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Calibration of the TMS-4 Datalogger to Determine the 

Influence of Organic Matter on Measurements of Soil 

Moisture Content 

Summary: 

The TMS-4 Datalogger (TMS-4) is an emerging device that can be used to record 
important climate data relevant to ecosystems and agriculture, such as temperature and Soil 
Water Content (SWC). However, the sensor's performance when measuring SWC can be 
influenced by the presence of Soil Organic Matter (SOM), present in Compost-Amended Soil 
(CAS), potentially needing calibration to accommodate this influence. Thus the study aimed 
to calibrate the TMS-4 sensor under controlled laboratory conditions in soils from four 
different localities (Blatnice u Jaroměřic - loam; Jevíčko - silly clay loam; Velké Hostěrádky 
- silty clay loam; Uhříněves - silt loam) with consideration of compost treatment of the soil. 
The method of homogenised soil column was conducted with the calibration tanks of volume 
24 L , able to accommodate 4 TMS-4 dataloggers at once. Eight targeted V W C were used for 
the calibrations: 0, 5, 10, 15, 20, 25, 30, and 35 %. Sensor outputs of SWC were compared to 
direct measurements of SWC from undisturbed soil samples' gravimetric analysis either for 
control soil (CON), which was not amended by compost, and CAS, for each targeted VWC. 
Linear, Polynomial, and Logarithmic equations were derived for each calibration tank. 
Derived calibration equations differed from Factory Calibration (FC), with FC using 
Polynomial equations. While results differed between experimental localities and individual 
sensors, TMS-4 outputs were influenced by compost admixture. Although the SOM of the 
C O N and CAS only differed by 1.5%, there was a considerable difference noted in TMS-4 
measurements. Results between soil localities varied, and for this reason, no specific 
calibration equation can be recommended, however, soil-specific calibration should be 
considered a necessary step in research using the TMS-4. Although polynomial equations are 
typically used for indirect measurement calibration, the statistical fitness of polynomial 
equations contradicted results found with extrapolated values and directly contradicted the 
reality of SWC measurements for multiple localities. Logarithmic equations had lower 
statistical fitness but tended to be more reliable in reflecting the real behavior of 
measurements with changes in SWC. Linear functions had lower suitability to data owing to a 
change in curvature that occurred in experiments once the SWC reached Transition Water 
Content, a range of Water Content where the type of soil water influencing DP changes, 
changing DP measurements and affecting calibration. Substantial sensor-to-sensor variation 
was found in TMS-4 measurements, and for this reason, sensor-specific calibration is strongly 
recommended. 

Keywords: Calibration, Time Domain Transmission, Soil Organic Matter, Soil Water 

Content, TMS-4 Datalogger, Dielectric Permittivity 
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1 Introduction 
Soil Water Content (SWC) is a property of soil that varies in time and space and is 

immensely important to many scientific disciplines. There are many ways of determining 
SWC, however they vary in feasibility, cost, and accuracy. The TMS-4 Datalogger (TMS-4) is 
a device developed in recent years that continuously measures temperature and SWC in the 
field, with three temperature sensors, and one soil moisture sensor. This device allows 
scientists to gather temperature and soil moisture data close to the soil surface and can reflect 
the climate conditions experienced by plants and animals in this part of the ecosystem (Wild 
et al. 2019). Environmental factors, such as temperature, salinity, and soil type, can influence 
the accuracy of most soil moisture sensors (Bircher et al. 2016). The soil moisture sensor in 
the TMS-4 determines volumetric water content (VWC) through Time Domain 
Transmissometry (TDT), a method that estimates soil moisture by measuring Dielectric 
Permittivity (DP), an electrical property of the soil matrix that is directly proportional to 
SWC. DP sensing methods operating at high frequencies can determine SWC without being 
heavily influenced by these factors, which can influence the accuracy of other moisture 
determination methods (Bircher et al. 2016; Wild et al. 2019; Yu et al. 2021). Another 
environmental factor that influences the accuracy of the soil moisture sensor is Soil Organic 
Matter (SOM), which is known to influence moisture content determination methods using 
soil DP (Fares et al. 2016; Szypiowska et al. 2021). When a property besides what is being 
directly measured by a sensor influences measurements, the difference between what is 
measured and the reality of the experiment can be addressed with calibration (Mane et al. 
2024). There are several types of calibrations, and it is becoming more popular among 
scientists to perform multiple types of calibrations to improve the accuracy of their 
measurements (Rosenbaum et al. 2010). SWC measuring devices typically come with a 
suggested Factory Calibration (FC), which can work for certain soil applications. However, 
these calibration equations do not account for many influencing factors in SWC 
measurements, and often underperform and produce high error when applied as a universal 
calibration equation compared to derived calibration methods. Scientists can employ 
soil-specific calibration, which accounts for the properties of each individual soil type used in 
the experiment, including factors such as soil texture or bulk density. Accounting for 
soil-specific factors which can be overlooked in FC greatly reduces error in experiments 
(Lekshmi et al. 2014; Sharma et al. 2018; Singh et al. 2018; Mane et al. 2024). At the same 
time, the devices used in calibration may have varied levels of performance, in which case 
sensor-specific calibration can be applied, where all the sensors in a single experiment are 
tested for their measurements on substances with known DP, such as pure water, to check for 
deviation in a batch of sensors. Performing this sensor-specific calibration also greatly 
reduces error (Rosenbaum et al. 2010). 

The influence of Soil Organic Matter (SOM) on TDT sensor accuracy has not been 
explored in literature as thoroughly as other DP-based methods to determine SWC, such as 
Time Domain Reflectometry (TDR) or Frequency Domain Reflectometry (FDR) (Bircher et 
al. 2016). The experiment attempts to isolate the influence of SOM in measurements of DP 
with calibration experiments carried out on multiple soil localities. 
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2 Scientific Hypothesis and Aims of the Thesis 
Hypotheses: 

1. The TMS-4 individual sensors will determine the soil water content with an 
acceptable sensor-to-sensor variation. 

2. Sensor measuring accuracy (the resulting water content) will be affected by the soil 
organic matter content. 

Aims: 

1. To calibrate the TMS-4 sensor under controlled laboratory conditions in order to 
evaluate the individual sensor precision for use at specific localities with consideration of 
compost treatment of the soil. 

2. To test the TMS-4 in the field experiments with different compost treatments and 
evaluate the obtained results. 
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3 Literature Review 
The literature review was divided into four main sections, to review relevant 

background knowledge for available technology and methods to measure Soil Water Content 
(SWC), the concept and influencing factors for Dielectric Permittivity (DP), the properties 
and effects of Soil Organic Matter (SOM), and existing calibration experiments relevant to the 
work. Relevant background knowledge consisted of several reviews of the current methods 
for measuring and monitoring SWC. This background knowledge was necessary to 
understand the needs in SWC measuring that are addressed by the TMS-4 Datalogger 
(TMS-4), and to provide examples of how different soil properties affect these methods. The 
influencing factors were explored to better understand DP and SOM, including their 
relationship to SWC, and each other. Understanding these properties as individual 
characteristics and as properties that influenced each other throughout the experiment was 
essential to understanding the experimental results. Existing calibration experiments were 
reviewed during the calibration testing, and served as models for necessary components and 
considerations for the experiment. 

3.1 Soil Water Content 

SWC is a measurement of the amount of water in the soil, which is a fundamental 
properly for agriculture and plant biophysical processes (Bittelli 2011). It is a component of 
the three-phase soil system, which includes dry soil as the solid phase, water as the liquid 
phase, and air as the gaseous phase. In a given mass of soil, the amount of water fluctuates 
and determines the amount of the liquid and gaseous phase in the soil matrix, which 
determines a number of other physical and chemical properties of soil (Lekshmi et al. 2014). 
Figure 1 depicts different distributions of soil, water, and air in the soil matrix. 

AIR J* 

Figure 1 The Distribution of Soil, Water, and Air in the Soil Matrix at Different Levels of 
Saturation (Source: Adjustedfrom METER Group. Accessed 2024). 
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Accurate monitoring of SWC can assist farmers with applying irrigation to optimise 
plant growth and has a vital role in mineral transformation and nutrition of plants in soil 
(Bittelli 2011). The SWC of an area is an important consideration for disciplines such as 
hydrology (Guillod et al. 2015; McColl et al. 2017) agriculture, crop yield, climate 
(Seneviratne et al. 2010; Holzman et al. 2014; Massari et al. 2014; Zawilski et al. 2023), 
ecology, and engineering research (Lekshmi et al. 2014). 

The moisture in the soil can be affected by different forces, and thus have different 
behaviour and implications for soil sciences. The three soil water types are gravitational, 
capillary, and hygroscopic water. Each of these types are named by the force that acts on them 
in the soil matrix, with hygroscopic water also being referred to as adsorption water. Figure 2 
depicts these three soil water types and their interactions with soil particles. Gravitational 
water moves due to the force of gravity, is lost through soil drainage, and fills the largest 
spaces, or macropores, in soil. Capillary water is held with capillary forces in soil pores, made 
from adhesion and cohesion within the smaller channels, or micropores, in soil. Capillary 
water is an essential component of the ecosystem of soil organisms, as this water is the type 
most available for plants, and is removed from the soil with interactions within this part of the 
ecosystem. Adsorption water is held by the adsorption force of solid soil and exists in a thin 
layer on the surface of soil particles. The adsorption force of soil acts very strongly on water, 
so adsorbed water cannot be removed under natural conditions, it is unavailable to plants, and 
requires a heat of at least 105°C to remove in a laboratory setting (Lekshmi et al. 2014). 

Hygroscopic Water Capillary Water Gravitational 

Figure 2 Diagram of the Different Types of Soil Water (Source: TerraGIS. Accessed 2024). 

Water availability in soil is affected by environmental factors such as climate, 
vegetation, topography, and land use, but also intrinsic factors in the soil such as texture and 
Organic Matter (OM). Soil texture refers to the proportion of soil particles of different sizes, 
such as clay, silt, and sand. A diagram visualising the particle differences and their size range 
is depicted in Figure 3. Soil texture determines the soil pores, which hold air and water in the 
soil. Soils with a high amount of clay have a higher surface area and more micropores 
compared to other soils, which allows for a high amount of adsorbed and capillary water to 
remain in the soil, and these soils do not drain or hold air well. At the same time, soils with a 
high amount of sand have abundant macropores that hold gravitational water and air, these 
soils do not hold capillary water well and can drain too readily in the context of supporting 
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plant life. Loam soils have a more balanced amount of sand and clay allowing for a supply of 
water and air in the soil which is more advantageous to plant growth (Amooh & Bonsu 2015). 

Sand 2 mm to 0.05 mm Silt 0.05 mm to 0.002 mm Clay < 0.002 mm 

Figure 3 Diagram and Size Range of Sand, Silt, and Clay (Source: Adjusted from Eliades A 
2022. Accessed 2024). 

3.1.1 Soil Water Content Monitoring Technology 

SWC is a dynamic property that fluctuates by time and space, as climate and 
evaporation can change SWC within minutes, and spatial variability of SWC is influenced by 
soil texture, terrain, and vegetation (Mane et al. 2024). This fluctuation needs to be accounted 
for in accurate, long-term soil monitoring and is highly sought after in soil-related research. 

Research of SWC technology included information related to the current and potential 
progress made in measuring technology, the advantages and disadvantages of different 
devices, and factors that influence each method. Methods to measure SWC include direct 
methods and indirect methods, where direct is the actual measurement of the amount of water 
in the soil, while indirect methods measure a property of the soil that is dependent on SWC. 
In the case of indirect measuring, the value of the related soil property is usually calibrated to 
give a measurement of SWC (Bittelli 2011). SWC can be estimated indirectly with point (in 
situ) measurements or remote sensing, and only a few of these methods offer continuous 
monitoring. The currently available methods include the Gravimetric method, as a direct 
measurement, and many indirect methods (Sharma et al. 2018) which can measure a property 
of the soil that is dependent on water, such as electrical properties like capacitance, or DP, 
which are converted to estimate SWC (Czarnomski et al. 2005). 

The TMS-4 was developed for sensing SWC using the Time Domain Transmissometry 
(TDT) method, which is one of several types of sensing methods that measure Dielectric 
Permittivity (DP) to estimate SWC (Wild et al. 2019). Unfortunately, there was not extensive 
literature available for the TDT method, because the use of TDT for SWC monitoring is a 
newer method that has not been heavily studied (Will & Rolfes 2013). Papers involving the 
TMS-4 were reviewed, but the TMS-4 was not included in most of the discussions of current 
monitoring technology, such as the advantages, disadvantages, or influencing environmental 
factors related to SWC measurement. However several of the reviews did elaborate on other, 
more widely used DP-based methods, such as Time Domain Reflectometry (TDR), Frequency 
Domain Reflectometry (FDR), and Capacitance methods. Although this information did not 
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directly address the TMS-4 or TDT, it gave insight into the overall advantages of the TMS-4 
as a new technology, DP as a property for measuring SWC, and related considerations to 
SWC testing. 

The papers reviewed established studies and experiments of SWC technology and 
were considered reliable. The only disadvantage was that almost none of them included as 
much information about TDT as the other methods. 

3.1.2 The Direct Method of Measuring Soil Water Content 

There is only one method that directly measures SWC, the Gravimetric method, also 
known as the thermogravimetric method, or the drying method (Seneviratne et al. 2010). This 
method measures the mass of water in soil by weighing wet soil before and after drying. The 
drying must be at a heat of 105°C, to ensure the evaporation of adsorption water in the 
sample. The resulting mass of water is divided by the mass of dry soil to give a SWC by 
mass. Or, considering the mass of water to be equal to the volume of water, the amount of 
water can be divided by total volume of the soil sample to obtain the V W C directly. If not 
available, the SWC by mass can be converted to V W C by multiplying the result by the soil 
dry bulk density. For this reason, V W C calculations can be variable, and measurements are 
more accurate when dry bulk density is measured from the volume and mass of each unique 
sample, as bulk density can vary spatially throughout soil. Gravimetric analysis is used as a 
reference method for calibrating indirect SWC measurements, and most indirect methods 
convert to V W C , rather than WC by mass (Bittelli 2011). The Gravimetric method is 
considered the most accurate but has the disadvantages of being destructive, slow, and not 
repeatable for a single soil sample (Sharma et al. 2018). The equations for the determination 
of V W C from gravimetric analysis and a known volume of a soil sample are demonstrated in 
Equations 1-4. 

Determination of SWC by mass is calculated with Equation 1 

W = 
M„. 

(i) 
Where: 

M s 

M . w 

.Water Content by Mass (g/g) 
Mass of Water (g) 
Mass of the Dry Soil (g) 
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Bulk Density of soil, which can be used in converting Water Content (WC) by Mass to 
V W C , is calculated with Equation 2 

Pb = S 

(2) 
Where: 
pb Dry Bulk Density of Soil (g/cm3) 
VIs Mass of the Dry Soil (g) 
V T Total Volume of the Undisturbed Soil Sample (cm3) 

V W C can be determined from gravimetric measurements in g/g when dry bulk density is 
available. This conversion is calculated with Equation 3 

0 _
w p b 

p w (3) 
Where: 
9 Volumetric Water Content (cmVcra3) 
w Water Content by Mass (g/g) 
pb Dry Bulk Density of Soil (g/cm3) 
pw Density of Water (g/cm3) 

The proof of Equation 3 is visible in Equation 4, where the components of Equation 3 
are broken down into step-by-step expressions of mass and volume measurements. 

M 
\MsJ 

Ms 
\VTj \Mwj 

KMsJ 

Ms 

Pu 

Where: 
9 Volumetric Water Content (cmVcra3) 
w Water Content by Mass (g/g) 
M w Mass of water (g) 
M s Mass of the dry soil (g) 
V T Total volume of the soil sample (cm3) 
V w Volume of water in the soil sample (cm3) 
pb Dry Bulk Density of Soil (g/cm3) 
pw Density of Water (g/cm3) 

(4) 

7 



3.1.3 Indirect Methods of Measuring Soil Water Content 

Indirect techniques to measure SWC can involve measuring the electrical properties of 
soil such as capacitance or DP, or using methods such as radioactive methods, and remote 
sensing methods (Lekshmi et al. 2014). 

