


ABSTRACT
Synchronous reluctance motors are becoming a more and more popular alternative
to the AC induction machine for their relatively high power efficiency, low cost, and
high robustness. Full utilization of benefits of sensorless control and high power
efficiency are being complicated by non-linearities of the motor, especially mag-
netic saturation. The beginning of this work is dedicated to an inference of the
mathematical-physical model of SynRM and an overview of existing state-of-the-art
sensorless power-optimal algorithms. The core of this work is then the introduction
of the SynRM state and parameter estimator, which is based on a new approach to
measurement and utilization of phase reluctances. The key elements of the algorithm
are a new methodology for measuring phase reluctances, a PWM switching scheme
that allows to reduce switching losses and to measure phase reluctances from zero
speed, and finally the integration of these measurements with the SynRM mathe-
matical model using extended Kalman filter. The experimental part of the thesis
then discusses the real measurement results obtained with the proposed algorithms
and several selected state-of-the-art algorithms.
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ABSTRAKT
Synchronní reluktanční motory se pro svou relativně vysokou účinnost, robust-
nost a nízkou cenu stávají stále populárnější alternativou velmi rozšířených asyn-
chronních motorů. Snaha o využití výhodných vlastností bezsnímačového řízení,
a dosažení co nejvyšší účinnost jejich provozu, je však komplikována jejich výraz-
nou nelinearitou způsobenou saturací magnetického obvodu. Úvod této práce je
věnován popisu matematicko-fyzikálního modelu SynRM a přehledu existujících
moderních algoritmů výkonově-optimálního bezsnímačového řízení. Jádrem práce je
pak představení estimátoru stavů a parameterů SynRM postaveného na novém přís-
tupu k měření a využití fázových reluktancí. Klíčovými prvky algoritmu jsou nová
metodologie měření fázových reluktancí, spínací PWM schéma jež umožňuje snížit
spínací ztráty a měřit fázové reluktance od nulových otáček, a nakonec integrace
těchto měření s matematickým modelem SynRM s pomocí rozšířeného Kalmánova
filtru. Experimentální část práce pak diskutuje výsledky reálných měření s navrženým
algoritmem a vybranými současnými algoritmy.
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Tl Loading torque [Nm]

Ts Discrete sampling period [s]

Tsidc Discrete sampling period of the idc current [s]

T vM Set of voltage vector vM time durations [s]

~uabc Three-phase stator voltage vector in abc coordinate system [V]

~uαβ, ~udq, ~uγδ Two-phase stator voltage vector in αβ, dq, or γδ [V]
coordinate systems

uDD Circuit supply voltage [V]

uidc Output voltage of the MC IDC circuit leading to ADC [V]

uoff Offset voltage for the MC IDC circuit generated by DAC [V]

Udc DC-bus voltage [V]

Unom Nominal stator voltage [Vrms]

vM Set of inverter voltage vectors -

~x System state vector -

~x0 Initial system state vector -

~y System output vector -

Z Matrix of rotation by π/2 [1]

δx Relative error of measured quantity x [%]

θe Rotor electrical position [rad]
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θI Angle between rotor position and the stator current vector [rad]

θI0 Angle of the torque-producing stator current vector ~idq0 [rad]

θm Mechanical rotor angle [rad]

θui Angle between stator voltage and current vectors [rad]

Θ Matrix of unknown parameters -

λ Forgetting factor [1]

σx Standard deviation of quantity x -

ϑ Temperature [◦C]

τ Time constant [s]

ωe Electric angular speed [rad/s]

ωm Mechanical angular speed [rad/s]

ωhf Angular frequency of injected signal [rad/s]

ε Control error signal -

~Ψαβ, ~Ψdq, ~Ψγδ Stator magnetic flux vector in αβ, dq, or γδ coordinate [Wb]
systems

Ψm Stator magnetic flux amplitude [Wb]

ΨPM PMSM permanent magnet flux [Wb]

List of Indexes and Notations
Index Description

.err Error value

.max Maximal value

.min Minimal value

.nom Nominal value

.opt Optimal value

.req Required value

.thr Threshold value

| . | Absolute value

.̂ Estimated value

.̄ Mean value

~. Vector

.α, .β, .αβ Vector components in stator reference system

.γ , .δ, .γδ Vector components in general rotating system

.d, .q, .dq Vector components in rotor reference frame

.a, .b, .c, .abc Vector components in motor phases
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List of Abbreviations

Abbrv. Description

ASPWM Alignment-Swap PWM

ACIM AC Induction Machine

BEMF Back Electromotive Force

BPF Band-pass Filter

CAPWM Centre-aligned PWM

DMA Direct Memory Access

DTC Direct Torque Control

EEMF Extended EMF

EIN Equivalent Input Noise

EKF Extended Kalman Filter

EKF-BASIC Extended Kalman Filter - proposed basic algorithm version

EKF-RS Extended Kalman Filter - proposed version with R̂s estimation

EM Expectation-Maximization

FOC Field Oriented Control

HFI High Frequency Injection

HVAC Heating, Ventilation, and Air Conditioning

IGBT Insulated Gate Bipolar Transistors

INFORM Indirect Flux detection by Online Reactance Measurement

IPMSM Interior PMSM

KF Kalman Filter

LMC Loss Model Controller

LPF Low-pass Filter

LUT Look-up Table

LSB Least Significant Bit

MC IABC Measurement circuit for phase currents

MC IDC Measurement circuit for DC-bus current

MCU Micro-controller Unit

ME Maximum Efficiency

MLR Multi-Linear Regression

MPFC Maximal Power Factor Control
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MRAS Model Reference Adaptive System

MSB Most Significant Bit

MTPA Max Torque Per Ampere

PI Proportional Integral controller

PID Proportional Integral Derivative controller

PMSM Permanent Magnet Synchronous Machine

PRBS Pseudo-Random Binary Sequence

PWM Pulse Width Modulation

RLS Recursive Least Squares

RMS Root Mean Square

SC Search Controller

SVM Space vector Modulation

SynRM Synchronous Reluctance Motor

THD Total Harmonic Distortion

TO Tracking Observer

VFC Voltage-to-Frequency Converter

VSI Voltage Source Inverter

17



Introduction
Synchronous reluctance motor (SynRM) is known since the first half of 20th century
[Kos23]. This type of electrical motor was initially considered to be inferior in
comparison with other types of motors, mostly because of relatively low output
torque and efficiency. Thanks to technological advances in the design of SynRM
rotors, which greatly enhanced machine performance, more and more attention is
being paid to SynRM. The most notable advantages of this technology are:

• SynRM can achieve around 10% to 15% larger rated torque for a given frame
size in comparison to an AC induction machine (ACIM) [BP08].

• Very low production cost because the assembly of laminated rotor topology is
quite simple and requires no costly permanent magnets [MDD+22].

• There are no Joule losses in the rotor of SynRM. Resulting lower operation
temperature has many benefits, like, for example, longer life of ball-bearings
and reduced thermal requirements for lubricants [RFC10].

• There is no risk of permanent magnet demagnetization due to heat like in the
case of permanent magnet synchronous machine (PMSM).

• Constant power region during field weakening can be theoretically extended
to infinite speed because there is no permanent magnet flux to suppress.

A comprehensive comparison of SynRM technology with ACIM and PMSM tech-
nologies is available in Table 1. It should be also noted that permanent magnet
assisted synchronous reluctance motors are not within scope of this thesis and only
purely magnet-less machines are considered.
Despite several SynRM disadvantages, it can be expected, that the low main-

tenance, production, and operation cost of SynRM will make it popular mainly in
cost-sensitive inverter-based applications like pumps, fans, or HVACs. That be-
ing said, other major applications, like the automotive, are being considered as
well [BP08,MDD+22]. To fully exploit this potential, great attention is currently
being paid to the development of power-optimal sensorless control algorithms for
SynRM, which would minimize necessary operation input power and remove the
need for expensive rotor position and speed sensor. Such power-optimal control is
also the topic of this thesis, or more precisely, a proposal of sensorless state and
parameter observer necessary to build such an application.
The first section of this thesis introduces SynRM mathematical model. Attention

is paid especially to the magnetic saturation phenomenon and the core losses, which
are the major non-linearities of SynRM, complicating its power-efficient sensorless
control.
The second chapter summarizes the existing sensorless SynRM state and param-

eter estimation algorithms, which can be integrated within the well-known field-
oriented vector control (FOC) algorithm. The rotor position and speed estimation
algorithms can be generally divided into groups based on exploitation of extended
back-electromotive-force (EEMF), rotor saliency, or both. An overview of the cur-
rently used state-of-the-art sensorless algorithms from each group is provided. Some
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Table 1: Comparison of SynRM with PMSM and ACIM technologies [MDD+22]

SynRM advantages over PMSM SynRM advantages over ACIM

• No permanent magnets: • Synchronous operation (no slip)
- Significantly reduced cost • No conductors in rotor:
- Reduced embedded carbon - Improved robustness
- Easier manufacturing - Manufacturing cost
- Reduced risk of over-voltage - Lower rotor losses (cold rotor)
- Reduced risk in the supply chain - Lower maintenance requirements

• No demagnetization risk • Higher efficiency
• Wider operating speed range • Higher power density for same size
• No need for clutch in case of • Lower rotor inertia
short-circuit fault • Longer bearing life

SynRM disadvantages over PMSM SynRM disadvantages over ACIM

• Lower power and torque density • No line-startup capability
• Lower power factor without rotor modifications
• Not yet widely accepted • Lower power factor
by industry • Not yet widely accepted

• Complex control due by industry
to non-linearity • Complex control due

• Lower efficiency to non-linearity

of these algorithms, especially the EEMF-based ones, then require accurate machine
parameters for their operation. Several notable parameter estimation algorithms are,
therefore, also described in that chapter.
The third chapter deals with SynRM power-loss modelling, optimization criteria,

and with the existing power optimization algorithms. Several algorithms belonging
either to active search or to power-loss-based algorithm groups are shown and dis-
cussed. One of the presented algorithms is the DC-current injection optimization
search algorithm, which was proposed during research for this thesis.
The fourth chapter analyses the sensitivity of selected parameter estimation and

power optimization algorithms to the inaccuracy of provided machine parameters.
As an example, the optimal model-based power-optimization and the well-known
EEMF observer algorithm in combination with both the inductance look-up table
and the online least square estimation method were simulated. This analysis aimed
mainly to determine the necessary parameter observer performance requirements,
which aware then taken as goals for the algorithms proposed in this thesis.
The fifth section presents the core of the conducted research. It describes the pro-

posed observer, which is based on the extended Kalman filter, novel low-cost current
derivative measurement method, and pulse-width modulation technique. Besides the
theory and discussion, this chapter also introduces simulation results. As will be
shown, the algorithm has several attractive features, like full-speed operation range,
improved efficiency, and the machine rotor and position information redundancy,
which can be used to estimate additional machine states and parameters (this thesis
shows an example with stator resistance estimation).
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The final chapter then describes and discusses the experimental setup and re-
sults. Beside the proposed methods, selected existing state-of-the-art algorithms
were implemented and analysed as well. The basic function of rotor position and
speed tracking was investigated but the main focus was paid to steady-state param-
eter estimation accuracy and impact to achievable power efficiency.
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1. SynRM Model and Properties
The goal of this chapter is to introduce the SynRM non-linear system model and
properties to show challenges related to its optimal control and to serve as a foun-
dation for later chapters of this thesis. The first part of this section is focused
on the mathematical modelling of SynRM including magnetic saturation and core
power loss phenomenons. Section 1.2 then shows offline-identified parameters of
the real, commercially-available SynRM machine, in order to highlight the extent
of non-linearity of a typical machine and to serve as a reference for the rest of this
thesis.

1.1. Mathematical Model

The stator of SynRM is identical to a standard AC induction machine, which means
typically a three-phase stator with harmonically distributed windings so a sinusoidal
rotating magnetic field is created when powered by AC power. The rotor construc-
tion is, however, different, because it contains no windings or permanent magnets.
Instead, the rotor is constructed so the highest possible difference in magnetic re-
luctance (and thus stator inductance as well) is achieved between the rotor axes.
The rotor and stator always have the same number of pole pairs. When such a
rotor is exposed to a rotating magnetic field, a torque is produced, because the most
magnetically conductive rotor axis tries to align itself with the vector of the stator
magnetic field. This is because an aligned configuration achieves the minimal mag-
netic flux density in the air gap and so the minimal energy state of the magnetic
field is reached. The rule is that the higher the rotor anisotropy, the higher torque
can be achieved.
Figure 1.1 depicts the typical construction topologies of the four-pole SynRM

rotor. The construction with pronounced poles in Figure 1.1a offers relatively low
maximal achievable torque, however, due to its simple and robust construction it
is often found in very-high-speed applications. The highest rotor anisotropy can be
currently achieved using the axially-laminated construction as shown in Figure 1.1b.
Due to increased eddy current power losses and higher manufacturing costs due to
its complicated design, it is, however, used marginally. The most widespread rotor
topology today is the transversally-laminated rotor as shown in Figure 1.1c. These
rotors offer a relatively good balance between production cost and the maximal
achievable torque [Kol10,ODM15].
As the first step, Clarke’s transformation will be used to obtain a sufficiently

simple SynRM mathematical model. This transformation converts quantities from
the three-phase abc to two-phase αβ stationary coordinate system as shown in Fig-
ure 1.2. The stator phase voltage vector ~uabc = [ua, ub, uc]

T can be written as

~uαβ =

[
uα

uβ

]

=
2

3

[
1 −1

2
−1

2

0
√

3
2

−
√

3
2

]



ua

ub

uc



 = Tabc
αβ ~uabc, (1.1)
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Figure 1.1: Rotor construction (a) with pronounced poles, (b) axially-laminated,
and (c) transversally-laminated [Kol10]

where ~uαβ is the stator voltage vector in αβ coordinate system and Tabc
αβ is Clarke’s

transformation matrix. The 2
3
coefficient in equation (1.1) was added to normalize

amplitudes of quantities in αβ coordinate system to values in three-phase system
abc. The inverse transformation can be done as

~uabc = Tαβ
abc~uαβ =




1 0

−1
2

√
3

2

−1
2

−
√

3
2



 ~uαβ, (1.2)

where Tαβ
abc is the inverse Clarke’s transformation matrix [CČerný10].

Figure 1.2: Principle of Clarke’s transformation

Further model simplification can be achieved using Park’s transformation. This
transformation converts quantities from the two-phase stationary αβ to the two-
phase rotating dq coordinate system as shown in Figure 1.3. The d axis is usually
referred to as the direct axis and the q axis as the quadrature axis. The SynRM
stator voltage vector can be written as

~udq =

[
ud

uq

]

= Tαβ
dq (θe)

[
uα

uβ

]

=

[
cosθe sinθe

−sinθe cosθe

]

~uαβ, (1.3)
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where ~udq is the stator voltage vector in dq coordinate system, θe is the rotation
angle, and Tαβ

dq (θe) is the Park’s transformation matrix. The inverse transformation
can be done as

~uαβ = Tdq
αβ(θe)~udq =

[
cosθe -sinθe

sinθe cosθe

]

~udq, (1.4)

where Tdq
αβ(θe) is the inverse Parks’s transformation matrix.

Figure 1.3: Principle of Park’s transformation

The electrical angle θe is chosen with regard to the simplicity of the resulting
mathematical model. In the case of permanent magnet synchronous motor (PMSM),
the angle is chosen identical to the rotation angle of the permanent magnet north
pole. In the case of SynRM, however, the choice is ambiguous. The direct d -axis can
be aligned with the maximal or the minimal inductance axis. The SynRM model
is non-linear and the alignment choice does not necessarily lead to identical results
in the case of some algorithms. In this work, similarly to the great majority of
literature, the alignment with the maximal inductance axis will be used, as shown
in Figure 1.4 [CČerný10, ITDO06].

Figure 1.4: Four-pole rotor with highlighted dq-axes

The stator voltage in stationary reference frame can be described by equation

~uαβ = Rs
~iαβ +

d
dt

~Ψαβ, (1.5)
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where Rs is stator winding resistance, ~iαβ = [iα, iβ]T is stator current vector, and
~Ψαβ = [Ψα, Ψβ]T is stator magnetic flux vector in αβ reference frame. Equation
(1.5) can be expressed in rotating reference frame as

~udq = Tαβ
dq (θe)~uαβ =

= RsT
αβ
dq (θe)~iαβ + Tαβ

dq (θe)
d
dt

~Ψαβ =

= Rs
~idq + Tαβ

dq (θe)
d
dt

[
Tdq

αβ(θe)~Ψdq

]
=

= Rs
~idq + Tαβ

dq (θe)

[
d
dt

Tdq
αβ(θe)

]
~Ψdq + Tαβ

dq (θe)T
dq
αβ(θe)

[
d
dt

~Ψdq

]

=

= Rs
~idq + ωe

[
0 −1
1 0

]
~Ψdq +

d
dt

~Ψdq = Rs
~idq + ωeZ~Ψdq +

d
dt

~Ψdq,

(1.6)

where ωe = dθe/dt is synchronous electrical speed, Z is π/2 rotation angle matrix,
~idq = [id, iq]

T is stator current vector, and ~Ψdq = [Ψd, Ψq]
T is stator magnetic flux

vector in dq reference frame. The stator current vector can also be expressed using
it’s amplitude Im and the rotor position relative angle θI as

~idq = Im

[
cos θI

sin θI

]

. (1.7)

One of the SynRM disadvantages, which complicate its control, is the non-
linearity of the magnetic circuit, which saturates at higher currents. The SynRM
machines are being operated under magnetic saturation commonly because relatively
high magnetic flux is needed to reach the necessary torque. The stator inductances
are therefore becoming functions of stator currents in both direct and perpendicular
axis (also called cross-saturation). To simplify further SynRM model inferring, the
cross-saturation is, however, going to be neglected. The ideal non-saturating situa-
tion for the direct axis is depicted in Figure 1.5a and the real saturating relation is
shown in Figure 1.5b.

Figure 1.5: The current dependency of the stator magnetic flux a) with and b)
without magnetic saturation [ITDO06]

The stator magnetic flux considering the saturation effect can be described as

~Ψdq =

[
Ld (id) 0

0 Lq (iq)

]
~idq = L~idq, (1.8)
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where L is the static inductance matrix, Ld (id) is the static inductance in the di-
rect axis, and Lq (iq) is the static inductance in the quadrature axis. The static
inductances are given by the ratio between the magnetic flux and the current am-
plitudes. To describe dynamic events, however, the dynamic inductances have to be
introduced as

L
′

d(id) =
dΨd

did
and L

′

q(iq) =
dΨq

diq
, (1.9)

where L
′

d(id) is dynamic inductance in the direct axis and L
′

q(iq) is dynamic in-
ductance in the quadrature axis. Figure 1.5 shows that dynamic inductance has a
character of the tangent to the operating point. In the ideal case with no saturation
in Figure 1.5a, the dynamic and static inductances are equal.
Introducing the relation (1.8) into (1.6), the stator voltages can be described as

ud = Rsid + id

(
dLd(id)

dt

)

+ Ld(id)
did
dt

− Lq(iq)ωeiq =

= Rsid +

(

id
dLd(id)

did
+ Ld(id)

)
did
dt

− Lq(iq)ωeiq =

= Rsid + L
′

d(id)
did
dt

− Lq(iq)ωeiq,

(1.10)

uq = Rsiq +

(

iq
dLq(iq)

diq
+ Lq(iq)

)
diq
dt

+ Ld(id)ωeid =

= Rsiq + L
′

q(iq)
diq
dt

+ Ld(id)ωeid.

(1.11)

These relations show that the difference between dynamic and static inductance has
no effect when in steady-state [ITDO06,XXLN91]. Note, that from now on, both
the static and dynamic inductances will be stated without their explicit current
dependency to simplify the following text.
The SynRM machine core-losses PFe were neglected up until this moment. These

losses are created during magnetization as hysteresis losses and represent the second
most significant losses after the Joule losses. In the ideal case, the core losses are
only present in the stator, thanks to the synchronous operation of the machine.
In practice, however, there is also a flux change when the rotor crosses near the
stator teeth, which leads to the formation of core losses in the rotor as well. The
rotor losses are, however, negligible in comparison to stator losses and will not be
considered. The core losses are usually modelled using the resistance Rc, which is
the same for d and q axis. The resulting SynRM model is shown in Figure 1.6.
It can be noticed that the measured current ~idq is now divided into loss current

~idqc = [idc, iqc]
T and flux-producing current ~idq0 = [id0, iq0]

T. The core loss modelling
for dynamic events would significantly complicate the model, so only the steady-
state will be considered. This can be afforded if the SynRM machine is used in
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Figure 1.6: The SynRM model including core losses in a) direct and b) quadratic
axis

low-dynamic applications, which is often the case [DTCB22]. The Rc resistance can
be calculated as

Rc =
3

2

ω2
e(Ψ

2
d + Ψ2

q)

PFe

(1.12)

and is, therefore, dependent on both the size of the stator flux and the rotor speed.
Alternatively, the core losses are often being described using the core loss coefficient

Km =
ωeLdLq

Rc

, (1.13)

which is used for its less variable nature when compared to resistance Rc. The
relation between measured and flux-producing current can be expressed as

id = id0 −
ωeLqiq0

Rc

, (1.14)

iq = iq0 +
ωeLdid0

Rc

, (1.15)

id0 =
R2

cid + RcωeLqiq
R2

c + ω2
eLdLq

, (1.16)

iq0 =
R2

ciq − RcωeLdid
R2

c + ω2
eLdLq

. (1.17)

When expressing the flux-producing current using its amplitude Im0 and angle θI0,
where ~idq0 = Im0 [cos θI0, sin θI0]

T, it can be noticed that the relation θI > θI0

will always be true in motoring region, The situation is depicted in Figure 1.7.
The inclusion of core loss resistance Rc into the model might, therefore, benefit the
accuracy of found solution. The voltage equations (1.10) and (1.11) can be rewritten
using the current expressions (1.16) and (1.17) as

~udq = Rs
~idq0 +

[
L

′

d 0
0 L

′

q

]
d
dt

~idq0 + ωe

(

1 +
Rs

Rc

)[
Ld 0
0 Lq

]

Z~idq0 =

= Rs
~idq0 + L

′ d
dt

~idq0 + ωe

(

1 +
Rs

Rc

)

LZ~idq0,

(1.18)

where L
′
is the dynamic inductance matrix [IKK+09,KS96b,YTA05,XXLN91].
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Figure 1.7: Stator current vector comparison with core loses included

Generated electrical torque applied to the machine shaft can be calculated as

Te =
3

2
Pp(~Ψdq ×~idq0) =

3

2
Pp (Ψdiq0 − Ψqid0) =

=
3

2
Pp(Ld − Lq)id0iq0 =

3

4
Pp(Ld − Lq)Im0 sin 2θI0,

(1.19)

where Pp is the number of pole pairs. It can be seen that the size of the difference
between d and q axis inductances caused by rotor anisotropy is critical for achieving
high output torque.
To make the mathematical model complete, the mechanical equation

dωm

dt
=

1

J

[
Te − Tl − B1ωm − sign(ωm)B2ω

2
m

]
(1.20)

is introduced, where ωm = ωe/Pp is mechanical rotor speed, J is the moment of
inertia, Tl is the loading torque, B1 is internal machine viscous friction coefficient
and B2 is a ventilator mechanical loss coefficient. The rotor electrical position is
then

θe =

∫
ωedt. (1.21)

In summary, the final mathematical model of SynRM, including magnetic saturation
and core losses, is formed by equations (1.18), (1.20), and (1.21) [CČerný10].

