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A B S T R A C T 
Synchronous reluctance motors are becoming a more and more popular alternative 
to the A C induction machine for their relatively high power efficiency, low cost, and 
high robustness. Fu l l uti l ization of benefits of sensorless control and high power 
efficiency are being complicated by non-linearities of the motor, especially mag­
netic saturation. The beginning of this work is dedicated to an inference of the 
mathematical-physical model of S y n R M and an overview of existing state-of-the-art 
sensorless power-optimal algorithms. The core of this work is then the introduction 
of the S y n R M state and parameter estimator, which is based on a new approach to 
measurement and util ization of phase reluctances. The key elements of the algorithm 
are a new methodology for measuring phase reluctances, a P W M switching scheme 
that allows to reduce switching losses and to measure phase reluctances from zero 
speed, and finally the integration of these measurements wi th the S y n R M mathe­
matical model using extended Ka lman filter. The experimental part of the thesis 
then discusses the real measurement results obtained wi th the proposed algorithms 
and several selected state-of-the-art algorithms. 

K E Y W O R D S 

Synchronous, S y n R M , Reluctance, F O C , Power optimization, M T P A , M E , E K F 

A B S T R A K T 

Synchronní re luktanční motory se pro svou re la t ivně vysokou účinnost , robust­
nost a nízkou cenu stávají stále populárnějš í alternativou velmi rozšířených asyn­
chronních moto rů . Snaha o využit í výhodných vlas tnost í bezsnímačového řízení, 
a dosažení co nejvyšší účinnost jejich provozu, je však komplikována jejich výraz­
nou nelinearitou způsobenou sa turací magnet ického obvodu. Úvod t é t o práce je 
věnován popisu matematicko-fyzikálního modelu S y n R M a přehledu existujících 
moderních a lgor i tmů výkonově-opt imálního bezsnímačového řízení. J á d r e m práce je 
pak předs tavení e s t imá to ru s tavů a p a r a m e t e r ů S y n R M pos taveného na novém přís­
tupu k měření a využit í fázových re luktancí . Klíčovými prvky algoritmu jsou nová 
metodologie měření fázových re luktancí , spínací P W M schéma jež umožňuje snížit 
spínací z t r á t y a měř i t fázové reluktance od nulových otáček, a nakonec integrace 
těchto měření s m a t e m a t i c k ý m modelem S y n R M s pomocí rozšířeného Ka lmánova 
filtru. Exper imentá ln í část práce pak diskutuje výsledky reálných měření s navrženým 
algoritmem a vybranými současnými algoritmy. 
K L Í Č O V Á S L O V A 
Synchronní , S y n R M , Reluktance, F O C , Optimalizace výkonu, M T P A , M E , E K F 

M Y N Á Ř , Z. High power-efficient sensorless control of synchronous reluctance mo­
tor. Brno, 2022, 143 p. Doctoral thesis. Brno University of Technology, Faculty of 
Electrical Engineering and Communication, Department of Control and Instrumen­
tation. Advised by prof. Ing. Pavel Václavek, P h . D . 
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R L S Recursive Least Squares 

R M S Root Mean Square 

s c Search Controller 

S V M Space vector Modulat ion 

S y n R M Synchronous Reluctance Motor 

T H D Total Harmonic Distortion 

T O Tracking Observer 

V F C Voltage-to-Frequency Converter 

V S I Voltage Source Inverter 
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Introduction 
Synchronous reluctance motor (SynRM) is known since the first half of 20 t h century 
[Kos23]. This type of electrical motor was ini t ial ly considered to be inferior in 
comparison wi th other types of motors, mostly because of relatively low output 
torque and efficiency Thanks to technological advances in the design of S y n R M 
rotors, which greatly enhanced machine performance, more and more attention is 
being paid to S y n R M . The most notable advantages of this technology are: 

• S y n R M can achieve around 10% to 15% larger rated torque for a given frame 
size in comparison to an A C induction machine ( A C I M ) [BP08]. 

• Very low production cost because the assembly of laminated rotor topology is 
quite simple and requires no costly permanent magnets [ M D D + 2 2 ] . 

• There are no Joule losses in the rotor of S y n R M . Resulting lower operation 
temperature has many benefits, like, for example, longer life of ball-bearings 
and reduced thermal requirements for lubricants [ R F C 10]. 

• There is no risk of permanent magnet demagnetization due to heat like in the 
case of permanent magnet synchronous machine ( P M S M ) . 

• Constant power region during field weakening can be theoretically extended 
to infinite speed because there is no permanent magnet flux to suppress. 

A comprehensive comparison of S y n R M technology wi th A C I M and P M S M tech­
nologies is available in Table 1. It should be also noted that permanent magnet 
assisted synchronous reluctance motors are not wi thin scope of this thesis and only 
purely magnet-less machines are considered. 

Despite several S y n R M disadvantages, it can be expected, that the low main­
tenance, production, and operation cost of S y n R M wi l l make it popular mainly in 
cost-sensitive inverter-based applications like pumps, fans, or H V A C s . That be­
ing said, other major applications, like the automotive, are being considered as 
well [BP08, M D D + 2 2 ] . To fully exploit this potential, great attention is currently 
being paid to the development of power-optimal sensorless control algorithms for 
S y n R M , which would minimize necessary operation input power and remove the 
need for expensive rotor position and speed sensor. Such power-optimal control is 
also the topic of this thesis, or more precisely, a proposal of sensorless state and 
parameter observer necessary to bui ld such an application. 

The first section of this thesis introduces S y n R M mathematical model. Attention 
is paid especially to the magnetic saturation phenomenon and the core losses, which 
are the major non-linearities of S y n R M , complicating its power-efficient sensorless 
control. 

The second chapter summarizes the existing sensorless S y n R M state and param­
eter estimation algorithms, which can be integrated within the well-known field-
oriented vector control (FOC) algorithm. The rotor position and speed estimation 
algorithms can be generally divided into groups based on exploitation of extended 
back-electromotive-force ( E E M F ) , rotor saliency, or both. A n overview of the cur­
rently used state-of-the-art sensorless algorithms from each group is provided. Some 
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Table 1: Comparison of S y n R M with P M S M and A C I M technologies [MDD+22] 

S y n R M advantages over P M S M S y n R M advantages over A C I M 

• No permanent magnets: • Synchronous operation (no slip) 
- Significantly reduced cost • No conductors in rotor: 
- Reduced embedded carbon - Improved robustness 
- Easier manufacturing - Manufacturing cost 
- Reduced risk of over-voltage - Lower rotor losses (cold rotor) 
- Reduced risk in the supply chain - Lower maintenance requirements 

• No demagnetization risk • Higher efficiency 

• Wider operating speed range • Higher power density for same size 

• No need for clutch in case of • Lower rotor inertia 
short-circuit fault • Longer bearing life 

S y n R M disadvantages over P M S M S y n R M disadvantages over A C I M 

• Lower power and torque density • No line-startup capability 

• Lower power factor without rotor modifications 

• Not yet widely accepted • Lower power factor 
by industry • Not yet widely accepted 

• Complex control due by industry 
to non-linearity • Complex control due 

• Lower efficiency to non-linearity 

of these algorithms, especially the E E M F - b a s e d ones, then require accurate machine 
parameters for their operation. Several notable parameter estimation algorithms are, 
therefore, also described in that chapter. 

The third chapter deals with S y n R M power-loss modelling, optimization criteria, 
and wi th the existing power optimization algorithms. Several algorithms belonging 
either to active search or to power-loss-based algorithm groups are shown and dis­
cussed. One of the presented algorithms is the DC-current injection optimization 
search algorithm, which was proposed during research for this thesis. 

The fourth chapter analyses the sensitivity of selected parameter estimation and 
power optimization algorithms to the inaccuracy of provided machine parameters. 
A s an example, the optimal model-based power-optimization and the well-known 
E E M F observer algorithm in combination wi th both the inductance look-up table 
and the online least square estimation method were simulated. This analysis aimed 
mainly to determine the necessary parameter observer performance requirements, 
which aware then taken as goals for the algorithms proposed in this thesis. 

The fifth section presents the core of the conducted research. It describes the pro­
posed observer, which is based on the extended Ka lman filter, novel low-cost current 
derivative measurement method, and pulse-width modulation technique. Besides the 
theory and discussion, this chapter also introduces simulation results. A s wi l l be 
shown, the algorithm has several attractive features, like full-speed operation range, 
improved efficiency, and the machine rotor and position information redundancy, 
which can be used to estimate additional machine states and parameters (this thesis 
shows an example wi th stator resistance estimation). 
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The final chapter then describes and discusses the experimental setup and re­
sults. Beside the proposed methods, selected existing state-of-the-art algorithms 
were implemented and analysed as well. The basic function of rotor position and 
speed tracking was investigated but the main focus was paid to steady-state param­
eter estimation accuracy and impact to achievable power efficiency. 
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1. SynRM Model and Properties 
The goal of this chapter is to introduce the S y n R M non-linear system model and 
properties to show challenges related to its optimal control and to serve as a foun­
dation for later chapters of this thesis. The first part of this section is focused 
on the mathematical modelling of S y n R M including magnetic saturation and core 
power loss phenomenons. Section 1.2 then shows offline-identified parameters of 
the real, commercially-available S y n R M machine, in order to highlight the extent 
of non-linearity of a typical machine and to serve as a reference for the rest of this 
thesis. 

The stator of S y n R M is identical to a standard A C induction machine, which means 
typically a three-phase stator wi th harmonically distributed windings so a sinusoidal 
rotating magnetic field is created when powered by A C power. The rotor construc­
tion is, however, different, because it contains no windings or permanent magnets. 
Instead, the rotor is constructed so the highest possible difference in magnetic re­
luctance (and thus stator inductance as well) is achieved between the rotor axes. 
The rotor and stator always have the same number of pole pairs. When such a 
rotor is exposed to a rotating magnetic field, a torque is produced, because the most 
magnetically conductive rotor axis tries to align itself wi th the vector of the stator 
magnetic field. This is because an aligned configuration achieves the minimal mag­
netic flux density in the air gap and so the minimal energy state of the magnetic 
field is reached. The rule is that the higher the rotor anisotropy, the higher torque 
can be achieved. 

Figure 1.1 depicts the typical construction topologies of the four-pole S y n R M 
rotor. The construction with pronounced poles in Figure 1.1a offers relatively low 
maximal achievable torque, however, due to its simple and robust construction it 
is often found in very-high-speed applications. The highest rotor anisotropy can be 
currently achieved using the axially-laminated construction as shown in Figure 1.1b. 
Due to increased eddy current power losses and higher manufacturing costs due to 
its complicated design, it is, however, used marginally. The most widespread rotor 
topology today is the transversally-laminated rotor as shown in Figure 1.1c. These 
rotors offer a relatively good balance between production cost and the maximal 
achievable torque [Ko l lO ,ODM15] . 

As the first step, Clarke's transformation wi l l be used to obtain a sufficiently 
simple S y n R M mathematical model. This transformation converts quantities from 
the three-phase abc to two-phase af3 stationary coordinate system as shown in F ig-

—* T 
ure 1.2. The stator phase voltage vector uabc = [ua,Ub,uc] can be written as 

1.1. Mathematical Model 

up\ 3 |_0 ^ 

1 -
2 

U, a 
U. 'aP ~ 

saber* 
aP uabc; 

21 



(a) 
Figure 1.1: Rotor construction 
and (c) transversally-laminated [KollO] 

(b) (c) 

a) wi th pronounced poles, (b) axially-laminated, 

where uap is the stator voltage vector in aj3 coordinate system and T®^ is Clarke's 
transformation matrix. The | coefficient in equation (1.1) was added to normalize 
amplitudes of quantities in aj3 coordinate system to values in three-phase system 
abc. The inverse transformation can be done as 

it abc T a ß i t 
iabcUaß 

_ 1 
2 
1 

L 2 

0 
VŠ 
2 

-VŠ 
2 J 

Uaß; (1.2) 

where T " ^ is the inverse Clarke's transformation matrix [CCernylO]. 

Figure 1.2: Principle of Clarke's transformation 

Further model simplification can be achieved using Park's transformation. This 
transformation converts quantities from the two-phase stationary a(3 to the two-
phase rotating dq coordinate system as shown in Figure 1.3. The d axis is usually 
referred to as the direct axis and the q axis as the quadrature axis. The S y n R M 
stator voltage vector can be written as 

Udq u„ 
uQ 

Uß 

COS#e Sin^e 

— S i n # e COS# e 

Uaß; 1.3) 

22 



where Udq is the stator voltage vector in dq coordinate system, 6e is the rotation 
angle, and T%( 
can be done as 
angle, and T^(6e) is the Park's transformation matrix. The inverse transformation 

)Udq 
COS#e -Sin^e 
Sin^e COS#e 

Udq, ;i-4) 

where T ^ ( is the inverse Parks's transformation matrix. 

Figure 1.3: Principle of Park's transformation 

The electrical angle 8e is chosen wi th regard to the simplicity of the resulting 
mathematical model. In the case of permanent magnet synchronous motor ( P M S M ) , 
the angle is chosen identical to the rotation angle of the permanent magnet north 
pole. In the case of S y n R M , however, the choice is ambiguous. The direct d-axis can 
be aligned with the maximal or the minimal inductance axis. The S y n R M model 
is non-linear and the alignment choice does not necessarily lead to identical results 
in the case of some algorithms. In this work, similarly to the great majority of 
literature, the alignment with the maximal inductance axis wi l l be used, as shown 
in Figure 1.4 [CCernylO, ITDO06]. 

Ld>Lq 

Figure 1.4: Four-pole rotor wi th highlighted dq-axes 

The stator voltage in stationary reference frame can be described by equation 

Ua/3 — RSiaf3 + J ^ " / 3 ' ; i .5) 
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T 
where Rs is stator winding resistance, iap = [iajip] is stator current vector, and 
$ap = [ ^ « , ^ / 3 ] T is stator magnetic flux vector in a(3 reference frame. Equation 
(1.5) can be expressed in rotating reference frame as 

R,T <*P( 

dq \ 
a/3, 
dq \ dt a 3 

R s i d q + Tdq (0e) — 

- Rsidq + T ^ ( 
dt ^ 

dq 

-ia/3. dq ^dq + Tdg y,e)J.ap 

Rsidq + Ue 

0 - 1 
1 0 Rsidq + UeZ^>dq + 

dt 

d 

dt 

^dq 

Vdq, 

1.6) 

where uie = d9e/dt is synchronous electrical speed, Z is n/2 rotation angle matrix, 
idq = [idjiq] is stator current vector, and \E^ g = [^d,^<?] is stator magnetic flux 
vector in dq reference frame. The stator current vector can also be expressed using 
it's amplitude Im and the rotor position relative angle Oi as 

Idq 
COS t>i 
sin 91 ;i-7) 

One of the S y n R M disadvantages, which complicate its control, is the non-
linearity of the magnetic circuit, which saturates at higher currents. The S y n R M 
machines are being operated under magnetic saturation commonly because relatively 
high magnetic flux is needed to reach the necessary torque. The stator inductances 
are therefore becoming functions of stator currents in both direct and perpendicular 
axis (also called cross-saturation). To simplify further S y n R M model inferring, the 
cross-saturation is, however, going to be neglected. The ideal non-saturating situa­
tion for the direct axis is depicted in Figure 1.5a and the real saturating relation is 
shown in Figure 1.5b. 

a) " b) 
Figure 1.5: The current dependency of the stator magnetic flux a) with and b) 
without magnetic saturation [ITDO06] 

The stator magnetic flux considering the saturation effect can be described as 

dq 
Ld (id) 0 

L q (iq) 
hlq Lidq; 
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where L is the static inductance matrix, Ld (id) is the static inductance in the di­
rect axis, and L q (iq) is the static inductance in the quadrature axis. The static 
inductances are given by the ratio between the magnetic flux and the current am­
plitudes. To describe dynamic events, however, the dynamic inductances have to be 
introduced as 

Jd(id) = ^ and L'q(iq) = ^ , (1.9) 

where Ld(id) is dynamic inductance in the direct axis and L (iq) is dynamic in­
ductance in the quadrature axis. Figure 1.5 shows that dynamic inductance has a 
character of the tangent to the operating point. In the ideal case wi th no saturation 
in Figure 1.5a, the dynamic and static inductances are equal. 

Introducing the relation (1.8) into (1.6), the stator voltages can be described as 

dLd(id)\ , T ,. .di 
Ud = Rsid + id ( ^ a ^ a ' J + L d ^ d ^ ~ ^ ~ Lliil)UJeiq 

Rsid + i d ^ ^ + LSd) ^ - L J i v ) U e i v = (1-10) 
dLd[id) \ did 

did

 + L d { l d ) ) dt ^ w * ' * 

= Rsid + Ld(id)^ - Lq(iq)ueiq, 

( dLq(iq) \ diq 

Uq = R s l q + I lq—~ h Lq(lq) — + Ld{ld)Ueld = 
V m<? / m (i id 

di ' 
= Rsiq + L'q(iq)-£ + Ld{id)ueid-

These relations show that the difference between dynamic and static inductance has 
no effect when in steady-state [ I T D O 0 6 , X X L N 9 1 ] . Note, that from now on, both 
the static and dynamic inductances wi l l be stated without their explicit current 
dependency to simplify the following text. 

The S y n R M machine core-losses Ppe were neglected up unt i l this moment. These 
losses are created during magnetization as hysteresis losses and represent the second 
most significant losses after the Joule losses. In the ideal case, the core losses are 
only present in the stator, thanks to the synchronous operation of the machine. 
In practice, however, there is also a flux change when the rotor crosses near the 
stator teeth, which leads to the formation of core losses in the rotor as well. The 
rotor losses are, however, negligible in comparison to stator losses and wi l l not be 
considered. The core losses are usually modelled using the resistance Rc, which is 
the same for d and q axis. The resulting S y n R M model is shown in Figure 1.6. 

It can be noticed that the measured current idq is now divided into loss current 
idqc = [idci iqc] a n d flux-producing current idqo = [ido,iqo] • The core loss modelling 
for dynamic events would significantly complicate the model, so only the steady-
state wi l l be considered. This can be afforded if the S y n R M machine is used in 
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Figure 1.6: The S y n R M model including core losses in a) direct and b) quadratic 

axis 

low-dynamic applications, which is often the case [DTCB22] . The Rc resistance can 
be calculated as 

3 ^ W + *« (1.12) 
Fe 

and is, therefore, dependent on both the size of the stator flux and the rotor speed. 
Alternatively, the core losses are often being described using the core loss coefficient 

Rr 

which is used for its less variable nature when compared to resistance Rc 

relation between measured and flux-producing current can be expressed as 

i do 

Rc 

UeLdidO 
Rc 

RUd + Rc^eLql 

Id = IdO -

+ 

q'q 

R?r+u?LdL, 

R% 

d-l^q 

Rc^eLdid 

m+u*LdLQ 

(1.13) 

The 

(1.14) 

(1.15) 

(1.16) 

(1.17) 

When expressing the flux-producing current using its amplitude Im0 and angle #/0, 
where idqo = /mo[cos#f 0 , sin 9io\ , it can be noticed that the relation 6i > QIQ 
wi l l always be true in motoring region, The situation is depicted in Figure 1.7. 
The inclusion of core loss resistance Rc into the model might, therefore, benefit the 
accuracy of found solution. The voltage equations (1.10) and (1.11) can be rewritten 
using the current expressions (1.16) and (1.17) as 

Udq RsidqO + 
Ld 0 

0 L'q 
, d 

dt 
idqO + Ve 1 + 

R, 

RsidqO + L ~^dqO + We 1 + 
Rs 

R, 

Rc 

^^idqO; 

Ld 0 
0 Ln 

Zidq 

(1.18) 

where L ' is the dynamic inductance matrix [ I K K + 0 9 , K S 9 6 b , Y T A 0 5 , X X L N 9 1 ] . 
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U HO 
Figure 1.7: Stator current vector comparison with core loses included 

Generated electrical torque applied to the machine shaft can be calculated as 

(1.19) 

3 3 
Te = -PP(^dq x idq0) = -Pp (Vdiq0 - tyqid0) 

3 3 
= 2^v^d — Lq)idoiqo = -Pp(Ld — Lq)Im0 sin2^/o-

where Pp is the number of pole pairs. It can be seen that the size of the difference 
between d and q axis inductances caused by rotor anisotropy is critical for achieving 
high output torque. 

To make the mathematical model complete, the mechanical equation 

dujn, 
~dt J 

[Te - T i - Bxum - sign.(um)B2u;ll] (1.20) 

is introduced, where uim = ue/Pp is mechanical rotor speed, J is the moment of 
inertia, 7} is the loading torque, B>\ is internal machine viscous friction coefficient 
and B>2 is a ventilator mechanical loss coefficient. The rotor electrical position is 
then 

Be. uPdt. X21) 

In summary, the final mathematical model of S y n R M , including magnetic saturation 
and core losses, is formed by equations (1.18), (1.20), and (1.21) [CCernylO]. 

1.2. Parameters of Real SynRM Machine 
This section wi l l be discussing the offline-measured parameters of real S y n R M . The 
goal is to highlight the extent of machine parameter non-linearities on a real exam­
ple. The investigated machine is commercially-available four-pole 550 W S y n R M 
with transversally-laminated rotor (as shown in Figure 1.1c) from the K S B manu­
facturer. It is also used as a reference for al l simulations and measurements in this 
thesis. Its nominal plate values and other basic parameters are listed in Table 1.1. 
Further details provided by the manufacturer can be read from the machine label 
in Figure 1.8. The stator resistance Rs was measured using the R L C meter and the 
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mechanical parameters J and B were acquired from step dynamic response using 
the least square method approximation for the first order mechanical system ( 1 . 2 0 ) . 