Radioactive methods for detecting SWC include the Neutron Scattering and the 
Gamma Ray Attenuation methods. The Neutron Scattering method disperses fast-moving 
neutrons into wet soil, which slow when they collide with hydrogen atoms, this speed is 
measured and determines the presence of hydrogen atoms (Lekshmi et al. 2014; Sharma et al. 
2018). The amount of hydrogen atoms in the soil increases directly with the amount of water 
in the soil, allowing for the determination of SWC. In a review of measuring techniques by 
Lekshmi et al. (2014), Neutron Scattering is stated to be one of the most accurate measuring 
methods, and advantageous because it is non-destructive, and can measure a wide area of soil, 
including different depths, giving SWC for a soil profile (Lekshmi et al. 2014; Sharma et al. 
2018). Unfortunately, the disadvantages of the method such as the expensive equipment, 
variable resolution, and health risks associated with radiation exposure, limit the use of this 
method. The Gamma Ray Attenuation method transmits gamma rays into the soil, which 
detects the saturated density of the soil, which is directly related to moisture content, and is 
used to determine SWC (Lekshmi et al. 2014). This method is non-destructive, fast, and more 
accurate than Neutron Scattering for the surface areas of soil. However, it can be affected by 
bulk density in soil, has limitations with calibration (Sharma et al. 2018), and suffers similar 
disadvantages to the Neutron Scattering method, such as high cost and health risks (Lekshmi 
etal. 2014). 

Remote Sensing methods are designed to measure SWC over large areas that are 
beyond the range of in-situ sensors. These methods measure properties such as reflectance, 
thermal inertia, DP, and brightness to determine SWC over vast land areas. While the spatial 
range of remote methods is undeniably larger than in-situ methods, most of these methods 
have limitations when measuring areas with vegetation cover, and varied resolution over their 
areas. Beyond these considerations, they also need in-situ calibration from soil sampling, or 
indirect sensor measurements (Sharma et al. 2018). 

3.2 Dielectric Permittivity 

Dielectric methods measure the DP of soils, with DP defined as the capacity of a 
substance to hold or store an electrical charge (Lekshmi et al. 2014). Dielectric methods are 
considered advantageous for their accuracy, and convenience for in situ measurements, giving 
them the advantages of the Gravimetric method, and with the added aspects of safety and 
repeatability in field measurements (Mane et al. 2024). 

3.2.1 Background on Dielectric Permittivity-Based Sensors 

Widely used DP methods include Time Domain Reflectometry (TDR), Frequency 
Domain Reflectometry (FDR), and Time Domain Transmission (TDT). Each involves 
propagating Electromagnetic (EM) waves through the soil and measuring the time delay or 
impedance generated from the soil-water mixture (Mane et al. 2024). Each method has a 
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different configuration to propagate an electrical pulse into the soil to determine DP, which 
can then be converted to SWC with a calibration equation or a Dielectric Mixing Model 
(DMM) (Bircher et al. 2016). Sensors using TDR or TDT record the velocity of E M waves 
propagated along open and closed transmission lines (Bogena et al. 2017). A l l of the devices 
come with a suggested Factory Calibration (FC) by the manufacturer, but this calibration may 
not be reliable when applied to soil conditions differing from the manufacturer's experimental 
conditions (Bircher et al. 2016). 

Sensors measuring DP rely on the large difference between the DP of water and solids 
such as soil, organic matter, and air. DP is generally low in dry soil, generally ranging 
between 2-6, while the DP of water is around 80, making the DP of soil directly proportional 
to the amount of water present (Lekshmi et al. 2014). The principle of DP as a measured 
quality of a substance is shown in Figure 4, where the DP of different pure materials is given. 
The application of this principle is depicted in Figure 5, which demonstrates how the 
proportion of water in soil can be interpreted from the DP of a mixed substance containing 
water, such as partially saturated soil. 

DIELECTRIC CONSTANT: ABILITY TO STORE CHARGE 

1 5 20 40 80 

Figure 4 The Dielectric Constant of Water and Other Materials (Source: METER Group. 
Accessed 2024). 

9 



Research conducted in the work of Topp et al. (1980), further developed the 
relationship between the dielectric constant of a substance and WC. This equation accounted 
for the influence of soil properties measured at a specific frequency range when measuring 
with TDR. The discussed influence on this property in soil includes soil texture, salinity, WC, 
temperature, density, and measuring frequency. The frequency range in Topp et al. (1980) was 
within the frequency range where the influencing factors were of very little influence except 
for WC and noted that measuring frequency was one of the most important factors influencing 
DP measurements. 

3.2.1.1 Influences on Dielectric Permittivity 

There is some conflicting information available about DP sensing methods, and most 
of the available information is for TDR and FDR sensors. These methods can be influenced 
by environmental conditions such as temperature and salinity, and characteristics within the 
sensor, such as operational frequency (Mane et al. 2024). Salinity, conductivity, and mineral 
content have been observed to influence TDR measurements and Capacitance methods 
(Baumhardt et al. 2000; Blonquist et al. 2005; Kameyama et al. 2014). In the experiment 
conducted by Robinson et al. (1998) indirect methods like TDR and Capacitance were found 
to overestimate relative permittivity in materials with an increasing ionic conductivity. FDR is 
especially known for its temperature sensitivity, while TDR is considered less sensitive, there 
is still some temperature drift, and low temperatures can also hide the influence of salinity in 
sensor performance (Yu et al. 2021). 

Some explored factors that can influence DP are the ratio of bound water to total 
SWC, surface area, bulk density, and form of moisture content (Yu et al. 2021). Bound water 
is related to soil adsorption forces, and dielectric loss from the imaginary part of DP has even 
been described as related to conductivity and the adsorption forces acting on water (Bircher et 
al. 2016). TDR requires soil-specific calibration when used in soils with high amounts of 
organic matter, because the water adsorbed to the surface of SOM measures as a lower value 
than free water, and SOM has a higher specific area, leading to more adsorbed water and 
lower values from sensors (Sharma et al. 2018). This phenomenon was noted in the work by 
Topp et al. (1980), where the active surface area was discussed as a controlling factor in DP, 
as the layers interacting with the soil surface had a lower DP measurement that was described 
as similar to water bound as ice, which measures as low as 3 compared to the dielectric 
constant of free water measuring as 80. Bulk density can influence the amount of contact a 
sensor maintains with soil during measurement, and higher bulk density can directly affect the 
accuracy of measurements due to increased contact with sensors (Matula et al. 2016). 

3.2.1.2 Sensor Frequency and Dielectric Permittivity 

Different DP-based sensors operate at different frequencies, and there is a widely 
observed difference between low and high-frequency sensors (Wobschall 1978; Bircher et al. 
2016; Nasta et al. 2024). The frequency of a DP sensor can amplify the influence of 
environmental factors on sensor readings, as low-frequency sensors can be influenced by 
salinity, temperature, and soil texture (Blonquist et al. 2005; Kizito et al. 2008; Nasta et al. 
2024). The frequencies of DP-based sensors can range from MHz to GHz. The range of 
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frequencies for FDR sensors is between 10-500 MHz, however, most sensors are below 300 
M H z (Szyplowska et al. 2021). Capacitance sensors operate from below 100 MHz. TDR 
sensors typically operate between 0.1-1.5 GHz and are in the highest frequency range of the 
DP-based sensors (Mane et al. 2024). 

In a study conducted by Seyfried & Murdock (2004), TDR sensors operating at 50 
M H z were compared with TDR sensors operating at 1 GHz were used to measure DP in sand 
and other types of soils. The measured DP of the soil water in sand was similar to pure water, 
and did not measure differently between the different frequency sensors, but found that in 
other soils, the soil water had dielectric properties differing from soil water in sand or pure 
water and that measurements had an observable dependency on frequency (Seyfried & 
Murdock 2004). 

For DP-based sensors which measure Complex Dielectric Permittivity (CDP), in soil 
includes two parts: the real part and the imaginary part, typically written as s' and s". The 
imaginary part, noted as e" is considered an energy loss which can come from dielectric 
relaxation, ionic conductivity (Bobrov et al. 2019), and water releasing heat as energy loss 
when it is exposed to an electromagnetic field (Wang & Schmugge 1980; Mohamed & 
Paleologos 2018), and several studies suggest that there is an influence of imaginary 
permittivity on sensor readings of permittivity (Vaz et al. 2013; Szyplowska et al. 2021). FDR 
sensors typically operate at lower frequencies, which makes measurements more receptive to 
the influence of imaginary permittivity (Szyplowska et al. 2021), whereas TDR and TDT 
devices usually operate at higher frequencies, in the GHz range (Vaz et al. 2013). The impact 
of sensor frequency is demonstrated by the visible change in the value of real and imaginary 
permittivity shown in Figure 6 when plotted against frequency. 

Frequency, Hz Frequency, Hz 

(a) (b) 
Figure 6 Real (a) and Imaginary (b) Permittivity Measurements at Different Frequencies 
(Source: Bobrov et al. 2019). 

In saline soils, the increased presence of ions, and increased conductivity, contribute to 
an increase in the conductive loss as the imaginary part of DP, which affects the accuracy of 
sensors at various frequencies in the M H z range. When sensors operating below 500 M H z are 
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applied to saline soils, the dielectric loss due to conductivity can be greater than the real part 
of DP. In clay saline soils, sensors operating between 100-500 MHz can have significant 
increases in the imaginary and real parts of DP, affecting the propagation of the E M pulses 
involved in sensor reading, and the recording of the pulse time delay, which directly affects 
the accuracy of determining SWC for TDR methods (Bobrov et al. 2019). One depiction of 
the range of sensor frequency and sensitivity to salinity is depicted in Figure 7. 

S E N S O R M E A S U R E M E N T F R E Q U E N C Y 
• 
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High Performance 

< 
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<— 

Figure 7 Diagram of Sensor Performance, Sensitivities, and Cost at Different Frequencies 
(Source: METER Group. Accessed 2024). 

Soil texture and composition are known to be an influencing factor in sensor readings, 
and Bobrov et al. (2019) takes this observation further when stating that there is no suitable 
calibration equation for all soil types. The influence of clay content in soil can be linked to the 
effect of saline soils on sensor readings and needs to be considered when evaluating sensor 
performance. For capacitance sensors, clay and loam soils can influence sensor readings from 
dielectric relaxation occurring in lower frequencies such as 200-500 MHz (Bobrov et al. 
2019). Soil texture was also observed to be influential for sensors measuring at a frequency 
below 150 MHz in the study conducted by Mane et al. (2024). There is evidence that the 
influence of soil clay content is lower for sensors operating in the GHz range (Bobrov et al. 
2019). 

Temperature changes can cause changes in soil conductivity, directly influencing DP 
and the performance of DP-based sensors (Mane et al. 2024). In a study by Nasta et al. 
(2024), it was observed that fluctuations in soil temperature affect the performance of 
low-cost and low-frequency sensors, and that temperature influence on bound water in soil 
can affect permittivity measurements. This influence on sensor performance is especially 
potent in fine soils, with higher amounts of clay, thus having more mineral surface area. 
Unfortunately, the influence of temperature was not accounted for in the Factory Calibration. 
Calibration equations derived in the experiments that accounted for soil temperature did 
improve the R M S E (Root Mean Squared Error), however, the authors note that although 
sensor-specific calibration was not applied, sensor-to-sensor variability can be significant in 
low-cost sensors and contribute to a higher RMSE, and would be explored in further 
experiments (Nasta et al. 2024). 

One solution to issues with such influence in DP sensors is the development of sensors 
that operate at higher frequencies, since they are not as influenced by the imaginary part of 
DP (Bogena et al. 2017). Sensors operating above 100 M H z are considered potentially more 
accurate for measuring DP with less sensitivity to conductivity and temperature. However, 
there are cases of low-frequency sensors, such as the FDR Hydra Probe, which operates 
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below 100 MHz, being less affected by temperature changes, because it takes multiple voltage 
recordings which account for temperature changes when calculating DP (Mane et al. 2024). 

Sensors operating at higher frequencies are considered more accurate because sensor 
measurements are known to not be as influenced by the conductivity and the imaginary part 
of DP (Bogenaetal. 2017). 

3.2.2 Time Domain Reflectometry 

TDR measures DP by sending an electromagnetic wave along a probe inserted in the 
soil. The wave is propagated along the probe, and once reaching the end of the probe, reflects 
back and reflected along the probe, and the speed of the wave is influenced by the DP of the 
soil. The time delay between the initial and reflected pulse is measured to determine DP, 
which is directly related to SWC (Noborio 2001). A slower pulse movement, and a longer 
time delay between the initial and reflected pulses, indicate a higher SWC (Baťkova et al. 
2013). 

One developing aspect of the newer sensor methods was the use of sensor-specific 
calibration, which was sometimes considered a possible step for some soil applications, while 
more recent papers, involving a wider range of soil properties, deemed the step necessary for 
accurate measurements. The review of SWC measurement methods by Sharma et al. (2018) 
described soil-specific calibration as unnecessary for the TDR method (except for soils with 
high amounts of bound water), and a noted disadvantage for other methods where it is 
considered necessary, as it adds to the time and procedures required for analysis. Still, many 
studies have found that soil-specific calibration is becoming an essential component of TDR 
measurements, as these methods are used on a wider variety of soils with very different 
properties (Lekshmi et al. 2014). 

A calibration equation for the conversion of TDR measurements to SWC was derived 
in the experiment conducted by Topp et al. (1980). This equation is described in Equation 5, 
and was derived from measurements in soil conditions where dielectric loss did not heavily 
influence DP measurements, typically when measuring with a higher frequency (Cosenza et 
al. 2003). 

The V W C of soil can be calculated from measured Relative Permittivity under certain 
conditions described in Topp's Equation, shown in Equation 5 

9 = 4.3 l C r V - S . S 1 0 ^ +2.92 10" 2 k -5 .3 10"2

 ( 5 ) 

Where: 
9 VWC (cm7cm :) 
K High-Frequency Relative Permittivity 

This equation is used widely in calibration experiments in applicable frequency 
ranges, is applicable for mineral soils using TDR, and is advantageous for being independent 
of many environmental factors such as temperature, bulk density, salinity, and soil texture. 
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3.2.3 Time Domain Transmissometry 

TDT is not a widely used measurement method, but among the DP-based sensing 
methods, TDT is considered more accurate because it does not suffer the same limitations or 
complications as FDR and TDR sensors. TDR and TDT are similar methods that measure a 
time delay response from an electrical pulse along a transmission line (Wilczek et al. 2020), 
but differ in that TDR measures from a pulse reflected from their transmission line, while 
TDT uses a single transmitted signal. Soil heterogeneities, such as air pockets, particles, and 
water, can cause multiple reflections and interference in the measuring signal, which can 
influence the TDR-measured signal, but does not interfere with the TDT-measured signal 
(Will & Rolfes 2013). TDT sensors are considered more accurate than TDR as the measuring 
pulse is not influenced by multiple reflections (Perez et al. 2023). The TDT automated 
measurements are noted to be more easily analysed, giving their measurements stability that is 
not available in TDR sensing (Kojima et al. 2023). This lack of stability is demonstrated in 
Figure 8, where there is a visible change in measured permittivity when measuring with TDR, 
deviating due to the influence of multiple reflections, as opposed to the more consistent TDT 
measurement (Will & Rolfes 2014). 
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Figure 8 Relative Permittivity Detected by TDR and TDT at Different Soil Depths (Source: 
Will & Rolfes 2014). 

TDT methods were considered expensive or required large equipment in the past, 
showing a need for a cheaper and field-applicable TDT sensor (Nagahage et al. 2019; Perez et 
al. 2023). However, within recent years, small-scale devices were developed, such as the 
TMS-4, which employ TDT methods at a considerably lower cost (Wild et al. 2019). Recently 
developed TDT sensors are considered easier to operate, making them accessible for other 
professionals, however, low-cost sensors are also associated with sensor-to-sensor variability 
(Bogena et al. 2017). TDT sensors are growing in popularity for their accuracy, low cost, and 
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usability, however, sensor variability and soil-specific considerations may be necessary for a 
wider range of applications. 

3 2 4 The TMS-4 Datalogger 

The TMS-4 (manufactured by TOMST s.r.o., the Czech Republic) is a newer device 
developed in recent years that uses TDT to offer continuous SWC and Temperature 
monitoring for long-term, in situ measurement applications. The device is designed to record 
microclimate data to observe the environmental conditions of the habitat in the space 
immediately above and below the soil surface. The size and sensor placement of the TMS-4, 
depicted in Figure 9 is designed to observe conditions relevant to the different areas of a small 
herbaceous plant (Wild et al. 2019). 

