

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA STAVEBNÍ ÚSTAV GEOTECHNIKY

FACULTY OF CIVIL ENGINEERING INSTITUTE OF GEOTECHNICS

OVĚŘENÍ SPOLUPŮSOBENÍ ZÁKLADOVÉ DESKY A PILOTY

VERIFICATION OF INTERACTION BETWEEN THE FOUNDATION PLATE AND THE PILE

DISERTAČNÍ PRÁCE DOCTORAL THESIS

AUTOR PRÁCE

ING. MARCELA KOZÁKOVÁ

VEDOUCÍ PRÁCE SUPERVISOR doc. Ing. VLADISLAV HORÁK, CSc.

BRNO 2015

Abstrakt

Předkládaná dizertační práce se zabývá otázkou spolupůsobení plošného zakládání prostřednictvím základové desky a hlubinného zakládání v podobě vrtaných pilot v případě skeletové konstrukce. Konkrétně je problematika přerozdělení napětí ze sloupu mezi desku a pilotu zkoumána na objektu "Obchodní a zábavní centrum Fórum Nová Karolina", kde byl proveden monitoring vybraných sloupů a zatěžovací zkoušky pilot. Hodnoty osového zatížení pilot, které byly odvozeny z měření a zkoušek, stejně jako skutečná deformace konstrukce, byly porovnány s výsledky chování konstrukce dle numerického modelování.

Klíčová slova

základová deska, vrtaná pilota, spolupůsobení, přerozdělení napětí, mobilizace únosnosti, osové zatížení, plášťové tření, únosnost na patě piloty, kontaktní napětí, statická zatěžovací zkouška, nivelační měření, numerický model

Abstract

The doctoral thesis deal with the interaction between the foundation plate and deep foundation in the form of bored piles in the case of skeleton construction. The issue of tension redistribution from the column between the plate and the pile is investigated on specific object – "Shopping and entertainment center Fórum Nová Karolina". On this object were selected columns monitored and load tests of the piles was executed. Values of the axial loading of the piles and the actual deformation of the construction have been derived from measurements and tests. They were compared with the results of structural behavior by numerical modeling.

Keywords

foundation plate, bored pile, interaction, redistribution of tension, mobilization of load capacity, axial load, sheathing friction, load capacity on the bottom of the pile, contact tension, static load test, levelling, numerical model

Bibliografická citace VŠKP

Ing. Marcela Kozáková *Ověření spolupůsobení základové desky a piloty*. Brno, 2015. 101 s., 54 s. příl. Disertační práce. Vysoké učení technické v Brně, Fakulta stavební, Ústav geotechniky. Vedoucí práce doc. Ing. Vladislav Horák, CSc.

Prohlášení:

Prohlašuji, že jsem doktorskou disertační práci zpracovala samostatně a že jsem uvedla všechny použité informační zdroje.

V Brně dne 20.6.2015

Ing. Marcela Kozáková

OBSAH

1	Úvo	d do problematiky	6
2	Prin	cip matematického modelování plošných základů a podloží	9
	2.1	Výpočet SOILINU	. 10
3	Star	novení únosnosti vrtaných pilot osově zatížených	. 13
	3.1	Mobilizace únosnosti pilot	. 13
	3.2	Výpočet únosnosti osamělých plovoucích pilot	. 14
4	Sled	lovaný objekt "Fórum Nová Karolina – 1.B003 Obchodní a zábavní centrum"	. 20
	4.1	Popis objektu	. 20
	4.2	Inženýrskogeologické a hydrogeologické poměry	. 22
	4.3	Konstrukční řešení založení objektu	. 23
	4.4	Fotodokumentace základových konstrukcí	. 26
	4.5	Statické zatěžovací zkoušky	. 32
	4.5.	1 Popis zkušebních zatěžovacích pilot	. 32
	4.5.	2 Průběh zatěžovací zkoušky	. 32
	4.6	Nivelační měření	. 37
5	Výp	očet reálného zatížení monitorovaných pilot objektu Fórum Nová Karolina	. 45
	5.1	Vyhodnocení statické zatěžovací zkoušky	. 45
	5.2	Výpočet zatížení sledovaných pilot	. 51
	5.3	Určení podílu zatížení přenášeného pilotou	. 52
	5.4	Analýza výsledků výpočtu	. 58
	5.4.	1 Vyhodnocení přenosu zatížení do piloty, tvoří-li základovou spáru zemina tř. G3	. 58
	5.4.	2 Vyhodnocení přenosu zatížení do piloty, tvoří-li základovou spáru zemina tř. F8	. 61
	5.4.	3 Vyhodnocení přenosu zatížení do piloty pro obor sedání 8 až 12 mm	. 62
6	Mat	ematický model	. 67
	6.1	Analýza výsledků	. 69
	6.2	Podrobné výsledky pro dilatační celek K1	. 75
	6.3	Podrobné výsledky pro dilatační celek K2	. 77
	6.4	Podrobné výsledky pro dilatační celek K3	. 80
	6.5	Podrobné výsledky pro dilatační celek K4	. 82
	6.6	Podrobné výsledky pro dilatační celek K5	. 85
7	Porc	ovnání matematického modelu s realitou	. 88
8	Závě	ér	. 91
	8.1	Doporučení pro další vývoj ověřování spolupůsobení základových konstrukcí	. 93
9	Liter	ratura	. 94
10	Pou	žité zkratky a symboly	. 96
11	Sou	pis obrázků a tabulek	. 98
12	Sezr	nam příloh	101

1 ÚVOD DO PROBLEMATIKY

V dnešní době se již velice málo setkáváme s tak jednoduchými případy staveb, kdy není třeba posuzovat samotné horninové prostředí, tzn. že není zkoumána napjatost v zemině a její deformace. Již při návrhu běžných konstrukcí musí projektanti dopravních, průmyslových, obchodních či občanských staveb řešit chování horninového prostředí, protože každá stavba musí být nějak založena a vnější síly musí být přeneseny do kvalitnějšího podloží. Horninový masív vstupuje do projektu jako podloží základových konstrukcí objektů, nebo prostředí, v němž se samy nacházejí, tj. u pilotových základů, podzemních jímek apod.

Ještě v nepříliš dávných dobách se stavělo převážně na tzv. vhodných staveništích, která jednak spolehlivě přenášela síly z horní stavby do horninového masívu a jednak se jejich povrch na rozhraní mezi základem a podložím téměř nedeformoval, takže se do vlastní stavby nepřenášely prakticky žádné nežádoucí účinky sedání, zejména toho nerovnoměrného. Podle normy ČSN 73 1001/1967 "Základová půda pod plošnými základy" platné do roku 1988 byla tato vhodná staveniště podrobněji specifikována a nebylo-li některé kritérium přesně splněno, považovalo se staveniště za méně vhodné či podmínečně vhodné. Ostatní staveniště byla prostě nevhodná. Rozhodovala nejen geologie a geotechnické vlastnosti území, ale také povaha a náročnost vlastní stavby, její výška, tíha, závažnost a následky případných poruch a jiné. *[9]*

Avšak zhruba v sedmdesátých až osmdesátých letech byla tato vhodná i podmínečně vhodná staveniště postupně vyčerpána a v roce 1988 došlo k jiné kategorizaci do I. až III. geotechnické kategorie. Podle normy ČSN 73 1001/1988 "Základová půda pod plošnými základy" [13] zrušené v roce 2010 byly geotechnické kategorie definovány takto:

- 1. geotechnická kategorie:
 - Nenáročná konstrukce z hlediska zakládání, jednoduché základové poměry.
 - Únosnost se posuzuje pomocí tabulkové výpočtové únosnosti a porovnává se s provozním výpočtovým kontaktním napětím v základové spáře.
 - Sedání se neposuzuje.
- 2. geotechnická kategorie:
 - Nenáročná konstrukce z hlediska zakládání, složité základové poměry, nebo náročná konstrukce z hlediska zakládání, jednoduché základové poměry.
 - Únosnost i sedání se prokazuje výpočtem; pro výpočet lze použít směrné normové charakteristiky.
- 3. geotechnická kategorie:
 - Náročná konstrukce z hlediska zakládání, složité základové poměry.
 - Pro výpočet únosnosti i sedání nutno použít hodnoty z laboratorních či polních zkoušek.

V dnes platné normě ČSN EN 1997-1 "Eurokód 7: Navrhování geotechnických konstrukcí – Část 1: Obecná pravidla" [18] jsou konstrukce podle náročnosti, složitosti základových poměrů a rizika rozděleny do geotechnických kategorií následovně:

- 1. geotechnická kategorie:
 - Zahrnuje pouze malé a relativně jednoduché konstrukce se zanedbatelným rizikem.
 - Návrh lze provést na základě zkušeností a kvalitativního geotechnického průzkumu, který proběhne nejpozději během provádění stavby.

- Např. jednoduché jedno a dvoupodlažní domy založené na běžných typech plošných nebo pilotových základů, opěrné zdi a pažení výkopů nad HPV do 2 m a další malé výkopy.
- 2. geotechnická kategorie:
 - Zahrnuje obvyklé typy konstrukcí a základů s běžným rizikem nebo jednoduchými základovými poměry či zatěžovacími podmínkami.
 - Pro návrh je třeba získat kvantitativní geotechnické údaje a statickým výpočtem prokázat splnění základních požadavků. Geotechnické údaje se získají z předběžného a podrobného průzkumu.
 - Např. obvyklé typy plošných a pilotových základů, stěny a ostatní konstrukce zadržující nebo podporující zeminu nebo vodu, výkopy, mostní pilíře a opěry, násypy a zemní hráze, kotevní systémy, tunely v tvrdých a neporušených horninách nevyžadující zvláštní opatření na vodotěsnost a nemající jiné požadavky apod.
- 3. geotechnická kategorie:
 - Zahrnuje konstrukce nebo jejich části, které nespadají do 1. a 2. GK, tzn. velmi velké nebo neobvyklé konstrukce s abnormálním rizikem nebo vyskytují-li se výjimečně obtížné základové poměry nebo zatěžovací podmínky.
 - Patří sem i konstrukce seizmicky zatížené, konstrukce v oblastech pravděpodobné nestability staveniště nebo trvalých pohybů základové půdy apod. Tyto stavby vyžadují samostatný průzkum nebo speciální opatření.

V devadesátých letech tedy došlo k tomu, že se nová výstavba začala realizovat i na staveništích, která byla podle dřívějších zásad prakticky nevhodná. Patří mezi ně i tak nevhodná podloží, jako jsou bývalé skládky odpadů a podobná území negativně ovlivněná antropogenní činností, nestabilní svážná území, málo únosné a silně deformovatelné podzákladí či v neposlední řadě heterogenní podloží starých zrušených zástaveb. Stalo se vzácností stavět na štěrcích a píscích, a to celosvětově, mimo jiné i díky ekologické ochraně mnoha území, kde by se zakládalo velmi dobře, ale stavební činnost tam prostě je, jistě správně, zakázána. Postupně tedy vznikla situace, že prakticky každý projekt musí být z hlediska založení pečlivě posouzen a otázka založení plošně či hlubině ovlivňuje celou koncepci stavby už od úvodních studií. *[9]*

Vzhledem k tomu, že se v dnešní době projektují čím dál okázalejší a modernější stavby, které samozřejmě kladou čím dál větší požadavky na základové konstrukce, musí dnes již převážné množství zajímavých projektů počítat s hlubinným zakládáním v podobě pilot. A velice často se navrhuje toto hlubinné zakládání v interakci se zakládáním plošným prostřednictvím základové desky. V případě skeletových konstrukcí, kdy je pod každým sloupem umístěná pilota, vyvstává otázka, jaké zatížení ze sloupu přenáší základová deska do základové spáry a jaké osové zatížení vstupuje do piloty. Návrh pilot za předpokladu, že by přenášely veškeré osové napětí, je velice neekonomický, ale na druhou stranu, v případě podcenění hodnoty podílu zatížení přenášeného pilotou, může dojít k nadměrnému sedání konstrukce a k jejím poruchám, a to zejména v případě sedání nerovnoměrného. Právě touto otázkou se zabývá dizertační práce.

Horninové prostředí je mimořádně složité a lze jej zkoumat pouze tak, že pomineme celu řadu skutečností, které se dají považovat za méně významné pro daný úkol. Je nutné zaměřit pozornost jen na ty aspekty, které jsou prvořadé, rozhodující pro to chování základové půdy, které ovlivňuje řešení dané úlohy a má tedy dopad na technické provedení předmětného stavebního díla. Vzhledem k současným možnostem výpočetní techniky však roste možnost numerické realizace i složitějších algoritmů. Analýza základových konstrukcí je pak omezena řešitelností problému modelování části

základu, který je v kontaktu s podložím. Nejlepší řešení je použít 2D model podloží, který přibližně představuje deformační vlastnosti celého masívu pod základy pomocí modelu povrchu. Vlastnosti takového modelu jsou vyjádřeny interakčními parametry označovanými, jako parametry C. Tyto parametry jsou určovány přímo na konstrukčních prvcích, které jsou v kontaktu s podložím a ovlivňují matici tuhosti. [9], [11]

V případě řešení konstrukcí, kde se na přenosu zatížení do základové půdy podílí základová deska a hlubinné zakládání v podobě pilot, se při numerickém modelování využívá pro podepření základové desky nástroj SOILIN, který určuje parametry C. Piloty se nahrazují pružinami, jejichž tuhost odpovídá reálnému sedání, na které jsou piloty navrženy. V praxi se dokonce setkáváme i s takovými případy, kdy se numerické modelování podloží nevyužívá a podíl zatížení, které přenáší deska a piloty statici pouze odhadují. To může vést, v případě podcenění vlivu základové desky, k neekonomickému návrhu hlubinného zakládání nebo, v případě horším, kdy je přenos deskou nadhodnocen, k nadměrnému sedání pilot a možným poruchám konstrukce. Nejčastěji se předpokládá, že piloty přenáší 80% a více z celkového zatížení z horní stavby, výjimkou však nejsou ani případy, kdy bylo pilotám přisuzováno pouze 60% zatížení či dokonce méně. Jsou-li výsledky matematického modelování podloží podobné realitě, či je-li možné podíl zatížení přenášené pilotami pouze obecně odhadovat, však nebylo ještě dodnes ověřeno.

Možnost, jak tuto skutečnost ověřit, tkví v podrobném monitoringu vybrané stavby a co nejpřesnějším vyhodnocení získaných dat. Monitoring spočívá v nivelaci sedání vybraných sloupů v určitých fázích výstavby. Ideálně by měl být monitoring doplněn i o tenzometrická měření, aby mohla být data spolehlivěji ověřena. Aby byly výsledky co nejspolehlivější je nutné na staveništi provést i statické zatěžovací zkoušky pilot, které charakterizují skutečné chování piloty v daném geologickém prostředí. Tento komplex měření se však ve skutečnosti v podstatě vůbec neprovádí, neboť je velice finančně nákladný a investoři nemají zájem jej financovat.

Nejnákladnější položkou je provedení statických zatěžovacích zkoušek. Aby byly výsledky průkazné, měly by být provedeny alespoň na dvou zkušebních pilotách. Zkušební piloty bývají nesystémové, provedené v předstihu před samotným projektováním základových konstrukcí, protože se výsledky zatěžovacích zkoušek využívají pro návrh systémových pilot a mnohdy tak může dojít k výraznému snížení finančních nákladů na realizaci samotných základových konstrukcí. Kompletní provedení zatěžovací zkoušky, tj. provedení zkušební piloty, kotevních pilot, vlastní realizace a vyhodnocení se pohybuje okolo 0,8 mil Kč. V případě dvou zatěžovacích zkoušek je náklad již tedy přibližně 1,6 mil Kč. Nivelační měření pilot je již téměř zanedbatelnou položkou. Může se pohybovat na složitější stavbě do 100 tis. Kč. V případě provedení i tenzometrického měření na vybraných pilotách mohou náklady ještě vzrůst až o dalších 400 tis. Kč. Celkový odhad nákladů se tedy může pohybovat až okolo částky 2,1 mil. Kč. Z tohoto důvodu se podobný takto rozsáhlý výzkum provádí jen zcela výjimečně.

Takovou výjimkou se stal objekt 1.B003 Obchodní a zábavní centrum, který je součástí celého komplexu projektu FÓRUM NOVÁ KAROLINA. Zde byly provedeny dvě zatěžovací zkoušky pilot a monitoring sedání vybraných sloupů. Úkolem této dizertační práce je zjištění, jaký podíl zatížení, které působí do základových konstrukcí ze sloupu, v tomto konkrétním případě, přebírá základová deska a jaký pilota.

Jelikož se jedná pouze o jeden případ, nelze brát výsledky jako zcela průkazné, ale jedná se o velice důležitý první krok v této problematice. Ten by měl být ideálně v budoucnu následován na dalších stavbách, tak aby bylo možné vysledovat závislost podílu zatížení vstupujícího do pilot vzhledem ke geotechnickým podmínkám, velikosti napětí, tuhosti základových konstrukcí apod.

