

Czech University of Life Sciences Prague

Faculty of Economics and Management

Department of Information Engineering (FEM)

Bachelor Thesis

Relational and post-relational databases

Elena Kulshetova

© 2018 CULS Prague

CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE
Faculty of Economics and Management

BACHELOR THESIS ASSIGNMENT
Elena Kulshetova

InformaƟcs

Thesis Ɵtle

RelaƟonal and post-relaƟonal databases

ObjecƟves of thesis
This work focuses on the comparison of relaƟonal SQL and object-oriented Non-SQL databases on two
concrete examples. Concept of object-oriented programming slightly dominates among the development,
while data are sƟll usually organized using relaƟonal structure. The main objecƟve of this thesis is to
analyse the individual type of databases, to reveal their advantages and disadvantages, to embrace the
same data model, implement it and conclude on that basis.

Methodology

This work will consists of: 1) Comparing system performance of individual databases. 2) Compare database
management opƟons. 3) Comparing the ability to replicate data. 4) Development of relaƟonal and post-
relaƟonal databases. In the literature review, definiƟons of basic concepts related to SQL and NO-SQL
databases will be found as well as a detailed descripƟon of each type according to available informaƟon
sources and knowledge bases incl. object modelling procedures. The pracƟcal part will include the devel-
opment of database model in both relaƟonal and post-relaƟonal databases.

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha 6 - Suchdol

Declaration

I declare that I have worked on my bachelor thesis titled "Relational and Post-

relational databases" by myself and I have used only the sources mentioned at the end of

the thesis. As the author of the bachelor thesis, I declare that the thesis does not break

copyrights of any their person.

In Prague on 15.03.2018 ___________________________

Acknowledgement

I would like to thank doc. Ing. Vojtěch Merunka, Ph.D. for their advice and support

during my work on this thesis.

 8

Relational and post-relational databases

Abstract

The main goal of the literature review of the thesis with topic „Relational and post-relational

databases” is to describe a brief history of database, make an overview of existing database

models, provide more detailed information on theory of relational database as well as post-

relational or NoSQL alternative options. The main goal for practical part is to implement the

same data model to both relational PostgreSQL and post-relational Ne04j database and to

see the performance and the usability difference.

Keywords: database, relational database, post-relational database, SQL, NoSQL, database

modelling, comparison

 9

Relační a post-relační databáze

Abstrakt

Hlavním cílem této bakalářské práce na téma "Relační a post-relační databáze" je stručně

popsat historii databáze, vytvořit přehled o existujících databázových modelech, poskytnout

podrobnější informace o teorii relační databáze, stejně tak jako o alternativních možností

post-relační nebo NoSQL databázi. Hlavním cílem praktické části je implementace stejného

datového modelu do PostgreSQL a post-relační databázi Ne04j a zobrazení rozdílu výkonu a

použitelnosti.

Klíčová slova: databáze, relační databáze, post-relační databáze, SQL, NoSQL, modelování

databáze, porovnání

 10

Table of content

1 Introduction ... 13

Objectives and Methodology .. 14
1.1 Objectives .. 14
1.2 Methodology .. 14

2 Theoretical background of databases ... 15
2.1 Introduction to Databases .. 15

2.1.1 Brief history .. 15
2.1.2 DBMS ... 16

2.2 Database models .. 17
2.2.1 Hierarchical model ... 18
2.2.2 Network model ... 18
2.2.3 Object-oriented model .. 19
2.2.4 Object-relational model .. 20
2.2.5 Relational model ... 20
2.2.6 Entity-relationship model ... 21

2.3 Relational database .. 21
2.3.1 Terminology ... 22
2.3.2 Relationships .. 23

2.3.2.1 Primary key .. 23

2.3.2.1 Foreign key ... 23

2.3.2.2 Candidate key ... 24

2.3.2.3 Superkey ... 25
2.3.3 Normalization ... 25

2.3.3.1 First Normal From (1NF) ... 25

2.3.3.2 Second Normal Form (2NF) .. 25

2.3.3.3 Third Normal Form (3NF) ... 26

2.3.3.4 Boyce-Codd Normal Form (BCNF or 3.5NF) 26

2.3.3.5 Fourth Normal Form (4NF) .. 26
2.3.4 Integrity constraints .. 26
2.3.5 Indexing .. 27
2.3.6 Transactions .. 28

2.4 SQL - Structured Query Language .. 29
2.4.1 DDL – Data Definition Language .. 29
2.4.2 DML – Data Manipulation Language .. 29
2.4.3 DCL – Data Control Language ... 30

2.5 Data replication .. 30

 11

2.5.1 Single-Master replication .. 30
2.5.2 Multi-Master ... 31
2.5.3 Sharding .. 31

2.6 NoSQL database ... 33
2.6.1 Types ... 34

2.6.1.1 Key-Value store ... 35

2.6.1.2 Document store .. 36

2.6.1.3 Graph ... 37

2.6.1.4 Column Family .. 38

2.6.1.5 XML database .. 39

3 Practical Part .. 41
3.1 Implementation of the database .. 41

3.1.1 Database model ... 41
3.1.2 Implementation to the object-relational PostgreSQL database 42

3.1.2.1 Simple SELECT runtime ... 46
3.1.3 Implementation to the Neo4j graph database .. 48

3.1.3.1 Simple MATCH runtime ... 52
3.1.4 Queries .. 53
3.1.5 Data replication ... 56

4 Results and Discussion ... 57
4.1 Getting started .. 57
4.2 Languages ... 58
4.3 Retrieving data ... 59

5 Conclusion ... 60

6 References ... 61

7 Appendix ... 63

List of figures

Figure 1 Hierarchical model .. 18

Figure 2 Network model .. 19

Figure 3 Relational model .. 20

Figure 4 Entity-relationship model .. 21

Figure 5 Components of relational model .. 22

Figure 6 Candidate key explanation ... 24

 12

Figure 7 Transacion explanation ... 28

Figure 8 SQL example ... 29

Figure 9 Single-Master Replication ... 31

Figure 10 Sharding setup ... 32

Figure 11 Architecture with NoSQL ... 34

Figure 12 NoSQL database patterns .. 35

Figure 13 Document store ... 37

Figure 14 Graph Neo4j model ... 38

Figure 15 Column Family row example .. 39

Figure 16 Database model for practical part in application (own work) ... 41

Figure 17 Database model for practical part (own work) .. 42

Figure 18 Comparison SQL code to Cypher's ... 58

List of abbreviations

DB - database

DBMS – database management system

SQL – structured query language

NoSQL – not-only SQL

 13

1 Introduction

People have had a tendency to save, record and forward information since many centuries

ago. Data storage has a long history, starting with basic pictures depicting simple events to

digital data of different types and forms. Since the 70’s relational databases have become the

golden standard of data warehousing.

Due to the exponential growth of the IT field, the need to store complex data has steadily

increased and relational database might no longer be the best way to handle it. Modern

databases that are not relational are described as post-relational; databases that are relational

but do not use SQL are referred to as No-SQL.

This thesis compares relational databases to no-SQL databases; the theoretical part describes

relational databases and various no-SQL databases, and the practical part is a comparison of

PostgreSQL and Neo4J, particularly revealing the pros and cons of each option.

 14

Objectives and Methodology

1.1 Objectives

This work focuses on the comparison of relational SQL and Non-SQL databases on two

concrete examples. In the developing area the majority of used programming languages are

object-oriented, but data are still usually organized using relational model. The main

objective of this thesis is to analyse the individual type of databases, to reveal their

advantages and disadvantages, to embrace the same data model, implement it and conclude

on that basis.