Figure 9 Diagram of TMS-4 Device, Components, and Sensors (Source: Wild et al. 2019). 

To measure SWC the TMS-4 propagates an E M pulse at a frequency of 2.5 GHz (Wild 
et al. 2019), giving it a high enough frequency to avoid the influence of dielectric loss 
(Bogena et al. 2017), as the range of 0.5-3 GHz is noted as ideal to avoid the effect of 
imaginary permittivity on DP (Bobrov et al. 2019). The sensor measures the amount of 
electromagnetic pulses sent along its transmission line, and a reading is calibrated and 
inverted from a raw number of pulses, appearing as a unitless number from sensor readings, 
and this number then can be converted to SWC. The pulse values are displayed in the data 
table generated by the sensor reading software and range from 1-4095, with air measuring 
100 and distilled water measuring 3500 pulses (Wild et al. 2019). The transmission wire is 
configured as a loop sensor, which is considered advantageous for in-situ measurements 
because it has only 1 port, and measurements have a larger sampling area than other 
configurations because of a wider cross-sectional area in the blade of the sensor (Will & 
Rolfes 2014). A full diagram of the TDT measurement components is depicted in Figure 10. 
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Figure 10 Diagram of the SWC Sensing Equipment in the TMS-4 (Source: Wild et al. 2019). 

The manufacturer offers multiple FC equations that account for different soil textures 
and has been tested for the influence of salinity and temperature, although the article by Wild 
et al. (2019) detailing the features of the device, suggests soil-specific calibration and notes 
that measurements taken during periods with frozen soil are not reliable. The TMS-4 Manual 
offers FC equations for different soil types. The article does note that the TDT method is 
sensitive to contact with the soil, which can be influenced by shrinking of soil, giving lower 
than actual SWC values, and that limitations with the sensor included frequent cases of 
interference and damage from animals in field experiments (Wild et al. 2019). 

3.3 Soil Organic Matter 

SOM is a component of soils that has an immense influence on soil properties and 
agricultural productivity. SOM is made of dead plant and animal matter of different levels of 
decomposition, soil microorganisms, and living organisms such as plant parts and animals 
which contribute to the formation and transformation of SOM. Living soil microbes 
determine processes including the decomposition of organic matter, mineralization of 
nutrients, respiration of carbon dioxide, and carbon transfer. Non-living SOM has three types: 
active, slow, and passive, which are categorised by how readily they decompose. Active SOM 
is the most easily decomposed and available of residues, and directly fuels microbial activity. 
During decomposition by soil organisms, it also contributes to physical soil properties by 
stabilising aggregates and mineralizing soil nutrients. The proportion of active SOM to total 
SOM is a metric used to determine soil health and quality (Grubinger n.d.). 

SOM influences aggregate stability, cation exchange capacity, nutrient soil processes, 
and water-holding capacity. SOM is typically more abundant in soils with a finer texture, such 
as silty and clayey soils, and areas with poor drainage, which encourages SOM accumulation. 
(Grubinger n.d.). 

SOM influences bulk density, with the study by Szyplowska et al. (2021) depicting the 
inverse relationship between the bulk density of soil and organic matter (OM) content 
demonstrated in Figure 11. 
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Figure 11 Organic Matter Content Effect on the Dry Bulk Density of Different Soils (Source: 
Szyplowska et al. 2021). 

The influence of SOM in soil and SWC has been thoroughly studied, as SOM 
influences the texture and water-holding capacity of the soil, which both have a direct 
influence on SWC. The relationship between SOM and SWC is determined from 
measurements of Dielectric Permittivity (DP). These influences can come from a change in 
water retention, resistance to evaporation in soil, or the changing of bulk density, thus directly 
impacting the calculation of V W C . SOM is known to increase soil water retention (SWR), 
which can reduce water loss due to evaporation in higher temperatures (Lai 2020). Organic 
Matter (OM) can change soil texture, pore size, and surface area, depending on the existing 
characteristics of the soil. In soils with a high proportion of smaller pores, the addition of O M 
can increase the amount of larger pores, increase the surface area in the soil, and lower bulk 
density, as depicted in Figure 12 (Park et al. 2019). 

Mineral soil Organic soil 
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water 

Figure 12 Organic Matter Effect on the Pore Space and Bound Water in Soil (Source: Park et 
al. 2019). 

3.3.1 Soil Organic Matter and Dielectric Permittivity 

Unfortunately, very few studies are available that explore the influence of SOM on the 
TDT method for measuring SWC. However, there are studies available on the influence of 
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SOM on DP, which has only recently been considered as an environmental factor influencing 
SWC measurements (Bircher et al. 2016). It was considered in the experiments conducted by 
Topp et al. (1980) in the context of comparing DP measurements in organic soils with the DP 
of glass beads with increasing WC, with a limited range of frequency for the TDR method. In 
their study, organic soils yielded very little change in DP with increasing SWC until the V W C 
value reached above 10%, but above this level, the response of DP to SWC behaved more like 
the other measured soils (Topp et al. 1980). 

One method of converting indirect sensor values to SWC is the use of a Dielectric 
Mixing Model (DMM), which accounts for multiple soil-related factors when calibrating 
values. There are very few models which account for the effect of SOM on DP and the 
available ones apply to specific ranges of SOM, but may not apply to a wider range of SOM 
found in field conditions (Bircher et al. 2016; Park et al. 2019). Calibration models and 
equations have been developed for mineral soils, and the definition of mineral soils in some 
studies is soils with as high as 10% SOM (Vaz et al. 2013; Mane et al. 2024). 

For TDR, soil-specific calibration for organic or humus-rich soils is necessary, as O M 
has a higher specific area, lower bulk density, and contributes to higher bound water which 
can alter DP measurements (Bircher et al. 2016). The influence of SOM is known for having a 
higher specific area, and an increased amount of bound water in the soil. The water being 
bound directly reduces its movement and thus detection in TDR sensing, resulting in 
artificially lower measurements for soils with higher SOM. TDR typically operates in the 
GHz frequency range, and in the GHz range, bound water is measured at a lower DP than free 
water (Szyplowska et al. 2021). The DP of bound water has even been compared to ice, due to 
its restricted movement and difference from free water (Bircher et al. 2016). SOM is also 
directly related to soil bulk density, with an inverse relationship, and the lowering of the bulk 
density with increased SOM is also associated with a lower DP (Szyplowska et al. 2021). 

SOM influences several soil properties that are related to DP, such as bulk density, 
adsorption forces, and porosity. However these properties are also heavily influenced by soil 
texture, and SOM has not been studied heavily as a distinct parameter that can influence DP 
measurements. In the study conducted by Liu et al. (2013), two soils were analysed to isolate 
the effect of SOM on DP, as the two had a similar clay content, ranging from 16-17%, and 
different SOM contents, ranging from 4-18%. This study agrees with previous statements that 
lower bulk density from SOM, and the increase in bound water compared to free water 
contributes to a lower measured DP in soil, and elaborates that this trend occurs in soils 
measured at the same frequency and with similar texture and clay content (Liu et al. 2013). 

3.4 Calibration Experiments 

Calibration is carried out on experimental data to reconcile influencing factors on 
measurements with the reality of experimental conditions. Deriving a calibration method 
involves the consideration of several factors surrounding a single variable, these 
considerations are depicted in Figure 13. 
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Figure 13 Steps of Calibration (Source: Adjustedfrom Mane et al. 2024). 

In the case of isolating the influence of SOM on Sensor performance of measuring DP, 
calibration experiments were reviewed to consider the following categories: the working 
principle of calibration was considered as DP variation in soil, factors affecting accuracy to be 
salinity, temperature, bulk density, SOM, and soil surface area, calibration strategies to be FC 
or derived calibration, the calibration method to be laboratory or field, and the calibration 
approach of linear and nonlinear. 

3.4.1 Soil-Specific Calibration and Factory Calibration 

Indirect SWC Measuring devices can come with a suggested FC, and the Topp 
equation (Topp et al. 1980; Equation 5) is considered a universal calibration equation in the 
context of mineral soils. The equation was considered widely applicable because it was 
suitable for mineral soils and was not heavily influenced by bulk density, temperature, or 
salinity, but with a noted limitation for reliability with organic and clayey soil (Cosenza et al. 
2003). While these calibration equations are suitable for a range of soil conditions, many 
studies have noted that they are not reliable for the wide range of soil properties that apply to 
soil experiments. The FC equation is typically applicable for a range of soil characteristics to 
improve application and has been successfully used for certain applications. Bircher et al. 
(2016) explored the performance of soil sensors in soils of varying amounts of SOM, where 
the given FC equation was found to be reliable when SOM was below 10%, but was much 
less reliable in organic-rich soil. A study conducted by Bartosz et al. (2023) with FDR 
reported error and overestimation in FC, especially in clayey and cropland soils. The study 
went on to conclude that FC didn't account for soil-specific factors, and was found to have 
high error (Bartosz et al. 2023). In a review of DP-based SWC sensing methods, it is stated 
that FC is prone to high error and that soil-specific calibrations are necessary, particularly for 
soils with high clay content and SOM. The study continues by noting that despite 
contradictory results from authors experimenting with DP sensors, one commonality is the 
method of deriving individual calibration curves for different types of sensors and different 
types of soil, rather than relying on FC (Bobrov et al. 2019). 

A study conducted by Zawilski et al. (2023) reviewed the reliability of FC on 
DP-based sensors such as FDR, TDR, capacitance, and remote techniques, and experimented 
with FDR sensors, to conclude that not only is the FC unable to accurately determine SWC in 
many different types of soils, but the error in experiments to be unacceptably high. 
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Soil-specific calibration improved their relative error to varying amounts in different types of 
soil, an experiment with TDR sensors demonstrated a Nonlinear relationship with gravimetric 
samples, and the FC was found to have a low reliability below 20% SWC (Walker et al. 
2004). In an experiment conducted by Dominguez-Nino et al. (2019), which evaluated the FC 
for low-cost TDR sensors, the FC was found to overestimate SWC and had significantly high 
RMSE. 

Multiple reviews of SWC measuring devices and methods agree and recommend that 
soil-specific calibration be carried out for the sake of more accurate measurements for 
different soil conditions and an overall improvement from FC (Lekshmi et al. 2014; Sharma et 
al. 2018; Singh et al. 2018; Mane et al. 2024). 

Soil-specific calibration has been determined as a necessity for more accurate 
measurements of SWC, due to the wide range of soil characteristics that affect measurement 
techniques, and a growing awareness of the high error resulting from FC equations 
(Dominguez-Nino et al. 2019). In some cases, the FC was considered reliable, but usually for 
a limited range of soil properties, such as SOM below 10%, and show significant deviation in 
different soil conditions, and in more extreme levels of SOM, up to and above 30%, a 
significant deviation of DP measurements were observed (Bircher et al. 2014; L i et al. 2022). 
The differences between sensor performance and the measurements of DP in pure water, soil 
water in sand, and soil water in other soils in the experiment performed by Seyfried & 
Murdock (2014) is considered an indicator that the soil-specific calibration is necessary to 
address the soil properties which influence DP measurements. 

The experiment conducted by Bircher et al. (2016) ran tests with TDR sensors on 
mineral soils with higher than 10% SOM, however, at these levels, the sensor results followed 
a different trend than the mineral soils with lower SOM. Mineral soils with higher SOM 
showed a decrease in relative permittivity and a decreased response with increased Water 
Content (WC). Sensors demonstrate more scattered data with SOM, which was attributed to 
the SOM having a more complex structure, and producing more variation in results. Multiple 
types of sensors were used and applied with different possible calibration equations, such as 
Linear, Polynomial, and Logarithmic. Logarithmic fit data well for having a more pronounced 
curve up to 20% SWC, then increasing with a lower response to increased WC (Bircher et al. 
2016). Other experiments seeking a calibration equation for SOM and SWC were typically 
Polynomial, but the studies were related to TDR and FDR with no mention of TDT (Fares et 
al. 2016; Karim et al. 2018; Songara & Patel 2022). 

A review of low-cost TDR sensors conducted by Mittelbach et al. (2012) concluded 
that none of the sensors in their experiment performed according to the specifications of the 
manufacturer, and for this reason, site-specific calibration was determined to be necessary for 
accurate interpretation of sensor measurements. 

In the reviewed calibration experiments, different DP-based measuring methods were 
applied to observe SWC, and equations were derived from the analysis of the indirect 
measuring methods with direct gravimetric analysis. Typically, the best fit derived equation 
was Polynomial (Fares et al. 2016; Karim et al. 2018; Bobrov et al. 2019; Sangara & Patel 
2022) and in the unique case of Bircher et al. (2016), both Polynomial and Logarithmic 
equations were considered well suited to their experiment. For the TMS-4, the suggested 
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calibration equations were Polynomial equations with varying parameters depending on 
texture (Wild etal. 2019). 

Linear functions were used in multiple calibration tests to evaluate sensor response to 
DP in sensor-specific calibrations, and Linearity between sensor measurements and Actual 
Water Content (AWC) was associated with the accuracy of a measuring technique 
(Rosenbaum et al. 2010). 

3.4.2 Sensor-Specific Calibration 

Calibration methods beyond soil-specific calibration may be necessary for precise and 
accurate SWC measurement; multiple studies have described the importance of calibrations 
that are not only soil-specific but also sensor-specific. These studies suggest that there can be 
considerable variability between sensors in a single test, despite conditions in the laboratory 
experiments being extremely controlled for soil calibration tests. Some noted uncertainties in 
measurements also came from experimental procedures, such as heterogeneity in the soil from 
manual packing and compaction, heterogeneities resulting from packing imperfections and 
compaction introduced some uncertainties to the measurements (Hie et al. 2020). These 
considerations extend to large field experiments, which are certain to have heterogeneity in 
soil and can suffer from variability due to sensor variation. This variation is compounded 
when cheaper sensors are used in large numbers to account for wide-scale field monitoring 
(Rosenbaum et al. 2010). 

The experiment performed by Rosenbaum et al. (2010) used a two-step calibration to 
account for sensor variation and soil properties. The calibration for sensor variation used 
multiple reference liquids with a known DP, to develop a 'reference permittivity,' and 
evaluate the Linear response of each sensor to multiple DPs. For experiments with a very high 
amount of sensors in the field, the soil-specific calibration can be performed with a subset of 
sensors, after a known sensor response to DP has been established with the sensor-specific 
calibration. Measurements with not only a soil-specific but a sensor-specific calibration 
applied showed a significantly reduced R M S E compared to their single calibration 
measurements (Rosenbaum et al. 2010). 

In one study using the two-step calibration reduced the R M S E of results by 70% 
compared to the one-step calibration (Bogena et al. 2017). Further benefits of the two-step 
calibration system were found in reducing or avoiding variation related to air gaps and soil 
density, the ability to separate variation arising from sensor intrinsic properties and 
experimental procedures or environmental impacts, and the procedure allowing for the quick 
calibration of sensors to a wide range of DP (Dominguez-Nino et al. 2019). 

In a review of SWC measurement methods by DP-based sensors conducted by Mane 
et al. (2024), linear and nonlinear approaches were compared with different calibration types, 
as depicted in Figure 14. The researchers were surprised that linear and nonlinear values were 
close together in some calibrations, as they assumed that Linear would have a drastically 
higher error than the Nonlinear approach in all calibration types. The study aimed to 
demonstrate the importance of calibration types and influences in SWC measurements by 
DP-based sensors. The study asserted that general calibrations are prone to high error and that 
performing site-specific, soil-specific, and even point-specific calibration can reduce RMSE 
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and improve experimental accuracy. The assertion was supported when they compared the 
R M S E of different calibration types and elaborated that although in types with higher error, 
the linear and nonlinear calibration have a similar error when accuracy is more favourable in 
the point and site-specific calibrations, the difference in linear and nonlinear calibration 
methods became more important. At the same time, overall R M S E was lowest in the 
point-specific calibration for linear and nonlinear methods, demonstrating that the calibration 
type has a profound effect on experimental accuracy (Mane et al. 2024). 
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Figure 14 RMSE of Linear and Nonlinear Calibration for Different Calibration Types 
(Source: Adjustedfrom Mane et al. 2024). 