1.2. Parameters of Real SynRM Machine

This section will be discussing the offline-measured parameters of real SynRM. The
goal is to highlight the extent of machine parameter non-linearities on a real exam-
ple. The investigated machine is commercially-available four-pole 550 W SynRM
with transversally-laminated rotor (as shown in Figure 1.1c) from the KSB manu-
facturer. It is also used as a reference for all simulations and measurements in this
thesis. Its nominal plate values and other basic parameters are listed in Table 1.1.
Further details provided by the manufacturer can be read from the machine label
in Figure 1.8. The stator resistance Rs was measured using the RLC meter and the
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mechanical parameters J and B were acquired from step dynamic response using
the least square method approximation for the first order mechanical system (1.20).

Table 1.1: Basic parameters of 0.55 kW KSB SynRM machine
Quantity Value Unit

Pnom 550 W
Nnom 1500 rpm
Unom 350 Vrms
Inom 1.6 Arms
Pp 2 -
Rs 9.68 Ω
J 1.64 ∙ 10−3 kg ∙m2

B 1.96 ∙ 10−3 Nm ∙ s/rad

Figure 1.8: Reference SynRM label

Measurement of the stator inductances is not as straightforward. As was ex-
plained in Section 1.1, magnetic saturation occurs when high stator currents are
present. To obtain a sufficiently precise description of stator flux non-linearity, the
combination of linear and inverse functions

Ψd = Ld0id for |id| < Ithrd ,
Ψq = Lq0iq for |iq| < Ithrq ,

Ψd = sign (id) Ψd0 + Ld1id + βd

id
for |id| > Ithrd ,

Ψq = sign (iq) Ψq0 + Lq1iq + βq

iq
for |iq| > I thrq

(1.22)

is used as models, where Ld0 = Ld = L
′

d and Lq0 = Lq = L
′

q are used in the linear
region, Ithrd and Ithrq are currents for which the saturation starts to occur, and Ψd0,
Ψq0, Ld1, Lq1, βd, and βq are parameters describing the current dependency of flux
in non-linear saturating region.

28



Compared to the commonly used polynomial approximation, this approach re-
quires fewer parameters to be identified and allows the option to simply express
static and dynamic inductances in the linear and saturation regions as

Ld =
Ψd

id
=

Ψd0

id
+ Ld1 +

βd

i2d
, (1.23)

Lq =
Ψq

iq
=

Ψq0

iq
+ Lq1 +

βq

i2q
, (1.24)

L
′

d =
dΨd

did
= Ld1 −

βd

i2d
, (1.25)

L
′

q =
dΨq

diq
= Lq1 −

βq

i2q
. (1.26)

The parameter needed for approximation (1.22) were acquired using the simple
stator flux model (1.5) and multi-linear regression method (MLR) [BCP16]. The
results are summarized in Table 1.2.

Table 1.2: Stator flux characteristics approximation parameters
Axis Ithrx [A] Lx0 [mH] Ψx0 [Wb] Lx1 [mH] βx [Wb∙A]
Direct 0.99 670 1.30 26 −647 ∙ 10−3

Quadrature 0.15 382 0.11 81 −8.5 ∙ 10−3

The resulting stator flux current dependency maps are shown in Figure 1.9 and
Figure 1.10. The corresponding static and dynamic inductances are then in Fig-
ure 1.11 to Figure 1.14. The direct axis inductance is not only several times higher
than in the quadrature axis, but it also saturates at much higher currents. This result
was expected because the direct rotor axis is by majority formed by iron, while the
quadrature axis is air-dominant. The quadrature axis path, however, does contain
a small amount of iron due to construction reasons, which is quickly saturated even
with a small current. This effect can be seen in Figure 1.12 and Figure 1.14, where
the Lq drops to 25 % of its original value when |iq| > 0.5 A. Some SynRM control
algorithms proposed in the literature are considering Lq to be constant in the full
current range for simplicity [HKS99,KSG+14]. The measurement, however, shows
that this simplification can be afforded only when maintaining sufficiently high sta-
tor current amplitude (e.g. by operating loaded machine). Figure 1.11 shows that
the direct axis inductance drops by one-third at nominal stator current Inom. This
effect cannot be neglected for efficiency-optimal sensorless SynRM control. On the
other hand, the cross-saturation is relatively negligible, and is often neglected in the
literature [AR15].
Comparison of static and dynamic inductance maps shows that dynamic induc-

tances drop faster with the increasing current than static inductances. Neglecting
the difference between static and dynamic inductance in the algorithm is going to
have more negative impact during dynamic events at higher currents. Such simpli-
fication can be afforded if a low-dynamic target application is considered.
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Figure 1.9: Direct axis stator flux Ψd dependency on stator current ~idq

Figure 1.10: Quadrature axis stator flux Ψq dependency on stator current ~idq
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Figure 1.11: Direct axis static inductance Ld dependency on stator current ~idq

Figure 1.12: Quadrature axis static inductance Lq dependency on stator current ~idq
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Figure 1.13: Direct axis dynamic inductance L′
d dependency on stator current ~idq

Figure 1.14: Quadrature axis dynamic inductance L′
q dependency on current ~idq

The core-loss modelling resistance Rc was expressed by equation (1.12). Unlike
for PMSM motors, where the permanent magnet flux is dominant when compared to
generated stator flux, the simplification of assuming the stator flux amplitude to be
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constant cannot be used. Hence, the Rc parameter has to be measured for both the
rotor speed Nm and stator flux amplitude |~Ψdq|. The core-loss resistance Rc speed
and flux characteristic is shown in Figure 1.12 and, similarly, the flux and speed
dependency of core-loss coefficient Km is shown in Figure 1.16. Both characteristics
were acquired from core power loss estimation, which was determined as a difference
between the measured machine input electrical power, output mechanical power,
estimated Joule losses, and internal mechanical stator losses. Note that the missing
map area for high speed and flux products could not be measured due to stator
voltage limitation.
The SynRM model equation (1.18) is impacted by the ratio between Rc and Rs.

It can be noticed that Rc can differ significantly based on the actual operating point,
however, in general, the Rc is several hundred times higher than stator resistance
Rs for all measured operation points. It can, therefore, be assumed, that accurate
modelling of the non-linearity caused by saturation is going to have a higher impact
on SynRM model accuracy than core losses. It can be also seen that coefficient Km

varies less than the resistance Rc, which makes it more suitable for online adaptation.

Figure 1.15: Core loss resistance Rc dependency on the amplitude of the stator flux
|~Ψdq| and the mechanical speed Nm
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Figure 1.16: Core loss coefficient Km dependency on the amplitude of the stator
flux |~Ψdq| and the mechanical speed Nm
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2. SynRM Sensorless Control
Synchronous reluctance motors cannot be run from mains voltage, without special
modifications like additional rotor cage winding [MDD+22]. The scalar or Volt
per Hertz control, which is otherwise commonly used for AC induction machines,
is not suitable as well. The reason is the problematic control stability leading to
significant vibrations or even loss of synchronicity. The most commonly used classes
of control algorithms are then the field-oriented control (FOC) and direct torque
control (DTC). Classic DTC has several advantages compared to FOC, like the
ability to achieve lower inverter switching losses, faster torque dynamic response,
and relatively lower computational requirements. On the other hand, the DTC
algorithms exhibit higher torque ripple at low speed and often lack the ability to
directly control the stator current [CPST02,LBM94,WD15,XXLN91]. This thesis
will, therefore, focus only on field-oriented control algorithms.
The SynRM sensorless vector control is very similar to the FOC of other mo-

tor types, especially the interior permanent magnet synchronous motor. Harmonic
voltages, currents, and fluxes within the rotor-aligned dq-axis frame are turned into
DC quantities, which allows the FOC to effectively control the machine stator flux
and rotor torque by controlling dq-axis stator currents ~idq to track reference

~ireqdq =

[
ireqd

ireqq

]

= Ireqm

[
cos θreqI

sin θreqI

]

, (2.1)

where Ireqm is the amplitude and θreqI is the angle of stator current reference. As will
be discussed later, the θreqI angle directly affects the SynRM efficiency and is the
main focus of the efficiency optimizing algorithms.
High-level block diagram of the most common form of the FOC algorithm is

shown in Figure 2.1. Stator current control loops are often based on direct and
quadrature axis current PID-type controllers. Their control outputs might some-
times be compensated for the influence of the non-linear flux and speed products in
(1.18) using a decoupling algorithm. This is, however, not critical because the in-
tegrators within the PID-type controller can handle the compensation as well. The
stator current references ~ireqdq are then set by the outer control loop or loops, which
reflect the type of targeted application (e.g. whether the goal is the speed, position,
or torque control).
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Figure 2.1: Generic block diagram of SynRM sensorless vector control

Such a PID-based cascaded control structure allows to build a high-performing
drive system. That being said, alternatives are being proposed to bring further im-
provements. For example, the topic of model-based predictive control has been gain-
ing attention in recent years, mainly because it allows straightforward and easy-to-
understand tuning and constraint handling [Myn15,MVV16,VM17]. These methods
are being adopted slowly by industry mainly because of the increased computational
demands.
No matter the controller type, the resulting stator voltages ~uαβ are translated

to phase duty-cycle control signals ~Dabc and then applied to the machine using
the Voltage Source Inverter (VSI) power stage. A generic block diagram of three-
phase VSI is shown in Figure 2.2. There are many methods for obtaining the phase
duty-cycles ~Dabc and the inverter control signals AT, AB, BT, BB, CT, and CB,
with different properties like switching losses or a total harmonic distortion [KC17].
A very common is the use of the standard Space Vector Modulation (SVM), which
principle is depicted in Figure 2.3. The two-state VSI can generate six active voltage
vectors v1, v2, v3, v4, v5, and v6 and two zero voltage vectors v0 and v7. What
voltage vectors are going to be applied and their durations Tv0 up to Tv7 during the
PWM period TPWM depends on the voltage vector ~uαβ and SVM sector in which it
resides. An example of the centre-aligned PWM (CAPWM) scheme for ~uαβ residing
in the first SVM sector is shown in Figure 2.4. Note that due to the finite switching
time of the inverter transistor, the rising edges of the control signals must be delayed
by the so-called dead-time TDT . Its length depends on the type and technology of the
used transistors and usually leads to distortion of the actually applied stator voltage
vector and, therefore, must be compensated using suitable algorithm [LK97].
The rotor speed ωe and especially the rotor position θe are critical for FOC. Both

could be measured using a sensor. The drive realization without speed and position
sensor, however, leads to lower cost and improvement in reliability. This, together
with increasing capabilities of computation technology, lead to the development of
sensorless control algorithms, which can estimate these quantities. The sensorless
estimation algorithms can be classified based on the utilized physical principle.
The first class of algorithms utilizes the extended back-electromotive force (EEMF).

These algorithms are using the machine model and require knowledge of actual ma-
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Figure 2.2: Block diagram of generic three-phase Voltage Source Inverter

Figure 2.3: Standard space vector modulation voltage generation [MVB21]

chine parameters. The amplitude of EEMF voltage is increasing with the rotor
speed and, therefore, these algorithms are suited for medium- to high-speed regions.
Their use in low-speed region and standstill is, therefore, usually not possible due to
high measurement noise [VPF96]. A short survey of several of the existing methods
is then presented in Section 2.1.
The second class covers the rotor saliency-based algorithms. Some algorithms

rely on high-frequency signal injection (HFI) into the fundamental control voltage
or current. Demodulation of machine response signals then provides the rotor po-
sition information. The injected signal frequency upper limit is the inverter carrier
PWM frequency and the bottom limit is given by the fundamental control algorithm
frequency bandwidth. This usually means frequency in a range from hundreds of
Hertz to units of kHz. Other saliency-based algorithms (e.g. the well known IN-
FORM method) rely on excitation of stator currents by the phase PWM waveforms.
Due to worse signal-to-noise ratio, it is often necessary to employ special current
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Figure 2.4: Example of the centre-aligned PWM waveform

derivative measurement sensors. General advantage of all saliency-based algorithms
are their ability to operate from standstill and usually no need for exact knowledge
of machine parameters. Some of these algorithms are then discussed in Section 2.2.
To exploit the advantages of both sensorless algorithm classes, hybrid algorithms

were developed. The saliency-based principle is then used at standstill and low speed
and with the increasing speed, the rotor speed and position estimation is transitioned
to the EEMF-based algorithm. Selected algorithms from this class are going to be
described further in Section 2.3.
As was shown in the previous Chapter 1, the SynRM is a highly non-linear

system. In combination with machine parameter spread from manufacturing or
changes caused by effects like the machine heating or wear an tear, the performance
or even stability of the sensorless algorithms is going to be affected. The last section
of this chapter is, therefore, going to deal with algorithms for online parameter
estimation and adaptive sensorless SynRM control.

2.1. Algorithms Based on Back Electromotive Force

One of the more simple algorithms is the direct rotor position estimation method.
It does not require a complicated observer algorithm, instead, the position is deter-
mined directly as

θ̂′

e =
1

2
arctan

(
uβ sin θI − uα cos θI + RsIm cos 2θI − L0Im

dθI

dt sin 2θI

uα sin θI + uβ cos θI − RsIm sin 2θI − L0Im
dθI

dt cos 2θI

)

, (2.2)
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where L0 = 1
2
(Ld + Lq) is the average inductance. The acquired position is in range

θ̂′

e ∈
(
−π

4
, π

4

)
and the resulting information is therefore ambiguous. To solve this

problem, the position information (2.2) can be filtered as

dθ̂e

dt
= −τ

[(
θ̂e mod π

)
− θ̂′

e

]
, (2.3)

where τ is the filter time constant. An advantage of the method is its simplicity
and the fact that the average inductance L0 information is used instead of the direct
Ld and quadrature Lq inductances. On the other hand, the method neglects the
magnetic saturation, which limits its usability at higher current and load [PSLK11].
Another simple but more commonly used rotor position estimation method is

based on the simple stator flux estimator. Its principle lies in the integration of the
equation (1.5), or

~̂Ψαβ =

[
Ψ̂α

Ψ̂β

]

=

∫ (
~uαβ − Rs

~iαβ

)
dt, (2.4)

where ~̂Ψαβ is the estimated stator flux vector. The rotor position can then be
acquired as

θ̂e = arctan
Ψ̂β

Ψ̂α

− sin−1

√√
√
√
√

L2
qI2

m

Ψ̂2
m

−
L2

q

L2
d

1 −
L2

q

L2
d

, (2.5)

where Ψ̂m =
√

Ψ̂2
α + Ψ̂2

β is the stator flux amplitude. The algorithm implemented

in this form is relatively simple. The pure integration in the relation (2.4), however,
tends to drift due to noise presence and the Rs parameter inaccuracy. This issue is
especially significant at lower speeds. To improve the situation, the pure integration
is usually replaced with a low-pass first-order filter [LBM94,ATTM05].
The stator flux model in rotating dq-reference frame can be combined with the

identical Luenberger-type observer. When neglecting the core losses, the following
equations

d~̂Ψdq

dt
= ~udq − Rs

~̂idq − ω̂eZ~̂Ψdq + K~ierrdq , (2.6)

~̂idq =

[
îd
îq

]

=

[
Ld 0
0 Lq

]−1

~̂Ψdq = L−1 ~̂Ψdq, (2.7)

can be obtained, where ~̂idq is the stator current estimate, ~ierrdq = ~̂idq−~idq =
[
ierrd , ierrq

]T

is the stator current estimate error, L is the inductance matrix, and K is the gain
matrix defined as

K =

[
k11 k12

k21 k22

]

. (2.8)
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The rotor speed is then obtained by observer adaptation so error ierrq is driven to
zero, which can be achieved by implementing controller

dθ̂e

dt
= ω̂e =

(

KP +
1

p
KI

)

ierrq = FPI (p) ierrq , (2.9)

where KP and KI are proportional and integral gains, p is differential operator d/dt,
and FPI(p) is a differential function of PI controller. A disadvantage of this approach
is the necessity of knowledge of static inductance matrix L in dq reference frame.
It will be shown later in this chapter that this matrix can be estimated to achieve
adaptive operation [TH14].
Similarly, the reduced observer estimating only the stator flux in the direct axis

can be used. This leads to differential equations

dΨ̂d

dt
= ud − Rsid + ω̂eLqiq + k1

(
Ψ̂d − Ldid

)
, (2.10)

dθ̂e

dt
=

uq − Rsiq − Lq
diq
dt + k2

(
Ψ̂d − Ldid

)

Ψ̂d

= ω̂e, (2.11)

where k1 and k2 are the observer gains. The benefits of this approach are lower
computational requirements than in the case of the previously shown full observer.
On the other hand, it shows higher sensitivity to the presence of the measurement
noise and the parameter inaccuracy [THHL10].
Likely the most widely used position and speed estimation algorithm is based on

tracking of the extended electromotive force vector, which is generated as a result
of rotor asymmetry. The voltage equations (1.10) and (1.11) can be rewritten as

[
ud

uq

]

=

[
Rs + L

′

dp −ωeLq

ωeLq Rs + L
′

dp

][
id
iq

]

+
{

(Ld−Lq) ωeid −
(
L

′

d−L
′

q

)
piq

}[0
1

]

=

=

[
Rs + L

′

dp −ωeLq

ωeLq Rs + L
′

dp

]
~idq +

[
ed

eq

]

,

(2.12)

where ~edq = [ed, eq]
T is the EEMF vector, which can be acquired as shown in Fig-

ure 2.5. The synchronous rotor speed can then be acquired as

ω̂e = FPI (p) arctan
−êd

êq

. (2.13)

The rotor position then can be obtained using a simple integration of speed (1.21).
This algorithm is sometimes called tracking observer as it closes the phase-locked
loop. An advantage of overall EEMF algorithm is that, although it is based on the
model including the magnetic saturation, the ~edq vector calculation is dependent
only on two parameters L

′

d and Lq [ITDO06]. Note that it is also possible to imple-
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ment the algorithm in the stator reference frame, where the rotor position can be
determined as

θ̂e = arctan

(
−êα

êβ

)

. (2.14)

Figure 2.5: Simplified block diagram of the extended EMF and tracking observer

2.2. Saliency-Based Algorithms

Principle of the most well-known and basic high-frequency injection method can be
inferred from the SynRM model, where saturation and core losses are neglected,
the low-speed ωe → 0 rad/s, and stator resistance voltage drop Rs

~idq → 0 V are
considered [JSH+02]. The last mentioned condition can be afforded because in-
jected currents are of high frequency, and the stator reactance is much higher than
resistance or ω2

hfL0 � R2
s. This leads to the simplified high-frequency model

~udq =

[
pLd 0
0 pLq

]
~idq. (2.15)

The dq reference frame position is unknown, therefore, the estimated rotating γδ
reference frame, shifted by error angle θerre = θ̂e−θe, where θ̂e is the estimated angle,
will be introduced. Using the Park’s transformation, the following voltage equation

~uγδ =

[
uγ

uδ

]

=

[
cos θerre sin θerre

− sin θerre cos θerre

]

~udq = Tdq
γδ (θerre ) ~udq (2.16)

and current equation

~idq =

[
cos θerre − sin θerre

sin θerre cos θerre

] [
iγ
iδ

]

= Tγδ
dq (θerre )~iγδ, (2.17)
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can be obtained, where Tdq
γδ (θerre ) and Tγδ

dq (θerre ) are forward and inverse Park’s trans-
formation matrices. Including the above relations into equation (2.15) leads to model

~uγδ = Tdq
γδ (θerre )

[
pLd 0
0 pLq

]

Tγδ
dq (θerre )~iγδ =

=

[
L0 + L1 cos 2θerre −L1 sin 2θerre

−L1 sin 2θerre L0 − L1 cos 2θerre

]

p~iγδ,

(2.18)

where L1 = 1
2
(Ld − Lq) is the inductance difference and L0 = 1

2
(Ld + Lq) is the

average inductance. The stator current vector can be expressed as

~iγδ =
1

LdLq

[
L0 − L1 cos 2θerre L1 sin 2θerre

L1 sin 2θerre L0 + L1 cos 2θerre

]
1

p
~uγδ. (2.19)

The estimated position can be extracted using different types of injected voltage or
current signal. Some methods rely on the injection of the voltage vector rotating
with high frequency, however, use of harmonic or square signal injected into d or
q axis can lead to smaller torque ripple. For example, using the injected signal
~uγδ = [Um cos ωhf , 0 V]T in the model (2.19) leads to

~iγδ = −
Um cos ωhf

LdLqωhf

[
L0 − L1 cos 2θerre

L1 sin 2θerre

]

. (2.20)

Using the amplitude demodulation principle for current in the δ axis yields the error
signal

εhfq = LPF {iδ cos ωhf} ∼=
UmL1

2LdLqωhf

sin 2θerre , (2.21)

where LPF stands for low-pass filter. The final estimated rotor position and speed
can be for example acquired using the phase-locked loop

dθ̂e

dt
= ω̂e = FPI (p) εhfq. (2.22)

As was already mentioned, there are many variations of this method, usually em-
ploying different types of injected voltage or current signals, more advanced de-
modulation methods, or phase-locked loop algorithms. To give an example, higher
robustness can be achieved with a phase-locked loop, which includes the full me-
chanical machine model [WL00]. It is also possible to shift the γδ reference frame
by angle π/4 before demodulation and calculate the error θerre as the difference of
demodulation results in individual axes. This approach thus utilizes information
from both axes, improving robustness [JSH+02].
It can be noticed from equation (2.21) that the acquired position estimation is

ambiguous. Thanks to the 180-degree rotor symmetry it, however, does not represent
an issue because the produced torque will be the same (unlike in the case of PMSM
machines, where the HFI algorithm also must provide correct permanent magnet
polarity orientation).