Table 1.1: Basic parameters of 0 .55 k W K S B S y n R M machine 
Quantity Value Uni t 

p 
-1 nom 

5 5 0 W 
-^nom 1 5 0 0 rpm 
Uaom 3 5 0 Vrms 

^nom 1.6 A 

PP 

2 -
R s 9 .68 

J 1.64 • 1 0 " 3 kg • m 2 

B 1.96 • I Q " 3 N m • s/rad 

US K S B I 

3-IEC 60034 EN50347 KSB SuPremE® IE4 acc.lECfCD 60D34-30 Ed.2 
Mat 01562102 Typ 80M-BWA7F3NRSDWWZWKS 
kVW 0,55 cosqi 0,67 Eff4/4 8 4 , 5 % ä 
V T 350 Hz 50 Eff3/4 84,4% 
1/min 1500 °Camb 40 Eff 1/2 84,1% 
A 1,6 Nm 3,5 

I P 5 5 k9 11 KSB Aktiengesellschaft 
SN 704772 Insul F 67227 Frankenthal 
Code 1353268 UL E254469 Made in Croatia 

Figure 1.8: Reference S y n R M label 

Measurement of the stator inductances is not as straightforward. A s was ex­
plained in Section 1.1, magnetic saturation occurs when high stator currents are 
present. To obtain a sufficiently precise description of stator flux non-linearity, the 
combination of linear and inverse functions 

#d = L d o i d for \id\ < J (

t h r 

= L M i a for Iig I < J, 

d ; 
thr 

^ d = sign (id) + L d l i d + fd for \id\ > J f o r I," I -> rthr (1 .22 ) 
d ; 

mq = sign (iq) Vq0 + L q l i q + J for \iq\ > J f r 

is used as models, where L d 0 = L d = L ' d and L q 0 = L q = L ' q are used in the linear 
region, Ia

hr and J * h r are currents for which the saturation starts to occur, and tydo, 
^qo, Ldi, Lqi, j3d) and f3q are parameters describing the current dependency of flux 
in non-linear saturating region. 
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Compared to the commonly used polynomial approximation, this approach re­
quires fewer parameters to be identified and allows the option to simply express 
static and dynamic inductances in the linear and saturation regions as 

Ld = 
^d ^dO , T , ßd 
. — . + J^dl + .9 , 
id id id 

(1.23) 

Lq = . — . + Liq\ + .2 , 
%q %q %q 

(1.24) 

d^d T ßd 
— , . — J^dl .2 ; (1.25) 

4 _ d*q _ L ßq 

dig ^ %\ 
(1.26) 

The parameter needed for approximation (1.22) were acquired using the simple 
stator flux model (1.5) and multi-linear regression method ( M L R ) [BCP16]. The 
results are summarized in Table 1.2. 

Table 1.2: Stator flux characteristics approximation parameters 
A x i s Lx0 [mH] ^0 [Wb] Lxl [mH ß x [Wb-A] 

Direct 
Quadrature 

0 . 9 9 

0 .15 

6 7 0 

3 8 2 

1.30 

0 .11 

2 6 

81 

- 6 4 7 • 1 0 " 3 

- 8 . 5 • I Q " 3 

The resulting stator flux current dependency maps are shown in Figure 1.9 and 
Figure 1.10. The corresponding static and dynamic inductances are then in Fig­
ure 1.11 to Figure 1.14. The direct axis inductance is not only several times higher 
than in the quadrature axis, but it also saturates at much higher currents. This result 
was expected because the direct rotor axis is by majority formed by iron, while the 
quadrature axis is air-dominant. The quadrature axis path, however, does contain 
a small amount of iron due to construction reasons, which is quickly saturated even 
wi th a small current. This effect can be seen in Figure 1.12 and Figure 1.14, where 
the Lq drops to 25 % of its original value when \iq\ > 0.5 A . Some S y n R M control 
algorithms proposed in the literature are considering Lq to be constant in the full 
current range for simplicity [HKS99, K S G + 1 4 ] . The measurement, however, shows 
that this simplification can be afforded only when maintaining sufficiently high sta­
tor current amplitude (e.g. by operating loaded machine). Figure 1.11 shows that 
the direct axis inductance drops by one-third at nominal stator current I n 0 m - This 
effect cannot be neglected for efficiency-optimal sensorless S y n R M control. O n the 
other hand, the cross-saturation is relatively negligible, and is often neglected in the 
literature [AR15]. 

Comparison of static and dynamic inductance maps shows that dynamic induc­
tances drop faster wi th the increasing current than static inductances. Neglecting 
the difference between static and dynamic inductance in the algorithm is going to 
have more negative impact during dynamic events at higher currents. Such simpli­
fication can be afforded if a low-dynamic target application is considered. 
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Figure 1.9: Direct axis stator flux ^d dependency on stator current idq 

Figure 1.10: Quadrature axis stator flux ^>q dependency on stator current %dq 
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Figure 1.11: Direct axis static inductance Ld dependency on stator current idq 

Figure 1.12: Quadrature axis static inductance Lq dependency on stator current idq 



Figure 1.13: Direct axis dynamic inductance L'd dependency on stator current %dq 

Figure 1.14: Quadrature axis dynamic inductance L'q dependency on current %dq 

The core-loss modelling resistance Rc was expressed by equation (1.12). Unlike 
for P M S M motors, where the permanent magnet flux is dominant when compared to 
generated stator flux, the simplification of assuming the stator flux amplitude to be 
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constant cannot be used. Hence, the Rc parameter has to be measured for both the 
rotor speed Nm and stator flux amplitude | \E%| . The core-loss resistance Rc speed 
and flux characteristic is shown in Figure 1.12 and, similarly, the flux and speed 
dependency of core-loss coefficient Km is shown in Figure 1.16. Both characteristics 
were acquired from core power loss estimation, which was determined as a difference 
between the measured machine input electrical power, output mechanical power, 
estimated Joule losses, and internal mechanical stator losses. Note that the missing 
map area for high speed and flux products could not be measured due to stator 
voltage l imitation. 

The S y n R M model equation (1.18) is impacted by the ratio between Rc and Rs. 
It can be noticed that Rc can differ significantly based on the actual operating point, 
however, in general, the Rc is several hundred times higher than stator resistance 
Rs for all measured operation points. It can, therefore, be assumed, that accurate 
modelling of the non-linearity caused by saturation is going to have a higher impact 
on S y n R M model accuracy than core losses. It can be also seen that coefficient Km 

varies less than the resistance Rc, which makes it more suitable for online adaptation. 

2000Q 4000Q 6000Q 8000Q 10000Q 12000Q 

Figure 1.15: Core loss resistance Rc dependency on the amplitude of the stator flux 
\^dq\ arid the mechanical speed Nm 
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300 500 700 900 1100 1300 1500 
iVm[rpm] 

Figure 1.16: Core loss coefficient Km dependency on the amplitude of the stator 
flux \$dq\ a n d the mechanical speed Nm 
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2. SynRM Sensorless Control 
Synchronous reluctance motors cannot be run from mains voltage, without special 
modifications like additional rotor cage winding [ M D D + 2 2 ] . The scalar or Volt 
per Hertz control, which is otherwise commonly used for A C induction machines, 
is not suitable as well. The reason is the problematic control stability leading to 
significant vibrations or even loss of synchronicity. The most commonly used classes 
of control algorithms are then the field-oriented control (FOC) and direct torque 
control ( D T C ) . Classic D T C has several advantages compared to F O C , like the 
ability to achieve lower inverter switching losses, faster torque dynamic response, 
and relatively lower computational requirements. O n the other hand, the D T C 
algorithms exhibit higher torque ripple at low speed and often lack the ability to 
directly control the stator current [ C P S T 0 2 , L B M 9 4 , W D 1 5 , X X L N 9 1 ] . This thesis 
wi l l , therefore, focus only on field-oriented control algorithms. 

The S y n R M sensorless vector control is very similar to the F O C of other mo­
tor types, especially the interior permanent magnet synchronous motor. Harmonic 
voltages, currents, and fluxes within the rotor-aligned dq-axis frame are turned into 
D C quantities, which allows the F O C to effectively control the machine stator flux 
and rotor torque by controlling dq-axis stator currents %dq to track reference 

? e q _ 
ldq — 

where I™q is the amplitude and 9]eq is the angle of stator current reference. A s wi l l 
be discussed later, the 9Tjeq angle directly affects the S y n R M efficiency and is the 
main focus of the efficiency optimizing algorithms. 

High-level block diagram of the most common form of the F O C algorithm is 
shown in Figure 2.1. Stator current control loops are often based on direct and 
quadrature axis current PID-type controllers. Their control outputs might some­
times be compensated for the influence of the non-linear flux and speed products in 
(1.18) using a decoupling algorithm. This is, however, not critical because the in­
tegrators within the PID-type controller can handle the compensation as well. The 
stator current references ? d

e q are then set by the outer control loop or loops, which 
reflect the type of targeted application (e.g. whether the goal is the speed, position, 
or torque control). 

•req 
•req 

lQ J 
/"req 
rn 

cos 9 j req 

sin 3req (2.1) 

35 



VSI 

SynRM 

Figure 2.1: Generic block diagram of S y n R M sensorless vector control 

Such a PID-based cascaded control structure allows to bui ld a high-performing 
drive system. That being said, alternatives are being proposed to bring further im­
provements. For example, the topic of model-based predictive control has been gain­
ing attention in recent years, mainly because it allows straightforward and easy-to-
understand tuning and constraint handling [ M y n l 5 , M V V 1 6 , V M 1 7 ] . These methods 
are being adopted slowly by industry mainly because of the increased computational 
demands. 

No matter the controller type, the resulting stator voltages uap are translated 
to phase duty-cycle control signals DAHC and then applied to the machine using 
the Voltage Source Inverter (VSI) power stage. A generic block diagram of three-
phase V S I is shown in Figure 2.2. There are many methods for obtaining the phase 
duty-cycles D A H C and the inverter control signals A T , A B , B T , B B , C T , and C B , 
wi th different properties like switching losses or a total harmonic distortion [KC17]. 
A very common is the use of the standard Space Vector Modulat ion ( S V M ) , which 
principle is depicted in Figure 2.3. The two-state V S I can generate six active voltage 
vectors V\, V2, V3, «4, v$, and v$ and two zero voltage vectors Vo and v-j. What 
voltage vectors are going to be applied and their durations TVO up to TV7 during the 
P W M period T P W M depends on the voltage vector uap and S V M sector in which it 
resides. A n example of the centre-aligned P W M ( C A P W M ) scheme for uap residing 
in the first S V M sector is shown in Figure 2.4. Note that due to the finite switching 
time of the inverter transistor, the rising edges of the control signals must be delayed 
by the so-called dead-time TUT- Its length depends on the type and technology of the 
used transistors and usually leads to distortion of the actually applied stator voltage 
vector and, therefore, must be compensated using suitable algorithm [LK97]. 

The rotor speed uoe and especially the rotor position 9e are critical for F O C . Bo th 
could be measured using a sensor. The drive realization without speed and position 
sensor, however, leads to lower cost and improvement in reliability. This, together 
wi th increasing capabilities of computation technology, lead to the development of 
sensorless control algorithms, which can estimate these quantities. The sensorless 
estimation algorithms can be classified based on the utilized physical principle. 

The first class of algorithms utilizes the extended back-electromotive force ( E E M F ) . 
These algorithms are using the machine model and require knowledge of actual ma-
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Vdc/2 

Udc/2 

Figure 2.2: Block diagram of generic three-phase Voltage Source Inverter 

Inverter control signals 

\ Phase a 

(Tvl/TPWM)iUdc/±Udc

a 

AT AB BT BB CT CB 
v0 0 1 0 1 0 1 
vl 1 0 0 1 0 1 
v2 1 0 1 0 0 1 
v3 0 1 1 0 0 1 
v4 0 1 1 0 1 0 
v5 0 1 0 1 1 0 
v6 1 0 0 1 1 0 
v7 1 0 1 0 1 0 

Phase c 
Figure 2.3: Standard space vector modulation voltage generation [MVB21] 

chine parameters. The amplitude of E E M F voltage is increasing wi th the rotor 
speed and, therefore, these algorithms are suited for medium- to high-speed regions. 
Their use in low-speed region and standstill is, therefore, usually not possible due to 
high measurement noise [VPF96]. A short survey of several of the existing methods 
is then presented in Section 2.1. 

The second class covers the rotor saliency-based algorithms. Some algorithms 
rely on high-frequency signal injection (HFI) into the fundamental control voltage 
or current. Demodulation of machine response signals then provides the rotor po­
sition information. The injected signal frequency upper l imit is the inverter carrier 
P W M frequency and the bottom limit is given by the fundamental control algorithm 
frequency bandwidth. This usually means frequency in a range from hundreds of 
Hertz to units of kHz . Other saliency-based algorithms (e.g. the well known IN­
F O R M method) rely on excitation of stator currents by the phase P W M waveforms. 
Due to worse signal-to-noise ratio, it is often necessary to employ special current 
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Figure 2.4: Example of the centre-aligned P W M waveform 

derivative measurement sensors. General advantage of al l saliency-based algorithms 
are their ability to operate from standstill and usually no need for exact knowledge 
of machine parameters. Some of these algorithms are then discussed in Section 2.2. 

To exploit the advantages of both sensorless algorithm classes, hybrid algorithms 
were developed. The saliency-based principle is then used at standstill and low speed 
and wi th the increasing speed, the rotor speed and position estimation is transitioned 
to the E E M F - b a s e d algorithm. Selected algorithms from this class are going to be 
described further in Section 2.3. 

As was shown in the previous Chapter 1, the S y n R M is a highly non-linear 
system. In combination wi th machine parameter spread from manufacturing or 
changes caused by effects like the machine heating or wear an tear, the performance 
or even stability of the sensorless algorithms is going to be affected. The last section 
of this chapter is, therefore, going to deal with algorithms for online parameter 
estimation and adaptive sensorless S y n R M control. 

2.1. Algorithms Based on Back Electromotive Force 
One of the more simple algorithms is the direct rotor position estimation method. 
It does not require a complicated observer algorithm, instead, the position is deter­
mined directly as 

-7 1 ( UR sin 9j — ua cos 9j + RsIm cos 29j — L0Im^f- sin 29j 
9e — — arctan - ^ 

2 \ua sin 91 + up cos 9i — RsIm sin 291 — L0Im-^- cos 291 
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where L0 — \ [Ld + Lq) is the average inductance. The acquired position is in range 

9'e G (— f , f ) and the resulting information is therefore ambiguous. To solve this 
problem, the position information (2.2) can be filtered as 

d6e 

dt 
—T 9e mod 7T ) — (2.3) 

where r is the filter time constant. A n advantage of the method is its simplicity 
and the fact that the average inductance L 0 information is used instead of the direct 
Ld and quadrature Lq inductances. O n the other hand, the method neglects the 
magnetic saturation, which limits its usability at higher current and load [PSLK11] . 

Another simple but more commonly used rotor position estimation method is 
based on the simple stator flux estimator. Its principle lies in the integration of the 
equation (1.5), or 

a 3 
* Q 
$/3 

Uaf3 Rsiaf3) dt (2.4) 

where \&Q/g is the estimated stator flux vector. The rotor position can then be 
acquired as 

arctan sin 

\ 
*2 L^, 
1 _ M 
1 Ll 

(2.5) 

where \ l / m = y \1/2 + \ l / 2 is the stator flux amplitude. The algorithm implemented 
in this form is relatively simple. The pure integration in the relation (2.4), however, 
tends to drift due to noise presence and the Rs parameter inaccuracy. This issue is 
especially significant at lower speeds. To improve the situation, the pure integration 
is usually replaced with a low-pass first-order filter [LBM94, A T T M 0 5 ] . 

The stator flux model in rotating cig-reference frame can be combined with the 
identical Luenberger-type observer. When neglecting the core losses, the following 
equations 

d# dq 

dt 

Idq 

Udq - R s i d q - UeZ^dq + K i ^ r , 

jd 'Ld 0" 

s. 0 Lq_ 

(2.6) 

(2.7) 

can be obtained, where idq is the stator current estimate, idq

r = idq — idq = [ i d

r , i q

r r \ 

is the stator current estimate error, L is the inductance matrix, and K is the gain 
matrix defined as 

K {2.1 
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The rotor speed is then obtained by observer adaptation so error ie

q

rr is driven to 
zero, which can be achieved by implementing controller 

d^e 
dt 

Kp + -Kj 
V 

FPI(p)i err 
1 ' 

(2.9) 

where Kp and Kj are proportional and integral gains, p is differential operator d/dt, 
and Fpi{p) is a differential function of P I controller. A disadvantage of this approach 
is the necessity of knowledge of static inductance matrix L in dq reference frame. 
It w i l l be shown later in this chapter that this matrix can be estimated to achieve 
adaptive operation [TH14]. 

Similarly, the reduced observer estimating only the stator flux in the direct axis 
can be used. This leads to differential equations 

d # „ 

dt 
Ud ~ Rsid + VeLJq + k 1 [ ^ d - L d i d 

d6e 

dt 

Uq ~ Rsiq ~ L q ^ + k2 d ~ Ldld 

0UP 

(2.10) 

(2.11) 

where k\ and k2 are the observer gains. The benefits of this approach are lower 
computational requirements than in the case of the previously shown full observer. 
O n the other hand, it shows higher sensitivity to the presence of the measurement 
noise and the parameter inaccuracy [THHL10] . 

Likely the most widely used position and speed estimation algorithm is based on 
tracking of the extended electromotive force vector, which is generated as a result 
of rotor asymmetry. The voltage equations (1-10) and (1-11) can be rewritten as 

R s + L'dp —UOeLq id 
Uq_ UeLq R s + L'dp_ s . 

+ < (Ld-Lq)ueid -[Ld-Lq\piq 

R s + Ldp 
LOeLq 

-U!eLq 

R s + Ldp_ 
Idq + e„ 

(2.12) 

where Cdq = [ed, eq]T is the E E M F vector, which can be acquired as shown in F ig ­
ure 2.5. The synchronous rotor speed can then be acquired as 

Fpi (p) arctan 
- e d (2.13) 

The rotor position then can be obtained using a simple integration of speed (1.21). 
This algorithm is sometimes called tracking observer as it closes the phase-locked 
loop. A n advantage of overall E E M F algorithm is that, although it is based on the 
model including the magnetic saturation, the Cdq vector calculation is dependent 
only on two parameters L d and L q [ITDO06]. Note that it is also possible to imple-
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merit the algorithm in the stator reference frame, where the rotor position can be 
determined as 

9P = arctan 
e/3 

(2.14) 

Udq dq 

abc 
S y n R M -

abc/ 

/ dq 

Rs+LdP -LqCOe 
LqCOe Rs+LdP 

T r a c k i n g 
observer 

Ida 

Figure 2.5: Simplified block diagram of the extended E M F and tracking observer 

2.2. Saliency-Based Algorithms 
Principle of the most well-known and basic high-frequency injection method can be 
inferred from the S y n R M model, where saturation and core losses are neglected, 
the low-speed uie —> 0 rad/s, and stator resistance voltage drop Rsidq -> 0 V are 
considered [JSH + 02] . The last mentioned condition can be afforded because in­
jected currents are of high frequency, and the stator reactance is much higher than 
resistance or u>lfL0 3> R2

S. This leads to the simplified high-frequency model 

Udq 
pLd 0 
. 0 pLg 

(2.15) 

The dq reference frame position is unknown, therefore, the estimated rotating j8 
reference frame, shifted by error angle 8fr = 8e — 8e, where 8e is the estimated angle, 
w i l l be introduced. Using the Park's transformation, the following voltage equation 

a 76 
•u7 

_u&_ 
cos#f r s i n f l f ' 

- s i n # f r cos#f r Udq 
rpdq 
-L7<5 Udq (2.16) 

and current equation 

c o s ^ r r - s i n ^ r r ' 
s i n ^ r r c o s ^ r r 

v 
is 

(2.17) 
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can be obtained, where T dq 
7(5 

176 ? D and Tdq êrr are forward and inverse Park's trans­
formation matrices. Including the above relations into equation (2.15) leads to model 

u1& 
Tdq pLd 0 

. 0 pLq 

L 0 + L X c o s 2 ^ r r 

- L l S i n 2 ^ r r L 0 

-LX sin2#, 
L i c o s 2 # 

err 
e 

(2.18) 

where L i = \ [LD — LQ) is the inductance difference and L 0 = \ [LD + LQ) is the 
average inductance. The stator current vector can be expressed as 

'"7S 
LDLQ 

LQ - L i cos 2 ^ 
L i sin2#f r r 

L x s i n 2 ^ r r  

L 0 + L i c o s 2 ö ! 
1 _ 
- m 7 < 5 . 
p 

(2.19) 

The estimated position can be extracted using different types of injected voltage or 
current signal. Some methods rely on the injection of the voltage vector rotating 
wi th high frequency, however, use of harmonic or square signal injected into d or 
q axis can lead to smaller torque ripple. For example, using the injected signal 
^7(5 = [Umcosuhf,0 V ] T in the model (2.19) leads to 

''7(5 
Um cos ujhf 

LDLqu)hf 

L 0 - L x cos 261 

L X s in20f r 
(2.20) 

Using the amplitude demodulation principle for current in the S axis yields the error 
signal 

£hfq = LPF {is cos uhf} 
2LDLqLühf 

sin2#! (2.21) 

where L P F stands for low-pass filter. The final estimated rotor position and speed 
can be for example acquired using the phase-locked loop 

dt 
FPI (p) ehfq. (2.22) 

A s was already mentioned, there are many variations of this method, usually em­
ploying different types of injected voltage or current signals, more advanced de­
modulation methods, or phase-locked loop algorithms. To give an example, higher 
robustness can be achieved wi th a phase-locked loop, which includes the full me­
chanical machine model [WL00]. It is also possible to shift the j8 reference frame 
by angle 7r/4 before demodulation and calculate the error 8fr as the difference of 
demodulation results in individual axes. This approach thus utilizes information 
from both axes, improving robustness [JSH + 02] . 

It can be noticed from equation (2.21) that the acquired position estimation is 
ambiguous. Thanks to the 180-degree rotor symmetry it, however, does not represent 
an issue because the produced torque wi l l be the same (unlike in the case of P M S M 
machines, where the H F I algorithm also must provide correct permanent magnet 
polarity orientation). 
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It can also be noticed that the size of the error (2.21) is directly proportional to 
difference between axis inductances, which is significant in the case of the S y n R M 
machine. O n the other hand, the stator inductances of S y n R M tend to be relatively 
large in the first place, which means that higher amplitude or lower frequency of 
injected voltage has to be applied to yield usable error signal 9fr level. 

The signal injection leads to additional power losses, torque ripple, and audible 
noise. Some algorithms are, therefore, uti l izing the inverter carrier P W M frequency 
as an excitation signal. When considering a centre-aligned P W M sequence generated 
using standard S V M as shown in Figure 2.4, the stator currents za&c would be affected 
by the presence of voltage vectors as depicted in the example in Figure 2.6. The 
stator current slopes would differ for each phase due to the machine inductances. 
For example, the overall machine phase inductance Lpha measured between machine 
phase A and shorted phases B and C during Tvl would be 

Lpha — La + — • — , (2.23) 
L>b + Lie 

where 

La = ^ + (Ld-Lq) cos (20 e ) , 

L b = + (Ld - Lq) cos [2(6e - f ) ] , (2.24) 
Lb = + (Ld - Lq) cos [2(0e + f ) ] , 

are position-dependent inductances. The measurement of stator current change 
during P W M cycle can, therefore, be used to extract the rotor position 9e. 

