381) 
v 

The macroscopic quantities F j j , Gij can be determined using (380) and based on suitable 

simulations (tension, bending of the composite material) as well as the right side of the eq. 

(381). Then eq. (381) should contain only the unknown material parameters. 
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10 Finite element implementation of Cosserat continuum 

The new constitutive equations introduced in the chapter 6 contain, inter alia, tensor Gij 

that was introduced in (225) as 

_ dbi _ dFiRAR _ d2m 
G u - d x ~ j - ~ w r ~ RdXjdxR

 ( 3 8 2 ) 

Next, the principle of virtual work (401) that will be introduced in the following chapter 

contains the following term that, due to the constrained Cosserat theory, equals to 

dSujj = 1 ^ d25uk ^383^ 
dxj 2 dxjdxi 

It's obvious from both equations (382) and (383) that Cosserat continuum contains second 

derivatives of the displacement field. This higher-order theory requires the so called C1 

continuity in order to ensure convergence of the finite element procedure. The C 1 con­

tinuity means that both displacements and their first derivatives are continuous over the 

elements and their boundaries. 

There is another possibility how to ensure convergence of the mentioned Cosserat contin­

uum. We can consider two unknown independent fields - displacements u% and derivatives 

< 3 8 4 ) 

so equations (382) and (383) can be rewritten into 

Gu = AR^f (385) 
OX j 

^7 = 2 ^ ^ - ^ - ( 3 8 6 ) 

Now, the equations (385) and (386) contain only first derivatives of the uknown field (fiij, 

therefore, the standard C° continuity of the both uknown fields is sufficient for ensuring 

the convergence. However, the uknown fields are not independent (they are constrained 

by eq. (384)), therefore, an additional constraint (384) has to be incorporated to the finite 

element equations - this was done with help of Lagrange multipliers. 
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This chapter formulates the principle of virtual work of the Cosserat continuum and 

introduces the finite element formulation of constrained Cosserat continuum, based on two 

different approaches - Lagrange multipliers and C 1 elements. The later approach ( C1 

elements) was programmed in Matlab software and comparison between results obtained 

on the basis of Cauchy and Cosserat continuums can be found at the end of this chapter. 

10.1 Principle of virtual work 

The principle of virtual work is the starting point for finite element analysis, therefore, 

let's show the derivation of this principle first. 

In quasistatic mechanic the equilibrium equations for the force stress (195) are reduced 

into the form 

< 3 8 7 » 

and the equilibrium equations for the couple stress (196) are reduced into 

dm i j1 

dxj 
+ tijkO-jk = 0. (388) 

In order to obtain principle of virtual work, let's multiply equation (387) by virtual velocity 

field 5ui and equation (388) by virtual spin field 8uoi and integrate their sum over volume 

v 

dx3 

Because of 

Svidv + j + eijkO-jkScv^jdv = 0. (389) 

d . dan d5vi 
Q ^ ^ i ) = —8vi + a j i — (390) 

d drriji dduji 
— (mjiduji) = -—^-duji + rriji— 

OXj OXj OXj 

and with help of Gauss-Ostrogradsky's theorem, we can rewrite equation (389) into 

/

/ dSco \ (' 

\aji~dx~L +mji~dx~1 ~ £iok(Tok^i Jdv = (tiSvi + k5u)i)ds (391) 
v s 

where U = crjitij and U = rrijiiij are traction vectors that were introduced by eq. (157) 

and (158). 
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Partial derivatives ^ 1 can be devided into symetric Sdij and antisymetric Suiij parts 

85vi 
dx- •"' ' 'J 

where 

Sdij + Suij (392) 

IfdSvi dSvj . 
^ = H ^ 7 + & H ( 3 9 3 ) 

1 / <9<5VJ (?<5wj 

' ' 2 V. 9xj 

Similarly the force stress can be devided into its symmetric OUJ) and antisymetric ay^ 

parts 

aji = a(ij) + a[ji] (394) 

and the couple stress into its volumetric and deviatoric friji parts 

rriji = ^rriiiSij + friji. (395) 

Since the following relations are valid 

cr^SoJij = 0, - eijkSuji = Sujjk, Sujji =-Sujij, (396) 

c 7 n duji dSn 
dxi ( ' dxj 

then substituting (392), (394), (395) into (391) leads to the principle of virtual work in the 

form 

a(ij)~~Q^T + mii~Q~c~1 )dv = / + liSuji)ds. (397) 

Obviously, the principle of virtual work depends on the symmetric part of Cauchy force 

stress and on deviatoric part of Cauchy couple stress only. 

Let's introduce symmetric Kirchhoff force stress TV^-n and deviatoric Kirchhoff couple stress 

(iji 

T(ij) = Ja(ij) Vji = JmJi> (398) 

where 
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Next, we will consider that the right side of equation (397) is integrated only over the 

boundary where displacements or rotations are prescribed. In other words, traction vector 

will not be prescribed on the body surface (no external forces or couples). Hence, and 

because of ÓVÍ = óuii = 0 on SU+uj, it holds 

(tióvi + liSui)ds = 0. (400) 

Su-\-LJ 

Now, with help of (398), (399), (400), the principle of virtual work (397) can be rewritten 

into the final form 
ľ( dovi dôu)i\ „ r , 

V 

10.2 Lagrange multipliers 

10.2.1 Total potential energy functional 

A total potential energy functional n is the sum of the elastic energy U accumulated in the 

deformed body and potential energy V of the applied forces. But as it was mentioned in 

the previous section, we will consider only deformation load realized through the prescribed 

displacements and their derivatives, therefore the potenciál energy V is omitted. The total 

energy functional whose directional derivatives yield the principle of virtual work is 

n = JwdV (402) 

v 

10.2.2 Total potential energy functional with constraint 

In previous section (6.1) the tensor G was introduced as 

Let's now introduce a new uknown variable <pm and rewrite tensor Gij into the form 

Gu = A R ^ . (404) 
OX j 

Next, we will consider two different uknowns - displacements Ui and their derivatives fcj. 

It's obvious that both kinematic fields Ui, 4>%j are mutually dependent 

fe = J | . (405) 
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However, we will consider in our procedure that both fields are independent. Then the total 

energy functional (402) has to be extended by the condition (405) and a new functional 

n c with constraint is then 

n c = n + f Ai j - fa) dv (406) 
\9Xj 

v 

where Ajj are Lagrange multipliers. Directional derivatives of (406) yield the principle 

of virtual work which is a basis for finite element method. The directional derivatives in 

directions 5vi,5fij and 5Xij will be considered separately 

/

o r 

X i J d x ^ d V ( 4 0 7 ) 

v 

Dnc[5<f] = DU[S<p] - J XijSpijdV (408) 

v 

DIic[5X\ = J SXu - fa^j dV (409) 

v 

where Z?n[<5v] is the first term in (401), i.e. 

DU[Sy} = Jm^dV (410) 

v 

and -Dn[<5<̂ ] can be derived from the second term of equation (401), i.e. 

DU[6V] = JH^dV = J ^ ^ ( S ^ M F - ^ d V , (411) 

v v 

because 
1 d5Vl , _ 1 
26ikldXM

 M k ~ 2 

So the principle of virtual work can now be written in the final form 

= -tiki a v

 1 FM\; = ^iklSlflMFj^. (412) 

V 

d5vi 1_ d . d8vi 

\9Xj 
dV = 0 

(413) 
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10.2.3 Finite element discretization 

The principle of virtual work (413) can be rewritten into the following form 

05vi , 1 _ /dSipiM „ _ ! , , dFMk 

V 

T, (ij) a j ^ ^ i + ^ ^ 7 7 M f c + Stpm~dx^)Fn*+ 

+ A J J T T T ; MjotpiJ + c>Ajj 5jJ 

where 

= 0, (414) 

(415) 

The last equation (415) was obtained on the basis of the following consideration: 

FuFji = Sik (416) 

and the derivatives of (416) are as follows 

which leads to equation (415). 

The volume integral in the virtual work equation (414) is taken over the reference config­

uration advantageously, since we can take the given initial shape of the solid as reference, 

whereas the deformed configuration is unknown. 