42



It can also be noticed that the size of the error (2.21) is directly proportional to
difference between axis inductances, which is significant in the case of the SynRM
machine. On the other hand, the stator inductances of SynRM tend to be relatively
large in the first place, which means that higher amplitude or lower frequency of
injected voltage has to be applied to yield usable error signal θerre level.
The signal injection leads to additional power losses, torque ripple, and audible

noise. Some algorithms are, therefore, utilizing the inverter carrier PWM frequency
as an excitation signal. When considering a centre-aligned PWM sequence generated
using standard SVM as shown in Figure 2.4, the stator currents~iabc would be affected
by the presence of voltage vectors as depicted in the example in Figure 2.6. The
stator current slopes would differ for each phase due to the machine inductances.
For example, the overall machine phase inductance Lpha measured between machine
phase A and shorted phases B and C during Tv1 would be

Lpha = La +
LbLc

Lb + Lc

, (2.23)

where

La = Ld+Lq

2
+ (Ld − Lq) cos (2θe) ,

Lb = Ld+Lq

2
+ (Ld − Lq) cos

[
2(θe − 2π

3
)
]
,

Lb = Ld+Lq

2
+ (Ld − Lq) cos

[
2(θe + 2π

3
)
]
,

(2.24)

are position-dependent inductances. The measurement of stator current change
during PWM cycle can, therefore, be used to extract the rotor position θe.

Figure 2.6: Example of stator current change during a single PWM period

A well-known example of algorithm using this principle is the Indirect Flux
detection by Online Reactance Measurement (INFORM) method [HNS17]. Current
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changes Δ~iabc = [Δia, Δib, Δic]
T are obtained during each PWM period to receive

complex vector

cINF =
Δia
ΔTa

+
Δib
ΔTb

ej 4π
3 +

Δic
ΔTc

ej 2π
3 , (2.25)

where ΔTa, ΔTb, and ΔTc are periods during which the current changes Δ~iabc were
measured. The resulting rotor position is obtained as

2θ̂e = arg(cINF ). (2.26)

Fractions Δia
ΔTa
, Δib

ΔTb
, and Δic

ΔTc
in equation (2.25) are proportional to the phase reluc-

tances, which brings a very interesting opportunity to measure the machine induc-
tances at runtime as well [RSW18,RSW19].
When compared to HFI algorithms with explicit injection, the excitation by

fundamental PWM causes only a small usable change in measured signals. Care
then must be taken when implementing the stator current change measurement
circuit. A special sensor (e.g. a current transformer) or PWM scheme must be often
employed [NSS20,RSW18].

2.3. Hybrid Sensorless Algorithms

In order to achieve sensorless control in the full speed range, it is necessary to utilize
a hybrid algorithm, which combines saliency-based principle at the low-speed region
and EEMF-based principle at medium- to high-speed region. This section provides
an overview of several such algorithms.
Probably the most commonly used approach is to operate low-speed and high-

speed algorithms in parallel and combine the position estimates via a simple fuzzy
transition function

θ̂e = αθ̂HFIe + (1 − α) θ̂EMFe , (2.27)

α =






1 |ω̂e| < ωthreLO

0...1 |ω̂e| ∈
〈
ωthreLO, ωthreHI

〉

0 |ω̂e| > ωthreHI

, (2.28)

where θHFIe and θEMFe are position information obtained using the HFI and EEMF
algorithm and ωthreLO and ωthreHI are speed transition thresholds between these two
algorithms. Although this approach is very common, it can be expected, that higher
robustness and smoother low- to high-speed region transition can be achieved via a
single hybrid algorithm [HKS99].
Example of such approach is based on the EEMF observer algorithm (2.12),

where the injection of the rotating stator current vector causes oscillation of the
vector ~eαβ. Following amplitude demodulation of the vector ~eαβ can provide the
position information at low speeds. At higher speeds, where the position can be
reliably acquired from EEMF, the injection stops. The algorithm, as it was pub-
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lished, however, does not consider the magnetic saturation and cannot run with a
full load [KSG+14].
A different proposed hybrid algorithm is based on a modification of the observer

(2.6). The estimated speed information ω̂EMFe is corrected at low speeds as

d~̂Ψdq

dt
= ~udq − Rs

~̂idq −
(
ω̂EMFe + ω̂HFIe

)
Z~̂Ψdq + K~ierrdq , (2.29)

where ω̂HFIe estimate is acquired from the HFI algorithm (2.22). It is usually nec-
essary to limit the ω̂HFIe estimate and carefully chose the observer setup, otherwise,
stability problems may occur [TH14].

2.4. SynRM Parameter Estimation

As it was shown in Chapter 1, the SynRM is significantly non-linear system, es-
pecially in thanks to magnetic saturation effect. The change of system parameters
must be reflected in the control algorithm, otherwise, undesired effects might occur,
like non-optimal power operation, deteriorated dynamic performance, or even loss
of control stability. This leads to the topic of adaptive control.
A common approach is to identify parameter dependencies offline and store them

into look-up tables. The suitability of such offline approach for mass production is,
however, limited because of motor parameter spread during manufacturing and the
time needed to conduct necessary measurements. This section will, therefore, further
focus on online algorithms, which can provide machine parameter estimates during
runtime, with only a rough previous parameter knowledge. A focus will be placed
on commonly used and more computationally simple algorithms.
A well-known online parameter estimation method is the recursive least square

algorithm with exponential forgetting (RLS), which is described generally calculated
as

Pk =
1

λ

(

Pk−1 −
Pk−1~ϕk ~ϕTk Pk−1

λ + ~ϕTk Pk−1~ϕk

)

, (2.30)

Θk = Θk−1 + (~yk − Θk−1~ϕk) ~ϕTk Pk, (2.31)

where P is the covariance matrix, ~ϕ is the vector of system inputs and outputs, Θ
is the matrix of unknown parameters, and ~y = Θ~ϕ is the vector of system outputs.
The RLS implementation for SynRM with saturation, can be based on system

[
iγ,k − iγ,k−1

iδ,k − iδ,k−1

]

=

[
a11 a12

a21 a22

] [
iγ,k−1

iδ,k−1

]

+

[
b11 b12

b21 b22

] [
uγ,k−1

uδ,k−1

]

=

= A~iγδ,k−1 + B~uγδ,k−1,

(2.32)
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where A is the feedback matrix and B is the input matrix of the system state
description. Relating to (2.30) and (2.31) then yields

Θ(k) =

[
a11 a12 b11 b12

a21 a22 b21 b22

]

, (2.33)

~y = [iγ,k − iγ,k−1, iδ,k − iδ,k−1]
T , (2.34)

~ϕ =
[

iγ,k−1, iδ,k−1, uγ,k−1, uδ,k−1

]T
. (2.35)

The final estimated parameters then can be obtained as

R̂s =
a11 + a22

b11 + b22

, (2.36)

L̂
′

d =
2Ts

b11 + b22 + C
, (2.37)

L̂q =
L̂

′

d

2Tsω̂e



a12 − a21 +
C
(

2b12(a11+a22)
b11+b22

+ a12 + a21

)

b11 − b12



 , (2.38)

C =

√
(b11 − b22)

2 + 4b12b21, (2.39)

where Ts is the discrete sampling period. To avoid the algorithm estimate divergence,
it is necessary to continuously stimulate the system with a sufficiently rich signal. A
common choice is, for example, the pseudo-random binary sequence (PRBS). The
model in equation (2.32) and the following parameter calculation using (2.36) to
(2.39) does not cover all the phenomenons occurring in the SynRM, such as the
core-losses. The parameter estimates can, therefore, be biased. If such parameters
are used for adaptation of position estimation and efficiency optimization algorithms,
the resulting performance might suffer [ITDO06].
More simple adaptation method is based on the observer (2.6) and (2.7). The

speed estimate is adapted based on the q-axis current error, as shown in equation
(2.9). The d-axis current error then can be used for adaptation of one of the machine
inductances as

L̂d =
∫

KIL̂di
err
d dt or L̂q =

∫
KIL̂di

err
d dt, (2.40)

where KI is the integral gain. The stator resistance adaptation for this algorithm
was devised as well, which employs the HFI algorithm output as

R̂s = FPI (p) εhfq. (2.41)

In contrast to the hybrid algorithm (2.29), the stator resistance is being corrected
here instead of the rotor speed estimate [Tuo14].
Similarly-simple adaptation approach was developed for the observer (2.4), which

output is the estimated stator flux vector [Ψ̂α, Ψ̂β]T. The stator inductance estima-
tions can be acquired after the stator flux vector transformation into a rotating
reference frame and a simple division as L̂d = Ψ̂d/id, and L̂q = Ψ̂q/iq [YAA09].
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3. Efficiency Optimization
The potential to achieve high power efficiency is a key attribute of SynRM, which
makes it a suitable replacement for the AC induction machine. The SynRM mathe-
matical model was inferred in Chapter 1. As was shown, the SynRM is a non-linear
system, which significantly complicates the exploitation of the possibility of high-
efficient operation. Section 3.1, therefore, first presents the power loss model of the
SynRM machine itself and definitions of optimal power loss operation. The power
loss model of an inverter is briefly discussed in Section 3.2 because the inverter is
a part of the overall drive system and its power losses are affected by the control
algorithm as well.
Finally, the rest of this chapter presents an overview of algorithms designed to

track the power-optimal operation point of SynRM. The power-loss optimization
algorithms in the literature can be classified into two groups. The first class is
for the loss-model controller algorithms or LMC, which are based on an accurate
knowledge of the machine parameters and power loss model. The second class is for
the search controllers (SC), which involve an active search of the optimal operating
point based on the measured input power or related quantities. While the SC
algorithms do not require previous knowledge of machine parameters, as the LMC
algorithms do, their convergence time is usually slower and their operation requires
a signal injection or operating point sweep, causing torque ripple and related small
efficiency drops [QH13].

3.1. SynRM Power Loss Model and Optimization
Strategies

The steady-state power balance in SynRM can be described by equation

Pin = PCu + PFe + Pω + Pm, (3.1)

where Pin is the input electrical power, PCu is Joule power loss in the stator winding,
PFe is the core power loss, Pω is the internal mechanical power loss caused by viscous
friction and ventilator, and Pm = Tmωm is the mechanical output power applied to
the shaft. The total machine losses Ploss can be described as

Ploss =PCu + PFe + Pω = RsI
2
m + Rc

(
i2dc + i2qc

)
+ B1ω

2
m+B2ω

3
m =

=Rs

[(

id0 −
ωeLqiq0

Rc

)2

+

(

iq0 +
ωeLdid0

Rc

)2
]

+

+
ω2

e

Rc

[
(Ldid0)

2 + (Lqiq0)
2]+ B1ω

2
m+B2ω

3
m,

(3.2)

where B1 is viscous friction coefficient and B2 is a ventilator mechanical loss co-
efficient. This power-loss equation is graphically represented in Figure 3.1. The
power-loss balance in a typical SynRM is often being compared with the induction
machine in the current literature. When compared with a similar typical IE4 induc-
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tion machine, the overall Joule losses are comparable in size but are all focused in
the stator. The remaining PFe core and Pω mechanical losses are usually similar in
size as well. To give an idea of a typical SynRM machine nominal loss distribution,
it was reported that for a four-pole 2.2 kW SynRM with 90 % nominal efficiency,
the Joule losses contributed by 7.8 %, core losses by 1.7 %, and mechanical power
losses by 0.5 % [JZL+19].

Pin

PCu =RsI
2
m

PFe =Rc

(
i2dc+i2qc

)

Pω =B1ω
2
m+B2ω

3
m

Pe = Teωe Pm

Figure 3.1: A general power diagram of SynRM

The internal mechanical losses Pω are given by machine physical design and ap-
plication, hence, their optimization is outside of the scope of this thesis. The power
efficiency optimization is, therefore, considered to lie in the minimization of total
electrical losses and achieving maximal electrical output power Pe at a given oper-
ating point. A SynRM power loss minimization problem is solved via optimization
of the current angle θreqI (see the FOC block diagram in Figure 2.1). The fact, that
there is always one power loss global minimum can be seen in Figure 3.3, which
shows the simulated Joule loss PCu and core loss PFe dependency on the current
angle θI and load torque Tl at nominal speed for the SynRM machine analysed in
Section 1.2. Joule losses PCu in SynRM are clearly dominant in size, so their mini-
mization will be a priority. Equation (3.2) shows that core losses PFe are dependent
on the second power of the electrical speed ωe and it is, therefore, beneficial to con-
sider them when operating at medium- to the high-speed range. Several well-known
criteria of SynRM power optimality, differing in considered loss model, will be intro-
duced in the following text. Note that only the motoring region will be considered
(i.e. the current angle will always be in range θI ∈

(
0, π

2

)
rad).
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Figure 3.2: Simulated Joule losses PCu (black) and core losses PFe (grey) dependency
on current angle θI and load Tl

The first well-known strategy is the Maximal Power Factor Control (MPFC).
One of the disadvantages of SynRM is its poor power factor cos θui, where θui is the
angle between stator current and voltage vectors [MDD+22]. The need to deliver
relatively high reactive power leads to an increase in the current dimensioning of
inverter, which is not desirable. To reach the optimal power factor, the

d cos θui

dθI

= 0 rad−1 (3.3)

condition shall be maintained. When neglecting stator resistance, core losses, and
saturation effect, the solution

θI = tan−1

√
Ld

Lq

(3.4)

can be obtained [RFC10]. It was reported that the saturation effect has only a
minor impact on the resulting MPFC-optimal angle θI and the stator resistance
voltage drop is minor when compared to the drop on reactances, hence, the solution
is relatively robust and often used in practical applications [FSM+22]. The MPFC,
however, also sacrifices the achieved torque, therefore, it cannot be seen as optimal
from electrical power efficiency point of view (i.e. it reduces acquisition cost rather
than operation cost). Thus, the MPFC rule will not be considered further in this
thesis.
The second criterion is the Max Torque Per Ampere (MTPA), which, as the

name suggests, lies in the minimization of the stator current for a given torque, thus
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effectively leading to minimization of Joule losses PCu. This can be alternatively
expressed from torque equation (1.19) as

dTe

dθI

=
3

4
PpI

2
m(Ld − Lq) cos 2θI = 0 Nm/rad, (3.5)

where the MTPA-optimal operating point θI corresponds to minimal current Im.
The simulated stator current Im dependency on current angle θI and load torque
Tl at nominal speed for the SynRM machine shown in Section 1.2 is in Figure 3.3.
The MTPA trajectory, which always crosses the stator current global minimum
for given load torque, is marked by a thick line. Equation (3.5) would suggest a
simple solution θI = π/4, however, thanks to the saturation effect, the optimal
trajectory is non-linear. The reason can be very well seen in the matching direct
and quadrature inductance dependency in Figure 3.4 and Figure 3.5. Because the
torque is proportional to Ld − Lq difference, it is beneficial to saturate the q-axis
even for small load torque and avoid d-axis saturation at higher load torques. Both
effects result in the increase of the optimal current angle θI > π/4 for low and high
loads, while at medium load, the current angle drops toward the theoretical π/4
value.
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Figure 3.3: Simulated stator current Im dependency on current angle θI
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Figure 3.4: Simulated direct-axis inductance Ld dependency on current angle θI
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Figure 3.5: Simulated quadrature-axis inductance Lq dependency on angle θI

The third criterion is called the Maximum Efficiency (ME) operation and it
minimizes both Joule losses PCu and core losses PFe. The simulated dependency of
input power Pin and efficiency η = Pe/Pin on current angle θI and load torque Tl

at nominal speed for the SynRM machine shown in Section 1.2 is in Figure 3.6 and
Figure 3.7. The ME trajectory was marked by a thick line. The saturation, which
was affecting MTPA trajectory, is still visible, however, because the core losses
are now being taken into account as well, the optimal current angle is generally
increased. This is tied to the fact that the core losses PFe are decreasing with the
higher current angle θI , as can be seen in Figure 3.2. The root cause is the decrease
of stator flux vector amplitude |~Ψdq|2 = Ψ2

d + Ψ2
q = L2

di
2
d + L2

qi
2
q, where Ld � Lq and

id drops with higher current angle θI .
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Figure 3.6: Simulated input power Pin dependency on current angle θI
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Figure 3.7: Simulated maximum efficiency curve

The simulated comparison of the MTPA and the ME criteria current angle θI

trajectories is shown in Figure 3.8. The ME trajectory is several degrees higher
than the MTPA trajectory, however, the shape of both trajectories is similar. This
confirms that the saturation is a dominating non-linear phenomenon when it comes
to the SynRM efficiency optimization.
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dependency

3.2. Inverter Power Losses

This section discusses a power loss model of a two-state three-phase voltage source
inverter as shown in Figure 2.2 and its impact on ME and MTPA criteria defined in
the previous section. The inverter power losses Pinv are not trivial to model due to a
number of non-linear dependencies and dynamic phenomenons taking an effect. In
general, the losses in inverter semiconductor elements can be described as a sum of
conductive power losses Pcon, switching power losses Psw, and blocking losses. The
latter one will be neglected in further discussion due to very low magnitude. To be
able to model the resulting losses and evaluate their magnitude, the Insulated Gate
Bipolar Transistors (IGBT) semiconductor technology represented by power module
FNB41560 will be assumed in the following text as a reference [Sem12,Sem14,RK20].
This IGBT technology was chosen for its popularity and the FNB41560 platform
for its use in experimental verification described in Chapter 6.3.
Conductive losses are occurring in both the transistor and the freewheeling diode

of the inverter in each of its N ∈ {a, b, c} phases. The conductive losses of the
IGBT transistor are caused by finite collector-emitter saturation voltage UCE(SAT )

of the fully open transistor. Similarly, the conducting freewheeling diode exhibits
voltage drop UDF . The exact values of both voltages vary with phase current iN
and the transistor temperature ϑ. Such characteristics are usually provided by the
semiconductor manufacturer. For example, these characteristics for FNB41560 are
shown in Figure 3.9. Conductive losses PconN for phase N during single PWM period
Ts = TPWM can be modelled as

PconN,k = DN,k|iN,k|UCE(SAT ),k + (1 − DN,k)|iN,k|UDF,k for iN,k > 0 A,
PconN,k = (1 − DN,k)|iN,k|UCE(SAT ),k + DN,k|iN,k|UDF,k for iN,k < 0 A,

(3.6)

where iN ∈ {ia, ib, ic} is a phase current and DN ∈ {Da, Db, Dc} is phase duty cycle
at discrete time k.
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Figure 3.9: Typical voltage drop dependency of FNB14560 transistors and diodes
on collector current or diode current iN and temperature ϑ [Sem12]

The switching losses occur as a result of energy loss during the transistor and
diode close-open transition and are a function of the operating frequency 1/TPWM ,
inverter supply voltage Udc, temperature of semiconductor ϑ, and inverter load type
(i.e. inductive, capacitive, or pure real). Usually, the switching losses are modelled
as transistor switch-on, switch-off, and freewheeling diode recovery energy losses.
Again, such characteristics are usually provided by the semiconductor manufacturer
and the example for FNB41560 is shown in Figure 3.9. Note that energies in Fig-
ure 3.10 were linearly scaled for DC-bus voltage of Udc = 400 V. The immediate
discrete inverter switching power-loss at the discrete time k for phase N can be
modelled as

PswN,k = Ksw

TPWM
[Eon,k+ Edoff,k+Eoff,k], (3.7)

where Eon,k is switch-on, Eoff,k is switch-off, and Edoff,k is diode reverse recovery
loss energy at the discrete time k. The Ksw is a number of switch-on and switch-off
events per PWM period TPWM . For commonly used PWM switching schemes, like
the centre-aligned PWM shown in Figure 2.4, the Ksw coefficient is equal to two.
There can, however, be schemes with a different number of events (e.g. discontinuous
PWM or schemes for single-shunt phase current measurement).
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Figure 3.10: Dependency of energy losses of FNB14560 IGBT inverter module on
collector and diode current iN and temperature ϑ for inductive load at Udc = 400 V
[Sem14]

To establish an idea of inverter losses magnitude in comparison to SynRM losses,
both the conductive power losses Pcon and the switching power losses Psw were sim-
ulated for the reference IGBT power module FNB14560. Note that the simulation
was done for 1/TPWM = 10 kHz, ϑ = 75 ◦C, and the ~Dabc duty cycles were obtained
using Standard Vector Modulation, as depicted in Figure 2.3. Based on the model
(3.6), the conductive power losses Pcon are dependent on amplitudes of the phase
current vector ~idq and the phase voltage vector ~udq, as well as the angle between
them arg(~udq)− arg(~idq). As the simulation results in Figure 3.11 show, the conduc-
tive losses are relatively insensitive to voltage vector ~udq and can be considered to be
linearly growing with amplitude of stator current Im = |~idq|. The result of modelling
of switching losses Psw is in Figure 3.12. Again, a clear linear dependency on the
amplitude of stator current Im is visible, although a higher power loss magnitude is
reached when compared to conductive losses.
While it is understood, that different semiconductors will yield different power

loss levels, the linear dependency on the stator current amplitude Im is generally
applicable. Minimization of semiconductor power losses is, therefore, aligned with
the MTPA criterion. If the ME criterion is changed to take the semiconductor
losses into account, it will increase an influence of Im amplitude minimization to
ME trajectory, moving the θI angle closer to the MTPA trajectory. This is also
confirmed by simulation, as shown in Figure 3.13. The shift of the optimal ME
trajectory is, however, only minor for the simulated SynRM and inverter, making
the inverter power losses less significant for θI selection.
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Figure 3.11: Simulated conductive losses Pcon of IGBT FNB14560 three-phase power
module in Watts
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Figure 3.12: Simulated switching losses Psw of FNB14560 IGBT three-phase power
module at 10 kHz
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3.3. Loss-model Controller Optimization Algorithms

Probably the most well-known Loss-model Controller (LMC) optimization algorithm
is the constant θI = π/4 angle setup, following the ideal MTPA rule. As it was
already discussed in Section 3, the same torque can be achieved with a different
amplitude of the stator current, which is also shown in Figure 3.3. When neglecting
the core losses and magnetic saturation, the MTPA criterion can be acquired from
equation (3.5), where the optimal current angle is θoptI = π/4. This algorithm is
very simple and common, however, omitting both the core losses and the saturation
results in a sub-optimal solution and the ME optimal angle is always going to be
higher than 45◦.
Another option is the ME optimal current angle calculation based on model (3.2).