Figure 2.6: Example of stator current change during a single P W M period 

A well-known example of algorithm using this principle is the Indirect F lux 
detection by Online Reactance Measurement ( I N F O R M ) method [HNS17]. Current 
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changes Aiabc = [Aia, A%, Aic] are obtained during each P W M period to receive 
complex vector 

Aia Aib .4s A i c .a* 
= A l ; + a t ; 6 3 + a t ; 6 3 ' ( 2 " 2 5 ) 

where A T a , A T b , and A T C are periods during which the current changes Aiabc were 
measured. The resulting rotor position is obtained as 

26e = aig(cINF). (2.26) 

Fractions and in equation (2.25) are proportional to the phase reluc­
tances, which brings a very interesting opportunity to measure the machine induc­
tances at runtime as well [RSW18, RSW19] . 

When compared to H F I algorithms wi th explicit injection, the excitation by 
fundamental P W M causes only a small usable change in measured signals. Care 
then must be taken when implementing the stator current change measurement 
circuit. A special sensor (e.g. a current transformer) or P W M scheme must be often 
employed [NSS20,RSW18]. 

2.3. Hybrid Sensorless Algorithms 
In order to achieve sensorless control in the full speed range, it is necessary to utilize 
a hybrid algorithm, which combines saliency-based principle at the low-speed region 
and E E M F - b a s e d principle at medium- to high-speed region. This section provides 
an overview of several such algorithms. 

Probably the most commonly used approach is to operate low-speed and high­
speed algorithms in parallel and combine the position estimates via a simple fuzzy 
transition function 

§ e = a § ™ + (1 - a) 0 e

E M F , (2.27) 

f l \ue\<u^0 

a=h...l \ue\e{u^o,u%), (2.28) 

where 6f and Of are position information obtained using the H F I and E E M F 
algorithm and ou^fQ and oofgj are speed transition thresholds between these two 
algorithms. Al though this approach is very common, it can be expected, that higher 
robustness and smoother low- to high-speed region transition can be achieved via a 
single hybrid algorithm [HKS99]. 

Example of such approach is based on the E E M F observer algorithm (2.12), 
where the injection of the rotating stator current vector causes oscillation of the 
vector eap. Following amplitude demodulation of the vector ea (g can provide the 
position information at low speeds. A t higher speeds, where the position can be 
reliably acquired from E E M F , the injection stops. The algorithm, as it was pub-
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lished, however, does not consider the magnetic saturation and cannot run wi th a 
full load [KSG+14]. 

A different proposed hybrid algorithm is based on a modification of the observer 
(2.6). The estimated speed information d ) ^ M F is corrected at low speeds as 

^ = u d g - RZg - ( a , e

E M F + o>e

HFI) Zddg + K i £ , (2.29) 

where a)^ F I estimate is acquired from the H F I algorithm (2.22). It is usually nec­
essary to l imit the ufFl estimate and carefully chose the observer setup, otherwise, 
stability problems may occur [TH14]. 

2.4. SynRM Parameter Estimation 
A s it was shown in Chapter 1, the S y n R M is significantly non-linear system, es­
pecially in thanks to magnetic saturation effect. The change of system parameters 
must be reflected in the control algorithm, otherwise, undesired effects might occur, 
like non-optimal power operation, deteriorated dynamic performance, or even loss 
of control stability. This leads to the topic of adaptive control. 

A common approach is to identify parameter dependencies offline and store them 
into look-up tables. The suitability of such offline approach for mass production is, 
however, l imited because of motor parameter spread during manufacturing and the 
time needed to conduct necessary measurements. This section wi l l , therefore, further 
focus on online algorithms, which can provide machine parameter estimates during 
runtime, wi th only a rough previous parameter knowledge. A focus wi l l be placed 
on commonly used and more computationally simple algorithms. 

A well-known online parameter estimation method is the recursive least square 
algorithm wi th exponential forgetting (RLS) , which is described generally calculated 
as 

k X 

e f c = e 

fc-i 
k-i 

k-l 

^ + ¥k^k-10k 

+ (ijk - ®fc-i<^fc) (pi P 

(2.30) 

(2.31) 

where P is the covariance matrix, ip is the vector of system inputs and outputs, © 
is the matrix of unknown parameters, and y = ®<p is the vector of system outputs. 
The R L S implementation for S y n R M with saturation, can be based on system 

7̂,fc ^7,fc—1 

is,k — is,k-l 
O n Oi2 2 7 ,fc-l 

«21 d22j \J8,k-l + 
fell 
b-2i 

&12 
b-22 US,k-l (2.32) 
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where A is the feedback matrix and B is the input matrix of the system state 
description. Relating to (2.30) and (2.31) then yields 

®(k) an «12 611 W2 

«21 «22 &21 &22 

y 

<P — [ i-y,k-l, is,k-l, M 7 jfc-1, Us,k-1 ] 

The final estimated parameters then can be obtained as 

a n + «22 
Rx 

hi + b22 

2TX 

dl2 — 0,21 + 

bn + b22 + C 
- (2bi2(aii+a22) , , 

V b11+b22 + °12 + «21 

bn-b 12 

c = v (611-622) +4612621, 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

where T s is the discrete sampling period. To avoid the algorithm estimate divergence, 
it is necessary to continuously stimulate the system wi th a sufficiently rich signal. A 
common choice is, for example, the pseudo-random binary sequence ( P R B S ) . The 
model in equation (2.32) and the following parameter calculation using (2.36) to 
(2.39) does not cover al l the phenomenons occurring in the S y n R M , such as the 
core-losses. The parameter estimates can, therefore, be biased. If such parameters 
are used for adaptation of position estimation and efficiency optimization algorithms, 
the resulting performance might suffer [ITDO06]. 

More simple adaptation method is based on the observer (2.6) and (2.7). The 
speed estimate is adapted based on the g-axis current error, as shown in equation 
(2.9). The d-axis current error then can be used for adaptation of one of the machine 
inductances as 

Ld = J KjLdi^dt or Lq = J KjL^dt, (2.40) 

where Kj is the integral gain. The stator resistance adaptation for this algorithm 
was devised as well, which employs the H F I algorithm output as 

Rs = FPI (p) ehfq. (2.41) 

In contrast to the hybrid algorithm (2.29), the stator resistance is being corrected 
here instead of the rotor speed estimate [Tuol4]. 

Similarly-simple adaptation approach was developed for the observer (2.4), which 
output is the estimated stator flux vector [tya, ^p]T. The stator inductance estima­
tions can be acquired after the stator flux vector transformation into a rotating 
reference frame and a simple division as Ld = ^d/id, arid Lq = ^q/iq [YAA09]. 
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3. Efficiency Optimization 
The potential to achieve high power efficiency is a key attribute of S y n R M , which 
makes it a suitable replacement for the A C induction machine. The S y n R M mathe­
matical model was inferred in Chapter 1. A s was shown, the S y n R M is a non-linear 
system, which significantly complicates the exploitation of the possibility of high-
efficient operation. Section 3.1, therefore, first presents the power loss model of the 
S y n R M machine itself and definitions of optimal power loss operation. The power 
loss model of an inverter is briefly discussed in Section 3.2 because the inverter is 
a part of the overall drive system and its power losses are affected by the control 
algorithm as well. 

Finally, the rest of this chapter presents an overview of algorithms designed to 
track the power-optimal operation point of S y n R M . The power-loss optimization 
algorithms in the literature can be classified into two groups. The first class is 
for the loss-model controller algorithms or L M C , which are based on an accurate 
knowledge of the machine parameters and power loss model. The second class is for 
the search controllers (SC), which involve an active search of the optimal operating 
point based on the measured input power or related quantities. Whi le the SC 
algorithms do not require previous knowledge of machine parameters, as the L M C 
algorithms do, their convergence time is usually slower and their operation requires 
a signal injection or operating point sweep, causing torque ripple and related small 
efficiency drops [QH13]. 

3.1. SynRM Power Loss Model and Optimization 
Strategies 

The steady-state power balance in S y n R M can be described by equation 

Pin = Pcu + PFe + Pui + P-rn, (3.1) 

where Pin is the input electrical power, PCu is Joule power loss in the stator winding, 
Ppe is the core power loss, P^ is the internal mechanical power loss caused by viscous 
friction and ventilator, and Pm = Tmum is the mechanical output power applied to 
the shaft. The total machine losses Pioss can be described as 

Ploss =Pcu + PFe + Pea = Rslm + Rc (idc + ^c) + ^ l ^ m + ^ m = 

where B\ is viscous friction coefficient and B2 is a ventilator mechanical loss co­
efficient. This power-loss equation is graphically represented in Figure 3.1. The 
power-loss balance in a typical S y n R M is often being compared wi th the induction 
machine in the current literature. When compared wi th a similar typical IE4 induc-
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t ion machine, the overall Joule losses are comparable in size but are al l focused in 
the stator. The remaining Ppe core and Pu mechanical losses are usually similar in 
size as well. To give an idea of a typical S y n R M machine nominal loss distribution, 
it was reported that for a four-pole 2.2 k W S y n R M with 90 % nominal efficiency, 
the Joule losses contributed by 7.8 %, core losses by 1.7 %, and mechanical power 
losses by 0.5 % [JZL+19]. 

p p j2 

Figure 3.1: A general power diagram of S y n R M 

The internal mechanical losses Pu are given by machine physical design and ap­
plication, hence, their optimization is outside of the scope of this thesis. The power 
efficiency optimization is, therefore, considered to lie in the minimization of total 
electrical losses and achieving maximal electrical output power Pe at a given oper­
ating point. A S y n R M power loss minimization problem is solved via optimization 
of the current angle 8rjeq (see the F O C block diagram in Figure 2.1). The fact, that 
there is always one power loss global minimum can be seen in Figure 3.3, which 
shows the simulated Joule loss PQU arid core loss Ppe dependency on the current 
angle 9j and load torque 7} at nominal speed for the S y n R M machine analysed in 
Section 1.2. Joule losses PQU i n S y n R M are clearly dominant in size, so their mini­
mization wi l l be a priority. Equation (3.2) shows that core losses Ppe are dependent 
on the second power of the electrical speed uoe and it is, therefore, beneficial to con­
sider them when operating at medium- to the high-speed range. Several well-known 
criteria of S y n R M power optimality, differing in considered loss model, wi l l be intro­
duced in the following text. Note that only the motoring region wi l l be considered 
(i.e. the current angle wi l l always be in range 9i e (0, | ) rad). 
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Figure 3.2: Simulated Joule losses PQU (black) and core losses Ppe (grey) dependency 
on current angle 9j and load T) 

The first well-known strategy is the Maximal Power Factor Control ( M P F C ) . 
One of the disadvantages of S y n R M is its poor power factor cos# u i , where 9ui is the 
angle between stator current and voltage vectors [ M D D + 2 2 ] . The need to deliver 
relatively high reactive power leads to an increase in the current dimensioning of 
inverter, which is not desirable. To reach the optimal power factor, the 

d cos 9V 

d9j 
0 r a d " 1 (3.3) 

condition shall be maintained. When neglecting stator resistance, core losses, and 
saturation effect, the solution 

9i = tan (3.4) 

can be obtained [RFC 10]. It was reported that the saturation effect has only a 
minor impact on the resulting M P F C - o p t i m a l angle 0j and the stator resistance 
voltage drop is minor when compared to the drop on reactances, hence, the solution 
is relatively robust and often used in practical applications [ F S M + 2 2 ] . The M P F C , 
however, also sacrifices the achieved torque, therefore, it cannot be seen as optimal 
from electrical power efficiency point of view (i.e. it reduces acquisition cost rather 
than operation cost). Thus, the M P F C rule w i l l not be considered further in this 
thesis. 

The second criterion is the Max Torque Per Ampere ( M T P A ) , which, as the 
name suggests, lies in the minimization of the stator current for a given torque, thus 
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effectively leading to minimization of Joule losses Pcu- This can be alternatively 
expressed from torque equation (1.19) as 

d0j 
-PpI2

m{Ld - Lq) cos2# 7 = 0 N m / r a d , (3.5) 

where the M T P A - o p t i m a l operating point Oj corresponds to minimal current Im. 
The simulated stator current Im dependency on current angle 9i and load torque 
Ti at nominal speed for the S y n R M machine shown in Section 1.2 is in Figure 3.3. 
The M T P A trajectory, which always crosses the stator current global minimum 
for given load torque, is marked by a thick line. Equation (3.5) would suggest a 
simple solution 9j = ir/4, however, thanks to the saturation effect, the optimal 
trajectory is non-linear. The reason can be very well seen in the matching direct 
and quadrature inductance dependency in Figure 3.4 and Figure 3.5. Because the 
torque is proportional to Ld — Lq difference, it is beneficial to saturate the g-axis 
even for small load torque and avoid d-axis saturation at higher load torques. Both 
effects result in the increase of the optimal current angle Oj > 7r/4 for low and high 
loads, while at medium load, the current angle drops toward the theoretical n/4 
value. 
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Figure 3.3: Simulated stator current Im dependency on current angle 9i 
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Figure 3 .4: Simulated direct-axis inductance L D dependency on current angle 6j 
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Figure 3 .5 : Simulated quadrature-axis inductance L Q dependency on angle 8j 

The th i rd criterion is called the Maximum Efficiency ( M E ) operation and it 
minimizes both Joule losses PQU and core losses PFe. The simulated dependency of 
input power P i n and efficiency rj = Pe/Pin on current angle 9j and load torque TJ 

at nominal speed for the S y n R M machine shown in Section 1.2 is in Figure 3 .6 and 
Figure 3 .7 . The M E trajectory was marked by a thick line. The saturation, which 
was affecting M T P A trajectory, is sti l l visible, however, because the core losses 
are now being taken into account as well, the optimal current angle is generally 
increased. This is tied to the fact that the core losses PFe are decreasing with the 
higher current angle 9j, as can be seen in Figure 3 .2 . The root cause is the decrease 
of stator flux vector amplitude \$dq\2 = ^D + ^2

Q = L\i\ + L 2 A 1 

id drops wi th higher current angle 9j. 
qiq, where L D 3> L Q and 
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Figure 3.6: Simulated input power Pin dependency on current angle 9i 

Figure 3.7: Simulated maximum efficiency curve 

The simulated comparison of the M T P A and the M E criteria current angle 6j 
trajectories is shown in Figure 3.8. The M E trajectory is several degrees higher 
than the M T P A trajectory, however, the shape of both trajectories is similar. This 
confirms that the saturation is a dominating non-linear phenomenon when it comes 
to the S y n R M efficiency optimization. 
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3.2. Inverter Power Losses 
This section discusses a power loss model of a two-state three-phase voltage source 
inverter as shown in Figure 2.2 and its impact on M E and M T P A criteria defined in 
the previous section. The inverter power losses Pinv are not t r iv ia l to model due to a 
number of non-linear dependencies and dynamic phenomenons taking an effect. In 
general, the losses in inverter semiconductor elements can be described as a sum of 
conductive power losses P c o n , switching power losses P s w , and blocking losses. The 
latter one wi l l be neglected in further discussion due to very low magnitude. To be 
able to model the resulting losses and evaluate their magnitude, the Insulated Gate 
Bipolar Transistors ( I G B T ) semiconductor technology represented by power module 
FNB41560 wi l l be assumed in the following text as a reference [Seml2,Seml4,RK20] . 
This I G B T technology was chosen for its popularity and the FNB41560 platform 
for its use in experimental verification described in Chapter 6.3. 

Conductive losses are occurring in both the transistor and the freewheeling diode 
of the inverter in each of its TV e {a,b,c} phases. The conductive losses of the 
I G B T transistor are caused by finite collector-emitter saturation voltage UCE(SAT) 
of the fully open transistor. Similarly, the conducting freewheeling diode exhibits 
voltage drop UDF- The exact values of both voltages vary with phase current IN 
and the transistor temperature Such characteristics are usually provided by the 
semiconductor manufacturer. For example, these characteristics for FNB41560 are 
shown in Figure 3.9. Conductive losses PCOnN for phase TV during single P W M period 
TS = TPWM can be modelled as 

PconN,k = DNjk\iNjk\UcE(SAT),k + (1 — D N^k)\iN ^k\Up,F,k for lN,k > 0 A , ^ ^ 

PconN,k 
(1 — DNjk)\iNjk\UcE{SAT),k + DNjk\iNjk\UoF,k for %N,k < 0 A , 

where IN £ {ia, h, ic\ is a phase current and G {Da, D&, Dc} is phase duty cycle 
at discrete time k. 
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Figure 3.9: Typica l voltage drop dependency of FNB14560 transistors and diodes 
on collector current or diode current IN and temperature ů [Seml2] 

The switching losses occur as a result of energy loss during the transistor and 
diode close-open transition and are a function of the operating frequency 1/TPWM, 

inverter supply voltage Udc, temperature of semiconductor i?, and inverter load type 
(i.e. inductive, capacitive, or pure real). Usually, the switching losses are modelled 
as transistor switch-on, switch-off, and freewheeling diode recovery energy losses. 
Again , such characteristics are usually provided by the semiconductor manufacturer 
and the example for FNB41560 is shown in Figure 3.9. Note that energies in Fig­
ure 3.10 were linearly scaled for DC-bus voltage of Udc = 400 V . The immediate 
discrete inverter switching power-loss at the discrete time k for phase TV can be 
modelled as 

swN,k ' TPWM [E0n,k + Edoff,k + E, offM (3.7) 

where E o r i j k is switch-on, -E0//,fc is switch-off, and Edoff,k is diode reverse recovery 
loss energy at the discrete time k. The K S W is a number of switch-on and switch-off 
events per P W M period TPWM- For commonly used P W M switching schemes, like 
the centre-aligned P W M shown in Figure 2.4, the K S W coefficient is equal to two. 
There can, however, be schemes with a different number of events (e.g. discontinuous 
P W M or schemes for single-shunt phase current measurement). 
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Figure 3.10: Dependency of energy losses of FNB14560 I G B T inverter module on 
collector and diode current IN and temperature •& for inductive load at Udc = 400 V 
[Seml4] 

To establish an idea of inverter losses magnitude in comparison to S y n R M losses, 
both the conductive power losses Pcon and the switching power losses Psw were sim­
ulated for the reference I G B T power module FNB14560. Note that the simulation 
was done for 1/TPWM = 10 kHz, i? = 75 °C, and the Dabc duty cycles were obtained 
using Standard Vector Modulat ion, as depicted in Figure 2.3. Based on the model 
(3.6), the conductive power losses Pcon are dependent on amplitudes of the phase 
current vector %dq and the phase voltage vector Udq, as well as the angle between 
them arg(-u^) — arg(z^). A s the simulation results in Figure 3.11 show, the conduc­
tive losses are relatively insensitive to voltage vector Udq and can be considered to be 
linearly growing wi th amplitude of stator current Im = \idq\- The result of modelling 
of switching losses Psw is in Figure 3.12. Again , a clear linear dependency on the 
amplitude of stator current Im is visible, although a higher power loss magnitude is 
reached when compared to conductive losses. 

Whi le it is understood, that different semiconductors wi l l yield different power 
loss levels, the linear dependency on the stator current amplitude Im is generally 
applicable. Minimizat ion of semiconductor power losses is, therefore, aligned with 
the M T P A criterion. If the M E criterion is changed to take the semiconductor 
losses into account, it wi l l increase an influence of Im amplitude minimization to 
M E trajectory, moving the 9i angle closer to the M T P A trajectory. This is also 
confirmed by simulation, as shown in Figure 3.13. The shift of the optimal M E 
trajectory is, however, only minor for the simulated S y n R M and inverter, making 
the inverter power losses less significant for 8i selection. 
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Figure 3.11: Simulated conductive losses Pcon of I G B T FNB14560 three-phase power 
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Figure 3.12: Simulated switching losses Psw of FNB14560 I G B T three-phase power 
module at 10 kHz 
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3.3. Loss-model Controller Optimization Algorithms 
Probably the most well-known Loss-model Controller ( L M C ) optimization algorithm 
is the constant 9j = 7r/4 angle setup, following the ideal M T P A rule. A s it was 
already discussed in Section 3, the same torque can be achieved wi th a different 
amplitude of the stator current, which is also shown in Figure 3.3. When neglecting 
the core losses and magnetic saturation, the M T P A criterion can be acquired from 
equation (3.5), where the optimal current angle is #^pt = 7r/4. This algorithm is 
very simple and common, however, omitt ing both the core losses and the saturation 
results in a sub-optimal solution and the M E optimal angle is always going to be 
higher than 45°. 

Another option is the M E optimal current angle calculation based on model (3.2). 
For example, if the saturation is neglected and the core loss modelling resistance Rc 

is considered to be constant, the optimal angle can be obtained as 

.opt RsRl + (Rs + Rs)ulLl 
9 i - a r c t a n V i ? A 2 + (^+^v^r (3.* 

Because the assumption La > Lq is always true, the solution is always 9i > n/4 
[KS96a]. 

There are various L M C algorithms (Kalman filtration, neuron networks, fuzzy 
logic systems, and more), which provide sub-optimal current angle solutions by 
omitting the saturation. This is a notable simplification because the analytical 
description of saturation dependency is non-trivial. O n the other hand, the sub-
optimal solution might diverge from the optimal value significantly, especially for 
higher loads, where the saturation is more significant [QH13]. 
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A relatively simple analytical solution, which takes saturation into account, can 
be acquired when only the direct axis saturation is considered using a simple model 

-v/o 

Ldo for 
for \id\ >l 

thr 
d : 
thr (3.9) 

where Ld0 is non-saturated inductance and f3 is the slope of decrease of the induc­
tance Ld once the ci-axis stator current raises above saturation threshold Id

hr. The 
sub-optimal stator current angle can then be acquired as 

•opt 
2(1 - Gdid/ 

+ 
Gdi ;2 

2 ( 1 - Gdid) 
(3.10) 

where 

Gtl 

P 
Ldo — Lq + (3id 

(3.11) 

is a help function [Mad03]. 
When trying to include saturation in both the direct and quadrature axis as well 

as the core loss non-linearity, there is no simple analytical solution and numerical 
approaches are often employed instead. The experimental results for some of the 
published non-adaptive L M C algorithms show a relatively fast convergence. A n 
example of such algorithm involved repeated calls of a mathematical function, which 
output converges to the optimal current value in the direct axis id

pt. Thanks to 
inclusion of core losses into the model, the solution could be considered to be close 
to the actual M E criterion [YAA09]. Other algorithm example utilized a finite-
element model of the machine to get accurate inductance maps and derived M T P A 
online tracking law afterwards [WJPK22] . 