The displacements field Ui and virtual velocity field 5vi, as well as derivatives field <pij and 

virtual gradient of velocity field Stpij are specified in an arbitrary point within the solid 

by interpolating between nodal values in some convenient way, 

Ui(X) = i V a ( X ) < , 8vi(X) = Na(X)5v? (418) 

M X ) = Ma(X)tfj, 6<pij(X) = Ma(X)5tfj. (419) 

Here, X denotes coordinates of an arbitrary point in the reference configuration and uf, (p^j 

are unknown displacements and derivatives respectively in each node. Na and Ma are 

standard C° shape functions and Lagrange multipliers can be interpolated linearly over 

the element with 4 multiplier's nodes 

\u = Oa\?j, SXu = Oa8\lj. (420) 
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Now, we can discretize the principle of virtual work (414) by substituting (418), (419) and 

(420) 

v 

°N°' FM) + \»JOb^)dV.6u°+ [0*(^u»-ct>iTMb ]<1V.6X!I + dXM dXj \dXj 
v 

+ 
1 
-MklPj 

(dMa 

3l\d~x^±Mk~±v± ± P k d x N 

F-\ - M^F-l^F-l F-) - \b

lMObM° dV.l 0 (421) 

v 

10.2.4 Newton-Raphson iterative procedure 

Since equation (421) must hold for all independent virtual fields Suf,5<pfM and Xfj, we 

have 

)dV = 0, 

V 

" 3 l \ d x N ^ M k 

dxM

 Mi i J dXj 

F~\ - MaF •CiklHii'TT^FMk. - M a F P k ~ ^ ^ F M o ) F N j ~ X b l M ° b M a 

V 

and 
8Nb 

(422) 

dV = 0, (423) 

(424) 

v 
Nonlinear equations (422), (423) and (424) can be solved using Newton-Raphson iterative 

process whereby given a solution estimate xk at iteration k. A new value is obtained in 

terms of an increment by establishing the linear approximation [3] 

R(xfc+i) « R(x f c ) + D(R(x f c ) ) , [u] + D(R(x f c ) ) , [0] + £ ( R ( x f c ) ) , [A], (425) 

where symbol "D( )" means directional derivatives in the specified direction "[ ]". 

Let's now calculate gradually the directional derivatives (425) of equations (422), (423) 

and (424). 

Eq.(422): 

Z>(R(xfc)),[u] 
drm dNa , dNa dFM) 
dub

n d x M

F ^ + T { i j ) d x M 8ub 

v 

where 
dr(ij) _ dr(ij) dFkL _ dr(ij) ON1 

dub dFkL dub dFkLdXL 

<>nk 

.Au°ndV, (426) 

(427) 
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811 8Nb 

FOP = 5oP + ^ = 5oP + (428) 

and similary as in (415) we have 
dI™L-_F-^F-H (429) 

After substituting (427), (428) and (429) into (426) we obtain the final form of directional 

derivative 

v 

Next. 

where 

/

dri • -\ 8 Na 

V 
d4>PQ 8XM 

d T m _ d T m 9GkL _ dT{ij) , dM 
AR——5kp5QR (432) 

dGkL d(ppQ dGkL 8XL 

GKL - AR-^— ~ ARTTT; (vKR• (433) 8XL

 ll8XL 

Therefore, the final form of directional derivative (430) is 

/

dr< • -\ 8 Na 8 Mb 

V 

And directional derivative of (422) in the direction A is 

/

8Na 

—Ob.AXldV. (435) 

v 

Let's continue with eq.(423). Since we can write 

_ dFrS 

8ub

0 ~ 8FrS 8ub

0 

(436) 
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and with help of equations (428) and (429) the directional derivative in the direction u 

yields after some manipulations 

D(R(x f c ) ) , [« ] 

v 

f dMa dNb dfij 31 
^Mk^Ni l^jii^Mc^Dk^Nj 

+ ^Mk^Nc^Dj / + Ma 

3FcD

 M k Ni 

dNb 

oP 

dXD dXN 
dFcD

 P k M o Ni 

Next, we can write 
Ofi 

31 &Un dGsT 

d<pcD dGsT d(pcD 

and with help of eq. (433) the directional derivative in direction (f> yields 

rb 

.Au°dV. 

(437) 

(438) 

Z>(R(x f c)), [(/>] ^iklF]^j 
dpjt dMb (dMa , 

V 

u - M ^ F - i F - i 
dxN~Dk M s 

and directional derivative in direction A is 

Z>(R(xfc)),[A] = 

8GsT dXT""\dXN~ M k 
a !09oP p - 1 

PkdXN

 M o 

(439) 

MaOb.A\b

lMdV. (440) 

v 

It follows the last three directional derivatives of eq. (424) 

,dNb 

Oa—.AubdV, 

v 

Z>(R(xfc)), \4>\ = - j OaMbMjdV, 

v 
and 

£>(R(x f e)),[A] = 0. 

(441) 

(442) 

(443) 

After application of the Newton-Raphson procedure to the previous directional derivatives 

we get a system of three linear equations 

KZkM + K i k R . A 4 R + K^b.AXbj = -R? (444) 

101 



IM -R IM (445) 

K%b.Aub + KXJM.J + KabMj = -RJj (446) 

where residuum Rf is given by the left side of eq. (422), RfM by the left side of eq. (423), 

and R?j by the left side of eq. (424). The stiffness matrixes that result from directional 

derivatives are 

K. 
dN» dNb (drm . ! a 

V 

^ , 9r{ij) dN"dMb . 
KaibkR~ I c*/~i F M i A R d V > dGkLdXMdXL

 M ^ 
V 

V 

dNa 

dXj 
ObdV, 

(447) 

(448) 

(449) 

K4>u 
^alMbc 

V 

f <9Ma <9iVb 

1G>A^ dXD 

djlji 

+ ^Mk^Nc^Dj / 

QFcD-Mk*Nj 

a dNb d<poP + M 

^Mk^m Pji i^Mc^Dk ^Nj + 

<9/Z7 

iV 
.7' p - 1 p - 1 p -1 , 

-1 P I 1 \if^L \T4* dFcD

 P k M O N J 

+ VjiiFpc^Dk^Mo^Nj + ^Pk^Mc^Do^Ni + ^Pk^AIo^Nc^Di Pk± Mc* Do± Nj Pk± Mo± Nc± Dj . 

(450) 

dV, 

K alMbsD 

V 

dMb 

djlji dMb fdMa j 
OGsi -dXT""\dXN

x'A11--

VjiM"1 Q-g^ FDk FMs 

-1 OCPoP p -1 
P f c < 9 A V M o 

-1 17-1 

ab I MaObdV, 

v 

K. Xu 
(1,1b 

V 

dNb 

K \<f> 
ab J OaMb.A<pbjdV, 

(451) 

(452) 

(453) 

(454) 

v 
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and 

(455) 

10.3 Hermite C l elements 

10.3.1 Construction of shape functions 

Consider a third order polynom in the form 

f(o = a+bt+ce+de, (456) 

and its derivative 
df(0 b + 2c(, + 3df. (457) 

Next, consider a one-dimensional element with two nodes. We need to construct four 

different shape functions satisfying the following requirements: 

• the value of the first shape function ipi equals to one at the first node and is zero at 

the other node. The first derivative of the first shape function ipi equals to zero at 

both nodes, 

• the value of the second shape function <p2 equals to one at the second node and is 

zero at the other node. The first derivative of the second shape function ip2 equals 

to zero at both nodes, 

• the value of the third shape function $ i equals to zero at both nodes. The first 

derivative of the third shape function $ i equals to one at the first node and is zero 

at the other node, 

• the value of the fourth shape function $ 2 equals to zero at both nodes. The first 

derivative of the fourth shape function $ 2 equals to one at the second node and is 

zero at the other node. 

Let's construct the first shape function which equals to one at node 1 at the coordinate 

£ = — 1, equals to zero at node 2 at the coordinate £ = 1, and its derivatives are zero at 

both nodes. For this purpose, substitute appropriate coordinates to the equations (456), 
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0.6 • 

0.2 • 

1 -0.6 -0 20 2 . 

-0.6 • 

•1 

Figure 15: Shape function at node 1. 

(457) and set the left hand side of these eqautions to the required values at the appropriate 

nodes 

l = a - b + c-d (458) 

0 = a + b + c + d 

0 = b-2c + 3d 

0 = b + 2c + 3d. 

(459) 

(460) 

(461) 

The above system of four equations was solved for four unknows a, b, c, d with the 

following result 

a = \,b = --A,c = Q,d=-A (462) 

and the shape function that is depicted in fig. (15) can be written in the form 

1 
^ = i ( i - e r ( 2 + o - (463) 

Repeat the same process mentioned above and construct the t h i r d shape function, i.e. 

find the third shape function that equals to zero at both nodes (i.e. at coordinates £ = ±1) 

and the first derivative of the third shape function equals to one at the first node and is 
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zero at the other node. So we have 

0 = a — b + c — d (464) 

0 = a + b + c + d (465) 

1 = b - 2c + 3d (466) 

Then the unknowns are 

0 = b + 2c + 3d. 

1

 H

 1 1 A 1 

° = 4 ' 6 = " 4 ' C = " 4 ' ° ! = 4 

and the third shape function is (see also fig. (16)) 

* 1 = 1 ( 1 - + 

(467) 

(468) 

(469) 

The same procedure was repeated and the second and fourth shape functions were found 

(see also fig. (16)) 

' (470) p 2 = ^(l + £ ) 2 ( 2 - £ ) , 

$ 2 = ^ ( i + o 2 ( e - i ) -

A n extension to a three dimensional 8 nodes element can be written in the form 

(471) 

N2 = ¥>2(£i)¥>i (6)^1 (&) 

^3 = <£>2(£i)¥>2(6)<£i(£3) 

^4 = <Pl(£l)¥>2(f2)¥>l(6) 

01 = &i(£i)¥>i(6)¥>i(6) 

0 2 = *2(Cl)Vl(&)yi(Cs) 

03 = *2(Ci)v^(6)vi(6) 

04 = *l(^l)¥>2 (6)^1^3) 

A% = ¥>l(£l)¥>l(&)¥>2(£3) 

^ 6 = ^2(6)^1 ( 6 ) ^ 2 ( 6 ) 

A"7 = ^ ( C l ) ^ ^ ) ^ ^ ) 

^ 8 = y i ^ l ) ^ ^ ) ^ ^ ) 

0 5 = *i(fi)y>i(&)¥>2(&) 

0 6 = * 2 ( C i ) y i ( 6 ) ^ ( & ) 

0 7 = *2(£l)V2(6)V>2(&) 

Os = *l(Cl)V2(6)V2(&) 

(472) 

(473) 
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Pi = ¥>i(£i)$i(6! )¥>i(6) P 5 = <pi(€i] )^i(&: )V2(6! 