For example, if the saturation is neglected and the core loss modelling resistance Rc

is considered to be constant, the optimal angle can be obtained as

θoptI = arctan

√
RsR2

c + (Rs + Rs)ω2
mL2

d

RsR2
c + (Rs + Rs)ω2

mL2
q

. (3.8)

Because the assumption Ld > Lq is always true, the solution is always θI > π/4
[KS96a].
There are various LMC algorithms (Kalman filtration, neuron networks, fuzzy

logic systems, and more), which provide sub-optimal current angle solutions by
omitting the saturation. This is a notable simplification because the analytical
description of saturation dependency is non-trivial. On the other hand, the sub-
optimal solution might diverge from the optimal value significantly, especially for
higher loads, where the saturation is more significant [QH13].
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A relatively simple analytical solution, which takes saturation into account, can
be acquired when only the direct axis saturation is considered using a simple model

Ld =

{
Ld0 for |id| < Ithrd ,

Ld0 − β(iq − Ithrd ) for |id| > Ithrd ,
(3.9)

where Ld0 is non-saturated inductance and β is the slope of decrease of the induc-
tance Ld once the d -axis stator current raises above saturation threshold Ithrd . The
sub-optimal stator current angle can then be acquired as

ioptd = −
Gdi

2
q

2(1 − Gdid)
+

√[
Gdi2q

2(1 − Gdid)

]2

+ i2q, (3.10)

where

Gd =
β

Ld0 − Lq + βid
(3.11)

is a help function [Mad03].
When trying to include saturation in both the direct and quadrature axis as well

as the core loss non-linearity, there is no simple analytical solution and numerical
approaches are often employed instead. The experimental results for some of the
published non-adaptive LMC algorithms show a relatively fast convergence. An
example of such algorithm involved repeated calls of a mathematical function, which
output converges to the optimal current value in the direct axis ioptd . Thanks to
inclusion of core losses into the model, the solution could be considered to be close
to the actual ME criterion [YAA09]. Other algorithm example utilized a finite-
element model of the machine to get accurate inductance maps and derived MTPA
online tracking law afterwards [WJPK22].
The inductance current-dependency maps (like, for example, in Figure 1.10 and

Figure 1.11) must be available for the saturation-modelling LMC algorithms to find
the optimal current angle. This usually requires offline measurement. It also nat-
urally complicates the use of these algorithms in adaptive systems (e.g. a need to
compensate for inductance changes caused by machine temperature deviations). To
obtain such inductance characteristics online, the parameter estimation algorithms
described in Section 2.4 might be required to be operated in multiple operation
points (e.g. to temporarily operate machine at sub-optimal current angles as well).
Such an adaptive LMC algorithm would be then gain some of the negative prop-
erties of search algorithms like a longer convergence time, the need to change the
optimized quantity, and usually a need to achieve a steady-state (see more details
in Section 3.4).
Last but not least is the current angle trajectory tracking via look-up table (LUT)

defining the non-linear θoptI = f(Im) relation (similar to the trajectory in Figure 3.8).
Although this method does not rely on the machine model and, thus, does not
entirely fit the LMC algorithm definition, its practical properties (i.e. convergence
time, and no injections are involved) are matching the LMC-type algorithms and
will be classified as such in this thesis. The current angle LUT is often employed in
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the industry, because of its low computational demands, a relatively simple offline
acquisition, and an instant convergence time [FZYJ20]. Use in adaptive systems,
however, requires special considerations as well, like, for example, having multiple
look-up tables for different temperature ranges or online table updates using search
algorithms.

3.4. Search Controller Optimization Algorithms

In general, these algorithms rely on the measurement of the SynRM input power
or stator current amplitude (depending on the selection of MTPA or ME tracking
strategy), where the optimized quantity (usually the current angle θI or the direct
axis current id) is being swept so the direction towards the optimal operation point
can be determined. The benefits of these algorithms are usually low computational
effort, the fact that the optimal operating point is found without previous machine
parameter knowledge (i.e. natural adaptivity), or a need for accurate rotor position
information. On the other hand, these algorithms might require a steady-state load,
a relatively long convergence time, and a prolonged time spent outside of the power-
optimal operation point, which reduces achieved efficiency [DTCB22,QH13].
The search controller algorithms can be divided into three categories:

1. Algorithms with a discrete search step, which gradually increase or decrease the
current angle by a discrete value. The size of the step and the ability to find
the optimal operating point with continual oscillations around it depends on
the selected algorithm. The most simple and also the least effective approach
involves an increase of the reference value by n steps and consequent decrease
by 2n steps. The input power measurement then provides the location of
the optimal operating point or at least direction towards it. The number of
necessary iterations, which must be taken to find the optimal point, can be
reduced, for example, using the Fibonacci search algorithms or fuzzy-logic-
based algorithms [DTCB22,QH13].

2. Continuous search or low-frequency injection algorithms, which change the
optimized variable as a smooth function, which, compared to discrete step
algorithms, reduces undesired torque ripple. The optimized current angle can
be swept, for example, using a ramp function. This will again provide the
location of the optimal operating point or at least a direction towards it. There
are also algorithms, which can acquire this information based on transition
after change of the required speed or load [DTCB22,QH13].

3. High-frequency injection algorithms, which rely on the superposition of the
high-frequency signal in a range of several hundred Hertz to the optimized
variable. The following post-processing using amplitude demodulation is very
similar to the HFI position estimation algorithm described in Section 2.2. The
optimal operating point can be found for both the ME and MTPA criteria by
either searching for dPin/dθI = 0 W/rad or dIm/dθI = 0 A/rad conditions
during steady-state [DTCB22,BPPS10,KSIM10].
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3.4.1. Proposed MTPA Search Algorithm

A variant of the MTPA search controller algorithm was published as part of the
research of the power-optimal control of SynRM for this thesis. Instead of using a
high-frequency injection, the DC current injection in the stator reference frame was
employed. The injected current vector then rotated with the synchronous speed from
perspective of dq reference frame and was injected into the stator current reference
~ireqdq . The amplitude demodulation then provided the error signal

εθI =
1

4
(Ld − Lq)

2 ω2
eI

2
DC cos 2θI ' KP

3

4
PpI

2
m(Ld − Lq) cos 2θI , (3.12)

where KP is a general proportional gain. This near-MTPA condition is then satisfied
when zero error value is maintained using PI controller.
The most notable advantage of this algorithm, when compared to the other exist-

ing low-frequency search controllers, is its relatively low computational complexity.
This is because it can utilize sine and cosine values of the rotor position already
calculated for Park’s transformation as necessary part FOC and does not require an
extra calculation of any other goniometric function.
The proposed algorithm was tested on the machine analysed in Section 1.2. The

MTPA tracking ability was measured and is shown in Figure 3.14. It did not find the
true MTPA position in the measured example, however, the resulting stator current
amplitude Im was always smaller than in the case of the standard θoptI = π/4 control.
The improved power efficiency is shown in more details in Figure 3.15, where current
angle difference ΔθI and stator current amplitude increase ΔIm are compared with
the true MTPA trajectory [Myn16].
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Figure 3.14: The MTPA trajectory tracking using proposed algorithm [Myn16]
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4. Evaluation of Current State of
SynRM Power-optimal Control

The SynRM machine, its model, properties, and an overview of the existing appli-
cable sensorless algorithms were discussed in the previous sections. In this chapter,
the still-existing challenges of the state-of-the-art approaches will be formulated and
the conclusions will be supported via simulation of the selected algorithms. The ul-
timate goal of this chapter is to define and justify specific goals of research for this
thesis.
Because the main focus of this thesis are the power-optimal sensorless control

algorithms, the status of power-optimization algorithms listed in Section 3 will be
discussed first. The SC algorithms shown in Section 3.4 are working very well in
applications where the impact of change of current angle on the optimized quantity
(i.e. stator current for MTPA or input power for ME criterion) can be evaluated
without interference. This is not a problem for systems where load changes very
slowly, often reaches prolonged states of steady-state, or follows defined cycles. An
example could be pumps or fans for systems of constant or slow-changing proper-
ties. The performance of these algorithms was also briefly investigated during an
early stage of research for this thesis when a very simple MTPA search algorithm
was proposed (see Section 3.4.1). Taking into account relatively low computational
demands and a natural adaptivity, which reduces performance requirements for the
position and speed tracking algorithms, the search-type algorithms were found to be
quite mature and likely to be preferred in any suitable power-optimal application.
Search algorithms were, thus, not investigated further in this thesis.
The LMC algorithms, which were surveyed in Section 3.3, can be used in a

wider range of applications as they converge quickly and without a need of detecting
feedback to signal injection to stator currents. The accuracy of found θI solution
varies for each algorithm type, but since the LUT algorithm is considered to be LMC
within this thesis as well, very high accuracy is generally achievable, hence a new
design of LMC algorithms was also not pursued in this thesis. Based on the principle
of the LMC algorithms, it is, however, presumable that such high performance has
two conditions:

• Accurate machine parameters must be provided to the LMC algorithms, oth-
erwise, the found solution θ̂I might not be optimal. To give an example,
Figure 4.1 shows sensitivity of current angle error θerrI = θoptI − θ̂I of LMC
algorithm (3.8) to stator inductance inaccuracy. A more detailed analysis
of sensitivity of LMC algorithms to machine parameter inaccuracy is in Sec-
tion 4.1. To compensate for machine parameter change due to temperature,
manufacturing deviations, wear and tear, or even a minor machine fault, an
online parameter estimation would be required to allow for LMC adaptivity.

• The machine control algorithm is operated with an accurate rotor position
estimate θ̂e. As shown in Figure 4.2, the position estimation error θerre offsets
the solution θ̂I found by the LMC algorithm so the true current angle θI is no
longer optimal. This increases performance requirements for algorithms like
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those described in Section 2.1, Section 2.2, and Section 2.3. Also, similarly to
LMC algorithms, the model-based position estimators are dependent on the
accuracy of the known machine parameters, which again raises the need for
online parameter estimation and adaptivity.

The two above-mentioned needs of accurate rotor position estimate and online
machine parameter estimation were chosen as the main focus of this thesis. To
give evidence and a rough idea of necessary performance, the following Section 4.1
provides simulation-based analysis of the sensitivity of ideal LMC to position and
parameter inaccuracy. Section 4.2 then provides some simulation results of the ex-
isting position and parameter estimators. This is to evaluate and understand rough
limitations of the currently-available solutions. All simulations within Section 4.1
and Section 4.2 were done for the 550 W SynRM machine described in Section 1.2,
using the model from Section 1.1 and the simulation environment Matlab R2018a.
Finally, the exact goals of the thesis are summarized in Section 4.3.
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Figure 4.1: Optimal current angle error dependency on the dq-axis inductance esti-
mation error for LMC algorithm (3.8)

Figure 4.2: Relation between the optimal current vector error θerrI and the position
estimate error θerre
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4.1. Analysis of LMC Sensitivity to Machine Pa-
rameter and Position Errors

The goal of this section is to evaluate the sensitivity of the LMC-based power op-
timization to error in assumed machine parameters and the position estimated by
the sensorless algorithm.
First, the sensitivity of machine power losses to position error θerrI = θerre was

investigated. This was done by taking the machine ME trajectory, like the one shown
in Figure 3.8, and considering it as θerrI = θerre = 0 degree axis. The Joule and iron
power-losses increase Δ(PCu + PFe) was then calculated using models described in
Section 3 and related to this axis. Note that the mechanical losses Pm were neglected
and the simulation was done only for nominal rotor speed Nm = 1500 rpm. The
results are in Figure 4.3. As expected, the power losses increase with position error,
but the important outcome is that rate is non-linear and almost exponential. The
exact required performance is, of course, a matter of the specific application, but
it is reasonably safe to assume that maximal steady-state |θerre | up to 7.5 degrees,
which results in roughly a one percent efficiency loss, would be considered acceptable
in most cases, hence, within this thesis as well.
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Figure 4.3: Simulated increase in SynRM power losses Δ(PCu + PFe) versus the
position estimate error θerre at nominal speed

The second analysis investigated the sensitivity of the optimal LMC algorithm
to error in the provided parameter of stator resistance R̂s and characteristics L̂d =
fd(id, iq) and L̂q = fq(id, iq). The optimal LMC is an algorithm, which is capable
to find a true ME trajectory. Because the stator inductance characteristics fd and
fq are non-linear and can be described by a non-trivial model (see model (1.22) in
Section 2) a numerical search was used during simulation. Inaccuracy of the induc-
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tance characteristics can be modelled in many different ways, but for the purpose
of the following analysis we will assume deformation

L̂d = kdfd(id/kd, iq/kq), (4.1)

L̂q = kqfq(id/kd, iq/kq), (4.2)

where kd and kq are dimensionless coefficients. The resulting inaccurate inductance
estimates L̂d and L̂q used during simulation are shown in Figure 4.4. The cases
where condition L̂q > L̂d occurred were not considered as valid deformations during
the simulation.
The results of simulation for reference SynRM running at nominal rotor speed

Nm = 1500 rpm and a nominal rotor load Tl = 3.5 Nm for 75 %, 100 %, and 125 %
stator resistance R̂s are in Figure 4.5. When comparing the current angle error
θerrI to reference point kd = 1, kq = 1, and R̂s = Rs, it can be seen that even for
relative errors of parameters around ±30 %, the resulting change is well below five
degrees. This, as Figure 4.3 shows, causes only a minimal power loss increase. Thus,
in general, this thesis will consider that the LMC algorithms produce acceptable
solutions even for parameter deviations up to ±30 %.
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Figure 4.4: Simulated inaccuracies of a) L̂d and b) L̂q characteristics provided to
optimal LMC algorithm during sensitivity analysis

Note that LMC algorithms described in Section 3.3 are usually only approximat-
ing the optimal solution. This is because of various simplifications, which achieve
lower computational complexity. Their sensitivity to parameter inaccuracy could,
therefore, differ from the previously simulated optimal LMC algorithm. Still, this
approach is seen as valid to create a general idea of necessary parameter accuracy.
For example, the inductance error sensitivity of the LMC algorithm (3.8) in Fig-
ure 4.1 is generally comparable to results obtained for the optimal LMC algorithm.
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4.2. Evaluation of Position Estimator Sensitivity
to Machine Parameter Error

The goal of this section is to investigate selected well-known rotor position estimation
algorithms from Section 2.1 and Section 2.3 to gain a general idea of their machine
parameter sensitivity. The position and speed extended EMF observer (2.12) and
the identical observer (2.6) were selected for implementation. The second part of this
section also presents experimental results of selected SynRM parameter estimators
from Section 2.4, to establish a general idea of performance in relation to the needs
of the position estimators.
The identical observer represents an interesting alternative to the extended EMF

observer due to its low computational demands and the possibility of inductance
adaptation. Its disadvantages seem to be its sensitivity to the setup of gains (2.8)
and (2.9) and also the fact that only one of the inductances can be adapted. If
the second, non-adapted, inductance is not accurate, it will affect the adapted in-
ductance as well. The situation where one of the inductances is adapted while the
second one is burdened with error is depicted in Figure 4.6a. It can be seen that the
increase of the pre-set inductance L̂q by ten percent will propagate to the estimated
inductance L̂d by a similar amount. This will, unfortunately, also impact the accu-
racy of the estimated position θerre , which is also shown in Figure 4.6b. The ±30 %
inductance parameter deviation would lead to position error θerre over ten degrees,
which indicates higher parameter sensitivity of position error than in the case of the
LMC algorithms, as established in Section 4.1.
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Figure 4.6: The impact of an error of inductance L̂q on a) inductance estimate L̂d

and b) position estimation error of the identical observer

The second simulated position estimation algorithm, the extended EMF ob-
server, is mainly dependent on the R̂s, L̂q, and L̂

′

d machine parameters, where the
L̂

′

d does not affect the steady-state performance [ITDO06]. The simulated parameter
sensitivity of the position error is shown in Figure 4.7. As expected from equation

67



(2.12), the sensitivity of the EEMF observer to R̂s is lower than to L̂q because
the stator winding voltage drop is usually much smaller than the EMF voltage. In
general, however, it can be seen that the sensitivity is lower than in the case of
the identical observers, but roughly twice higher than in the case of the ideal LMC
algorithm sensitivity estimated in Section 4.1.
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Figure 4.7: Sensitivity of the position estimate error θ̂erre of EEMF observer to error
of inductance L̂q and resistance R̂s

The adaptivity of the simulated EEMF observer could be achieved using the re-
cursive online least square estimation method (2.30) and (2.31) and for the identical
observer (2.40) using its self-adaptation capability. Both methods were run on a real
SynRM machine at the speed Nm = 750 rpm, θI = π/4, and various loads to gain
more realistic data. The RLS method was utilized to obtain an online estimate of
R̂s, L̂q and L̂

′

d inductances. The forgetting coefficient of the RLS method was chosen
as λ = 0.99 and the 6-bit PRBS excitation signal with 10 V amplitude and 3 ms
sampling period was superimposed to the voltage ~udq. The experimental results are
shown in Figure 4.8 to Figure 4.10. In the case of the identical observer, only one
inductance was being adapted, while the inductance in the perpendicular axis was
obtained from the look-up table, achieving only partial adaptivity.
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Figure 4.9: Estimated inductance L̂q in a) absolute and b) relative values

Direct and quadrature inductance estimation results in Figure 4.8 and Figure 4.9
indicate a good performance of the full order observer, however, it takes the benefit
of acquiring the non-estimated inductance from the LUT table. A large δLd

error
provided by RLS in Figure 4.8 does not cause a steady-state deterioration of EEMF
observer performance, hence it can be neglected. The L̂q in Figure 4.8 and especially
the R̂s estimate in Figure 4.10, however, reach errors in tens of percent. A similar
performance can be seen in the original EEMF and RLS publication [ITDO06].
It is understood, that accuracy of parameter estimators is affected by many

phenomenons and higher accuracy can be achieved. The above-stated results show,
however, that a high parameter estimation accuracy, which would safely ensure
a small position estimation error θ̂erre , is not a trivial matter and requires special
consideration. This is true even for relatively complex algorithms like the RLS,
which also requires a signal injection.

70



6

8

10

12

14

16

18

0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
id [A]

a)

R̂s

[Ω]

RLS

Full observer

10

20

30

40

50

60

70

0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
id [A]

δRs

[%]

b)

Figure 4.10: Estimated resistance R̂s in a) absolute and b) relative values

4.3. Goals of the Thesis

Based on the discussion in previous sections, it was determined that a rotor position
and motor parameter estimator, which would support the operation of the LMC
power-optimization algorithm should be pursued within this thesis. The desired
algorithm placed within the FOC block diagram is shown in Figure 4.11. As a
summary, the following traits should be achieved:

1. The steady-state position estimate error θerre should be below 7.5 degrees, but
as small as possible in general. This should be achieved in all load and speed
regions. It can be expected, that a robust adaptation to the change of the
inductances in both axes will be necessary.

2. The machine parameter estimates should be provided to other algorithms
within the FOC structure. This regards especially the stator inductances
because their acquisition is not a trivial matter. Accuracy within the ±30 %
range is acceptable, provided that position error θerre is not affected.

3. The convergence to the optimal θoptI operating point should not require signal
injection, which would limit the applicability of the algorithm. This is neces-
sary because the injection is the main limitation of SC algorithms, which are
otherwise preferable.
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4. The algorithm should require no or inexpensive additional hardware.

Figure 4.11: Block diagram of desired sensorless estimation algorithm within FOC
structure
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5. Proposed Sensorless Adaptive
Estimation Method

As the discussion in Chapter 4 showed, an accurate rotor position and machine
parameter estimation with online adaptation to their change are key features, which
could benefit the area of power-optimal sensorless SynRM control. This chapter
presents algorithms, which were developed during research for this thesis and should
represent an alternative to existing solutions.
As Chapter 2 showed, there are essentially two fundamental physical principles,

which could be used to estimate SynRM rotor position; the EEMF model-based
estimation and rotor saliency tracking using signal injection. As Section 2.3 showed,
there are also hybrid algorithms, which use both principles and achieve operation in
a full speed range. The saliency-based algorithms with a fundamental pulse width
modulation (PWM) excitation and stator current derivative measurement, like the
INFORM method and its modifications in Section 2.2, were found to be promising
for further research. This is mainly because it was shown by other authors that it is
possible to simultaneously estimate stator inductances, position, and speed [RSW18,
RSW19]. The research of this thesis, therefore, focused on the further development
of this idea, which yielded several novel improvements, which are described in detail
further in this chapter.
The FOC block diagram integrating the proposed algorithms is in Figure 5.1,

where the newly added elements are highlighted in grey colour. The remaining
portion of the block diagram features the FOC method as described in Section 2,
where the motor setpoint is given by the required rotor speed ωreqe and the required
current vector angle θreqI . The efficiency optimization is assumed to be done using
unspecified LMC-type algorithm. The newly proposed algorithms are:

• The current derivative measurement method (see MC IDC and reluctance mea-
surement blocks in Figure 5.1). Its main benefit is that it requires only a
simple hardware, without a need for costly sensors, like is often proposed (e.g.
current measurement transformer) [NSS20]. A detailed description of the pro-
posed method itself and a way of obtaining machine reluctances from current
derivative measurement is in Section 5.1.

• The alignment-swap PWM switching scheme. This algorithm is described in
Section 5.2. It was proposed to achieve accurate current derivative measure-
ment on machines with large inductances and to reduce switching losses. While
not being essential, it allows accurate measurements up to the upper limit of
the PWM duty cycle. The impact of this method on current ripple and overall
semiconductor power losses will be discussed as well.

• The extended Kalman filter utilizing measurement redundancy. Another im-
portant novel idea was to merge measurement of the position-dependent reluc-
tances with machine model (1.18) and stator phase current ~iαβ measurement
as a redundant source of information. The extended Kalman filter theory,
which is briefly described in Section 5.3, was used for this purpose as shown
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in Section 5.4. Such information redundancy can be exploited in many ways,
for example, to estimate additional parameters, improve estimate accuracy,
serve as diagnostics within fail-safe systems, or as redundant channel in fail-
operational systems. Two variants of the extended Kalman-based algorithm
will be presented and analyzed via simulation. Note that not all outputs of
EKF block in Figure 5.1 are available for all the variants.