In the study conducted by Mittelbach et al. (2012), TDR and several types of low-cost 
sensors were compared in measurements of field data and their respective FC. The study 
found that none of the sensors performed in congruence with the FC and specifications when 
applied to field conditions, and concluded that site-specific calibrations are necessary for 
accurate interpretation of SWC measurements. The study also urges that future experiments, 
even when using more expensive sensors, evaluate a need for temperature correction for 
sensors, and depending on the type of sensor, evaluate the influence of soil texture, 
temperature, bulk density, and salinity (Mittelbach et al. 2012). 

3.4.3 Transition Water Content 

Several calibration experiments working with different sensing methods have reported 
a turning point in measurements when the response of sensors to SWC drastically changes. 
This point is Transition Water Content, and separates two stages of water saturation in soil: 
when the SWC is below the Transition Water Content, the water in the soil is adsorbed, or 
bound water, and when SWC is above the Transition Water Content, there is both bound and 
free water in the system Liu et al. (2013). Because bound water measures at a lower DP than 
free water (Bircher et al. 2016; Sharma et al. 2018; Szyplowska et al. 2021), DP increases 
slowly with V W C below the Transition Water Content of a given soil and increases at a 
higher rate with V W C after passing Transition Water Content (Liu et al. 2013). In a study 
conducted by Liu et al. (2013) which measured the increasing SWC for soils with similar 
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texture, but different amounts of SOM, the soil with higher SOM was found to have a higher 
Transition Water Content, adding to the behavioural differences of soil with higher SOM. The 
study measured SWC with sensors of a wide range of frequencies, from 0.5-40 GHz, and 
noted that the decreased bulk density and increased adsorption force of the soil that results 
from increased SOM also contributed to a lower DP at the same SWC and frequency. The 
Transition Water Content of the soil with higher SOM was around 20% VWC, while the 
lower SOM soil was around 10-15% V W C (Liu et al. 2013). 

Multiple studies have indicated a turning point around 20% SWC where results shifted 
in behaviour or reliability, even though the studies were testing for different influencing 
factors for different sensors using the TDR method (Walker et al. 2004; Bircher et al. 2016; 
Perez et al. 2023). A TDT prototype was developed by Perez et al. (2023) for a smaller TDT 
sensor, which was able to reliably detect SWC in drier soils, but data reflected a turning point 
above 20% where the results became less reliable. It is also observed in the review of Mane et 
al. (2024) that the established calibration equation for converting DP to SWC, Topp's 
calibration equation, becomes less reliable at V W C above 15%. This is especially true in clay 
or saline soils, and consideration of the imaginary part of DP is then necessary as well as 
soil-specific calibration for soils with high SOM or clay (Mane et al. 2024). In the study 
conducted by Liu et al. (2013) mentioned previously, the two soils with similar texture 
showed the occurrence of Transition Water Content in DP measurements, depicted in Figure 
15, with the data trends changing at roughly 20% V W C and 40% V W C . 

Volumetric Water Content Volumetric Water Content 

(a) (b) 
Figure 15 Measured Real (a) and Imaginary (b) (Source: Liu et al. 2013). 
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4 Materials and Methods 

4.1 Study Area and Soil Samples 

The TMS-4 Dataloggers by TOMST s.r.o. (TMS-4) were evaluated in field and lab 
conditions. The field-based sensors (16-18 pc) were placed in four agricultural fields for the 
growing seasons of 2022 and 2023. The localities were Blatnice u Jaroměřice (Locality A), 
Jevíčko (Locality B), Velké Hostěrádky (Locality C) and Uhříněves (Locality U). At each 
locality, experimental plots amended by compost and control plots without any amendment 
were designated and their Soil Water Content (SWC) was monitored by the TMS-4. There 
were always two TMS-4 sensors at the Control Soil (CON) and two at the Compost-Amended 
Soil (CAS) plots at each locality. The investigation of the possible influence of the higher 
Organic Matter (OM) content on sensor performance was carried out in the laboratory in the 
current study. In all localities, topsoil from the control plots was taken for the calibration 
experiment. While in the field the compost was only applied to the soil surface, the compost 
in the dosage of 20 t/ha was thoroughly mixed with the soil for the laboratory calibration 
experiment. Figure 16 depicts the locations of each of the soil localities, and Figure 17 depicts 
photos of each of the experimental fields, including localities A, B, C, and U. 
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Figure 16 Locations of Sampling Sites in the Czech Republic (Source: Plots google.com). 

(a) (b) (c) (d) 
Figure 17 Localities (a) A, (b) B, (c) C, and (d) U (Sources: Author and Plots google.com). 
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Properties of each locality such as climate, land use, crops, and soil type are depicted in 
Table 1. Soils were classified according to the Systematic Soil Survey of Agricultural Soils 
utilised in eKatalog BPEJ (RISWC 2022). 

Table 1 Site Properties (Sources: Krejcifovd et al. 2007 andBadalikovd et al. 2022, 2023). 

Locality Blatnice u Jaromerice (A) Jevicko (B) Veite Hosteradky (C) UhfuMves (U) 

Type of Farming Conventional Conventional Organic Organic 

Crop 2022 Cover Crop. Winter Wheat Cci:l Oat. Cover Crop Spring Wheat 

Crop 2023 Winter Wheat Com Ccver Crop. F age pyruin spring Whea: 

Av. Annual Temp. 7 - 8 ° C 7 - 8 ° C &-9°C 3.4 =C 

Av. Annual Precip. 550 -650mm 550-650 mm 550 -650mm 575 mm 

Soil Type Cambisol modal carbonate Cambisol modal eubask Chernozem modal Haplic Luvisol 

4.2 TMS-4 Datalogger Calibration Experiment 

4.2.1 Calibration Tank Preparation 

The method of homogenised soil column was used in this experiment (Kara et al. 
2021). It involves preparation of the soil by artificial packing into a tank while maintaining 
the constant water content and dry bulk density. The calibration tank needed the dimensions to 
accommodate four TMS-4 sensors with adequate space and to allow the insertion of five 
small rings (see Figure 18). The usage of multiple sensors in a single test allowed for multiple 
measurements to be taken in a single replication, yielding more results for overall data 
analysis. One consideration was maintaining an appropriate distance between the sensors and 
the walls and floor of the tank, to avoid any interference for the sensors. 

(a) (b) 
Figure 18 (a) Tank Dimensions and Sensor Spacing (b) Sensor Placement, and Sample 
Placement (Source: Author). 

We contacted the manufacturer to address the proper dimensions of the tank. The 
recommendation from the manufacturer was to have at least 10 cm in between the sensor and 
any obstructions. Marks were made on the sides of the tank to ensure that the sensors would 
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be placed in appropriate spots during each replication, having adequate distance from the 
other sensors, each of the walls of the tank, and the floor of the tank. The dimensions of the 
calibration tank and the spacing of each TMS-4 in the tank are depicted in Figure 18(a). The 
positions of each TMS-4 and the gravimetric soil samples are depicted in Figure 18(b). 

Figure 19(a) depicts the spacing of each TMS-4 from the side of the calibration tank to 
demonstrate the depth of the sensors in the tank, and Figure 19(b) depicts a photo of each 
TMS-4 in use during the actual experiment with sampling rings placed on the surface of their 
sampling positions, where the marks of the layers used to ensure the uniformity of the soil 
packing are visible. 

(a) (b) 
Figure 19 (a) Tank Dimensions Side View and (b) Photo of Tank with Sensors and Sampling 
Rings (Source: Author). 

The tank was filled with water at intervals of 4 L, repeated up to 24 L, and marked at 
the water level at each volume interval. This level was used as the desired volume of soil for 
each layer and was used as a mark for packing the soil as each layer was added to the tank. 

4.2.2 Soil Preparation for Control Experiments 

The desired soil characteristics for the Control test were a bulk density of 1.37 g/cm3 

with a mass of 32.88 kg, evenly distributed within a 24 L calibration tank; this value for dry 
bulk density was determined from the average of actual measured bulk density at the 
localities. As a precaution, more than 35 kg of soil from each locality was procured for 
experiments. 

First, the soil was laid out to air dry in plastic trays or on parchment paper. The soil 
was spread out along as much surface area as possible, and larger aggregates were broken by 
hand to accelerate drying. Matter such as plant debris, rocks, and worms were removed by 
hand. Drying took anywhere from two days to two weeks depending on the availability of 
desk space to dry soil, temperature, and sunlight. Once fully dried, the soil was put into a 
grinder, bringing the soil aggregate size to roughly 6 mm. 

The first test performed on each soil was the air-dried test. The soil was packed into 
the calibration tank one layer at a time, without any additional water. To prepare one soil layer 
in the calibration tank, 5.48 kg of dry soil was weighed out for the air-dried test. The soil was 
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added to the calibration tank and pounded with a rubber mallet to compress it within a volume 
of 4 L. Figure 20(a) depicts the soil compression procedure. The dimension marks on the tank 
were used as an indicator for the desired height of each layer of soil. This procedure was 
repeated until all six layers of soil were compressed into the calibration tank. The soil was 
handled slowly for each step of preparation, such as pouring the soil into the calibration tank 
and pounding it with a mallet, as handling dry soil too fast caused soil particles to fly up and 
spread around the lab, which risked a loss of soil mass in the experiment. After six layers of 
soil had been prepared in the calibration tank, measuring with the TMS-4 and gravimetric 
sampling was performed before beginning the next soil test. 

The Targeted Water Content (TWC) for the air-dried soil was 0%, and for every test 
after the initial air-dried test, water was added to prepare the soil of a certain TWC, which 
were: 5%, 10%, 15%, 20%, 25%, 30%, 35%. For example, when preparing one layer of soil 
for the calibration tank in the 5% TWC test, 200 mL of water was mixed in with the soil. The 
soil was mixed thoroughly by gloved hands, to distribute the water evenly throughout the soil. 
The required mass of soil per layer increased by 200 g for each test to account for the added 
water. The volume of soil in the tank was kept constant by pounding the soil into the marked 
dimensions. 200 mL of water per layer in each of the six layers totaled in 1.2 L of water 
added to the 24 L calibration tank, increasing the Volumetric Water Content (VWC) of the soil 
by 5% for each test. Procedures were repeated for a full set of eight total soil tests until the 
soil was tested at a TWC of 35%. For a full set of TWC tests, the following amounts of water 
were added in total for each layer: 200 mL for 5%, 400 mL for 10%, 600 mL for 15%, 800 
mL for 20%, 1000 mL for 25%, 1200 mL for 30%, and 1400 mL for 35% TWC test. Testing 
above 35% TWC was not possible because the soil subjected to artificial packing became 
muddy. A full set of C O N (Control Soil) tests and Compost-Amended Soil (CAS) tests for 
TWC were run for each locality. The Actual Water Content (AWC) was calculated for each 
test by taking gravimetric samples, which will be described later in the text in section 4.2.5. 

4.2.3 Soil Preparation for Compost Experiments 

Testing for CAS was only possible after C O N testing was complete since the same soil 
was used for both sets of tests. To prepare C O N for compost treatment, the C O N was dried 
and put in the grinder like the initial procedures, however, the removal of debris was not 
repeated. Figure 20(b) depicts the soil mixture, with 32.88 kg of C O N mixed with 500 g of 
compost. This amount of compost in the soil was determined from the compost application 
rate for the localities of 20 t/ha. 

The procedures for adding soil to the calibration tank were repeated, and the properties 
such as volume and mass of soil in the calibration tank were the same as the C O N test. The 
Compost from Locality C was used in our laboratory calibration experiments. The combined 
amount of soil tests run between the three localities, C O N and CAS, and increasing TWC 
totaled in 48 TWC tests. 
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(a) (b) 
Figure 20 (a) Soil in the Calibration Tank and (b) Preparation of CAS (Source: Author). 

Properties of the compost used for field tests and laboratory tests are described in 
Tables 2, 3, and 4, corresponding with Localities A, B, and C. Compost used for Localities A 
and C were also used in the field test conducted in Locality U , and the compost used in 
Locality C was also used for laboratory testing. In each table, the properties are described in 
total percent (%), a ratio, or a portion in Dry Matter (DM). 

Table 2 Compost Parameters for Locality A (Source: Badalikovd et al. 2023). 

Date 12.08.2022 26.04.2023 20.11.2023 Requirements 

Dose t ha 
in matter 31.3 29.5 

Dose t ha 
in DM 19 16.8 

Humidity % 33_92 43.84 28.22 30-65 
Combustible Substances (%) 39.4 31.5 25.1 nun. 20 

% 1.61 1.42 1.19 min 0.6 
mg kg DM 16.1 14.2 11.9 X 

C:N Ratio 12 11 11 10-15 

PH 8.5 84 8.6 6-10 

N nun from 
Ntot 

% 20.55 2.37 7.84 X N nun from 
Ntot mg kg DM 3308 336 933 X 

N-NH 4

+ 
%DM 0.04 0.02 0.05 0.05-0.075 

N-NH 4

+ 

mg kg DM 398 202 506 X 

N-NO3" mg kg DM 2910 134 427 
Ratio NH 4 + / N 0 3 - 0.14 1.51 1.19 0.5-3.0 

Index Stability degree 6.9 8.2 7.5 min 6 
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Table 3 Compost Parameters for Locality B (Source: Badalikovd et al. 2023) 

Date 28.02.2022 Requirements 
in matter 

Dose t ha 
in DM 

174 in matter 
Dose t ha 

in DM 
8.5 

Humidity % 51.45 30-65 
Combustible Substances (%) 47.1 min. 20 

% 
mg kg DM 

1.88 min 0.6 % 
mg kg DM 18.8 X 

C:N Ratio 13 10-15 

I PH 9 6-10 

N min from % 2.89 X 

Ntot mg kg DM 543 X 

% DM 
N-NH 4 

mg kg DM 

0.03 0.05-0.075 % DM 
N-NH 4 

mg kg DM 304 X 

N-NO3" mgkgDM 239 
Ratio NH4VNO3" 1.27 0.5-3.0 

Index Stabilit\r degree 4 1 min 6 

4 Compost Parameters for Locality U and C (Source: Expert Report Project 2023). 

Date 24.03.2022 24.06.2023 26.04.2023 Requirements 
in matter 

Dose t ha 
in DM 

30 30 in matter 
Dose t ha 

in DM 
21.9 22.8 

Humidity % 27.45 24.42 39.29 30-65 
Combustible Substances (%) 20.5 33.9 35.3 min. 20 

% 
Nt0t t T W 

mg kg DM 

1.83 1.66 15 min 0.6 % 
Nt0t t T W 

mg kg DM 
183 16.6 15 X 

C:N Ratio 6 10 i : 10-15 
pH 6 7.6 8.7 6-10 

N mm from % 7.13 22.76 6.45 X 
Ntot mgkg DM 1305 3778 967 x 

% DM 
N-NH 4

+ 

mg kg DM 
0.06 0.02 0.07 0.05-0.075 % DM 

N-NH 4

+ 

mg kg DM 641 238 79S X 

N-NO3" mg/kg DM 664 3540 169 
Ratio NH 4 * N O 3 " 0.96 0.07 4.72 0.5-3.0 

Index Stabiht\r degree 6.6 7.8 s nun 6 

4.2.4 TMS-4 Datalogger Setup, Placement, and Operation 

Before using the TMS-4, it was necessary to install the corresponding software that 
serves as a control panel for the TMS-4 settings. The desktop application for viewing TMS-4 
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data is called the Lolly Manager. The TMS-4 connects to the computer with a TMD Adapter 
which connects to the computer via a USB port, and to the sensor by connecting the other end 
of the adapter to the Data Connector located at the top of the sensor, where the Radiation 
Shield goes. These TMS-4 components are visible in Figure 21, with Figure 21(a) depicting 
the TMS-4 and the ' T M D Adapter,' Figure 21(b) depicting the procedure for wireless 
connection between the TMS-4 and the adapter when uploading data, and Figure 21(c) 
depicting the TMS-4 with the radiation shields affixed to the sensor, typically applied during 
field experiments. 

(a) (b) (c) 
Figure 21 TMS-4 Components (a) TMS-4 and TMD Adapter, (b) Data Connector part of 
Adapter with TMS-4, (c) TMS-4 with Removable Radiation Shields. 