P2 = ¥>2(£i)$i(&: )¥>!(&) P 6 )^i(&: )V2fe^ 

p3 )¥>!(&) 7̂ )V2fe^ 

Pi = <^i(6)$2fe; )¥>!(&) ^8 = (Ci! 1^2(6; )V2fe^ 

Qi = <Pi(£,i)<Pi(&, <25 = v i ( 6 )<pi(& )<h(£3 

Q2 = <^2(6)<^lfe' Q e = ¥>2(£l )<pi(& )<h(£3 

Q3 = <^2(6)<^2fe" Q7 = ^ 2 ( 6 

= v i ( 6 ) v 2 ( & ! = v i ( 6 )V2(6. 

) (474) 

Substitution of shape functions (463), (470), (469) and (471) to the expressions (472), 

(473), (474) and (475) results in the final forms of the shape functions. These final forms 

can be found in the appendix (A.5). 

The approximation of the displacement field is then 

U i = A ^ X + O X + Pa/3f + Qa^f, (476) 

where a corresponds to the node number (a=1..8) and uf, af, (if, 7 " are the unknown 

displacements and slopes in the i-th node, respectively. Next, approximation of deformation 

gradient F and tensor G can be written 

n dm . dNa

 a dOa

 a dPa

 o a dQa

 a 

= 5» + oxj = *» + dx< + axj* + oT/f + oTj^ ( 4 7 7 ) 

_ d{FiRAR) _ d2m 
G u - oxj - ARdxJdx-R - ( 4 7 8 ) 

/ d2Na

 a d2Oa

 a d2Pa d2Qa

 a 

R\dXjdXR

Ui + dXjdXR

ai + dXjdXR

 + dXjdXR

7i 

Since Na (or any other shape function) depends on the natural coordinates Na = Na(^i, £2, £ 3 ) , 

we need to determine how the first and second parcial derivatives (479) in previous equa­

tions can be calculated 
gNa QQa gpa QQa g2Na Q2Qa Q2 pa g2Qa 

dXj' oxj' oxj' oxj' dXjdxR' dx,jdxR' dXjdxR' dXjdxR • 
(479) 
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In order to obtain them, we can write 

g N a g N a Q£. 

dXj d£i dXj 

d2Na _ d fdNa d& \ _ dfy d fdNa d& 
dXjdXR ~ dXj\dC~dX^J ~ dl^djj\dji dXR 

d2Na d£i dij dNa d2& 

(480) 

(481) 

dijdiidXjdXn d£i dXjdxR 

A n approximation of the undeformed coordinates was considered as follows 

Xi = MaXf, (482) 

where Ma are the shape functions which are given in the appendix (A.5). 

10.3.2 Finite element discretization 

The principle of virtual work (401) is a basis for finite element discretization, therefore, 

let's start with this equation and rewrite it into a more suitable form 

y w n ^ ^ w n ^ r - 0 - < 4 8 3 ) 

We can write for virtual spin field 

v 

. 1 dSvi 1 d5vi , 
5 u i = -6ikldx-k = 26ikldX^F^ ( 4 8 4 ) 

and for its deriatives 

d5uH_l 8 (dSvi A 1 / d25vt . d_5vi dfg\ 
dxM ~ 2 e % k l d x M \ d x N

t N k ) - 2eM\dxMdXNNk + dxNdxMJ- i 4 8 b j 

The last equation contains derivatives of inverse of the deformation gradient with respect 

to the undeformed coordinates. These derivatives can be expressed by the following con­

sideration and procedure 

FONF^I = 5ok (486) 

and derivatives of the last equation with respect to the undeformed coordinates are 

dFoN , dF^ 
dx^F™ + d x ^ F o N ~ °- ( 4 8 7 ) 
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After some manipulations the final form of the respective derivatives will be obtained 

d2ua F-idFoP j 
NodXM

 t p k 
-F: -F- (488) 

dXM ~NodXM~Pk ~NodXMdXp P k ' 

Now, substitution of the last equation into eq. (485) gives the final form of derivatives of 

the virtual spin field 

ddoji 1 / d25vi ! 85vi d2ua x x 

dX^ = 2em\dxMdxN
 N k ~ dXNdXMdXP

 N° P k 
(489) 

If we substitute the last equation (489) into the principle of virtual work (483), we can 

obtain the final form of the principle of virtual work that will be used later in the dis­

cretization process 

dSvi 
T(ij) oxM^Mi + 2^jieil'^-ui' ^ 

d25vi 85vi 0Fop x x 

-u-i \' ykdXMdXN ~ dXN 8XM 
dV = 0. (490) 

v 

Now, let's recall the approximation of displacements field (476) 

U i = Nau1 + Oaa\ + Paffi + Qa^, (491) 

and similarly to this formula let's introduce an approximation of the velocity field in the 

form 

Svi = NaSv? + OaSaf + Pa5ffi + QaS^. (492) 

Equation (492) can be substituted now into the principle of virtual work (490) 

/ dNa . a dOa . . dPa 9Qa . 0 , 

V 
1 

+ 2^JlemFMj 
/ d2 Na 

\dxMdxN 
Nk 

a d2Oa . 
* 8XM9XN 1 

Q2pa 

OXMOXN 

d2Oa 

OXMOXN 

x„-xdFoP(dNa . a , dOa ^ a , dPa

 ! o a , dQa 

p - i p - i - - ^ I " - • fa,a I 
No Pk QXM \dX}\f 9XN 

Saf + dXN 

5ff + 
dXN 

Sit dV = 0 

(493) 
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and it can be rewritten into the form 

dNa 1 „ , / , d2Na 

T^3)F^3 QXM

 + ^J^^MjX -V/' 

x dOa 1_ + 

+ 

^ r , 1 f / \ ! 

v P k dXM dXN 

dV }Svf+ 

_! <9Pa 1 

i9Q a 1 

r Nor Pk 
dFoP dOa 

8XM9XN 
r Nor Pk OXM dXpf 

g2pa 
r Nor Pk 

dFoP dPa 

8XM9XN 
r Nor Pk OXM dXpf 

d2Qa 

r Nor Pk 
dFoP dQa 

8XM9XN 
r Nor Pk OXM dXpf 

dV }5af+ 

v 

dV^S-ft = 0. 

(494) 

Since 5vi, 5a,i, 5 Pi, S^i are independent and arbitrary, previous equations (494) will be zero 

if 

_! dNa 1. .! <92iVa 

T f e ) ^ M i ^ + 2 Wlki*Mj \*Nk dXMdXN *"o*Pk QXM QXN ) dV = 0 (495) 

(ij) Mj QXM + 2 W**Mj [*Nk QXMdXN

 t N ° t p k dXM 8XN ) d F = 0 (496) 

/ <9Pa 1 
(ij) Mj QXM + 2 WlK*Mj I JVfc 8XMdXN *"o*Pk QXM 9 X N ) dV = 0 (497) 

(w) Mj Q X M + 2W**MJ \*Nk gxMdXN

 t N ° t p k dXM dXN ) dV = 0. (498) 

The system of four nonlinear equations (495), (496), (497) and (498) was obtained when 

discretization was applied and this system will be solved by Newton-Raphson iterative 

procedure in the following section. 