1.2 Methodology

This work will consist of:

1) Comparing system performance of individual databases.

2) Compare database management options.

3) Comparing the ability to replicate data.

4) Development of relational and post-relational databases.

In the literature review, definitions of basic concepts related to SQL and NO-SQL databases

will be found as well as a detailed description of each type according to available

information sources and knowledge bases incl. object modelling procedures. The practical

part will include the development of database model in both relational and post-relational

databases.

 15

2 Theoretical background of databases

2.1 Introduction to Databases

Database represents a software solution that serves to store data in a way that enables later

analysis, eases the process of browsing and operating with data using script, and managed

connections of related data. Data stored in the database is available to a large number of

users and applications, thus increasing productivity, quality and accuracy of further search

and analysis.

2.1.1 Brief history

I would like to start the thesis with a brief history according to the article “Histiry of

databases” by Kristi L. Berg et. al the precursor of the database is paper filing cabinet, which

has allowed to arrange data according to first and even second degree classification. All

operations with the filing cabinet are manual. First example of machine data processing were

electromechanical machines that used punch plates as the storage medium. The invention of

computer technology changed the way of handling data since a large amount of data could

be stored on a small physical item.

One of the greatest impulses for the development of databases was high cost of early

computers by private companies in mid-60’s. Two popular data models developed in this

decade were: A network model called CODASYL (Conference on Data System Language)

and a hierarchical model called IMS (Information Management System). Hierarchical

database was represented as an upside-down tree and is still one of the most widespread on

the mainframe MVS (Multiple Virtual Storage is an operating system from IBM). The first

network DBMS was developed for mainframe computers. Nowadays it is barely used.

70’s is the time of invention of the first relational database, looking at data as tables and the

first version of SQL. This is also the period when such broadly known notions as a database

schema, a definition language schematic, subschema etc have emerged. This development

has brought power-efficient systems, which after further development overcame network

and hierarchical databases. Newly appeared entity-relational model has allowed developers

to focus on data application instead of logical table structure.

 16

 The next decade is associated with object-oriented databases, in which information is

represented in form of objects as in object-oriented programming languages, and uses the

exact same model as in OOP. To overcome the problems of OODBMS and take advantage

of both object-oriented and relational models, the Object Relational Database Model was

developed in the early 90’s.

By the end of the 20th century the IT industry already had very exponential growth. The last

decade brought us several platforms for application development and efficient tools for

personal use such as Microsoft Excel, XML format and the Internet and World Wide Web.

Since personal computers were used not only at work but at homes as well, client-server

models were used in both cases.

Databases had some advancement as well because of the rise of demand for database

internet connectors and online transaction processing.Talking about database specifically, a

new way of storing data has appeared – NoSQL. It has quickly gained popularity among

leading companies. Only in the year 2011 UnQL (Unstructured Query Language) - a specific

language for NoSQL - has started development.

Besides this, at the beginning of the 21st century a development line has appeared that forms

the opposite of relational databases because its members are not following the rules of ACID

(Atomicity, Consistency, Isolation, Durability) and simplified procedural languages. It goes

without saying that existing solutions and technologies were expanded and improved.

Nowadays databases tend to have more and more complex logic. Cloud computing, virtual

reality and other technological progress (especially medical devices) are on the way already

and going to bring significant change to the database world.

2.1.2 DBMS

A well-known publisher Chris Date in his book “An Introduction to Database System (8th

edition)”, 2004 on page 10, provided a good explanation of the difference between the terms

"database" and "database management systems". During the time the databases are used, this

exact label has slightly slowed down and under the term database can be understood the

 17

database management system as well as the database system. Although, the relation can be

expressed by the equation:

DB + DBMS = DBS (Database + Database Management System = Database System)

DBMS stands for database management system and is determined by the design of the

software equipment that ensures work with the database, i.e. creates the interface between

application programs and saved data. Its task is to efficiently handle, store large amount of

data and it support operations such as create, read, update, delete.

The DBMS is an integral part of most applications, especially those with multi-layer

architecture. “Between the physical database itself – that is, the data as physically stored –

and the user of the system is a layer of software, known variously as the database manager

or database server, or, most commonly, the database management system (DBMS).”

(Ramez, Shamkat, 2011). Role of DBMS increases with database size, number of users in

different sites (typical for large multinational organisations and Internet portals). DBMS

must offer several qualifications - integrity, in other words consistent data organisation, data

accessibility and security.

2.2 Database models

A database model is a set of rules for representing and logically organising data in database.

Over the years, many database models have been deployed for data storage and

management.

“High-level or conceptual data models provide concepts that are close to the way many

users perceive data, whereas low-level or physical data models provide concepts that

describe the details of how data is stored on the computer storage media, typically magnetic

disks. Concepts provided by low-level data models are generally meant for computer

specialists, not for end users.” (Elmasri, Navathe, 2011).

Many data models have been proposed, which we can categorise according to the types of

concepts they use to describe the database structure. In terms of the way we store data and

the links between them, we can divide the databases into basic types:

 18

2.2.1 Hierarchical model

Represents a special case of network model, having a multi-level structure that is similar to

inverted tree. The parent table may belong to many child tables, but the child table always

has only one parent. Hierarchical databases were used especially at the time of storing data

on magnetic tapes since data access was strictly sequential. Today, the model is often

considered to be inappropriate due to its inflexible structure and insufficient support for

complex relationships of many applications. However, many implementations contain

features that bypass these restrictions. You can read more information about hierarchical

model in “SQL All-in-One For Dummies (2nd Edition)” by Allen G. Taylor.

Figure 1 Hierarchical model

Source: https://www.studytonight.com/dbms/database-model.php, 2018

2.2.2 Network model

The database is represented by a graph where nodes are types of records, and arcs define the

relationship between the data. The network model seeks to escape from some hierarchical

constraints like permitting many-to-many relationships between linked records and

involving multiple parent records. “Wanting to avoid the redundancy of the hierarchical

model without sacrificing too much in the way of performance, the designers of the network

model opted for an architecture that does not duplicate items, but instead increases the

number of relationships associated with some items.” (Taylor, 2011)

The structures are similar, but the tables are organised into groups that relate the pairs of

tables to owners and members. Any table can be part of any group with other tables in a

database. The database supports more complex queries than the hierarchical model does.

 19

However, the network model also has its limitations. To work with groups, we need to know

the database very well and it is difficult to change the structure without affecting it.

Figure 2 Network model

Source: https://www.studytonight.com/dbms/database-model.php, 2018

2.2.3 Object-oriented model

Allen G. Taylor mentions object-oriented database in his book “SQL ALL-in-One For

Dummies”: Representing the data model using object-oriented programming languages

where the data structure is closer to the real world. In this type of model, object contains

both data and its relationships as in ER diagram and each object belongs to a class with

similar structure (attributes) and behaviour (methods or simply procedures). Classes' are of

hierarchical structure so one class cannot have more than one parent. Consequently, objects

inherit attributes and methods from their parents.

An object-oriented database is organised around objects rather than actions, and data rather

than logic. Since the database is integrated with the programming language, the programmer

can maintain consistency within one environment, in this case both the database and the

programming language will use the same representation of model.