Once connected, the Manager application appeared, and the setting of the sensor was 
switched from Basic Mode to Experimental Mode. The Basic Mode setting is depicted in 
Figure 22 and makes the sensor take measurements once every 15 minutes. Basic Mode had 
the longest time interval available between measurements in the TMS-4 settings, so it was 
used throughout the experiment as the default setting when the sensors were not in use, to 
conserve memory and battery usage. Experimental Mode recorded measurements once per 
minute, as the shortest possible time interval between measurements, and was used to record 
temperature and Soil Water Content (SWC) in the experiment. 

The four sensors have a corresponding number, and each sensor was placed in the 
same designated position for each test, across C O N and CAS experiments in localities B, C, 
and U . The positions were marked to ensure the appropriate distance between the sensors and 
the calibration tank walls. Sensors were inserted gently and by hand to avoid damage. When 
having difficulty inserting the sensor in the soil, a metal installation probe provided by the 
manufacturer was used to ease insertion. This procedure was avoided as much as possible to 
refrain from further compacting the soil and risk influencing the sensor reading. The probe is 
typically recommended for use in the field to avoid damaging the sensor blade in rocky soil. 
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Info Options utility About 
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O R e a d all 

0 R e a Q l fr°m bookmark 

Save folder 
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0 R e a Q l fr°m bookmark 

| • \DATA [©| | O R e a d all 

0 R e a Q l fr°m bookmark 

O R e a d all 

0 R e a Q l fr°m bookmark 
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® Read from date |oi.05.2022 0 T | 
Set properties 

® Read from date |oi.05.2022 0 T | 
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P I Show graph after reading the data 0 Show micrometers (only dendrometer) 

0 Change mode to Basic Basic 15 minutes 
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00 /I 00 
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30 30 

Software update 

I I Check updates on start 

Check for update 

TMS firmware: 1.82 

TMS fm on Web: ""Check for update' 

TMD firmware: SD 1.525 

TMD fv.1 on Web: rCheck for update r 
Check USB drivers Flash TMD adapter Flash TMS 

Figure 22 Options Page for the Lolly Application in Basic Mode (Source: Wild et al. 2019). 

To perform the calibration experiment, the four sensors were run in soil and recorded a 
minimum of 10 measurements each. With four sensors in each TWC test, a minimum of 40 
measurements were taken per TWC test, with eight TWC tests beginning with air-dried soil, 
increasing by 5% V W C until 35% TWC, and a minimum of 240 measurements were taken 
from one complete soil test. One complete soil test was run in C O N and then CAS, so a 
minimum of 480 TMS-4 measurements of SWC were recorded from each locality. 

The artificially packed soil needs some time for homogenisation, and the sensor after 
insertion needs some time to create good contact with the soil. The TMS-4 was found to give 
lower readings for soil moisture that would climb in the first few minutes of data collection, 
meaning that the first five or so readings of the device in Experimental Mode would gradually 
increase before stabilising around a smaller range of readings. For this reason, the sensors 
were kept in the soil and run in Experimental Mode for around 15-20 minutes in a single test, 
and the final ten stabilised readings from each replication were used in data analysis, meaning 
each TWC test was analysed using the ten measurements from the most stable range. Figure 
23 depicts the TMS-4 measurement data from the TMS-4 Lolly Application for all 
measurements in the Locality B CAS calibration test, the stabilisation of the measurements is 
visible in the curve of the data for each test, and the drastic difference in Dielectric 
Permittivity (DP) between the open air and wet soil. 
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Temperature 
Sensor 
Reading 

S W C Sensor 
Reading 

1306 2023 18.06 2023 19062023 19062023 1906.2023 19062023 

Figure 23 Data from Lolly Application from Calibration Test (Source: Yamamoto et al. 2023). 

Because the TMS-4 measurements could be viewed instantly on the Lolly Manager 
application, we were able to review the results of each test before taking gravimetric samples. 
The immediate results gave insight into possible errors in sensor readings, as they provided a 
sensor average for each test and made outlying data replications obvious after sampling and 
simple to address. In cases where the TMS-4 test was unsuccessful (such as the TMS-4 
measuring a lower SWC in the experimental soil after it had been mixed with more water), 
the TMS-4 could be reinserted and stay in Experimental Mode for replication of the test. This 
error happened twice in the experiment, and was attributed to unevenly distributed water from 
soil mixing, or user error in orienting the sensor properly in the soil, and was solved by 
repositioning and reinserting the sensor in an undisturbed part of the calibration tank. The size 
of the calibration tank allowed for some freedom in moving the sensor to a different position 
in the soil without coming too close to the calibration tank walls or the other sensors. Another 
possible method was to connect the sensors to a laptop with the Lolly Manager software via 
the adapter while the sensors were in the soil so that data could be reviewed without removing 
sensors from the calibration tank. If the measurement was unsuccessful the sensor would have 
to be removed and repositioned in undisturbed soil. 

4.2.5 Sampling to Obtain the Actual Water Content by the Gravimetric Method 

After the TMS-4 results were reviewed, the sensors were removed, and five 
undisturbed soil samples were immediately taken from positions in between the sensor 
positions. The samples were taken from areas as far as possible from the impressions left by 
the sensors to ensure the sample was undisturbed. Samples were taken with five 15.7 cm 3 

sampling rings and always taken from a few centimeters below the soil surface, to avoid 
sampling soil affected by evaporation. During the sampling of the air-dried soil, the soil was 
too loose to hold in a sampling ring, so disturbed samples were taken. When water was added, 
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the soil could be taken in an undisturbed sample from the calibration tank. The ring was 
driven into the soil by hand or with a rubber mallet, to avoid damaging the ring or disturbing 
the soil. Rings were weighed before and after sampling to measure the mass of the wet soil, 
and placed in the oven for 105°C to dry till the constant mass. Figure 24 depicts the first batch 
of samples in the oven. 

Figure 24 Sampling Rings with Watch Glass in the Oven (Source: Author). 

Due to the high number of samples required for gravimetric analysis, procedures were 
added to the gravimetric sampling process to accommodate the number of sampling rings 
available and optimise energy use from the oven. After the mass of the sample and ring were 
recorded, the soil was removed from the rings and quantitatively placed into corresponding 
labeled metal tins before going into the oven. Figure 25 depicts the metal tins with soil in the 
oven. The assumption was that because the volume of the sample is known from the sampling 
ring and the mass is known from weighing, removing the sample from the ring would not 
compromise the results of the gravimetric analysis. The mass of the metal tins was recorded to 
get the mass of the dry soil after drying, and the rings and tins were documented and labeled 
to prevent further error. This procedure allowed for all samples in one C O N or CAS test to be 
dried at once, saving energy. 

Figure 25 Soil from Sampling Rings in Metal Tins for Oven Drying (Source: Author). 

After drying, sample dry weights were recorded, allowing the calculation of Water 
Content (WC) by mass, dry bulk density, and Volumetric Water Content (VWC). 

Each TWC test yielded five samples, and eight TWC tests were performed in one full 
set of soil tests, totaling 40 samples. A full set of soil tests was performed on CON, and 
another full set on CAS, meaning that each locality required 80 gravimetric samples for 
analysis. 
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4.2.6 Training Tests 

The experiment involved training tests, where the experimental procedures were 
carried out for the first time by the student and learned during testing. The experimental 
procedure required the handling and uniform artificial packing of a relatively large volume of 
soil (24 L). The initial CAS test was carried out for the Locality Uhrineves (U) and was 
conducted as a training test. Because this test was carried out as a training test, experimental 
procedures may have been executed poorly in comparison with later tests. It is for this reason 
that the data for the CAS Uhrineves test was included for transparency, but should not be 
considered as reliable as the other tests, which were conducted after more experience was 
gained with the method, and should not be used for further research or as a standard for 
experimental results or speculation. 

4.3 Calibration and Statistical Methods 

Datasets were obtained from gravimetric analysis and TMS-4 measurements, these 
values were graphed together for calibration. Results were compiled for each soil locality, 
with the progression of SWC from air dry to 35% TWC for C O N and CAS. Average values 
were taken from the datasets for each SWC test and graphed together with the TMS-4 
readings as the x-axis and the gravimetric values as the y-axis. A trendline, equation, and R 2 

value were generated from each of the soil test sets for Linear, Logarithmic, and Polynomial 
equations. The generated equations were then applied to the TMS-4 measurements to generate 
fitted values for SWC in cmVcm3. The fitted values were then compared with the actual 
values from gravimetric analysis with Root Mean Squared Error (RMSE). Higher TMS-4 
values were applied to each equation to project possible situations of higher SWC to evaluate 
the equation performance in possibly extreme field situations. 

The R M S E calculation is visible in Equation 6 (Matula et al. 2016). 

RMSE — \J ~)_^{0reai - Omeasured)2 

(6) 
Where: 
(),,,,, Directly Measured V W C (cm 7cm :) 
m̂easured Indirectly Measured V W C (cmVcm3) 

n Number of Measurement Points 

Calibration equations were evaluated for fitness with the coefficient of determination 
R 2 , RMSE, the application of extrapolated WC values above the range of experimental 
procedures, and Analysis of Variance (ANOVA). Possible variations between sensor-to-sensor 
performance and variation between gravimetric samples were evaluated with Standard 
Deviation (SD). 

Factory Calibration (FC) equations were used in comparison with derived calibration 
equations and were generated from the soil type assumed for the soil localities. The TMS-4 
has recommended Polynomial FC which includes different inputs based on soil texture and 
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includes a range of soil types from inorganic, such as sand, to high O M such as peat. The soil 
types with recommended calibration parameters are depicted in Table 5. 

Table 5 Calibration Parameters for TMS-4 in Different Soil Types (Source: Wild etal. 2019). 

Parameters for Calibration Quadratic Curve 
Soil Class Location (CZ) Clay (%) Silt (%) Sand (%) p(g/cmJ ) 

a b c 

Sand Strelec 0.00 0.00 100.00 1.52 -3.00E-09 1.61E-04 -1.10E-01 

Loamy Sand A Uhlířská A 3.20 24.90 71.90 0.52 -1.90E-0S 2.66E-04 -1.54E-01 
Loamy Sand B Uhlířská B 5.30 28.20 66.50 0.97 -2.30E-08 2.82E-04 1.67E-01 

Sandy Loam A Kopaninsky 5.10 33.70 61.20 1.32 -3.80E-08 3.39E-04 -2.15E-01 
Sandy Loam B Liz 7.60 35.70 56.80 1.07 -9.00E-10 2.62E-04 -1.59E-01 
Loam Podoli 24.10 28.50 47.40 1.55 -5.10E-0S 3.9SE-04 -2.91E-01 

Silt Loam Nučice 13.00 66.00 21.00 1.29 -1.70E-0S 1.1SE-04 -1.01E-01 

Peat Jizera Mountains 0.10 -1.23E-07 -1.45E-04 2.03E-01 

4.4 Field Monitoring 

Experimental fields in each locality were marked for C O N and CAS areas. These 
fields were sampled for soil properties such as average dry bulk density, and porosity, while 
known farming practices were used to model our laboratory experiment, such as the 
application rate of compost. While the other experimental fields were operated as semi-field 
trials in active farmland with the area of each field about 3000 m 2, Locality U was operated as 
a small-plot field experiment of randomised organisation, with the area of each plot at 10 m 2, 
as depicted in Figure 26(a). 

(a) (b) 
Figure 26 Locality U Experimental Field Layout in the season 2023 (a) Photo and (b) Figure 
(Source: Author). 
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The experiment in Locality U was carried out in both vegetation seasons 2022 and 
2023 using spring wheat as the experimental crop. In 2022, four sensors were installed, two in 
C O N and two in CAS plots. The compost used for CAS plots originated from Velké 
Hostěrádky (Locality C). In 2023, two different composts were applied to different variations 
of CAS, the compost used for localities A and C was used on Locality U in separate plots 
(CAS-A and CAS-C, respectively). 

The distribution of C O N and CAS plots and the distribution of compost types for CAS 
plots as well as the position of the six sensors and their numbers are depicted in Figure 26(b). 
Only six sensors were available, so three plots were not monitored by the TMS-4. 

4.5 Other Soil Properties 

In order to characterise the experimental soils, additional soil properties were 
determined such as Particle Size Distribution (PSD) by the Hydrometer method (Gee & 
Bauder 1986), organic matter content (Nelson & Sommers 1982), pH and Electrical 
Conductivity (EC) measured in the filtrate (ratio 1:2.5) and analysis of the undisturbed soil 
samples. The analyses were conducted by other members of the team in the frame of the 
project, and the author's contribution to these specific analyses was minor. The experimental 
setup for the PSD test is visible in Figure 27. The properties of soil from each locality taken at 
different times throughout the growing season in 2023 were determined in various soil tests 
conducted by the research team, and are visible in Table 6. 

Figure 27 Experimental Setup of PSD Analysis (Source: Author). 
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Table 6 Soil Properties of Experimental Localities from Samples in 2023 (Source: Data 
Provided by Thesis Supervisor and Processed by Author). 

Locality Sampling date 
(2023) Treatment Saturated \VC 

(cm3 cm3) 
BD 

(gem3) 
Organic 

Matter (%) EC(nScra) PH 

April CAS 53 74 1 15 3 25 ISO.56 7.12 

A 
April 

CON s i : 1.18 2.5 149.56 6.54 
A 

Jul CAS 53.37 1.13 428 467 7 Jul 
CON 53.33 1.13 3.33 245.05 6.65 

May CAS 53.04 1.07 3.7 234.1 7 1 
B 

May 
CON 44 14 1.43 2.7 157.85 626 

B 
Jul CAS 50.12 1.21 5 24 Jul 

CON 44.18 1.4 : 59 X 

C Apr CAS 50.24 L2 2.82 254.6 7.65 C Apr 
CON 48.41 1.28 : 33 129.55 7.57 

CAS-A 2.2 163.16 6.9 
May CAS-C X X : re 162.04 6.99 

U CON 2.48 137.68 6.87 U 
CAS-A 150.55 6.94 

Aug CAS-C X X X 170.8 6.81 
CON 124.72 6.73 
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5 Results 
Results were analysed as directly and indirectly measured Soil Water Content (SWC), 

as the TMS-4 Datalogger (TMS-4) serves as the indirect measurement and the gravimetric 
analysis of samples gives direct measurements of WC from undisturbed soil samples. A l l 
sensor and sample results were reviewed as individual sample trends and overall averages. 
The results for the TMS-4 and gravimetric analysis were individually reviewed along the 
Targeted Water Content (TWC) tests to reflect the success of experimental methods, which 
had high potential for experimental error, as the TMS-4 is a relatively new technology and the 
gravimetric analysis requires precision in procuring, drying, and measuring 80 undisturbed 
samples. Homogenising such a large amount of soil could be another source of experimental 
error. The two measured quantities were then analysed together, with the TMS-4 Measured 
WC and the gravimetric WC as the standard actual WC, to reflect the performance of the 
TMS-4 in Control Soil (CON) and Compost-Amended Soil (CAS). Each series was fitted to a 
Linear trendline to assess the slope as a rate of change of increasing WC and the coefficient of 
determination R 2 to assess the fit of the Actual Water Content (AWC) test to the desired 
gradual increase of WC. 

The relationship between the AWC and the TMS-4 measurement was then applied 
with different equations to assess the best fit for a calibration equation, and the suitability of 
the Factory Calibration (FC) given with the TMS-4. 

5.1 Linearity Measurements 

5.1.1 TMS-4 Measurements 

TMS-4 measurements were given as unitless numbers from 1-4095, further referred to 
as TMS-4 values or sensor readings. The values were reviewed among the sensors 
individually and also combined into an average for calibration and data analysis. Each data 
series was fitted to a Linear trendline against TWC. Figures 28, 29, and 30 display the TMS-4 
measurements taken during each soil test for Localities B, C, and U , with an average TMS-4 
value depicted in Figures 28(a), 29(a), and 30(a) for their respective localities, and each 
sensor in a series along TWC in Figures 28(b), 29(b), and 30(b). The Linearity of the data was 
used to validate the experiment. 
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(a) 

Locality C Average of T M S - 4 Value by Targeted Water Content 
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(b) 
Figure 29 (a) TMS-4 Average by TWC, and (b) TMS-4 Value by TWC for soil from Locality C. 
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(a) 

Locality U Average of T M S - 4 Value by Targeted Water Content 
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(b) 
Figure 30 (a) TMS-4 Average by TWC, and (b) TMS-4 Value by TWC for soil from Locality U. 