2 PRINCIP MATEMATICKÉHO MODELOVÁNÍ PLOŠNÝCH ZÁKLADŮ A PODLOŽÍ

Při výpočtu horní konstrukce je v mnoha případech nezbytné zohlednit i základové poměry, tj. podloží konstrukce. To je často velmi složité, protože zatížení základu se v naprosté většině případů nepřenáší na povrch podloží přímo, ale závisí na rozdělení kontaktního napětí po základové spáře. Toto rozdělení však nesouvisí jen se zatížením, ale také s relativní tuhostí základu a horní stavby vůči podloží, s fyzikálními vlastnostmi podloží, s existencí sousedních staveb, apod. Proto je nutno při návrhu a posouzení jakékoliv konstrukce, která je ve styku s podložím, neřešit tuto konstrukci izolovaně, ale zabývat se jejich vzájemnou interakcí. To je v praxi však zohledňováno jen v omezené míře. Brání tomu jisté mezery v teoretických podkladech, neexistence vhodné metodologie včetně softwarových nástrojů a velmi často nedostatek relevantních údajů o vlastnostech podloží. To vše je ještě navíc umocněno silnou prostorovou variabilitou. *[12]*

Při efektivním návrhu základových konstrukcí je tedy nutné přihlédnout k tomu, že konstrukce horní stavby a její zatížení, vlastní základová konstrukce a základové prostředí s případným přitížením jsou vždy v interakci, tvoří jeden systém, obecně nelineární, a vzájemně se tyto součásti ovlivňují. Navíc nelze opomenout, že působení zatížení a prostředí, materiálové i geometrické vlastnosti podléhají vždy většímu či menšímu rozptylu. Nejvýraznější je to obvykle právě u vlastností podloží. [12]

Při řešení běžných staveb není důležité stanovit detailně děje uvnitř podloží, ale určující je vliv podloží na statiku stavební konstrukce. V těchto případech proto není nutná podrobná 3D analýza zemního masivu, ale je možné využít pro řešení interakce stavebních konstrukcí s podložím 2D modelu povrchu podloží. [12]

Nejméně věrohodný je **Winklerův** model, který považuje podloží za soustavu nekonečně hustých pružinek nebo husté kapaliny. Tento model není schopen postihnout vznik poklesové kotliny nebo spolupůsobení sousedních objektů. Winklerův model zlepšil **Pasternak**, který za účelem vystihnutí smykových složek napětí přidal konstantu C2. V 70. letech byl sestaven povrchový 2D model, při jehož deformaci se vykoná stejná virtuální práce jako ve 3D podloží, přičemž lze určit celou hierarchii parametrů *C*₁, *C*₂, *C*₃. [12]

Zůstává tedy otázkou, jak co možná nejvěrohodněji zjistit dané parametry. Za tímto účelem byl vytvořen program SOILIN, který na základě napjatosti pružného homogenního poloprostoru a normového modelu zeminy zjistí v jakémkoliv místě průběh sedání a z něho hledané parametry C. Výsledkem výpočtu jsou vnitřní síly a deformace stavby, sedání povrchu podloží, kontaktní napětí v základové spáře v jednotlivých iteračních krocích a výsledné parametry interakce C. *[12]*

Výpočtový modul SOILIN slouží buď samostatně pro prognózu deformace základové půdy, tj. sedání, naklánění či křivosti, odpovídající danému přitížení, nebo jako preprocesor k MKP-programům. Pro danou interaktivní úlohu určuje při daném geologickém profilu parametry C 2D modelu podloží a zjišťuje tuhosti okrajových vazeb k, které lze zavést na okraji základové spáry k vyjádření vlivu podloží mimo oblast této spáry. Parametry C (C1x, C1y, C1z, C2x a C2y) jsou určovány přímo na konstrukčních prvcích, které jsou v kontaktu s podložím a ovlivňují matici tuhosti. Zjednodušeně si lze představit, že C je charakteristika pružného, přesněji pseudoelastického, kontaktu nebo povrchových pružinových konstant, jejichž změna odpovídá skutečnému stavu analyzovaného systému. Používá se tedy odborný slang, který toto nazývá "podpora na parametrech C", která je zevšeobecněním standardní Winklerovy myšlenky o podepření ve formě husté tekutiny nebo ve formě nekonečně hustého systému svislých pružin. Zevšeobecnění je velmi důležité a zabývá se hlavně úvahou o významnosti smykového rozložení v podloží, které je opomenuté Winklerovým modelem. Parametry vzájemného působení mezi základem

a podložím závisí na rozložení a úrovni zatížení nebo kontaktním napětím mezi povrchem konstrukce a okolním podložím, na geometrii základového povrchu a na mechanických vlastnostech zeminy. Výpočtový modul SOILIN bere v úvahu všechny zmíněné závislosti. *[9], [11]*

Stejně jako parametry C ovlivňují kontaktní napětí, tak i naopak, rozložení kontaktního napětí má vliv na sedání základu. Proto se pro parametry C používá iterativní řešení. Střídavě tedy probíhá výpočet horní konstrukce včetně základu a výpočet parametrů C, které se následně automaticky přiřazují příslušným 2D elementům modelujícím základovou konstrukci. Modelování interakce mezi konstrukcí a podložím vyžaduje i zohlednění vlivu podloží kolem konstrukce. Poklesová kotlina povrchu podloží totiž zpravidla nekončí na okraji základové desky, ale zasahuje ještě několik metrů dále, kde teprve dojde k utlumení sedání. Toto vnější podloží podpírá hrany základové desky automaticky přidá pružiny, které přibližně nahrazují vliv tzv. podpůrných prvků (1 až 2 metry široký pás podél hran základové desky, jehož hustota se blíží nule). Řešení získané za použití tohoto přístupu zohledňuje vliv podloží vně posuzované základové desky. *[10], [11], [12]*

Model podloží v modulu SOILIN je fyzikálně nelineární, protože strukturní pevnost zeminy je i při zvyšování přitížení stále stejná a tedy účinné napětí, vlivem kterého dochází k sedání, nevzrůstá lineárně s přitížením. Ve shodě s platnou normou a skutečným chováním zemin neplatí obecně princip linearity a superpozice s výjimkou případu podloží s nulovou strukturní pevností. Prakticky to znamená, že každý zatěžovací stav, i každá jeho úroveň, se musí řešit zvlášť, což platí zejména pro tyto případy [10]:

- rostoucí intenzita přitížení téže základové spáry během výstavby, ev. provozu objektu,
- klesající intenzita přitížení, tj. odtížení základové spáry během provozu objektu s určením vratných a trvalých sedání, případně jeho další nové přitěžování podle provozních podmínek,
- vliv sousedících objektů nebo jiného přitížení mimo sledovanou základovou spáru.

Z tohoto důvodu je nutné při korektním postupu zatížit konstrukci kompletním zatížením soustředěným do jednoho zatěžovacího stavu a na základě kontaktních napětí vyvozených tímto zatěžovacím stavem zjišťovat příslušné parametry interakce. Tyto parametry, které modelují podepření, platí zase pouze pro tento daný zatěžovací stav. [10]

2.1 VÝPOČET SOILINU

Nástroj SOILIN počítá svislou normálovou složku napětí σ_z od přitížení povrchu exaktním řešením pružného izotropního homogenního poloprostoru nebo vrstvy. Výpočet sedání probíhá v souladu s různými národními normami. V případě ČSN 73 1001/1988 "Základová půda pod plošnými základy" je sedání povrchu podloží stanoveno podle vzorce:

$$s = \sum_{i=1}^{n} \frac{\sigma_{z,i} - m_i \sigma_{or,i}}{E_{oed,i}} \mathbf{h}_i$$

Rov. 1 [4]

σ_{z,i}.... svislá normálová složka napětí v pružném izotropním homogenním nekonečném poloprostoru nebo vrstvě

 $\sigma_{or,i} \dots p$ ůvodní geostatické napětí v poloprostoru nebo vrstvě

- *m*_i..... součinitel strukturní pevnosti poloprostoru nebo vrstvy
- n...... počet vrstev, ve kterých je účinné napětí nezáporné

h_i..... mocnost i-té vrstvy E_{oed,i}.. oedometrický modul i-té vrstvy

Účinné napětí je dáno vztahem:

$$\sigma_{z\acute{u}} = \sigma_{z,i} - \sigma_{s,i} = \sigma_{z,i} - m_i \sigma_{or,i} \ge 0$$

Rov. 2 [4]

 σ_{zi} účinné napětí v pružném izotropním homogenním nekonečném poloprostoru nebo vrstvě $\sigma_{s,i}$ strukturní pevnost poloprostoru nebo vrstvy

Oblastem, v nichž vychází účinné napětí záporné, se přisuzuje nulová deformace. Jde zpravidla o větší hloubky, kde se podloží již nedeformuje. Podmínka nulového účinného napětí pak určuje tzv. hloubku deformované zóny podloží. [10]

Složky napětí se tedy v normě ČSN 73 1001/1988 považují za nezávislé na fyzikálních vlastnostech podloží, určují se vždy z řešení pružného homogenního izotropního nekonečného poloprostoru. Složky deformace se však odvozují ze složek napětí již se zřetelem na daný geologický profil. [10]

Výstupem SOILINU jsou parametry podloží C1z, C2x a C2y. Parametry C1x a C1y jsou vždy definovány uživatelem. Obvykle se uvažuje C2x rovno C2y a C1x rovno C1y, protože se počítá s tzv. izotropní variantou výpočtu. [11]

Jako vstupní data pro SOILIN jsou použity hodnoty pro horní stavbu a základy počítané FEM. Iterace je zastavena, když se kontaktní napětí σ_z a posun u_z významně neliší ve dvou po sobě následujících cyklech. Pro toto porovnání je použitá kvadratická norma, která je spočítána po každém cyklu. [11]

Kvadratická norma vyčíslována po každé iteraci:

$$\varepsilon_{\sigma} = \frac{\sum_{i=1}^{n} (\sigma_{z,i,j} - \sigma_{z,i,j-1})^{2} A_{i}}{\sum_{i=1}^{n} |\sigma_{z,i,j} - \sigma_{z,i,j-1}| A_{i}}$$
Rov. 3 [11]

$$\varepsilon_{u} = \frac{\sum_{i=1}^{n} (u_{z,i,j} - u_{z,i,j-1})^{2} A_{i}}{\sum_{i=1}^{n} |u_{z,i,j} - u_{z,i,j-1}| A_{i}}$$

Rov. 4 [11]

n..... počet uzlů σ_{z,i}.... kontaktní napětí v uzlu i A_i..... plocha odpovídající uzlu i u_{z,i}.... globální posun uzlu i ve směru z

Kalkulace je zastavena když ε_{σ} < 0,001 nebo ε_{u} < 0,001.

Hodnoty jsou brány z nastavení řešiče, jsou předem definované uživatelem; 2. Data horní konstrukce a základů; 3. FEM výpočet – Důležité výsledky jsou kontaktní napětí σ_z a posun u_z; 4. Výsledky i-té iterace; 5. Porovnání kontaktních napětí σ_z s u_z – je založeno na kvadratické normě, ve chvíli, kdy se již výrazně nezmění, je kalkulace hotová a Scia Engineer zobrazí výsledky; 6. 1. krok soilinu – kontaktní napětí je přepočítáno na nové zatížení; 7. 2. krok soilinu – C parametry jsou přepočítány, nové zatížení se bere z předchozího krok; 8. 3. krok – výsledné C parametry ze soilinu jsou nové vstupní parametry; 9. Nové C parametry jsou použité v dalším výpočtu FEM.

Potenciální energii vnitřních sil 2D modelu s parametry C_{1z} a C_{2x} , C_{2y} (odpovídající winklerovské relaci pro svislou složku posunutí a pasternakovské relaci pro svislé smykové síly je dána vztahem:

$$\Pi_{2D}^{1} = \frac{1}{2} \iint_{\Omega} \left[C_{2z} w_{0}^{2}(x, y) + C_{2x} \left(\frac{\partial w_{0}(x, y)}{\partial x} \right)^{2} + C_{2y} \left(\frac{\partial w_{0}(x, y)}{\partial y} \right)^{2} \right] d\Omega$$
Rov. 5 [11]

Vztah mezi parametry obecného modelu (3D) a modelu povrchu (2D) je potom:

$$C_{1z} = \int_{0}^{H} E_{z} \left(\frac{\partial f(z)}{\partial z}\right)^{2} dz$$

$$C_{2x} = C_{2y} = \int_{0}^{H} Gf^{2}(z) dz$$

Row 7 [11]

Rov. 7 [11]

3 STANOVENÍ ÚNOSNOSTI VRTANÝCH PILOT OSOVĚ ZATÍŽENÝCH

3.1 MOBILIZACE ÚNOSNOSTI PILOT

Vrtané piloty, přenášejí svislé tlakové zatížení do okolního horninového prostředí jednak svým pláštěm a dále patou. Jedná-li se o piloty plovoucí, tj. neopřené patou o nestlačitelné podloží, pak při malém zatížení, dochází nejprve k aktivaci plášťového tření, které s navyšující se deformací roste až dostáhne svého maxima. Při dalším navyšování zatížení zůstává plášťové tření neměnné, případně dokonce klesá na reziduální hodnotu. Naopak napětí v patě piloty, které je zpočátku malé, se postupně navyšuje až se vzrůstajícím sedáním. Na velikost mobilizovaného plášťového tření a napětí na patě má podstatný vliv geologické prostředí, ve kterém se daná část piloty nachází.

Přenos vnějšího zatížení piloty F do podloží je dán průběhem normálového napětí v dříku piloty, resp. průběhem osové síly F_z v pilotě, která se se zvyšující hloubkou snižuje. [1]

Obr. 2 Přenos zatížení piloty do okolního prostředí [1]

Za předpokladu, že stlačení dříku piloty (betonu) je zanedbatelné, je sednutí piloty v hloubce z (s_z) rovno sednutí hlavy piloty (s). Je-li při určitém vnějším zatížení piloty F znán tento posun s=s_z, lze pro každou hloubku z stanovit tzv. přenosovou funkci F_{z,s}. Plášťové tření v hloubce z je potom dáno rovnicí:

$$q_{s(z)} = -\frac{1}{\pi d_z} \frac{dF_{z,s}}{d_z}$$

Rov. 8 [1]

 $q_{s(z)}$... plášťové tření v hloubce z $F_{z,s}$ osová síla v hloubce z v dříku piloty odpovídající sednutí s d_z průměr piloty v hloubce z

Sednutí hlavy piloty s je funkcí působící síly F_{z,s}. Ta je dána rovnicí:

$$F_{z,s} = F - \int_0^z \pi dq_{s(z)} dz$$

F..... síla působící na hlavu piloty

$$= R_p + R_s$$

R_p..... síla v patě piloty R_s..... síla přenášená pláštěm

Síla v patě piloty a síla přenášená pláštěm potom bude:

Pro návrh pilot je důležitý poměr síly přenášené patou piloty R_p k celkové působící síle:

F

$$\beta = \frac{R_p}{F} = 1 - \frac{\int_0^l \pi dq_{s(z)} dz}{F}$$

 β koeficient přenosu zatížení do paty piloty

3.2 VÝPOČET ÚNOSNOSTI OSAMĚLÝCH PLOVOUCÍCH PILOT

Výpočtová únosnost osamělých pilot osově zatížených zahloubených do stlačitelného podloží se stanovuje podle teorie Masopusta [1], která vychází z tvaru mezní zatěžovací křivky piloty. Tato metoda byla odvozena z rovnic regresních křivek určených na základě statické analýzy výsledků zatěžovacích zkoušek pilot a pro stanovení svislé únosnosti používá regresní součinitele. Zatěžovací křivka je sestrojena ze dvou větví. Mezi nulovým zatížením piloty a zatížením, kdy je plně mobilizováno plášťové tření, je závislost sedání na zatížení vyjádřena pomocí paraboly druhého stupně, pro zatížení větší je závislost lineární.