The inductance current-dependency maps (like, for example, in Figure 1.10 and 
Figure 1.11) must be available for the saturation-modelling L M C algorithms to find 
the optimal current angle. This usually requires offline measurement. It also nat­
urally complicates the use of these algorithms in adaptive systems (e.g. a need to 
compensate for inductance changes caused by machine temperature deviations). To 
obtain such inductance characteristics online, the parameter estimation algorithms 
described in Section 2.4 might be required to be operated in multiple operation 
points (e.g. to temporarily operate machine at sub-optimal current angles as well). 
Such an adaptive L M C algorithm would be then gain some of the negative prop­
erties of search algorithms like a longer convergence time, the need to change the 
optimized quantity, and usually a need to achieve a steady-state (see more details 
in Section 3.4). 

Last but not least is the current angle trajectory tracking via look-up table ( L U T ) 
defining the non-linear 9opt = f(Im) relation (similar to the trajectory in Figure 3.8). 
Al though this method does not rely on the machine model and, thus, does not 
entirely fit the L M C algorithm definition, its practical properties (i.e. convergence 
time, and no injections are involved) are matching the L M C - t y p e algorithms and 
wi l l be classified as such in this thesis. The current angle L U T is often employed in 
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the industry, because of its low computational demands, a relatively simple offline 
acquisition, and an instant convergence time [FZYJ20] . Use in adaptive systems, 
however, requires special considerations as well, like, for example, having multiple 
look-up tables for different temperature ranges or online table updates using search 
algorithms. 

3.4. Search Controller Optimization Algorithms 
In general, these algorithms rely on the measurement of the S y n R M input power 
or stator current amplitude (depending on the selection of M T P A or M E tracking 
strategy), where the optimized quantity (usually the current angle 9i or the direct 
axis current id) is being swept so the direction towards the optimal operation point 
can be determined. The benefits of these algorithms are usually low computational 
effort, the fact that the optimal operating point is found without previous machine 
parameter knowledge (i.e. natural adaptivity), or a need for accurate rotor position 
information. O n the other hand, these algorithms might require a steady-state load, 
a relatively long convergence time, and a prolonged time spent outside of the power-
optimal operation point, which reduces achieved efficiency [ D T C B 2 2 , QH13]. 

The search controller algorithms can be divided into three categories: 

1. Algorithms with a discrete search step, which gradually increase or decrease the 
current angle by a discrete value. The size of the step and the ability to find 
the optimal operating point wi th continual oscillations around it depends on 
the selected algorithm. The most simple and also the least effective approach 
involves an increase of the reference value by n steps and consequent decrease 
by 2n steps. The input power measurement then provides the location of 
the optimal operating point or at least direction towards it. The number of 
necessary iterations, which must be taken to find the optimal point, can be 
reduced, for example, using the Fibonacci search algorithms or fuzzy-logic-
based algorithms [DTCB22 , QH13]. 

2. Continuous search or low-frequency injection algorithms, which change the 
optimized variable as a smooth function, which, compared to discrete step 
algorithms, reduces undesired torque ripple. The optimized current angle can 
be swept, for example, using a ramp function. This wi l l again provide the 
location of the optimal operating point or at least a direction towards it. There 
are also algorithms, which can acquire this information based on transition 
after change of the required speed or load [ D T C B 2 2 , QH13]. 

3. High-frequency injection algorithms, which rely on the superposition of the 
high-frequency signal in a range of several hundred Hertz to the optimized 
variable. The following post-processing using amplitude demodulation is very 
similar to the H F I position estimation algorithm described in Section 2.2. The 
optimal operating point can be found for both the M E and M T P A criteria by 
either searching for dPin/d9j = 0 W / r a d or dlm/d9i = 0 A / r a d conditions 
during steady-state [ D T C B 2 2 , B P P S 1 0 , K S I M 1 0 ] . 
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3.4.1. Proposed M T P A Search Algorithm 
A variant of the M T P A search controller algorithm was published as part of the 
research of the power-optimal control of S y n R M for this thesis. Instead of using a 
high-frequency injection, the D C current injection in the stator reference frame was 
employed. The injected current vector then rotated wi th the synchronous speed from 
perspective of dq reference frame and was injected into the stator current reference 

The amplitude demodulation then provided the error signal 

eei = \ ( L d - LgfulllcCo^O! ~ KP-^PpI2

m{Ld - L , ) cos 20/, (3.12) 

where Kp is a general proportional gain. This n e a r - M T P A condition is then satisfied 
when zero error value is maintained using P I controller. 

The most notable advantage of this algorithm, when compared to the other exist­
ing low-frequency search controllers, is its relatively low computational complexity. 
This is because it can utilize sine and cosine values of the rotor position already 
calculated for Park's transformation as necessary part F O C and does not require an 
extra calculation of any other goniometric function. 

The proposed algorithm was tested on the machine analysed in Section 1.2. The 
M T P A tracking ability was measured and is shown in Figure 3.14. It did not find the 
true M T P A position in the measured example, however, the resulting stator current 
amplitude Im was always smaller than in the case of the standard 9jpt = 7r/4 control. 
The improved power efficiency is shown in more details in Figure 3.15, where current 
angle difference A 0 / and stator current amplitude increase AIm are compared wi th 
the true M T P A trajectory [Mynl6] . 
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Figure 3.14: The M T P A trajectory tracking using proposed algorithm [Mynl6] 
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Figure 3.15: Comparison of a) current angle error and b) current amplitude increase 
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the true optimal M T P A trajectory 

61 



4. Evaluation of Current State of 
SynRM Power-optimal Control 

The S y n R M machine, its model, properties, and an overview of the existing appli­
cable sensorless algorithms were discussed in the previous sections. In this chapter, 
the still-existing challenges of the state-of-the-art approaches wi l l be formulated and 
the conclusions wi l l be supported via simulation of the selected algorithms. The ul­
timate goal of this chapter is to define and justify specific goals of research for this 
thesis. 

Because the main focus of this thesis are the power-optimal sensorless control 
algorithms, the status of power-optimization algorithms listed in Section 3 wi l l be 
discussed first. The SC algorithms shown in Section 3.4 are working very well in 
applications where the impact of change of current angle on the optimized quantity 
(i.e. stator current for M T P A or input power for M E criterion) can be evaluated 
without interference. This is not a problem for systems where load changes very 
slowly, often reaches prolonged states of steady-state, or follows defined cycles. A n 
example could be pumps or fans for systems of constant or slow-changing proper­
ties. The performance of these algorithms was also briefly investigated during an 
early stage of research for this thesis when a very simple M T P A search algorithm 
was proposed (see Section 3.4.1). Taking into account relatively low computational 
demands and a natural adaptivity, which reduces performance requirements for the 
position and speed tracking algorithms, the search-type algorithms were found to be 
quite mature and likely to be preferred in any suitable power-optimal application. 
Search algorithms were, thus, not investigated further in this thesis. 

The L M C algorithms, which were surveyed in Section 3.3, can be used in a 
wider range of applications as they converge quickly and without a need of detecting 
feedback to signal injection to stator currents. The accuracy of found 9j solution 
varies for each algorithm type, but since the L U T algorithm is considered to be L M C 
within this thesis as well, very high accuracy is generally achievable, hence a new 
design of L M C algorithms was also not pursued in this thesis. Based on the principle 
of the L M C algorithms, it is, however, presumable that such high performance has 
two conditions: 

• Accurate machine parameters must be provided to the L M C algorithms, oth­
erwise, the found solution $i might not be optimal. To give an example, 
Figure 4.1 shows sensitivity of current angle error 9fr = 9^pt — 9j of L M C 
algorithm (3.8) to stator inductance inaccuracy. A more detailed analysis 
of sensitivity of L M C algorithms to machine parameter inaccuracy is in Sec­
tion 4.1. To compensate for machine parameter change due to temperature, 
manufacturing deviations, wear and tear, or even a minor machine fault, an 
online parameter estimation would be required to allow for L M C adaptivity. 

• The machine control algorithm is operated with an accurate rotor position 
estimate 9e. A s shown in Figure 4.2, the position estimation error 9fr offsets 
the solution 9j found by the L M C algorithm so the true current angle 9j is no 
longer optimal. This increases performance requirements for algorithms like 
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those described in Section 2.1, Section 2.2, and Section 2.3. Also, similarly to 
L M C algorithms, the model-based position estimators are dependent on the 
accuracy of the known machine parameters, which again raises the need for 
online parameter estimation and adaptivity. 

The two above-mentioned needs of accurate rotor position estimate and online 
machine parameter estimation were chosen as the main focus of this thesis. To 
give evidence and a rough idea of necessary performance, the following Section 4.1 
provides simulation-based analysis of the sensitivity of ideal L M C to position and 
parameter inaccuracy. Section 4.2 then provides some simulation results of the ex­
isting position and parameter estimators. This is to evaluate and understand rough 
limitations of the currently-available solutions. A l l simulations within Section 4.1 
and Section 4.2 were done for the 550 W S y n R M machine described in Section 1.2, 
using the model from Section 1.1 and the simulation environment Mat lab R2018a. 
Finally, the exact goals of the thesis are summarized in Section 4.3. 
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Figure 4.1: Opt imal current angle error dependency on the dq-axis inductance esti­
mation error for L M C algorithm (3.8) 
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Figure 4.2: Relation between the optimal current vector error 6fr and the position 
estimate error 9e™ 
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4.1. Analysis of L M C Sensitivity to Machine Pa­
rameter and Position Errors 

The goal of this section is to evaluate the sensitivity of the LMC-based power op­
timization to error in assumed machine parameters and the position estimated by 
the sensorless algorithm. 

First , the sensitivity of machine power losses to position error 8fr = 8fr was 
investigated. This was done by taking the machine M E trajectory, like the one shown 
in Figure 3.8, and considering it as 8fr = 8fr = 0 degree axis. The Joule and iron 
power-losses increase A(Pcu + -Ppe) was then calculated using models described in 
Section 3 and related to this axis. Note that the mechanical losses Pm were neglected 
and the simulation was done only for nominal rotor speed Nm = 1500 rpm. The 
results are in Figure 4.3. A s expected, the power losses increase wi th position error, 
but the important outcome is that rate is non-linear and almost exponential. The 
exact required performance is, of course, a matter of the specific application, but 
it is reasonably safe to assume that maximal steady-state \9fr\ up to 7.5 degrees, 
which results in roughly a one percent efficiency loss, would be considered acceptable 
in most cases, hence, within this thesis as well. 

Figure 4.3: Simulated increase in S y n R M power losses A(PCu + Ppe) versus the 
position estimate error 9e™ at nominal speed 

The second analysis investigated the sensitivity of the optimal L M C algorithm 
to error in the provided parameter of stator resistance Rs and characteristics Ld = 
fdiidiiq) and Lq = fq{idliq). The optimal L M C is an algorithm, which is capable 
to find a true M E trajectory. Because the stator inductance characteristics fd and 
fq are non-linear and can be described by a non-trivial model (see model (1-22) in 
Section 2) a numerical search was used during simulation. Inaccuracy of the induc-
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tance characteristics can be modelled in many different ways, but for the purpose 
of the following analysis we wi l l assume deformation 

Ld = kdfd(id/kd,iq/kq), 

Lq = kqfq{id/kd,iq/kq), 

(4.1) 

(4.2) 

where kd and kq are dimensionless coefficients. The resulting inaccurate inductance 
estimates Ld and Lq used during simulation are shown in Figure 4.4. The cases 
where condition Lq > Ld occurred were not considered as valid deformations during 
the simulation. 

The results of simulation for reference S y n R M running at nominal rotor speed 
Nm = 1500 rpm and a nominal rotor load T; = 3.5 N m for 75 %, 100 %, and 125 % 
stator resistance Rs are in Figure 4.5. When comparing the current angle error 
#frr to reference point kd — 1, kq — 1, and Rs = Rs, it can be seen that even for 
relative errors of parameters around ± 3 0 %, the resulting change is well below five 
degrees. This , as Figure 4.3 shows, causes only a minimal power loss increase. Thus, 
in general, this thesis wi l l consider that the L M C algorithms produce acceptable 
solutions even for parameter deviations up to ± 3 0 %. 

Ld[tt] 

1.25 -

1.00 -

0.75 -

0.50 -

0.25 -

0.0 -

-—Ik 

a) 

2.00 

1 0.50] J 

1.75 

1.50 

1.25 

1.00 
0.75 

+ ± ± ± 
0.0 0.50 1.00 1.50 2.00 2.50 

id 
[A] 0.0 0.50 1.00 1.50 2.00 2.50 

Figure 4.4: Simulated inaccuracies of a) Ld and b) Lq characteristics provided to 
optimal L M C algorithm during sensitivity analysis 

Note that L M C algorithms described in Section 3.3 are usually only approximat­
ing the optimal solution. This is because of various simplifications, which achieve 
lower computational complexity. Their sensitivity to parameter inaccuracy could, 
therefore, differ from the previously simulated optimal L M C algorithm. St i l l , this 
approach is seen as valid to create a general idea of necessary parameter accuracy. 
For example, the inductance error sensitivity of the L M C algorithm (3.8) in F ig ­
ure 4.1 is generally comparable to results obtained for the optimal L M C algorithm. 
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a) Current angle error 6fr for Rs = 0.75R. 

Figure 4.5: Simulated sensitivity of current angle 6fr of optimal L M C algorithm to 
inaccuracy of stator resistance Rs and inductance Ld and Lq parameters 
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4.2. Evaluation of Position Estimator Sensitivity 
to Machine Parameter Error 

The goal of this section is to investigate selected well-known rotor position estimation 
algorithms from Section 2.1 and Section 2.3 to gain a general idea of their machine 
parameter sensitivity. The position and speed extended E M F observer (2.12) and 
the identical observer (2.6) were selected for implementation. The second part of this 
section also presents experimental results of selected S y n R M parameter estimators 
from Section 2.4, to establish a general idea of performance in relation to the needs 
of the position estimators. 

The identical observer represents an interesting alternative to the extended E M F 
observer due to its low computational demands and the possibility of inductance 
adaptation. Its disadvantages seem to be its sensitivity to the setup of gains (2.8) 
and (2.9) and also the fact that only one of the inductances can be adapted. If 
the second, non-adapted, inductance is not accurate, it wi l l affect the adapted in­
ductance as well. The situation where one of the inductances is adapted while the 
second one is burdened wi th error is depicted in Figure 4.6a. It can be seen that the 
increase of the pre-set inductance Lq by ten percent wi l l propagate to the estimated 
inductance Ld by a similar amount. This wi l l , unfortunately, also impact the accu­
racy of the estimated position 9fr, which is also shown in Figure 4.6b. The ± 3 0 % 
inductance parameter deviation would lead to position error 9fr over ten degrees, 
which indicates higher parameter sensitivity of position error than in the case of the 
L M C algorithms, as established in Section 4.1. 

Figure 4.6: The impact of an error of inductance Lq on a) inductance estimate Ld 

and b) position estimation error of the identical observer 

The second simulated position estimation algorithm, the extended E M F ob­
server, is mainly dependent on the Rs, Lq, and Ld machine parameters, where the 
Ld does not affect the steady-state performance [ITDO06]. The simulated parameter 
sensitivity of the position error is shown in Figure 4.7. A s expected from equation 
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(2.12), the sensitivity of the E E M F observer to Rs is lower than to Lq because 
the stator winding voltage drop is usually much smaller than the E M F voltage. In 
general, however, it can be seen that the sensitivity is lower than in the case of 
the identical observers, but roughly twice higher than in the case of the ideal L M C 
algorithm sensitivity estimated in Section 4.1. 

Lq [P-U.] 
0.5 1.0 1.5 2.0 

Figure 4.7: Sensitivity of the position estimate error 8fr of E E M F observer to error 
of inductance Lq and resistance Rs 

The adaptivity of the simulated E E M F observer could be achieved using the re­
cursive online least square estimation method (2.30) and (2.31) and for the identical 
observer (2.40) using its self-adaptation capability. Bo th methods were run on a real 
S y n R M machine at the speed Nm = 750 rpm, 0i = ir/4, and various loads to gain 
more realistic data. The R L S method was utilized to obtain an online estimate of 
Rs, Lq and Ld inductances. The forgetting coefficient of the R L S method was chosen 
as A = 0.99 and the 6-bit P R B S excitation signal wi th 10 V amplitude and 3 ms 
sampling period was superimposed to the voltage udq. The experimental results are 
shown in Figure 4.8 to Figure 4.10. In the case of the identical observer, only one 
inductance was being adapted, while the inductance in the perpendicular axis was 
obtained from the look-up table, achieving only partial adaptivity. 
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Figure 4.8: Estimated inductance L'd and Ld in a) absolute and b) relative values 
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Figure 4.9: Estimated inductance Lq in a) absolute and b) relative values 

Direct and quadrature inductance estimation results in Figure 4.8 and Figure 4.9 
indicate a good performance of the full order observer, however, it takes the benefit 
of acquiring the non-estimated inductance from the L U T table. A large Sid error 
provided by R L S in Figure 4.8 does not cause a steady-state deterioration of E E M F 
observer performance, hence it can be neglected. The Lq in Figure 4.8 and especially 
the Rs estimate in Figure 4.10, however, reach errors in tens of percent. A similar 
performance can be seen in the original E E M F and R L S publication [ITDO06]. 

It is understood, that accuracy of parameter estimators is affected by many 
phenomenons and higher accuracy can be achieved. The above-stated results show, 
however, that a high parameter estimation accuracy, which would safely ensure 
a small position estimation error 8fr, is not a t r ivial matter and requires special 
consideration. This is true even for relatively complex algorithms like the R L S , 
which also requires a signal injection. 
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Figure 4.10: Estimated resistance Rs in a) absolute and b) relative values 

4.3. Goals of the Thesis 
Based on the discussion in previous sections, it was determined that a rotor position 
and motor parameter estimator, which would support the operation of the L M C 
power-optimization algorithm should be pursued within this thesis. The desired 
algorithm placed within the F O C block diagram is shown in Figure 4.11. A s a 
summary, the following traits should be achieved: 

1. The steady-state position estimate error 9fr should be below 7.5 degrees, but 
as small as possible in general. This should be achieved in al l load and speed 
regions. It can be expected, that a robust adaptation to the change of the 
inductances in both axes wi l l be necessary. 

2. The machine parameter estimates should be provided to other algorithms 
within the F O C structure. This regards especially the stator inductances 
because their acquisition is not a t r ivial matter. Accuracy wi thin the ± 3 0 % 
range is acceptable, provided that position error 9fr is not affected. 

3. The convergence to the optimal 9^pt operating point should not require signal 
injection, which would l imit the applicability of the algorithm. This is neces­
sary because the injection is the main l imitat ion of SC algorithms, which are 
otherwise preferable. 
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4. The algorithm should require no or inexpensive additional hardware. 

PI 

CO, 

COS 

X 
I 
sin 

Of 

Eff ic iency 
Opt imizat ion fc 

Desired algorithm 
Figure 4.11: Block diagram of desired sensorless estimation algorithm within F O C 
structure 
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5. Proposed Sensorless Adaptive 
Estimation Method 

A s the discussion in Chapter 4 showed, an accurate rotor position and machine 
parameter estimation with online adaptation to their change are key features, which 
could benefit the area of power-optimal sensorless S y n R M control. This chapter 
presents algorithms, which were developed during research for this thesis and should 
represent an alternative to existing solutions. 

As Chapter 2 showed, there are essentially two fundamental physical principles, 
which could be used to estimate S y n R M rotor position; the E E M F model-based 
estimation and rotor saliency tracking using signal injection. A s Section 2.3 showed, 
there are also hybrid algorithms, which use both principles and achieve operation in 
a full speed range. The saliency-based algorithms wi th a fundamental pulse width 
modulation ( P W M ) excitation and stator current derivative measurement, like the 
I N F O R M method and its modifications in Section 2.2, were found to be promising 
for further research. This is mainly because it was shown by other authors that it is 
possible to simultaneously estimate stator inductances, position, and speed [RSW18, 
RSW19]. The research of this thesis, therefore, focused on the further development 
of this idea, which yielded several novel improvements, which are described in detail 
further in this chapter. 

The F O C block diagram integrating the proposed algorithms is in Figure 5.1, 
where the newly added elements are highlighted in grey colour. The remaining 
portion of the block diagram features the F O C method as described in Section 2, 
where the motor setpoint is given by the required rotor speed ur

e

eq and the required 
current vector angle 8Tjeq. The efficiency optimization is assumed to be done using 
unspecified L M C - t y p e algorithm. The newly proposed algorithms are: 

• The current derivative measurement method (see M C I D C and reluctance mea­
surement blocks in Figure 5.1). Its main benefit is that it requires only a 
simple hardware, without a need for costly sensors, like is often proposed (e.g. 
current measurement transformer) [NSS20]. A detailed description of the pro­
posed method itself and a way of obtaining machine reluctances from current 
derivative measurement is in Section 5.1. 

• The alignment-swap PWM switching scheme. This algorithm is described in 
Section 5.2. It was proposed to achieve accurate current derivative measure­
ment on machines wi th large inductances and to reduce switching losses. Whi le 
not being essential, it allows accurate measurements up to the upper l imit of 
the P W M duty cycle. The impact of this method on current ripple and overall 
semiconductor power losses wi l l be discussed as well. 

• The extended Kalman filter utilizing measurement redundancy. Another im­
portant novel idea was to merge measurement of the position-dependent reluc­
tances wi th machine model (1-18) and stator phase current iap measurement 
as a redundant source of information. The extended Ka lman filter theory, 
which is briefly described in Section 5.3, was used for this purpose as shown 
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in Section 5.4. Such information redundancy can be exploited in many ways, 
for example, to estimate additional parameters, improve estimate accuracy, 
serve as diagnostics within fail-safe systems, or as redundant channel in fail-
operational systems. Two variants of the extended Kalman-based algorithm 
wi l l be presented and analyzed via simulation. Note that not al l outputs of 
E K F block in Figure 5.1 are available for al l the variants. 

The core of the proposed method was already published [MVB21] . However, this 
thesis presents a number of modifications, like the inclusion of the stator resistance 
voltage drop in the reluctance calculation and presenting new variants of the E K F 
algorithm, bringing lower computational effort or stator resistance Rs estimation. 