5.1.2 Undisturbed Samples Analysis 

Undisturbed soil samples were weighed for Water Content (WC) by mass, and the 
known volume of the sampling ring was used to obtain dry bulk density, which was used to 
calculate Volumetric Water Content (VWC). Each data series was fitted to a Linear trendline 
against TWC. Figures 31(a), 32(a), and 33(a) for their respective localities display the V W C 
during each soil test for soils from Localities B, C, and U , with an average V W C , and each 
sampling position in a series along TWC depicted in Figures 31(b), 32(b), and 33(b). The 
Linearity of the data was used to validate the experiment. 
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Locality B Av. Volumetric Water Content by Targeted Water Content 
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Figure 31 (a) VWC Average by TWC, and (b) VWC Sample Value by TWC for Locality B. 
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Locality C Average Volumetric Water Content by Targeted Water Content 
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Figure 32 (a) VWC Average by TWC, and (b) VWC Sample Value by TWC for Locality C. 
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Locality U Average Volumetric Water Content by Targeted Water Content 
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Figure 33 (a) VWC Average by TWC, and (b) VWC Sample Value by TWC for Locality U. 

5.2 Calibration Data 
Calibration was performed by graphing the average TMS-4 values along the x-axis 

(independent variable) with the average values of AWC along the y-axis (dependent variable), 
with one data series for C O N and one data series for CAS. The C O N results were used as a 
standard, to evaluate the performance of the TMS-4 on CAS. 
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5.2.1 Calibration Locality B 

Figure 34 depicts the calibration data for Locality B, where the average TMS-4 values 
are graphed against the average V W C . These data series were used to derive the calibration 
equations depicted in Figure 35 with trendlines such as 35(a) Linear 35(b) Polynomial and 
35(c) Logarithmic. Figure 36 depicts these same 36(a) Linear, 36(b) Polynomial, and 36(c) 
Logarithmic Equations with extrapolated TMS-4 values to assess the performance of the 
Calibration Equation. The derived equations, their R 2 , and their R M S E are included in Table 7 
along with the parameters of the Factory Calibration (FC) equation. 
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Figure 34 VWC Average by TMS-4 Average for Locality B. 
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Figure 35 Derived (a) Linear, (b) Polynomial, and (c) Logarithmic Equations for Figure 34. 

V W C by TMS-4 Value (Linear) 
• CON • CAS 

3200 3*0 3600 3800 4000 

Extrapolated TMS-4 Value 

V W C by TMS-4 Value (Polynomial) 
• CON • CAS 

V W C by TMS-4 Value (Logarithmic) 
• CON • CAS 

3200 3400 3600 3BO0 4000 

Extrapolated TMS-4 Value 

32O0 3400 3600 3800 4000 

Extrapolated TMS-4 Value 

(a) (b) (c) 
Figure 36 Extrapolated Values for Derived (a) Linear, (b) Polynomial, and (c) Logarithmic 
Equations from Figure 35. 
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Table 7 Locality B Equation, Formula, R2, and RMSE for CON and CAS. 

Control Soil Compost Soil 

Equation Type Formula R2 RMSE Formula R2 RMSE 

Linear 2.03E-04x+-0.211 0.990 0.011 1.8SE-04x + -0.18 0.998 0.006 

Polynomial -0.0661 + 4.01E-05x + 4.23E-08x2 0.998 0.005 -0.166 + 1.74E-04x + 3.26E-09X2 0.998 0.005 

Logaiitlmiic -2.55 + 0.363 In x 0.955 0.023 -2.67 + 0.38 lnx 0.978 0.019 

Factoiy Calibration 1.7E-08x2 +1.2E04x-0.10 0.019 1.7E-08X2 + 1.2E04x-0.10 0.017 

5.2.2 Calibration Locality C 

Figure 37 depicts the calibration data for Locality C, where the average TMS-4 values 
are graphed against the average V W C . These data series were used to derive the calibration 
equations depicted in Figure 38 with trendlines such as 38(a) Linear 38(b) Polynomial and 
38(c) Logarithmic. Figure 39 depicts these same 39(a) Linear, 39(b) Polynomial, and 39(c) 
Logarithmic Equations with extrapolated TMS-4 values to assess the performance of the 
Calibration Equation. The derived equations, their R 2 , and their R M S E are included in Table 8 
along with the parameters of the FC equation. 
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Figure 37 VWC Average by TMS-4 Average for Locality C. 
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Figure 38 Derived (a) Linear, (b) Polynomial, and (c) Logarithmic Equations for Figure 37. 
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V W C by TMS-4 Value (Linear) V W C by TMS-4 Value (Polynomial) V W C by TMS-4 Value (Logarithmic) 
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(a) (b) (c) 
Figure 39 Extrapolated Values for Derived (a) Linear, (b) Polynomial, and (c) Logarithmic 
Equations from Figure 38. 

Table 8 Locality C Calibration Equation Type, Formula, R2, and RMSE for CON and CAS. 

Control SoiL Compost Soil 

Equation Type Formula R 2 RMSE Formula R 2 RMSE 

Linear 1.05E-04X + -0.0302 0.902 0.021 1.79E-04X +-0.152 0.993 0.011 

PolynomiaL -0.24 + 3.26E-04x + -5.23E-08x2 0.9S5 O.OOS -0.13 - 1.55E-04x + 5.58E-09x2 0.993 0.011 

Logarithmic -1.43 + 0.212 Inx 0.969 0.012 -2.35 + 0.339 ln x 0.971 0.022 

Factory Calibration 1.7E-08X2 + 1.2E04X-0.10 0.060 1.7E-08X2 + 1.2E04X - 0.10 0.016 

5.2.3 Calibration Locality U 

Figure 40 depicts the calibration data for Locality U , where the average TMS-4 values 
are graphed against the average V W C . These data series were used to derive the calibration 
equations depicted in Figure 41 with trendlines such as 41(a) Linear 41(b) Polynomial and 
41(c) Logarithmic. Figure 42 depicts these same 42(a) Linear, 42(b) Polynomial, and 42(c) 
Logarithmic Equations with extrapolated TMS-4 values to assess the performance of the 
Calibration Equation. The derived equations, their R 2 , and their R M S E are included in Table 9 
along with the parameters of the FC equation. 
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Figure 40 VWC Average by TMS-4 Average for Locality U. 
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Figure 41 Derived (a) Linear, (b) Polynomial, and (c) Logarithmic Equations for Figure 40. 
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Figure 42 Extrapolated Values for Derived (a) Linear, (b) Polynomial, and (c) Logarithmic 
Equations from Figure 41. 

Table 9 Locality U Calibration Equation Type, Formula, R2, and RMSE for CON and CAS. 

Control Soil Compost Soil 

Equation Type Formula R : RMSE Formula R : RMSE 

Linear 1.6SE-04x*-0.10S 0.957 3 021 1.31E-04x +-0.049 0.914 3 C1S 

Polynomial -0.332 + 4.26E-04x- -6.7lE-OSx2 0.993 0.009 0.022 - 5.0SE-05x - 2.12E-08x2 0.917 0.017 

Logarithmic -2.09+ 0.306 In x 0.989 0.011 -1.57 + 0.235 lnx 0.901 0.019 

Factory Calibration 1.7E-08x2 + 1.2E04x-0.10 0.035 1.7E-0&X2 + 1.2E04x-0.10 0.031 

5.2.4 Calibration Locality A 

Figure 43 depicts the calibration data for Locality A, where the average TMS-4 values 
are graphed against the average V W C . These data series were used to derive the calibration 
equations depicted in Figure 44 with trendlines such as 44(a) Linear 44(b) Polynomial and 
44(c) Logarithmic. Figure 45 depicts these same 45(a) Linear, 45(b) Polynomial, and 45(c) 
Logarithmic Equations with extrapolated TMS-4 values to assess the performance of the 
Calibration Equation. The derived equations, their R 2 , and their R M S E are shown in Table 10, 
along with the parameters of the FC equation. Due to time constraints and the laborious nature 
of the experiment, only C O N was evaluated for Locality A. The analysis was conducted by 
other members of the team in the frame of the project, and the author's contribution to this 
specific analysis was minor. 
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Figure 43 VWC Average by TMS-4 Average for Locality A. 
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Figure 44 Derived (a) Linear, (b) Polynomial, and (c) Logarithmic Equations for Figure 43. 
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Figure 45 Extrapolated Values for Derived (a) Linear, (b) Polynomial, and (c) Logarithmic 
Equations from Figure 44. 

Table 10 Locality A Calibration Equation Type, Formula, R2, and RMSEfor CON. 

Control Soil 

Equation Type Formula R 2 RMSE 

Linear 0.0003x- 0.3017 0.983 0.074 

Polynomial 6E-8x2 +7E-05x + 0.1199 0.989 0.079 

Logarithmic -3.437+ 0.4889 In x 0.952 0.071 

Factory Calibration 1.7E-08x2 + 1.2E04x-0.10 0.069 
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5.3 Standard Deviation of Gravimetrie and TMS-4 Measurements 

Gravimetric measurements were compared between all five samples collected in each 
tank to obtain a Standard Deviation (SD) value for each TWC test in C O N and CAS for each 
locality. These values were used to determine the variability within each test and to observe 
any differences between the variability found in gravimetric testing and the TMS-4 values. An 
average SD was also calculated for C O N and CAS in each locality. The SD and 
corresponding locality, soil test, and TWC test are visible for TMS-4 WC in Table 11 and 
AWC in Table 12. The values for Table 11 were calculated by applying the Logarithmic 
derived equation corresponding to each locality to convert the TMS-4 value to V W C in 
cmVcm3, and then calculating SD from these V W C values. These calculations were 
performed to evaluate sensor-to-sensor variation, rather than the performance of a calibration 
equation. The empty cells in Table 12 correspond with data that was removed as outlying 
results from AWC results. 

Table 11 SD performed on TMS-4 Measured WC (cm3/cm3) related to the Targeted Water 
Contents (TWC). 

Standard Deviation of TMS-4 Measured SWC 

Locality B Locality C Locality U 

TWC CON CAS CON CAS CON CAS 

0% 0.009 0.026 0.009 0.021 0.014 0.004 

5% 0.015 0.017 0.005 0.016 0.016 0.007 

10% 0.034 0.017 0.017 0.013 0.015 0.015 

15% 0.006 0.021 0.017 0.005 0.017 0.008 

20% 0.010 0.017 0.025 0.020 0.016 0.010 

25% 0.019 0.022 0.030 0.012 0.012 0.005 

30% 0.027 0.010 0.011 0.006 0.014 0.026 

35% 0.013 0.015 0.005 0.009 0.020 0.021 

Av. 0.017 0.018 0.015 0.013 0.015 0.012 

Table 12 SD performed on Gravimetric WC (cm3/cm3) related to the Targeted Water Contents 
(TWC). 

Standard Deviation of Sampled SWC 

Locality B Locality C Locality U 

TWC CON CAS CON CAS CON CAS 

0% 0.002 0.002 0.011 0.001 0.010 
5% 0.004 0.003 0.013 0.007 0.010 0.020 

10% 0.014 0.005 0.012 0.004 0.000 0.010 

15% 0.017 0.006 0.018 0.010 0.000 0.040 

20% 0.017 0.007 0.027 0.013 0.010 0.030 

25% 0.014 0.019 0.043 0.017 0.010 0.010 
30% 0.026 0.006 0.031 0.010 0.030 

35% 0.017 0.002 0.060 0.007 0.020 0.020 

Av. 0.014 0.006 0.026 0.011 0.009 0.023 
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5.4 Field Data 

During the vegetation season in the year 2022, four TMS-4 sensors were placed in 
each locality with a semi-field trial, two sensors in CON, and two sensors in CAS. Six sensors 
were placed in Uhrineves, two sensors in CON, and four sensors in CAS. The TMS-4 
collected data in Basic Mode for several months, and the SWC was combined into an average 
for each measured day. These days are depicted as Day of Year (DOY) in Figures 46-62, 
along with the TMS-4 measurement on the y-axis. Each set of TMS-4 measurements was 
converted into V W C in cmVcm3 with the derived calibration equations from their 
corresponding localities. 

5.4.1 Locality B 

Figures 46-49 display the field data for Locality B, with Figure 46 depicting the 
averaged TMS-4 measurements, Figure 47 depicting the measurements converted to cmVcm3 

using the derived Linear equation for Locality B, with the derived C O N equation applied to 
the C O N and the derived CAS equation applied to the CAS field data. Figure 48 depicts the 
converted field data applied to a Polynomial equation, and Figure 49 depicts the converted 
field data applied to a Logarithmic equation. 
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Figure 46 TMS-4 Measurements from Field Experiments by Day of Year, with sensors 
numberedfrom 14. 
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Linear Equation V W C by D O Y 
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Figure 47 TMS-4 Field Measurements from Locality B Experimental Field Converted to 
cm3/cm3 with Derived Linear Calibration Equation by Day of Year, with sensors numbered 
from 14. 
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Figure 48 TMS-4 Field Measurements from Locality B Experimental Field Converted to 
cm3/cm3 with Derived Polynomial Calibration Equation by Day of Year, with sensors 
numberedfrom 14. 
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Figure 49 TMS-4 Field Measurements from Locality U Experimental Field Converted to 
cm3/cm3 with Derived Logarithmic Calibration Equation by Day of Year with sensors 
numberedfrom 14. 

5.4.2 Locality C 

Figures 50-53 display the field data for Locality C, with Figure 50 depicting the 
averaged TMS-4 measurements, Figure 51 depicting the measurements converted to cmVcm3 

using the derived Linear equation for Locality C, with the derived C O N equation applied to 
the C O N and the derived CAS equation applied to the CAS field data. Figure 52 depicts the 
converted field data applied to a Polynomial equation, and Figure 53 depicts the converted 
field data applied to a Logarithmic equation. 
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Figure 50 TMS-4 Field Measurements from Locality C Experimental Field by Day of Year, 
with sensors numberedfrom 14. 
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Figure 51 TMS-4 Field Measurements from Locality C Experimental Field Converted to 
cm3/cm3 with Derived Linear Calibration Equation by Day of Year, with sensors numbered 
from 14. 
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Polynomial Equation V W C by D O Y 
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Figure 52 TMS-4 Field Measurements from Locality C Experimental Field Converted to 
cm3/cm3 with Derived Polynomial Calibration Equation by Day of Year, with sensors 
numberedfrom 14. 
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Figure 53 TMS-4 Field Measurements from Locality C Experimental Field Converted to 
cm3/cm3 with Derived Logarithmic Calibration Equation by Day of Year, with sensors 
numberedfrom 14. 
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5 4 3 Locality U 

Figures 54-57 display the field data for Locality U during the growing season of 2022, 
with Figure 54 depicting the averaged TMS-4 measurements, Figure 55 depicting the 
measurements converted to cmVcm3 using the derived Linear equation for Locality U , with 
the derived C O N equation applied to the C O N and the derived CAS equation applied to the 
CAS field data. Figure 56 depicts the converted field data applied to a Polynomial equation, 
and Figure 57 depicts the converted field data applied to a Logarithmic equation. 
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Figure 54 TMS-4 Measurements from Field Experiments by Day of Year, with sensors 
numberedfrom 14. 
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Figure 55 TMS-4 Field Measurements from Locality U Experimental Field Converted to 
cm3/cm3 with Derived Linear Calibration Equation by Day of Year, with sensors numbered 
from 14. 
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Figure 56 TMS-4 Field Measurements from Locality U Experimental Field Converted to 
cm3/cm3 with Derived Polynomial Calibration Equation by Day of Year, with sensors 
numberedfrom 14. 
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Figure 57 TMS-4 Field Measurements from Locality U Experimental Field Converted to 
cm3/cm3 with Derived Logarithmic Calibration Equation by Day of Year, with sensors 
numberedfrom 14. 