He claims that such model was used mainly for storing graphical objects rather than text or

numbers and that is because relational DB is not suitable for that data type. “Although

object-oriented databases outperform relational databases for selected applications, they do

not do as well in most mainstream applications and have not made much of a dent in the

 20

hegemony of the relational products. As a result, I will not be saying anything more about

OODBMS products.” (Taylor, 2011)

2.2.4 Object-relational model

This model attempts to unify the features of both relational and object databases.

Permanently the information remains in tables, but some items may have a richer data

structure called ADT, or abstract data types. These types are formed by combination of basic

data types. In other words, it allows designers to incorporate objects into the familiar table

structure. More specific derails you can find in the book of Ramez Elmasri and Shamkant B.

Navathe, 2011, “Fundamentals of database systems (6th edition)”.

2.2.5 Relational model

The relational model is a strong competitor to many hierarchical or network system

databases since it is the most commonly implemented model in modern databases. In

comparison to other databases, the relational database is independent of the application -

meaning a developer can change the structure of a database without affecting it. Relational

model is the basis for SQL. The structure is based on relationships and tables allow the

definition of complex relationships, which is the greatest and the weakest feature at the same

time. I will talk about this model more in the next chapter.

Figure 3 Relational model

Source: https://www.studytonight.com/dbms/database-model.php, 2018

 21

2.2.6 Entity-relationship model

I find the book “Fundamentals of Database Systems (6th edition)” 2011 by Elmasri, Ramez

very well written and understandable. According to this book on pages 414-418 in Entity-

Relationship model, relationships are created by storing an object of interest as entity and its

characteristics as attributes while together they make up a domain. Different entities which

are displayed in rectangular boxes are related using relationships of diamond-shaped boxes.

Attributes, in the meantime, are shown in ovals. Mapping cardinalities can be: 1-1, 1-M, M-

1, M-M. This way of organising data helps developers to easier understand what they're

working with. This model is good to design a database which can be turned into tables in

relational model. The star schema is a common form of the ER diagram in which a central

fact table connects multiple dimensional tables.

Figure 4 Entity-relationship model

Source: https://www.tutorialspoint.com/dbms/dbms_data_models.htm, 2018

2.3 Relational database

Wladston Viana Ferreira Filho “Computer science distilled: learn the art of solving

computational”, explains the meaning of relational DB in a very simple way. A relational

database is a relation and relationship based database. Often this concept refers not only to

the database itself but also to its specific software solution. In relational database rows

typically represent records and columns keep information about relationships between the

records using foreign keys. Duplicated information is hard to manage and update. To avoid

it, the relational model splits related information to different tables and makes connections

between them. Data in relational database is structured and there is no redundancy as well.

 22

The integrity of data is very important, so RDBMS supports ACID transactions (Atomicity,

Consistency, Isolation, and Durability). When a database is organised in a way that it is

completely free of duplicate information, we say that the database is normalised. I will

explain normalisation forms in the following chapter.

The main part of relational database management systems is accomplished using Structured

Query Language to manipulate with data and in the meantime, it has positives such as stored

procedures. That is simply SQL code that can be reused mainly to update or add new data.

2.3.1 Terminology

A new modern book of Wladston Viana Ferreira Filho “Computer science distilled: learn the

art of solving computational”, 2018 explains relational database in a very clear way. The

basic constructor of relational databases are relations (database tables). The organisation of

a database table is given by its fields and the restrictions they enforce. This combination of

fields and restrictions is called schema. Relations have two-dimensional structure formed by

the header and the body. The header represents attributes of the relation and data is stored in

the body. Columns are called fields and they provide general description about the

information that is stored in that specific column. One column has to contain data only of

that same type (NUMBER, VARCHAR, BLOB etc) and domain, which is the set of all

possible valid values. Rows of the table are the records or tuples. The row goes through the

columns of the table and serves to save the data itself.

Figure 5 Components of relational model

Source: https://www.tutorialspoint.com/dbms/dbms_data_models.htm, 2018

 23

2.3.2 Relationships

The concept of relational database is known with tables and the connections between them.

The connections are called relationships and they unite related data from different tables

together. They are made using both primary and foreign keys. We will discuss them in detail

in the following sub-chapters.

2.3.2.1 Primary key

Basing on the book “Relational database design and implementation: clearly explained”,

1998 by Jan L. Harrington, the row must also include one cell that is uniquely identifies the

record and distinguish it from others. It may happen that two or more records would store

the same information of a specific attribute, for example name, and while working with the

data we would have problems searching or, what is more important, deleting the exact

record we need. To overcome the inconvenience there is a rule that at least one column of

the table must contain record’s unique identification where the content cannot be repeated

through the whole column and that is called primary key.

The primary key is, as was said before, the identifier of the table row. Primary key may be a

column or a combination of multiple columns, but with one compulsory condition -

uniqueness. The primary key field must contain a value, i.e. cannot contain a blank NULL

value. It is also possible to use an artificial key, which is a numeric or written identifier.

The aim of the primary key is to provide an efficient way of indexing data. New records are

provided with different unique identifiers which distinguishes from all previous and next.

Typically, an integer series is used: every new record gets the number one unit greater than

the the last inserted id. As a best practice, primary keys are called id – short for identifier.

2.3.2.1 Foreign key

A foreign or a non-key is used to express relationships between tables. It is a field or a group

of fields that allow you to identify the link between records from different tables to connect

values within a database. The relationships are made by storing the primary key of the first

table as a foreign key in the second table. By all means records of the second table we want

 24

to make a connection with also have to have their own primary keys. Allen G. Taylor in his

book “SQL All-in-One For Dummies” says that it is the core of why the relational database

is relational.

In contrary to primary keys, foreign keys can be duplicate - meaning the same primary key

of a record from another table. Let’s have a look at an example: One customer bought 2

products. It means that one table of customers has 2 connections to the products table. This

type of relationship is 1:N (one-to-many) and the foreign key is stored in the product table.

In case of a M:N relationship we create a junction table which contains both ids of related

tables. This abstraction allows us to create a wide range of relationships between tables.

To get the data from the more than one table in database we use command JOIN. This is a

SQL keyword. We will discuss SQL in a further chapter.

2.3.2.2 Candidate key

 “A candidate key is just a unique identifier; in other words, it’s a combination of attributes

often but not always a “combination” consisting of just a single attribute such that every

tuple in the relation has a unique value for the combination in question. In Fig. 1.1, for

example, every department has a unique department number and every employee has a

unique employee number, so we can say that {DNO} is a candidate key for DEPT and

{ENO} is a candidate key for EMP. Note the braces, by the way; to repeat, candidate keys

are always combinations, or sets, of attributes (even when the set in question contains just

one attribute), and the conventional representation of a set on paper is as a comma list of

elements enclosed in braces.” (Date, 2009)
Figure 6 Candidate key explanation

Source: C. J. Date “SQL and Relational Theory: How to Write Accurate SQL Code”, 2009

 25

2.3.2.3 Superkey

“A superkey is a subset of the heading with the uniqueness property; a key is a superkey

with the irreducibility property. All keys are superkeys, but “most” superkeys aren’t keys.