Obr. 3 Obecné schéma vrtané piloty uložené ve vrstevnatém geologickém prostředí [1]

Rov. 10 [1]

Rov. 13 [1]

Obr. 4 Mezní zatěžovací křivka osově zatížené piloty [1]

Tvar zatěžovací křivky se sestrojuje podle výpočtu následujících hodnot:

Mezní plášťové tření q_{si} pro příslušný typ zeminy:

$$q_{si} = a - \frac{b}{\frac{D_i}{d_i}}$$

a, b... regresní součinitelé měrného plášťového tření viz Tab. 1 D_i..... hloubka od povrchu terénu do poloviny i-té vrstvy d_i...... průměr piloty v i-té vrstvě

• Únosnost na plášti piloty R_{su}:

$$R_{su} = m_1 \cdot m_2 \cdot \pi \cdot \sum_{i=1}^n d_i \cdot l_i \cdot q_{si}$$

- m_1 koeficient podle druhu zatížení (provozní $m_1 = 0,7$, extrémní $m_1 = 1,0$)
- *m*₂ součinitel vlivu ochrany dříku piloty
- d_i..... průměr piloty v i-té vrstvě

I_i..... mocnost *i*-té vrstvy

- q_{si}..... mezní plášťové tření v i-té vrstvě
- Napětí na patě piloty q_p:

$$q_p = e - \frac{f}{\frac{l}{d_p}}$$

Rov. 16 [1]

Rov. 14 [1]

Rov. 15 [1]

e, f.... regresní součinitelé pod patou piloty viz Tab. 1 I...... délka piloty d_p..... průměr paty piloty

Hornii	а	b	е	f	
Doloskolní	R3	246,02	225,95	2841,31	1298,96
POIOSKaini	R4	169,98	139,45	1616,22	1155,34
nornina	R5	131,92	94,96	957,61	703,89
Nocoudržná	0,5	62,46	16,06	268,11	174,89
Tominy	l _d = 0,7	91,22	48,44	490,34	445,42
zeminy	1	154,03	115,88	1596,70	1399,88
Soudržné	0,5	46,39	20,81	197,74	150,22
zeminy	' ^{c –} 1	97,31	108,59	987,60	1084,26

 Tab. 1 Regresní koeficienty pro jednotlivé typy zemin a hornin [1]

Koeficient přenosu zatížení do paty piloty β:

$$\beta = \frac{q_p}{q_p + 4 \cdot \overline{q_s} \cdot \frac{l}{d_p}}$$

Rov. 17 [1]

 q_{p} napětí na patě piloty $\overline{q_{s}}$ průměrné plášťové tření - vážený průměr mezního plášťového tření l...... délka piloty d_{p} průměr paty piloty

1

Zatížení na mezi plné mobilizace plášťového tření R_y:

$$R_{y} = \frac{R_{su}}{1 - \beta}$$

Rov. 18 [1]

R_{su} únosnost na plášti piloty β...... koeficient přenosu zatížení do paty piloty

Sedání odpovídající zatížení na mezi plné mobilizace plášťového tření s_y:

$$s_y = I \frac{R_y}{\bar{d} \cdot \overline{E_s}}$$

Rov. 19 [1]

I..... příčinkový koeficient sedání piloty

$$= I_1 \cdot R_k$$
Rov. 20 [1]

I1...... základní příčinkový koeficient závislý na poměru l/d viz Obr. 5

Ι

 R_k korekční koeficient vyjadřující tuhost piloty v závislosti na l/d a K=E_b/E_s viz Obr. 6

*R*_y..... zatížení na mezi plné mobilizace plášťového tření

 $ar{d}$ vážený průměr profilů piloty

 $\overline{E_s}$ vážený průměr sečnového modulu def. zemin E_s podél dříku piloty viz Tab. 2 až Tab. 4

10000

Κ

100

Obr. 6 Průběh koeficientu R_k [1]

1000

Tab. 2 Sečnový modul deformace E_s [MPa] pro piloty ve skalních a poloskalních horninách [1]

	d [m]									
l _i [m]	0,6			1,0			1,5			
	R3	R4	R5	R3	R4	R5	R3	R4	R5	
1,5	50,3	28,2	20,2	72,3	35,0	24,7	85,5	33,5	22,3	
3,0	64,5	43,1	30,8	105,5	57,3	41,0	138,3	58,8	41,2	
5,0	-	58,2	41,3	-	75,3	54,8	-	87,9	63,7	
10,0	-	87,5	61,6	-	114,5	83,2	-	133,0	97,0	

Tab. 3 Sečnový modul deformace E_s [MPa] pro piloty v nesoudržných zeminách [1]

					d [m]				
		0,6			1,0			1,5	
l _i [m]					Ι _D				
	0,5	0,7	1	0,5	0,7	1	0,5	0,7	1
1,5	11,0	13,7	28,3	12,8	15,8	30,6	13,0	15,3	29,0
3,0	15,5	20,2	44,5	18,4	25,0	47,8	19,4	24,5	52,5
5,0	18,8	26,6	56,1	22,8	32,5	69,1	24,5	36,0	78,2
10,0	23,8	36,6	72,1	29,8	47,8	93,4	32,6	54,0	107,3

	d [m]								
	0	,6	1,0		1,5				
I _i [m]	Ιc								
	0,5	≥1	0,5	≥1	0,5	≥1			
1,5	6,9	13,2	7,9	13,4	8,6	12,3			
3,0	10,0	22,0	12,5	23,9	13,7	23,0			
5,0	12,5	31,2	15,9	35,4	18,4	36,7			
10,0	15,5	44,3	21,3	51,3	24,6	57,4			

 Tab. 4
 Sečnový modul deformace E_s [MPa] pro piloty v soudržných zeminách [1]

Zatížení v patě piloty pro předepsané sedání (pro limitní sedání 25 mm) R_{pu}:

$$R_{pu} = \beta \cdot R_y \cdot \frac{s_{25}}{s_y}$$

β...... koeficient přenosu zatížení do paty piloty R_y..... zatížení na mezi plné mobilizace plášťového tření s₂₅..... limitní sedání piloty rovnající se 25 mm s_y..... sedání odpovídající zatížení na mezi plné mobilizace plášťového tření

Únosnost piloty pro dané limitní sedání 25 mm R_{bu}:

$$R_{bu} = R_{su} + R_{pu}$$

R_{pu}.... zatížení v patě piloty pro předepsané limitní sedání 25 mm R_{su} únosnost na plášti piloty

ROVNICE ZATĚŽOVACÍ KŘIVKY:

První větev pro obor zatížení $0 \le R \le R_y$ resp. $0 \le s \le s_y$:

*R*_v..... zatížení na mezi plné mobilizace plášťového tření

$$R = R_y \sqrt{\frac{s}{s_y}}$$

Rov. 23 [1]

neboli

 $s = s_y \left(\frac{R}{R_y}\right)^2$

s_v..... sedání odpovídající zatížení na mezi plné mobilizace plášťového tření

Rov. 24 [1]

Rov. 21 [1]

Rov. 22 [1]

■ Druhá větev pro obor zatížení $R_y \le R \le R_{bu}$ resp. $s_y \le s \le s_{25}$:

$$R = R_y + \frac{R_{bu} - R_y}{s_{25} - s_y} \left(s - s_y\right)$$

Rov. 25 [1]

neboli

$$s = s_y + \frac{s_{25} - s_y}{R_{bu} - R_y} (R - R_y)$$

Rov. 26 [1]

R_y..... zatížení na mezi plné mobilizace plášťového tření s_y..... sedání odpovídající zatížení na mezi plné mobilizace plášťového tření

R_{bu}.... únosnost piloty při předepsaném limitním sedání 25 mm

s25..... limitní sedání piloty rovnající se 25 mm

4 Sledovaný objekt "Fórum Nová Karolina – 1.8003 Obchodní a zábavní centrum"

4.1 POPIS OBJEKTU

Ověření přerozdělení napětí mezi základovou deskou a hlubinné zakládání v podobě pilot bylo pro tuto práci zkoumáno na objektu "1.B003 Obchodní a zábavní centrum", který je součástí celého komplexu projektu "FÓRUM NOVÁ KAROLINA". Stavbu realizovala v období 05/2010 - 03/2011 firma GEMO Olomouc, přičemž hlubinné zakládání vč. návrhu provedla firma TOPGEO Brno. Statiku horní stavby dodala firma PPP Pardubice.

V rámci souboru staveb se jedná o objekt v severozápadním rohu území Nová Karolina sousedící s ulicemi Místeckou a 28. října v Ostravě.

Obr. 7 Situace FÓRUM NOVÁ KAROLINA [33]

Obr. 8 FÓRUM NOVÁ KAROLINA - Objekt "Obchodní a zábavní centrum" [33]

Stavba je situována na prakticky rovinném pozemku v nadmořské výšce cca 212,0 m n. m., v bývalém areálu koksovny Karolina, která byla v minulosti zdemolována. Součástí demolic byla i sanace území, které bylo zamořeno průmyslovou činností. V rámci sanace území došlo k uzavření kontaminovaných oblastí podzemními těsnícími konstrukcemi, které zabránily šíření kontaminantů. Zemina v ohraničeném prostoru byla vytěžena, upravena termickou desorpcí a zpětně uložena.

Samotný objekt 1.B.003 "Obchodní a zábavní centrum" je čtvercového tvaru o rozměrech cca 170 x 170 m a je navržen jako železobetonový monolitický skelet. Z hlediska podlažnosti betonových konstrukcí obsahuje dvě úplná podzemní podlaží, dvě úplná nadzemní podlaží a dvě další částečná podlaží se stropními, resp. střešními deskami v jednotlivých čtvercích. Zastřešen je převážně ocelovou konstrukcí s výškově vystupujícím centrálním dómem. Tyto ocelové konstrukce jsou uloženy na betonové sloupy, které jsou součástí nosných konstrukcí stropních desek nižších podlaží.

Z konstrukčního hlediska je předmětná železobetonová monolitická stavba složená z obvodových železobetonový stěn, vnitřních stěn okolo schodišť a výtahových šachet, vnitřních sloupů a stropních desek. Horní stavba je z důvodu očekávaných objemových změn rozdělena do pěti dilatačních celků, které tvoří jeden dispoziční celek. Základní osová vzdálenost podpůrných sloupů je 8,1 m avšak s mnoha dispozičními výjimkami. V případech vynášením sloupů vyšších podlaží vodorovnými podpůrnými průvlaky byly do těchto průvlaků nebo hlavic instalovány i předpínací lana. Konstrukční výška je ve všech nadzemních podlažích 6,0 m a v podzemních podlažích 3,3 m.

Založení objektu je vzhledem k níže popsaným základovým poměrům a velikosti zatížení vnitřních sloupů navrženo jako hlubinné na vrtaných železobetonových pilotách, které nejsou spojeny se základovou deskou, jsou odděleny izolací vůči tlakové vodě a důlním plynům.

4.2 INŽENÝRSKOGEOLOGICKÉ A HYDROGEOLOGICKÉ POMĚRY

Z regionálně-geologického hlediska spadá zájmové území do celku předhlubní karpatských příkrovů. Výplň této prohlubně je tvořena mělkomořskými sedimenty z doby ústupu terciérního moře při postupném vyzdvihování Karpat z geosynklinální pánve. Předkvartérní podloží lokality je tvořeno miocenními jíly. Kvartérní pokryv je tvořen komplexem fluviálních sedimentů údolní terasy řeky Ostravice. Na bázi je to vrstva písčitých až hlinitopísčitých štěrků údolní terasy, v jejich nadloží se nachází jemnozrnné sedimenty terasy, přičemž některé zrnitostní vrstvy mohou lokálně chybět. V nadloží fluviálního komplexu se pak vyskytují antropogenní navážky proměnlivé mocnosti. [24]

Lokalita spadá do rozsáhlého chráněného ložiskového území České části Hornoslezské pánve. Jedná se o poddolované území po ukončené těžbě černého uhlí.

V důsledku intenzivní průmyslové zástavby území související s výrobními činnostmi zaměřenými na těžbu a zpracování uhlí a výrobu železa a následného uvolnění území demoličními a sanačními pracemi byla původní poměrně jednoduchá geologická stavba nejsvrchnější části zemského povrchu výrazným způsobem změněna. Z tohoto důvodu je možno geologické poměry hodnotit jako poměrně složité a obtížně interpretovatelné. [24]

Od poloviny 90. let minulého století byla v předmětném území prováděna sanace zemin podloží kontaminovaných od dřívější průmyslové výroby, která spočívala ve výměně kontaminované zeminy. V některých částech došlo k odtěžení veškerých kvartérních sedimentů až na bázi štěrkového kolektoru, ve zbývajících částech bylo provedeno pouze odtěžení přípovrchových kontaminovaných částí zemního prostředí. Sanační práce probíhaly způsobem selektivní těžby po vertikálních i horizontálních částech, přičemž zeminy i materiály byly odtěžovány separátně podle jejich litografického charakteru a charakteru kontaminace. Vytěžený materiál byl upraven termickou desorpcí, popřípadě biodegradací a spolu s různým recyklovaným materiálem po vrstvách vrácen zpět a kontrolovaně hutněn. V důsledku způsobu sanace území bývalé koksovny Karolina se tedy významným způsobem odlišuje část území, kde byla sanace provedena odtěžením kontaminovaného zemního tělesa až do hloubky stropu nepropustného podloží (prostor uvnitř štětových a milánských stěn) a území vně stěn, kde byla kontaminace vázána pouze na nejsvrchnější část podloží a sanační práce byly provedeny pouze do hloubky 2 m, výjimečně do 4 m. Vně podzemních stěn tedy zůstal zachován původní vrstevní sled, který je však místy významně narušen dřívější průmyslovou zástavbou a výrobní činností.

V zájmovém území bylo provedeno několik geologických průzkumů za účelem sanace pozemku a následující průzkumy pro výstavbu objektů v rámci akce Nová Karolina. V rámci geologického průzkumu bylo realizováno množství sond za účelem zhodnocení IG a HG poměrů a stanovení kontaminace území. Průzkumné práce v rámci lokality byly uskutečněny na přelomu roku 2006. Bylo realizováno celkem 47 jádrových vrtů a 30 sond dynamické penetrace. Vrty byly provedeny do hloubky 4 až 25 m o celkové metráži 549,5 m. Penetrační sondy byly realizovány délky do max. hloubky 15,0 m pod terén v celkové metráži 392,4 m. Měření hladiny podzemní vody bylo provedeno 21.12.2006 a 22.1.2007 u všech pažených vrtů. V rámci průzkumu byly odebírány vzorky zemin k laboratorním rozborům, pro stanovení kontaminace a agresivity na stavební konstrukce.

Na lokalitě se povrch bádenských sedimentů nachází v hloubce 8 až 10 m pod povrchem terénu. Na většině plochy je povrch miocenních jílů poměrně plochý. Petrograficky se jedná o plastické vápnité jíly typicky šedé až zelenošedé barvy, ojediněle s laminami jílovitého písku. I při přechodu do větších hloubek si zachovávají plastický charakter deformace. Na povrchu jsou jíly víceméně tuhé konzistence a směrem do hloubky přechází v pevnou a postupně až téměř tvrdou konzistenci. Ještě hlouběji přechází až v geneticky zpevněné jílovce.

Na povrch jílů naléhají fluviální sedimenty říčních štěrků kvartérního stáří s povrchem v hloubce 2 až 4 m pod stávajícím terénem a mocností převážně 4 až 5 m, ojediněle v rozmezí 1,5 až 10 m. Povrch štěrků víceméně kopíruje morfologii podložních miocénních jílů. Litologicky jsou tyto štěrky převážně písčité až jílovitopísčité, střednězrnné až hrubozrnné, šedé až šedohnědé barvy. Mají dobře opracované valouny plochého až oválného tvaru s velikosti převážně do 3 až 5 cm, výjimečně až do 10 cm. Tvořeny jsou zejména modrošedým pískovcem a křemenem beskydského původu.

Nad štěrky se nachází jemnější fluviální hlíny jílovitého až jílovitopísčitého charakteru tuhé konzistence, světle šedé a hnědé barvy. Vrstva fluviálních hlín byla původně souvislá v celém zájmovém prostoru, avšak v důsledku intenzivní lidské činnosti byla na většině území odstraněna. V přirozeném, stavební činností nenarušeném stavu, dosahuje poloha mocnosti 2 až 3 m, avšak prakticky v celé ploše území byl původní povrch horizontu fluviálních hlín narušen a redukován stavební činností a na podstatné části území byl odstraněn úplně. V současné době je zachována pouze v okrajových částech území.

Na celém povrchu se nachází antropogenní navážky, jejichž mocnost je velmi variabilní v širokém rozpětí O až 10 m. Charakter i původ navážek je velmi rozmanitý. Jsou tvořeny různorodým materiálem, převážně směsí úlomků stavebního odpadu s hlínami, důlní hlušinou - haldovinou a struskami. Převážně se pak jedná o původní, odtěžené a zpět uložené štěrky splňující sanační limity, nebo štěrky dekontaminované termickou desorpcí.

Hydrogeologické poměry jsou ovlivněny sousedstvím řeky Ostravice, která tvoří východní hranici staveniště celého komplexu staveb městského celku Nová Karolína, a rovněž i jejím nedalekým pravobřežním přítokem říčky Lučina. Podložní miocenní jíly mají charakter izolátoru a jsou pro vodu víceméně nepropustné. Nadložní fluviální jíly mají charakter poloizolátoru a mohou způsobovat mírnou napjatost v kolektoru podzemních vod, kterým jsou na předmětné lokalitě kvartérní fluviální štěrky. Tento štěrkový kolektor je charakterizován průlinovou propustností a je v něm vyvinuta souvislá zvodeň o mocnosti 1,8 - 6,6 m.

Hladina podzemní vody je volná, pouze v místech s pokryvem málo propustných povodňových sedimentů nebo navážek je lokálně mírně napjatá. Úroveň hladiny podzemní vody se pohybuje od 209,0 do 207,0 m n. m., tj. v hloubce cca 2 až 6 m pod terénem.

Hydrogeologické podmínky byly později ovlivněny výstavbou podzemních těsnících stěn vetknutých do nepropustného podloží a podzemního drenážního kolektoru, provedenou v průběhu výše popsaných sanačních prací k odstranění ekologických škod. Taktéž byly hydrogeologické podmínky částečně ovlivněny i lokálním čerpáním podzemní vody na dílčích lokalitách území.

Podzemní voda dle normy ČSN EN 206-1 "Beton – Část 1: Specifikace, vlastnosti a shoda" vykazuje agresivitu stupněm XA2. Jedná se o středně agresivní prostředí s obsahem síranových iontů.

4.3 KONSTRUKČNÍ ŘEŠENÍ ZALOŽENÍ OBJEKTU

Vzhledem k tomu, že objekt "Obchodního a zábavního centra" má převážně dvě podzemní podlaží, je základová spára objektu až na úrovni cca 207,0 až 204,0 m n. m., tj. cca 7,3 až 10,3 m pod stávajícím terénem. Nachází se tedy v celé ploše pod hladinou podzemní vody. Základové konstrukce tudíž byly prováděny z výkopu, zapaženém kotvenými štětovými stěnami, které byly vetknuty do nepropustného podloží, a podzemní voda byla odčerpána. V průběhu výstavby, ve fázi kdy již nehrozilo "nadzvednutí" konstrukce vztlakem podzemní vody, byly štětové stěny odstraněny.

Základovou konstrukci objektu tvoří základová železobetonová vana v interakci s hlubinným založením. Piloty nejsou spojeny se základovou deskou z důvodu nutnosti provedení izolace vůči podzemní tlakové vodě a důlním plynům a odseparování spodních podlaží od účinků bludných proudů. Piloty jsou opatřeny přechodovými železobetonovými hlavicemi, které eliminují kontaktní napětí na hydroizolaci mezi deskou a pilotami.

V základové spáře převážné části objektu se nacházejí fluviální říční štěrky v přirozeném uložení, či v jejich umělé poloze po sanaci území. Ve snížené části objektu, kde se pohybuje základová spára okolo 204,0 m n. m., tvoří tuto spáru již miocenní jíly konzistence tuhé až pevné.