The core of the proposed method was already published [MVB21]. However, this
thesis presents a number of modifications, like the inclusion of the stator resistance
voltage drop in the reluctance calculation and presenting new variants of the EKF
algorithm, bringing lower computational effort or stator resistance R̂s estimation.

Figure 5.1: Block diagram of vector control using proposed algorithms (newly pro-
posed elements in grey) [MVB21]

5.1. Method of Obtaining Rotor Position from Cur-
rent Derivative Measurements

As it was shortly discussed in Section 2.2, the SynRM inductances La, Lb, and Lc in
motor phases N ∈ {a, b, c} are affected by the rotor position θe according to equation
(2.24). The standard two-state three-phase VSI, as depicted in Figure 2.2, applies
six non-zero Space Vector Modulation voltage vectors vM = {v1, v2, v3, v4, v5, v6}
for the time durations T vM = {Tv1, Tv2, Tv3, Tv4, Tv5, Tv6}. The resulting circuits for
each non-zero voltage vector are shown in Figure 5.2, including the equivalent RL
circuits.
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Figure 5.2: Equivalent machine circuits for voltage vectors generated by standard
three-phase two-state VSI

For completeness, the equivalent phase resistance Rph is given by relation

Rph = Ra +
RbRc

Rb + Rc

=
3

2
Rs, (5.1)

but it does not contain any useful information about rotor position. On the other
hand, the equivalent phase inductances LphN = {Lpha, Lphb, Lphc} are affected by
rotor position and can be expressed using the direct and quadrature inductances as

Lpha = La +
LbLc

Lb + Lc

=
3LdLq

Ld + Lq − (Ld − Lq) cos (2θe)
, (5.2)

Lphb = Lb +
LaLc

La + Lc

=
3LdLq

Ld + Lq − (Ld − Lq) cos
[
2(θe − 2π

3
)
] , (5.3)

Lphc = Lc +
LaLb

La + Lb

=
3LdLq

Ld + Lq − (Ld − Lq) cos
[
2(θe + 2π

3
)
] . (5.4)

The example of equivalent phase inductances LphN during one electrical revolution
is shown in Figure 5.3a. While the LphN contains rotor position information, it is
not a harmonic function and its model involves a division, hence, it will be more
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beneficial for later use to work with its inverse. The normalized reluctance R
′

phN

quantity is, therefore, introduced as

R
′

pha =
3

2

1

Lpha

=
Ld + Lq − (Ld − Lq) cos (2θe)

2LdLq

, (5.5)

R
′

phb =
3

2

1

Lphb

=
Ld + Lq − (Ld − Lq) cos

[
2(θe − 2π

3
)
]

2LdLq

, (5.6)

R
′

phc =
3

2

1

Lphc

=
Ld + Lq − (Ld − Lq) cos

[
2(θe + 2π

3
)
]

2LdLq

. (5.7)

Note that the term normalized reluctance is used for two reasons. The first is the
fact that the inverse of magnetic reluctance R = 1/P = M2/L is called permeance
P and is proportional to inductance L via the number of coil turns 1/M 2. However,
since the number of turns M is dimensionless number, the R

′

phN can be considered
to have a character of reluctance. The second reason for the term normalized is
because of the 3

2
coefficient in equations (5.2), (5.3), and (5.4). It was added to scale

R
′

phN as shown in Figure 5.3b, so

min
(
R

′

phN

)
= R

′

d =
1

Ld

, (5.8)

max
(
R

′

phN

)
= R

′

q =
1

Lq

, (5.9)

where R
′

d and R
′

q are normalized reluctances in direct and quadrature axis. This
form is useful for its easy integration into SynRM mathematical model, as will be
shown later. The normalized reluctances R

′

phN can be also expressed using direct
and quadrature axis reluctances as

R
′

pha = R
′

d cos2(θe) + R
′

q sin2(θe), (5.10)

R
′

phb = R
′

d cos2(θe +
2π

3
) + R

′

q sin2(θe −
2π

3
), (5.11)

R
′

phc = R
′

d cos2(θe −
2π

3
) + R

′

q sin2(θe +
2π

3
). (5.12)

Note that for the remainder of this thesis, it is understood that the term reluctance
relates to normalized reluctance as defined above, whether the word normalized is
used or not.
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Figure 5.3: Example of rotor position θe dependency of a) inductances LphN and b)
reluctances R

′

phN for Ld = 0.65 H and Lq = 0.2 H

Looking back at Figure 5.2, the phase reluctances R
′

phN can be obtained from
the DC-bus current change Δidc caused by one of the non-zero SVM voltage vectors
vM applied by the inverter for the time duration T vM as

R
′

pha
∼=

(
Δidc

Tv1

)
2

3

1

Udc − Rphia
when v1 is applied, (5.13)

R
′

pha
∼=

(
Δidc

Tv4

)
2

3

1

Udc + Rphia
when v4 is applied, (5.14)

R
′

phb
∼=

(
Δidc

Tv3

)
2

3

1

Udc − Rphib
when v3 is applied, (5.15)

R
′

phb
∼=

(
Δidc

Tv6

)
2

3

1

Udc + Rphib
when v6 is applied, (5.16)

R
′

phc
∼=

(
Δidc

Tv5

)
2

3

1

Udc − Rphic
when v5 is applied, (5.17)

R
′

phc
∼=

(
Δidc

Tv2

)
2

3

1

Udc + Rphic
when v2 is applied. (5.18)

Note that relations (5.13) to (5.18) were improved by considering the resistance
voltage drop when compared to the original publication [MVB21]. There is still a
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simplification by the assumption that the voltage drop on Rph resistance caused by
currents ~iabc is constant throughout the TPWM period. This is, however, considered
to be acceptable because the stator resistance voltage drop change will usually be
very small when compared to the DC-bus voltage Udc.
The measurement of current change Δidc is, however, not a simple task. The

SynRM have usually relatively large stator inductances when compared to different
motor topologies of similar power rating. This is a result of a design, which favours
large Ld −Lq difference to maximize output torque. At the same time, the standard
PWM, as shown in Figure 2.4, generates only short periods T vM , during which the
Δidc can be measured. To put things into perspective, for a measurement window
corresponding to one of T vM periods with length TPWM/2 = 50 μs, inverter DC-
bus voltage Udc = 400 V, and the SynRM with max(LphN ) = 3

2
Ld = 0.975 H, the

minimal current change for measurement would be

min(Δidc) w
TPWMUdc

2 max(LphN )
=

0.0001 ∙ 400

2 ∙ 0.975
= 20.5 mA. (5.19)

The most commonly used method of stator current measurement is current recon-
struction from voltage drop measured on bottom shunt resistors Rsh using oper-
ational amplifiers. This is depicted via the MC IABC block in Figure 5.1. These
circuits are set-up for the measurement of complete stator current range ±max(~iabc).
If we consider an example of a suitable inverter for SynRM described in Section 1.2
with configured current scale max(~iabc) = 3 A, then we can see that min(Δidc) in
(5.19) represents only 0.34 % of measurement scale, which is less than a single LSB of
8-bit ADC measurement. Using MC IABC with such configuration for Δidc measure-
ment would very likely lead to signal with a high noise content. Existing algorithms,
which rely on current derivative measurement, usually employ a specialized current
sensor (e.g. current transformer) or compensate for a relatively low ADC measure-
ment resolution, using over-sampling with computation-heavy post-processing (e.g.
current slope averaging, Kalman filtering,. . .) [RSW18,NSS20].
The current derivative measurement method, proposed during research for this

thesis, is based on the separate Measurement Circuit of DC-bus current idc (MC
IDC). This circuit amplifies the voltage drop on the common DC-bus shunt resis-
tor Rshc, as shown in Figure 5.1. Its basic principle of operation is illustrated in
Figure 5.4. Compared to MC IABC, it is configured to have a much higher gain
and, as a result, a smaller measurement scale max(idc) � max(~iabc). This allows to
achieve a much better resolution of the idc measurement. Such a high gain would
normally lead to a quick saturation of the MC IDC output even for a small stator
current amplitudes ~iabc. To avoid this, the MC IDC measurement window is being
actively offset by a DAC-generated signal to be located at the predicted location of
idc. The correct offset value is obtained from the ~iabc measurements from MC IABC
and knowledge of upcoming voltage vector vM , which determines the idc value as
shown in Figure 5.2.
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Figure 5.4: Illustration of operation of MC IDC circuit

An example of the schematic diagram of the MC IDC is shown in Figure 5.5. Its
output uidc leads to the ADC periphery of MCU and contains amplified information
about Δidc. The uDD is the operational amplifier supply voltage, which ideally limits
the MC IDC output to 0 V < uidc < uDD range. The uoff is a DAC-generated
signal, which, offsets the measured current range to avoid output saturation and
fit the predicted idc location. The circuit functions as a differential amplifier with
an analog gain max(idc) configured as necessary to achieve a good Δidc resolution
while being able to measure maximal expected Δidc. The output of MC IDC at
steady-state can be described as

uidc = KRRpRshcidc + KRR
′

1uoff −
R2

Rn

uDD, (5.20)

where

KR =
R

′

1R2 + R
′

1Rn + R2Rn

(R
′

1 + Rp)R
′

1Rn

(5.21)

and R
′

1 = R1+Rf . There are multiple design considerations for the MC IDC circuit.
The feedback from uDD supply voltage via resistor Rn offsets the uidc output so for
uoff = 0 V, even the lowest expected idc = −max(~iabc) is measurable. On the other
hand, the 0 V < uoff < uDD should allow for idc = max(~iabc) measurement. As
discussed earlier, the uoff must also reflect the phase currents ~iabc obtained using
the MC IABC. The compensation voltage uoff can then be calculated from (5.20)
by trying to maintain condition uidc ' 1

2
uDD. This leads to the linear function of

phase currents

uoff =
2R2 + Rn

2RnR
′

1KR

uDD −
RpRshc

R
′

1

iN , (5.22)

where iN is the last acquired value of the phase current, which is predicted to flow
via Rshc during idc measurement (for example iN = ia = idc during Tv1 and Tv4).
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Figure 5.5: Measurement circuit of idc current MC IDC [MVB21]

Once the MC IDC is properly configured, the uidc can be sampled by ADC to
obtain

Δidc =
max(idc)

uDDΔuidc

(5.23)

and the uoff can be generated by DAC. The exact timing of sampling of both
signals is subject to the used PWM switching scheme and availability of active
voltage vector period T vM . While this measurement method is generally usable
together with any switching scheme, like the centre-aligned PWM in Figure 2.4, a
specific PWM scheme was proposed during research for this thesis and is described
in Section 5.2. More discussion will be had there.
Depending on the desired accuracy and available computation power, the final

Δuidc can be obtained from acquired samples using various post-processing methods.
The most simple one is a simple calculation of the difference between two ADC
samples as

Δuidc = uidc(t + Tsidc) − uidc(t) = uidc,k+1 − uidc,k, (5.24)

where Tsidc is a sampling time between the two samples and k is a discrete sam-
ple number. Nowadays MCUs often offer powerful signal processing abilities, like
a high ADC sampling rate with DMA data transfer capability. More accurate
and noise-suppressing methods can be then employed, utilizing over-sampling, like
the well-known offline least square method. For example, the signal uidc can be
sampled equidistantly Nsmpl-times per PWM cycle TPWM with sampling period
Tsidc = TPWM/Nsmpl. The acquired data can be stored using the DMA to data
buffer. A valid sample set of size NvM ≤ Nsmpl within the buffer corresponding to
one of active voltage vector periods T vM can then determined using knowledge of
the duty cycles ~Dabc. The measured change Δuidc for a single voltage vector vM

then can be calculated as

Δuidc =
NvM

[∑NvM

j=1 uidc,jj
]
−
[∑NvM

j=1 j
] [∑NvM

j=1 uidc,j

]

Tsidc

{

NvM

[∑NvM

j=1 j2
]
−
[∑NvM

j=1 j
]2} . (5.25)

Note that in reality, the selection of valid sample set NvM has to be done carefully,
as there could be dynamical events occurring near to the PWM switching events.
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Such events are, however, dependent on the exact SynRM and inverter used so their
generalization was not considered within this thesis.
An example of the resulting R

′

phN measurement versus the rotor position θe

obtained on a real system is shown in Figure 5.6. It can be seen that the obtained
signals correspond to the theoretical model in Figure 5.3 and can be used to extract
rotor position θe as well as machine reluctances R

′

d and R
′

q.
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Figure 5.6: Example of a) R
′

phN measurement and b) matching duty cycle ~Dabc

measured on a reference SynRM machine (see Section 1.2)

The fact that the R̂
′

pha, R̂
′

phb, and R̂
′

phc quantities are obtained as differential
measurements from the same sensor limits the likelihood of occurrence of certain
types of non-gaussian measurement errors. For example, the bias error uidc + Δuidc

will not affect the final acquired value Δuidc simply because of the differential nature
of (5.25), or

Δuidc = [uidc(t + Tsidc) + Δuidc] − [uidc(t) + Δuidc] = uidc,k+1 − uidc,k. (5.26)

On the other hand, it can be expected that there will be no immunity toward the
measurement gain error δuidcuidc, which can be expressed for (5.25) as

Δuidc = δuidcuidc(t + Tsidc) − δuidcuidc(t) = δuidc[uidc,k+1 − uidc,k]. (5.27)
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The use of the same sensor input assures that all the phase reluctance measurements
will be affected the same way. Such gain error will then directly affect the R

′

d andR
′

q

information extracted from the δuidcuidc measurement. The root cause of bias and
gain errors might, for example, be manufacturing variances or thermal dependencies
of parts forming the MC IDC. Depending on the application, it might, therefore, be
necessary to address the accuracy and stability of MC IDC measurement gain.
It is possible that non-linear periodic deformations R

′

phN + ΔR(θe + θphN ) might
occur, where θphN is stator phase offset for actual R

′

phN measurement (either 0 rad,
2π
3

rad, or −2π
3

rad for phase reluctances R
′

pha, R
′

phb, and R
′

phc). This can be a result
of dynamic events, which corrupt the uidc sample right after the PWM switching
event. There is no general model for these short periodic deformations and care
must be taken by the system designer to avoid these errors, for example, by ignor-
ing affected uidc samples. If such errors still occur, then all the phase reluctance
measurements will remain periodic, with 120◦ shifts between phases. The extracted
position information then might show an error θerre , depending on the nature of
deformation ΔR(θe + θphN ).

5.2. Alignment-Swap PWM Switching Scheme

As discussed in Section 2, there are many PWM switching schemes with various
properties. The current derivative Δidc measurement method presented in the pre-
vious section can be generally used with any such scheme, which generates non-zero
voltage vectors vM . The Δidc measurement method, however, benefits from longer
uninterrupted non-zero voltage vector periods T vM , which allow for the acquisition
of higher number or more distant Δidc samples. When looking at the example of
commonly used centre-aligned PWM in Figure 2.4, the T vM periods are divided into
halves and, what is more important, zero vectors v0 and v7 can take a significant
portion of PWM period TPWM . At duty cycles near to the 50 % minimum or any-
time the switching edges are close to each other, there are short or no active vectors,
making the Δidc measurement difficult or impossible. This led to the proposal of
the alignment-swap PWM (ASPWM) switching scheme.
The goal of the proposed switching scheme is to maximize the duration of the

non-zero voltage vectors T vM so the Δidc measurement can be taken even for the
previously described critical conditions. The principle of the switching scheme is
shown in Figure 5.7. The phase PWM signal edge alignment is swapped in every
third PWM cycle to the opposite edge consequently in each phase. The non-zero
voltage vectors vM are, thus, going to align to either the beginning or the end of
the PWM period once per three PWM cycles. Calculation of phase duty cycles ~Dabc

remains unchanged compared to the standard SVM method described in Section 2
and the final generated fundamental voltage vector ~uαβ will be the same as well. This
maximizes the length of T vM periods, which serve as Δidc measurement windows,
especially for low and medium duty cycles. In case that duty cycle max( ~Dabc) →
100 % and min( ~Dabc) → 0 %, the voltage vectors near the PWM period edges
might become too short for effective Δidc measurement. In such a case, the Δidc
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information can be extracted from active vectors vM formed in the centre of the
PWM period.

Figure 5.7: Principle of the proposed alignment-swap PWM switching scheme
[MVB21]

An example of interaction between the ASPWM scheme and the proposed Δidc

measurement method is shown in Figure 5.8. Signal uoff is updated by the DAC at
the beginning of the PWM cycle and when the first switching event occurs so the
uidc signal does not saturate during the measurement time windows T vM created
at the PWM cycle edges. To extract the Δidc even from centre of the PWM cycle,
when one of the duty cycles ~Dabc is too low or too high, a different uoff signal
update sequence could be done to allow measurement during vM vectors forming at
the centre of PWM period.
Besides the Δidc measurement, the ASPWM switching scheme has to accom-

modate ~iabc measurement as well by providing a suitable location for phase current
sampling by MC IABC circuit. The most commonly used method of phase current
reconstruction uses the measurement of voltage drops on phase shunt resistors Rsh,
as illustrated in Figure 5.1. To reconstruct ~iabc, at least two bottom transistors
must be conducting so the phase currents are flowing through the shunt resistors
Rsh. The third phase current then can be calculated according to the first Kirch-
hoff’s law ia + ib + ic = 0 A. Such a suitable sampling locations were highlighted
in Figure 5.8, near the end of each PWM cycle, where dynamic event from the last
switching event settled.
When compared to CAPWM, the proposed ASPWM switching method basically

replaces portions of the zero vectors v0 and v7 by a pair of opposite active vectors
v1 versus v4, v3 versus v6, or v2 versus v5 in each PWM period. This causes
an additional ripple of phase currents ~iabc. It improves conditions for the Δidc

measurement, but also causes increased audible noise and, what could be more
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Figure 5.8: Principle of the proposed idc current slope measurement with ASPWM
scheme [MVB21]

important, additional conductive power losses in both the semiconductor and the
machine stator.
To evaluate the impact of the additional ripple current component, its RMS and

peak-to-peak values were calculated using an analytical approach for both the pro-
posed and the centre-aligned switching scheme [DW12]. The simulation was run for
Udc = 400 V and the machine stator inductance was chosen LphN = 0.3 H, which
should correspond to the worst-case scenario when operating the reference SynRM
described in Section 1.2. Note that the stator resistance was neglected during the
simulation. Also note that for the alignment-swap switching scheme, the resulting
RMS value was obtained as an average and the peak-to-peak value as a maximum
current ripple amplitude from all phases N ∈ {a, b, c}. Results for all stator volt-
age amplitudes |~uαβ|/ max(|~uαβ|) and angles arg(~uαβ) are shown in Figure 5.9 to
Figure 5.12. As expected, both the RMS and peak-to-peak values of the ripple
current component are increased for the proposed switching scheme. The audible
noise and Total Harmonic Distortion (THD) will be worse when using ASPWM.
The main focus of this thesis are, however, the resulting power losses. The ripple
RMS value peaks at 10 mA for centre-aligned PWM and 15 mA for ASPWM. It
can be seen that the ASPWM generates higher ripples for low stator voltage ampli-
tudes |~uαβ|, while at the higher amplitudes its performance becomes comparable to
centre-aligned PWM. Efficiency at higher speeds and loads will not be, therefore,
affected by the ASPWM method as much. When looking at the maximal RMS
values of the phase current ripple, the resulting power losses will likely form only a
fraction of a Watt, which is significantly less than other power losses, as described
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in Section 3. This is, however, mainly because of the relatively high inductances of
SynRM machines. The ASPWM method might not be suitable for machines with
smaller inductances, because the power losses caused by the resulting increase in
phase current ripple would no longer be negligible. It is then a question, however,
whether the ASPWM would even be necessary because greater Δidc changes would
be measurable more easily.
When it comes to power efficiency, the ASPWM has actually an advantage over

classic centre-aligned PWM.When comparing examples in Figure 2.4 and Figure 5.7,
it can be seen that ASPWM generates only eight edges on the AT , AB, BT , BB,
CT , and CB signals per PWM period, while the centre-aligned method produces
twelve. This will effectively reduce the semiconductor switching losses by a third.
For example, as shown in Figure 3.2 this represents several Watts for the reference
inverter and fully offsets the power losses caused by the current ripple.

Figure 5.9: Simulated RMS value of phase current ripple component in milliamperes
for centre-aligned PWM
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Figure 5.10: Simulated peak-to-peak value of phase current ripple component in
milliamperes for centre-aligned PWM

Figure 5.11: Simulated RMS value of phase current ripple component in mil-
liamperes for alignment-swap PWM
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Figure 5.12: Simulated peak-to-peak value of phase current ripple component in
milliamperes for alignment-swap PWM

5.3. Kalman Filter

Various methods were proposed for estimation of position, speed, and parameter
motor drives, however, the Kalman Filter and its variations are regarded as a high
performing and relevant algorithms. This section will first present the theory of
the original Kalman Filter (KF) algorithm. It was first proposed by R. E. Kalman
in 1960 and it was modified or adapted for many different applications since then.
The KF is a recursive algorithm, which minimizes the square of the estimate errors
between actual system states ~x and the estimates ~̂x. This is done by the alterna-
tion of the prediction and correction steps, sometimes also called the time and the
measurement updates. The system states are updated based on the known model
during the prediction step. The correction step then consists of updating the state
estimates based on the measurement [WB06]. To find the true optimal solution, the
noise has to have a normal distribution. The probability density for systems with n
states can be described as

f(~x) =
1

(2π)
n
2 |P|

1
2

e−
1
2
(~x−~̂x)P−1(~x−~̂x)T , (5.28)

where P is the covariance matrix.
One well-known modification, the Extended Kalman Filter (EKF), will then be

described in the second part of this section. The EKF is generally suitable for non-
linear systems under influence of Gaussian noise. As will be shown in Section 5.4,
this and the ability to near-optimally merge the position and parameter information
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from multiple measurements made it suitable for the proposed algorithm. The dis-
advantages of EKF are, however, relatively high computational demands. Also, the
acquisition and description of stochastic properties of measurements and estimated
states for both KF and EKF is not always a simple task [LK19,BG10].