10.3.3 Newton-Raphson iterative procedure 

The nonlinear system of equations above will be solved similarly to chapter 10.2.4 using 

Newton-Raphson method. Hence, let's calculate the directional derivatives of eq. (495) in 
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direction [u] 

Z>(R(xfc)),[u] 
dub

n

 MidXM 

dFM) dNa 

dub

n dXM 

v 

1 
dub 

F -l 

2 0u& 

d 2 i V a  

N k 8XM9XN 

<92iVa 

NkdXMdXN 

+ ^PjmiF l u r N k d2N° 

^ Pfc dxNdxM) 

p f e 5X^v 9XM 

(499) 

^ <9< 8XNdXM 

Since the deformation gradient is given by 

ch4 OXMQXN dvJr\ 

N o PkdXNdv!» \dXM 

dV.Aul 

FkL = 5kL + 
dNb 

we can write 

<90 dPb

 b dQb

 b 

dXL

Pk dXL

lkl 

dub dXL 

'kri 

(500) 

(501) 

dT(ij) _ dr(ij) dFkL 

dub 

dT(ij) dNb 

dFkL dub

n ~ dFkL dXL 

and 

dFrS _ drm dNb 

dub

n dF, rS 8FrS dXS 

9FM) 
- F - ^ F - H k  

rMk p>v„rQj °nk-dub

n ~ ^ k d X Q - Q j - n K . (502) 

Substituting (501) and (502) back into (499), the final form of the directional derivatives 

.D(R(xfc)), [u] can be obtained 

dNa dNb ( d T ( i j ) 

Z>(R(xfc)),[u] , p - i 
dXMdXL\dFkL

 M? 
V 
1 dNb f dji^ 

dXs\dFkS

 Mi PJIFM\FSJ ) ( Fi Nr 

-F 

Q2Na 

8XM9X]S[ 

dNb 

Nk -F, 
Q2Na 

dXs'Sr dXMdXN 

(503) 

• + W p f c ^ S r - QXNdXM dXs 

F-iF-i d N 

rNkr> 

s" PrdXNdXM 

d2Nb \ 

- i „ _ ! 0 W a 9 F o P 

"-To 

P r 8XN dXMdXP ) 
dV.Auk 
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Hence, the stifness matrix resulting from the previous directional derivatives is 

dNa dNb ( d T ( i j ) 

^albk 

+ 

V 

1 

dXM dXL{dFkL

F^ 

dNb ( SPji 

T{ij)FMkFLj 1 + 

2 e i r i dXs \ dFkS ^lF^Fsi 
1 i i dNa dFoP  

N o PrdXNdXM 
+ 

d2Na 

N R OXMQXN 

. F - I ™ ! L F - I 
NkdXs

 S r dXMdXN 

d2Na 

(504) 

+ 
dNa dNb OF, oP 
dXN dXs dXM 

i p-idNa d2Nb \ 
F N k F ] 

rp—1 771 — 1 rp—1 1 77 — 1 Ei—1 rp— 1 
rNkrSo rPr "T r N o r P k r S r 

V r dXN dXMdXP ) 
dV, 

When the above mentioned process is repeated in order to calculate the rest of the 

directional derivatives of eqs. (495), (496), (497) and (498) in directions [u], [a], [(3] and 

[7], the following stiffness matrixes can be obtained: 

dNa dOb (dr(ij) 

^aibk 

+ 

V 

1 

dXM dXL{dFkL

F^ 

dOb ( SPji 

T(ij)FM\FLj 1 + 

2 6 l r i 8 X S [dFkS

FMi ^lFMkFSj 

F _ 1 F 
.! dNa 8FoP 

+ 

N o PrdXN0XM 

dNa dOb dFoP 

+ y^jlelriFMj 

1 d2Na  

NrdXMdXN 

Nkoxs

 S r dxMdxN 

d2Na 

dxN dxs oxM 

! dNa d2Ob 

rp—1 rp — 1 rp— 1 1 rp — 1 rp—1 jp — l 
r N k r So rPr ' No Pk Sr 

F~l F r Nkr • P r dXN dXMdXP ) 
dV, 

(505) 

K u/3 
aibk 

g N a Qpb / d T { i j ) 

dXM dXL \dFk~L 
F T(H)FMkFLj 1 + 

+ 

V 

1 dPb ( djl 
2 € l r i dX s [dFkS

Fm^> WuVsi 

rp-lrp-l^El 8 F ° P \ l ~ 77-1 
v" P r dx^dx^J + 2 ^ ' ' e , r i Mi 
No1 

Q2Na 

N R OXMQXN 

i ^ i 
NkdXs

 S r 8XMdXN 

d2Na 

d N a d p b d F o p f 

X~sd. 
+ dXN dXS dXM \ F N k F S o F p l + FNoFPkFSr 

F~l F r Nkr • 
d2Pb \ 

P r 8XN dXMdXP ) 
dV, 

(506) 
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^aibk 

V 

dNa dQh ídT(ij) 

dXMdXL\dFkL 

F T{ij)FMkFí} I 

1 dQb (dßfl x . 
7-1 

2 — Ö X 5 VöF f c 5^M j 

~ ŕ N ° ŕ p r d x N d x M J + 2^ i e i r i ' 

dN« dQb dFoP í j j x ! 1 i \ 

! dJV° ö 2 Q b 

OXMQXN 

d2N° 
jr-iEttr-i-

NkdXs S r dXMdXN 
+ 

FNkFPr Q X n gxMdXp dV, 

(507) 

TSOLU 
xvaibk 

dOa ÔNh /dr(ij) 

dXMdXL\dFkL

 Mi 
T(ij)FMlkFLj J + 

ö 2 0 a 

A' 

N o P r dxN dxM) 2 ßjlelriFMj 
-I 

NkdXs

 S r dXMÔXN 
+ 

dOa dN» ÔFoP{ ! ! ! 
dXNdXsdXMV

Nk S o P r  

! <90a <92iYh 

+ FNoFPkFSr 

FNkFPr Q X n QXMdXp dV, 

(508) 

xvaibk 

V 
1 

dOa dOb (dr(lj) 

dXMdXL\dFkL

 M> 

dOb ( dpfl ci_1 

T{ij)FMkFE} I 

F-iF-idO° OFoP\ 1 ! 

Q20a 

Nr dXMdX N 

N° PrÔXNdXMJ 
dO" dOb ÔFoP / t t t F - 1 F - 1 F - A 

F-id& i d*0" (sog) 
NkdXs

 S r ÔXMBXN 

r N k r • 
1 gpg a^Qfa \ 

P r a x ^ dxMdXp J 
dV, 
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Kaß 

^aibk S 
V 

1 

d 0 a gpb /dr{lj) 

dxMdxL\dFkL

 Mi + 

8Pb f dfifl a ! . 

F-iF-idO" ÔFoP\ 1 ! 

-1 ô 2 0 a 

+ 

''rdXNdXMJ 
ÔOa dPb dF0p ( 

NrdxMdxN 

d20° 
F-idP° ! d'O* (510) 

^ Ô X s 5 r dxMdxN^ 

r ívri.-i c -í , Nk* So ± Pr dxN dxs oxM \ 
! ! ď O a d2Pb \ 

N k P r dXN ÔXMdXp ) 

1 r p - l i p - 1 77-1 p - l 
JVo"1 P/c1 Sr 

^aibk 
í 
V 

dOa dQb (drm 

dXMdXL\dFkL

 Mi 
T

(ij)
F

Mk
F

Lj I 

1 0Qb í &ßji 
+ 2eiridXs\dFkS 

F - i — 
Mj ^jlFMkFSj F 

d2oa 

N r ÔXM9XN 

90^_9KP\ 1_ X 

dOa dQb dFoP( , ! , 

xdQb x d 2 O a  

^ Ö X s 5 r ÔXMdXN 

+ 

F - i F - i ô ° a 

r Kruť \ 

M 
Nk* So * Pr 

P " 1 P " 1 

Nor Pkr Sr 

d2Qb \ 
N k PrdXNdXMdXp) 

dV, 

(511) 

dXMdXL\dFkL 
Mj r(ij)FMkFLj 1 + 

1 0 J V
6

/ ^ j < ! _ ! a 
F. - i 

2 p a Ö 2 P 

! 1 dPa dF0p 
No PrdxNdxM 

+ r>f
1jlelriFMj 

N r dXMdXN 

i V f e ô x s

 S r dxMdxN 

-+ 

9 P a d N b d F o p  

+" ^ i N k So Pr pt* ' 
dXjv ô X 5 <9XM 

. J <9Pa <92./VB 

TVo-1 Pfe-1 Sr 

FAJi.F dV, 

(512) 
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Kßa - í 
dP* dOb (dT^ ! , 

dXMdXL\dFkLMl (ij) Mk Lj I 
V 

1 dOb ( dß 

W i r a X j v Ö X j v J + 2Wl«*Mj y *1 

ß2pa 

dXhidXiy 

J V F C 9 X ^ 5 R dXMdXN 
+ 

+ 
dP^dO^dFoP^ 
dXN dXs dXM 

PrdxNdxMdXp) 

FNkFSoFPr + FNlFPkFSrJ 

(513) 

A' / T(ÍJ)FM\FLJ 
dPa dPb (drm  

LdXMdXL\dFkL

 Mi 

1 dP'f&ß^ ! 

,dPa dFoP\ 1 ! 

+ 

Q2pa 

Nr 8XM9XN 

+ 

FNoFPrQx^-Qx^) + 2 

dP^dP^dFoP 
dXN dXs dXM 

„-!„-! dP* d2Pb 

N k P r dXN dXudXp 

F - i d P l ' - i d2Pa i (514) 
^ a X s 5 r dXMdXN 

FNkFSoFPr + FNoFPkFSr 

dV, 

K (ti.bk 
dPa dQb fdT{ij) 

dxM dxAdFkL 
Mj T{IJ)FM\FLJ I 

V 

+ 2€lridXs \dFkS

 M> WMk*Sj ) 

Q2pa 

Nr dxMdxN 

~}ßjlelriF]yjj 
N o PrdXNdXMJ 

dr_d&dF±p ( F - i F - i F - i F - i F - i F - A 
+ dXN dXs dXM {'"»'So bPr + *No*Pk*Sr ) 

xdQb ! d2Pa 

NkdXs

 S r dXMdXN 

FNkF 

^ P r d Ä ^ dXMdXp ) 
dV, 

(515) 
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^aibk I 

V 

1 

dQa dNb ídr(lj)  

dXMdXL\dFkL 

dNb ( dß 

FMj -TmFMkFLj i 

1 — -1 
2 Q r i d X s \dFkS

 M j ^ M k t s i 

ljP-idQadFoP\ 1 ! 