Figures 58-62 display the field data for Locality U in the growing season of 2023, 
with Figure 58 depicting the averaged TMS-4 measurements, Figure 59 depicting the 
measurements converted to cmVcm3 using the derived Linear equation for Locality U , with 
the derived C O N equation applied to the C O N and the derived CAS equation applied to the 
CAS field data. Figure 60 depicts the converted field data applied to a Polynomial equation, 
and Figure 61 depicts the converted field data applied to a Logarithmic equation. Figure 62 
depicts the converted field data applied to the Factory Calibration equation, specifically for 
the soil texture of Silt Loam, corresponding to the texture obtained from the Particle Size 
Distribution (PSD) analysis. One notable difference in the following Figures is the increased 
number of TMS-4 series measurements, due to field monitoring being conducted with six 
TMS-4 sensors. This experimental field had two plots for CON, and four plots for CAS, with 
two plots containing the compost used in Locality A, and two plots containing the compost 
used in Locality C. This configuration is visible in Figure 26. 
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Figure 58 TMS-4 Measurements from Field Experiments by Day of Year, with Two Control 
Plots, Two CAS Plots with Compost A, and Two CAS Plots with Compost C 
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Figure 59 TMS-4 Field Measurements from Locality U Experimental Field Converted to 
cm3/cm3 with Derived Linear Calibration Equation by Day of Year, with Two Control Plots, 
Two CAS Plots with Compost A, and Two CAS Plots with Compost C. 
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Figure 60 TMS-4 Field Measurements from Locality U Experimental Field Converted to 
cm3/cm3 with Derived Polynomial Calibration Equation by Day of Year, with Two Control 
Plots, Two CAS Plots with Compost A, and Two CAS Plots with Compost C 
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Figure 61 TMS-4 Field Measurements from Locality U Experimental Field Converted to 
cm3/cm3 with Derived Logarithmic Calibration Equation by Day of Year, with Two Control 
Plots, Two CAS Plots with Compost A, and Two CAS Plots with Compost C 
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Figure 62 TMS-4 Field Measurements from Locality U Experimental Field Converted to 
cm3/cm3 'with the Silt Loam Factory Calibration Equation by Day of Year, with Two Control 
Plots, Two CAS Plots with Compost A, and Two CAS Plots with Compost C 

Extensive evaluation of the field data was not the aim of the thesis, however, an 
application of the calibration equations in Locality U for the season 2023 was performed, as 
the small-plot experiment had a lower risk of error from site variability. The Analysis of 
Variance (ANOVA), specifically One-Way ANOVA, or Factorial ANOVA, was carried out 
with SW Statistica (TIBCO Software Inc.) in order to compare the performance of the Linear, 
Polynomial, and Logarithmic and FC calibration equations derived for Locality U . 

In Figure 63, the overall evaluation of Fitted SWC can be seen with the type of equation 
as the influencing factor. There is no statistical difference between them, which indicates that 
any of the equations could be used with satisfactory performance. Figures 64 and 65 give a 
more detailed analysis of the type of equation as an influencing factor, showing the combined 
effect with the individual sensor performance (Figure 64) or the experimental treatment 
conducted as C O N and both C A S - A and CAS-C (Figure 65). Although neither graph suggests 
statistical significance (the p-value is higher than 0.05), they both indicate a bigger difference 
when using the Factory Calibration. 

On the other hand, Figure 66 depicts the sensor-to-sensor variability. TMS-4 sensor No. 
535 was unfortunately installed later then the other, so actually it justifies its different value, 
as the A N O V A compares the average. But, the other sensors were installed at the same time 
according to the schedule given in Figure 26. CAS were expected to give similar results, but it 
was not confirmed. 
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Figure 63 Statistically Nonsignificant Difference between the Calibration Equation's Overall 
Performance in Locality U (2023) Conducted by One-Way ANOVA (Source: Author). 
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Figure 64 Factorial ANOVA summarizing the influence of calibration equation and sensor on 
the Fitted SWC (Source: Author). 
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Figure 65 Factorial AN OVA summarizing the influence of calibration equation and 
experimental treatment on the Fitted SWC (Source: Author). 
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Figure 66 Statistically Significant Sensor-to-Sensor Difference in Locality U (2023) 
Conducted by One-Way ANOVA (Source: Author). 
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5.5 Other Soil Properties 

The other soil properties recorded in the project included Particle Size Distribution 
(PSD), Average SOM, pH, Electrical Conductivity (EC), and Water Content (WC). The PSD 
test was used to define the soil texture in each locality, which is visible in Figure 67. This 
Figure is generated from project data provided by the Thesis Supervisor. 

Sand 0.05-2 mm (%) 

Figure 67 Texture of Soil Localities A, B, C, and Ufrom PSD Analysis. 
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6 Discussion 

6.1 Literature Findings and Experimental Results 

6.1.1 Soil Water Content Measuring Methods and the TMS-4 Datalogger 

The TMS-4 Datalogger (TMS-4) was used to monitor the temperature and soil moisture 
patterns of multiple agricultural fields throughout the vegetation season of 2022 and 2023. 
When choosing a Soil Water Content (SWC) sensor, factors were considered within available 
monitoring technology, such as the price, size of devices, accuracy of measurements, 
vulnerability in field settings, and availability of continuous monitoring. Sensors using the 
dielectric method were reviewed as they are considered to be the most accurate indirect SWC 
sensors, as gravimetric is the most accurate but is not practical to perform for long-term field 
experiments (Sharma et al. 2018; Perez et al. 2023; Mane et al. 2024). Some issues among the 
available technology were the price and size of the devices, as Dielectric Permittivity (DP) 
measuring machinery could be costly, and thus beyond the reach of the average farmer 
(Lekshmi et al. 2014), while bulky machinery made it impractical for field applications (Perez 
et al. 2023). The TMS-4 recorded the frequent fluctuations of soil moisture which can occur 
in minutes and with high variability in a single field (Mane et al. 2024). The sensor can 
measure temperature and SWC every 15 minutes for up to 10 years without charging the 
battery (Wild et al. 2019), which makes it ideal for monitoring the changing conditions in the 
fields. Other methods which measure DP were considered such as Frequency Domain 
Reflectometry (FDR) and Time Domain Reflectometry (TDR). FDR is known to be affected 
by ambient temperature, which would have been more stable in a laboratory environment, but 
was sure to fluctuate in extremes in outside fields throughout the year (Walker et al. 2004; 
Sharma et al. 2018). TDR was not used due to the potential for soil texture and salinity to 
affect measurements (Sharma et al. 2018) and the price of the devices. Many indirect SWC 
measuring methods were available, but the TMS-4 offered advantages unavailable in other 
methods. One of them is cable-less operation and independence in measuring between 
sensors, each recording its own measurements into its datalogger. Sensors left in the field 
unattended are subjected to different disturbances from animals, humans, or machinery. When 
one TMS-4 is lost, the others continue working independently. Cable-less technology also 
makes the sensor more resistant to weather and mechanical damage and enables researchers to 
place individual dataloggers far from each other. 

6.1.2 Linearity in Experimental Procedures 

SWC is a soil property that varies through time and space in field conditions, due to 
factors such as temperature, texture, terrain, and vegetation (Mane et al. 2024). Soil Organic 
Matter (SOM) can influence the variation of SWC over time, as it increases SWR, and can 
slow water loss from evaporation in soil (Ankenbauer & Loheide 2017). The experimental 
setup was designed to isolate SOM as the dependent property which determined any changes 
in the performance of the TMS-4, and to successfully measure controlled intervals of 
increasing SWC. When measuring SWC with the TMS-4 and gravimetric sampling, multiple 
replications were used, such as four TMS-4 sensors and five gravimetric samples for each 
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Targeted Water Content (TWC) test. Linearity of data is a known validation measure to 
evaluate experimental procedures when testing direct relationships in calibration (Rosenbaum 
et al. 2010). The average values of our replications were graphed along TWC to evaluate the 
Linear response of the measured SWC to the TWC, where the R 2 value indicated the Linear 
fitness of the data. Analysis of the TMS-4 data reflects a successful operation of the device 
across replications and soil localities, showing a Linear increase of measured SWC with 
TWC, as evident in Figures 28(a), 29(a), and 30(a), where the R 2 for a Linear trendline ranged 
between 0.955-0.997. For Locality B, the data for Control Soil (CON) had a higher R 2 value 
with the Linear equation than Compost-Amended Soil (CAS), however for the other two 
localities, Linearity was higher for CAS. The gravimetric analysis of the localities had less 
Linearity than the TMS-4 tests, but was still in a higher range, from 0.995-0.927, however, 
some outlying values were removed at the recommendation of the supervisor, and the 
variation in the data is more evident in Figures 28(b), 29(b), and 30(b), where each individual 
sample is a data series. Analysis of the gravimetric data shows high Linear fitness, suggesting 
that the measurements are reliable in the Jevicko soil test, but the other localities suffered 
experimental error reflected in the variability of the measurements. Velke Hosteradky 
gravimetric data had results consistent with the more reliable Jevicko data in the CAS test, but 
the C O N test had imprecise results that invited doubt in the measurements. The Uhrineves 
soil gravimetric data had results consistent with Jevicko in the C O N test, but the CAS values 
did not reflect a direct increase of Actual Water Content (AWC) with increasing TWC and 
yielded a consistent pattern of a decreased AWC in higher TWC tests across all five 
repetitions. 

6.1.3 Calibration of TMS-4 and Gravimetric Measurements 

The calibration of SWC was conducted for the TMS-4 measurements using the results 
obtained by the gravimetric method as a reference. The trends in this data had varying results 
between localities, however there was a visible difference between values from the C O N and 
the CAS. The relationship between the C O N and CAS series was used to identify when the 
TMS-4 overestimated or underestimated SWC, with SWC given in the actual values yielded 
from gravimetric testing. 

For all three localities, the comparison of C O N and CAS data follows a common 
trend: The measurements are relatively close or even overlapping in rather dry soils, ranging 
from air-dried soil to between roughly 15-25% AWC, and then above this range of WC the 
pathways of the datasets diverge, resulting in overestimation or underestimation of the CAS 
AWC. Although the TMS-4 yielded different trends in results at higher WC, the point of 
change in data trends was similar between calibration experiments. 

For Locality B, the trends are visible in Figure 34, where the C O N and CAS series are 
close together from dry tests to an AWC of 20%, with the measurement around 18% being 
underestimated for the CAS, as the C O N and CAS series values are very close as TMS-4 
values, but noticeably different for AWC, with CAS yielding a higher AWC than the C O N for 
a similar TMS-4 value. Above 20%, an inversion occurs where the CAS becomes 
overestimated compared to the CON, and lower values for AWC in the CAS series correspond 
with a higher TMS-4 value than for a C O N series measurement with a higher AWC. This 
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trend becomes more prominent in the higher AWC range, where the gap between the data 
series becomes larger along the TMS-4 Value axis while the AWC measurements are close in 
value. The behaviour of the data in lower AWC measurements is consistent with calibration 
experiments which determined that SOM affects soil properties which causes an 
underestimation of SWC in Dielectric Permittivity (DP) based sensors (Bircher et al. 2016). 
The behavioural inversion of the data, and the WC value where it occurred, is consistent with 
studies related to a Transition Water Content occurring around 20% where indirect 
measurements behave differently upon achieving the Transition Water Content (Walker et al. 
2004; Bircher et al. 2016; Perez et al. 2023). 

For Locality C, values along the calibration graph depicted in Figure 37, values follow 
a similar path along both axes and then diverge in higher AWC measurements. The C O N and 
CAS values follow a nearly overlapping pathway with a slight overestimation of W C by the 
TMS-4 for CAS, up to around 20% AWC. Above 20%, the CAS is greatly underestimated, 
with measurements for the C O N and CAS having close TMS-4 values with the AWC being 
much higher for CAS. This result is inconsistent with calibration experiments which 
determined that SOM affects soil properties which causes an underestimation of SWC in DP 
sensors (Bircher et al. 2016), but the significant change in the trends of the data at higher 
AWC is consistent with studies evaluating data behaviour upon reaching Transition Water 
Content (Walker et al. 2004; Bircher et al. 2016; Perez et al. 2023). 

For Locality U , both the values along the calibration graph depicted in Figure 40, 
values follow a similar path along both axes and then diverge in higher AWC measurements. 
The C O N and CAS values follow a nearly overlapping pathway with a slight overestimation 
of WC by the TMS-4 for CAS until their paths diverge above 20% AWC. Above 20% AWC, 
TMS-4 measurements overestimate WC of CAS, and then the datasets become close again at 
the highest measured AWC for CAS of 35%. The behaviour of the data in higher AWC 
measurements is consistent with calibration experiments which determined that SOM affects 
soil properties which causes an underestimation of SWC in DP sensors (Bircher et al. 2016). 
The behavioural inversion of the data, and the WC value where it occurred, is consistent with 
studies related to a Transition Water Content occurring around 20% where indirect 
measurements behave differently upon achieving the Transition Water Content (Walker et al. 
2004; Bircher et al. 2016; Perez et al. 2023). However, the closeness of the datasets shows 
that the compost amendment of 20 t/ha did not affect the soil in this locality. 

6.1.4 Calibration Equations 

Due to the scarcity of literature and experiments performing calibration equations on 
measurements made with the Time Domain Transmissometry (TDT) method, experiments 
using the dielectric method were reviewed, which included experiments with FDR and TDR, 
much more widely used methods. In the majority of soil-specific calibration experiments, 
Polynomial equations were selected as the best-fit equation for experimental data (Fares et al. 
2016; Karim et al. 2018; Bobrov et al. 2019; Sangara & Patel 2022). The study by Bircher et 
al. (2016) was one of the few that noted a different equation as their best fit, concluding that 
the Logarithmic function suited their data, due to the reduced increase at higher SWC. 

Calibration equations were derived from trendlines in scatter plots comparing the 
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TMS-4 W C with the actual sampled SWC. The results differed between each locality, and 
between C O N and CAS experiments. Statistical analyses were used to evaluate the data, but 
other considerations included the trends in extrapolated values and the closeness of the data 
trends to trends in experimental results. 

The derived Polynomial equations were best fit for the experimental data, and are 
recommended in FC, which is supported by the many statistical analyses in related 
experiments which favoured Polynomial equations. However, when higher TMS-4 values are 
applied to the equation, the output value for predicted WC curves downward in two of our 
localities, visible in Figure 39(b), and Figure 42(b). These values compromise predictions for 
WC as low as 35%, which is problematic for our soils which have a Porosity of up to 48%. 
This downturn occurred in two out of the three localities when extrapolating values. The 
suitability of the statistical analyses to the experimental data agrees with the consensus in 
studies that selected Polynomial equations as the best fit derived equation (Fares et al. 2016; 
Karim et al. 2018; Bobrov et al. 2019; Sangara & Patel 2022). However, the experiment only 
pushed the TWC up to 35% Volumetric Water Content (VWC), which does not bring the soil 
in natural field conditions to full saturation. This means that it is possible for a potentially 
higher TMS-4 reading to be measured in field experiments, where climate and precipitation 
events may cause the soil to achieve a SWC higher than 35% saturation, and this is true for 
our field experiments TMS-4 values achieved a SWC measurement of up to 40% in multiple 
localities. Using the Polynomial equations derived from our calibration experiments on 
extrapolated values higher than the experimental maximum, or actual values taken from the 
field in extremely wet conditions, the Polynomial equation can calculate results that directly 
contradict the reality of soil conditions. 

Linear trendlines were often suitable for the lower AWC data but did not maintain 
fitness with the change in pathway for data that occurs in TMS-4 output for higher AWC. In 
datasets depicted in Figures 38(a) and 41(a), Linear trendlines had a reduced fitness due to the 
lowered increase in AWC along with increasing TMS-4 values, especially in CONs. The 
visible difference in R 2 can be seen in Tables 8 and 9, where the Linear trendline has the 
lowest fitness between the calibration equations. Linear values are not typically used for 
soil-specific calibration but can be useful for sensor-specific calibration to evaluate sensor 
performance in detecting WC of materials with known DP (Rosenbaum et al. 2010). One 
study conducted by the Czech University of Life Sciences produced a methodology for an 
earlier model, the TMS-3 Datalogger, and successfully applied a Linear calibration equation, 
however, this application was unique among the reviewed soil studies (Kodesova et al. 2015). 