Udc\ 

M C 
IDC 

M C IDC 
M C IABC 
M C U D C 

Measurement Circuit of current idc 

Meas. Circuit of phase currents Tahc 

Meas. Circuit of DC-bus voltage Udc 

Figure 5.1: Block diagram of vector control using proposed algorithms (newly pro­
posed elements in grey) [MVB21] 

5.1. Method of Obtaining Rotor Position from Cur­
rent Derivative Measurements 

A s it was shortly discussed in Section 2.2, the S y n R M inductances La, Lb, and Lc in 
motor phases N e {a, b, c] are affected by the rotor position 9e according to equation 
(2.24). The standard two-state three-phase V S I , as depicted in Figure 2.2, applies 
six non-zero Space Vector Modulat ion voltage vectors VM = {vi, v2, V3, v±, v$,VQ} 
for the time durations TVM = {TVI,TV2,TV3,TV^,TV5,TVQ}. The resulting circuits for 
each non-zero voltage vector are shown in Figure 5.2, including the equivalent R L 
circuits. 
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Figure 5.2: Equivalent machine circuits for voltage vectors generated by standard 
three-phase two-state V S I 

For completeness, the equivalent phase resistance Rph is given by relation 

RbRc R ph Ra + 
Rb + Rc 

— Re-
2 

(5.1) 

but it does not contain any useful information about rotor position. O n the other 
hand, the equivalent phase inductances LphN = {Lpha, Lphb, Lphc} are affected by 
rotor position and can be expressed using the direct and quadrature inductances as 

Jpha La + 
LhL b-^c 3L,L d^q 

Jphb 

Jphc 

Lb + Lc Ld + L q - (Ld - Lq) COS {26e 

LaLc 3LdLq 

La + Lc Ld + L q - {Ld - Lq) cos [2{ 

LaLb _ 3LdLq 

i _ 2TT\~\ ' 
e 3 

La + Lb Ld + L q - {Ld - Lq) cos [2{6e + f ) ] ' 

(5.2) 

(5.3) 

(5.4) 

The example of equivalent phase inductances LphN during one electrical revolution 
is shown in Figure 5.3a. Whi le the LphN contains rotor position information, it is 
not a harmonic function and its model involves a division, hence, it wi l l be more 
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beneficial for later use to work wi th its inverse. The normalized reluctance 7lphN 

quantity is, therefore, introduced as 

7 ? ' _ 3 1 _ Ld + L q - (Ld - Lq) cos (29 e) 
'^pha q r or r ' ^ J 

_ 3 1 L d + L g - ( L d - L g ) cos [ 2 ( g e - f ) ] 
'"S^* " o r " o r r ' l D - t ) J 

_ 3 1 _ Ld + L q - (Ld-Lq) cos [2(ge + f ) ] 
z J^phc •L^d^q 

Note that the term normalized reluctance is used for two reasons. The first is the 
fact that the inverse of magnetic reluctance 1Z = 1/V = M2/L is called permeance 
V and is proportional to inductance L v ia the number of coil turns 1 / M 2 . However, 
since the number of turns M is dimensionless number, the 7^p f t Ar c a n be- considered 
to have a character of reluctance. The second reason for the term normalized is 
because of the | coefficient in equations (5.2), (5.3), and (5.4). It was added to scale 
riphN as shown in Figure 5.3b, so 

m i n [KphN) = 1 Z d = Ydi (5-8) 

max (n'phN^j = Tig = (5.9) 

where 1Z'd and TZ'q are normalized reluctances in direct and quadrature axis. This 
form is useful for its easy integration into S y n R M mathematical model, as wi l l be 
shown later. The normalized reluctances 7ZphN can be also expressed using direct 
and quadrature axis reluctances as 

ripha = ridcos2{9e) +riqsm2(6e), (5.10) 
2TT 2TT 

Khb = K ™s2(9e + —) + riq sin 2(# e - — ) , (5.11) 

27T 27T 
riphc = ridcos2(6e - —)+rigSm2(6e + —). (5.12) 

Note that for the remainder of this thesis, it is understood that the term reluctance 
relates to normalized reluctance as defined above, whether the word normalized is 
used or not. 

76 



JphN 
[Hi 

Lpha solid 
Lphb - dashed 
Lphc dotted 

0 

TZphb - dashed 
TZ'phc - dotted 

180 - 1 3 5 - 9 0 - 4 5 0 45 90 135 180 

Figure 5.3: Example of rotor position 9e dependency of a) inductances L p h N and b) 

phN reluctances 1ZmhM for L d = 0.65 H and L q = 0.2 H 

Looking back at Figure 5.2, the phase reluctances TZphN can be obtained from 
the DC-bus current change Aidc caused by one of the non-zero S V M voltage vectors 
VM applied by the inverter for the time duration TVM as 

K 
( Aide 

pha 

K 
( Aide 

'pha 

V — '^phb — 

\ TvA 

( A i d C 

K 
( A i d c 

phb 

V — 
IK,phc 

n. 

3 Udc Rphia 

2 1 

3 Udc + Rphia 

2 1 

3 Udc — Rphib 

2 1 

\ TvG J 3 Udc + Rphib 

( A i d c \ 2 1 

V TV5 J 3 Udc — Rphic 

( A i d c \ 2 1 
phc 

\ Tv2 J 3 Udc + Rphic 

when Vi is applied, 

when v 4 is applied, 

when v3 is applied, 

when v6 is applied, 

when v5 is applied, 

when v2 is applied. 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

Note that relations (5.13) to (5.18) were improved by considering the resistance 
voltage drop when compared to the original publication [MVB21] . There is st i l l a 
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simplification by the assumption that the voltage drop on Rph resistance caused by 
currents za&c is constant throughout the TPWM period. This is, however, considered 
to be acceptable because the stator resistance voltage drop change wi l l usually be 
very small when compared to the DC-bus voltage Udc-

The measurement of current change Aide is, however, not a simple task. The 
S y n R M have usually relatively large stator inductances when compared to different 
motor topologies of similar power rating. This is a result of a design, which favours 
large Ld — Lq difference to maximize output torque. A t the same time, the standard 
P W M , as shown in Figure 2.4, generates only short periods TVM, during which the 
Ai^ can be measured. To put things into perspective, for a measurement window 
corresponding to one of TVM periods wi th length TPWM/2 = 50 /xs, inverter D C -
bus voltage Udc = 400 V , and the S y n R M with max(LphN) = \Ld = 0.975 H , the 
minimal current change for measurement would be 

m i n f A , , ) - TpWMUdc _ 0-0001 • 400 _ 
m m ( A ' d c j - 2 m a x ( L p ^ ) " 2-0.975 " 2 U " 5 m A ' ^ 

The most commonly used method of stator current measurement is current recon­
struction from voltage drop measured on bottom shunt resistors Rsh using oper­
ational amplifiers. This is depicted via the M C I A B C block in Figure 5.1. These 
circuits are set-up for the measurement of complete stator current range ± max(z a& c). 
If we consider an example of a suitable inverter for S y n R M described in Section 1.2 
wi th configured current scale max(iabc) = 3 A , then we can see that mm(Aidc) in 
(5.19) represents only 0.34 % of measurement scale, which is less than a single L S B of 
8-bit A D C measurement. Using M C I A B C wi th such configuration for Aide measure­
ment would very likely lead to signal wi th a high noise content. Exist ing algorithms, 
which rely on current derivative measurement, usually employ a specialized current 
sensor (e.g. current transformer) or compensate for a relatively low A D C measure­
ment resolution, using over-sampling with computation-heavy post-processing (e.g. 
current slope averaging, Ka lman filtering,...) [RSW18,NSS20]. 

The current derivative measurement method, proposed during research for this 
thesis, is based on the separate Measurement Circuit of DC-bus current idc ( M C 
I D C ) . This circuit amplifies the voltage drop on the common DC-bus shunt resis­
tor Rshc, as shown in Figure 5.1. Its basic principle of operation is illustrated in 
Figure 5.4. Compared to M C I A B C , it is configured to have a much higher gain 
and, as a result, a smaller measurement scale max(id c) <C max(i a{, c). This allows to 
achieve a much better resolution of the idc measurement. Such a high gain would 
normally lead to a quick saturation of the M C I D C output even for a small stator 
current amplitudes iabc- To avoid this, the M C I D C measurement window is being 
actively offset by a DAC-generated signal to be located at the predicted location of 
idc- The correct offset value is obtained from the iabc measurements from M C I A B C 
and knowledge of upcoming voltage vector % , which determines the idc value as 
shown in Figure 5.2. 
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Figure 5.4: Illustration of operation of M C I D C circuit 

A n example of the schematic diagram of the M C I D C is shown in Figure 5.5. Its 
output Uidc leads to the A D C periphery of M C U and contains amplified information 
about A i d c . The « 0 0 is the operational amplifier supply voltage, which ideally limits 
the M C I D C output to 0 V < uidc < UDD range. The uQff is a DAC-generated 
signal, which, offsets the measured current range to avoid output saturation and 
fit the predicted idc location. The circuit functions as a differential amplifier wi th 
an analog gain max(idc) configured as necessary to achieve a good A i d c resolution 
while being able to measure maximal expected A i d c . The output of M C I D C at 
steady-state can be described as 

Uidc = KRRpRshcidc + KnR\Uoff — ^ - U D D - , 
tin 

where 

K R 
-R 1i?2 + R\Rn + R2Rr, 

(R1 + Rp)R1Rn 

(5.20) 

(5.21) 

and i ? i = Ri + Rf. There are multiple design considerations for the M C I D C circuit. 
The feedback from « 0 0 supply voltage via resistor Rn offsets the Uidc output so for 
uQff = 0 V , even the lowest expected idc = —max(iabc) is measurable. O n the other 
hand, the 0 V < uaff < UDD should allow for idc = max(i a b c ) measurement. As 
discussed earlier, the uaff must also reflect the phase currents za&c obtained using 
the M C I A B C . The compensation voltage uaff can then be calculated from (5.20) 
by trying to maintain condition Uidc ~ \UDD- This leads to the linear function of 
phase currents 

2R2 + R 
n 

Uoff = 2RnR'1KR 

•uDD -
RVR, 

R\ 
(5.22) 

where IN is the last acquired value of the phase current, which is predicted to flow 
via Rshc during idc measurement (for example IN = ia = idc during Tvi and T„ 4 ) . 
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Figure 5.5: Measurement circuit of idc current M C I D C [MVB21] 

Once the M C I D C is properly configured, the Uidc can be sampled by A D C to 
obtain 

Aide 
uDDAuidc 

(5.23) 

and the uaff can be generated by D A C . The exact t iming of sampling of both 
signals is subject to the used P W M switching scheme and availability of active 
voltage vector period T V M . Whi le this measurement method is generally usable 
together with any switching scheme, like the centre-aligned P W M in Figure 2.4, a 
specific P W M scheme was proposed during research for this thesis and is described 
in Section 5.2. More discussion wi l l be had there. 

Depending on the desired accuracy and available computation power, the final 
Auidc can be obtained from acquired samples using various post-processing methods. 
The most simple one is a simple calculation of the difference between two A D C 
samples as 

Allidc — Uidcit + Tgidc) — Uidcit) — Uidc,k+1 — Uidc,k- (5.24) 

where Tsidc is a sampling time between the two samples and k is a discrete sam­
ple number. Nowadays M C U s often offer powerful signal processing abilities, like 
a high A D C sampling rate with D M A data transfer capability. More accurate 
and noise-suppressing methods can be then employed, uti l izing over-sampling, like 
the well-known offline least square method. For example, the signal can be 
sampled equidistantly Nsmpi-times per P W M cycle TPWM wi th sampling period 
Tsidc = TPWM/Nsmpi. The acquired data can be stored using the D M A to data 
buffer. A valid sample set of size NVM < Nsmpi wi thin the buffer corresponding to 
one of active voltage vector periods T V M can then determined using knowledge of 
the duty cycles Dahc. The measured change Aui(ic for a single voltage vector VM 
then can be calculated as 

A M idc 
NVM [ S 2 -l llidcjj — Z ^ = i J S j = l uidc,j 

T J 
± side 

NVM — Z ^ = i J \ 
(5.25) 

Note that in reality, the selection of valid sample set NVM has to be done carefully, 
as there could be dynamical events occurring near to the P W M switching events. 
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Such events are, however, dependent on the exact S y n R M and inverter used so their 
generalization was not considered within this thesis. 

A n example of the resulting 7ZphN measurement versus the rotor position 9e 

obtained on a real system is shown in Figure 5.6. It can be seen that the obtained 
signals correspond to the theoretical model in Figure 5.3 and can be used to extract 
rotor position 9e as well as machine reluctances lZd and lZq. 
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Figure 5.6: Example of a) TZ'phN measurement and b) matching duty cycle D abc 
measured on a reference S y n R M machine (see Section 1.2) 

The fact that the it'pha, TZ'phb, and TZ'phc quantities are obtained as differential 
measurements from the same sensor limits the likelihood of occurrence of certain 
types of non-gaussian measurement errors. For example, the bias error Uidc + A u i d c 

wi l l not affect the final acquired value Auidc simply because of the differential nature 
of (5.25), or 

Auidc = [uidc(t + Tsidc) + Auidc\ - [uidc(t) + A aide] (5.26) 

O n the other hand, it can be expected that there wi l l be no immunity toward the 
measurement gain error Suidcuidc, which can be expressed for (5.25) as 

AUidc fiuidcUidcit ~\~ 2~sidc) ^uidc^idc(0 $uidc\^-idc,k+l U. idc,k\ (5.27) 
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The use of the same sensor input assures that al l the phase reluctance measurements 
wi l l be affected the same way. Such gain error wi l l then directly affect the lZd and lZq 

information extracted from the SUidcUidc measurement. The root cause of bias and 
gain errors might, for example, be manufacturing variances or thermal dependencies 
of parts forming the M C I D C . Depending on the application, it might, therefore, be 
necessary to address the accuracy and stability of M C I D C measurement gain. 

It is possible that non-linear periodic deformations 7ZphN + Afi{9e + 9phN) might 
occur, where 9phN is stator phase offset for actual TZphN measurement (either 0 rad, 

rad, or — y rad for phase reluctances Tl'pha: T^phbi a n d T^phc)- This can be a result 
of dynamic events, which corrupt the sample right after the P W M switching 
event. There is no general model for these short periodic deformations and care 
must be taken by the system designer to avoid these errors, for example, by ignor­
ing affected Uidc samples. If such errors sti l l occur, then all the phase reluctance 
measurements wi l l remain periodic, wi th 120° shifts between phases. The extracted 
position information then might show an error 9lrr, depending on the nature of 
deformation A-n{9e + 9phN)-

5.2. Alignment-Swap P W M Switching Scheme 
A s discussed in Section 2, there are many P W M switching schemes wi th various 
properties. The current derivative Aide measurement method presented in the pre­
vious section can be generally used wi th any such scheme, which generates non-zero 
voltage vectors % . The Aide measurement method, however, benefits from longer 
uninterrupted non-zero voltage vector periods T V M , which allow for the acquisition 
of higher number or more distant Aidc samples. When looking at the example of 
commonly used centre-aligned P W M in Figure 2.4, the TVM periods are divided into 
halves and, what is more important, zero vectors VQ and v-j can take a significant 
portion of P W M period TPWM- A t duty cycles near to the 50 % minimum or any­
time the switching edges are close to each other, there are short or no active vectors, 
making the Aidc measurement difficult or impossible. This led to the proposal of 
the alignment-swap P W M ( A S P W M ) switching scheme. 

The goal of the proposed switching scheme is to maximize the duration of the 
non-zero voltage vectors TVM so the Aide measurement can be taken even for the 
previously described critical conditions. The principle of the switching scheme is 
shown in Figure 5.7. The phase P W M signal edge alignment is swapped in every 
third P W M cycle to the opposite edge consequently in each phase. The non-zero 
voltage vectors VM are, thus, going to align to either the beginning or the end of 
the P W M period once per three P W M cycles. Calculation of phase duty cycles Dabc 

remains unchanged compared to the standard S V M method described in Section 2 
and the final generated fundamental voltage vector ua/3 w i l l be the same as well. This 
maximizes the length of TVM periods, which serve as Aide measurement windows, 
especially for low and medium duty cycles. In case that duty cycle max(D a f , c ) —> 
100 % and mm(Dabc) —> 0 %, the voltage vectors near the P W M period edges 
might become too short for effective Aide measurement. In such a case, the Aide 
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information can be extracted from active vectors VM formed in the centre of the 
P W M period. 

Active Voltage Vectors 
V, 

250 300 
TPWM= 100/xs " Timers] 

Figure 5.7: Principle of the proposed alignment-swap P W M switching scheme 
[MVB21] 

A n example of interaction between the A S P W M scheme and the proposed Aidc 

measurement method is shown in Figure 5.8. Signal uQff is updated by the D A C at 
the beginning of the P W M cycle and when the first switching event occurs so the 
Uidc signal does not saturate during the measurement time windows TVM created 
at the P W M cycle edges. To extract the Aidc even from centre of the P W M cycle, 
when one of the duty cycles Dahc is too low or too high, a different uQff signal 
update sequence could be done to allow measurement during VM vectors forming at 
the centre of P W M period. 

Besides the Aidc measurement, the A S P W M switching scheme has to accom­
modate iabc measurement as well by providing a suitable location for phase current 
sampling by M C I A B C circuit. The most commonly used method of phase current 
reconstruction uses the measurement of voltage drops on phase shunt resistors Rsh, 
as illustrated in Figure 5.1. To reconstruct za&c, at least two bottom transistors 
must be conducting so the phase currents are flowing through the shunt resistors 
Rsh- The third phase current then can be calculated according to the first Ki rch -
hoff's law ia + ib + %c = 0 A . Such a suitable sampling locations were highlighted 
in Figure 5.8, near the end of each P W M cycle, where dynamic event from the last 
switching event settled. 

When compared to C A P W M , the proposed A S P W M switching method basically 
replaces portions of the zero vectors Vo and by a pair of opposite active vectors 
Vi versus v±, v3 versus v6, or v 2 versus v5 in each P W M period. This causes 
an additional ripple of phase currents iabc. It improves conditions for the Aidc 

measurement, but also causes increased audible noise and, what could be more 
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Figure 5.8: Principle of the proposed idc current slope measurement wi th A S P W M 
scheme [MVB21] 

important, additional conductive power losses in both the semiconductor and the 
machine stator. 

To evaluate the impact of the additional ripple current component, its R M S and 
peak-to-peak values were calculated using an analytical approach for both the pro­
posed and the centre-aligned switching scheme [DW12]. The simulation was run for 
Udc = 400 V and the machine stator inductance was chosen LphN = 0.3 H , which 
should correspond to the worst-case scenario when operating the reference S y n R M 
described in Section 1.2. Note that the stator resistance was neglected during the 
simulation. Also note that for the alignment-swap switching scheme, the resulting 
R M S value was obtained as an average and the peak-to-peak value as a maximum 
current ripple amplitude from all phases e {a,b,c}. Results for al l stator volt­
age amplitudes \uap\/max(|-ua(g|) and angles arg(tiQ,/g) are shown in Figure 5.9 to 
Figure 5.12. A s expected, both the R M S and peak-to-peak values of the ripple 
current component are increased for the proposed switching scheme. The audible 
noise and Total Harmonic Distortion ( T H D ) wi l l be worse when using A S P W M . 
The main focus of this thesis are, however, the resulting power losses. The ripple 
R M S value peaks at 10 m A for centre-aligned P W M and 15 m A for A S P W M . It 
can be seen that the A S P W M generates higher ripples for low stator voltage ampli­
tudes \uap\, while at the higher amplitudes its performance becomes comparable to 
centre-aligned P W M . Efficiency at higher speeds and loads wi l l not be, therefore, 
affected by the A S P W M method as much. When looking at the maximal R M S 
values of the phase current ripple, the resulting power losses wi l l likely form only a 
fraction of a Watt , which is significantly less than other power losses, as described 
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in Section 3. This is, however, mainly because of the relatively high inductances of 
S y n R M machines. The A S P W M method might not be suitable for machines with 
smaller inductances, because the power losses caused by the resulting increase in 
phase current ripple would no longer be negligible. It is then a question, however, 
whether the A S P W M would even be necessary because greater Aidc changes would 
be measurable more easily. 

When it comes to power efficiency, the A S P W M has actually an advantage over 
classic centre-aligned P W M . When comparing examples in Figure 2.4 and Figure 5.7, 
it can be seen that A S P W M generates only eight edges on the AT, AB, BT, BB, 
CT, and CB signals per P W M period, while the centre-aligned method produces 
twelve. This wi l l effectively reduce the semiconductor switching losses by a third. 
For example, as shown in Figure 3.2 this represents several Watts for the reference 
inverter and fully offsets the power losses caused by the current ripple. 

0 I i i i i i i i i 
-180 -135 -90 -45 0 45 90 135 180 

avg(uaP) [°] 

Figure 5.9: Simulated R M S value of phase current ripple component in milliamperes 
for centre-aligned P W M 
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Figure 5.10: Simulated peak-to-peak value of phase current ripple component in 
milliamperes for centre-aligned P W M 
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Figure 5.11: Simulated R M S value of phase current ripple component in mi l ­
liamperes for alignment-swap P W M 
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0 I i i i i i i i 
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arg(«a/?) [°] 
Figure 5.12: Simulated peak-to-peak value of phase current ripple component in 
milliamperes for alignment-swap P W M 

5.3. Kalman Filter 
Various methods were proposed for estimation of position, speed, and parameter 
motor drives, however, the Ka lman Fil ter and its variations are regarded as a high 
performing and relevant algorithms. This section wi l l first present the theory of 
the original Ka lman Fil ter ( K F ) algorithm. It was first proposed by R. E . Ka lman 
in 1960 and it was modified or adapted for many different applications since then. 
The K F is a recursive algorithm, which minimizes the square of the estimate errors 
between actual system states x and the estimates x. This is done by the alterna­
tion of the prediction and correction steps, sometimes also called the time and the 
measurement updates. The system states are updated based on the known model 
during the prediction step. The correction step then consists of updating the state 
estimates based on the measurement [WB06]. To find the true optimal solution, the 
noise has to have a normal distribution. The probability density for systems wi th n 
states can be described as 

= - , ! m i i ^ N P " l M T
l ( 5 - 2 8 ) (2ir) 2 |P| 2 

where P is the covariance matrix. 
One well-known modification, the Extended Ka lman Fil ter ( E K F ) , wi l l then be 

described in the second part of this section. The E K F is generally suitable for non­
linear systems under influence of Gaussian noise. A s wi l l be shown in Section 5.4, 
this and the ability to near-optimally merge the position and parameter information 
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from multiple measurements made it suitable for the proposed algorithm. The dis­
advantages of E K F are, however, relatively high computational demands. Also, the 
acquisition and description of stochastic properties of measurements and estimated 
states for both K F and E K F is not always a simple task [LK19 ,BG10] . 