F 
d2Qa 

Nr OXMOXN 

+ 

N° P r d x N d x M 

dQa dNb dFoP 

p-idNb ! d2Qa 

N k d x s

 S r dxMdxN 
+ 

dXN dXs dXM 

r Aru!* , 

FNkFSoFPr + FNloFPkFSr 

N k ~ r p r dxNdxMdXp) 
dV, 

(516) 

^aibk 
dQa dOb(dr(ij) 

dxMdxL\dFk ' Mj \ij)FMkFLj I 

nFMj 

+ 

2 e i r i dXs \ dFkS ^ VjiFMkFs} 

*No*Pr dXNdXM) + 2fIjl€l 

dQa dOb dFoP 

dXN dXs dXM 

r i r i ^ d2Ob \ 
N k PrdXNdXMdXp) 

-1 d2Qa 

N r dXMdXN  

F-idOh i d2Qa 

N k d x s

 S r dxMdxN 
+ 

FNkFSoFPr + FNoFPkFSr 

dV, 

(517) 

K iß 
aibk 

Y 
1 

dQa dPb (dr{l3) 

dxMdxL\dFkL

 M i 

dpb f &ßj 

T{ij)FMkFZ} ) 

+ 2eiridXs {dFkS

F^ ^FMkFSi 

2 n « 

Nr dxMdxN 

! ! dQa ÔF0p 
N o PrdXNdXM 

+ 9PjlelriFMj 
ldPb ! d2Qa 

NkdXs

 S r dXMdXN 

dQ^_ dP^ dFoP í ! ! a F - 1 F - 1 F - A 

, ! dQa d2Pb \ 
P r dXN~ dxMdXp ) 

dV, 

(518) 
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^aibk 
dQ* dQb (drm ri_1 ^ 

d X M d X L \ d F k L

F M * tMFM*FLJ ) + 

1 ^ 1 ^ / ^ j l ^ - l _ ! A / 
+ 2 Q " d X s U^fcs M J J ' ' M k S j ) \ N r OXMdXN 

p - i F - i d Q a dFoP\ 1 . / i d Q 6 i d 2 Q a (519) 

dQ^d&dFoP / x x x F - i F - i F - A 
+ a x * 9 x 5 9 x M V S o P r N o P k 3 r ) 

r - i r - i d Q a d2Qb V 
Nfc P r dXNdXMdXP J _ 

The Newton-Raphson proces applied above results in the following system of four linear 

equations 

^aibk-^k ^ lyaibk-KZk.Aub + X aT 6 f e.A« 6

f e + <f6fe.A/3^ + <76fe.A7^ = ^ (520) 

« f c . A 4 + « f c . A c 4 + < 4 . A ^ + K2KM = Sf (521) 

+ K^bk.Aab + X a f 6 f e . A ^ + K^.AJI = Tf (522) 

iS2Sfc.Au» + Klk.Aab

k + K^bk.Apb

k + Kj^.A^ = Uf, (523) 

where residua Rf, Sf, Tf and Uf are given by the left hand side of equations (495), (496), 

(497) and (498), respectively. 

10.3.4 Numerical integration 

In order to evaluate the integrals introduced in the previous section in the stifnesses K, a 

numerical integration, so called Gauss integration, was used. 

Let's consider a ID element with n integration points. Then Gauss integration gives an 

exact result for a 2n - 1 order polynom. The mentioned integrals contain polynoms of 

the fifth order maximally corresponding to one variable, therefore, three integration points 

(n — 3) have to be used at least in order to obtain accurate values of the integrals and 

to achive convergence of the solution. That means n 3 integration points in 3D, i.e. 27 
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integration points in total per each 3D element. Then the Gauss integration scheme to be 

used for such element can be written as follows 

c+l f+1 f+1 3 3 3 

-1 J-i J-i 
+ 1 + 1 + 1 ^ ^ £3)d£ld£2d£3 = Y , Y , Y , VlVjVKfteltL (524) 

J-I J-i J-i I=IJ=IK=1 

where / is the function to be integrated, WJ,WJ,WK are weighting factors and ^{,^2^3 

are locations of integration points. When considering 

j = 1..3, k = 1..3, 1 = 1..3 and i = 32{l - 1) + 3{k - 1) + j, 

the weighting factors and locations of the integration points can be generated by the 

following scheme 

Wi = VjVkvh Ci = Vj, €2 = Vk, C3 = Vl, (525) 

where 

and 

m = -0.7745966692, r?2 = 0, 773 = 0.7745966692 

V l = 0.5555555555 v2 = 0. u3 = 0.5555555555. 

(526) 

(527) 

The first three weighting factors and coordinates of integration points are presented in 

table 1, as an example. 

point w £1 6 6 

1 0.1714677640 -0.7745966692 -0.7745966692 -0.7745966692 

2 0.2743842241 0 -0.7745966692 -0.7745966692 

3 0.1714677640 0.7745966692 -0.7745966692 -0.7745966692 

Table 1: Weighting factors and coordinates of the first three integration points 

10.4 Results of simulations using Hermite C I elements 

The finite element implementation introduced in chapter 10.3 was applied to write a new 

finite element solver in M A T L A B software as a so called "m" file. The M A T L A B m-file 

reads the input text file, runs the solver and generates an output text file with results. The 
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input file contains information about nodes, elements, and prescribed boundary conditions 

and can be created in a text editor or using an other finite element software. The output 

text file contains results such as displacements, strains and stresses in the nodes, and this 

output file can be opened in the free finite element software Calculix in order to show the 

results in a graphical representation. 

In order to verify the theory presented in this thesis with the new constitutive equations 

comprehending the bending stiffness on the basis of Cosserat continuum, a simple three-

point bending test was simulated using the new finite element solver created specifically 

for this purpose (m-file). A very simple unimaterial finite element model was created with 

two planes of symetry and a very rough mesh - fig. 17 (this model is called unimaterial 

Cosserat model hereafter). The model contained 8 finite elements in total with each 

element having 8 nodes and 27 integration points. The applied boundary conditions are 

presented in fig. 18. 

Figure 17: Meshed simplified model. 

The strain energy density function presented in (297) was used in the simulations with 

the following material parameters: k\ = 1 MPa , k2 = 1400 MPa, d = 0.0001, while 

different values of k§ were considered. Remember that parameters k\, d correspond to the 

hyperelastic matrix and parameters k2,ke correspond to the fibres, where k2 represents 

their tension (compression) stiffness and ke their bending stiffness. Hence, the values of 

ke = 0, ke = 100 and ke = 1000 were considered in order to see if the new model is able to 

consider different bending stiffnesses of the fibres. 

The three-point bending test was also simulated in Ansys software using unimaterial finite 

element model based on "classical" Cauchy contiuum (this model is called unimaterial 

Cauchy model) with the aim to compare the results with the unimaterial Cosserat model. 
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Figure 18: Prescribed boundary conditions. 
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The unimaterial Cauchy model contained 8 elements in total and either 8 or 20 nodes and 

either 8 or 27 integration points per each element. The used strain energy density function 

had the following form 

W = fci(7i - 3) + fc2(74 - l ) 2 + -^(J - l ) 2 . (528) 

If we compare the strain energy density function (528) used in the unimaterial Cauchy 

model with eq. (297) used in the unimaterial Cosserat model, we can see that both models 

use almost the same strain energy density function except for the term containing parametr 

ke- As it was mentioned in previous chapters, the unimaterial Cauchy model is not able 

to include the bending stiffness of fibres, therefore this model does not contain material 

parameter k§ that corresponds to bending of fibres and Cosserat theory. 

Results of simulations using both Cosserat and Cauchy unimaterial models are depicted 

in fig. 19. In this figure the abbreviation "Cauchy" means that Cauchy unimaterial 

model was used and the numbers 185 or 186 mean hexahedron elements (according to 

Ansys software) with 8 or 20 nodes respectively. The abbreviation " F U L L " or "Reduced" 

means that either full integration with 27 integration points or reduced integration with 8 

integration points was used. Next, "Cosserat" means that results were obtained using the 

unimaterial Cosserat model with different values of material parameter k^. 

When we compare first the results obtained by Cauchy model , we can see that the 20 

nodes element with the higher number of integration points (186 F U L L - 27 int. points ) 

gives stiffer response than the same element with the lower number of integration points 

(186 Reduced - 8 int. points) and the 8 nodes element with 8 int. points (Cauchy 185) 

gives the stiffest response among the Cauchy models. So we can draw conclusion - an 

increasing number of integration points makes the resulting behaviour stiffer and the 8 

nodes element gives stiffer results than the 20 nodes one. 