Pro návrh pilot měla zásadní vliv vrstva miocenních jílů a podružně pak vrstva jílovitých štěrků v přirozeném resp. umělém uložení. Dle výsledků zatěžovací zkoušky má vrstva uměle uložených štěrků z hlediska únosnosti pilot shodné vlastnosti jako v přirozeném uložení. Báze štěrků se v prostoru objektu pohybuje na kótě 204,0 m n. m. a zastihuje tak piloty maximálně v mocnosti 3,0 m. Ve snížené části objektu tvoří základovou půdu v okolí dříku pilot pouze miocenní jíly.

Typická geologie uvažována při návrhu pilot je následující:

•	I. Základová spára na G3:	
	0 – (0,8 - 3,0 m)	G3 štěrk s příměsí jemnozrnné zeminy v přirozeném či umělém uložení, středně ulehlý až ulehlý
	> (0,8 – 3,0 m)	F8 jíl s vysokou plasticitou, tuhé až pevné konzistence
•	II. Základová spára na F8: > 0 m	F8 jíl s vysokou platicitou, tuhé až pevné konzistence

Piloty byly provedeny technologií klasického vrtání se zapažením pomocí ocelových pažnic a těžením vrtu vrtným spirálem. Při dostatečné stabilitě stěn vrtu bylo vrtáno bez pažení, avšak byla dodržena minimální délka paženého vrtu 5,0 m. Piloty jsou průměru 630, 900 a 1 200 mm délky 4,0 až 27,5 m. V případě velkého zatížení, byly navrženy i dvojice pilot. Celkem je objekt založen na 611 ks pilot celkové délky 8 892 m.

Aby nedošlo ke znehodnocení základové spáry během realizace pilot, byly vrtné práce provedeny z pracovní pláně vybudované přibližně 1,0 až 2,0 m nad úrovní základové spáry a piloty byly provedeny s hluchým vrtáním.

Piloty jsou vyztuženy armokoši z betonářské výztuže. Hlavní nosná výztuž pro všechny typy armokošů je z oceli 10 505 (R14) a omot z oceli 10 216 (E6) se stoupáním 200mm. Délka kotevních prutů pro propojení s nadpilotovou hlavicí je 0,2 m. Vyztužení je však pouze konstrukční, armokoše mají délku maximálně 6,0 m. Zbytek piloty je z prostého betonu. Použit byl beton C25/30 XA2 XC2, konzistence směsi S3-S4, použit byl síranovzdorný cement v min. množství 320 kg/m3.

Nadpilotové hlavice byly navrženy kopané o půdorysném rozměru od 0,8 x 0,8 m do 1,6 x 1,6 m a jednotné výšky 0,5 m. Nad dvojicemi pilot byla navržena obdélníková hlavice o rozměru 1,4 x 3,1 m s výškou 0,5 m. Vyztužení hlavic je z oceli 10 505 (R) a je provařeno a vodivě spojeno s armokošem piloty. Ze všech hlavic byl vyveden zemnící pásek FeZn 30 x 4, který byl k armokoši přivařen. Beton patek je značky C25/30 XA2 XC2 konzistence S2, byl použit taktéž síranovzdorný cement v min. množství 320 kg/m³.

Teprve po dokončení pilot a jejich hlavic, byl proveden dokop a vyčištění daného záběru výkopu z pilotovací úrovně na finální dno jednotlivých výkopových figur a ihned byla provedena betonáž podkladního betonu tak, aby bylo zamezeno znehodnocení základové spáry klimatickými vlivy a stavebními mechanizmy. Základová spára byla dočištěna pouze drobnými mechanismy, popř. ručně. Pod základovou deskou nebyly provedeny jakékoliv podsypy; základová spára byla pouze ve vyčištěném rostlém terénu.

Podkladní beton je tloušťky 150 mm v kvalitě betonu C25/30 XA2. Tvar spodního líce podkladního betonu byl dán tvarem finálního dna dílčích figur výkopu. Vzhledem k tomu, že piloty nejsou nikde se základovou deskou propojeny, probíhá podkladní beton přes horní hrany pilot, tj. nad hlavicemi pilot. V těchto místech byl podkladní beton vyztužen vloženou sítí KARI 150x8.00/150x8.00.

Na podkladní beton byla položena vodorovná hydroizolace tvořená volně pokládaným SBS modifikovaným pásem, svařovaným ve spojích. Hydroizolace byla rozdělena do jednotlivých sektorů do velikosti cca 250 m², každý sektor byl doplněn reinjektovatelnými plnícími injektážními trubičkami, které umožnily dodatečnou injektáž chemickými látkami v případě poruchy hydroizolace. Nad hydroizolací byla provedena separační vrstva umožňující vzájemný prokluz asfaltového pásu a základové desky a vybetonována ochranná vrstva v tloušťce 60 mm a kvalitě betonu C16/20.

Základová deska pod suterénem byla navržena tloušťky 400 mm resp. 500 mm; v místě většího zatížení (zásobovacích dvorů a hypermarketu) je deska zesílena pruhem pod sloupy či hlavicemi celkové tloušťky 1 000 mm, které jsou skryty ve vrstvě násypu.

Deska byla provedena z vodostavebního betonu C25/30 XC3, konzistence směsi S3, maximální průsak 35 mm dle ČSN EN 12 390-8, s ochráněním pracovních spár injektážními hadičkami. V místě hlavic a zesílení v prostoru supermarketu byl použit beton C35/45 XC3, konzistence S3. Výztuž byla navržena s ohledem na omezení šířky trhlin hodnotou 0,25 mm. Horní povrch desky je strojně hlazený a byl opatřen stěrkou překlenující aktivní trhliny do 0,4 mm.

Obr. 9 Typové schéma v místě piloty [25, upraveno autorem]

4.4 FOTODOKUMENTACE ZÁKLADOVÝCH KONSTRUKCÍ

Obr. 10 FÓRUM NOVÁ KAROLINA – Pilotážní práce ve stavební jámě I

Obr. 11 FÓRUM NOVÁ KAROLINA – Pilotážní práce ve stavební jámě II

Obr. 12 FÓRUM NOVÁ KAROLINA – Pilotážní práce ve stavební jámě III

Obr. 13 FÓRUM NOVÁ KAROLINA – Bednění a výztuž hlavice piloty

Obr. 14 FÓRUM NOVÁ KAROLINA – Realizace podkladních betonů I

Obr. 15 FÓRUM NOVÁ KAROLINA – Realizace podkladních betonů II

Obr. 16 FÓRUM NOVÁ KAROLINA – Realizace podkladních betonů III

Obr. 17 FÓRUM NOVÁ KAROLINA – Pokládání hydroizolace na podkladní betony I

Obr. 18 FÓRUM NOVÁ KAROLINA – Pokládání hydroizolace na podkladní betony II

Obr. 19 FÓRUM NOVÁ KAROLINA – Armování základové desky

Obr. 20 FÓRUM NOVÁ KAROLINA – Základová deska

Obr. 21 FÓRUM NOVÁ KAROLINA – Realizace objektu

4.5 STATICKÉ ZATĚŽOVACÍ ZKOUŠKY

4.5.1 POPIS ZKUŠEBNÍCH ZATĚŽOVACÍCH PILOT

Na předmětné stavbě byly v termínu 6. – 13.8.2008 provedeny dvě statické zatěžovací zkoušky. Zkušební i kotevní piloty realizovala firma TOPGEO Brno, spol. s r.o., vlastní zkoušku potom firma VUIS – Zakladanie stavieb, spol. s r.o..[20]

Osově zatěžované nesystémové zkušební piloty ZZ1 a ZZ2 byly provedeny v časovém předstihu před vlastním založením objektu v místě předpokládaných systémových pilot, tzn. i ve stejných geologických podmínkách. Vzhledem k tomu, že předmětný objekt má dvě podzemní podlaží, byly zkoušky provedeny z výkopu. Výkop nemohl být proveden až na výšku hlav budoucích systémových pilot, tj. základové spáry, jelikož se hladina podzemní vody nacházela nad touto úrovní. Proto byly zatěžovací zkoušky provedeny z úrovně vyšší a to těsně nad hladinou podzemní vody a plášť pilot byl po této výšce (rozdíl mezi hlavou zkušebních a systémových pilot) oddělen separací.

Vzhledem k tomu, že u zkušební piloty ZZ1 došlo k takzvanému "utržení pláště piloty", nebyla tato zkouška považována za průkaznou a z vyhodnocení byla vyloučena. Odvození únosnosti pilot bylo tedy provedeno na základě statické zatěžovací zkoušky na pilotě ZZ2.

Zkušební pilota ZZ2 byla provedena 11.7.2008 z výškové úrovně 208,500 m n.m.. Do hloubky 4,5 m byla pažená výpažnicí o nominálním průměru 1 200 mm. Poté byla provedena spirálový vrtákem o průměru 1080 mm a to do celkové hloubky 14,0 m. Horní 2,0 m pláště piloty v zemině, která bude v rámci výkopových prací odtěžená, byly odděleny separací v podobě pletiva B-systému a dvojité folie PVC v šířce 1,1 mm. Pilota byla vyztužena armokošem 12ØR20. K zesílení zhlaví zkušebních pilot byla použita ocelová trubka 1.220/10 mm délky 0,5 m.

Pilotou ZZ2 byla zastižena následující geologie, typická pro celé staveniště:

- 0,0 3,5 m Navážka Štěrk s příměsí jemnozrnné zeminy (G3), středně ulehlý, v umělém uložení po sanaci
- 3,5 14,0 m Jíl s vysokou plasticitou (F8), tuhé až pevné konzistence

Hladina podzemní vody byla naražena v hloubce 0,5 m od pilotovací pláně.

Podrobněji popsána geologie v odstavci 4.2 Inženýrskogeologické a hydrogeologické poměry.

4.5.2 PRŮBĚH ZATĚŽOVACÍ ZKOUŠKY

Statická zkouška byla provedena zatěžovacím mostem tvořeným dvojicí ocelových nosníků rozměrů 10 000 x 1 300 x 400 mm, které byly po stranách přikotveny pomocí ocelových nosníků a předpínacích lan (8ØLp15,5) do čtveřice sousedních kotevních pilot průměru 900 mm, délky 12,0 m. Zatížení na piloty bylo vyvozeny hydraulickým zvedákem, který se opíral o zatěžovací most (Obr. 22).

Obr. 23 Zatěžovací zkouška pilot (Stavba Galerie ŠANTOVKA, Olomouc)

Zatěžovací zkouška probíhala po zatěžovacích stupních 500, 1 000, 1 500, 2 000, 2 300, 2 600, 3 000, 3 300, 3 600, 4 000, 4 300 a 4 600 kN. Během zkoušky byly provedeny čtyři odlehčovací stupně a to po dosáhnutí čtvrtého, sedmého, desátého a dvanáctého zkušebního zatížení. Na daném zatěžovacím stupni byly sledovány v pravidelných intervalech přírůstky posunu, dokud nebylo splněno kritérium ustalování posunů, tj. v případě, že za posledních 20 sledovaných minut nedošlo k přírůstku sedání větším než 0,1 mm, minimálně však po 60 minutách. Průběh zatěžovací zkoušky udává Tab. 5 a Obr. 25.

Za účelem sledování průběhu sil po délce zkušební piloty na jednotlivých zatěžovacích stupních, byly do zkušební piloty osazeny strunové tenzometry. Ty byly osazeny ve dvojicích v hloubce 2,1 m, 6,0 m, 9,9 m a 13,8 m od hlavy piloty. Tenzometrické měření bylo provedeno vždy na začátku a na konci zatěžovacího stupně.

GEOLOGIE

Obr. 24 Vyztužení a tvar zkušební piloty ZZ2

Na základě realizované zatěžovací zkoušky na nesystémové zkušební pilotě ZZ2 byl stanoven pracovní diagram piloty (Obr. 26)

ZS	Dat	um	Čas t	Síla F	Posun s	
[-]	[·	-]	[min]	[kN]	[mm]	
0	10:26:30	6.8.2008	0	0	0	
1	11:27:47	6.8.2008	61	500	0,54	
2	12:38:16	6.8.2008	132	1000	1,05	
3	13:43:16	6.8.2008	197	1500	1,62	
4	14:45:12	6.8.2008	259	2000	2,35	
5	14:47:38	6.8.2008	261	1000	1,84	
6	15:49:42	6.8.2008	323	0	0,9	
7	15:57:26	6.8.2008	331	1000	1,46	
8	16:56:44	6.8.2008	390	2000	2,39	
9	17:57:14	6.8.2008	451	2300	2,8	
10	18:58:03	6.8.2008	512	2600	3,35	
11	19:58:37	6.8.2008	572	3000	4,34	
12	20:03:39	6.8.2008	577	2000	3,84	
13	20:05:12	6.8.2008	579	1000	3,08	
14	21:01:26	6.8.2008	635	0	1,53	
15	21:06:37	6.8.2008	640	1000	2,3	
16	21:09:39	6.8.2008	643	2000	3,17	
17	21:15:02	6.8.2008	649	3000	4,2	

Tab. 5 Zatěžovací zkouška ZZ2 – Naměřená data

ZS	Dat	um	Čas t	Síla F	Posun s
[-]	[·	-]	[min]	[kN]	[mm]
18	22:41:32	6.8.2008	735	3300	5,66
19	3:31:03	7.8.2008	1025	3600	8,76
20	14:38:55	7.8.2008	1692	4000	18,58
21	14:45:12	7.8.2008	1699	3000	18,07
22	14:50:33	7.8.2008	1704	2000	17,33
23	14:56:13	7.8.2008	1710	1000	16,31
24	16:03:38	7.8.2008	1777	0	14,17
25	16:12:46	7.8.2008	1786	1000	14,89
26	16:16:37	7.8.2008	1790	2000	15,83
27	16:20:20	7.8.2008	1794	3000	16,93
28	16:24:12	7.8.2008	1798	4000	18,71
29	20:15:12	7.8.2008	2029	4300	26,23
30	6:56:59	8.8.2008	2670	4570	35,7
31	6:58:46	8.8.2008	2672	4000	35,52
32	7:00:31	8.8.2008	2674	3000	34,93
33	7:02:28	8.8.2008	2676	2000	34,15
34	7:04:49	8.8.2008	2678	1000	33,03
35	8:06:16	8.8.2008	2740	0	30,58

Obr. 25 Časový průběh zatěžování

4.6 NIVELAČNÍ MĚŘENÍ

Součástí projektu pilotového založení objektu 1.B.003 "Obchodní a zábavní centrum" byl i návrh monitoringu sedání pilotových základů. Projektovou dokumentaci monitoringu, stejně jako pilotového založení, zpracovala firma TOPGEO Brno, spol. s r.o.. *[21]* Měření sedání sloužilo jako kontrolní mechanizmus pilotových základů a jako indikátor jejich funkčnosti při daném zatížení. Sledování probíhalo v průběhu výstavby objektu, bohužel již k němu nedošlo po uvedení stavby do provozu.

Pro účely této dizertační práce bylo měření využito pro zjištění přerozdělení zatížení ze sloupu mezi základovou desku a pilotu.

V rámci monitoringu pilotových základů bylo provedeno měření sedání objektu metodou velmi přesné nivelace, kdy došlo v několika etapách výstavby k výškovému zaměření vybraných sloupů. Z hodnot deformací vyplynuly absolutní hodnoty sednutí každého sloupu, nerovnoměrné sednutí "sousedních" sloupů a nárůsty deformací v čase výstavby a užívání. Výběr sloupů byl proveden tak, aby maximum sloupů tvořilo přímou linii a procházely charakteristickými částmi objektu. Na sloupy byl v úvodní fázi výstavby objektu osazen nivelační hřeb a výškově zaměřen. Přesnost měření byla minimálně ±1 mm. Osazení měřících hřebů a provedení nultého měření probíhalo v období 18.6. až 25.8.2010, tj. co nejdříve po provedení sloupů a jejich odbednění. Během výstavby byly provedeny další dvě standartní měření, první dne 10.10.2010 (Zatěžovací stav 1. - ZS1) a druhé 14.11.2010 (Zatěžovací stav 2. - ZS2). Třetí zaměření proběhlo po dokončení hrubé stavby (kompletní provedení ŽB monolitických konstrukcí, instalacích ocelových konstrukcí a vnesení části zatížení charakteru dlouhodobého nahodilého) dne 26.1.2011 (Zatěžovací stav 3. - ZS3). Čtvrté měření bylo uskutečněno v době kolaudace objektu (kompletní zatížení stálé a dlouhodobé nahodilé) a to dne 22.1.2012 (Zatěžovací stav 4. - ZS4). K monitoringu při užívání objektu bohužel již nedošlo.

Souběžně s měřením deformací byla provedena fotodokumentace objektu za účelem stanovení míry zatížení. V prvních fázích měření rozhodoval v případě zatížení stálých a dlouhodobých nahodilých rozsah rozestavěnosti. Vliv nahodilých zatížení při měřeních po kolaudaci stavby byl odhaden na základě obsazenosti prostor nájemci a na době měření. Hodnoty zatížení v monitorovaných sloupech v jednotlivých zatěžovacích stavech, dodala pro účely této dizertační práce projekční kancelář PPP, spol. s r.o [31], která zpracovávala statickou část projektu pro provedení stavby.

Pro monitoring bylo vybráno celkem 51 sloupů, pod kterými jsou umístěny piloty průměru 630, 900 a 1 200 mm, délky 8 až 25 m, přičemž průměr a délka pilot narůstá se vzrůstajícím zatížením. Poloha monitorovaných pilot je uvedena v Příloze P2 Půdorys pilot. Sledované piloty zastihují typickou geologii lokality. Hlava většiny se nachází ve vrstvě štěrků s příměsí jemnozrnné zeminy (G3) v přirozeném uložení či po sanaci, v případě šesti pilot je základová spára v poloze nižší, štěrky již nezasahuje, a je tak tvořena vysoceplastickým jílem (F8).