The concept of a subkey can be useful in studying normalization. Here’s a definition: Let X

be a subset of the heading of relvar R; then X is a subkey for R if and only if there exists

some key K for R such that X is a subset of K. For example, the following are all of the

subkeys for relvar SP: {SNO,PNO}, {SNO}, {PNO}, and {} (note that the empty set {} is

necessarily a subkey for all possible relvars R). By way of illustration, here’s a definition of

third normal form that makes use of the subkey concept: Relvar R is in third normal form,

3NF, if and only if, for every nontrivial functional dependency X Æ Y to which R is subject,

X is a superkey or Y is a subkey. (A nontrivial functional dependency is one for which the

right side isn’t a subset of the left side.) „ (Date, 2011)

2.3.3 Normalization

Again, I am referring to a great book “Fundamentals of database systems” 2011 by Ramez

Elmasri and Shamkant B. Navathe. The process of transforming a database with duplicated

data to one without is called normalisation. The steps of normalising a database’s structure

are called normal forms and they have hierarchical structure. We can’t skip the steps or

apply them chaotically - we must follow them in the given order.

2.3.3.1 First Normal From (1NF)

Each relation should have at least one primary key;

Repeating groups are not allowed;

It should only have atomic valued attributes/columns (cells have single value).

2.3.3.2 Second Normal Form (2NF)

It must already follow the rules of the First Normal form;

No partial functional dependency.

 26

A functional dependency that holds in a relation is partial when removing one of the

determining attributes gives a FD that holds in the relation. A FD that isn't partial it is full.

if {A, B} → {C} but also {A} → {C} then {C} is partially functionally dependent on {A,B}.

2.3.3.3 Third Normal Form (3NF)

It must already follow the rules of the Second Normal form;

No transitive dependency.

A transitive dependency is an indirect functional dependency, one in which {A→C} only

due to {A→B} and {B→C}.

2.3.3.4 Boyce-Codd Normal Form (BCNF or 3.5NF)

It must already follow the rules of the Third Normal From;

No redundancy from any functional dependency.

For each functional dependency {A → B}, {A} should be a super Key.

2.3.3.5 Fourth Normal Form (4NF)

It must already follow the rules of the Boyce-Codd Normal Form;

No multi-valued dependency.

2.3.4 Integrity constraints

 “An introduction to Database systems”, 2003 by C.J. Date. tells us that integrity is a state

when data stored in a database conforms to a set of specifically defined rules. Therefore,

only data that matches these rules can be inserted into the database. Norms typically refer to

the range of stored values, respect the data type set for that table column, or the links

 27

between the stored records. Integrity constraints serve to ensure integrity. This includes tools

to prevent insertion of incorrect data or loss or damage of existing records during work with

the database. For instance, it is possible to secure deletion of data that has already lost its

meaning; for example, if we delete a user from the database, the rest of their records are

deleted in other database tables as well.

The following constraints are commonly used:

NOT NULL - Ensures that a column cannot have a NULL value;

UNIQUE - Ensures that all values in a column are different;

PRIMARY KEY - A combination of a NOT NULL and UNIQUE. Uniquely identifies

each row in a table;

FOREIGN KEY - Uniquely identifies a row/record in another table;

CHECK - Ensures that all values in a column satisfies a specific condition;

DEFAULT - Sets a default value for a column when no value is specified;

INDEX - Used to create and retrieve data from the database very quickly.
Source: SQL Constraints [online]. [cit. 2018-11-21]. Dostupné z:
https://www.w3schools.com/sql/sql_constraints.asp

2.3.5 Indexing

Index is a database object created to improve read performance. Tables in a database can

have a large number of rows that are stored in arbitrary order, and their search by a given

criterion by sequentially iterating the table row by row could take a long time. The index is

formed from the values of one or several columns of the table and points to corresponding

rows of the table and thus allows you to search for rows that meet the search criteria. DBMS

builds an auxiliary index, mapping row IDs (mostly but not necessarily) to their respective

addresses in memory. Acceleration of work with the use of indexes is achieved primarily

due to the fact that the index has a structure optimised for searching - a balanced binary tree.

A good and detailed explanation of b-tree, text and bitmap indexes and you can read in the

book, “Learning SQL: Master SQL Fundamentals”2nd Edition, 2009 by Alan Beaulieu.

 28

2.3.6 Transactions

A transaction generally represents any change in a database. Allen G. Taylor in his book

“SQL All-in-One For Dummies.”, 2011 explains why the transactions are needed.

Performing multi-step updates without transactions eventually leads to wild, unexpected,

and hidden inconsistencies in the data. Thus, main purposes are preventing from possible

data inconsistency in case of system failure and providing reliable data keeping and correct

backup.

The most common example of why transactions are needed is bank keeping. Imagine a

situation when you want to send some money to your colleague’s account. It would be

performed in two actions: subtracting money from your account and adding to another. So is

recorded in the database. What if someone queries the total balance of all accounts after a

subtraction is recorded but before the corresponding addition is? Some money could be

missing. Worse situation would be when the system loses power and shuts down between

two operations. To solve these difficulties, transactions are made in a way that dependent

actions are performed together.

Figure 7 Transacion explanation

Source: Wladston Viana Ferreira Filho, “Computer science distilled: learn the art of solving

computational problems”, 2018

The acronym ACID describes properties for transactions and stands for:

 Atomic: all changes are made (commit), or none (rollback).

 Consistent: transaction won't violate declared system integrity constraints.

 Isolated: results independent of concurrent transactions.

 Durable: committed changes survive various classes of hardware failure.

 29

2.4 SQL - Structured Query Language

C.J. Date is a great expert in relational database and in the 8th edition of his book “An

Introduction to Database Systems”, 2003 he describes the language to work with relational

DBs. SQL is supported by just about every relational DBMS. According to the theory,

simple operations (UNION, CROSS, PROJECT, SELECT, DIFFERENCE, and JOIN)

perform all operations with data, other operations are merely combinations of these basic

ones. SQL was originally intended to be a “data sublanguage” specifically. However, with

the addition in 1996 of the SQL Persistent Stored Models (SQL/PSM, PSM for short), the

standard became computationally complete – it now includes statements such as CALL,

RETURN, SET, CASE, IF, LOOP, LEAVE, WHILE and REPEAT, as well as several

related features such as the ability to declare variables and exception handlers.

A SQL query is a statement of what data should be retrieved from the database and this is a

typical example of it:

Figure 8 SQL example

Source: Wladston Viana Ferreira Filho, “Computer science distilled: learn the art of solving

computational problems”, 2018

2.4.1 DDL – Data Definition Language

DDL’s commands are used to create, edit, and delete database objects such as tables, views,

schemas, domains, triggers, and stored procedures. The key words that fall into the DDL are

CREATE, ALTER, and DROP.

2.4.2 DML – Data Manipulation Language

The language manipulation commands are used to view, add, edit, and delete data stored in

database objects. Keywords belonging to DML are SELECT, INSERT, UPDATE, and

DELETE.

 30

2.4.3 DCL – Data Control Language

DCL’s commands allow you to define access rights to database objects. The basic features

include enabling and blocking access to GRANT and REVOKE commands. DCL also

allows you to determine the level of access for individual users, such as rights to read or

manipulate data.

2.5 Data replication

Data Replication is simply copying data from a database from one server to another so that

all the users can share the same data without any inconsistency. As s result we get a

distributed database where users can access data relevant to their tasks without interfering

with the work of others.

Microsoft brings forward the term distributed query as "any SELECT, INSERT, UPDATE,

or DELETE statement that references tables and rowsets from one or more external OLE DB

data sources". (Microsoft, 2010)

Wladston Viana Ferreira Filho describes replication of data in his book “Computer science

distilled: learn the art of solving computational problems”, 2018. There are several cases

when it can’t be made without distributed database for instance database of hundreds of

terabytes or system that processes thousands queries per second. Another good example that

author gave is recording of altitude and speed of aircraft currently in a given airspace.