5.3.1. Kalman Filter Theory 
The K F is considered to be an optimal state estimator for linear systems under in­
fluence of white noise. Since the digital implementation of the estimator is expected, 
we first assume the discrete dynamic system state-space description 

ffc+i = Akxk + Bkuk + wk, 
yk = Ckxk + vk, 

where A , B , and C are matrices describing the system dynamic behaviour and rela­
tion wi th system inputs and outputs, x is the state vector, u is the vector of control 
variables, y is the output vector, and w and v are the process and measurement noise 
vectors. The noise vectors are assumed to be white noises wi th normal distribution 
w ~ JV(0, Q ) and v ~ 7V(0,R) , which means zero first moment and the second 
moment described by covariance matrices Q and R . There is also a condition of w 
and v not being correlated in time and between each other, or 

E{wk,wi} = E{vk,vt} = 0 for k ^ I, 
E{wk,wk} = Q f c , 
E{vk,vk} = R f c , 
E{wk,vi} = 0, 

where E{} is expected value operator. The K F searches for the optimal solution by 
minimizing the quadratic error of the estimate P = E{(x — x)(x — x)T}. The matrix 
P is called the state error covariance matrix. The values on the main diagonal 
correspond to state variances and to covariances outside the main diagonal. 

As was already mentioned in the previous section, the K F calculation consists of 
prediction and correction steps. The entire sequence is shown in Figure 5.13. The 
prediction begins wi th the calculation of the new state estimate 

x f c | f c _ i = A x f c _ i | f c _ i + Buk, (5.31) 

where k\k — l subscript denotes estimate obtained prior to the measurement update 
and the k\k subscript marks the estimate obtained after the measurement, some­
times also called apriori and aposteriori estimates. Because the estimate xk\k-i was 
obtained only from the system model, the covariance matrix P should be updated 
to reflect reduced confidence in the new state estimate. Hence, the apriori update 
of the covariance matrix is done as 

P f c | f c _ ! = APfc .x i fc .xA 1 ' + Q . (5.32) 

The second step, correction, has a goal to increase confidence in the state estimates 
using measurements and, as a result, lower the covariance matrix P . This is done 
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by adding the difference between actual measurements y and the estimated system 
output Cx multiplied by the Ka lman gain K to the apriori state estimate. The 
Ka lman gain is obtained as 

Kk = P f c | f c _ ! C T ( C P ^ C T + R ) " 1 = PklkCTR-\ (5.33) 

The higher the uncertainty of the estimate given by covariance matrix P , in relation 
to the covariance of the measurement R, the higher the K and resulting correction 
and vice versa. The aposteriori state estimate can then be calculated as 

Xk\k = xk\k-i + K f c (y f c - Cffc|fc_i). (5.34) 

Finally, the increased confidence in the corrected estimate xk\k should be reflected 
by the covariance matrix P aposteriori update. This is done as 

Pk{k = (I - K f c C ) P f c | f c _! (I - K f c C ) T + KkRKj = 

= (p- |

1

f c_ 1 + C T R - 1 c ) " 1 = ( I - K f c C ) P f c | f c _ 1 , ( 5 - 3 5 ) 

where usually only the last expression is used because it assures that the matrix P 
wi l l remain positive definite. 

To start the recursive Ka lman filter algorithm, the ini t ial state estimate XQ and 
state covariance matrix Po has to be defined. Based on confidence in the accuracy 
of XQ, the Pq diagonals can be set to higher or lower numbers. 

[Correction 

Prediction 1. Calculate the Ka lman gain 

1. Estimates states in the next step k rk\k^ ^ 

f f c |fc-i - A f f c _ i | f c _ i + B-ufc 2^ U p ( j a t e e s t j m a t e w i t h measurement yk 

2. Project the error covariance ahead ^k\k = %k\k-i + K f c (y f c — Cxk\k_i) 

Pfc|fc_i = APfc.iifc.iAT + Q 3. Update the error covariance 
k\k ri - K f c o p k\k-l 

Initial conditions 

^0; Po 

Figure 5.13: Est imation sequence of Ka lman filter [WB06] 
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5.3.2. Extended Kalman Filter Theory 
Many real systems, including the S y n R M , are non-linear and the standard K F cannot 
be applied. The E K F was developed for this purpose as a direct extension by 
applying the K F to the system linearized near the operation point using Taylor 
expansion [AR15, WB06] . First , we assume a discrete non-linear system state-space 
description 

Xk+l z 

Vk 

t {xk,uk,wk), 
h (xk,vk), 

(5.36) 

where f and h are non-linear time-variant system and output functions and the 
remaining symbols have the same meaning as in the linear state-space model (5.29). 
The last state estimate x w i l l be used as an operation point, around which the system 
is linearized. Linearization itself is done by taking the first element of Taylor's 
expansion, which yields Jacobian matrices 

at 
dx Cfc_i|fc_i,u=ufc,w=0 

dh 

dh dh dh 
dxi 8x2 dxz 
dh. 'Hi. d/ 2 9xi dx^ 8x3 

§Jn §Jn 9f„ 
•dxi 8x2 dxz 

Wk 

dx 
J x=xk\k_uv=0 

df 
dw 

dh' 
dv 

x xk\k — 1 

x xk\k — 1 

dXjn, 
8xn 

dh 
dxn. 

(5.37) 

(5.38) 

(5.39) 

(5.40) 

Note that w = 0 and v = 0 were assumed during linearization because of the zero 
mean value of the noise signals and the fact that immediate values of w and v are 
unknown. We can then reach the linearized error system 

Axk+i = F f c ( A f f c ) + Wkwk, 
Ayk = Hk(Axk) + Vkvk, 

(5.41) 

where A x = x — x and Ay = y — y. The error system (5.41) now noticeably 
resembles the linear state-space model (5.29) so the Ka lman filter theory described 
in Section 5.3.1 can now be applied. Provided that linearization affected the system 
and measurement covariances as 

(5.42) 

(5.43) 
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we can perform the prediction step as 

Xk\k-1 = f (xk-l\k-l,Uk 

Pfc|fc-i = FfcPfc-iifc-iF^ + Qfc. 
(5.44) 

and the correction step as 

Kfc — Pfcifc-iH^ \iikP ^^Hj + R f c 

%k\k = xk\k-i + K f c yk- h(xk\k-i, Ö) 
(5.45) 

k\k f I - K , H , ) P fe|fe-i-

The entire estimation process is illustrated in Figure 5.14. It should be noted that 
the linearization introduced an error into the estimate x and the covariance matrix 
P, making the solution sub-optimal. The more significant non-linearity, the more 
significant the error. The linearization also has to be performed in each calculation 
step, which increases the algorithm complexity. 

Prediction 

1. Estimates states in the next step 

Xk\k-i = f \Xk-i\k-i,Uk, 0 

Correction 

1. Update Jacobian matrix 
2. Calculate the Ka lman gain 

Kfc — Pfc|fc-iHfc ( H f c P f c | f c _ ! H f c + Rfe 

3. Update estimate wi th measurement yk 2. Update Jacobian matrix F& r 
3. Project the error covariance ahead — %k\k-i + yk — h(xk\k-i, 0) 

Pfc|fc-i = FfcPfc-iifc-iFj + Qfc 
4. Update the error covariance 

Initial conditions 
xo, Po 

(I — KfcHfc) Pfc|fc_i 

Figure 5.14: Estimation sequence using extended Ka lman filter [WB06] 

5.4. Proposed EKF-based Estimation Algorithm 
The block diagram of the proposed sensorless algorithm in Figure 5.1 shows the pro­
posed EKF-based observer, which provides estimations of rotor electrical position 9e, 
electrical angular speed u>e, and stator inductances La and Lq. Based on the illustra­
tion in Figure 5.3, all this information can be extracted from the 7 £ p h A r measurement 

(i.e. its amplitude is inverse to La and Lq and the position is contained in phases 

91 



°f T^phai ^phbi a n d T^phc harmonic functions). The following Section 5.4.1 wi l l show 
a basic implementation of the E K F algorithm (further called E K F - B A S I C ) , which 
can extract mentioned quantities. The main reason for the selection of the E K F 
was its ability to near-optimally merge the information from multiple sensors with 
various noise properties. A s it was already presented in the literature, the stator 
current measurements iap and knowledge of synchronous machine model can also be 
used to obtain rotor speed and position information [AR15]. Combining these two 
models brings a redundancy, which can be exploited in many ways. For example, 
the previously published version of the proposed EKF-based estimator featured an 
estimation of core losses [MVB21] . The following Section 5.4.2 wi l l show another 
example of the implementation of an EKF-based algorithm (called E K F - R S ) that 
provides the stator resistance Rs estimate. 

Both the proposed EKF-based algorithm versions (i.e. E K F - B A S I C and E K F -
RS) were verified using simulation and the results are discussed in the following 
sections. Simulations were done for the F O C algorithm with an integrated investi­
gated E K F algorithm using the M A T L A B Simulink r2018a for the reference S y n R M 
described in Section 1.2. Because the simulation was focused on the EKF-based 
algorithm, rather than on the 1ZphN measurement process, the 7ZphN values were 
provided directly by the S y n R M machine model. This also allowed to simplify the 
simulation and set the simulation step to Ts = TPWM = 100 fis. 

5.4.1. Proposed Algorithm Variant EKF-BASIC 
To extract rotor electrical position 9e, electrical angular speed ue, and stator induc­
tances Ld and Lq, equations (5.10) to (5.12) are going to be used. If we assume, 
that lZd and ft are slow-changing quantities, we can form the discrete equations 

ft 

ft 
•hb.k 

pha,k 
ft d.k COS 

phc,k 

- e,k)+ ft fcsin2( 

k+2f) + K k s i n 2 ( 

2TT\ I W „ - 2 / ? e , f e - f ) + f t g i f e s i n 

ft; 

ft 
d,k+l 

•q,k+l 

ft 
ft 

d.k-t 
q,k' 

>e,k) 

?e,fc 
2TT\ 

3 / ' (5.46) 

(5.47) 

To obtain the rotor speed ue, the mechanical model of S y n R M can be expressed 
from (1.19), (1.20), and (1.21) as 

_Pp \3PP ( 1 
dt J [ 2 ft J Ti — Biiüri 

dOe 
dt 

(5.48) 

(5.49) 

The above dynamical model of rotor speed, however, requires knowledge of the load 
torque T), which is often not available, and the stator current vector i d q, which is not 
being considered for the E K F - B A S I C algorithm. When further considering that the 
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above mechanical model wi l l not benefit the steady-state speed estimation accuracy, 
it was decided to model the rotor speed as constant 

dt 
0 

rad 
(5.50) 

Apply ing the Euler's discretization method to mechanical models (5.49) and (5.50) 
then leads to the following set of discrete equations 

We,k+1 — ^e,k; 

@e,k+l — @e,k + TsWe^, 
(5.51) 

where TS is sampling period, which is usually set to be equal or multiple of switching 
period TPWM- The Euler's discretization is a simple but also relatively inaccurate 
method and, thus, requires sufficiently high sampling frequency. This condition 
is, however, usually met when controlling S y n R M at nominal speed, because its 
mechanical time constant is usually several orders larger than the P W M switching 
period T P W M . 

The first step to design E K F , as described in Section 5.3.2, is the definition of 
system state and input vectors. Combining equations (5.47) and (5.51) leads to 
state vector 

x (5.52) 

and the system input vector u = 0 (i.e. the estimated system is not driven). Note 
that the Ld and Lq are assumed to be obtained outside of the E K F - B A S I C algorithm 
using relation (5.8). 

As was discussed in Section 5.2, not al l the dia/dt, di^/dt, and dic/dt measure­
ments are available each P W M period, depending on applied active voltage vectors 
VM- The proposed A S P W M scheme allows to obtain current derivative information 
for one of the N phases during each TPWM- Hence, only one of equations (5.46), 
corresponding to the measured phase N, w i l l be used each step k. The available 
measurement (either lZ't 

vector 
1Zvhb, or TZphc) is then going to form the measurement phai phbi 

V — ^phN-

The feedback non-linear time-variant system function wi l l then be 

f ( f f c _ i , M f c , 0 

(5.53) 

•q,k-l 

^e,k-l 

ße,k-l + TsWeh-l. 

and the non-linear output function can be assembled from (5.46) as 

"d\fc-l 

(5.54) 

h (xk,0 nd,k c o s >e,k + 'phN, >e,k + 7phN) (5.55) 
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where 9phN is stator phase offset matching the phase of actual TZ'phN measurement 
(either Orad, ^ rad, or — ̂  rad for phases Vlphal TZ'phb: and TZ'phc)-

The Jacobian matrix of output matrix (5.55) is 

I T 
dh 
dx -!,V=0 

[cos2(ée + ephN), sm2(9e + ephN), 0, H16] 

where 

H on 
10 phN 2(K' - U'd) sm(6e + 9phN) cos(#e + 6P Qde — ̂ \'^q >^d) u m \ " e i "pníš j^wye i JphNj 

Discrete-time Jacobian matrix of process matrix (5.54) is 

(5.56) 

(5.57) 

(5.58) 

Idxi: _l,Ü=Üfc,w=0 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 T, 1 

(5.59) 

To complete the EKF-based estimator design, the stochastic properties of the 
state estimates and measurements have to be modelled v ia covariance matrices Q 
and R. In both cases, the matrices can be, for example, obtained using methods like 
the Expectat ion-Maximization (EM) algorithm [Moo96]. The E M algorithm fits pa­
rameters Q and R of Gaussian measurement models to maximize model likelihood 
by interleaving the expectation and maximization steps over a block of measured 
data. The expectation step calculates expected values of states and measurements 
based on the latest obtained Q and R parameters using the Ka lman smoothing 
estimator. The maximization step then improves the Q and R estimates using pre­
viously obtained expected values. These steps continue unti l a relative steady state 
of estimates is reached. Such algorithms are, however, relatively computationally 
intensive, which makes them harder to use in the field. In practice, the matrices 
Q and R are often used as offline design parameters of E K F . This thesis wi l l ap­
ply the latter approach and provide a way of calculating the ini t ia l configuration of 
covariance matrices, assuming that additional tuning might be required to improve 
performance. It is understood that such an approach does not utilize the full poten­
t ia l of the E K F algorithm and only sub-optimal results wi l l be demonstrated. St i l l , 
the validity of the proposed algorithms should be proven. 

Because there is only a single signal used as a measurement, the noise covariance 
matrix has a form 

R a K ph 
(5.60) 

where <Jjiph is standard deviation of phase reluctance measurements 1Z •phN- The 
value of o~nph is difficult to model and in this work it is acquired by offline analysis 
of recordings of measurements from an actual system. A n example of such 
approach wi l l be discussed in Section 6.2.1. Sensitivity to incorrect setup of (Tjivh 
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wi l l be analyzed v ia simulation further in this section. A l l the states are considered 
to be uncorrelated, hence, the state noise covariance matrix has a diagonal form 

0 0 0 

0 at,* 0 0 0 
K 

0 0 

0 0 < 0 
_ 0 0 0 

(5.61) 

Based on the dynamic performance required by the application, the states TZd and 
itq can be considered to be slow-changing parameters. Their standard deviations 
OV and av> can, therefore, be selected close or equal to zero. The speed estimation 
deviation can be selected as the maximal expected electrical speed change wi th the 
moment of inertia J and nominal torque T n o m per sampling period Ts, as aUJe = 
TsTnom/J. Because position 9e is obtained as a pure integration of ue, its deviation 
wi l l be chosen as age = 0 rad [ B S L + 1 0 , AR15] . 

Finally, the initialization of E K F - B A S I C is done through the definition of the 
ini t ial state vector xo and the ini t ia l covariance matrix P 0 . A s discussed in Sec­
tion 5.3.1, there are multiple approaches. A s an example, the state vector can be 
set 

f 0 = [ 1/Ld0, 1/Lgo, 0, 0 ] , (5.62) 

where L d 0 and L q 0 are rough expected machine inductances. Similarly, the P 0 can 
be set as a diagonal matrix, usually wi th sufficiently high variance values on the 
main diagonal, reflecting the low confidence in vector XQ. 

Simulation of E K F - B A S I C Variant 

To verify behaviour of E K F - B A S I C , the estimator was integrated into the S y n R M 
F O C algorithm within the Mat lab Simulink simulation environment. Configurations 
of the state noise matrix Q , measurement noise matrix R , and ini t ia l vector XQ are 
listed in Table 5.1. The 7ZphN measurements were by default distorted wi th a white 

noise of parameters matching to the matrix R . The covariance matrix was initialized 
as 

P 0 = diag 0.01 H 2 , 0.01 H 2 , 1 0 0 — r , 1 r ad 2 . (5.63) 
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Table 5.1: E K F - B A S I C setup of vector x0 and matrices R and Q for simulation 

1.0 

0.8 

Ldi 0.6 
Lq 

[H] 0.4 

0.2 

0 

Quantity Value Uni t 
0.15 

5 • 1 0 " 4 

I 
H 
1 

H 
a K 5 • 1 0 " 4 1 

H 
0.096 rad 

s 
0 rad 

0.5 H 
0.5 H 

1500 
1200 

900 
600 

N 300 
[rpm] 0 

- 3 0 0 
-600 
-900 

-1200 
-1500 
-1800 H 1 1 1 h 

9 10 11 12 13 14 15 16 17 

H 1 1 1 1 1 1 1 1 1 1 1 1 h t [si 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Figure 5.15: E K F - B A S I C estimates of a) speed and b) inductances 

Figure 5.15 shows estimated states x where the estimator was activated at time 
to and the machine was run in the full speed range wi th the nominal load steps 
introduced. Bo th the speed and inductance estimates showed a very good track­
ing ability. To better highlight the performance, Figure 5.16 shows errors of the 
estimated states x for the same scenario as in Figure 5.15. W i t h exception of dy­
namic events, where the inductance estimate relative errors 5i,d and Siq peaked to 
tens of percent and position error 9fr reached up to eight degrees, the steady-state 
performance showed estimation errors well below thresholds discussed in Section 4.3. 
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Figure 5.16: E K F - B A S I C estimation errors of a) inductance and b) position 

The icphN is the only measurement being taken, hence, the accuracy of al l the 
estimates wi l l depend on its errors. Possible deterministic error models were dis­
cussed in Section 5.1. The only measurement error, which can be modelled, is the 
measurement gain error (5^7?.PHAR, which is directly related to M C I D C gain measure­
ment error SUidc- The simulated sensitivity of state estimates to sweep of S-R is shown 
in Figure 5.17. A s expected, the ltd and it are affected directly, while there is no 

impact to position 9e and speed ue estimation. This highlights the importance of 
careful determination of the M C I D C measurement gain for accuracy of inductance 
estimation. 
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Figure 5.17: Sensitivity of E K F - B A S I C a) inductance and b) position estimates to 
M C I D C measurement gain relative error 5-R sweep 

The stochastic ÍcphN measurement error can occur by assuming an incorrect value 
of standard deviance cr-n h in matrix R . The sensitivity of state estimates to sweep 
of this relative error 5an h is shown in Figure 5.18. The position estimate is quite 
insensitive but the inductance estimates show increased noise for underestimated 
o~nvh value. The key observation is that no steady-state estimate error or instability 
appeared. It should, however, be noted that the configuration of matrix Q in relation 
to matrix R can affect the results. Bo th Figure 5.17 and Figure 5.18 were obtained 
from 100-second recording for machine running at nominal speed and under nominal 
load, during which the modelled error parameter was swept. 
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Figure 5.18: Sensitivity of E K F - B A S I C a) inductance and b) position estimates to 
relative error 5an of standard deviance a-ji , setting in matrix R 

ph 

5.4.2. Variant with Stator Resistance Measurement EKF-RS 
The E K F - B A S I C algorithm already provided the most crit ical estimates of rotor 
electrical position 9e, electrical angular speed u>e, and stator inductances L d and L q . 
This section wi l l present the E K F - R S algorithm variant, which takes into account 
stator current iap measurement and knowledge of the machine model to provide 
estimate of the stator resistance Rs as well. 

First , the stator current model (1.18) wi th neglected core losses and dynamic 
inductance is assumed. Using the direct and quadrature axis reluctance lZd and lZq 

we can obtain S y n R M stator current model 

did 
dt 
dig 

• dt 

Kd 0 
0 K 

<i.i 
u„ 

Rs 
-uje/n'q 

Rx 

(5.64) 

Although the stator current vector iap is now considered to be available within 
the algorithm, the load torque TJ in the model (5.48) is st i l l unknown. Hence, the 
mechanical models (5.49) and (5.50) are going to be used just like for the E K F -
B A S I C version. Apply ing Euler's discretization method to S y n R M electrical and 
mechanical models (5.49), (5.50), and (5.64) leads to 

1>d,k id,k-l + TsTZdjk_i {Ud,k — RSid,k-l + ^e,k-liq,k-l/T^q,k-\] J 

Íq,k-1 + TsT^q^k-l {Uq,k ~ Rsíq,k-1 ~ ^e,k-lid,k-l/T^d,k-1} : 

^e,k — ^e,k-l; 

@e,k — @e,k-l + TsUeh-l; 

(5.65) 
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where Ts is discrete sampling period. The argument of applicability of Euler's dis­
cretization method is the same as for the E K F - B A S I C implementation, where the 
electrical and mechanical time constants of S y n R M are considered to be longer than 
switching period TPWM by at least an order. 