5.3.1. Kalman Filter Theory

The KF is considered to be an optimal state estimator for linear systems under in-
fluence of white noise. Since the digital implementation of the estimator is expected,
we first assume the discrete dynamic system state-space description

~xk+1 = Ak~xk + Bk~uk + ~wk,
~yk = Ck~xk + ~vk,

(5.29)

where A, B, and C are matrices describing the system dynamic behaviour and rela-
tion with system inputs and outputs, ~x is the state vector, ~u is the vector of control
variables, ~y is the output vector, and ~w and ~v are the process and measurement noise
vectors. The noise vectors are assumed to be white noises with normal distribution
~w ∼ N(0,Q) and ~v ∼ N(0,R), which means zero first moment and the second
moment described by covariance matrices Q and R. There is also a condition of ~w
and ~v not being correlated in time and between each other, or

E{~wk, ~wl} = E{~vk, ~vl} = 0 for k 6= l,
E{~wk, ~wk} = Qk,
E{~vk, ~vk} = Rk,
E{~wk, ~vl} = 0,

(5.30)

where E{} is expected value operator. The KF searches for the optimal solution by
minimizing the quadratic error of the estimate P = E{(~x− ~̂x)(~x− ~̂x)T}. The matrix
P is called the state error covariance matrix. The values on the main diagonal
correspond to state variances and to covariances outside the main diagonal.
As was already mentioned in the previous section, the KF calculation consists of

prediction and correction steps. The entire sequence is shown in Figure 5.13. The
prediction begins with the calculation of the new state estimate

~xk|k−1 = A~xk−1|k−1 + B~uk, (5.31)

where k|k−1 subscript denotes estimate obtained prior to the measurement update
and the k|k subscript marks the estimate obtained after the measurement, some-
times also called apriori and aposteriori estimates. Because the estimate ~xk|k−1 was
obtained only from the system model, the covariance matrix P should be updated
to reflect reduced confidence in the new state estimate. Hence, the apriori update
of the covariance matrix is done as

Pk|k−1 = APk−1|k−1A
T + Q. (5.32)

The second step, correction, has a goal to increase confidence in the state estimates
using measurements and, as a result, lower the covariance matrix P. This is done
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by adding the difference between actual measurements ~y and the estimated system
output C~x multiplied by the Kalman gain K to the apriori state estimate. The
Kalman gain is obtained as

Kk = Pk|k−1C
T
(
CPk|k−1C

T + R
)−1

= Pk|kC
TR−1. (5.33)

The higher the uncertainty of the estimate given by covariance matrix P, in relation
to the covariance of the measurement R, the higher the K and resulting correction
and vice versa. The aposteriori state estimate can then be calculated as

~xk|k = ~xk|k−1 + Kk(~yk − C~xk|k−1). (5.34)

Finally, the increased confidence in the corrected estimate ~xk|k should be reflected
by the covariance matrix P aposteriori update. This is done as

Pk|k = (I − KkC)Pk|k−1 (I − KkC)T + KkRKTk =

=
(
P−1

k|k−1 + CTR−1C
)−1

= (I − KkC)Pk|k−1,
(5.35)

where usually only the last expression is used because it assures that the matrix P
will remain positive definite.
To start the recursive Kalman filter algorithm, the initial state estimate ~x0 and

state covariance matrix P0 has to be defined. Based on confidence in the accuracy
of ~x0, the P0 diagonals can be set to higher or lower numbers.

Initial conditions

~̂x0,P0

Prediction

1. Estimates states in the next step
~xk|k−1 = A~xk−1|k−1 + B~uk

2. Project the error covariance ahead
Pk|k−1 = APk−1|k−1A

T + Q

Correction

1. Calculate the Kalman gain
Kk = Pk|kC

TR−1

2. Update estimate with measurement ~yk

~xk|k = ~xk|k−1 + Kk(~yk − C~xk|k−1)

3. Update the error covariance
Pk|k = (I − KkC)Pk|k−1

Figure 5.13: Estimation sequence of Kalman filter [WB06]

89



5.3.2. Extended Kalman Filter Theory

Many real systems, including the SynRM, are non-linear and the standard KF cannot
be applied. The EKF was developed for this purpose as a direct extension by
applying the KF to the system linearized near the operation point using Taylor
expansion [AR15,WB06]. First, we assume a discrete non-linear system state-space
description

~xk+1 = f (~xk, ~uk, ~wk) ,
~yk = h (~xk, ~vk) ,

(5.36)

where f and h are non-linear time-variant system and output functions and the
remaining symbols have the same meaning as in the linear state-space model (5.29).
The last state estimate ~̂x will be used as an operation point, around which the system
is linearized. Linearization itself is done by taking the first element of Taylor’s
expansion, which yields Jacobian matrices

Fk =

[
∂f

∂~x

]

~x=~̂xk−1|k−1,~u=~uk, ~w=~0

=








∂f1

∂x1

∂f1

∂x2

∂f1

∂x3
∙ ∙ ∙ ∂f1

∂xn
∂f2

∂x1

∂f2

∂x2

∂f2

∂x3
∙ ∙ ∙ ∂f2

∂xn
...

...
...
. . .

...
∂fn

∂x1

∂fn

∂x2

∂fn

∂x3
∙ ∙ ∙ ∂fn

∂xn








, (5.37)

Hk =

[
∂h

∂~x

]

~x=~̂xk|k−1,~v=~0

, (5.38)

Wk =

[
∂f

∂ ~w

]

~x=~̂xk|k−1

, (5.39)

Vk =

[
∂h

∂~v

]

~x=~̂xk|k−1

. (5.40)

Note that ~w = ~0 and ~v = ~0 were assumed during linearization because of the zero
mean value of the noise signals and the fact that immediate values of ~w and ~v are
unknown. We can then reach the linearized error system

Δ~xk+1 = Fk(Δ~xk) + Wkwk,
Δ~yk = Hk(Δ~xk) + Vkvk,

(5.41)

where Δ~x = ~x − ~̂x and Δ~y = ~y − ~̂y. The error system (5.41) now noticeably
resembles the linear state-space model (5.29) so the Kalman filter theory described
in Section 5.3.1 can now be applied. Provided that linearization affected the system
and measurement covariances as

Q̃k = WkQk−1W
T
k , (5.42)

R̃k = VkRk−1V
T
k , (5.43)
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we can perform the prediction step as

~̂xk|k−1 = f
(
~̂xk−1|k−1, ~uk

)
,

Pk|k−1 = FkPk−1|k−1F
T
k + Q̃k,

(5.44)

and the correction step as

Kk = Pk|k−1H
T
k

(
HkPk|k−1H

T
k + R̃k

)−1

,

~̂xk|k = ~̂xk|k−1 + Kk

[
~yk − h(~̂xk|k−1,~0)

]
,

Pk|k = (I − KkHk)Pk|k−1.

(5.45)

The entire estimation process is illustrated in Figure 5.14. It should be noted that
the linearization introduced an error into the estimate ~̂x and the covariance matrix
P, making the solution sub-optimal. The more significant non-linearity, the more
significant the error. The linearization also has to be performed in each calculation
step, which increases the algorithm complexity.

Initial conditions
x̂0,P0

Prediction

1. Estimates states in the next step

~̂xk|k−1 = f
(
~̂xk−1|k−1, ~uk,~0

)

2. Update Jacobian matrix Fk

3. Project the error covariance ahead
Pk|k−1 = FkPk−1|k−1F

T
k + Q̃k

Correction

1. Update Jacobian matrix Hk

2. Calculate the Kalman gain

Kk = Pk|k−1H
T
k

(
HkPk|k−1H

T
k + R̃k

)−1

3. Update estimate with measurement ~yk

~̂xk|k = ~̂xk|k−1 + Kk

[
~yk − h(~̂xk|k−1,~0)

]

4. Update the error covariance
Pk|k = (I − KkHk)Pk|k−1

Figure 5.14: Estimation sequence using extended Kalman filter [WB06]

5.4. Proposed EKF-based Estimation Algorithm

The block diagram of the proposed sensorless algorithm in Figure 5.1 shows the pro-
posed EKF-based observer, which provides estimations of rotor electrical position θ̂e,
electrical angular speed ω̂e, and stator inductances L̂d and L̂q. Based on the illustra-
tion in Figure 5.3, all this information can be extracted from the R

′

phN measurement

(i.e. its amplitude is inverse to L̂d and L̂q and the position is contained in phases
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of R
′

pha, R
′

phb, and R
′

phc harmonic functions). The following Section 5.4.1 will show
a basic implementation of the EKF algorithm (further called EKF-BASIC), which
can extract mentioned quantities. The main reason for the selection of the EKF
was its ability to near-optimally merge the information from multiple sensors with
various noise properties. As it was already presented in the literature, the stator
current measurements~iαβ and knowledge of synchronous machine model can also be
used to obtain rotor speed and position information [AR15]. Combining these two
models brings a redundancy, which can be exploited in many ways. For example,
the previously published version of the proposed EKF-based estimator featured an
estimation of core losses [MVB21]. The following Section 5.4.2 will show another
example of the implementation of an EKF-based algorithm (called EKF-RS) that
provides the stator resistance Rs estimate.
Both the proposed EKF-based algorithm versions (i.e. EKF-BASIC and EKF-

RS) were verified using simulation and the results are discussed in the following
sections. Simulations were done for the FOC algorithm with an integrated investi-
gated EKF algorithm using the MATLAB Simulink r2018a for the reference SynRM
described in Section 1.2. Because the simulation was focused on the EKF-based
algorithm, rather than on the R̂

′

phN measurement process, the R̂
′

phN values were
provided directly by the SynRM machine model. This also allowed to simplify the
simulation and set the simulation step to Ts = TPWM = 100 μs.

5.4.1. Proposed Algorithm Variant EKF-BASIC

To extract rotor electrical position θ̂e, electrical angular speed ω̂e, and stator induc-
tances L̂d and L̂q, equations (5.10) to (5.12) are going to be used. If we assume,
that R

′

d and R
′

q are slow-changing quantities, we can form the discrete equations

R
′

pha,k = R
′

d,k cos2(θe,k) + R
′

q,k sin2(θe,k),

R
′

phb,k = R
′

d,k cos2(θe,k + 2π
3

) + R
′

q,k sin2(θe,k − 2π
3

),

R
′

phc,k = R
′

d,k cos2(θe,k − 2π
3

) + R
′

q,k sin2(θe,k + 2π
3

),

(5.46)

R
′

d,k+1 = R
′

d,k,

R
′

q,k+1 = R
′

q,k.
(5.47)

To obtain the rotor speed ω̂e, the mechanical model of SynRM can be expressed
from (1.19), (1.20), and (1.21) as

dωe

dt
=

Pp

J

[
3Pp

2

(
1

R′

d

−
1

R′

q

)

idiq − Tl − B1ωm − sign(ωm)B2ω
2
m

]

, (5.48)

dθe

dt
= ωe. (5.49)

The above dynamical model of rotor speed, however, requires knowledge of the load
torque Tl, which is often not available, and the stator current vector ~idq, which is not
being considered for the EKF-BASIC algorithm. When further considering that the
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above mechanical model will not benefit the steady-state speed estimation accuracy,
it was decided to model the rotor speed as constant

dωe

dt
=∼ 0

rad
s2

. (5.50)

Applying the Euler’s discretization method to mechanical models (5.49) and (5.50)
then leads to the following set of discrete equations

ωe,k+1 = ωe,k,
θe,k+1 = θe,k + Tsωe,k,

(5.51)

where Ts is sampling period, which is usually set to be equal or multiple of switching
period TPWM . The Euler’s discretization is a simple but also relatively inaccurate
method and, thus, requires sufficiently high sampling frequency. This condition
is, however, usually met when controlling SynRM at nominal speed, because its
mechanical time constant is usually several orders larger than the PWM switching
period TPWM .
The first step to design EKF, as described in Section 5.3.2, is the definition of

system state and input vectors. Combining equations (5.47) and (5.51) leads to
state vector

~̂x =
[
R̂

′

d, R̂
′

q, ω̂e, θ̂e

]T
(5.52)

and the system input vector ~u = 0 (i.e. the estimated system is not driven). Note
that the L̂d and L̂q are assumed to be obtained outside of the EKF-BASIC algorithm
using relation (5.8).
As was discussed in Section 5.2, not all the dia/dt, dib/dt, and dic/dt measure-

ments are available each PWM period, depending on applied active voltage vectors
vM . The proposed ASPWM scheme allows to obtain current derivative information
for one of the N phases during each TPWM . Hence, only one of equations (5.46),
corresponding to the measured phase N, will be used each step k. The available
measurement (either R

′

pha, R
′

phb, or R
′

phc) is then going to form the measurement
vector

~y = R
′

phN . (5.53)

The feedback non-linear time-variant system function will then be

f
(
~̂xk−1, ~uk,~0

)
=







R̂
′

d,k−1

R̂
′

q,k−1

ω̂e,k−1

θ̂e,k−1 + Tsω̂e,k−1





 (5.54)

and the non-linear output function can be assembled from (5.46) as

h
(
~̂xk,~0

)
=
[
R̂

′

d,k cos2(θ̂e,k + θphN ) + R̂
′

q,k sin2(θ̂e,k + θphN )
]
, (5.55)
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where θphN is stator phase offset matching the phase of actual R
′

phN measurement
(either 0 rad, 2π

3
rad, or −2π

3
rad for phases R

′

pha, R
′

phb, and R
′

phc).
The Jacobian matrix of output matrix (5.55) is

Hk =

[
∂h

∂~x

]

~x=~̂xk|k−1,~v=~0

= (5.56)

=
[
cos2(θ̂e + θphN ), sin2(θ̂e + θphN ), 0, H16

]
, (5.57)

where

H16 =
∂R

′
phN

∂θe
= 2(R̂

′

q − R̂
′

d) sin(θ̂e + θphN ) cos(θ̂e + θphN ). (5.58)

Discrete-time Jacobian matrix of process matrix (5.54) is

Fk =
[

∂f
∂~x

]
~x=~̂xk−1|k−1,~u=~uk, ~w=~0

=







1 0 0 0
0 1 0 0
0 0 1 0
0 0 Ts 1





 . (5.59)

To complete the EKF-based estimator design, the stochastic properties of the
state estimates and measurements have to be modelled via covariance matrices Q̃
and R̃. In both cases, the matrices can be, for example, obtained using methods like
the Expectation-Maximization (EM) algorithm [Moo96]. The EM algorithm fits pa-
rameters Q̃ and R̃ of Gaussian measurement models to maximize model likelihood
by interleaving the expectation and maximization steps over a block of measured
data. The expectation step calculates expected values of states and measurements
based on the latest obtained Q̃ and R̃ parameters using the Kalman smoothing
estimator. The maximization step then improves the Q̃ and R̃ estimates using pre-
viously obtained expected values. These steps continue until a relative steady state
of estimates is reached. Such algorithms are, however, relatively computationally
intensive, which makes them harder to use in the field. In practice, the matrices
Q̃ and R̃ are often used as offline design parameters of EKF. This thesis will ap-
ply the latter approach and provide a way of calculating the initial configuration of
covariance matrices, assuming that additional tuning might be required to improve
performance. It is understood that such an approach does not utilize the full poten-
tial of the EKF algorithm and only sub-optimal results will be demonstrated. Still,
the validity of the proposed algorithms should be proven.
Because there is only a single signal used as a measurement, the noise covariance

matrix has a form

R̃ = σ2
Rph

, (5.60)

where σRph
is standard deviation of phase reluctance measurements R

′

phN . The
value of σRph

is difficult to model and in this work it is acquired by offline analysis
of recordings of R

′

phN measurements from an actual system. An example of such
approach will be discussed in Section 6.2.1. Sensitivity to incorrect setup of σRph
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will be analyzed via simulation further in this section. All the states are considered
to be uncorrelated, hence, the state noise covariance matrix has a diagonal form

Q̃ =








σ2
R′

d

0 0 0

0 σ2
R′

q
0 0

0 0 σ2
ωe

0
0 0 0 σ2

θe








. (5.61)

Based on the dynamic performance required by the application, the states R̂
′

d and
R̂

′

q can be considered to be slow-changing parameters. Their standard deviations
σR′

d
and σR′

q
can, therefore, be selected close or equal to zero. The speed estimation

deviation can be selected as the maximal expected electrical speed change with the
moment of inertia J and nominal torque Tnom per sampling period Ts, as σωe =
TsTnom/J . Because position θe is obtained as a pure integration of ωe, its deviation
will be chosen as σθe = 0 rad [BSL+10,AR15].
Finally, the initialization of EKF-BASIC is done through the definition of the

initial state vector ~̂x0 and the initial covariance matrix P0. As discussed in Sec-
tion 5.3.1, there are multiple approaches. As an example, the state vector can be
set

~̂x0 =
[

1/Ld0, 1/Lq0, 0, 0
]
, (5.62)

where Ld0 and Lq0 are rough expected machine inductances. Similarly, the P0 can
be set as a diagonal matrix, usually with sufficiently high variance values on the
main diagonal, reflecting the low confidence in vector ~̂x0.

Simulation of EKF-BASIC Variant

To verify behaviour of EKF-BASIC, the estimator was integrated into the SynRM
FOC algorithm within the Matlab Simulink simulation environment. Configurations
of the state noise matrix Q̃, measurement noise matrix R̃, and initial vector ~̂x0 are
listed in Table 5.1. The R

′

phN measurements were by default distorted with a white
noise of parameters matching to the matrix R̃. The covariance matrix was initialized
as

P0 = diag

(

0.01 H2, 0.01 H2, 100
rad2

s2
, 1 rad2

)

. (5.63)
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Table 5.1: EKF-BASIC setup of vector ~̂x0 and matrices R̃ and Q̃ for simulation
Quantity Value Unit

σRph
0.15 1

H
σR′

d
5 ∙ 10−4 1

H

σR′
q

5 ∙ 10−4 1
H

σωe 0.096 rad
s

σθe 0 rad
Ld0 0.5 H
Lq0 0.5 H

−1800
−1500
−1200
−900
−600
−300

0
300
600
900

1200
1500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
t [s]

a)t0

N
[rpm]

Tl

[Nm]
3.5

0

−3.5
Required Speed
Estimated Speed
Load Torque Tl

0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
t [s]

b)t0

Ld,
Lq

[H]

Actual Ld Estimated L̂d Actual Lq Estimated L̂q

Figure 5.15: EKF-BASIC estimates of a) speed and b) inductances

Figure 5.15 shows estimated states ~̂x where the estimator was activated at time
t0 and the machine was run in the full speed range with the nominal load steps
introduced. Both the speed and inductance estimates showed a very good track-
ing ability. To better highlight the performance, Figure 5.16 shows errors of the
estimated states ~̂x for the same scenario as in Figure 5.15. With exception of dy-
namic events, where the inductance estimate relative errors δLd

and δLq peaked to
tens of percent and position error θerre reached up to eight degrees, the steady-state
performance showed estimation errors well below thresholds discussed in Section 4.3.
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Figure 5.16: EKF-BASIC estimation errors of a) inductance and b) position

The R̂
′

phN is the only measurement being taken, hence, the accuracy of all the
estimates will depend on its errors. Possible deterministic error models were dis-
cussed in Section 5.1. The only measurement error, which can be modelled, is the
measurement gain error δRR̂

′

phN , which is directly related to MC IDC gain measure-
ment error δuidc. The simulated sensitivity of state estimates to sweep of δR is shown
in Figure 5.17. As expected, the R̂

′

d and R̂
′

q are affected directly, while there is no

impact to position θ̂e and speed ω̂e estimation. This highlights the importance of
careful determination of the MC IDC measurement gain for accuracy of inductance
estimation.
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Figure 5.17: Sensitivity of EKF-BASIC a) inductance and b) position estimates to
MC IDC measurement gain relative error δR sweep

The stochastic R̂
′

phN measurement error can occur by assuming an incorrect value
of standard deviance σRph

in matrix R̃. The sensitivity of state estimates to sweep
of this relative error δσRph

is shown in Figure 5.18. The position estimate is quite
insensitive but the inductance estimates show increased noise for underestimated
σRph

value. The key observation is that no steady-state estimate error or instability
appeared. It should, however, be noted that the configuration of matrix Q̃ in relation
to matrix R̃ can affect the results. Both Figure 5.17 and Figure 5.18 were obtained
from 100-second recording for machine running at nominal speed and under nominal
load, during which the modelled error parameter was swept.
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Figure 5.18: Sensitivity of EKF-BASIC a) inductance and b) position estimates to
relative error δσRph

of standard deviance σRph
setting in matrix R̃

5.4.2. Variant with Stator Resistance Measurement EKF-RS

The EKF-BASIC algorithm already provided the most critical estimates of rotor
electrical position θ̂e, electrical angular speed ω̂e, and stator inductances L̂d and L̂q.
This section will present the EKF-RS algorithm variant, which takes into account
stator current ~iαβ measurement and knowledge of the machine model to provide
estimate of the stator resistance Rs as well.
First, the stator current model (1.18) with neglected core losses and dynamic

inductance is assumed. Using the direct and quadrature axis reluctance R
′

d and R
′

q

we can obtain SynRM stator current model

[did
dt
diq
dt

]

=

[
R

′

d 0
0 R

′

q

]{[
ud

uq

]

−

[
Rs −ωe/R

′

q

ωe/R
′

d Rs

] [
id
iq

]}

. (5.64)

Although the stator current vector ~iαβ is now considered to be available within
the algorithm, the load torque Tl in the model (5.48) is still unknown. Hence, the
mechanical models (5.49) and (5.50) are going to be used just like for the EKF-
BASIC version. Applying Euler’s discretization method to SynRM electrical and
mechanical models (5.49), (5.50), and (5.64) leads to

id,k = id,k−1 + TsR
′

d,k−1

{
ud,k − Rsid,k−1 + ωe,k−1iq,k−1/R

′

q,k−1

}
,

iq,k = iq,k−1 + TsR
′

q,k−1

{
uq,k − Rsiq,k−1 − ωe,k−1id,k−1/R

′

d,k−1

}
,

ωe,k = ωe,k−1,
θe,k = θe,k−1 + Tsωe,k−1,

(5.65)
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where Ts is discrete sampling period. The argument of applicability of Euler’s dis-
cretization method is the same as for the EKF-BASIC implementation, where the
electrical and mechanical time constants of SynRM are considered to be longer than
switching period TPWM by at least an order.
The above-defined electrical and mechanical models (5.65) would alone be suffi-

cient to design an EKF-based estimator, which could provide position θ̂e and speed
ω̂e estimates [AR15,SKUU03]. However, to get the stator resistance R̂s information,
the EKF-RS will utilize (5.65) as well as (5.46) and (5.47). This leads to state vector