Let's pay attention to the Cosserat models now. As we know, the unimaterial Cosserat 

model uses 8 nodes elements with 27 integration points. The strain energy density function 

(297) used in Cosserat model is reduced into the strain energy density function (528) of 

the Cauchy model when using k§ = 0. Hence, both models (Cosserat k§ = 0 and Cauchy 

185) should give the same results. However, we can see from fig. 19 that Cosserat model 

with ke = 0 gives results a little bit stiffer than Cauchy 185 model. This can be explained 
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0 2? 

Displacement [mm] 

Figure 19: Simulations - bending test. 

on the basis of the number of integration points, as mentioned above - a higher number 

of integration points gives stiffer resulting behaviour (Cosserat ke = 0 has 27 int. points 

while Cauchy 185 has 8 int. points only). 

Finally, we can see from the same figure that the increasing parameter ke increases stiffness 

of the resulting curves, i.e. in contrast to the Cauchy models, the unimaterial Cosserat 

model is able to take the bending stiffness of the fibres into account. 
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11 Conclusion 

This thesis deals with computational simulations of composite material made of elastomer 

matrix and steel fibres. Two different approaches were considered in the simulations - bima-

terial and unimaterial computational models. The bimaterial model reflects the structure 

of the composite material in detail, i.e. it works with matrix and each individual fibre. 

On the other side, fibres are not created in the unimaterial model and their reinforcement 

effect is included in the strain energy density function. Since fibres are not modelled, the 

unimaterial computational model has a significantly lower number of elements, and conse­

quently the computational time decreases significantly. 

Computational simulations of uniaxial tension and bending tests of composite material were 

performed using both (bi- and unimaterial) computational models. The results showed that 

both models give the same results in simulations of uniaxial tension tests, but they dis­

agree significantly in simulations of bending tests. It was found out that the disagreement 

is caused by the assumption of infinitesimaly thin fibres in the unimaterial model causing 

a zero bending stiffness of the fibres. Hence, the unimaterial computational model is not 

able to take the bending stiffness of fibres into account and consequently it can work with 

tension (or compression) load only. 

Real experiments (tension and bending tests) of composite material were carried out with 

the aim to compare the results of simulations with experimental results. However, the 

experiments have shown that mechanical properties of the elastomeric matrix are highly 

dependent on the pre-cycling of specimens (so called Mullins effect). The specimen that 

was pre-cycled to a certain value of elongation (or strain) showed different mechanical 

properties from another specimen pre-cycled to another elongation value. Since there is a 

nonhomogeneous strain state in the composite specimen (due to fibres), each part of the 

specimen is loaded by another value of elongation (strain) and due to mentioned Mullins 

effect the stress-strain curve is changed. To compare such experiments with simulations it 

would be necessary to use such material models in simulations that are able to account for 

pre-cycling of the elastomeric matrix and can work with different amplitude of elongation 

(or strain). 

In order to verify the hypothesis that in case of tension tests the disagreement between 
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experiments and simulations was caused by Mullins effect, new experiments with another 

elastomer matrix were carried out. A new elastomer matrix was chosen showing a very low 

Mullins effect. Then experiments and simulations of uniaxial tension tests were in mutual 

agreement for both (bi- and unimaterial) computational models. 

The next goal was to extend the unimaterial model by bending stiffness of the fibres. In 

2007 Spencer and Soldatos published new constitutive equations based on Cosserat contin­

uum that are able to work with bending stiffness of the fibres under large strain conditions. 

Cosserat continuum is more general than Cauchy continuum, it considers both displace­

ments and rotations as independent variables and works with force and couple stresses. 

However, the equations introduced by Spencer and Soldatos are very complicated and very 

difficult for practical application. Hence, a system of simplified constitutive equations was 

formulated in the thesis on the basis of the equations introduced by Spencer and Soldatos. 

After determination of the simplified constitutive equations (valid under restrictions for 

bending load of the fibres being parallel and straight in the undeformed state), a new form 

of strain energy density function was introduced. This form can be decoupled into three 

main parts - the first part corresponds to the hyperelastic elastomer matrix, the second 

one to tension (or compression) of the fibres and the third part relates to bending of the 

fibres. 

In order to verify whether the new unimaterial model with bending stiffness is able to 

work with bending stiffness of fibres correctly, a new finite element (FE) solver had to be 

written. It was not possible to use any commercial or available F E solver, since the new 

solver was based on Cosserat continuum and included a new strain energy density function 

with new constitutive equations comprehending additional variables. Hence, after deter­

mination of finite element formulation, the new F E solver was written in Matlab software. 

Since the Cosserat theory leads to the second derivatives of displacements, it was necessary 

to use also the so called C 1 elements in order to ensure the convergence of the solution. 

In C 1 elements both displacements field and derivatives of displacements are continuous 

over the elements and at their boundaries. Hence, a new 8 nodes C 1 element with Hermite 

polynoms as shape functions was proposed in the thesis. 

A simplified three-point bending test was simulated using the new F E solver in order to 

verify that the new unimaterial model based on Cosserat continuum is able to comprehend 
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the bending stiffness of fibres. It was shown that the bending stiffness of fibres can be 

driven by changing the appropriate material parameter and the new solver gives results 

comparable with standard hyperelastic models for a negligible influence of the bending 

stiffness of fibres. In this way, the capability of the new model was verified. 

This work showed that standard unimaterial models available in commercial software are 

able to provide the same results as the bimaterial ones and being in agreement with real 

experiments in the case of tension (or compression) tests only. Next, it was shown that, 

the standard unimaterial models are not able to include any stiffness of the fibres when 

they are bended. Therefore, the extension of the unimaterial model was introduced in 

this work, and this extension allows us to incorporate the bending stiffness of fibres into 

the unimaterial model. Then the proposed unimaterial model can be used correctly under 

both tension (compression) and bending loads. 
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12 List of the most frequented symbols 

A l l symbols are described immediatly after their introduction in the appropriate chapter, 

therefore, the following list of used symbols shows only the most frequented symbols that 

are used in this work. 

A , Aj unit vector of undeformed fibres 

b no name vector defined by eq. (226) 

B, Bij left Cauchy - Green deformation tensor 

C, Cu right Cauchy - Green deformation tensor 

E , EJJ Lagrangian strain tensor 

Ec Young's modulus of composite material 

Ef Young's modulus of fibres 

Em Young's modulus of matrix 

F, Fij deformation gradient 

G , Gij no name tensor defined in (230) 

J volume ratio 

K(t) kinetic energy 

K^bcd stiffness matrix 

1 couple-stress vector (Cauchy) 

m total moment of momentum 

rriji Cauchy couple-stress tensor 

Tňji deviatoric part of Cauchy couple-stress tensor 

ma spherical part of Cauchy couple-stress tensor 

M , Mji first Piola-Kirchoff couple-stress tensor 

rij, Nj outward normal of deformed and undeformed body respectively 

Na shape functions 

Oa shape functions 

p hydrostatic pressure (Lagrange multiplier) 
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p total momentum 

Pextif) external mechanical power 

Pintif) internal mechanical power (stress power) 

Pa shape functions 

P, Pjj first Piola-Kirchoff force-stress tensor 

Qa shape functions 

S, Si j second Piola-Kirchoff force-stress tensor 

t time 

t force-stress vector (Cauchy) 

u, Ui displacement vector 

uf unknown displacements at node a 

U right (mateial) stretch tensor 

v deformed volume 

Vf volume fraction of fibres 

vm volume fraction of matrix 

v left (spatial) stretch tensor or velocity vector 

V undeformed volume 

W strain energy density function 

Wd deviatoric part of strain energy density function 

Wv volumetric part of strain energy density function 

x, Xi position vector in deformed system; deformed coordinates 

X , Xi position vector in reference (undeformed) system; undeformed coordinates 
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a? unknown slopes at node a 

unknown slopes at node a 

unknown slopes at node a 

Sij Kronecker's delta 

£ij engineering strain 

elog Hencky(logarithmic) strain tensor 

^ijk Levi-Civita symbol 

<f>k components of microrotation vector 

<Pk components of macrorotation vector 

Vk components of microgyration vector 

m gyration tensor 

A,; principal stretch ratios 

Lagrange multipliers 

Ap.5 no name tensor defined in (251) 

Kirchoff couple-stress tensor 

deviatoric and spherical part of Kirchoff couple-stress tensor respectively 

n total potential energy functional 

p density 

° u Cauchy force-stress tensor 

symmetric part of Cauchy force-stress tensor 

antisymmetric part of Cauchy force-stress tensor 

Kirchoff force-stress tensor 

spin vector and spin tensor respectively 
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A Appendixes 

A . l Invariants of general constitutive model (Cosserat continuum) 

The strain energy density function depends on tensors C, A and unit vector A as was 

mentioned in chapter 6. The strain energy density function can be expressed as a function 

of 33 independent invariants. These invariants are introduced into this appendix (or can 

be found in the appendix A in [32] or in table 1 in [36]). 