Podrobně je geometrie pilot včetně geologie uvedena v Tab. 6 a Tab. 7, hodnoty sedání pilot Tab. 8 a Tab. 9. Měření sedání neproběhlo vždy u všech pilot z důvodu nepřístupnosti, nebo úplného zničení bodu.

Obr. 27 FÓRUM NOVÁ KAROLINA – Fotodokumentace ze dne 18.6.2010 – Nulté měření sedání

Obr. 28 FÓRUM NOVÁ KAROLINA – Fotodokumentace ze dne 27.7.2010 – Nulté měření sedání

Obr. 29 FÓRUM NOVÁ KAROLINA – Fotodokumentace ze dne 25.8.2010 – Nulté měření sedání

Obr. 30 FÓRUM NOVÁ KAROLINA – Fotodokumentace ze dne 10.10.2010 – První "standartní" měření sedání (ZS1)

Obr. 31 FÓRUM NOVÁ KAROLINA – Fotodokumentace ze dne 14.11.2010 – Druhé "standartní" měření sedání (ZS2)

							(GEOMETRI						
Číslo piloty	Číslo piliře	Zemina v základové spáře	Zatížení normové (projekt.)	Průměr piloty	Délka piloty	Mocnost štěrku	Mocnost jílu	Pažený průměr	Nepažný průměr	Pažená délka	Nepaž. délka	Úroveň hlavy (abs.)	Úroveň hlavy (rel.)	Výška hlavice
[-]	[-]	[-]	[kN]	[mm]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m n.m.]	[m]	[m]
70	RR24	G5	1 340	630	15,0	2,5	12,5	630	520	5,0	10,0	206,47	7,78	0,50
72	RR30	G5	1380	900	12,0	2,5	9,5	900	780	5,0	7,0	206,47	7,78	0,50
74	RR32	G5	1340	630	14,5	2,5	12,0	630	520	5,0	9,5	206,47	7,78	0,50
81	RR39	G5	1420	630	14,0	0,8	13,2	630	520	5,0	9,0	204,77	9,48	0,50
85	RR46	G5	2 280	900	18,0	2,4	15,6	900	780	5,0	13,0	206,37	7,88	0,50
94	QQ22	G5	2 700	900	19,0	2,5	16,5	900	780	5,0	14,0	206,47	7,78	0,50
102	QQ36	G5	2684	900	20,0	2,5	17,5	900	780	5,0	15,0	206,47	7,78	0,50
135	0018	G5	4070	1200	23,0	2,5	20,5	1200	1080	5,0	18,0	206,47	7,78	0,50
137	0022	G5	3 100	1200	20,0	3,0	17,0	1200	1080	5,0	15,0	206,97	7,28	0,50
139	0024	G5	2 900	1200	18,5	2,5	16,0	1200	1080	5,0	13,5	206,47	7,78	0,50
141	0030	G5	2890	1200	21,0	2,2	18,8	1200	1080	5,0	16,0	206,17	8,08	0,50
143	0032	G5	1 630	900	13,0	2,5	10,5	900	780	5,0	8,0	206,47	7,78	0,50
145	0036	G5	2900	900	21,0	2,5	18,5	900	780	5,0	16,0	206,47	7,78	0,50
147	0039	G5	2400	900	18,5	2,2	16,3	900	780	5,0	13,5	206,17	8,08	0,50
149	0041	G5	2 200	900	17,5	2,2	15,3	900	780	5,0	12,5	206,17	8,08	0,50
151	0046	G5	1 580	900	13,0	2,4	10,6	900	780	5,0	8,0	206,37	7,88	0,50
178	KK1	F8	1 170	630	11,5	0,0	11,5	630	520	5,0	6,5	203,07	11,18	0,50
190	1124	G5	1 350	900	11,5	2,5	9,0	900	780	5,0	6,5	206,47	7,78	0,50
194	1132	G5	1 200	900	12,0	2,5	9,5	900	780	5,0	7,0	206,47	7,78	0,50
203	HH39	G5	4190	1200	24,0	2,2	21,8	1200	1080	5,0	19,0	206,17	8,08	0,50
207	HH46	G5	1 220	900	12,0	2,4	9,6	900	780	5,0	7,0	206,37	7,88	0,50
235	CC18	G5	770	630	9,0	2,5	6,5	630	520	5,0	4,0	206,47	7,78	0,50
238	CC22	G5	2 210	900	17,0	2,5	14,5	900	780	5,0	12,0	206,47	7,78	0,50
240	CC24	G5	1640	900	13,0	2,5	10,5	900	780	5,0	8,0	206,47	7,78	0,50
242	CC30	G5	3 380	1200	20,5	2,5	18,0	1200	1080	5,0	15,5	206,47	7,78	0,50

Tab. 6 Tabulka nivelovaných pilot – Geometrie, Část I.

							(GEOMETRI						
Číslo piloty	Číslo piliře	Zemina v základové spáře	Zatížení normové (projekt.)	Průměr piloty	Délka piloty	Mocnost štěrku	Mocnost jílu	Pažený průměr	Nepažný průměr	Pažená délka	Nepaž. délka	Úroveň hlavy (abs.)	Úroveň hlavy (rel.)	Výška hlavice
[-]	[-]	[-]	[kN]	[mm]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m n.m.]	[m]	[m]
244	CC32	G5	1 050	630	12,5	2,5	10,0	630	520	5,0	7,5	206,47	7,78	0,50
255	AA1	F8	2770	1200	20,0	0,0	20,0	1200	1080	5,0	15,0	203,47	10,78	0,50
258	AA12	F8	3 350	1200	18,0	0,0	18,0	1200	1080	5,0	13,0	203,57	10,68	0,50
269	Z37	G5	2 760	900	20,5	2,5	18,0	900	780	5,0	15,5	206,47	7,78	0,50
271	Z39	G5	4 370	1200	25,0	2,5	22,5	1200	1080	5,0	20,0	206,47	7,78	0,50
273	Z41	G5	2 600	900	19,5	2,5	17,0	900	780	5,0	14,5	206,47	7,78	0,50
275	Z46	G5	560	630	8,0	2,4	5,6	630	520	5,0	3,0	206,37	7,88	0,50
328	R39	G5	2 780	900	20,5	2,2	18,3	900	780	5,0	15,5	206,17	8,08	0,50
333	Q1	F8	3 290	1200	17,5	0,0	17,5	1200	1080	5,0	12,5	203,47	10,78	0,50
374	01	F8	2 500	900	18,0	0,0	18,0	900	780	5,0	13,0	203,47	10,78	0,50
384	032	G5	2 010	900	15,5	2,5	13,0	900	780	5,0	10,5	206,47	7,78	0,50
386	037	G5	2 580	900	19,5	2,5	17,0	900	780	5,0	14,5	206,47	7,78	0,50
388	O39	G5	2 570	900	19,5	2,5	17,0	900	780	5,0	14,5	206,47	7,78	0,50
392	042	G5	1 670	900	13,0	2,5	10,5	900	780	5,0	8,0	206,47	7,78	0,50
393	O46	G5	600	630	8,5	2,4	6,1	630	520	5,0	3,5	206,37	7,88	0,50
440	K39	G5	2 740	900	20,0	2,5	17,5	900	780	5,0	15,0	206,47	7,78	0,50
444	K46	G5	1340	900	12,5	2,4	10,1	900	780	5,0	7,5	206,37	7,88	0,50
479	H32	G5	2 580	900	19,5	2,5	17,0	900	780	5,0	14,5	206,47	7,78	0,50
480	H34	G5	3 220	1200	20,0	2,5	17,5	1200	1080	5,0	15,0	206,47	7,78	0,50
481	H37	G5	590	630	9,0	2,5	6,5	630	520	5,0	4,0	206,47	7,78	0,50
483	H39	G5	2660	900	20,5	2,5	18,0	900	780	5,0	15,5	206,47	7,78	0,50
485	H41	G5	1 970	900	17,0	2,5	14,5	900	780	5,0	12,0	206,47	7,78	0,50
487	H46	G5	1 320	630	14,0	2,4	11,6	630	520	5,0	9,0	206,37	7,88	0,50
525	F39	G5	1 680	900	13,5	2,5	11,0	900	780	5,0	8,5	206,47	7,78	0,50
530	E1	F8	1 010	630	14,0	0,0	14,0	630	520	5,0	9,0	203,47	10,78	0,50
543	D34	G5	1 220	630	13,5	2,5	11,0	630	520	5,0	8,5	206,47	7,78	0,50

Tab. 7 Tabulka nivelovaných pilot – Geometrie, Část II.

							SEDÁNÍ									
Číclo pilotv				Výška bod	lu [m] Bpv							Pokles	s [mm]			
cisio piloty	18.6.2010	27.7.2010	25.8.2010	18.6 25.8.2010	10.10.2010	14.11.2010	26.1.2011	22.1.2012		Dí	ĺčí		Ce	lkový o	d počát	ku
[-]	0.A	0.B	0.C	0.	1.	2.	3.	4.	01.	12.	23.	34.	01.	02.	03.	04.
70	-	207,900	-	207,900	207,895	207,895	207,894	207,892	5	0	1	2	5	5	6	8
72	-	207,911	-	207,911	207,906	207,906	207,904	207,905	5	0	2	-1	5	5	7	6
74	-	207,906	-	207,906	207,902	207,901	207,900	207,901	4	1	1	-1	4	5	6	5
81	-	207,907	-	207,907	207,902	207,900	207,897	207,897	5	2	3	0	5	7	10	10
85	-	208,778	-	208,778	208,775	208,772	208,770	208,769	3	3	2	1	3	6	8	9
94	-	-	207,906	207,906	-	207,899	207,898	207,897	-	-	1	1	-	7	8	9
102	-	207,888	-	207,888	207,883	207,882	207,881	207,881	5	1	1	0	5	6	7	7
135	-	-	207,920	207,920	-	207,912	207,909	207,909	-	-	3	0	-	8	11	11
137	-	-	207,916	207,916	-	207,907	207,905	207,906	-	-	2	-1	-	9	11	10
139	207,888	207,887	-	207,888	207,882	207,882	207,881	207,882	6	0	1	-1	6	6	7	6
141	207,902	207,901	-	207,902	207,898	207,898	207,897	207,898	4	0	1	-1	4	4	5	4
143	207,903	207,902	-	207,903	207,898	207,898	207,897	207,899	5	0	1	-2	5	5	6	4
145	207,897	207,897	-	207,897	207,893	207,891	207,889	207,891	4	2	2	-2	4	6	8	6
147	207,894	207,893	-	207,894	207,890	207,887	207,886	207,887	4	3	1	-1	4	7	8	7
149	207,898	207,898	-	207,898	207,895	207,893	207,892	207,894	3	2	1	-2	3	5	6	4
151	-	207,905	-	207,905	207,901	207,898	207,895	207,893	4	3	3	2	4	7	10	12
178	-	-	205,104	205,104	205,095	-	205,093	205,092	9	-	-	1	9	-	-	-
190	207,893	-	-	207,893	207,886	207,886	207,885	207,887	7	0	1	-2	7	7	8	6
194	207,901	-	-	207,901	207,896	207,895	207,895	207,897	5	1	0	-2	5	6	6	4
203	207,896	207,896	-	207,896	207,891	207,890	207,888	207,889	5	1	2	-1	5	6	8	7
207	207,887	-	-	207,887	207,885	207,882	207,880	207,877	2	3	2	3	2	5	7	10
235	-	-	207,905	207,905	-	207,896	207,895	207,898	-	-	1	-3	-	9	10	7
238	207,882	-	-	207,882	207,872	207,872	207,871	207,873	10	0	1	-2	10	10	11	9
240	207,892	-	-	207,892	207,881	207,880	207,880	207,883	11	1	0	-3	11	12	12	9
242	207,891	-	-	207,891	207,883	207,883	207,882	207,883	8	0	1	-1	8	8	9	8

Tab. 8 Tabulka nivelovaných pilot – Sedání, Část I.

							SEDÁNÍ									
Číclo nilotv				Výška bod	lu [m] Bpv							Pokles	s [mm]			
	18.6.2010	27.7.2010	25.8.2010	18.6 25.8.2010	10.10.2010	14.11.2010	26.1.2011	22.1.2012		Dí	ĺlčí		Ce	lkový c	od počát	ku
[-]	0.A	0.B	0.C	0.	1.	2.	3.	4.	01.	12.	23.	34.	01.	02.	03.	04.
244	207,906		-	207,906	207,899	207,899	207,899	207,903	7	0	0	-4	7	7	7	3
255	-	-	205,097	205,097	-	-	205,084	205,084	-	-	-	0	-	-	13	13
258	-	-	205,101	205,101	-	-	205,095	205,093	-	-	-	2	-	-	6	8
269	207,908	-	-	207,908	207,902	207,902	207,900	207,902	6	0	2	-2	6	6	8	6
271	207,884	207,882	-	207,884	207,878	207,876	207,874	207,875	6	2	2	-1	6	8	10	9
273	207,895			207,895	207,891	207,890	207,887	207,889	4	1	3	-2	4	5	8	6
275	207,889	-	-	207,889	207,887	207,885	207,882	207,880	2	2	3	2	2	4	7	9
328	207,901	207,899	-	207,901	207,896	207,894	207,892	207,894	5	2	2	-2	5	7	9	7
333	-	-	205,084	205,084	-	-	205,073	205,069	-	-	-	4	-	-	11	15
374	-	-	205,109	205,109	-	-	205,097	205,092	-	-	-	5	-	-	12	17
384	-	207,904	-	207,904	207,900	207,899	207,897	207,899	4	1	2	-2	4	5	7	5
386	207,897		-	207,897	207,892	207,892	207,890	207,890	5	0	2	0	5	5	7	7
388	207,895	207,892	-	207,895	207,888	207,887	207,886	207,886	7	1	1	0	7	8	9	9
392	207,885	-	-	207,885	207,881	207,879	207,877	207,877	4	2	2	0	4	6	8	8
393	207,891	-	-	207,891	207,888	207,885	207,883	207,882	3	3	2	1	3	6	8	9
440	207,891	207,890	-	207,891	207,887	207,886	207,884	207,886	4	1	2	-2	4	5	7	5
444	207,891	-	-	207,891	207,887	207,885	207,882	207,880	4	2	3	2	4	6	9	11
479	-	207,899	-	207,899	207,894	207,894	207,892	207,892	5	0	2	0	5	5	7	7
480	-	207,895	-	207,895	207,890	207,890	207,888	207,889	5	0	2	-1	5	5	7	6
481	-	207,925		207,925	207,919	207,919	207,920	207,924	6	0	-1	-4	6	6	5	1
483	207,895	207,894	-	207,895	207,888	207,888	207,887	207,889	7	0	1	-2	7	7	8	6
485	207,903	-	-	207,903	207,895	207,895	207,893	207,893	8	0	2	0	8	8	10	10
487	-	207,910	-	207,910	207,906	207,903	207,900	207,896	4	3	3	4	4	7	10	14
525	207,898	207,897	-	207,898	207,893	207,893	207,893	207,894	5	0	0	-1	5	5	5	4
530	-	-	205,095	205,095	205,093	-	205,091	205,089	2	-	-	2	2	-	4	6
543	-	207,892	-	207,892	207,887	207,882	207,880	207,886	5	5	2	-6	5	10	12	6

Tab. 9 Tabulka nivelovaných pilot – Sedání, Část II.

5 VÝPOČET REÁLNÉHO ZATÍŽENÍ MONITOROVANÝCH PILOT OBJEKTU FÓRUM Nová Karolina

Úkolem této dizertační práce je zjištění, jaký podíl zatížení, které působí do základových konstrukcí ze sloupu, přebírá základová deska a jaký pilota. Tento poměr byl zjišťován na objektu 1.B003 "Obchodní a zábavní centrum", který je součástí komplexu projektu "FÓRUM NOVÁ KAROLINA", a to na základě provedené statické zatěžovací zkoušky pilot viz odst. 4.5 Statické zatěžovací zkoušky a monitoringu sedání vybraných sloupů viz odst. 4.6. Nivelační měření.

Stěžejní úlohou dizertační práce je tedy výpočet osového zatížení, který ve skutečnosti přenáší piloty.

5.1 VYHODNOCENÍ STATICKÉ ZATĚŽOVACÍ ZKOUŠKY

Podrobný popis vyhodnocované zatěžovací zkoušky byl uveden v odstavci 4.5.1 Popis zkušebních zatěžovacích pilot a 4.5.2. Průběh zatěžovací zkoušky.

Z měření vyplynulo, že realizovaná separace horní vrstvy, ve které se systémové piloty nebudou nacházet, nefunguje stoprocentně, a proto byl vyhodnocen přenos zatížení do okolního geologického prostředí i v této vrstvě.

Na základě realizované zatěžovací zkoušky na nesystémové zkušební pilotě ZZ2 byl stanoven pracovní diagram piloty (Obr. 34) a dále byla z tenzometrického měření sestavena soustava tzv. přenosových funkcí (Obr. 33), které udávají průběh osové síly v dříku piloty při určitém zatěžovacím stupni.

Průběh napětí na patě piloty během zatěžování a průběh plášťového tření je zachycen v Obr. 32,Obr. 34, Obr. 35 a Obr. 36. Grafické znázornění průběhu plášťového tření podél dříku piloty při určitém sedání zobrazuje Obr. 37.