Relying on a single computer might be too dangerous due to probability of crash the

database becomes unavailable.

2.5.1 Single-Master replication

In Single-Master replication type only one main computer receives write queries to the

database and then forwards them to connected so called slave computers which, at the

meantime, have a replica of the database.

 31

Figure 9 Single-Master Replication

Source: Wladston Viana Ferreira Filho, “Computer science distilled: learn the art of solving

computational problems”, 2018

With this scheme, the master is able to proceed more read queries, because it can assign

them to slaves. And the system becomes more reliable because if the master computer shuts

down, the slaves can coordinate and elect a new master automatically, so the system doesn’t

stop running.

2.5.2 Multi-Master

To handle a massive amount of concurrent write queries all computers in the cluster become

masters. A load balancer distributes incoming read and write queries evenly among the

machines. All the computers are connected to one another in the cluster so they stay

synchronized and have a copy of the entire database.

2.5.3 Sharding

In case when a database receives a big number of write queries for large amounts of data,

it’s getting problematic to synchronize the database everywhere in the cluster and some

computers might simply not have enough storage space to accommodate everything.

Partitioning the database among the computers is one of the solutions. Since each machine

owns a part of the database, a query router forwards query to the relevant one:

This solution is good, but not perfect. If a machine in the cluster fails, the data it contains

become unavailable. To mitigate that risk, sharding can be used with replication. It means

that each of the computers have a master-slave cluster to prevent data loosing or system’s

break downs.

 32

Figure 10 Sharding setup

Source: Wladston Viana Ferreira Filho, “Computer science distilled: learn the art of solving

computational problems”, 2018

Another common example is splitting a customer database geographically. Customers

located on the East Coast can be placed on one server, while customers on the West Coast

can be placed on a second server. Assuming there are no customers with multiple locations,

the split is easy to maintain and build rules around.

 33

2.6 NoSQL database

Daniel Power gives a good explanation to the term post-relational database in the article

“What are post-relational databases?”. Post-relational databases implement a conceptual

schema using a non-relational data model. A conceptual schema is a high-level description

of a corporation's information needs. A conceptual schema can be mapped to various logical

data models. When data is organised in a substantially different arrangement from the

relational model of relations and primary and foreign keys, then the database can be

classified as a post-relational database. Examples vary from multidimensional databases and

object-relational databases to flat file databases. One of the advantages is that the databases

of post-relational type are of the majority open sourced.

“NoSQLers came to share how they had overthrown the tyranny of slow, expensive

relational databases in favour of more efficient and cheaper ways of managing data.”(Lai,

2009) Christof Strauch, a professor of Stuttgart Media University, wrote a study book for the

students for the subject No-SQL databases in Media. According to his opinion, non-

relational database does not chase table structure and, as it comes from its name, NoSQL

database cover all the other types besides relational where obviously the language for

manipulating with data is not SQL. The most popular NoSQL database systems include:

MongoDB, Oracle NoSQL Database, CouchDB, Apache Cassandra, HBase, Amazon’s

Dynamo, Project Voldemort and others. Google started developing BigTable in 2004.

Facebook open sourced the Cassandra DB appeared in 2008. HBase is a BigTable clone for

Hadoop. Even though it seems that NoSQL database gained its popularity in 2000’s, the

origin of such model refers to 70’s.

According to Daniel Power in his article “What are post-relational databases?” tells that at

first, the term itself was mostly associated with handling large data sets which are accessed

and manipulated on the web vast. “Post-relational databases can store both "data in motion"

and "data at rest", also called static data. Data in motion is collected and analysed in real-

time. For example, data collected to analyse the quality of products during the

manufacturing process is data in motion. An example of data at rest would be historical data

about all aspects of the customer relationship, including sales transactions, social media

data, and customer service interactions” (Hurwitz at.al, 2013). Post-relational model was

grown to satisfy the needs of rapidly developing technologies of cloud computing enabling

 34

storing unstructured dynamic data, high volume, variety and velocity data (three V),

collecting and processing in real time.

The NoSQL database approach is characterised by reduction of the complexity of SQL

based servers. The logic is moved out from the database to a programmatic layer. It allows a

developer to provide a stronger functionality of data management conveniently coded in a

preferable powerful programming language instead of specific database’s stored procedure

language. NoSQL database focuses on higher performance and scalability, provides low-

level access to a data management layer and frees from collection of complex APIs and

languages in a SQL server (data column, queries, stored procedures, etc).

Figure 11 Architecture with NoSQL

Source: https://www.sitepen.com/blog/nosql-architecture/, 2018

2.6.1 Types

No-SQL model defines a database as a collection of objects or reusable software elements,

with related characteristics and methods. The object-oriented database model is the best

known post-relational database model since it consolidates tables but isn’t narrowed to them.

Such models are known as hybrid database models as well.

There are several kinds of object-oriented databases: multimedia database absorbs media,

such as for example images, that could not be stored in a relational database; hypertext

database allows any object to link to any other object. It’s useful for organizing lots of

incommensurable data but is not very suitable for numerical analysis.

 35

Figure 12 NoSQL database patterns

Source: https://nitendragautam.com/database/nosql-databases/, 2019

2.6.1.1 Key-Value store

Wladston Viana and Ferreira Filho included some information on key-value store in the

book “Computer science distilled: learn the art of solving computational problems”. The

key-value database, also called key-value store and well-known as a dictionary or hash table.

It is the least complex form of organised, constant data storage. The key in key/value pair is

a unique value and can be easily searched for to access the data. There are two basic types of

the database of this type – the first one keeps the data in memory and the second has the

abilities of storing it to the disk.

One of the mainly spread use of key-value store is caching. When repeating a slow operation

that always generates the same outcome, caching it might prove itself as highly useful. There

is no compulsory need in using a key-value store, there are plenty other opportunities for

storing the cache in alternative types of databases. Nevertheless, exclusively in case the

cache is very frequently retrieved, the efficiency of key-value store systems becomes

relevant. The main goal is reducing the input and output overhead. Typically, this data

snapshot has limited durability, and when not needed, the cache will eventually expire.

“For example, when a user requests a specific web page to a server, the server must fetch the

web page’s data from the database and use it to render the HTML it will send to the user. In

high-traffic websites, with thou- sands of concurrent accesses, doing that becomes

impossible.

 36

To solve this problem, we use a key-value store as a caching mechanism. The key is the

requested URL, and the value is the final HTML of the corresponding web page. The next

time someone asks for the same URL, the already generated HTML is simply retrieved from

the key-value store using the URL as key.” (Viana and Filho, 2018)

2.6.1.2 Document store

Redmond and Wilson in a year 2012 wrote a wonderful book called “Seven Databases in

Seven Weeks: A Guide to Modern Databases and the NoSQL Movement”. As it comes from

its name, authors describe different non-relational databases one by one. Speaking of

document store we can say that it is one of the most popular version of NoSQL database is

Document store. Data are stored according to the need of an application. It has good

compatibility with data of JSON or XML formats. The architecture is easier to understand

on the provided example of blog bellow. Data entries are called documents and remind

relational raw and related documents together make up a collection. Each document must

have unique primary key, as a result it is possible to make relationships between the

documents, but JOINs are not optimal. However, NoSQL databases support indexes for

primary keys.