~̂x =
[
R̂

′

d, R̂
′

q, îd, îq, ω̂e, θ̂e, R̂s

]T
, (5.66)

and system input vector

~u =
[
ud, uq

]T
. (5.67)

The available measurements are stator currents ~iαβ and phase reluctances R
′

pha,
R

′

phb, or R
′

phc, which form the measurement vector

~y =
[
R

′

phN , iα, iβ
]T

. (5.68)

The feedback non-linear time-variant system function will then be

f
(
~̂xk−1, ~uk,~0

)
=
















R̂
′

d,k−1

R̂
′

q,k−1

îd,k−1 + TsR̂
′

d,k−1

{
ud,k − R̂s,k−1îd,k−1 + ω̂e,k−1îq,k−1/R̂

′

q,k−1

}

îq,k−1 + TsR̂
′

q,k−1

{
uq,k − R̂s,k−1îq,k−1 − ω̂e,k−1îd,k−1/R̂

′

d,k−1

}

ω̂e,k−1

θ̂e,k−1 + Tsω̂e,k−1

R̂s,k−1
















. (5.69)

And, finally, the non-linear output function can be assembled using Park’s transfor-
mation matrix (1.3) for stator currents and from (5.46) as

h
(
~̂xk,~0

)
=




R̂

′

d,k cos2(θ̂e,k + θphN ) + R̂
′

q,k sin2(θ̂e,k + θphN )

cos(θ̂e,k)id,k − sin(θ̂e,k)iq,k

sin(θ̂e,k)id,k + cos(θ̂e,k)iq,k



 . (5.70)

The Jacobian matrix of output matrix (5.70) is

Hk =

[
∂h

∂~x

]

~x=~̂xk|k−1,~v=~0

= (5.71)

=




cos2(θ̂e,k + θphN ) sin2(θ̂e,k + θphN ) 0 0 0 H16 0

0 0 cos(θ̂e,k) − sin(θ̂e,k) 0 H26 0

0 0 sin(θ̂e,k) cos(θ̂e,k) 0 H36 0



, (5.72)
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where H16 is defined in (5.58) and

H26 = ∂iα
∂θe

= − sin(θ̂e,k )̂id,k − cos(θ̂e,k )̂iq,k,

H36 =
∂iβ
∂θe

= cos(θ̂e,k )̂id,k − sin(θ̂e,k )̂iq,k.
(5.73)

Discrete-time Jacobian matrix of process matrix (5.69) is

Fk =
[

∂f
∂~x

]
~x=~̂xk−1|k−1,~u=~uk, ~w=~0

=













1 0 0 0 0 0 0
0 1 0 0 0 0 0

F31 F32 F33 F34 F35 F36 F37

F41 F42 F43 F44 F45 F46 F47

0 0 0 0 1 0 0
0 0 0 0 Ts 1 0
0 0 0 0 0 0 1













, (5.74)

where

F31 = ∂id
∂R′

d

= Ts

{
ud,k − R̂s,k−1îd,k−1 + ω̂e,k−1îq,k−1/R̂

′

q,k−1

}
,

F32 = ∂id
∂R′

q
= −TsR̂

′

d,k−1ω̂e,k−1îq,k−1/R̂
′2
q,k−1,

F33 = ∂id
∂id

= 1 − TsR̂s,k−1R̂
′

d,k−1,

F34 = ∂id
∂iq

= Tsω̂e,k−1R̂
′

d,k−1/R̂
′

q,k−1,

F35 = ∂id
∂ωe

= Tsîq,k−1R̂
′

d,k−1/R̂
′

q,k−1,

F36 = ∂id
∂θe

= TsR̂
′

d,k−1uq,k,

F37 = ∂id
∂Rs

= −TsR̂
′

d,k−1îd,k−1,

(5.75)

F41 = ∂iq

∂R′
d

= TsR̂
′

q,k−1ω̂e,k−1îd,k−1/R̂
′2
d,k−1,

F42 = ∂iq
∂R′

q
= Ts

{
uq,k − R̂s,k−1îq,k−1 − ω̂e,k−1îd,k−1/R̂

′

q,k−1

}
,

F43 = ∂iq
∂id

= −Tsω̂e,k−1R̂
′

q,k−1/R̂
′

d,k−1,

F44 = ∂iq
∂iq

= 1 − TsR̂s,k−1R̂
′

q,k−1,

F45 = ∂iq
∂ωe

= −Tsîd,k−1R̂
′

q,k−1/R̂
′

d,k−1,

F46 = ∂iq
∂θe

= −TsR̂
′

q,k−1ud,k,

F47 = ∂iq
∂Rs

= −TsR̂
′

q,k−1îq,k−1.

(5.76)

Note that F36 and F46 were obtained by integrating the Park’s transformation matrix
Tαβ

dq (θe) defined by equation (1.3) into process Jacobian matrix F.
Just like in the case of the EKF-BASIC algorithm, the stochastic properties of

the state estimate and measurements will be modelled via manually-set constant
covariance matrices Q̃ and R̃.
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Measurements (5.68) are considered to be uncorrelated, therefore the measure-
ment noise covariance matrix has the form

R̃ =




σ2
Rph

0 0

0 2
3
σ2

i 0
0 0 2

3
σ2

i



, (5.77)

where σRph
and σi are standard deviations of phase reluctance R

′

phN and~iαβ current
measurements. The value of σRph

is assumed to be selected just like for the EKF-
BASIC algorithm. Variance σ2

i can be modelled as the ADC discretization error and
the noise introduced by measurement circuit MC IABC, which leads to

σ2
i =

(
max(~iabc)√
12 ∙ 2NADC

)2

+ EIN2

(
max(~iabc)

uDD

+
1

Rsh

)2

, (5.78)

where max(~iabc) is the phase current measurement scale, NADC is the number of
ADC bits, Rsh is the shunt resistance, uDD is the maximal voltage measurable by
ADC, and EIN is the equivalent input noise of the operational amplifier [BSL+10,
AR15,CM18]. The resulting current variance in the two-phase stator αβ reference
frame can be calculated by taking into account Clarke’s transformation as

var{iα} = var

{
2

3
ia −

1

3
ib −

1

3
ic

}

=
4

9
σ2

i +
1

9
σ2

i +
1

9
σ2

i =
2

3
σ2

i , (5.79)

var{iβ} = var

{
1
√

3
ib −

1
√

3
ic

}

=
1

3
σ2

i +
1

3
σ2

i =
2

3
σ2

i . (5.80)

The states will be considered to be uncorrelated, hence, the state noise covariance
matrix is also diagonal, and has the form

Q̃ =














σ2
R′

d

0 0 0 0 0 0

0 σ2
R′

d

0 0 0 0 0

0 0 2
3
σ2

i 0 0 0 0
0 0 0 2

3
σ2

i 0 0 0
0 0 0 0 σ2

ωe
0 0

0 0 0 0 0 σ2
θe

0
0 0 0 0 0 0 σ2

Rs














. (5.81)

Setup of σR′
d
, σR′

q
, σωe , and σθe was already discussed in Section 5.4.1. The stator

resistance estimate deviation σRs should be chosen as a small or zero value because
the stator resistance estimate will be a slow-changing quantity. The variance of the
stator currents in the rotating dq reference frame can be estimated by taking into
account the Park’s transformation as

var{id} = var{iα cos(θ̂e) + iβ sin(θ̂e)}' cos2(θ̂e)
2

3
σ2

i + sin2(θ̂e)
2

3
σ2

i =
2

3
σ2

i , (5.82)

var{iq} = var{−iα sin(θ̂e) + iβ cos(θ̂e)}' sin2(θ̂e)
2

3
σ2

i + cos2(θ̂e)
2

3
σ2

i =
2

3
σ2

i . (5.83)
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Note that the above expression was simplified by considering zero rotor position
variance σθe and should be treated as a rough setup.
The initialization of EKF-RS will be analogous to the EKF-BASIC variant as

well. The initial state vector ~̂x0 can be set as

~̂x0 =
[

1/Ld0, 1/Lq0, 0, 0, 0, 0, Rs0

]
, (5.84)

where Ld0, Lq0, and Rs0 are rough expected machine parameters. Similarly, the P0

can be set as a diagonal matrix, usually with sufficiently high variance values for

currents ~̂idq, speed ω̂e, and position θ̂e because the confidence in the initial value is
low.

Simulation of EKF-RS Variant

To analyze the properties of EKF-RS, the algorithm was again integrated into the
SynRM FOC algorithm within MATLAB Simulink simulation environment. The
setups of the state noise matrix Q̃, measurement noise matrix R̃, and initial vector
~̂x0 are listed in Table 5.2. The R

′

phN and~iαβ measurements were by default distorted
with a white noise of parameters matching to the matrix R̃. The initial state vector
~̂x0 was intentionally set to inaccurate values to highlight the ability of the algorithm
to startup and converge with unknown initial system state. The covariance matrix
was initialized as

P0 = diag

(

0.01 H2, 0.01 H2, 1 A2, 1 A2, 100
rad2

s2
, 1 rad2, 0.01 Ω2

)

. (5.85)

Table 5.2: EKF-RS setup of vector ~̂x0 and matrices R̃ and Q̃ for simulation
Quantity Value Unit

σRph
0.15 1

H
σi 15.8 mA

σR′
d

5 ∙ 10−4 1
H

σR′
q

5 ∙ 10−4 1
H

σωe 0.096 rad
s

σθe 0 rad
σRs 5 ∙ 10−3 Ω
Ld0 0.5 H
Lq0 0.5 H
Rs0 5 Ω

Figure 5.19 shows estimated states ~̂x for full speed range, where the estimator
was activated at time t0 and nominal load Tl steps were introduced during the speed
profile. Figure 5.20 shows errors of the estimated states ~̂x for the same scenario as
in Figure 5.19. Both the inductance and position estimates have comparable accu-
racy as in the case of the EKF-BASIC algorithm and the steady-state performance
shows estimation errors well below thresholds discussed in Section 4.3. The stator
resistance R̂s also shows steady-state estimation error below the desired threshold,
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but, is generally much higher than in the case of other states. It should also be
noted, that convergence of R̂s relies on sufficient EMF voltage, or in other words,

sufficient speed ω̂e and stator current ~̂idq. This can be seen in Figure 5.20c, where
the estimate error δRs drops when the nominal load is introduced. To avoid diver-
gence of R̂s estimate, and potential numerical instability of EKF-RS, a simple σRs

runtime adaptation mechanism can be used, where σRs = 0 Ω is set when absolute
value of speed |ω̂e| is under the selected speed threshold |ωeσRs |. Comparison of R̂s

resistance-related variance from the main diagonal of matrix P (further referenced
as var(R̂s)) with and without such adaptation mechanism is shown in Figure 5.21.
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Actual iq
Estimated îq
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Figure 5.20: EKF-RS estimation errors of a) inductance, b) position, and c) resis-
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Similarly to EKF-BASIC, the effect of the measurement gain error δRR̂
′

phN was

analysed. The response to δR sweep in Figure 5.22 shows that the R̂
′

d and R̂
′

q

are affected directly again. It is, however, noticeable that R̂s estimate is greatly
affected too. It is, therefore, up to the system designer if he considers the R

′

phN

measurement to be sufficiently accurate and whether the desired stator resistance
estimation accuracy can be reached. Data for Figure 5.22 were measured over a
100-second period for the machine running at nominal speed and under nominal
load. The non-gaussian errors in ~iαβ measurements are considered to be out of the
scope of this thesis.
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Figure 5.22: Sensitivity of EKF-RS a) inductance, b) position, and c) resistance
estimates to measurement gain error δR

The error in standard deviance σRph
value in matrix R̃ was analyzed as well. Sen-

sitivity of state estimates to sweep of error δσRph
is shown in Figure 5.23. Unlike in

the case of EKF-BASIC, a greatly overestimated σRph
setup can lead to steady-state

estimation errors as well. It should be noted that this is only a superficial analysis
done to highlight possible dependencies and configuration of other parameters (e.g.
matrix Q̃ in relation to matrix R̃ can affect the results as well). Figure 5.23 was
obtained from a 100-second recording of the machine running at nominal speed and
under nominal load, during which the modelled error parameter δσRph

was swept.
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of standard deviance σRph
setting in matrix R̃
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6. Experimental Analysis
The goal of this chapter is to compare the performance of the SynRM control
algorithms proposed in Section 5 on a real system with other, commonly used,
state-of-the-art sensorless estimation algorithms listed in Section 2, as well as the
sensor-based control. The first part of this chapter will focus on a description of
the experimental hardware setup, which was used for all the measurements, and
how the key performance indicators were obtained. The second part then describes
the implementation and tuning details for all implemented algorithms. Finally, the
acquired results are presented and discussed. The main focus is the evaluation of
the achievement of goals set in Section 4.3.

6.1. The Measurement Setup

All measurements were done on reference 550 W machine from KSB manufacturer,
which parameters were already presented in Section 1.2. This SynRM machine
was integrated into testbench, which high-level block diagram is in Figure 6.2 and
photography of the setup is in Figure 6.1. The shaft of the SynRM motor was
connected to the 3.5 kW PMSM motor Allan Bradley F-4030-Q-H00AX to act as a
loading generator. A benefit of this machine is its integrated 12-bit encoder, which,
thanks to the co-axial motor-to-load setup, was used to get reference rotor position
θe of both the SynRM motor and the load PMSM generator. Both the motor and
generator inverter shared the same DC-bus rail so the generated power was used to
immediately cover a part of the input power of the SynRM motor.

Figure 6.1: Photography of the experimental testbench setup
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Figure 6.2: High-level block diagram of the experimental set-up

The power diagram of the experimental testbench is in Figure 6.3. Power quan-
tities defined in the diagram are:

• Pdc: Rectified electrical power supplied to the testbench.

• PdcM = UdcIdcM = Pdc + PdcG: Input power of the SynRM motor VSI.

• Pinv = Pcon + Psw: Sum of the motor inverter conductive Pcon and switching
power losses Pcon.

• Pin = PdcM − PinvM : AC electrical power drawn by the SynRM motor.

• PCu: Joule power losses of the SynRM motor.

• PFe: Core power losses of the SynRM motor.

• Pω: Mechanical and ventilator power losses of the SynRM motor.

• Pm = Pin − PCu − PFe − Pω: Mechanical power at the shaft produced by the
SynRM motor.

• PωG: Mechanical power losses of the PMSM generator.

• PCuG: Joule power losses of the PMSM generator.

• PinvG = PconG + PswG: Sum of the generator inverter conductive PconG and
switching power losses PswG.

• PdcG = UdcIdcG = Pm−PωG−PCuG−PinvG: Rectified electrical power delivered
by the generator inverter back to the DC rail.

Mathematical modelling of Joule losses PCu, core losses PFe, mechanical losses
Pω, and shaft mechanical power Pm was discussed in Section 3. The power model of
the PMSM generator is relatively similar to SynRM, with the exception of torque
calculation. The mechanical power at the common shaft Pm can be estimated from
rotor speed ωm and quadrature axis current of generator IqG as

Pm = Tlωm − PωG = ktIqGωm − PωG =
3

2
PpGΨPMIqGωm − PωG, (6.1)
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where PpG is the number of PMSM generator pole-pairs, Tl is braking torque applied
to the shaft by generator, kt is PMSM machine torque constant, and ΨPM magnetic
flux of permanent magnet of the generator. The used PMSM load does not have its
own ventilator, hence its mechanical losses can be simply modelled as

PωG = B1Gω2
m, (6.2)

where B1G is mechanical loss coefficients. The remaining significant PMSM electrical
power losses are the stator winding Joule losses, which can be modelled as

PCuG = RsGI2
qG, (6.3)

where RsG is the resistance of generator stator winding and IqG is the quadrature
axis stator current. The direct axis current is assumed to be controlled to zero
setpoint because the selected PMSM does not have significant rotor saliency and
there is no need for field weakening.

Pdc
PdcM = UdcIdcM

PinvM PCu

PFe
Pω PωG =B1Gω2

m

Pm = Tlωm

PCuG =RsGI2
mG

PinvG

PdcG = UdcIdcG

Figure 6.3: A power diagram of the experimental testbench

This thesis is mainly focused on the power efficiency aspect of the SynRM sen-
sorless control, therefore, the experimental testbench was mainly used to obtain
stead-state input power and state estimate comparison between the proposed and
the reference state-of-the-art algorithms for the same loading conditions. Therefore,
for the most of the experiments, the PMSM generator load was used to maintain
constant torque Tl on the common shaft using the sensor-based torque vector con-
trol method. Accuracy of estimated resistance R̂s and inductances L̂d and L̂q was
determined based on comparison with off-line measured values presented in Sec-
tion 1.2. The estimation accuracy of position θ̂e and speed ω̂e was measured using
encoder sensor. The experiments involving measurement of power efficiency deter-
mined the output power Pm from equation (6.1). As for the input power, both the
proposed and the reference sensorless SynRM control algorithms involved various
injections and PWM schemes, hence, the investigated input power quantity was se-
lected to include all motor inverter power losses PinvM . Although this input power
PdcM could be calculated or measured in many ways, it was decided to use inde-
pendent instrument capable of sensing average DC-bus current IdcM , leading to the
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input power relation PdcM = IdcMUdc. The DC-bus current idc is highly dynamic
quantity, hence, the integrating voltage-to-frequency converter (VFC) with a high
sampling frequency was used, so it could provide steady-state information with a
good resolution. Diagram of this measurement instrument is shown in Figure 6.4.

Figure 6.4: Voltage-to-frequency converter measurement instrument

A more detailed control block diagram of the testbench with implemented EKF-
based algorithm is in Figure 6.5. The FOC algorithm on the SynRM side of this
block diagram might differ based on specifics of the investigated algorithm. See
Section 6.2 for more details. Both the motor and the load were driven using NXP
HVP-MC3PH high-voltage inverters, which can provide roughly up to one kW of
three-phase AC power. The motor-side inverter was modified to feature the MC IDC
circuit, which, as described in Section 5.1, was used to acquire necessary idc current
derivative measurements to support the proposed algorithms.
The motor-side inverter was controlled from HVP-KV58F220M daughter card,

which is based on the NXPMKV58F1M0 micro-controller, which features a 240 MHz
Cortex-M7 core with single-precision floating-point unit, high-speed 12-bit ADC,
and high-resolution PWM peripherals. The motor-side FOC algorithm was de-
signed to control the rotor shaft speed Nm = 2π

60Pp
ωe, where the source of rotor

position θe and speed ωe information was the investigated algorithm. The exact
details of the motor-side control algorithm block diagram as well as configurations
of the investigated estimators are described in Section 6.2.1, Section 6.2.2, and Sec-
tion 6.2.3. Note that the core of the EKF algorithm, as described in Section 5.3.2,
was implemented in floating point arithmetics, using the freely-available C source
code of TinyEKF project [Lev]. Also, some basic algorithms (e.g. Clarke’s and
Park’s transformations, PI controllers,. . .) were used from the NXP Real Time Con-
trol Embedded Software Motor Control and Power Conversion Library (RTCESL)
software [Semb]. No current angle θI optimization algorithm was implemented and
its setpoint value was controlled manually. Any optimal MTPA or ME trajectories
were obtained offline from measurements corresponding to a range of current angles
θreqI . The PWM frequency 1/TPWM , phase current sampling frequency 1/Ts, and the
current control loop frequency were set identically to 10 kHz. The speed control loop
sampling frequency was set to 1 kHz. The current control loops were tuned to 40 Hz
bandwidth and the speed control loop to bandwidth of 3 Hz. Stator voltages ~uαβ

were corrected for inverter non-linearities using LUT-based dead-time compensation
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algorithm. The SVM was used to obtain duty cycles ~Dabc in all investigated FOC
modifications, but the PWM switching scheme was either the ASPWM proposed
in Section 5.2, or the centre-aligned PWM as shown in Figure 2.4. The motor-side
MCU also collected all measured data and provided them to PC through UART
into FreeMASTER online monitoring and debugging utility [Sema]. The measure-
ment collection software assured that the acquired data were obtained and filtered
for the same measurement window. The mean DC-bus currents IdcM and IdcG were
obtained from the VFC unit using a timer periphery. The control setpoints θreqI and
ωreqe were set using the FreeMASTER utility as well.
The MC IABC circuit current measurement scale was configured to ±max(~iabc) =

±8 A and the MC UDC measurement scale to max(Udc) = 433 V. Part values for
the MC IDC circuit (see diagram in Figure 5.5) were selected as Rshc = 0.1 Ω,
Rf = 220 Ω, Cf = 47 pF, R1 = 1600 Ω, R2 = 82 kΩ, Rp = 10 kΩ, and Rn = 22 kΩ.
When considering offset voltage range uoff ∈ 〈0; 3.3〉V and equation (5.20), this
allows to measure DC-bus current range idc ∈ 〈−3.05; 3.75〉 A, which is more than
enough for expected maximal phase current for the reference SynRM. The idc current
itself was amplified to voltage uidc by a gain KRRpRshc = 4.21 V/A. For comparison,
if the MC IABC circuit was used to measure Δidc, it would offer a 20-times lower
resolution and, similarly, if MC IABC was configured to measure with such high res-
olution, its scale max(~iabc) would drop from 8 A roughly to 395 mA. This highlights
the Δidc measurement resolution improvement provided by MC IDC circuit.
The load-side inverter control daughter card NXP HVP-MKV46F150M is based

on the NXP MKV46F256 micro-controller with 168 MHz Cortex-M4 core, single-
precision floating-point unit and high-performance ADC and PWM peripherals. The
inverter side FOC algorithm was designed for torque control and to always utilize
the encoder for position θm and speed ωm information. The load torque Tl polarity
was always set to be inverse to the shaft speed ωm to act as a break. The torque
reference T reql was set from PC via the FreeMASTER utility. The PWM frequency,
phase current sampling frequency, and the current control loop frequency were set
identically to 10 kHz. The current control loops were configured to 40 Hz bandwidth.
The combination of SVM and centre-aligned PWM was used for all experiments.
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Figure 6.5: Experimental set-up control block diagram

The HVP-MC3PH inverter was designed to be powered using voltage from a
single mains phase. The SynRM machine, as shown by its label in Figure 1.8,
has a nominal stator voltage of 350 Vrms, which means that it was designed for
inverters that can be powered from three-phase mains. This is a common property of
commercially available low-power SynRM machines, likely because the high-voltage
operation improves efficiency and mitigates impact of low power factor of SynRM. A
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serial connection of outputs of two transformers was used to increase mains voltage
so the common DC-bus voltage would reach a maximum safe value of Udc = 420 V,
knowing that 450 V is a limitation of inverter components like the DC-bus capacitors.
Even with this modification, the nominal power of selected SynRM could not be
reached at nominal speed, hence, all the high-torque experiments were limited to
900 rpm. However, this limitation does not reduce validity of acquired measurements
in terms of evaluation of the performance of the proposed algorithm.