Napětí v pilotě z měření pomocí strunových tenzometrů je určeno Hookovým zákonem, avšak problém nastává v určení skutečného modulu pružnosti betonu E_b. Pro stanovení reálného modulu pružnosti betonu E_b bylo použito "cejchování" pomocí měření napětí na tenzometrech umístěných nejblíže k hlavě piloty. Hodnota osové síly v hloubce z je potom dána rovnicí

$$F_{z,s} = E_b \cdot k_E \cdot \varepsilon_{z,s} \cdot A_z$$

Rov. 27

F_{z,s} osová síla v hloubce z v dříku piloty odpovídající sednutí s

E_b..... tabulkový modul pružnosti betonu

k_E..... koeficient "cejchování" modulu pružnosti betonu

 $\varepsilon_{z,s}$ naměřené poměrné přetvoření v hloubce při zatížení odpovídajícímu sednutí s

Az..... průměr piloty v hloubce z

Z průběhu přenosových funkcí bylo v jednotlivých zatěžovacích stupních stanoveno napětí na patě piloty a plášťového tření. Pro důkladnou analýzu únosnosti piloty bylo mobilizované plášťové tření zjišťováno v jednotlivých geologických vrstvách, kterými dřík piloty prochází.

Z průběhu přenosových funkcí vyplývají následující vlastnosti jednotlivých vrstev:

- Navážka (odseparovaná vrstva):
 - provedená separace nefunguje stoprocentně, vrstva se podílela na přenosu zatížení,
 - pro únosnost systémových pilot je vrstva nezajímavá, protože se piloty v této vrstvě nenacházejí.
- G3 Štěrk s příměsí jemnozrnné zeminy:
 - zastižené štěrky v nepřirozeném uložení jsou dobré kvality a lze je považovat pro výpočet únosnosti pilot za středně ulehlé až ulehlé, stejně jako štěrky v přirozeném uložení,
 - příliš vysoké hodnoty plášťového tření ukazují na vytvoření kaverny ve zkušební pilotě;
 pro únosnost systémových pilot byly tudíž redukovány.
- F8 Jíl s vysokou plasticitou:
 - z hlediska únosnosti piloty nevykazuje příliš dobré vlastnosti,
 - horní sub vrstvu mocnosti 6,5 m lze pro výpočet únosnosti považovat maximálně za jíl tuhé konzistence, v nižším uložení potom za jíl konzistence tuhé až pevné,
 - velice malá únosnost paty piloty odpovídá jílu tuhé konzistence; podíl paty na únosnosti piloty je menší než 10%.

Při sedání piloty s = 10 mm vykazuje zkušební pilota následující hodnoty:

- napětí na patě: q_p = 159 kPa
- plášťové tření v odseparované vrstvě: q_s = 45 kPa
- plášťové tření ve vrstvě štěrku: q_s = 282 kPa
- plášťové tření v horní vrstvě jílu mocnosti 6,5 m: q_s = 41 kPa
- plášťové tření v níže uložení vrstvě jílu: q_s = 57 kPa

Mobilizaci napětí na patě a plášti piloty zobrazuje následující graf.

Obr. 32 Napětí na plášti q_s /patě q_p

Podrobně je vyhodnocení uvedeno v následujícím formuláři.

VYHODNOCENÍ STATICKÉ ZATĚŽOVACÍ ZKOUŠKY ZZ2

Parametry piloty:	Pažená délk	a	4,5 i	m				
	Nepažená d	élka	9,5 i	m				
	Délka piloty	,	14 ו	m				
	Separace		2 ו	m (z pažen	é délky)			
	Pažený průr	něr	1200 ı	mm				
	Nepažený p	růměr	1080 ו	mm				
Materiál piloty	Beton piloty	, (220/25					
	Modul pr. b	etonu E _b	30,0 (GPa				
	Koef. modu	lu pružn. k _e	0,47					
Geologie:	0,0 - 3,5 m	Y, G3 - Šte	ěrk s pří	íměsí jemn	iozrnné ze	miny, středr	ně ulehlý až ule	hlý
	> 3,5 m	F8 - Jíl s v	vysokou	plasticito	u, tuhé až j	pevné konzi	stence	
	HPV naraže	ná v hloubce (0,5 m					
<u>Umístění tenzometrů:</u>	T1, T2	2,1 m	-	T5, T6	9,9 m			
	T3, T4	6 m	-	T7, T8	13,8 m			

Tab. 10 Výsledky tenzometrického měření

Zatžž	Desur	Po	oměrné	přetvoře	ení		Odpovíc	dající síla		Síla na	Síla na	Nap. n.	Napětí
zatez.	Posun	(prů	ıměrné i	naměřer	né)ε		1	F		patě	plášti	pat.	na pl.
stup.	5	T1, T2	T3, T4	T5, T6	T7, T8	T1, T2	T3, T4	T5, T6	T7, T8	R _p	R _s	q _p	qs
[kN]	[mm]	[-]	[-]	[-]	[-]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kPa]	[kPa]
0	0,00	0	0	0	0	0	0	0	0	0	0	0	0
500	0,54	31	17	10	2	494	220	129	26	26	474	28	10
1000	1,05	60	36	21	4	957	465	271	52	52	948	56	19
1500	1,62	87	53	35	6	1387	685	452	78	78	1422	85	29
2000	2,35	113	70	45	7	1802	904	581	90	90	1910	99	39
2300	2,80	130	80	51	7	2073	1033	659	90	90	2210	99	45
2600	3,35	147	87	57	8	2344	1124	736	103	103	2497	113	51
3000	4,34	167	100	66	9	2663	1292	853	116	116	2884	127	59
3300	5,66	184	107	69	9	2934	1382	891	116	116	3184	127	65
3600	8,76	204	112	70	11	3253	1447	904	142	142	3458	155	70
4000	18,58	224	110	69	13	3572	1421	891	168	168	3832	183	78
4300	26,23	237	110	71	18	3779	1421	917	233	233	4067	254	83
4571	35,70	256	115	82	26	4082	1485	1059	336	336	4235	367	86

Obr. 34 Pracovní diagram piloty

Obr. 36 Napětí na patě q_p

ANALÝZA ÚNOSNOSTI PILOTY

Úsek piloty	Mocn.	Prům.	IG	V = 50 s =	00 kN 0,54	V = 10 s =	000 kN 1,05	V = 15 s =	500 kN 1,62	V = 20 s =	000 kN 2,35	V = 23 s =	800 kN 2,80
plioty	vrstvy	plioty		Fz	qs	Fz	qs	Fz	qs	Fz	qs	Fz	qs
0,0-2,1	2,1	1,2	Sep.	6	1	43	5	113	14	198	25	227	29
2,1-6,0	3,9	1,2/1,08	G5/F8	275	19	492	35	703	50	898	64	1040	74
2,1-3,5	1,4	1,2	G5	214	41	362	69	547	104	682	129	789	149
3,5-4,5	1	1,2	F8	26	7	55	15	66	18	92	24	107	28
4,5-6,0	1,5	1,08	F8	35	7	75	15	89	18	124	24	144	28
6,0-9,9	3,9	1,08	F8	90	7	194	15	233	18	323	24	375	28
9,9-13,8	3,9	1,08	F8	103	8	220	17	375	28	491	37	568	43

								-		-			
Úsok	Moch	Drům		V = 26	500 kN	V = 30	000 kN	V = 33	800 kN	V = 36	500 kN	V = 40	000 k N
USER		Fium.	IG	s =	3,35	s =	4,34	s =	5,66	s =	8,76	s =	18,58
plioty	vrstvy	plioty		Fz	qs								
0,0-2,1	2,1	1,2	Sep.	256	32	337	43	366	46	347	44	428	54
2,1-6,0	3,9	1,2/1,08	G5/F8	1220	86	1371	97	1552	110	1806	128	2151	152
2,1-3,5	1,4	1,2	G5	961	182	1077	204	1223	232	1443	273	1797	340
3,5-4,5	1	1,2	F8	110	29	125	33	140	37	155	41	151	40
4,5-6,0	1,5	1,08	F8	149	29	169	33	189	37	209	41	204	40
6,0-9,9	3,9	1,08	F8	388	29	439	33	491	37	543	41	530	40
9,9-13,8	3,9	1,08	F8	633	48	736	56	775	59	762	58	723	55

Úsek	Mocn.	Prům.	IG	V = 43 s =	800 kN 26,23	V = 45 s =	571 kN 35,70
photy	vrstvy	photy		Fz	qs	Fz	qs
0,0-2,1	2,1	1,2	Sep.	521	66	489	62
2,1-6,0	3,9	1,2/1,08	G5/F8	2359	167	2597	184
2,1-3,5	1,4	1,2	G5	2021	383	2312	438
3,5-4,5	1	1,2	F8	144	38	121	32
4,5-6,0	1,5	1,08	F8	194	38	164	32
6,0-9,9	3,9	1,08	F8	504	38	426	32
9,9-13,8	3,9	1,08	F8	685	52	723	55

Tab. 12 Mobilizace únosnosti v závislosti na sedání

Sedání s [mm]				0	1	2	3	4	5	6	7	8
Odpovídající na	pětí na p	atě qp [kPa]	0	54	92	104	122	127	130	139	148
, <u>,</u> , , , , , , , , , , , , , , , , ,	Úsek	Mocn.	IG									
ťají řen vých	0,0-2,1	2,1	Sep.	0	5	20	30	39	44	46	45	44
ovíc vé t otliv	2,1-3,5	1,4	G5	0	66	117	161	197	218	236	250	263
dpo šťo edno vrs	3,5-9,9	6,4	F8	0	14	21	29	32	35	38	39	40
O plá j∈	9,9-13,8	3,9	F8	0	16	33	45	53	57	58	58	58

Sedání s [mm]				9	10	11	12	13	14	15	16	17
Odpovídající na	pětí na p	atě qp [kPa]	156	159	162	164	167	170	173	176	179
َ <u></u> ,	Úsek	Mocn.	IG									
lají řen vých	0,0-2,1	2,1	Sep.	44	45	46	47	48	49	50	51	52
ovíc vé t otliv	2,1-3,5	1,4	G5	275	282	289	296	302	309	316	323	330
šťo šťo edne	3,5-9,9	6,4	F8	41	41	41	41	41	40	40	40	40
C plá j∈	9,9-13,8	3,9	F8	58	57	57	57	56	56	56	55	55

5.2 VÝPOČET ZATÍŽENÍ SLEDOVANÝCH PILOT

Skutečné zatížení, které působí na piloty, bylo zjištěno na základě výpočtu únosnosti osamělých plovoucích pilot osově zatížených vycházející z tvaru mezní zatěžovací křivky. Při výpočtu byly zohledněny poznatky z provedené statické zatěžovací zkoušky nesystémové piloty ZZ2, která je popsána v odstavci 4.5 Statické zatěžovací zkoušky a vyhodnocena v odstavci 5.1 Vyhodnocení statické zatěžovací zkoušky. Zatížení bylo zjišťováno na souboru pilot, jejichž sedání bylo monitorováno v rámci projektu objektu 1.8003 "Fórum Nová Karolina – Obchodní a zábavní centrum", jak je popsáno v odstavci 4.6 Nivelační měření. Jedná se celkem o 51 osamělých pilot průměru 630, 900 a 1 200 mm, délky 8 až 25 m. Jejich geometrie je uvedena Tab. 6 a Tab. 7. Zatížení bylo zjišťováno v jednotlivých zatěžovacích stavech, při kterých proběhla nivelace. Naměřené hodnoty sedání jsou uvedeny v Tab. 8 a Tab. 9.

Osová síla působící na pilotu byla odvozena ze zatěžovací křivky na základě jejího sedání. Zatěžovací křivka každé piloty byla sestavena podle výpočtu uvedeném v odstavci 3.2 Výpočet únosnosti osamělých plovoucích pilot. Parametry zemin, které vstupují do výpočtu, byly zvoleny tak, aby mezivýsledky výpočtu byly v souladu se závěry zatěžovací zkoušky a hodnota zatížení byla tak co nejpřesnější.

Korespondují si:

- Mobilizované plášťové tření pilot v jednotlivých zeminách (pouze hodnoty u G3 byly sníženy na reálnou hodnotu, odpovídající téměř ulehlému štěrku, jelikož nadměrné hodnoty u zkušební piloty ukazují, že zde zřejmě došlo k vytvoření kaverny).
- Napětí na patě piloty.
- Reálný modul pružnosti betonu (pro zhotovení systémových pilot byl použit shodný beton, jako u piloty zkušební, u které bylo z tenzometrického měření zjištěno, že modul pružnosti betonu je v případě pilot ve skutečnosti mnohem nižší).

Výpočet únosnosti a sestavení zatěžovací křivky je pro každou pilotu doložen ve formuláři v Příloze P1 Výpočet zatížení pilot. Ze zatěžovací křivky byla poté na základě velikosti sedání v určitém zatěžovacím stupni odečtena hodnota osové síly působící na hlavu piloty.

						/	/						7
Počát. vrstvy	Konec vrstvy	Ozn. vrstvy	I _c ,	/ I _d	Pr. pil. d _i	a	b	е	f	Di	q _{si}	E _{si}	Mobilizované plášťové tření
[m]	[m]	[-]	[-]	[m]	H	[-]	[-]	[-]	[m]	[kPa]	[MPa]	v daném
0	2,4	G5	Id	0,90	0,90	133,1	93,4	1 227,9	1 081,7	1,2	63,04	33,6	případě
2,4	8,9	F8	lc	0,50	0,83	46,4	20,8	197,8	150,2	5,7	43,34	15,7	[[[[[[[[[[[[[[[[[[[
8,9	17,5	F8	lc	0,65	0,78	61,7	47,1	434,7	430,4	13,2	58,88	24,9	
17,5	18	F8	lc	0,45	0,78	41,8	18,7	178,0	135,2	17,8	40,93	2,2	
Koeficie Koeficie Průměrn Příčinkov Poměr tu Korekčni Příčinkov Průměrn	nt druhu a nt ochran ný sečnovy vý koefici uhostí K í koeficier vý koefici ný průměr	zatížení m y dříku m ý modul E ent I ₁ nt R _k ent I piloty d _f	n1 2 	0,7 1 22,13 0,0759 637,2 1,238 0,094 0,813	MPa		Napětí r Průměru Koeficie Výp. me Zatížení Mezní z Sedání p	na patě q né plášťo ent přeno ezní síla n na plné atížení p oři plném	su paty β su paty β a plášti F mob.i plá iloty při s	ls Ssu Iště Ry 25 Rbu Sy	172,1 53,3 0,035 1 716,1 1 778,7 1 884,6 9,3	kPa kPa kN kN kN mm	– Mobilizované napětí na patě v daném případě

/ Maximální pl. tření, kterého lze v dané zemině dosáhnout

Obr. 38 Ukázka formuláře pro výpočet zatížení pilot – Část I.

Obr. 39 Ukázka formuláře pro výpočet zatížení pilot – Část II.

5.3 URČENÍ PODÍLU ZATÍŽENÍ PŘENÁŠENÉHO PILOTOU

Vypočítaná osová síla působící na hlavu pilot v jednotlivých zatěžovacích stupních byla porovnána s celkovou silou, kterou do základových konstrukcí přenáší monitorovaný sloup. Zbylou část zatížení tak přenáší základová deska. Hodnoty celkového zatížení v monitorovaných sloupech dodala pro účely této dizertační práce projekční kancelář PPP, spol. s r.o.. [31]

Jelikož podzemní podlaží konstrukce se nacházejí pod hladinou podzemní vody, bylo působící zatížení sníženo o vztlak, který působí na základovou desku v opačném směru. Podzemní podlaží a základové konstrukce byly prováděny ve výkopu hloubky 7,3 až 10,3 m, který byl zajištěn nepropustnými štětovými stěnami. Ty byly vetknuty do nepropustného podloží miocenních jílů a nedocházelo tak k proudění podzemní vody pod patou pažící konstrukce. Hladina podzemní vody, která se za běžných podmínek nachází 4,0 m pod terénem, byla ve stavební jámě odčerpána pod úroveň základové desky. V průběhu výstavby, kdy již bylo působící zatížení bezpečně větší než vztlak podzemní vody, byly štětové stěny odstraněny a došlo k zavodnění základové půdy a tím k odlehčení základových konstrukcí. Nejhlouběji umístěné podzemní podlaží, kde dosahuje vztlak největších hodnot, bylo před odstraněním štětových stěn řízeně zatopeno, aby se vliv vztlaku na konstrukci eliminoval. Voda z těchto míst byla odčerpána až s přibývajícím zatížením během výstavby.

Ve většině případů nedosáhl přírůstek zatížení od předchozího zatěžovacího stavu takové hodnoty, jako je odlehčení vztlakem. U těchto pilot nebylo zatížení v daném zatěžovacím stavu (ZS4) vyhodnoceno, protože se tento stav nachází v pracovním diagramu piloty na odlehčovací větvi. V tomto případě nelze působící zatížení spolehlivě určit.

Obr. 40 Pracovní diagram piloty

Takto stanovené zatížení bylo porovnáváno s osovou silou působící na pilotu a byla stanovena velikost podílu zatížení přenášená pilotou. Hodnoty jsou uvedeny v následujících tabulkách Tab. 13 až Tab. 16.