Another difference is that it does not need to follow the structure of schema as in relational

one, so it is very suitable for storing inconsistent data. On the picture we cannot but notice

data duplicity which relational database seeks to avoid. Contra wise document store expects

us to do so in every place where it is necessary. On the one hand, duplicated data is hard to

update and keep consistent, while on the other hand, document store database proves to be

very flexible.

Document Store database supports dynamic queries and defined indexes and also has good

performance on big databases. It can easily find use in storing product, customer and order

information, log data or user generated content for instance comments, ratings, chats.

 37

Figure 13 Document store

Source: Source: Wladston Viana Ferreira Filho, “Computer science distilled: learn the art of solving

computational problems”, 2018

2.6.1.3 Graph

A graph database, also called a graph-oriented database, is a type of NoSQL database that

stores, maps and queries relationships in form of graph. A graph database is essentially a set

of nodes and edges. Every node represents an entity and edge represents a relationship

among the nodes. Both node and edge have a unique identifier and a set of properties

expressed as key/value pairs. At the meantime, edges have a starting-place and ending-place

node, while nodes a have a list of outgoing and incoming edges.

The easiest way to understand the graph database theory is to imagine a map of public

transport where nodes represent the stops and consequently edges or relationships between

them are buses’ routes. This concept allows flexible data storage without being fixed or

limited to schema. Moreover, using graph model makes it easier find the best connection

between two stops even for people of not IT sphere.

 38

Figure 14 Graph Neo4j model

Source: https://www.youtube.com/watch?v=NH6WoJHN4UA, 2019

Graph databases proves itself to be sufficient for examining and evaluating interconnections,

which leads to be an appropriate way for analysing data from social and physical networks,

logistic and transportation. “Graph databases are also useful for working with data in business

disciplines that involve complex relationships and dynamic schema, such as supply chain

management, identifying the source of an IP telephony issue and creating "customers who

bought this also looked at..." recommendations.” (Rouse, 2016)

Speaking of last, advertisement platforms usually do not store relations between specific

customers, instead they apply data mining approaches and choose the content for popping up

advertisement with suggestions based on typical purchase sequences and associations, or in

even more advanced tracking systems of user’s browser history statistics.

2.6.1.4 Column Family

In the article “Bigtable: A Distributed Storage System for Structured Data” Fay Chang and

others touched the topic of column family database. The database of column-family type

stores and processes data by columns instead of rows. Speaking more detailed, a key

identifies a row where data is stored in one or more column families (they remind relational

 39

table), which, in the meantime, can consists of several columns so it means that the columns

in one row don’t have to match columns in another row. Each value in each column has its

own timestamp as sort of column’s own identifier. It is very suitable for storing for example

historical data. The model generally supports sparse column allocation since row IDs without

certain columns do not need an explicit NULL value for those columns. On the other hand,

columns which have few or no NULL values must still store the column key in each row,

which leads to greater space consumption. However, querying is extremely fast and gives the

opportunity to work with the results straight forward.

Figure 15 Column Family row example

Source: https://database.guide/what-is-a-column-store-database/, 2019

Christopher Strauch in his book “NoSQL databases” also gives a very good explanation of

column family database. The main influence on column-family database has Google's

BigTable project. Hbase and Cassandra are modelled after BigTable but Hbase is made

specially for Hadoop. Another very popular column database is Amazon’s Dynamo. Speaking

of the origin for column database we can say that BigTable is “a distributed storage system

for managing structured data that is designed to scale to a very large size: petabytes of data

across thousands of commodity servers” (Fay, 2009). A lot of Google’s products such as

Google Earth, Google Analytics Google Docs and others are using Bigtable as their database.

2.6.1.5 XML database

 Ramez Elmasri and Shamkant B. Navathe talk about XML database in their book

“Fundamentals of database systems (6th edition). The first reference to XML takes us to 70’s-

80’s which also happens to be the rise of the Internet. Since the first database model was

relational, huge amount of information in the XML format was also converted to the

 40

appropriate format and stored in relational database. Nevertheless, it would make more sense

to store XML as XML format database directly and now it is possible using XML-enabled

and Native XML (NXD). The data stored in the database are queried using XQuery. The

XML language is in itself an object-based language that allows users to take advantage of

inherent XML organizational structures. IT professionals may refer to an XML database as a

"native XML database" if it provides direct XML storage.

As it was mentioned before, there are two major types of XML databases − XML- enabled

Native XML (NXD). XML - Enabled Database XML is nothing but the extension provided

for the conversion of XML document. This is a classic relational database, where data is

stored in tables consisting of rows and columns. Native XML database is based on the

container rather than table format. It can store large amount of XML document and data.

Native XML database is queried by the XPath.

 41

3 Practical Part

3.1 Implementation of the database

I decided to create a small well-arranged transparent database to easily see any differences

between the two models and their implementation using different appropriate language for

that purpose. I would like to compare not only the database structure but the model as well.

3.1.1 Database model

I created the diagram using a smooth tool dbdiagram.io. They have a simple language for

creating tables and referencing one to another.

Figure 16 Database model for practical part in application (own work)

Source: https://dbdiagram.io/d/5c842976f7c5bb70c72f3ef6, 2019

Moving to the model itself we can see that is crated for RDBMS. It consists of 3 main

relations: Movie, Director and Actor and 1 relation that serves as junction relation for storing

primary keys of related tables of Many-to-Many type. Each of them has unique identifier of

the numeric type and some basic attributes describing the table. The structure of the tables

Director and Actor is very similar since it describes the same object – person, but of different

 42

role. The main relation is Movie and it contains the column for primary key of related table

Director in One-to-Many relationship type. But we cannot see the same otherwise: Director

table does not have the column with Movie’s id – in One-to Many relationships we store only

one foreign key on the “many side”.

Figure 17 Database model for practical part (own work)

Source: own work, 2019

3.1.2 Implementation to the object-relational PostgreSQL database

For relational database I decided to use open source PostgreSQL. Even though it claims to be

object-relational database, we can still use it just as classic relational DB. PostgreSQL uses

and extends the SQL combined with many features that store and scale the most complicated

data workloads. It has a huge range of data types such as primitives: Integer, Numeric, String,

Boolean; structured: Date/Time, Array, Range, UUID; document: JSON/JSONB, XML, Key-

value (Hstore); geometry: Point, Line, Circle, Polygon; customizations: Composite, Custom

Types and, in addition, there is an opportunity to define own custom data type. Regarding the

procedural language or SQL, PostgreSQL tries to conform with the SQL standard. Many of

the features required by the SQL standard are supported, though sometimes with slightly

 43

differing syntax or function. As of the version 11 release in October 2018, PostgreSQL

conforms to at least 160 of the 179 mandatory features for SQL:2011 Core conformance.

First, we create a database. I used GUI but, of course, there is a shall version as well.

This is how it looks when you already created a table and just see the SQL code it. I created

the “Movie” table using GUI.

 44

Other tables I created manually. We can see the difference that the name of the relation is

captured in quotes. I assume it is due to the fact that it is OBJECT-relational DBS. There is no

mentions concerning that in the internet though.

Then I inserted some data into the database.

 45

 46

3.1.2.1 Simple SELECT runtime

In the following steps I will run similar SELECTs but for different relations: Movie-Director

is 1-N and Movie-Actor is M-N. and we will see the outcomes and compare running time.