Symbols A s and A a are symmetric and antisymmetric part respectively of the tensor A , 

then 

A = A s + A a , A T = A S - A a , 2 A S = A + A T , 2 A a = A - A T (529) 

The 33 independent invariants: 

h=trC, I2 = \[(trC)2 -trC2}, I3 = detC, / 4 = A C A , I5 = AC2A, 

h = tr As = trA, I-j = trA2, I8 = trA2, Ig = trA^, 

Iw = trCAs = trCA, In = trC2As = trC2A, I12 = trCA2, 

I13 = trC2A2

s, Iu = trCA2

a, I15 = trC2A2

a, I16 = trC2A2

aCAa, 

I17 = trAsA2

a, I18 = trA2A2

a, I19 = trA2A2

aAsAa, I20 = AASA = AAA, 

I21 = AA2

SA, I22 = AA2

aA, / 2 3 = A C A S A , I24 = A C A a A , 

/ 2 5 = A C 2 A a A , / 2 6 = A A a C A 2 A , I27 = A A s A a A , I2S = AA2

sAaA, 

I29 = A A a A s A ^ A , / 3 0 = t r C A s A a , I31 = trC2AsAa, I32 = trCA2Aa, 

I33 = trCA2

aAsAa. (530) 
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A.2 Invariants of simplified constitutive model (Cosserat continuum) 

It was considered in chapter 6.2 that strain energy density function depends on the tensor 

C , vectors K , A and scalar K2. The strain energy density function can be then expressed as 

a function of 11 independent invariants. These invariants are introduced into this appendix. 

h = trC, h = \[{trC)2 - trC\ h = detC, h = A C A , / 5 = A C 2 A , 

h = K . K = A A T A A , I7 = K C K = A A T C A A , Is = K C 2 K = A A T C 2 A A , 

I9 = A . K = A A A , /io = A C K = A C A A , In = A C 2 K = A C 2 A A . (531) 

Next: 

d e - 1 ' ö c - / l I _ c ' d c - h l ~ h C + c ' 

| ^ = A ® A , | ^ = A ® ( C A ) + ( C A ) ® A , 

H = 0 ' f̂  = ( A A ) ® ( A A ) > | § = ( A A ) ® ( C A A ) , 

i ^ O , ^ = A * ( A A ) , ^ = A * ( C A A ) , 

dh dl2 dh dh dh 
— - = 0, — - = 0, — - = 0, — - = 0, — - = 0, 
<9A dA dA dA dA 

f ^ = 2 A A ® A , | ^ = 2 ( C A A ) ® A , | ^ = 2 ( C 2 A A ) ® A , 
dA dA dA 

|f = A ® A , ^ = ( C A ) ® A , ^ = ( C 2 A ) ® A . (532) 
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A.3 Results of simulations and experiments 

The results of simulations and experiments of tension and bending tests are presented in 

this appendix 

Uniaxial tension tests 

Simulation - unimaterial 
• Simulation - bimaterial 
• Experiment, a = 0.05 

1 1.5 2 
Engineering strain [-] 

Figure 21: Tension test - fibres 15°. 
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Figure 22: Tension test - fibres 45°. 

Engineering strain [-] 

Figure 23: Tension test - fibres 60°. 
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Engineering strain [-] 

Figure 24: Tension test - fibres 90°. 
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Bending tests 

Deflection [mm] 

Figure 25: Bending test - fibres 0°. 

5 

Deflection [mm] 

Figure 26: Bending test - fibres 15°. 

134 



2.5 

Deflection [mm] 

Figure 27: Bending test - fibres 45°. 

Figure 28: Bending test - fibres 60°. 
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Simulation - unimaterial 
Simulation - bimaterial 

•—•—• Experiment, a = 0.01 

0.8 -

Deflection [mm] 

Figure 29: Bending test - fibres 90°. 



A.4 Proof of the equation (302) 

In this appendix we give a proof of the relation (302) 

d2uk dXL d2xk dXL 0. (533) 
dXjdXL dxk dXjdXL dxk 

This proof can be also found in [30] and is valid in case of incompressibility. 

By a well-known property of determinants and using the incompressibility relation 

d(x1,x2,x3) 
d j x ^ x s j = 1 ( 5 3 4 ) 

we have 
dxi dxj dxk d(x1,X2.x3) 

^dXndxSdXl = 6RSTd(X1,X2,X3) = 6 R S T - ( 5 3 5 ) 

We differentiate this with respect to Xp, which gives 

( d2Xj dxj dxk d2Xj dxj dxk d2xk dxj dxj \ _ 
€ i j k \dXPdXR dXs dXT dXPdXs dXR dXT 8XPdXT dXR dXs ) ~ ' [ ' 

and multiply by 
dXR dXs dXT 

dx\ dx2 dx3 

to obtain 

( d2xj dxRx d2

Xj d x s , . d2xk dxTx \ 
^ \ d X p - d x - R ^ 5 ^ + d X p - d x S ^ l l k " + w ^ i , l i ] 2 j = a ( 5 3 7 ) 

Then, for example 

d2Xi dXR _ d2x1 dXR 

SijkdXPdXR dx! S j 2 S k 3 - dXpdXR^' ( 5 3 8 ) 

and adding the three terms of this kind in (537), we have 

d2Xi dXR 

dXpdXR dxi 
0. (539) 
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A.5 Shape functions 

Hermite C I shape functions 

Ni = hi1'* )'(2 + 6 ) ( i - 6 2(2 + 6 ) ( i - 6 2(2 + 6 

N2 = 
5i<1 + * 

) 2 ( 2 - 6 ) ( i - 6 2(2 + 6 2(2 + 6 

N3 = 
* I < 1 + * 

) 2 ( 2 - 6 )(l + 6 ) 2 ( 2 - 6 2(2 + 6 

iV 4 = 
6 ^ )2(2 + 6 )(i + 6 2(2 - 6 ) ( i - 6 2(2 + 6 

N5 = 
6 ^ )2(2 + 6 ) ( i - 6 2(2 + 6 )(i + 6 2(2 - 6 

N6 = ) 2 ( 2 - 6 ) ( i - 6 2(2 + 6 )(i + 6 2(2 - 6 

N7 = ) 2 ( 2 - 6 )(i + 6 2(2 - 6 )(i + 6 2(2 - 6 

Ns = )2(2 + 6 )(i + 6 2(2 - 6 )(i + 6 2(2 - 6 

0 i = ) 2 ( i + 6 ) ( i - 6 ) 2 ( 2 + 6 ) ( i - 6 2(2 + 6) 

o 2 = )2(6 - 1 ) ( i - 6 2(2 + 6 ) ( i - 6 2(2 + 6) 

o 3 = 
5i<1 + * 

)2(6 - 1 )(i + 6 2(2 - 6 ) ( i - 6 2(2 + 6) 

) 2 ( i + 6 )(i + 6 2(2 - 6 ) ( i - 6 2(2 + 6) 

o 5 = ) 2 ( i + 6 ) ( i - 6 2(2 + 6 )(i + 6 2 ( 2 - 6 ) 

o 6 = 
<S<1 + * 

)2(6 - 1 ) ( i - 6 2(2 + 6 )(i + 6 2 ( 2 - 6 ) 

o 7 = 
* I < 1 + * 

)2(6 - 1 )(i + 6 2(2 - 6 )(i + 6 2 ( 2 - 6 ) 

o 8 = 
6 ^ ) 2 ( i + 6 )(i + 6 2(2 - 6 )(i + 6 2 ( 2 - 6 ) 
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Pl = hS1 - 6 )2(2 + 6 ) ( i - 6 2 ( i + 6 ( i - &; 2(2 + 6 

P2 = 6 4 ( 1 + 6 ) 2 ( 2 - £ i ) ( i - 6 2 ( i + 6 ( i - &; 2(2 + 6 

Ps = 6 4 ( 1 + 6 ) 2 ( 2 - 6 )(i + 6 2 (6 - 1 ( i - 6; 2(2 + 6 

PA = )2(2 + 6 )(i + 6 2 (6 - 1 ( i - &; 2(2 + 6 

P$ = )2(2 + 6 ) ( i - 6 2 ( i + 6 ( i + & ; 2(2 - & 

P6 = 
á

( 1 + 6 ) 2 ( 2 - 6 ) ( i - 6 2 ( i + 6 ( i + & ; 2(2 - & 

Pl = 64 ( 1 + 6 ) 2 ( 2 - 6 )(i + 6 2 (6 - 1 ( i + & ; 2(2 - £3 

P8 = 6 4 ( 1 - 6 )
2(2 + 6 )(i + 6 2 (6 - 1 ( i + 6 ; 2(2 - & 

Q l = 6 4 ( 1 " 6 ) 2 ( 2 + 6  

Q 2 = 6 4 ( 1 + 6 ) 2 ( 2 " 6  

Q s = 6 4 ( 1 + 6 ) 2 ( 2 " 6  

Q 4 = 6 4 ( 1 " 6 ) 2 ( 2 + 6  

Q s = 6 4 ( 1 " 6 ) 2 ( 2 + 6  

Q e = 6 4 ( 1 + 6 ) 2 ( 2 - 6  

Q 7 = 6 4 ( 1 + 6 ) 2 ( 2 - 6  

Q s = 6 4 ( 1 " 6 ) 2 ( 2 + 6 

( l - 6 ) 2 ( 2 + 6 

( l - 6 ) 2 ( 2 + 6 

( l + 6 ) 2 ( 2 - 6 

( l + 6 ) 2 ( 2 - 6 

( l - 6 ) 2 ( 2 + 6 

( l - 6 ) 2 ( 2 + 6 

( l + 6 ) 2 ( 2 - 6 

( l + 6 ) 2 ( 2 - 6 

( l - 6 ) 2 ( l + 6) 