The above-defined electrical and mechanical models (5.65) would alone be suffi­
cient to design an EKF-based estimator, which could provide position 9e and speed 
uje estimates [AR15 ,SKUU03] . However, to get the stator resistance Rs information, 
the E K F - R S wi l l utilize (5.65) as well as (5.46) and (5.47). This leads to state vector 

x 

and system input vector 

hi ) "qi Op, R.c 

[Ud, Uq] 

(5.66) 

(5.67) 

The available measurements are stator currents ia$ and phase reluctances TZpha, 

1Z'phb: or TZphc, which form the measurement vector 

V = [K'phN, ia, iff] • 

The feedback non-linear time-variant system function wi l l then be 

(5.68) 

f ( £ f c _ i , ? 4 , o ) 

"d,fo-l 
K 

id,k-i + TsT^d,k-\ 

iq,k-l + TST^q,k-l 

Ud,k 

Uq,k 

q,k-l 

— Rs,k-lid,k-l + ^e,k-liq,k-l/7^qtk-l 

— Rs,k-liq,k-l — &e,k-li'd,k-l/'R'd,k-l 

&e,k-l 

e,k-l + TsUe^k-l 

Rs,k-i 

(5.69) 

A n d , finally, the non-linear output function can be assembled using Park's transfor­
mation matrix (1.3) for stator currents and from (5.46) as 

h [Xk,0 

'K'dk cos2(# e, f c + 9phN) + K'qk sm2(6e:k + 9phN) 

COs(9ejk)id,k ~ Sm(9ejk)iqjk 

sm(9eik)idik + cos(9eik)iqik 

(5.70) 

The Jacobian matrix of output matrix (5.70) is 

'dh' 

dx 

cosz{9e,k + 9phN) 
0 
0 

0 0 H 16 

x=xk\ k_i,v=0 

sm2(9etk + 9phN) 0 
0 cos(#e,fc) - s in (0 e > f c ) 0 #26 
0 sin(6U) cos(6L f e) 0 # 3 6 

(5.71) 

(5.72) 
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where H\Q is defined in (5.58) and 

H 26 = f t ; = - Bin(0e,fc)id,» 

^ 3 6 = 3̂  = COs(9e,k)id,k 

- cos( 

sin(( 

C'ejfc )^q,k; 

'e,fc)̂ q,fc-
(5.73) 

Discrete-time Jacobian matrix of process matrix (5.69) is 

x=xk_1\k_1,u=uk,w=0 

1 0 0 0 0 0 0 
0 1 0 0 0 0 0 

-^31 F32 -^33 F34 F35 -^36 -P37 
F41 F42 F43 F44 F45 •^46 F47 

0 0 0 0 1 0 0 
0 0 0 0 T 1 0 
0 0 0 0 0 0 1 

(5.74) 

where 

31 
did 
an' 

32 
_ ±>hL 
~ dK'q 

77 _ did -̂ 33 

t/riqk_ 1 • 

Ts { Ud,k ~ Rs,k-lid,k-l + ^e,h-liq,k-l/T^qtk-l 

, - 1 — TsRs^-iR-d^_i-, 

^34 = 9^ = Ts^e,k-lT^d,k-l/^q,k-l-

F*5 = 2* 

F37 

dia 

:;:> ^ = Tsiq,k-l^d,k-l/^q,k-l-

1(3 _ ft: ~~ Ts'Rd)k-lUq,k; 
did 8RS ~ -̂ ŝd.fc-l 

(5.75) 

12 

^ 4 1 = J T Z _ rs^o,/V-l̂ c,fc-lHfc-l/̂ dVl' 
— Fs jMg,fc — Rs,k-liq,k-l ~ &e,k-i.id,k-l/'R>qtk-l j ; 

FAS — fij; = —Ts&e,h-&qj^\l'R'd,h-li 

Fu — = 1 — TsRs,k-i^q7k-iy (5.76) 

"^45 = & ^ = -Tsid,k-l^k-l/^d,k-l^ 

Fw = Q£ = -TsTZq^U^k, 

= dR~s = ~T^q,k-lhM-l-

Note that F 3 6 and F 4 6 were obtained by integrating the Park's transformation matrix 
Tdq(6e) defined by equation (1.3) into process Jacobian matrix F . 

Just like in the case of the E K F - B A S I C algorithm, the stochastic properties of 
the state estimate and measurements wi l l be modelled v ia manually-set constant 
covariance matrices Q and R . 
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Measurements (5.68) are considered to be uncorrelated, therefore the measure­
ment noise covariance matrix has the form 

0 0 " 

R = 0 ^cr2 

3 i 
0 

0 0 -<72 

3 «J 
(5.77) 

where (Jnph

 a n d (Ji are standard deviations of phase reluctance 7ZphN and iap current 
measurements. The value of (Jnph is assumed to be selected just like for the E K F -
B A S I C algorithm. Variance of can be modelled as the A D C discretization error and 
the noise introduced by measurement circuit M C I A B C , which leads to 

max^ f f l b c j 
1 2 • 2 n A D C 

+ EIN-
^m&x(iabc) 

UDD R sh 
(5.78) 

where max(z a& c) is the phase current measurement scale, NADC is the number of 
A D C bits, Rsh is the shunt resistance, UDD is the maximal voltage measurable by 
A D C , and E I N is the equivalent input noise of the operational amplifier [ B S L + 1 0 , 
A R 1 5 , C M 1 8 ] . The resulting current variance in the two-phase stator af3 reference 
frame can be calculated by taking into account Clarke's transformation as 

v&r{ia} = var <j - i a - - i h - - i c -.Oi 

var{z / 3} = var <; -^=tb 

v i ' 

1 „2 2 9 
9 

(5.79) 

(5.80) 

The states wi l l be considered to be uncorrelated, hence, the state noise covariance 
matrix is also diagonal, and has the form 

Q 

0 0 0 0 0 0 " 

0 
° k 

0 0 0 0 0 

0 0 2-(J2 

3 * 
0 0 0 0 

0 0 0 2-CT2 

3 * 
0 0 0 

0 0 0 0 < 0 0 
0 0 0 0 0 < 0 
0 0 0 0 0 0 

(5.81) 

Setup of ani, an<, crUe, and aee was already discussed in Section 5.4.1. The stator 
resistance estimate deviation aRa should be chosen as a small or zero value because 
the stator resistance estimate wi l l be a slow-changing quantity. The variance of the 
stator currents in the rotating dq reference frame can be estimated by taking into 
account the Park's transformation as 

- 2 - 2 2 
va r{ i d } = var{i a cos(# e ) + ipsm(9e)}~ cos 2(# e)-cx 2 + sin 2(# e)-cx 2 = - o f , (5.82) 

vax{iq} = var{— ia sm(6e) + iß cos(0 e )}~ sin 2 )-o- 2 + cos 2( | c T 2 = jjer2. (5.83) 
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Note that the above expression was simplified by considering zero rotor position 
variance a$e and should be treated as a rough setup. 

The initialization of E K F - R S wi l l be analogous to the E K F - B A S I C variant as 
well. The ini t ia l state vector x0 can be set as 

f 0 = [ 1/Lao, 1/Lq0, 0, 0, 0, 0, Rs0 ] , (5.84) 

where Ld0, Lq0, and Rs0 are rough expected machine parameters. Similarly, the P 0 

can be set as a diagonal matrix, usually wi th sufficiently high variance values for 

currents idq, speed ue, and position 9e because the confidence in the ini t ial value is 
low. 

Simulation of E K F - R S Variant 

To analyze the properties of E K F - R S , the algorithm was again integrated into the 
S y n R M F O C algorithm within M A T L A B Simulink simulation environment. The 
setups of the state noise matrix Q, measurement noise matrix R, and ini t ia l vector 
XQ are listed in Table 5.2. The 7ZphN and iap measurements were by default distorted 
wi th a white noise of parameters matching to the matrix R. The ini t ia l state vector 
XQ was intentionally set to inaccurate values to highlight the ability of the algorithm 
to startup and converge with unknown ini t ial system state. The covariance matrix 
was initialized as 

P 0 = diag 0.01 H 2 , 0.01 H 2 , 1 A 2 , 1 A 2 , 1 0 0 — r , 1 rad 2 , 0.01 Q2 . (5.85) 

Table 5.2: E K F - R S setup of vector x0 and matrices R and Q for simulation 
Quantity Value Uni t 

0.15 I 
H 

15.8 m A 

a K 
5 • 1 0 " 4 I 

H 

5 • 1 0 " 4 1 
H 

0.096 rad 
s 0 rad 

<?Rs 5 • 1 0 " 3 tt 
Ldo 0.5 H 

0.5 H 
RsO 5 n 

Figure 5.19 shows estimated states x for full speed range, where the estimator 
was activated at time t 0

 a n d nominal load TL steps were introduced during the speed 
profile. Figure 5.20 shows errors of the estimated states x for the same scenario as 
in Figure 5.19. Bo th the inductance and position estimates have comparable accu­
racy as in the case of the E K F - B A S I C algorithm and the steady-state performance 
shows estimation errors well below thresholds discussed in Section 4.3. The stator 
resistance Rs also shows steady-state estimation error below the desired threshold, 
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but, is generally much higher than in the case of other states. It should also be 
noted, that convergence of Rs relies on sufficient E M F voltage, or in other words, 

sufficient speed ue and stator current %dq. This can be seen in Figure 5.20c, where 
the estimate error 5RS drops when the nominal load is introduced. To avoid diver­
gence of Rs estimate, and potential numerical instability of E K F - R S , a simple CTR3 

runtime adaptation mechanism can be used, where CTR3 = 0 SI is set when absolute 
value of speed \ue\ is under the selected speed threshold Ic tV^J. Comparison of Rs 

resistance-related variance from the main diagonal of matrix P (further referenced 
as var(i? s )) with and without such adaptation mechanism is shown in Figure 5.21. 
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Figure 5.19: E K F - R S convergence of a) speed, b) current, c) inductance, and d) 
resistance estimates 
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Figure 5.21: Covariance of Rs estimate at low speeds and currents wi th and without 
the <7Rs state covariance adaptation mechanism 

106 



Similarly to E K F - B A S I C , the effect of the measurement gain error 5izTZ'phN was 
analysed. The response to S-JI sweep in Figure 5.22 shows that the Tl'd and TZ'q 

are affected directly again. It is, however, noticeable that Rs estimate is greatly 
affected too. It is, therefore, up to the system designer if he considers the 7lphN 

measurement to be sufficiently accurate and whether the desired stator resistance 
estimation accuracy can be reached. Data for Figure 5.22 were measured over a 
100-second period for the machine running at nominal speed and under nominal 
load. The non-gaussian errors in iap measurements are considered to be out of the 
scope of this thesis. 

a) 

M i ] 
0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 
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Figure 5.22: Sensitivity of E K F - R S a) inductance, b) position, and c) resistance 
estimates to measurement gain error S-JI 

The error in standard deviance cr-ji h value in matrix R was analyzed as well. Sen­
sitivity of state estimates to sweep of error 5un h is shown in Figure 5.23. Unlike in 
the case of E K F - B A S I C , a greatly overestimated (Jnph setup can lead to steady-state 
estimation errors as well. It should be noted that this is only a superficial analysis 
done to highlight possible dependencies and configuration of other parameters (e.g. 
matrix Q in relation to matrix R can affect the results as well). Figure 5.23 was 
obtained from a 100-second recording of the machine running at nominal speed and 
under nominal load, during which the modelled error parameter 5un h was swept. 
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Figure 5.23: Sensitivity of E K F - R S a) inductance, b) position, and c) resistance 
estimates to relative error 5CjLu of standard deviance (Jnph setting in matrix R 

ph 

108 



6. Experimental Analysis 
The goal of this chapter is to compare the performance of the S y n R M control 
algorithms proposed in Section 5 on a real system with other, commonly used, 
state-of-the-art sensor less estimation algorithms listed in Section 2, as well as the 
sensor-based control. The first part of this chapter wi l l focus on a description of 
the experimental hardware setup, which was used for al l the measurements, and 
how the key performance indicators were obtained. The second part then describes 
the implementation and tuning details for al l implemented algorithms. Finally, the 
acquired results are presented and discussed. The main focus is the evaluation of 
the achievement of goals set in Section 4.3. 

6.1. The Measurement Setup 
A l l measurements were done on reference 550 W machine from K S B manufacturer, 
which parameters were already presented in Section 1.2. This S y n R M machine 
was integrated into testbench, which high-level block diagram is in Figure 6.2 and 
photography of the setup is in Figure 6.1. The shaft of the S y n R M motor was 
connected to the 3.5 k W P M S M motor A l l a n Bradley F-4030-Q-H00AX to act as a 
loading generator. A benefit of this machine is its integrated 12-bit encoder, which, 
thanks to the co-axial motor-to-load setup, was used to get reference rotor position 
9e of both the S y n R M motor and the load P M S M generator. Both the motor and 
generator inverter shared the same DC-bus rai l so the generated power was used to 
immediately cover a part of the input power of the S y n R M motor. 

PMSM load with encoder 

Reference 550W SynRM 

NXP HVP-MC3PH inverter - SynRM 

Common mode choke filter 

NXP HVP-MC3PH inverter - P M S M load 

Braking resistance (safety only) 

Mains transformers 

Figure 6.1: Photography of the experimental testbench setup 
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Q f / rdc r dcM 

[ h / 

Rectifier 

Figure 6.2: High-level block diagram of the experimental set-up 

The power diagram of the experimental testbench is in Figure 6.3. Power quan­
tities defined in the diagram are: 

Pdc- Rectified electrical power supplied to the testbench. 

PdcM = UdJdcM = Pdc + PdcG- Input power of the S y n R M motor V S I . 

P i n v = P c o n + Psw: Sum of the motor inverter conductive P c o n and switching 
power losses Pcon-

Pin = PdcM — PinvM'- A C electrical power drawn by the S y n R M motor. 

Pcu- Joule power losses of the S y n R M motor. 

Ppe : Core power losses of the S y n R M motor. 

P^: Mechanical and ventilator power losses of the S y n R M motor. 

Pm = Pin — Pcu — PFe — PLÜ'- Mechanical power at the shaft produced by the 
S y n R M motor. 

PUJG'- Mechanical power losses of the P M S M generator. 

PcuG'- Joule power losses of the P M S M generator. 

PinvG = PconG + PswG'- Sum of the generator inverter conductive PconG and 
switching power losses PSWG-

dcG UdJ, dcJ-dcG Pm — P^G — PcuG — PinvG'- Rectified electrical power delivered 
by the generator inverter back to the D C rail . 

Mathematical modelling of Joule losses Pcu, core losses Ppe, mechanical losses 
Pu, and shaft mechanical power Pm was discussed in Section 3. The power model of 
the P M S M generator is relatively similar to S y n R M , wi th the exception of torque 
calculation. The mechanical power at the common shaft Pm can be estimated from 
rotor speed uim and quadrature axis current of generator IqG as 

TlUm — PUJG — kflqG^m — PuiG — -PpG^k PMlqG^m — PUJG, (6.1) 
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where PPG is the number of P M S M generator pole-pairs, T\ is braking torque applied 
to the shaft by generator, kt is P M S M machine torque constant, and ^PM magnetic 
flux of permanent magnet of the generator. The used P M S M load does not have its 
own ventilator, hence its mechanical losses can be simply modelled as 

P^G = B1Gu2

m, (6.2) 

where BIG is mechanical loss coefficients. The remaining significant P M S M electrical 
power losses are the stator winding Joule losses, which can be modelled as 

PcuG = RsGlqGi (6-3) 

where RSG is the resistance of generator stator winding and IqG is the quadrature 
axis stator current. The direct axis current is assumed to be controlled to zero 
setpoint because the selected P M S M does not have significant rotor saliency and 
there is no need for field weakening. 

invM PGU 

Figure 6.3: A power diagram of the experimental testbench 

This thesis is mainly focused on the power efficiency aspect of the S y n R M sen-
sorless control, therefore, the experimental testbench was mainly used to obtain 
stead-state input power and state estimate comparison between the proposed and 
the reference state-of-the-art algorithms for the same loading conditions. Therefore, 
for the most of the experiments, the P M S M generator load was used to maintain 
constant torque TJ on the common shaft using the sensor-based torque vector con­
trol method. Accuracy of estimated resistance RS and inductances La and Lq was 
determined based on comparison with off-line measured values presented in Sec­
tion 1.2. The estimation accuracy of position 9e and speed uje was measured using 
encoder sensor. The experiments involving measurement of power efficiency deter­
mined the output power Pm from equation (6.1). A s for the input power, both the 
proposed and the reference sensorless S y n R M control algorithms involved various 
injections and P W M schemes, hence, the investigated input power quantity was se­
lected to include al l motor inverter power losses PinvM- Al though this input power 
PdcM could be calculated or measured in many ways, it was decided to use inde­
pendent instrument capable of sensing average DC-bus current IdcM, leading to the 
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input power relation PdcM = IdcNiUdc- The DC-bus current %dc is highly dynamic 
quantity, hence, the integrating voltage-to-frequency converter ( V F C ) with a high 
sampling frequency was used, so it could provide steady-state information wi th a 
good resolution. Diagram of this measurement instrument is shown in Figure 6.4. 

M C U 

Figure 6.4: Voltage-to-frequency converter measurement instrument 

A more detailed control block diagram of the testbench with implemented E K F -
based algorithm is in Figure 6.5. The F O C algorithm on the S y n R M side of this 
block diagram might differ based on specifics of the investigated algorithm. See 
Section 6.2 for more details. Bo th the motor and the load were driven using N X P 
H V P - M C 3 P H high-voltage inverters, which can provide roughly up to one k W of 
three-phase A C power. The motor-side inverter was modified to feature the M C I D C 
circuit, which, as described in Section 5.1, was used to acquire necessary idc current 
derivative measurements to support the proposed algorithms. 

The motor-side inverter was controlled from H V P - K V 5 8 F 2 2 0 M daughter card, 
which is based on the N X P M K V 5 8 F 1 M 0 micro-controller, which features a 240 M H z 
Cortex-M7 core wi th single-precision floating-point unit, high-speed 12-bit A D C , 
and high-resolution P W M peripherals. The motor-side F O C algorithm was de­
signed to control the rotor shaft speed Nm = ^p-ue, where the source of rotor 
position 9e and speed uie information was the investigated algorithm. The exact 
details of the motor-side control algorithm block diagram as well as configurations 
of the investigated estimators are described in Section 6.2.1, Section 6.2.2, and Sec­
tion 6.2.3. Note that the core of the E K F algorithm, as described in Section 5.3.2, 
was implemented in floating point arithmetics, using the freely-available C source 
code of T i n y E K F project [Lev]. Also, some basic algorithms (e.g. Clarke's and 
Park's transformations, P I controllers,...) were used from the N X P Real Time Con­
trol Embedded Software Motor Control and Power Conversion Library ( R T C E S L ) 
software [Semb]. No current angle 9i optimization algorithm was implemented and 
its setpoint value was controlled manually. A n y optimal M T P A or M E trajectories 
were obtained offline from measurements corresponding to a range of current angles 
9]eq. The P W M frequency 1/TPWM, phase current sampling frequency 1/T S, and the 
current control loop frequency were set identically to 10 kHz. The speed control loop 
sampling frequency was set to 1 kHz. The current control loops were tuned to 40 Hz 
bandwidth and the speed control loop to bandwidth of 3 Hz. Stator voltages uap 
were corrected for inverter non-linearities using LUT-based dead-time compensation 
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algorithm. The S V M was used to obtain duty cycles D a b c in al l investigated F O C 
modifications, but the P W M switching scheme was either the A S P W M proposed 
in Section 5.2, or the centre-aligned P W M as shown in Figure 2.4. The motor-side 
M C U also collected al l measured data and provided them to P C through U A R T 
into F r e e M A S T E R online monitoring and debugging uti l i ty [Sema]. The measure­
ment collection software assured that the acquired data were obtained and filtered 
for the same measurement window. The mean DC-bus currents IdcM and IdcG were 
obtained from the V F C unit using a timer periphery. The control setpoints 8Tjeq and 
ur

e

eq were set using the F r e e M A S T E R uti l i ty as well. 
The M C I A B C circuit current measurement scale was configured to ± max(i a{, c) = 

± 8 A and the M C U D C measurement scale to max(Udc) = 433 V . Part values for 
the M C I D C circuit (see diagram in Figure 5.5) were selected as Rshc = 0.1 Q, 

Rf = 220 tt, Cf = 47 pF , Rx = 1600 Q, R2 = 82 k f i , Rp = 10 k f i , and R n = 22 M l 
When considering offset voltage range uQff G (0; 3.3) V and equation (5.20), this 
allows to measure DC-bus current range %dc G (—3.05; 3.75) A , which is more than 
enough for expected maximal phase current for the reference S y n R M . The idc current 
itself was amplified to voltage Uidc by a gain K^RpRghc = 4.21 V / A . For comparison, 
if the M C I A B C circuit was used to measure Aide, it would offer a 20-times lower 
resolution and, similarly, if M C I A B C was configured to measure with such high res­
olution, its scale max(iabc) would drop from 8 A roughly to 395 m A . This highlights 
the Aide measurement resolution improvement provided by M C I D C circuit. 

The load-side inverter control daughter card N X P H V P - M K V 4 6 F 1 5 0 M is based 
on the N X P M K V 4 6 F 2 5 6 micro-controller with 168 M H z Cortex-M4 core, single-
precision floating-point unit and high-performance A D C and P W M peripherals. The 
inverter side F O C algorithm was designed for torque control and to always utilize 
the encoder for position 9m and speed uim information. The load torque TJ polarity 
was always set to be inverse to the shaft speed uim to act as a break. The torque 
reference 7 ] r e q was set from P C via the F r e e M A S T E R utility. The P W M frequency, 
phase current sampling frequency, and the current control loop frequency were set 
identically to 10 kHz . The current control loops were configured to 40 Hz bandwidth. 
The combination of S V M and centre-aligned P W M was used for al l experiments. 
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Figure 6.5: Experimental set-up control block diagram 

The H V P - M C 3 P H inverter was designed to be powered using voltage from a 
single mains phase. The S y n R M machine, as shown by its label in Figure 1.8, 
has a nominal stator voltage of 350 V r m s , which means that it was designed for 
inverters that can be powered from three-phase mains. This is a common property of 
commercially available low-power S y n R M machines, likely because the high-voltage 
operation improves efficiency and mitigates impact of low power factor of S y n R M . A 
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serial connection of outputs of two transformers was used to increase mains voltage 
so the common DC-bus voltage would reach a maximum safe value of Udc = 420 V , 
knowing that 450 V is a l imitat ion of inverter components like the DC-bus capacitors. 
Even wi th this modification, the nominal power of selected S y n R M could not be 
reached at nominal speed, hence, al l the high-torque experiments were l imited to 
900 rpm. However, this l imitat ion does not reduce validity of acquired measurements 
in terms of evaluation of the performance of the proposed algorithm. 

6.2. Implementation of Investigated Estimators 
Details about the implementation and configuration of the proposed EKF-based 
algorithms E K F - B A S I C and E K F - R S for the experimental analysis are listed in the 
following Section 6.2.1. To allow a relative comparison of its performance, other 
position and speed sources with various properties were implemented as well: 

• Encoder measurement - A conventionally true position and speed was obtained 
using 12-bit encoder sensor. Bo th the A S P W M and the centre-aligned P W M 
switching schemes were implemented to allow investigation of impact of using 
A S P W M scheme. See more details in Section 6.3.3. 

• High-frequency injection algorithm - The saliency-based algorithm was used as 
a reference for low-speed range. Its principle was described in Section 2.2 and 
details about its implementation are in Section 6.2.2. 