First example shows us the content of just one table and the results are very similar. The

Movie relation contain a bit more rows than Director one so it explains a difference. For

higher accuracy I ran the SELECT several times and chose the estimate mean of all.

Here we can notice that I used FULL JOIN. It includes all the records from both of the tables

not only matching records. On the left-hand side there are performed operations with Movie-

Director 1-M and on the right-hand side Movie-Actor M-N. We cannot but notice that runtime

is greater by a long chalk. But let’s have a look on the next results.

For the next query I decided to use INNER JOIN. This gets us all records that are common

between both tables based on the foreign key. Even though I only put data that are matching,

the results are not identical in comparison to other queries. The runtime is less than the

runtime of retrieving data from a not joined table.

 47

It’s time for LEFT JOIN. It gives us all the record from the main table plus common selected

rows in the second table. As we can see, LEFT JOIN needs more time because it has to do all

the work PLUS the extra work of null - extending the results. It would also be expected to

return more rows, further increasing the total execution time simply due to the larger size of

the result set.

Last but not least, I tried to retrieve data instead of joining table just using the condition

clause and equating the foreign keys. As expected, the runtime was higher.

 48

On the screenshot bellow you can see the results of a simple query with some calculations.

The runtime is 72 msec.

3.1.3 Implementation to the Neo4j graph database

For post-relational databased I chose Neo4j Graph Database (pronounced neo-four-j).

Developers claim it to be TRULY relational DB. This database does not need to have

predefined model – the data are stored the same way as you would draw on the paper, thus it

results to an extremely easy modeling and storing the relationships. Only one database can run

at a time. Even though it is NoSQL database, it provides an ACID-compliant transactional

backend for applications, which is not very common in non-relational databases. Performance

of relationship intersections remains constant with grow in data size due to using so called

index-free adjacency. Another very useful feature is that we can add any additional property

to anything (even relationships) and it does not require migration. Neo4j uses its own free

Cypher project as its graph native language. Some of the further graph database use Cypher as

its query language as well. Shortly, Cypher is a replicant od SQL but costumed for graph

database. It goes without mentioning that work with graph DB is very flexible and highly

 49

convenient allowing to freely work with data with no limitations and at the meantime the data

are very well organized.

Moving on to the implementation of the same model to Neo4j. I implement the exact same

model as I had for relational database not taking advantage of interesting opportunities of the

DBS. First there are performed some simple CREATE statement for one record already filled

with the data:

Then here we can notice that I created two instances with attributes and the relationship with

direction between them in one step at the same time:

Creating the whole “record” at once:

Here is an interesting example of creating one Movie instance and straight relating 2 Actor

instances in just one step. If there exist a director for that film a will make a relationship

between them separately.

 50

The following examples shows only creating the relationships between already existing

instance and creating the connected instance at the same time. First, we have to find the

needed instance using MATCH and set it to variable and then use it to store the relationship.

There are shown two ways of matching the desired instance with defining the properties

directly and using WHERE clause.

This are some examples of the way how I created and implemented the whole model. Only

after these steps we can see our data model. At the beginning we see all the instances

distributed chaotically. We always can relocate them the way we want it to be. The label

Movie is defined with a blue colour, Directors with green and Actors have orange colour. To

see the properties, we just click on the instance. Even though it is a graph database, there is an

opportunity to display the data in the table and text format.

 51

 52

3.1.3.1 Simple MATCH runtime

I tried to retrieve the same data as I did in Postgres: Movie, Directors, Movies and Directors,

Movies and Actors. In comparison to previous outcomes are overwhelming. As simple as that

I put the labels and got the results without any difficulties and unnecessary complexity. For

higher accuracy I ran the SELECT several times and chose the estimate mean of all.

 53

3.1.4 Queries

In this chapter I would retrieve the same data to compare the runtime and the query itself.

1) First, I will select the movie title where plays an actor with the name Morgan.

Interesting to note that Cypher does not have such strict rules for coding, there usually are a

couple of choices how to express the idea.

We do not necessarily need to write WHERE clause at all.

2) All columns of Actor table with a birth date between 1979-01-01 and 1999-01-01.

 54

Again, Cypher proves itself to be a very flexible language.

3) Retrieving actors and directors have relationships to the same movie.

4) And then upgraded a bit SQL query and mix together two previous queries.

 55

5) I also tried UNION command.

6) COUNT function

When match for the first time:

When match EVERY next time:

 56

3.1.5 Data replication

Streaming replication in PostgreSQL (with local storage) is the most common approach. In

this approach, you can use local disks or attach persistent volumes to your instances. A

primary node has the tables’ data and write-ahead logs (WAL). This Postgres WAL log is

then streamed to a secondary node. The new secondary node needs to replay the entire state

from the primary node. The replay operation may then introduce a significant load on the

primary node.

The second approach relies on disk mirroring (also called volume replication.) In this

approach, changes are written to a persistent volume. This volume then is mirrored to another

volume at the same time. It works for all relational databases. You can use it for MySQL,

PostgreSQL, or SQL Server. However, the disk mirroring approach to replication in Postgres

also requires that you replicate both table and WAL log data. Further, each write to the

database now needs to synchronously go over the network. You can’t miss any data because

that could leave your database in a corrupt state.

The third approach turns the replication and disaster recovery process around. Writes are sent

to the primary node that makes a backup every day, and incremental backups every 60

seconds. That makes up to a cloud-native design.

Neo4j’s main responsibility is to safeguard data, which is done by Core Server. The Core

Servers replicate data using the Raft protocol. Raft helps to confirm that the data is consistent

before applying commits. This means that after the majority of Core Servers in a cluster has

accepted the transaction then it is then safe to work with the commit in the end application.

Read Replicas' responsibility is to help with scaling workloads (Cypher queries, procedures,

and so on). Read Replicas act like cache data that the Core Servers safeguard, but they are not

simple key-value caches. In fact Read Replicas are fully-fledged Neo4j databases capable of

executing arbitrary read graph queries and procedures. Read Replicas are asynchronously

replicated from Core Servers using incremental log. Periodically (usually in the ms range) a

Read Replica will ask a Core Server about new transactions it has processed since the last

poll, and the Core Server will send these transactions to the Read Replica. Many Read

Replicas can be fed data from a relatively small number of Core Servers, allowing for a large

scale.

 57

4 Results and Discussion

4.1 Getting started

To start with any relational database a person needs to have strong theoretical background.

Even after that the following process of designing a DB a developer has to follow several

rules such as Normal Forms so that data is consistent. DB designers have to think through the

structure of the tables including all the attributes and connections. All the entities have to have

the exact same created structure and if trying to change it a programmer would face certain

difficulties. Despite the data are stored logically, when half of the columns is

incomprehensible numbers or arrays which are foreign key’s identifiers, we cannot fully say

we easily understand and see the data like it is in the compared graph database.

On behalf of post-relational database, we have graph database Neo4j. The simplest model and

implementation save some struggles of not only skilled developers but beginners as well. The

developer can get straight to work without wasting time on designing the model and then

creating the carcass for inserting data writing hundreds of lines of code. An interesting

difference is that every part can be added with a property and if having the property in one

place does not mean there is an obligation to include the same property to other records as

well. It is a perfect elementary way to store additional or more detailed information when

needed. Obviously, the nodes have relationship and they have a direction from which node to

which the connection goes. In contrary to the relational DB, if there is a relationship it can

work both way. It concerns M-N type specifically. In the example (:Actor) –[:plays_in] –>

(:Movie) there is no necessity to store the relationship backwards like (:Actor) <–

[:is_played_by] – (:Movie). The relationship work both ways not affecting to performance.