6.2. Implementation of Investigated Estimators

Details about the implementation and configuration of the proposed EKF-based
algorithms EKF-BASIC and EKF-RS for the experimental analysis are listed in the
following Section 6.2.1. To allow a relative comparison of its performance, other
position and speed sources with various properties were implemented as well:

• Encoder measurement - A conventionally true position and speed was obtained
using 12-bit encoder sensor. Both the ASPWM and the centre-aligned PWM
switching schemes were implemented to allow investigation of impact of using
ASPWM scheme. See more details in Section 6.3.3.

• High-frequency injection algorithm - The saliency-based algorithm was used as
a reference for low-speed range. Its principle was described in Section 2.2 and
details about its implementation are in Section 6.2.2.

• EEMF observer - The EEMF-based algorithm was used as a reference at
medium and higher speeds. Its principle was described in Section 2.1 and
details about its implementation are in Section 6.2.3. The basic EEMF al-
gorithm is not naturally adaptive like the proposed method. Hence, several
different variations were implemented:

– EEMF observer with constant model parameters - A basic algorithm ver-
sion with constant R̂s and L̂q values. Considered to evaluate the impact of
using non-adaptive algorithms, which neglect saturation. This is a valu-
able reference because this approach is often chosen in low-performance
practical applications [HKS99,KSG+14].

– EEMF observer with LUT - The algorithm version with constant R̂s value
and inductances L̂

′

d and L̂q provided by the LUT table. This modifica-
tion was included in the analysis to evaluate what performance can be
achieved with accurate parameters obtained offline. The algorithm might
not be considered to be truly adaptive because the LUT may not reflect
the change of inductances due to temperature change, which could be a
factor in some applications.

– EEMF observer with RLS - The algorithm version with R̂s, L̂
′

d, and L̂q

parameters provided online by Recursive Least Square estimation algo-
rithm described in Section 2.4.
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6.2.1. Implementation of Proposed EKF Algorithms

The theory of the proposed estimation algorithms EKF-BASIC and EKF-RS, ap-
proach to their configuration, as well as simulation results, were described in Sec-
tion 5.4.1 and Section 5.4.2. The block diagram in Figure 6.5 is valid for all versions
of the proposed algorithm, with the following notes:

• EKF-BASIC does not provide the~idq current vector on its output so the Park’s
transformation from ~iαβ current must be done outside the estimator.

• EKF-BASIC does not take ~iαβ current and ~uαβ voltage vectors as inputs.

• EKF-BASIC does not provide R̂s estimate.

• Only the ASPWM switching scheme is considered for EKF-BASIC and EKF-
RS algorithms.

First, the measurement variances had to be determined in order to configure
matrix R̃ for all EKF versions. Variances of normalized phase reluctances were
obtained from offline analysis of actual R

′

phN measurement recordings for several
speed and load operation points. The measurement noise components shown in
Figure 6.6, Figure 6.8, and Figure 6.7 were obtained by subtracting the expected
harmonic value R̄

′

phN , which was obtained from (5.10), (5.11), and (5.12). It can be
seen that, besides the high frequency noise component, small periodic deformations
ΔR(θe + θphN ) still occur. These were likely caused by idc signal deformations after
the PWM switching events and were dependent on applied duty cycle ~Dabc and
stator current ~iabc (i.e. machine rotor speed and load). For the purpose of this
thesis, these deformations will not be further addressed by additional measures and
considered part of the noise component. As shown by simulation in Figure 5.18 and
Figure 5.23, the σRph

should be set within one order range from the real value to
avoid undesired estimation errors. A rough average observed standard deviation of
the R

′

phN measurement, which was used in the matrix R̃, was finally determined as

σRph
= 0.15 H

−1. (6.4)
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Figure 6.6: Example of experimentally obtained phase reluctance measurement noise
RphN − R̄phN for Nm = 500 rpm and Tl = 0 Nm

Figure 6.7: Example of experimentally obtained phase reluctance measurement noise
RphN − R̄phN for Nm = −500 rpm and Tl = 0 Nm
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Figure 6.8: Example of experimentally obtained phase reluctance measurement noise
RphN − R̄phN for Nm = 250 rpm and Tl = 3.5 Nm

The measurement noise covariance matrix (5.77) for the EKF-RS algorithm also
requires knowledge of the phase current measurement noise σi. It was obtained from
(5.78) as

σi =

√√
√
√
(

max(~iabc)√
12 ∙ 2NADC

)2

+ EIN2

(
max(~iabc)

uDD

+
1

Rsh

)2

= (6.5)

=

√(
8

√
12 ∙ 212

)2

+ 0.00072

(
8

3.3
+

1

0.05

)2

= 15.8 mA, (6.6)

where max(~iabc) is the phase current measurement scale, NADC is effective resolution
of ADC in the number of bits, and EIN was obtained from operational amplifier
manufacturers datasheet [BSL+10].
The matrix R̃ was, therefore, configured identically as for simulations in Sec-

tion 5.4.1 and Section 5.4.2. The same goes for the matrix Q̃. The standard devi-
ations of the normalized reluctances R

′

d and R
′

q were selected manually to a small
value as it was assumed, that these parameters will not change significantly during
a single sampling period. This led to the selection of value

σRd
= σRq = 0.0005 H−1. (6.7)
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The speed estimation deviation was selected as maximal electrical speed change with
nominal torque Tn and moment of inertia J combining both the SynRM and the
PMSM load per sampling period Ts as

σωe =
TsTnom

J
=

0.0001 ∙ 3.5
0.00364

= 0.096 rad/s. (6.8)

Because the position θe is obtained as pure integration of ωe, its deviation was set
as σθe = 0 rad. The standard deviation of the stator resistance σδRs

was configured
identically as in Section 5.4.2.

6.2.2. High-Frequency Injection Algorithm Implementation

The block diagram of the FOC algorithm with implemented high-frequency injection
position and speed estimator is in Figure 6.9, which elaborates the SynRM-side of
the diagram in Figure 6.5.

Figure 6.9: Block diagram of FOC with HFI algorithm

A harmonic voltage vector injection into d-axis was used with signal amplitude
Um = 20 V and frequency fhf = 500 Hz . The current components at injected
frequency were filtered using BPF filters with 25 Hz bandwidth for both the direct
and quadrature axis shifted by π

4
. This allowed using a version of the heterodyne

algorithm, capable of extracting higher error signal εhf amplitude. Low-pass filters
in the heterodyne algorithm were tuned to 500 Hz bandwidth. The speed ω̂e track-
ing was done using the PI controller with proportional and integration gain tuned
manually to KP = 1 ∙ 105 and KI = 100. The high-frequency components idhf and
iqhf were subtracted from measured current ~idq to avoid interaction of current PI
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controllers with the injected signal. The algorithm was operated with centre-aligned
PWM switching scheme only.

6.2.3. Extended EMF Observer Implementation

The block diagram of the FOC algorithm with implemented extended EMF position
and speed estimator, which elaborates the SynRM-side of the diagram in Figure 6.5,
is in Figure 6.10. The EEMF algorithm cannot be used for low-speed regions and
a different algorithm (see LS block in Figure 6.10) must be used to provide esti-
mates ω̂els and θ̂els while the machine starts-up to a minimal speed at which EEMF
converges. Switching of speed regions is depicted by signal S1. There are many pos-
sible implementations of the LS algorithm, ranging from simple open-loop startup
algorithm to HFI described in Section 6.2.2. For the purpose of experiments in this
thesis, the position was obtained from the encoder sensor. The final rotor position
θ̂e and speed ω̂e were obtained by tracking the voltage vector ~̂edq using tracking ob-
server (2.13) and integrator (1.21), which formed TO in Figure 6.10. The bandwidth
of the tracking observer was set to 5 Hz by configuring gains of the integrated PI
controller. As mentioned in Section 6.2, three different approaches to inductance
adaptation were implemented:

• EEMF observer with constant model parameters - The stator inductances were
kept at L̂d = Ld0 = 0.65 H and L̂q = Lq0 = 0.2 H throughout the entire EEMF
algorithm operation.

• EEMF observer with LUT - Inductances were obtained at runtime from LUTs
containing offline-measured data shown in Figure 1.11 and Figure 1.12. Cross-
saturation effect was considered.

• EEMF observer with RLS - The RLS algorithm was implemented using equa-
tions (2.30) to (2.39). The forgetting factor was set λ = 0.99 and the covariance
matrix was initialized by setting large values 105 in its diagonal. To achieve
and maintain convergence at the steady state, the PRBS voltage injection was
implemented into both direct and quadrature axis with a different initial seed.
The 5-bit PRBS excitation signal with 20 V amplitude and 10 ms sampling
period was used. These parameters were selected so the longest step generated
by PRBS is several times longer than machine time constant, which is critical
for accurate identification.

Selection between adaptation algorithms is depicted by signal S2. The algorithm
was operated with a centre-aligned PWM switching scheme only.
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Figure 6.10: Block diagram of FOC with EEMF algorithm

6.3. Measurement Results

This section presents results of conducted experiments. Section 6.3.1 will focus
on the general position and speed estimation capability of EKF-BASIC and EKF-
RS. The main analysis, which responds to estimation accuracy goals formulated in
Section 4.3, is then available in Section 6.3.2. Finally, Section 6.3.3 will analyze the
impact of the ASPWM scheme used by EKF-BASIC and EKF-RS and the impact
of signal injections required by HFI and RLS algorithms on power losses and the
MTPA and ME trajectories.

6.3.1. Basic Speed and Position Tracking

The basic capability of position and speed tracking in the full speed range of EKF-
BASIC and EKF-RS estimators is shown in Figure 6.11 and Figure 6.12. The
position error θerre spikes up to 25 degrees were recorded during dynamic events in
Figure 6.11c and Figure 6.12d, but with the corresponding FOC tuning it did not
lead to loss of stability or even significant degradation of performance. The error
θerre then dropped during stead-state. Deeper analysis of steady-state performance
is available in Section 6.3.2.
It is noticeable, that the overall speed and position tracking ability of EKF-

BASIC and EKF-RS are very similar. This was expected because the additional
machine model integrated within the EKF-RS mainly serves to estimate the stator
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resistance R̂s, while the position and speed information is extracted from R
′

phN

measurement.
The speed reversal during the experiment also shows the ability of both algo-

rithms to run at low-speed or even standstill, which is a considerable benefit when
compared to EEMF algorithm.
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Figure 6.11: EKF-BASIC a) speed estimate and errors of b) speed and c) position
estimates in full speed range
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Figure 6.12: EKF-RS a) speed and b) current estimates and errors of c) speed and
d) position estimates in full speed range
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6.3.2. Steady-State Parameter Estimation Accuracy

To give and idea of investigated algorithm performance from wide speed and load
operation range, the data for steady-state estimation accuracy were measured at the
following points:

• Speed Nm was set from 100 rpm to 900 rpm with 200 rpm step (i.e. five settings
total). The EEMF-based algorithms were tested only at speed 500 rpm and
higher, while at the lower speeds the HFI was used. The EKF-BASIC and
EKF-RS algorithms were verified at full speed range.

• Load Tl was set from 0.5 Nm to 3.5 Nm with 0.5 Nm step (i.e. seven settings
per one speed setup).

• Current angle θ̂I was set from 40 degrees to 76 degrees with two-degree steps
(i.e. 23 points per each load and speed setup). Note that θ̂I was not compen-
sated for θerre to avoid inclusion of sensor information into the control loop.

Also note that the machine temperature was maintained roughly 50±5 ◦C during
the measurement of all operating points.

Position Estimation Accuracy

All algorithms listed in Section 6.2 were considered for this analysis. The minimal,
average, and maximal values of steady-state position error θerre obtained for different
current angle θ̂I measurements were marked in the following charts. This was done
to highlight the robustness of the position estimate as well.
Figure 6.13 shows steady-state position estimation error θerre for EKF-BASIC

and EKF-RS. Both algorithms showed errors, which generally meet the goals set in
Section 4.3. The EKF-RS algorithm position error was sometimes several degrees
higher than in the case of EKF-BASIC, but it is not a significant difference and it
could be contributed to various factors (e.g. initial encoder position finding).
Figure 6.14 shows measured position error θerre values for the HFI algorithm.

Generally, its performance is comparable to the proposed algorithms.
Steady-state position errors θerre for all EEMF algorithm variants are shown in

Figure 6.15. The EEMF with constant parameter setting shows by far the greatest
θerre error, despite being a popular option in the literature. The RLS implementation
achieved low θerre error values, but with an increased dependency on the current angle
θ̂I value (i.e. large variation). The best performance was achieved with accurately
identified parameters provided by LUT tables. Although it should be noted, that
any discrepancy between such offline-obtained parameters and the actual machine
parameters led to significant position error θerre . The L̂d inductance errors δLd

=
±25 % caused position errors close to ten degrees, which is even more than was
predicted by simulation in Figure 4.7.
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Figure 6.16: Histograms of measured θ̂erre for a) EKF-BASIC, b) EKF-RS, h) HFI
only, and HFI with c-e) EEMF+LUT, f) EEMF+RLS, and g) constant EEMF
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Another view for all considered combinations of algorithms is available in his-
togram collection in Figure 6.16. Bin size for all histograms was selected to half of
degree. To have a valid comparison of EKF-BASIC and EKF-RS, which can operate
in a full-speed range, the HFI was always considered to be used at the low-speed
region at 100 rpm and 300 rpm. The contribution of HFI was then marked by orange
marked colour bars in Figure 6.16. Overall, the results show that EKF-BASIC and
EKF-RS algorithms do not offer better position estimation accuracy, then correctly
configured state-of-the-art algorithms. At the same time, however, the proposed al-
gorithms provided acceptable and consistent performance in full measured load and
speed range, while not being reliant on precise knowledge of machine parameters.

Inductance and Resistance Estimation Accuracy

This section compares inductance and resistance estimation accuracy of EKF-BASIC,
EKF-RS, and RLS algorithms. The relative errors of resistance δRs , direct axis in-
ductance δLd

, and quadrature axis inductance δLq estimates were obtained in rela-
tion to offline-measured values stated in Section 1.2. Histograms in Figure 6.17,
Figure 6.18, and Figure 6.19 show a comparison of the accuracy of estimates over
all the measured operation points. Histogram charts used δLd

= δLq = 5 % or
δRs = 20 % width of bins.
Both proposed algorithms showed errors, which generally met the goals set in

Section 4.3, while the RLS algorithm showed lower performance. Although the
original publication with the implemented RLS algorithm showed similar errors,
the measurement results should not be interpreted as if better performance could
not be reached [ITDO06]. It can, however, be claimed that highly accurate online
parameter adaptation is not a trivial task. As for the EKF-BASIC and EKF-RS
estimate errors (namely for the stator resistance R̂s), their likely sources are the
small periodic deformations ΔR(θe + θphN ) in R

′

phN measurements as can be seen

in Figure 6.6 to Figure 6.8. Especially the R̂s estimation is sensitive to inductance
inaccuracy, as was shown by simulation in Figure 5.22. This highlights the fact
that performance of EKF-BASIC and EKF-RS algorithms is closely tied to R

′

phN

measurements and attention must be paid to MC IDC tuning and to discard any
deformed uidc samples.
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Figure 6.17: Direct axis inductance L̂d estimates and corresponding histograms of
estimate error δLd

for a) EKF-BASIC, b) EKF-RS, and c) RLS algorithms
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Figure 6.18: Quadrature axis inductance L̂q estimates and corresponding histograms
of estimate error δLq for a) EKF-BASIC, b) EKF-RS, and c) RLS algorithms
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Figure 6.19: Stator resistance R̂s estimates and corresponding histograms of esti-
mate error δRs for a) EKF-RS and b) RLS algorithms

6.3.3. Comparison of Optimal Power Trajectories

This section will analyze data from the same measurements as in Section 6.3.2 in or-
der to determine the impact of signal injections used by HFI and RLS algorithms and
the ASPWM switching scheme used by EKF-BASIC and EKF-RS to optimal MTPA
and ME trajectory. The centre-aligned PWM switching scheme with no signal in-
jection will be considered as a reference. All optimal MTPA and ME trajectories
were obtained from characteristics as shown in the example for Nm = 700 rpm in
Figure 6.20. Note that in this case the shown current angle θI was maintained by
the encoder sensor so the characteristics were not skewed by estimator error θ̂erre .
As can be seen in the example, the MTPA trajectory is always located at lower
current angles than the ME trajectory, which corresponds to simulated trajectories
in Figure 3.13.
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Figure 6.20: Examples for optimal MTPA and ME trajectories obtained at 700 rpm
for a-b) centre-aligned PWM, c-d) ASPWM, and e-f) CAPWM with PRBS injection
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Figure 6.21: Optimal a) MTPA and b) ME trajectories with CAPWM and relative
current ΔIm and input power ΔPdcM differences when using c-d) ASPWM scheme
or e-f) signal injections
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To evaluate the impact of using ASPWM switching scheme or injections, like
the PRBS signal injection used by RLS algorithm and the harmonic signal injection
used by HFI, Figure 6.21 shows the stator currents Im and input powers PdcM corre-
sponding to the optimal MTPA and ME trajectories in comparison to centre-aligned
PWM scheme with no injections (i.e. a reference configuration). As expected, the
additional PRBS and harmonic injections caused a measurable increase of both the
stator current amplitude ΔIm and input power ΔPdcM . Results in Figure 6.21f
show an increase of input power ΔPdcM in units of Watts for both the PRBS and
the harmonic injection. The exact increase in a real application would, of course,
be a matter of parameters of the injected signal, but it is safe to assume that any
injection will always lead to additional power losses. As for the alignment-swap
PWM switching scheme used by the EKF-BASIC and the EKF-RS algorithms, it
was discussed in Section 5.2 that the method leads to elevated current ripple, but
also reduces the switching power losses by factor of one third. Experimental results
in Figure 6.21d show a reduction in input power ΔPdcM by units of Watts, which
generally confirms this prediction and shows the potential value of the method. This
is true especially for drives with high stator inductances, where the increase in THD
and audible noise is not as significant.
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Conclusions
This thesis focused on the development of SynRM state and parameter estimation
algorithms suitable for sensorless power-optimal applications. Chapter 1 of this the-
sis showed the SynRM machine mathematical model and its significant inductance
non-linearity caused by magnetic saturation. Chapter 2 and Chapter 3 then pre-
sented the existing SynRM sensorless state and parameter estimation, as well as,
power-optimization control algorithms. Evaluation of the SynRM power-optimal
sensorless control state-of-the-art was conducted in Chapter 4. The impact of posi-
tion and inductance estimate errors on the estimated power-optimal current angle
θI , which directly affects the MTPA and ME power optimality, was simulated on
the model of the reference 550 W SynRM machine. The analysis resulted in goals
listed in Section 4.3, which were pursued by the algorithms proposed in this thesis.
In summary, it was deemed that sensorless position, speed, and inductance estima-
tor is necessary, capable of operating in full-speed range with a good estimation
accuracy but without costly hardware and need of significant signal injection.
The proposed method, designed to fit the four defined goals, was presented and

verified by simulation in Section 5 and it featured three novel ideas:

• The current derivative measurement method is described in Section 5.1. The
simple and low-cost measurement circuit MC IDC allows measuring Δidc with
improved accuracy. As shown by the proposed EKF-BASIC algorithm variant,
this measurement alone is enough to obtain machine phase reluctances and
consequently estimate the rotor position, speed, as well as actual machine
inductances.

• The alignment-swap PWM switching scheme shown in Section 5.2 allows to
measure the current derivatives even for small duty cycle values. The method
introduces increased stator current ripple at lower duty-cycles but also reduces
the inverter switching losses by a third, which might make this approach at-
tractive for suitable power-efficient systems.

• The phase reluctance measurement can be used to extract all the necessary
machine states and parameters. Additional measurements and machine models
can then be used as redundancy (e.g. to serve as diagnostics for fail safe
systems) or to extract further information. The latter was realised in this thesis
by integrating the machine model and phase reluctance measurements via the
extended Kalman filter. For example, the proposed EKF-RS algorithm variant
then allowed to estimate the stator resistance R̂s and the previously published
method provided core losses estimate [MVB21]. It is likely, that many other
modifications could be derived to support a wide range of applications.

The use of the ASPWM scheme and the phase reluctance measurement method
based on the MC IDC circuit allowed to meet the requirement of low additional
cost and ability to operate at low-speed and standstill. To verify the capability of
proposed algorithms to meet the position and inductance estimate accuracy goals,
Chapter 6 presented results from the experimental verification and comparison with
known state-of-the-art algorithms. Carefully designed and tuned existing methods,
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like, for example, the EEMF observer with accurate offline-measured inductances
in LUT, can generally achieve a great position estimation performance, however,
it quickly deteriorates when actual machine parameters differ. On the other hand,
the proposed method is highly adaptive, can generally deliver a robust performance,
and meets the defined goals when accurate machine parameters are not available
or change during runtime (e.g. due to temperature). The impact of using the
proposed ASPWM method was compared in terms of achievable MTPA and ME
optimal power to the commonly used PWM switching scheme with and without
signal injections. The results confirm reduced power losses when using ASPWM
and show its potential value for suitable applications.
Overall the presented adaptive sensorless state and parameter estimation method

met the goals defined within this thesis. Its parts or as a whole, it might serve as
an interesting alternative for SynRM-based high power-efficient applications.
Future research and development may focus on many areas. First, the proposed

methods should be tested with a larger sample of SynRM machines, preferably on
various real applications to better understand the algorithm suitability for the field.
Second, it would be interesting to further investigate the interaction of multiple
models and measurements within EKF with accurately obtained state and measure-
ment covariance matrices as it may yield estimate accuracy improvement rather than
additional estimated quantities. This could make the algorithm an appealing option
for high-performance applications. To make the proposed algorithm more attractive
for low-cost applications with limited computational power, its simplification should
be investigated. The most complex portion is the EKF calculation, hence, at least
a partial replacement should be sought. There are many possibilities worth con-
sidering. An example may be a combination of the EKF-BASIC and EEMF using
the Model Reference Adaptive System (MRAS) approach to obtain the additional
estimates.
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