• EEMF observer - The E E M F - b a s e d algorithm was used as a reference at 
medium and higher speeds. Its principle was described in Section 2.1 and 
details about its implementation are in Section 6.2.3. The basic E E M F al­
gorithm is not naturally adaptive like the proposed method. Hence, several 
different variations were implemented: 

— EEMF observer with constant model parameters - A basic algorithm ver­
sion with constant Rs and Lq values. Considered to evaluate the impact of 
using non-adaptive algorithms, which neglect saturation. This is a valu­
able reference because this approach is often chosen in low-performance 
practical applications [ H K S 9 9 , K S G + 1 4 ] . 

— EEMF observer with L UT - The algorithm version wi th constant Rs value 
and inductances Ld and Lq provided by the L U T table. This modifica­
tion was included in the analysis to evaluate what performance can be 
achieved with accurate parameters obtained offline. The algorithm might 
not be considered to be truly adaptive because the L U T may not reflect 
the change of inductances due to temperature change, which could be a 
factor in some applications. 

— EEMF observer with RLS - The algorithm version wi th Rs, L'd, and Lq 

parameters provided online by Recursive Least Square estimation algo­
r i thm described in Section 2.4. 
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6.2.1. Implementation of Proposed E K F Algorithms 
The theory of the proposed estimation algorithms E K F - B A S I C and E K F - R S , ap­
proach to their configuration, as well as simulation results, were described in Sec­
tion 5.4.1 and Section 5.4.2. The block diagram in Figure 6.5 is valid for al l versions 
of the proposed algorithm, with the following notes: 

• E K F - B A S I C does not provide the idq current vector on its output so the Park's 
transformation from iap current must be done outside the estimator. 

• E K F - B A S I C does not take iap current and uap voltage vectors as inputs. 

• E K F - B A S I C does not provide Rs estimate. 

• Only the A S P W M switching scheme is considered for E K F - B A S I C and E K F -
RS algorithms. 

First , the measurement variances had to be determined in order to configure 
matrix R for al l E K F versions. Variances of normalized phase reluctances were 
obtained from offline analysis of actual TtvhN measurement recordings for several 
speed and load operation points. The measurement noise components shown in 
Figure 6.6, Figure 6.8, and Figure 6.7 were obtained by subtracting the expected 
harmonic value TZphN, which was obtained from (5.10), (5.11), and (5.12). It can be 
seen that, besides the high frequency noise component, small periodic deformations 
A-ji{6e + Ophn) s t i l l occur. These were likely caused by idc signal deformations after 
the P W M switching events and were dependent on applied duty cycle Dahc and 
stator current za&c (i.e. machine rotor speed and load). For the purpose of this 
thesis, these deformations wi l l not be further addressed by additional measures and 
considered part of the noise component. A s shown by simulation in Figure 5.18 and 
Figure 5.23, the (Jnph should be set wi thin one order range from the real value to 
avoid undesired estimation errors. A rough average observed standard deviation of 
the 7ZphN measurement, which was used in the matrix R , was finally determined as 

( 7 ^ = 0.15 I T 1 . (6.4) 
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Figure 6.6: Example of experimentally obtained phase reluctance measurement noise 
TtphN — TZphN for Nm = 500 rpm and T\ = 0 N m 
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Figure 6.7: Example of experimentally obtained phase reluctance measurement noise 
TZphN — TZphN for Nm = —500 rpm and TJ = 0 N m 
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Figure 6.8: Example of experimentally obtained phase reluctance measurement noise 
TZphN — TZphN for NM = 250 rpm and T; = 3.5 N m 

The measurement noise covariance matrix (5.77) for the E K F - R S algorithm also 
requires knowledge of the phase current measurement noise <Tj. It was obtained from 
(5.78) as 

2 / \ 2 
max(/„/„.) \ | E I N 3 ( m a x ( i a b c ) | 1 

UDD R ,s/i 

12 • 2 12 
+ 0.00072 

3.3 + 0.05 
15.8 m A . 

(6.5) 

(6.6) 

where m a x ( i a b c ) is the phase current measurement scale, NADC l S effective resolution 
of A D C in the number of bits, and E I N was obtained from operational amplifier 
manufacturers datasheet [BSL+10]. 

The matrix R was, therefore, configured identically as for simulations in Sec­
tion 5.4.1 and Section 5.4.2. The same goes for the matrix Q . The standard devi­
ations of the normalized reluctances lZd and lZq were selected manually to a small 
value as it was assumed, that these parameters wi l l not change significantly during 
a single sampling period. This led to the selection of value 

ond = °K = 0.0005 H " 1 . (6.7) 
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The speed estimation deviation was selected as maximal electrical speed change with 
nominal torque Tn and moment of inertia J combining both the S y n R M and the 
P M S M load per sampling period Ts as 

TsTnom 0.0001-3.5 
= = = 0.096 rad/s. 6.8 

J 0.00364 ' v ; 

Because the position 9e is obtained as pure integration of ue, its deviation was set 
as age = 0 rad. The standard deviation of the stator resistance agR was configured 
identically as in Section 5.4.2. 

6.2.2. High-Frequency Injection Algorithm Implementation 
The block diagram of the F O C algorithm wi th implemented high-frequency injection 
position and speed estimator is in Figure 6.9, which elaborates the SynRM-side of 
the diagram in Figure 6.5. 

I e. hf 
COS - © - 1 

•req 

*req 

<2>* PI 

I—I J Z U E 1 ' — i L PI —(g)|=p| 
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HET - Heterodyne process 
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MC UDC - Meas. Circuit of DC-bus voltage Udc 

Heterodyne process (HET) 
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Figure 6.9: Block diagram of F O C with H F I algorithm 

A harmonic voltage vector injection into <i-axis was used wi th signal amplitude 
Um = 20 V and frequency fhf = 500 Hz . The current components at injected 
frequency were filtered using B P F filters with 25 Hz bandwidth for both the direct 
and quadrature axis shifted by | . This allowed using a version of the heterodyne 
algorithm, capable of extracting higher error signal e^f amplitude. Low-pass filters 
in the heterodyne algorithm were tuned to 500 Hz bandwidth. The speed ue track­
ing was done using the P I controller wi th proportional and integration gain tuned 
manually to Kp = 1 • 10 5 and Kj = 100. The high-frequency components idhf and 
iqhf were subtracted from measured current %dq to avoid interaction of current P I 
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controllers wi th the injected signal. The algorithm was operated wi th centre-aligned 
P W M switching scheme only. 

6.2.3. Extended E M F Observer Implementation 
The block diagram of the F O C algorithm with implemented extended E M F position 
and speed estimator, which elaborates the SynRM-side of the diagram in Figure 6.5, 
is in Figure 6.10. The E E M F algorithm cannot be used for low-speed regions and 
a different algorithm (see L S block in Figure 6.10) must be used to provide esti­
mates ueis and deis while the machine starts-up to a minimal speed at which E E M F 
converges. Switching of speed regions is depicted by signal SI . There are many pos­
sible implementations of the L S algorithm, ranging from simple open-loop startup 
algorithm to H F I described in Section 6.2.2. For the purpose of experiments in this 
thesis, the position was obtained from the encoder sensor. The final rotor position 
9e and speed ue were obtained by tracking the voltage vector edq using tracking ob­
server (2.13) and integrator (1.21), which formed T O in Figure 6.10. The bandwidth 
of the tracking observer was set to 5 Hz by configuring gains of the integrated PI 
controller. A s mentioned in Section 6.2, three different approaches to inductance 
adaptation were implemented: 

• EEMF observer with constant model parameters - The stator inductances were 
kept at Ld = Ld0 = 0.65 H and Lq = Lq0 = 0.2 H throughout the entire E E M F 
algorithm operation. 

• EEMF observer with LUT - Inductances were obtained at runtime from L U T s 
containing offline-measured data shown in Figure 1.11 and Figure 1.12. Cross-
saturation effect was considered. 

• EEMF observer with RLS - The R L S algorithm was implemented using equa­
tions (2.30) to (2.39). The forgetting factor was set A = 0.99 and the covariance 
matrix was initialized by setting large values 10 5 in its diagonal. To achieve 
and maintain convergence at the steady state, the P R B S voltage injection was 
implemented into both direct and quadrature axis with a different ini t ia l seed. 
The 5-bit P R B S excitation signal with 20 V amplitude and 10 ms sampling 
period was used. These parameters were selected so the longest step generated 
by P R B S is several times longer than machine time constant, which is critical 
for accurate identification. 

Selection between adaptation algorithms is depicted by signal S2. The algorithm 
was operated wi th a centre-aligned P W M switching scheme only. 
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Figure 6.10: Block diagram of F O C with E E M F algorithm 

6.3. Measurement Results 
This section presents results of conducted experiments. Section 6.3.1 wi l l focus 
on the general position and speed estimation capability of E K F - B A S I C and E K F -
R S . The main analysis, which responds to estimation accuracy goals formulated in 
Section 4.3, is then available in Section 6.3.2. Finally, Section 6.3.3 wi l l analyze the 
impact of the A S P W M scheme used by E K F - B A S I C and E K F - R S and the impact 
of signal injections required by H F I and R L S algorithms on power losses and the 
M T P A and M E trajectories. 

6.3.1. Basic Speed and Position Tracking 
The basic capability of position and speed tracking in the full speed range of E K F -
B A S I C and E K F - R S estimators is shown in Figure 6.11 and Figure 6.12. The 
position error 6fr spikes up to 25 degrees were recorded during dynamic events in 
Figure 6.11c and Figure 6.12d, but wi th the corresponding F O C tuning it did not 
lead to loss of stability or even significant degradation of performance. The error 
9fr then dropped during stead-state. Deeper analysis of steady-state performance 
is available in Section 6.3.2. 

It is noticeable, that the overall speed and position tracking ability of E K F -
B A S I C and E K F - R S are very similar. This was expected because the additional 
machine model integrated within the E K F - R S mainly serves to estimate the stator 
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resistance Rs, while the position and speed information is extracted from 
measurement. 

The speed reversal during the experiment also shows the ability of both 
rithms to run at low-speed or even standstill, which is a considerable benefit 
compared to E E M F algorithm. 

* a 
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0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 
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Figure 6.11: E K F - B A S I C a) speed estimate and errors of b) speed and c) position 
estimates in full speed range 
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Figure 6.12: E K F - R S a) speed and b) current estimates and errors of c) speed and 
d) position estimates in full speed range 
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6.3.2. Steady-State Parameter Estimation Accuracy 
To give and idea of investigated algorithm performance from wide speed and load 
operation range, the data for steady-state estimation accuracy were measured at the 
following points: 

• Speed Nm was set from 100 rpm to 900 rpm with 200 rpm step (i.e. five settings 
total). The E E M F - b a s e d algorithms were tested only at speed 500 rpm and 
higher, while at the lower speeds the H F I was used. The E K F - B A S I C and 
E K F - R S algorithms were verified at full speed range. 

• Load TJ was set from 0.5 N m to 3.5 N m wi th 0.5 N m step (i.e. seven settings 
per one speed setup). 

• Current angle 9j was set from 40 degrees to 76 degrees wi th two-degree steps 
(i.e. 23 points per each load and speed setup). Note that 9i was not compen­
sated for 9fr to avoid inclusion of sensor information into the control loop. 

Also note that the machine temperature was maintained roughly 5 0 ± 5 °C during 
the measurement of al l operating points. 

Position Estimation Accuracy 

A l l algorithms listed in Section 6.2 were considered for this analysis. The minimal, 
average, and maximal values of steady-state position error 9fr obtained for different 
current angle 9i measurements were marked in the following charts. This was done 
to highlight the robustness of the position estimate as well. 

Figure 6.13 shows steady-state position estimation error 9fr for E K F - B A S I C 
and E K F - R S . Bo th algorithms showed errors, which generally meet the goals set in 
Section 4.3. The E K F - R S algorithm position error was sometimes several degrees 
higher than in the case of E K F - B A S I C , but it is not a significant difference and it 
could be contributed to various factors (e.g. ini t ia l encoder position finding). 

Figure 6.14 shows measured position error 9e™ values for the H F I algorithm. 
Generally, its performance is comparable to the proposed algorithms. 

Steady-state position errors 9fr for al l E E M F algorithm variants are shown in 
Figure 6.15. The E E M F wi th constant parameter setting shows by far the greatest 
gerr e r r o r ^ despite being a popular option in the literature. The R L S implementation 
achieved low 9e™ error values, but wi th an increased dependency on the current angle 
91 value (i.e. large variation). The best performance was achieved with accurately 
identified parameters provided by L U T tables. Al though it should be noted, that 
any discrepancy between such offline-obtained parameters and the actual machine 
parameters led to significant position error 9e™'. The Ld inductance errors 5id = 
± 2 5 % caused position errors close to ten degrees, which is even more than was 
predicted by simulation in Figure 4.7. 

124 



a) E K F - B A S I C b) E K F - R S 

X 

Nm = 900 rpm 

I I X 
X X 

Nm = 700 rpm 

sb 

4 

r 2 

sku 0 
- 2 

„ 4 
r 2 
| » 0 

- 2 
- 4 
- 6 

T -r 
I I ; z ; 

> 

; 

Nm = 500 r pm Nm = 500 r 

-

* i ' 
/ 
\ 

> : 
i V m = 300 r i V m = 300 r 

pm 

6 
4 
2 
0 

5 
" 4 

IT3 

0J CD 2 
0 
6 

£Z 4 

5 
" 4 
t 3 

^ 1 

i V m = 900 rpm 

X X X 

X 
Nm = 100 rpm 

X 

CD CD ^ 

^ 0 

0 

3 F 
2 h S x 

X 
Min and Max 
Average 

0.5 1 1.5 2 2.5 
T z [Nm] 

3 3.5 0.5 1.5 2 2.5 
T z [Nm] 

> 

/ < > 
- ? 
s 

C > 

j\Tm = 700 rpm j\Tm = 700 rpm 

h > 
/ : > 

S 
/ 

Nm = 500 rpm Nm = 500 rpm 

c > 
) 

>. —i 
_t_r _ \ 

/ 
' 

/ < > 
) 

>. —i 

i V m = 300 rpm i V m = 300 rpm 

3 3.5 
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Another view for al l considered combinations of algorithms is available in his­
togram collection in Figure 6.16. B i n size for al l histograms was selected to half of 
degree. To have a valid comparison of E K F - B A S I C and E K F - R S , which can operate 
in a full-speed range, the H F I was always considered to be used at the low-speed 
region at 100 rpm and 300 rpm. The contribution of H F I was then marked by orange 
marked colour bars in Figure 6.16. Overall, the results show that E K F - B A S I C and 
E K F - R S algorithms do not offer better position estimation accuracy, then correctly 
configured state-of-the-art algorithms. A t the same time, however, the proposed al­
gorithms provided acceptable and consistent performance in full measured load and 
speed range, while not being reliant on precise knowledge of machine parameters. 

Inductance and Resistance Estimation Accuracy 

This section compares inductance and resistance estimation accuracy of E K F - B A S I C , 
E K F - R S , and R L S algorithms. The relative errors of resistance 5RS, direct axis in­
ductance d~Ld, and quadrature axis inductance d~Lq estimates were obtained in rela­
tion to offline-measured values stated in Section 1.2. Histograms in Figure 6.17, 
Figure 6.18, and Figure 6.19 show a comparison of the accuracy of estimates over 
all the measured operation points. Histogram charts used 5i,d = o~Lq = 5 % or 
5Rs = 20 % width of bins. 

Both proposed algorithms showed errors, which generally met the goals set in 
Section 4.3, while the R L S algorithm showed lower performance. Al though the 
original publication with the implemented R L S algorithm showed similar errors, 
the measurement results should not be interpreted as if better performance could 
not be reached [ITDO06]. It can, however, be claimed that highly accurate online 
parameter adaptation is not a t r iv ia l task. A s for the E K F - B A S I C and E K F - R S 
estimate errors (namely for the stator resistance Rs), their likely sources are the 
small periodic deformations A ^ ( # e + 9phN) m T^phN measurements as can be seen 
in Figure 6.6 to Figure 6.8. Especially the Rs estimation is sensitive to inductance 
inaccuracy, as was shown by simulation in Figure 5.22. This highlights the fact 
that performance of E K F - B A S I C and E K F - R S algorithms is closely tied to 7 l p h N 

measurements and attention must be paid to M C I D C tuning and to discard any 
deformed Uidc samples. 
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Figure 6.17: Direct axis inductance estimates and corresponding histograms of 
estimate error 5Ld for a) E K F - B A S I C , b) E K F - R S , and c) R L S algorithms 
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6.3.3. Comparison of Optimal Power Trajectories 
This section wi l l analyze data from the same measurements as in Section 6.3.2 in or­
der to determine the impact of signal injections used by H F I and R L S algorithms and 
the A S P W M switching scheme used by E K F - B A S I C and E K F - R S to optimal M T P A 
and M E trajectory. The centre-aligned P W M switching scheme with no signal in­
jection wi l l be considered as a reference. A l l optimal M T P A and M E trajectories 
were obtained from characteristics as shown in the example for Nm = 700 rpm in 
Figure 6.20. Note that in this case the shown current angle 8i was maintained by 
the encoder sensor so the characteristics were not skewed by estimator error 8fr. 
A s can be seen in the example, the M T P A trajectory is always located at lower 
current angles than the M E trajectory, which corresponds to simulated trajectories 
in Figure 3.13. 
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To evaluate the impact of using A S P W M switching scheme or injections, like 
the P R B S signal injection used by R L S algorithm and the harmonic signal injection 
used by H F I , Figure 6.21 shows the stator currents Im and input powers PdcM corre­
sponding to the optimal M T P A and M E trajectories in comparison to centre-aligned 
P W M scheme wi th no injections (i.e. a reference configuration). A s expected, the 
additional P R B S and harmonic injections caused a measurable increase of both the 
stator current amplitude AIm and input power A P ^ M - Results in Figure 6.21f 
show an increase of input power A P ^ M in units of Watts for both the P R B S and 
the harmonic injection. The exact increase in a real application would, of course, 
be a matter of parameters of the injected signal, but it is safe to assume that any 
injection wi l l always lead to additional power losses. A s for the alignment-swap 
P W M switching scheme used by the E K F - B A S I C and the E K F - R S algorithms, it 
was discussed in Section 5.2 that the method leads to elevated current ripple, but 
also reduces the switching power losses by factor of one third. Experimental results 
in Figure 6.21d show a reduction in input power APdcM by units of Watts, which 
generally confirms this prediction and shows the potential value of the method. This 
is true especially for drives wi th high stator inductances, where the increase in T H D 
and audible noise is not as significant. 
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Conclusions 
This thesis focused on the development of S y n R M state and parameter estimation 
algorithms suitable for sensorless power-optimal applications. Chapter 1 of this the­
sis showed the S y n R M machine mathematical model and its significant inductance 
non-linearity caused by magnetic saturation. Chapter 2 and Chapter 3 then pre­
sented the existing S y n R M sensorless state and parameter estimation, as well as, 
power-optimization control algorithms. Evaluation of the S y n R M power-optimal 
sensorless control state-of-the-art was conducted in Chapter 4. The impact of posi­
t ion and inductance estimate errors on the estimated power-optimal current angle 
9i, which directly affects the M T P A and M E power optimality, was simulated on 
the model of the reference 550 W S y n R M machine. The analysis resulted in goals 
listed in Section 4.3, which were pursued by the algorithms proposed in this thesis. 
In summary, it was deemed that sensorless position, speed, and inductance estima­
tor is necessary, capable of operating in full-speed range wi th a good estimation 
accuracy but without costly hardware and need of significant signal injection. 

The proposed method, designed to fit the four defined goals, was presented and 
verified by simulation in Section 5 and it featured three novel ideas: 

• The current derivative measurement method is described in Section 5.1. The 
simple and low-cost measurement circuit M C I D C allows measuring Aide wi th 
improved accuracy. A s shown by the proposed E K F - B A S I C algorithm variant, 
this measurement alone is enough to obtain machine phase reluctances and 
consequently estimate the rotor position, speed, as well as actual machine 
inductances. 

• The alignment-swap P W M switching scheme shown in Section 5.2 allows to 
measure the current derivatives even for small duty cycle values. The method 
introduces increased stator current ripple at lower duty-cycles but also reduces 
the inverter switching losses by a third, which might make this approach at­
tractive for suitable power-efficient systems. 

• The phase reluctance measurement can be used to extract al l the necessary 
machine states and parameters. Addi t ional measurements and machine models 
can then be used as redundancy (e.g. to serve as diagnostics for fail safe 
systems) or to extract further information. The latter was realised in this thesis 
by integrating the machine model and phase reluctance measurements via the 
extended Ka lman filter. For example, the proposed E K F - R S algorithm variant 
then allowed to estimate the stator resistance Rs and the previously published 
method provided core losses estimate [MVB21] . It is likely, that many other 
modifications could be derived to support a wide range of applications. 

The use of the A S P W M scheme and the phase reluctance measurement method 
based on the M C I D C circuit allowed to meet the requirement of low additional 
cost and ability to operate at low-speed and standstill. To verify the capability of 
proposed algorithms to meet the position and inductance estimate accuracy goals, 
Chapter 6 presented results from the experimental verification and comparison wi th 
known state-of-the-art algorithms. Carefully designed and tuned existing methods, 
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like, for example, the E E M F observer with accurate offline-measured inductances 
in L U T , can generally achieve a great position estimation performance, however, 
it quickly deteriorates when actual machine parameters differ. O n the other hand, 
the proposed method is highly adaptive, can generally deliver a robust performance, 
and meets the defined goals when accurate machine parameters are not available 
or change during runtime (e.g. due to temperature). The impact of using the 
proposed A S P W M method was compared in terms of achievable M T P A and M E 
optimal power to the commonly used P W M switching scheme wi th and without 
signal injections. The results confirm reduced power losses when using A S P W M 
and show its potential value for suitable applications. 

Overall the presented adaptive sensorless state and parameter estimation method 
met the goals defined within this thesis. Its parts or as a whole, it might serve as 
an interesting alternative for SynRM-based high power-efficient applications. 

Future research and development may focus on many areas. First , the proposed 
methods should be tested with a larger sample of S y n R M machines, preferably on 
various real applications to better understand the algorithm suitability for the field. 
Second, it would be interesting to further investigate the interaction of multiple 
models and measurements within E K F wi th accurately obtained state and measure­
ment covariance matrices as it may yield estimate accuracy improvement rather than 
additional estimated quantities. This could make the algorithm an appealing option 
for high-performance applications. To make the proposed algorithm more attractive 
for low-cost applications with l imited computational power, its simplification should 
be investigated. The most complex portion is the E K F calculation, hence, at least 
a partial replacement should be sought. There are many possibilities worth con­
sidering. A n example may be a combination of the E K F - B A S I C and E E M F using 
the Model Reference Adaptive System ( M R A S ) approach to obtain the additional 
estimates. 
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