When doing MATCH command, we do not have to specify the direction of relationship.

However, if we put the wrong direction it will not give us any result. Note that we always

have to specific relationship direction in CREATE.

These two databases have different approaches to unique identifier. PostgreSQL has a classic

primary key id and there is a specific data type which is very suitable for id. Serial data type

creates a sequence and sets the next value generated by the sequence as the default value for

the column. In other words, it is an AUTO_INCREMENT function. The value that was set be

the sequence becomes default value of the column. It also adds NOT NULL constraint to the

column because a sequence always generates value. The owner of the sequence is assigned to

the id column and, as a result, the sequence is deleted when the id column or table is dropped.

 58

Concerning Neo4j’s id, as you might notice, I did not set any id for any node, property nor

relationship. Nevertheless, each of them has its unique id. When clicking on node, at the

bottom will be displayed it properties and among them there is an autogenerated self-adding

id. It is usually used for deleting, because when querying we usually do not need object’s id.

4.2 Languages

It is not a secret that SQL is a special language for relational databases. After understanding

the relational theory, we are able to use SQL masterfully. However, graph native Cypher

proves us to be way more understandable even for non-IT specialists. The language allows the

developer not to be exactly that precise in some aspects when SQL would cause a syntax

error. Cypher also use something between alias and variable, if you will. It goes without

saying that the size of the query and the runtime is immoderately shorter, which provides a

better performance.

Speaking of Cypher specifically, I cannot but mention the impressive comparison of the real-

life example of the SQL and Cypher query. We can notice similar reducing Cypher’s query

size in my previous running queries.

Figure 18 Comparison SQL code to Cypher's

Source: https://www.youtube.com/watch?v=lb90EBfAj0o, 2019

 59

4.3 Retrieving data

Relational database while searching for the related data from another table goes through every

row and compares its id to the content of the stored foreign key. Neo4j stores relationship

directly to the nodes and in case of retrieving data does not search through the whole records

but matches straight the needed node. This is the reason why the graph DB with no doubt

showed much better performance. Both of databases have indexes though. Applying the same

queries to both of the databases the runtime differs by not just milliseconds but dozens of

them. The outcomes exceeded all the expectations in a good way.

After the query is finished and run, the results in the relational database a performed with no

surprises in a form of table. However, graph Neo4j can provide requested data not only in the

form of graph, but also in the text form or table of tables. I was pleasantly amazed to see in

the interface of the browser application for Neo4j a button to export the matched data to CSV

file directly.

 60

5 Conclusion

In this work I made an overview of existing database types and models, explained the basis of

relational database and concepts of several major types of NoSQL DBs. I made a small

transparent data model of movies, directors and actors and then implemented it to the chosen

presentative PostgreSQL and Neo4j following the same steps and compared the results.

NoSQL (or Not-Only SQL or Non-relational) databases appeared to overcome some

limitations of databases of relational type. As it was mentioned before, RDBMS’s JOINs are

its best and worst feature at the same time. When the database grows in its size the number of

relations is increasing. So is the number of JOINS, which at the meantime extremely increase

the cost of the query and runtime.

According to my practice with Neo4j, I can say that basing on what I have experienced so far,

graph DB Neo4j can be used instead PostgreSQL and give much higher performance for their

clients. It is a brilliant combination of best features of two contrary databases and can be a

good alternative not only for relational, but also non-relational databases. The browser

application was smoother, the language more logical and simpler and the basic logic of the

graph DB makes more sense. Even though the majority is used to the relational concept, the

enormous results of speed speaks for itself saving plenty of time not only when retrieving

data, but also when writing the code which is also very important.

To conclude I would like to add, that even after being familiar with relational DB before

writing the thesis, it was easier for me to work with graph database instead of already well-

known one. I hope that my research and comparison would encourage developers to pay more

attention and choose carefully the proper database for their purpose and data and my work

would help them with that.

 61

6 References

Berg, Kristi et al. (2012). “History Of Databases”. International Journal of Management &

Information Systems (IJMIS). 17. 29. 10.19030/ijmis.v17i1.7587.

DATE, Christopher J. “An Introduction to Database System”. 8th edition. 2004, s. 10. ISBN

0-321-18956-6.

ELMASRI, Ramez and Shamkant B NAVATHE. “Fundamentals of database systems”. 6th

edition. 2011. ISBN 13: 978-0-136-08620-8.

Wladston Viana Ferreira FILHO “Computer science distilled: learn the art of solving

computational problems / Wladston Viana Ferreira Filho”. — 1st ed.”. 2018. ISBN 978-0-

9973160-0-1

HARRINGTON, Jan L. “Relational database design and implementation: clearly explained”.

3rd edition. 1998. ISBN 978-0-12-374730-3.

DATE, Christopher J. “SQL and Relational Theory: How to Write Accurate SQL Code”. 2nd

edition. 2011. ISBN 978-1-449-31640-2.

TAYLOR, Allen G. “SQL All-in-One For Dummies”. 2nd Edition. 2011. ISBN 978-0-470-

92996-4.

BEAULIEU, “Alan. Learning SQL: Master SQL Fundamentals”. 2nd Edition. 2009. ISBN

978-0-596-52083-0.

“SQL Constraints”. [online]. [cit. 2018-11-21]. Available at:

https://www.w3schools.com/sql/sql_constraints.asp

Power, D. J., "Decision Support Systems Vendor List", DSSResources.COM, URL

http://DSSResources.COM/vendorlist, accessed "2019-01-14", 2019.

LAI, Eric. “No to SQL? Anti-database movement gains steam”: NEWS ANALYSIS.

Computerworld [online]. 2009 [cit. 2019-01-14]. Available at:

http://www.computerworld.com/s/article/9135086/No_to_SQL_Anti_database_-

 62

STRAUCH, Christof. “NoSQL Database”. 2009. Available at: http://www.christof-

strauch.de/nosqldbs.pdf

HURWITZ, Judith et al. “Big Data For Dummies. A Wiley Brand”. 2013. ISBN 978-1-118-

50422-2.

REDMOND, Eric and Jim WILSON. “Seven Databases in Seven Weeks: A Guide to Modern

Databases and the NoSQL Movement”. 2012. ISBN 9781934356920.

CHANG, Fay et al. “Bigtable: A Distributed Storage System for Structured Data” [online].

Google, 2009 [cit. 2019-03-03]. Available at:

https://static.googleusercontent.com/media/research.google.com/en//archive/bigtable-

osdi06.pdf

ROUSE, Margaret. “An architect's guide: How to use big data: graph database” [online]. 2016

[cit. 2019-03-03]. Available at: https://whatis.techtarget.com/definition/graph-database

Glossary [online]. Microsoft, 2010 [cit. 2019-03-11]. Available at:

https://docs.microsoft.com/en-us/previous-versions//cc966484(v=technet.10)

Clustering: Neo4j [online]. [cit. 2019-03-11]. Dostupné z:

https://neo4j.com/docs/operations-manual/current/clustering/introduction/

ERDOGAN, Ozgun. Three Approaches to PostgreSQL Replication and Backup [online].

[cit. 2019-03-11]. Dostupné z: https://www.citusdata.com/blog/2018/02/21/three-

approaches-to-postgresql-replication/

 63

7 Appendix

List of Supplements…