Logarithmic equations had poorer fit to experimental data compared to the other 
derived calibration equations in most soil experiments, but still maintained a high R 2 , with a 
minimum of 0.900 and a maximum of 0.989. Only one of the reviewed studies, conducted by 
Bircher et al. (2016), supported a Logarithmic calibration equation. Bircher et al. (2016) 
conducted a study of calibrating soils with varying levels of SOM and featured Polynomial 
and Logarithmic equations as suitable calibration equations for different sensors. The O M 
content of the experimental soil was 30% and above, intending to isolate SOM as an influence 
in calibration. Logarithmic equations were fit to one of the studied sensors, as the shape of a 
Logarithmic calibration equation suits the behaviour of data with a higher amount of SOM, 
where the drier measurements, up to 20% VWC, have a steep upward progression, which 
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becomes less pronounced and flatter in the higher moisture measurements (Bircher et al. 
2016). One notable difference between Logarithmic calibration and other derived equations is 
visible in the calibration for Locality B, depicted in Figure 34 and Figure 35, where the 
Logarithmic calibration is the only equation that results in the CAS having a higher SWC for 
a given TMS-4 value, and with CAS having a higher overall SWC, a trend which agrees with 
the real values for AWC. 

6.1.5 Soil-Specific, Factory, and Sensor-Specific Calibration 

Soil-specific calibration was discussed with conflicting views in literature, as sources 
viewed it as a disadvantage for many SWC monitoring methods, describing it as a 
disadvantage for a given device because it was necessary to improve accuracy before 
application in soil (Sharma et al. 2018). At the same time, many experiments involving SWC 
sensors noted that this step is a highly recommended, i f not necessary component to accurate 
SWC measuring. This characterization of soil-specific calibration came from experiments 
involving many different soil types and experimental set-ups since experiments found the 
available Factory Calibration (FC) limited for their soil conditions and produced high error, 
with soil-specific calibration drastically improving their experimental results across all SWC 
measuring methods (Sharma et al. 2018; Bartosz et al. 2023; Mane et al. 2024). As the author 
of this study, I can confirm that soil-specific calibration is a time-intensive but ultimately 
necessary measure in ensuring the improved accuracy of SWC measurements with indirect 
methods. In the case of this study, it involved up to 16 repetitions of the preparation and 
packing of soil in a calibration tank for a single soil including Control Soil (CON) and 
Compost-Amended Soil (CAS) testing. The experiment involved a calibration container with 
roughly 35 kg of soil and two weeks of laboratory work for each soil. 

In the experiment, soil-specific calibration was performed from laboratory calibration 
with soil samples from the field, and multiple calibration equations were derived and applied 
to experimental data. In all of our soil localities, the FC was applied, and in each case, the 
R M S E for the FC was the highest or 2nd highest out of all the equations, in some cases being 
double or triple that of the other equations, a trend visible in Table 8, and Table 9. 

Another point of discussion found during research was the potential for improving 
experimental results with a sensor-specific calibration, which could be performed on each 
sensor before field application and then applied to the field results after measuring. This 
consideration was described as especially important for field experiments with large numbers 
of cheaper sensors, which produce results with significant variation (Rosenbaum et al. 2010). 
This measure was found to be beneficial, especially with the lower reliability of FC 
(Dominguez-Nino et al. 2019). 

In the experiment, sensor-to-sensor variation between each TMS-4 was assumed to be 
negligible, however, this hypothesis was not supported by the experimental findings. Four 
sensors were used for each soil test, and there were visible trends in their measurements. 
Sensor #94242533, noted as Sensor 3, had consistently higher measurements for each soil 
locality, visible in C O N and CAS. When calibration equations were applied, the difference 
between sensor measurements in a single TWC test was found to be up to 7% between the 
minimum and maximum values. While the minimum value came from different sensors, the 
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maximum value for 38 out of the 48 values for SWC came from Sensor 3. This agrees with 
the findings from Rosenbaum et al. (2010), whose experimental findings showed in groups of 
different sensors, one out of five of each type were found to have significantly different 
measurements 

The experimental hypothesis only stated that the sensors would have 'acceptable' 
sensor-to-sensor variation, but the range of 7% difference between several of the TWC tests is 
large in the context of the steps between tests having a target of 5% difference. For this 
reason, sensor-specific calibration is recommended for future experiments involving the 
TMS-4. 

6.1.6 Field Data Application 

When the Calibration Equations were applied to field data, in several experimental 
fields, the CAS yielded lower values for SWC compared to the CON. This contradicts the 
laboratory calibration measurements, where CAS yielded higher SWC values. However, the 
environmental conditions of the soil are quite different, and these different experimental 
findings can be attributed to the difference in field conditions and distribution of compost. 
The experimental field, for example, had compost applied to the soil surface, making the soil 
surface much darker for CAS, which might result in overheating when the soil was not 
covered yet by the vegetation and thus inducing more rapid evaporation (Yamamoto et al. 
2022). For multiple localities Polynomial calibration yielded more extreme minimum and 
maximum SWC values throughout the season, while Linear and Logarithmic equations 
yielded less deviation and smoother progression, however in some cases, this trend is 
reversed, and the Polynomial data clusters together while the Linear and Logarithmic results 
are farther apart between experiments. 

The field data needs to be investigated further, as a basic overview was presented in 
the thesis namely for the purpose of the evaluation of the derived calibration equations and 
the overview of their performance when applied to the real field data. 

6.2 Complications and Limitations 

Unforeseen complications included limitations with the grinder, soil loss from 
pounding with the mallet, potential for water loss in different seasons, difficulties in executing 
procedures as the soil was mixed with more water, and operation of the TMS-4. 

6 2 1 Human Error: TMS-4 Operations 

The operation of the TMS-4 was simplified with the Manual and available 
communication with the manufacturer. One feature of the TMS-4 is multiple setting options 
for the rate of measurement, as the devices were switched to Experimental Mode for each soil 
test. A surprise feature was that after switching one sensor from Basic to Experimental Mode, 
the other three sensors would automatically switch to Experimental Mode without being 
connected to the control panel on the computer. This occurred nearly every time one of the 
sensors was switched from Basic Mode to Experimental Mode. Twice in the experiment, one 
of the sensors did not change automatically along with the others and recorded only one 
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measurement for a soil test. Thankfully, this mistake was discovered immediately after 
viewing the data, and the device setting was switched and the test was repeated. 

In the opposite case, a sensor was left in Experimental Mode overnight and was 
discovered to have diligently taken over 700 measurements of SWC of the lab desk drawer. 
These mistakes were discovered immediately or within a day because the sensors were 
checked before and after each TWC test. 

A repeated failure to check the sensors each time or for a long-term experiment could 
result in lost measurements and data, or exhaustion of the sensor's memory. It is for this 
reason that caution and routine checks are recommended for experiments using the sensor in 
multiple settings. 

6.2.2 Human Error: Soil Preparation 

Difficulties with the steps necessary to prepare experimental soil were especially 
evident in the training experiment. Difficulty with the soil grinder limited the ability to 
manipulate the aggregate size of the dry soil, soil for locality A was not used for final results, 
but initial tests were carried out, and the aggregate size was extremely fine due to the soil 
grinder being stuck at a fine earth particle size setting (2 mm). The grinder was fixed for later 
experiments, and a larger aggregate size was achieved for experiments with the other 
localities. Although the difference in particle size of the soil on the two different grinding 
settings may not be as drastic as a difference in particle size due to soil type, this possibility 
should be considered when preparing soil for testing. 

Pounding the soil with the mallet is a necessary step to achieve a uniform volume of 
soil throughout the experiment stages, as the amount of water applied and the mass of soil in 
each stage depends on a uniform volume of soil. Pounding the soil during the drier 
experiments, such as the air-dried, 5%, and 10% TWC runs, resulted in clouds of dust that 
delayed progress in each run and resulted in potential loss of soil mass in the upper layers of 
the tank. Pounding the upper soil layers with a plastic bag around the tank prevented the dust 
clouds and alleviated some of the soil loss. 

Experimenting during different seasons was unavoidable, and because a single test 
could take 1-2 days, testing in the summer months risked water loss in the soil due to 
evaporation. This was avoided by covering the calibration tank, packing weighed-out soil 
layers in plastic bags, and taking samples from underneath the soil surface. 

As soil gains a higher SWC, it can behave less as a solid state, and more as a plastic, 
and eventually liquid state. Although the experiment could aim for 40% WC in further 
experiments, the soil becomes increasingly difficult to work with, moving towards a plastic 
state, and is more difficult to mix uniformly with water. 

Another source of error could be the adsorbed water returning to samples after drying 
in the oven. Tins were open when placed in the oven, and there were usually between 20-40 
samples in the oven for each drying cycle. Because a large number of samples were exposed 
to the air after drying and before weighing, samples may have had the chance to accumulate 
some adsorbed water when removed from the oven. In the final drying cycles, the sample lids 
were closed with tweezers while the tins were in the oven, to minimise the amount of water 
adsorbing to the samples. 
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Dry bulk density had a direct effect on the calculated results, as the gravimetric samples 
were multiplied by dry bulk density to calculate VWC, which was analysed against the 
TMS-4 data readings. The calculation resulted in an expected increase in the SWC when 
calculating from mass to VWC. An alarming trend however is that in some cases the SWC 
given would approach or even exceed the porosity of the soil. 

6.2.3 Complications: Field Experiments 

For field monitoring of SWC in the experimental localities, several incidents brought 
about by agricultural use of the field and exposure of the sensors compromised our data 
collection. In one experimental field, the sensors had been completely pulled out, which was 
found on one of the trips to collect TMS-4 data.. Wild pigs or other animals likely played with 
the sensors. Another sensor area had been completely avoided by the farmers when depositing 
compost, meaning that although the sensor was in a composted field, there was no compost 
around the sensor. In another case, soil erosion in the field caused the upper part of the sensor 
to be exposed, which could influence the accuracy of measurements. Some issues arose from 
the natural degradation of the experimental field over time, as with the sensor depicted in 
Figure 68, which became partially uncovered from soil erosion. 

Figure 68 TMS-4 in Experimental Field Partially Uncovered from Erosion (Source: Author). 

6.2A Suggestions for Future Experiments 

Throughout the experiment, limitations in experimental procedures were discovered 
that could be avoided or explored further in future experiments. At the same time, further 
perspective gained from literature research reveals a larger scope of experimentation that 
could be applied to calibration and further understanding of TMS-4 application. 

During the TMS-4 measuring of SWC in the calibration experiment, there is a visible 
trend of sensors having a delayed response to increases in SWC. Figure 23 depicts the gradual 
increase in SWC after insertion in wet soil, evident in the upward curve occurring between the 
initial and final DP measurements. Measurements tended to stabilise after 10-15 minutes, 
however, the experiment did not attempt to quantify this temporal change or explore longer 
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periods for the measurements to stabilise. Further experimentation could include quantifying a 
minimum amount of time to allow the sensors to stabilise. 

During literature research, several studies were reviewed to understand the influence 
of SOM on DP sensor readings. The amounts of SOM used in each experiment varied from 
unamended control soil to above 30% (Bircher et al. 2016; Mane et al. 2024). For the 
experiment, the C O N and CAS differed in SOM by 1.5%. Although this amount of SOM is 
equal to the amount used in the experimental fields, the difference is very small compared to 
the researched experiments. In experiments evaluating organic soils, soil up to 10% SOM was 
described as mineral soil, and was still much higher than the experimental agricultural soil 
(Vaz et al. 2013; Mane et al. 2024). The experiment is designed to evaluate the effect of the 
amount of SOM typical for the tested agricultural fields on sensor performance, so our 
application of compost for calibration tests is suitable for the experiment, however, a higher 
amount of SOM and tests with different levels of SOM could be beneficial to explore the 
influence of SOM on the TMS-4. 

Gravimetry was used for the calibration experiment, as a reference of actual SWC in 
the 'wet up' calibration method. A suggestion for future experiments is to use the sensors and 
the gravimetric sampling to perform measurements in 'wet up' and 'dry down' methods in 
laboratory calibration, as 'dry down' methods were discussed as being more accurate for soils 
of certain textures (Mane et al. 2024). This could be useful, especially with the known 
influences of SOM on water retention, indicating the potential for different rates of drying to 
be recorded in lab experiments and applied to field data for evaporation after precipitation 
events. 

For field applications, it can be suggested to reduce all possible spatial variations to 
obtain representative data, and also, to employ more sensors for data collection to reduce the 
sensor-to-sensor variation. Within this preliminary study, 2 sensors were applied to each C O N 
and CAS plot in each locality, and from the results the spatial or sensor-to-sensor variability 
became obvious, and was sometimes more pronounced in the data than C O N and CAS 
differences. 
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6.2.5 Ethical Considerations 

There were two instances during our project when I compromised my ethics for the sake 
of the experiments. 

The first was in the Locality Uhříněves, while we were performing hydraulic 
conductivity measurements in the soil. I laid down in front of the infiltrometer to record 
measurements. My movement disturbed a mouse who spent the day constantly checking i f I 
was still sitting near her home, and I couldn't move from the chosen spot for several hours 
while recording the hydraulic conductivity of the soil. 

The second was while we were taking field samples from the localities in Moravia. In 
the field, we met some farmers who asked about our project. We withheld information about 
coming from Prague, we told them that we were from Brno, since they mentioned some 
concerns about people from Prague, and we wanted them to like us. 

Figure 69 The Mouse in Question, May She Forgive Us (Source: Author). 
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7 Conclusion 
The hypothesis that the TMS-4 Datalogger (TMS-4) will measure Soil Water Content 

(SWC) with acceptable sensor-to-sensor variation was refuted. Unfortunately, without 
sensor-specific calibration, the conversion of the TMS-4 values yielded a deviation between 
sensors of up to 7% Volumetric Water Content (VWC). The experimental results were in 
agreement with several other reviewed experiments which demonstrated the importance of 
sensor-specific calibration, especially with low-cost sensors. The variability of measurements 
in the experiment may be reduced in future experiments i f sensor-specific calibration is 
performed before field application. 

The hypothesis that the addition of compost to the soil would affect SWC measurements 
was supported by the experimental data and research findings. Soil Organic Matter (SOM) is 
known to affect other Dielectric Permittivity (DP) sensing methods, although the effect can be 
different depending on the frequency range of the sensor. The resulting changes in sensor 
performance were different between localities, however for each locality, there was a notable 
difference between the results for the Control (CON) and Compost-Amended Soil (CAS). The 
findings of the present study suggest that SOM does affect the performance of the TMS-4, so 
soil-specific calibration is a necessary measure to ensure the accuracy of TMS-4 
measurements. Although the SOM of the C O N and CAS only differed by 1.5%, there was a 
considerable difference noted in TMS-4 measurements. 

The aim was to determine a calibration equation for the experimental localities. Many 
of the reviewed calibration experiments used a derived Polynomial equation, however, despite 
their statistical fitness to the data, several of our derived Polynomial equations had 
unsustainable patterns that contradict real conditions. Our derived Logarithmic equations had 
the opposite result, as they had poorer statistical results than the derived equations, however, 
the pattern of the equation was a better fit for real conditions. The performance of the Factory 
Calibration (FC) was not suitable for our data and is consistent with related studies that found 
the FC to be very limited for real soil application and prone to high error. 

The derived calibration equations were applied in the field experiments with different 
compost treatments. The analysis of the results in the small-plot experiment in Locality 
Uhříněves with a set of plots with control and two types of compost allowed a more 
discerning example of the applicability of the calibration equations and showed a slightly 
better performance of site-specific calibrations over the factory calibration. 

The objectives of the thesis were fulfilled. In conclusion, the TMS-4 is recommended 
but should be used with an adequate number of repetitions and tested before field application. 
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9 Symbols and Abbreviations 
Av. - Average 
AWC - Actual Water Content 
C - Carbon 
CAS - Compost-Amended Soil 
C:N - Carbon/Nitrogen Ratio 
CDP - Complex Dielectric Permittivity 
C O N - Control Soil (Not Amended by Compost) 
D M - Dry Matter 
D M M - Dielectric Mixing Model 
DP - Dielectric Permittivity 
EC - Electrical Conductivity 
E M - Electromagnetic 
FC - Factory Calibration 
FDR - Frequency Domain Reflectometry 
N - Nitrogen 
N H 4

+ - Ammonium 
N0 3 " - Nitrate 
Ntot - Total Nitrogen 
Precip. - Precipitation 
PSD - Particle Size Distribution 
R M S E - Root Means Squared Error 
SD - Standard Deviation 
SOM - Soil Organic Matter 
SWC - Soil Water Content 
TDR - Time Domain Reflectometry 
TDT - Time Domain Transmissometry 
Temp. - Temperature 
TMS-4 - TMS-4 Datalogger 
TWC - Targeted Water Content 
V W C - Volumetric Water Content 
WC - Water Content 
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