						ZATÍ	ŽENÍ OD H	IORNÍ STA	VBY (celk	ové ze slo	upu)					
×	Celková								•		VZTLAK					
Cisio piloty	normová				Dílčí sí	ly [kN]				Roznáš.	Rozdíl	Vztlak.	Dílčí zatíž	zení ovivn	ěno vztlak	em [kN]
	síla									plocha	hladin	síla				
[-]	[kN]	0.A	0.B	0.C	0.	1.	2.	3.	4.	[m2]	[m]	[kN]	1.	2.	3.	4.
70	2720	-	230	-	230	1300	1400	1550	2170	46,98	1,03	484	1300	1400	1550	1686
72	2800	-	300	-	300	1510	1620	1700	2050	46,98	1,03	484	1510	1620	1700	1566
74	2700	-	300	-	300	1410	1520	1600	2050	46,98	1,03	484	1410	1520	1600	1566
81	2400	-	150	-	150	950	1150	1200	1900	39,22	2,73	1071	950	1150	1200	829
85	2800	-	300	-	300	1190	1420	1590	2050	27,38	1,13	309	1190	1420	1590	1741
94	4470	-	-	420	420	1150	1460	2140	3570	59,13	1,03	609	1150	1460	2140	2961
102	3900	-	400	-	400	1700	2100	2150	2920	59,13	1,03	609	1700	2100	2150	2311
135	6160	-	-	350	350	1580	2500	3600	4580	78,96	1,03	813	1580	2500	3600	3767
137	5200	-	-	380	380	1360	2350	3020	3870	68,04	0,53	361	1360	2350	3020	3509
139	5080	0	300	-	0	1850	2150	2450	3600	68,04	1,03	701	1850	2150	2450	2899
141	5040	0	400	-	0	1900	1950	2200	3800	68,04	1,33	905	1900	1950	2200	2895
143	3480	0	400	-	0	1900	1950	2000	2520	68,04	1,03	701	1900	1950	2000	1819
145	4700	0	400	-	0	1960	2450	2700	3560	68,04	1,03	701	1960	2450	2700	2859
147	4390	0	400	-	0	1900	2500	2780	3200	68,04	1,33	905	1900	2500	2780	2295
149	4195	0	400	-	0	1780	2350	2450	3005	68,04	1,33	905	1780	2350	2450	2100
151	2670	-	520	-	520	1180	1340	1500	2280	24,36	1,13	275	1180	1340	1500	2005
178	2840	-	-	260	260	1080	1640	1920	2150	30,09	4,43	1333	1080	1640	1920	817
190	3230	0	-	-	0	1650	1650	1750	2300	63,18	1,03	651	1650	1650	1750	1649
194	3080	0	-	-	0	1750	1750	1800	2250	63,18	1,03	651	1750	1750	1800	1599
203	6160	400	450	-	400	3110	3360	3630	4850	63,18	1,33	840	3110	3360	3630	4010
207	2520	330	-	-	330	1100	1250	1300	2130	22,62	1,13	256	1100	1250	1300	1874
235	1650	-	-	220	220	270	880	880	1090	38,07	1,03	392	270	880	880	698
238	4180	0	-	-	0	2200	2200	2350	2920	65,61	1,03	676	2200	2200	2350	2244
240	3300	0	-	-	0	1850	1850	1950	2350	49,41	1,03	509	1850	1850	1950	1841
242	5540	0	-	-	0	2350	3200	3400	4340	65,61	1,03	676	2350	3200	3400	3664

Tab. 13 Tabulka nivelovaných pilot – Zatížení od horní stavby, Část I.

						ZATÍ	ŽENÍ OD H	IORNÍ STA	VBY (celk	ové ze slou	upu)					
Čísla utlatu	Celková										VZTLAK					
Cisio piloty	normová				Dílčí s	íly [kN]				Roznáše	Rozdíl	Vztlakov	Dílčí zatí	žení ovivn	ěno vztlak	em [kN]
	síla									cí plocha	hladin	á síla				
[-]	[kN]	0.A	0.B	0.C	0.	1.	2.	3.	4.	[m2]	[m]	[kN]	1.	2.	3.	4.
244	2785	0	-	-	0	1450	1500	1600	2110	65,61	1,03	676	1450	1500	1600	1434
255	4840	-	-	260	260	1600	2050	2500	4120	39,42	4,03	1589	1600	2050	2500	2531
258	4765	-	-	200	200	320	1850	2330	3590	42,12	3,93	1655	320	1850	2330	1935
269	4580	180	-	-	180	2200	2710	3000	3350	65,61	1,03	676	2200	2710	3000	2674
271	6420	380	1030	-	380	2400	3700	4200	4800	65,61	1,03	676	2400	3700	4200	4124
273	4275	240	-	-	240	2000	2300	2500	3370	47,79	1,03	492	2000	2300	2500	2878
275	1620	330	-	-	330	800	850	850	1320	34,83	1,13	394	800	850	850	926
328	5060	0	860	-	0	1800	2800	3050	3800	65,61	1,33	873	1800	2800	3050	2927
333	3670	-	-	400	400	1470	1750	2450	2770	45,65	4,03	1840	1470	1750	2450	930
374	4030	-	-	550	550	1470	1750	2450	3040	67,23	4,03	2709	1470	1750	2450	331
384	3410	-	300	-	300	1450	1500	1550	2370	65,61	1,03	676	1450	1500	1550	1694
386	4550	0	-	-	0	1630	1980	2330	3400	65,61	1,03	676	1630	1980	2330	2724
388	4470	0	860	-	0	1860	2410	2550	3020	63,18	1,03	651	1860	2410	2550	2369
392	2970	0	-	-	0	1020	1150	1300	2310	45,36	1,03	467	1020	1150	1300	1843
393	1430	150	-	-	150	750	800	800	1180	34,83	1,13	394	750	800	800	786
440	4765	0	860	-	0	1800	2050	2600	3660	65,61	1,03	676	1800	2050	2600	2984
444	2530	150	540	-	150	940	1070	1300	2180	23,49	1,13	265	940	1070	1300	1915
479	4250	-	300	-	300	1680	1830	2090	3015	65,61	1,03	676	1680	1830	2090	2339
480	5425	-	380	-	380	1900	2050	2360	4225	65,61	1,03	676	1900	2050	2360	3549
481	1910	-	380	-	380	870	870	950	1430	69,66	1,03	717	870	870	950	713
483	4690	0	380	-	0	1950	2250	2550	3560	65,61	1,03	676	1950	2250	2550	2884
485	3850	0	380	-	0	1600	1850	2090	2800	61,56	1,03	634	1600	1850	2090	2166
487	2460	-	540	-	540	890	1010	1200	2080	23,49	1,13	265	890	1010	1200	1815
525	3370	0	350	-	0	1250	1600	1850	2510	55,89	1,03	576	1250	1600	1850	1934
530	2310	-	-	250	250	790	860	1350	1840	22,68	4,03	914	790	860	1350	926
543	2570	-	300	-	300	620	870	1270	2060	48,16	1,03	496	620	870	1270	1564

Tab. 14 Tabulka nivelovaných pilot – Zatížení od horní stavby, Část II.

	k	OMPLET	NÍ ZATÍŽEN	lÍ			PŘE	NOS ZATÍŽ	ENÍ DO PI	LOTY		
Číslo piloty	Dílčí zatíž	éení ovivn	ěno vztlak	em [kN]	Zatíže	ení piloty c	lle výpočt	u [kN]	Zatížení přenášené pilotou [%]			
[-]	1.	2.	3.	4.	1.	2.	3.	4.	1.	2.	3.	4.
70	1300	1400	1550	1686	839	839	919	1061	65	60	59	63
72	1510	1620	1700	1566	839	839	993	-	56	52	58	-
74	1410	1520	1600	1566	718	803	879	-	51	53	55	-
81	950	1150	1200	829	659	779	837	-	69	68	70	-
85	1190	1420	1590	1741	1011	1430	1651	1751	85	101	104	101
94	1150	1460	2140	2961	-	1669	1784	1892	-	114	83	64
102	1700	2100	2150	2311	1503	1647	1779	1779	88	78	83	77
135	1580	2500	3600	3767	-	2293	3013	3013	-	92	84	80
137	1360	2350	3020	3509	-	2524	2698	-	-	107	89	-
139	1850	2150	2450	2899	1819	1819	1964	-	98	85	80	-
141	1900	1950	2200	2895	1675	1675	1873	-	88	86	85	-
143	1900	1950	2000	1819	906	906	993	-	48	46	50	-
145	1960	2450	2700	2859	1424	1745	2015	-	73	71	75	-
147	1900	2500	2780	2295	1196	1582	1692	-	63	63	61	-
149	1780	2350	2450	2100	962	1242	1361	-	54	53	56	-
151	1180	1340	1500	2005	801	1060	1267	1283	68	79	84	64
178	1080	1640	1920	817	715	-	-	-	66	-	-	-
190	1650	1650	1750	1649	957	957	1023	-	58	58	58	-
194	1750	1750	1800	1599	839	919	919	-	48	53	51	-
203	3110	3360	3630	4010	2155	2361	2726	-	69	70	75	-
207	1100	1250	1300	1874	523	828	979	1170	48	66	75	62
235	270	880	880	698	-	707	711	-	-	80	81	-
238	2200	2200	2350	2244	1695	1695	1702	-	77	77	72	-
240	1850	1850	1950	1841	1292	1299	1299	-	70	70	67	-
242	2350	3200	3400	3664	2356	2356	2499	-	100	74	73	-

Tab. 15 Tabulka nivelovaných pilot – Porovnání zatížení v pilotě s celkovým zatížením, Část I.

	ŀ	OMPLET	NÍ ZATÍŽEN	lí			PŘE	NOS ZATÍŽ	ENÍ DO PI	LOTY		
Číslo piloty	Dílčí zatíž	žení ovivn	ěno vztlak	æm [kN]	Zatíže	ení piloty o	lle výpočt	u [kN]	Zatížení přenášené pilotou [%]			
[-]	1.	2.	3.	4.	1.	2.	3.	4.	1.	2.	3.	4.
244	1450	1500	1600	1434	795	795	795	-	55	53	50	-
255	1600	2050	2500	2531	-	-	2628	2628	-	-	105	104
258	320	1850	2330	1935	-	-	1785	-	-	-	77	-
269	2200	2710	3000	2674	1695	1695	1957	-	77	63	65	-
271	2400	3700	4200	4124	2506	2893	3235	-	104	78	77	-
273	2000	2300	2500	2878	1307	1461	1848	-	65	64	74	-
275	800	850	850	926	307	434	574	640	38	51	68	69
328	1800	2800	3050	2927	1519	1797	2006	-	84	64	66	-
333	1470	1750	2450	930	-	-	2257	-	-	-	92	-
374	1470	1750	2450	331	-	-	1734	-	-	-	71	-
384	1450	1500	1550	1694	981	1097	1298	-	68	73	84	-
386	1630	1980	2330	2724	1461	1461	1728	1728	90	74	74	63
388	1860	2410	2550	2369	1728	1848	1949	-	93	77	76	-
392	1020	1150	1300	1843	811	993	1146	1146	79	86	88	62
393	750	800	800	786	391	553	639	-	52	69	80	-
440	1800	2050	2600	2984	1345	1503	1779	-	75	73	68	-
444	940	1070	1300	1915	771	944	1156	1226	82	88	89	64
479	1680	1830	2090	2339	1461	1461	1728	1728	87	80	83	74
480	1900	2050	2360	3549	1817	1817	2150	-	96	89	91	-
481	870	870	950	713	586	586	535	-	67	67	56	-
483	1950	2250	2550	2884	1831	1831	1957	-	94	81	77	-
485	1600	1850	2090	2166	1547	1547	1695	1695	97	84	81	78
487	890	1010	1200	1815	678	897	997	1011	76	89	83	56
525	1250	1600	1850	1934	942	942	942	-	75	59	51	-
530	790	860	1350	926	440	-	622	-	56	-	46	-
543	620	870	1270	1564	732	974	981	-	118	112	77	-

Tab. 16 Tabulka nivelovaných pilot – Porovnání zatížení v pilotě s celkovým zatížením, Část II.

5.4 ANALÝZA VÝSLEDKŮ VÝPOČTU

Základová deska objektu 1.B003 "Obchodní a zábavní centrum – FÓRUM NOVÁ KAROLINA" je uložena ve dvou zcela rozdílných inženýrskogeologických poměrech. Základová spára převážné části objektu se nachází na středně ulehlém až ulehlém štěrku s příměsí jemnozrnné zeminy tř. G3, zbylý úsek, který je uložen níže, tvoří vysoceplastický jíl tuhé až pevné konzistence tř. F8. Z tohoto důvodu byla snaha sledovat přerozdělení celkového zatížení ze sloupu mezi základovou desku a pilotu zvlášť pro jednotlivé základové poměry. Bohužel použitelných výsledků v prostředí jílovité zeminy je velice málo a vyhodnocení nelze brát jako průkazné.

Zjištěné hodnoty podílu zatížení, které pilota přebírá, se pohybují mezi 30 až 115%. Ojedinělé hodnoty nad 100% lze přisoudit nepřesnostem ve výpočtu únosnosti pilot, odhadu zatížení a technologickému postupu při provádění pilot, který má na jejich únosnost značný vliv.

Velikost podílu zatížení, který pilota z celkového zatížení přenáší, byla sledována v závislosti na hodnotě sedání a také velikosti průměru piloty (pro malé množství dat nebylo provedeno v případě, tvoří-li základovou spáru zemina tř. F8).

Podrobněji byly rozebrána data v oboru sedání 8 – 12 mm, které jsou z geotechnického hlediska nejzajímavější, neboť na tuto hodnotu sedání pilot se obvykle základové konstrukce navrhují.

5.4.1 VYHODNOCENÍ PŘENOSU ZATÍŽENÍ DO PILOTY, TVOŘÍ-LI ZÁKLADOVOU SPÁRU ZEMINA TŘ. G3

Naměřené hodnoty sedání pilot spadající do této kategorie a k tomu odpovídající zatížení je shrnuto v následujících tabulkách Tab. 17 a Tab. 18.

VŠECHNY PILOTY										
Sedání	Počet případů	Podíl zatížení - průměrná hodnota								
[mm]	[ks]	[%]								
1	0	-								
2	2	43								
3	3	64								
4	13	71								
5	29	70								
6	20	72								
7	27	74								
8	20	78								
9	9	81								
10	11	80								
11	6	77								
12	4	70								
13	0	-								
14	1	56								

Tab. 17	Průměrná	hodnota	podílu	zatížení,	který	přenáší	pilota
---------	----------	---------	--------	-----------	-------	---------	--------

PRŮMĚF	R 630 mm	PRŮMĚF	R 900 mm	PRŮMĚR	1200 mm
	Podíl		Podíl		Podíl
Počet	zatížení -	Počet	zatížení -	Počet	zatížení -
případů	průměrná	případů	průměrná	případů	průměrná
	hodnota		hodnota		hodnota
[ks]	[%]	[ks]	[%]	[ks]	[%]
0	-	0	-	0	-
1	38	1	48	0	-
1	52	2	70	0	-
3	59	8	72	2	87
6	70	19	67	4	85
5	64	11	70	4	89
6	64	19	76	2	86
2	71	13	77	5	84
2	75	5	79	2	90
4	86	6	77	1	77
0	-	3	69	3	84
1	77	3	67	0	-
0	-	0	-	0	-
1	56	0	-	0	-

×.	.	ZATĚŽOVA	ACÍ STAV 1.	ZATĚŽOVA	ACÍ STAV 2.	ZATĚŽOVA	CÍ STAV 3.	ZATĚŽOVA	ACÍ STAV 4.
Cisio	Prumer		Podíl		Podíl		Podíl		Podíl
ρποτγ	plioty	Sedani	zatížení	Sedani	zatížení	Sedani	zatížení	Sedani	zatížení
[-]	[mm]	[mm]	[%]	[mm]	[%]	[mm]	[%]	[mm]	[%]
70	630	5	65	5	60	6	59	8	63
72	900	5	56	5	52	7	58	6	-
74	630	4	51	5	53	6	55	5	-
81	630	5	69	7	68	10	70	10	-
85	900	3	85	6	101	8	104	9	101
94	900	-	-	7	114	8	83	9	64
102	900	5	88	6	78	7	83	7	77
135	1200	-	-	8	92	11	84	11	80
137	1200	-	-	9	107	11	89	10	-
139	1200	6	98	6	85	7	80	6	-
141	1200	4	88	4	86	5	85	4	-
143	900	5	48	5	46	6	50	4	-
145	900	4	73	6	71	8	75	6	-
147	900	4	63	7	63	8	61	7	-
149	900	3	54	5	53	6	56	4	-
151	900	4	68	7	79	10	84	12	64
190	900	7	58	7	58	8	58	6	-
194	900	5	48	6	53	6	51	4	-
203	1200	5	69	6	70	8	75	7	-
207	900	2	48	5	66	7	75	10	62
235	630	-	-	9	80	10	81	7	-
238	900	10	77	10	77	11	72	9	-
240	900	11	70	12	70	12	67	9	-
242	1200	8	100	8	74	9	73	8	-
244	630	7	55	7	53	7	50	3	-
269	900	6	77	6	63	8	65	6	-
271	1200	6	104	8	78	10	77	9	-
2/3	900	4	65	5	64	8	/4	6	-
2/5	630	2	38	4	51	/	68	9	69
328	900	5	64	/ 	64 72	9	66	/ 	-
204	900	4 E	00	 	75	7	04 74		-
200	900	כ ד	90	 	74	/	74	/	05
202	900	/	70	6	86	9 0	70	9 0	-
392	630	4	52	6	69	0 8	80	٥ ۵	02
440	900		75	5	73	7	68	5	
444	900	4	82	6	88	9	89	11	64
479	900	5	87	5	80	7	83	7	74
480	1200	5	96	5	89	, 7	91	6	-
481	630	6	67	6	67	5	56	1	-
483	900	7	94	7	81	8	77	6	-
485	900	8	97	8	84	10	81	10	78
487	630	4	76	7	89	10	83	14	56
525	900	5	75	5	59	5	51	4	-
543	630	5	118	10	112	12	77	6	-

Tab. 18 Tabulka monitorovaných pilot – základová spára na G3

Obr. 41 Zatížení přenášené pilotou v závislosti na velikosti sedání

Obr. 42 Zatížení přenášené pilotou v závislosti na průměru piloty

Z uvedených grafů lze říci:

- Průměrná hodnota podílu síly ze sloupu, který přenáší do podloží pilota je 73%, základová deska tedy přenáší průměrně 27%.
- Nebyla vysledována výraznější závislost podílu zatížení, které přenáší pilota, na velikosti sedání. Vyloučíme-li z vyhodnocení případy, kdy je průměrný podíl stanoven pouze z minima hodnot (pro sedání 2, 3 a 14 mm) je průměrný podíl přenosu zatížení do piloty takřka na velikosti sedání nezávislý. Z toho lze usuzovat na fakt, že při takto malém sedání (do cca 14 mm) nedochází k plné

aktivaci podzákladí desky a vytvořené kontaktní napětí zdaleka nedosahuje hodnot únosnosti základové půdy.