( l - £ 3 ) 2 ( l + £ 3 ) 

( l - 6 ) 2 ( l + 6) 

( l - 6 ) 2 ( l + 6) 

( i + 6 ) 2 ( 6 - i ) 

( i + 6 ) 2 ( 6 - i ) 

( i + 6 ) 2 ( 6 - i ) 

( i + 6 ) 2 ( 6 - i ) 
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Lagrange CO shape functions 

M 1 = ^ ( i - e i ) ( i - 6 ) ( i - 6 ) 

M 2 = i ( i + e i ) ( i - & ) ( ! - & ) 

M 3 = ^ ( i + e i ) ( i + & ) ( ! - & ) 

M 4 = ^ ( i - e i ) ( i + & ) ( ! - & ) 

M 5 = ^ ( i - e i ) ( i - & ) ( ! + & ) 

M 6 = ^ ( i + e i ) ( i - 6 ) ( i + 6 ) 

M 7 = i ( i + e i ) ( i + & ) ( ! + & ) 

M 8 = 1 ( 1 - e i ) ( l + & ) ( ! + & ) 
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A.6 Displacement field of axially loaded bar 

This appendix deals with derivation of the deformation field in an axially loaded bar. The 

field is used in chapter 9.1.1. 

Let's consider a uniform prismatic bar made of a homogenous and isotropic linear elastic 

material with its mantle free of surface tractions. One end of the bar is loaded by a 

uniformly distributed surface traction a, acting along the axis of the bar, the centroid of 

the other end is rigidly clamped to prevent rigid motion of the bar, and the clamped end 

is loaded to keep the bar in equilibrium. 

The stress field is 

a n = a, a22 = 033 = a\2 = a23 = 031 = 0. (540) 

From Hooke's law we obtain 

a pa pa ,<-A->\ 
£11 = £22 = £33 = - - £ T , £12 = £23 = £31 = 0. (541) 

Hence, 
du\ a du2 pa du3 pa 
d~x[~ ^ idX2~~~Ě' ~dX~3^~~Ě'' 

(542) 

dm du2 du2 du3 du3 dm 
dx2

 + dx1

=0' dX3 + dx2

=0> dx^dxr 0- ( 5 4 3 ) 

Integration of equations (542) results in 

m = ̂ x1 + f1(x2,x3), 

u2 = - ^ X 2 + f2(X1,X3), 

u3 = -^rX3 + f3(XuX2). (544) 

Substitution from (544) into (543) yields 

dfi df2 df2 df3 df3 dh 
dx-2

 + dx1

=0j dx3

 + dx2

=0> dx1

 + dx-3

 = 0- ( 5 4 5 ) 

Recalling that f\ is a function of X2 and X3, f2 is a function of X\ and X3, f3 is a function 

of X\ and X2, we conclude from (545) that 

d2fi d2h d2f2 d2f2 d2f3 d2f3 

dX2 8X2 dX2 dX2 dX2 dX\ 
0. (546) 
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Hence. 

fi = en + c12X2 + C13X3 + dX2X3, 

h = c 22 + c2\X\ + c23X3 + C2XiX3, 

h = C33 + c31Xi + C32A2 + c3XiX2, (547) 

where en, C12, ..C32, c i , ..C3 are constants. We now substitute (547) into (545) to obtain 

C12 + c 2 i + (ci + c2)X3 = 0, 

C23 + C32 + (C2 + c3)X1 = 0, 

c 3 i + C13 + (eg + c i ) X 2 = 0. (548) 

Since these equations must hold for all points inside the bar, it holds 

C12 = - C 2 1 , C23 = - C 3 2 , C31 = - C 1 3 

ci + c 2 = c 2 + c 3 = c 3 + ci = 0. (549) 

The second set of equations (549) gives 

ci = c 2 = c 3 = 0. (550) 

By substitution of (550) and (549) into (547) and then into (544), we obtain 

ui = ^jXi + c12X2 + C13X3 + en, 

u2 = ~-j^x2 ~ c\2Xi + c23X3 + C22, 

u3 = ~^X3 - c13X1 - c23X2 + c 3 3 . (551) 
hi 
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Since u\ = u2 = U3 = 0 at the centroid X\ = X2 = X3 = 0 of the bar, (551) yields 

en = C22 = c 3 3 = 0. (552) 

In order to eliminate rigid rotations of the bar 

/ dui du2\ (du2 du3\ (du3 dm \ 
fe-^J=0' {dX-3-dxJ=0> {dX-1-dXs)= 0 ( 5 5 3 ) 

at (0,0,0). That is, a small region around the centroid of the cross-section at X3 = 0 is 

rigidly clamped. Equations (551) and (553) give 

C12 = C13 = c 2 3 = 0. (554) 

Thus, the displacement field in the bar is given by 

u i = Z-Xu u2 = ~^X2, u3 = -f^X3. (555) 
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A . 7 Displacement field of bended beam 

This appendix contains derivation of deformation field in the bended beam. Let's consider 

deformation of a straight prismatic bar, made of a homogenous linear elastic isotropic 

material, due to a pair of couples of magnitude M applied onto the ends of the beam. 

Let's assume that plane sections of the beam normal to its undeformed centreline remain 

planar and normal to the deformed centreline. X\ axis is coincident with the centreline 

and X2 axis is in the opposite direction as is the direction of deflection of the beam. Let's 

assume that the stresses in the beam are given by 

M 
e n = —X2, 022 = 033 = o\2 = 023 = 031 = 0, (556) 

where J is the moment of inertia of the cross-section with respect to A 3 axis. Using Hooke's 

law we obtain 

£12 = £23 = £31 = 0. (557) 

Hence, 

= KX2, = - ^ X 2 , = - ^ X 2 , (558) 
dXi EJ 2' dX2 EJ 2' dX3 EJ 2' 1 7 

dui du2 du2 du3 du3 dm 
dX2 + d x r ^ dXs + d X 2 = 0 j dx1

 + dx3- = 0 - ( 5 5 9 ) 

By integration of the first equation of the (558) we find 

M 
m = —X1X2 + f(X2,X3). (560) 

From (559) it follows that 

dm du2 dm du3 

dX2 dXi dX3 dXi 

Substitution of (560) into (561) results in 

(561) 

8u2 MXi_V ( 5 6 2 ) 

dXi EJ dX2 dXi 8X3 

Hence, 
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df 
u3 = --^-X1 + g(X2,X3) (563) 

oX3 

where g and h are unknown functions of X2 and X3. Now we substitute (563) into last two 

equations in (558) to obtain 

d2f dh _ taM d2f dg _ pM 
- d x l X l + dX2--jEJX^ ' d X l X l + d X 3 - ~ K J X 2 - ( 5 6 4 ) 

These equations hold for all values of X\, therefore 

d2f dh pM 
dX\ ' dX2 EJ 2' 

-dXl = °> dX3

=-EJX2- ( 5 6 5 ) 

A n integration of these equations gives 

f = pX2 + 1X3 + c + X2X3d, 

g = - j ^ x 2 x 3 + g0(x2) 

h = - ^ X 2 + h0(X3). (566) 

Substituting (566) into (560) and (563) and then into (559), we have 

dh0 dg0 pM 
- 2 X l d + d X 3

 + dX2-EJX3 = °- ( 5 6 7 ) 

This equation holds at every point in the bar if and only if 

d = 0, hQ = - ^ j X 2 + aX3 + a, g0 = -aX2 + b. (568) 

Then 
M 

ui = ^ - ^ l ^ 2 + (3X2 + 7 X 3 + c 
hi J 

u 3 = - 7 X 1 - ^-X2X3 - aX2 + b. (569) 
EJ 
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Constants a, b, c, a, j3 and 7 represent the rigid body motion of the bar. In order to deter­

mine these constants, we fix the beam at the origin by fixing an element of the X\ axis, 

and an element of the X\X2 plane at the origin. Thus 

du2 du3 du2 , , 
u i = U 2 = U 3 = dxrdx-1

 = d x 3 - = 0 ( 5 7 0 ) 

at (0,0,0). From conditions (570) it follows that 

a = & = c = /3 = 7 = a = 0. (571) 

Therefore, the displacement field of the bended beam is 

M Y Y 

u2 = ^ { X l - X l ) - ^ X l 
2EJy 3 2 1 2EJ 1 

u3 = - ^ X 2 X 3 . (572) 
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