Lze sledovat závislost podílu na zatížení přenášeného pilotou na velikosti průměru piloty, tj. na velikosti únosnosti piloty. Piloty průměru 630 mm mají únosnost (při maximálním sedání s_{max} = 25 mm) R_{bu,630} = 700 – 1150 kN v závislosti na geologii a délce piloty. Pro piloty průměru 900 mm je R_{bu,900} = 1200 – 2250 kN. U pilot průměru 1200 mm dosahuje únosnost hodnoty R_{bu,1200} = 2500 – 3450 kN. Pro obor sedání do 9 mm se jeví, že piloty o menší únosnosti přenáší menší podíl celkového zatížení, než piloty únosnější. Tato závislost však při velikosti sedání větším než 9 mm zaniká.

5.4.2 VYHODNOCENÍ PŘENOSU ZATÍŽENÍ DO PILOTY, TVOŘÍ-LI ZÁKLADOVOU SPÁRU ZEMINA TŘ. F8

Naměřené hodnoty sedání pilot spadajících do této kategorie a k tomu odpovídající zatížení je shrnuto v následujících tabulkách Tab. 19 a Tab. 20.

Tab. 19 Tabulka monitorovaných pilot – základová spára na F8

Čícle	Druumăr	ZATĚŽOVA	ACÍ STAV 1.	ZATĚŽOVA	ACÍ STAV 2.	ZATĚŽOVA	ACÍ STAV 3.	ZATĚŽOVACÍ STAV 4.		
piloty	piloty	Sedání	Podíl	Sedání	Podíl	Sedání	Podíl	Sedání	Podíl	
			Zatizerii		Zatizerii		Zatizem		Zatizem	
[-]	[mm]	[mm]	[%]	[mm]	[%]	[mm]	[%]	[mm]	[%]	
178	630	9	66	-	-	-	-	-	-	
255	1200	-	-	-	-	13	105	13	104	
258	1200	-	-	-	-	6	77	8	-	
333	1200	-	-	-	-	11	92	15	-	
374	900	-	-	-	-	12	71	17	-	
530	630	2	56	-	-	4	46	6	-	

Tab. 20 Průměrná hod	dnota podílu zatížei	ní, který přenáší pilota
----------------------	----------------------	--------------------------

VŠECHNY PILOTY										
		Podíl								
Sodání	Počet	zatížení -								
Seuani	případů	průměrná								
		hodnota								
[mm]	[ks]	[%]								
1	0	-								
2	1	56								
3	0	-								
4	1	46								
5	0	-								
6	1	77								
7	0	-								

VŠECHNY PILOTY								
Sedání	Počet případů	Podíl zatížení - průměrná hodnota						
[mm]	[ks]	[%]						
8	0	-						
9	1	66						
10	0	-						
11	1	92						
12	1	71						
13	2	104						
14	0	-						

Obr. 43 Zatížení přenášené pilotou v závislosti na velikosti sedání

Uvedených dat je pro tuto kategorii tak málo, že z nich nelze usuzovat na jakékoli závěry. Lze však alespoň říci, že se nepotvrdil předpoklad, že piloty budou v případě méně únosné základové spáry přenášet větší podíl celkového zatížení a to zřejmě se stejného jevu, který byl vypozorován v případě, tvoří-li základovou spáru únosnější zemina tř. G3. Tím je fakt, že při malém sedání (do cca 14 mm) nedochází k plné aktivaci podzákladí desky a vytvořené kontaktní napětí nedosahuje hodnot únosnosti základové půdy.

5.4.3 VYHODNOCENÍ PŘENOSU ZATÍŽENÍ DO PILOTY PRO OBOR SEDÁNÍ 8 AŽ 12 MM

Pilotové základy se obvykle navrhují na sedání okolo 10 mm, z tohoto důvodu byla podrobněji vyhodnocena data odpovídající právě sedání 8 až 12 mm. Protože nebyl zjištěn významnější rozdíl v přenosu zatížení do pilot, tvoří-li základovou spáru zemina tř. F8, nebo výrazně únosnější zemina tř. G3, byla tato data vyhodnocována společně. Případy, které odpovídají zájmovému sedání, jsou uvedeny v následující tabulkách Tab. 21 a Tab. 22.

Číslo piloty	Průměr piloty	Únosnost piloty R _{bu} při s ₂₅	Zatěžovací stav	Dílčí zatížení z horní stavby	Sedání	Zatížení přenášené pilotou	Podíl zatížení přenášený pilotou
[-]	[mm]	[kN]	[-]	[kN]	[mm]	[kN]	[%]
70	630	1130	4	1686	8	1061	63
81	630	892	3	1200	10	837	70
85	900	1885	3	1590 8		1651	104
85	900	1885	4	1741	9	1751	101
94	900	2007	3	2140	8	1784	83
94	900	2007	4	2961	9	1892	64

Tab. 21 Tabulka monitorovaných pilot vykazujících sedání 8 – 12 mm – Část I.

Číslo piloty	Průměr piloty	Únosnost piloty R _{bu} při s ₂₅	Zatěžovací Dílčí zatížení z stav horní stavby Sedání		Sedání	Zatížení přenášené pilotou	Podíl zatížení přenášený pilotou
[-]	[mm]	[kN]	[-]	[kN]	[mm]	[kN]	[%]
135	1200	3170	2	2500	8	2293	92
135	1200	3170	3	3600	11	3013	84
135	1200	3170	<u> </u>	3767	11	3013	80
137	1200	2856	2	2350	9	2524	107
137	1200	2856	3	3020	11	2524	89
145	900	2850	3	2700	8	2008	75
1/17	900	1908	3	2780	8	1692	61
151	900	1365	3	1500	10	1267	84
151	900	1365	S	2005	12	1283	64
178	630	769	1	1080	9	715	66
190	900	1235	3	1750	8	1023	58
203	1200	3249	3	3630	8	2726	75
207	900	1266	4	1874	10	1170	62
235	630	767	2	880	9	707	80
235	630	767	3	880	10	711	81
238	900	1793	1	2200	10	1695	77
238	900	1793	2	2200	10	1695	77
238	900	1793	3	2350	11	1702	72
240	900	1381	1	1850	11	1292	70
240	900	1381	2	1850	12	1299	70
240	900	1381	3	1950	12	1299	67
242	1200	2821	1	2350	8	2356	100
242	1200	2821	2	3200	8	2356	74
242	1200	2821	3	3400	9	2499	73
269	900	2166	3	3000	8	1957	65
271	1200	3453	2	3700	8	2893	78
271	1200	3453	3	4200	10	3235	77
273	900	2061	3	2500	8	1848	74
275	630	700	4	926	9	640	69
328	900	2120	3	3050	9	2006	66
333	1200	2418	3	2450	11	2257	92
374	900	1826	3	2450	12	1734	71
388	900	2061	2	2410	8	1848	77
388	900	2061	3	2550	9	1949	76
392	900	1381	3	1300	8	1146	88
392	900	1381	4	1843	8	1146	62
393	630	727	3	800	8	639	80
444	900	1316	3	1300	9	1156	89
444	900	1316	4	1915	11	1226	64
483	900	2166	3	2550	8	1957	77
485	900	1793	1	1600	8	1547	97
485	900	1793	2	1850	8	1547	84
485	900	1793	3	2090	10	1695	81
485	900	1793	4	2166	10	1695	78
487	630	1048	3	1200	10	997	83
543	630	1024	2	870	10	974	112
543	630	1024	3	1270	12	981	77

Tab. 22 Tabulka monitorovaných pilot vykazujících sedání 8 – 12 mm – Část II.

Obr. 44 Závislost podílu zatížení přenášeného pilotou na celkovém zatížení

Obr. 45 Závislost podílu zatížení přenášeného pilotou na únosnosti piloty

Podle tvaru sestaveného histogramu Obr. 46 a faktu, že medián hodnot se téměř shoduje s aritmetickým průměrem, lze datům přisoudit Gaussovo rozdělení, tj. normální rozdělení.

Obr. 46 Histogram – Četnost podílu zatížen přenášeného pilotou

Obr. 47 Podíl zatížení přenášený pilotou – Gaussovo rozdělení

Gaussovo rozdělení f(x) dané proměnné, tj. podílu zatížení přenášeného pilotou, je charakterizováno následujícími hodnotami:

- Aritmetický průměr \overline{x} = 78,1%
- Medián.....μ = 77,0%
- Směrodatná odchylka.....σ = 12,4%
- Minimum Q_{min} = 58,5%
- 25% kvantil Q₁ = 69,7%
- 75% kvantil Q₃ = 83,6%
- Maximum......Q_{max} = 111,9%

Z uvedených dat lze konstatovat, že pro geotechnicky zajímavý obor sedání mezi 8 až 12 mm platí:

- Průměrná hodnota podílu síly ze sloupu, který přenáší do podloží pilota je 77%, základová deska tedy přenáší průměrně 23%.
- Velikost podílu přenosu zatížení do piloty nezávisí při daném sedání na velikosti působícího zatížení.
- Velikost podílu přenosu zatížení do piloty nezávisí při daném sedání na velikosti únosnosti piloty.
- Z uvedeného rozboru vyplývá, že při běžném sedání, na které se hlubinné základy navrhují, ještě nedochází k plné aktivaci základové půdy a kontaktní napětí nedosahuje hodnot únosnosti. Ta se může orientačně pohybovat v případě štěrků s příměsí jemnozrnné zeminy tř. G3 okolo 500 kPa, resp. 120 kPa v případě jílů s vysokou plasticitou tuhé až pevné konzistence. K plné funkci podzákladí dochází až při větším sedání.

6 MATEMATICKÝ MODEL

Stanovené hodnoty ztížení v pilotách byly porovnány s výsledky matematického modelu provedeného ve výpočetním programu Scia Engineer 14.0.

Model byl vytvořen následovně:

- Model byl rozdělen do pěti částí, které odpovídají dilatačním celkům.
- Modelována byla pouze základová deska, na kterou byly vloženy účinky z horní stavby. Zatížení bylo vloženo do uzlů v základové desce v místě sloupů.
- Základová deska byla podepřena zemním prostředím parametry C1x, C1y, C1z, C2x a C2y, zjištěnými postupnou iterací nástrojem SOILIN.
- Piloty byly nahrazeny pružinami s lineárním nárůstem tuhosti.

Tuhosti pružin, nahrazující jednotlivé piloty byly stanoveny pro stav, který odpovídá sedání 10 mm. Pro každou geometrii piloty byla sestavena zatěžovací křivka, ze které bylo odečteno zatížení při sedání 10 mm. Tuhost pak byla vypočtena z následující vztahu:

$$k = \frac{F_{s10}}{s_{10}}$$

Rov. 28

k..... tuhost pružiny nahrazující pilotu F_{s10} ... zatížení piloty při sedání 10 mm s_{10} sedání 10 mm

Obr. 48 Stanovení tuhosti pilot ze zatěžovací křivky

Do výpočtu byly tedy použity následující tuhosti stanovené podle výše uvedeného postupu:

PILOTY PRŮN	IĚRU 1200 mm	PILOTY PRŮN	/IĚRU 900 mm	PILOTY PRŮMĚRU 630 mm					
Délka piloty	Tuhost	Délka piloty	Tuhost	Délka piloty	Tuhost				
[m]	[MN/m]	[m]	[MN/m]	[m]	[MN/m]				
15	180	10	90	4	40				
16	190	11	100	5	45				
17	210	12	110	6	50				
18	220	13	120	7	55				
19	240	14	130	8	60				
20	250	15	140	9	65				
21	260	16	150	10	70				
22	280	17	160	11	75				
23	290	18	170	12	80				
24	300	19	180	13	85				
25	320	20	190	14	90				
26	330	21	200	15	95				
27	350	22	210						
28	360			-					

V matematickém modelu byly uvažovány dva různé inženýrskogeologické profily označeny GP1 – PŘ a GP2 – SAN. Liší se pouze vlastnostmi štěrkové vrstvy. Zatímco dilatační celky K1 a K4 spadají do oblasti, kde se vyskytují přirozeně uložené štěrky, dilatační celky K2, K3 a K5 se nacházejí v oblasti sanované. Zde jsou štěrky uměle uloženy a mají nižší únosnost. Parametry byly převzaty ze závěru provedeného inženýrskogeologického průzkumu [23].

Geologický profil GP1 – PŘ:

(hloubka uvedena od hlavní úrovně základové spáry, tj. 216,75 m n. m.)

0 – 2,5 m	G3 štěrk s příměsí jemnozrnné z	eminy v přirozeném uložení
	Objemová tíha	γ = 19 kNm³
	Modul přetvárnosti	E _{def} = 80 MPa
	Poissonovo číslo	v = 0,25
	Opravný součinitel přitížení	ím = 0,3

> 2,5 m	F8 jíl s vysokou plasticitou, tuhé až pevné konzistence
	Objemová tíhaγ = 20 kNm³
	Modul přetvárnostiE _{def} = 8 MPa
	Poissonovo číslov = 0,4
	Opravný součinitel přitížením = 0,2

Geologický profil GP2 – SAN:

(hloubka uvedena od hlavní úrovně základové spáry, tj. 216,75 m n. m.)

0-2,5 m G3 štěrk s příměsí jemnozrnné zeminy v umělém uložení po sanaci Objemová tíha...... $\gamma = 19 \text{ kNm}^3$ Modul přetvárnosti $E_{def} = 50 \text{ MPa}$ Poissonovo číslov = 0,25Opravný součinitel přitížení....m = 0,2

> 2,5 m	F8 jíl s vysokou plasticitou, tuhé až pevné konzistence
	Objemová tíhaγ = 20 kNm³
	Modul přetvárnostiE _{def} = 8 MPa
	Poissonovo číslov = 0,4
	Opravný součinitel přitížením = 0,2

Aby mohly být výsledky matematického modelu porovnány se skutečností, byl každý dilatační celek posuzován v zatěžovacím stavu ZS3, který odpovídá fázi výstavby ze dne 26.1.2011, kdy došlo k nivelaci monitorovaných pilot. Z modelu bylo určeno, jaký podíl zatížení ze sloupu přebírá pilota.

Pro zajímavost byl matematickým modelem vypočten i finální stav, ale bez účinku vztlaku podzemní vody, která objekt značně nadlehčuje. Tento případ umožňuje zjištění chování podloží a konstrukce při vyšších zatíženích, na které byly piloty projektovány.

Obr. 49 Schéma matematického modelu – rozdělení do dilatačních celků

6.1 ANALÝZA VÝSLEDKŮ

Dle matematického modelu přebírají piloty 15 až 60% z celkového zatížení sloupu. Velikost sedání se pohybuje od 2 do 7 mm v případě fáze výstavby odpovídající zatěžovacímu stavu 3, resp. od 4 do 13 mm v případě finálního stavu bez vlivu vztlaku. Výsledné hodnoty pro monitorované piloty pro ZS3 a ZScelk jsou uvedeny v tabulkách Tab. 24 a Tab. 25.

	Dilatační	т.	Tubort	ZATĚŽOVACÍ STAV 3				FINÁLNÍ STAV				
Číslo piloty	celek	IG	piloty	Dílčí normová síla	Sedání	Zatížení přenášené pilotou (Reakce Rz) n		Celková normová síla	Sedání	Zatížení přen (Reak	Zatížení přenášené pilotou (Reakce Rz)	
[-]	[-]	[-]	[MN/m]	[kN]	[mm]	[kN]	[%]	[kN]	[mm]	[kN]	[%]	
70	K2	SAN	100	1550	4,6	462	30	2720	8,5	851	31	
72	K2	SAN	110	1700	4,6	506	30	2800	10,0	1104	39	
74	K2	SAN	90	1600	5,4	485	30	2700	10,8	975	36	
81	K2	SAN	90	1200	4,6	412	34	2400	10,0	897	37	
85	K2	SAN	170	1590	3,7	621	39	2800	7,4	1253	45	
94	K1	РŘ	180	2140	4,5	812	38	4470	11,0	1973	44	
102	K2	SAN	190	2150	5,3	1013	47	3900	11,4	2170	56	
135	K1	PŘ	290	3600	6,2	1801	50	6160	13,0	3761	61	
137	K1	РŘ	250	3020	5,5	1376	46	5200	11,4	2861	55	
139	K2	SAN	220	2450	4,7	987	40	5080	11,0	2230	44	
141	K2	SAN	260	2200	4,0	1046	48	5040	10,8	2805	56	
143	K2	SAN	120	2000	5,0	597	30	3480	10,9	1302	37	
145	K2	SAN	200	2700	5,9	1190	44	4700	12,2	2436	52	
147	K2	SAN	170	2780	6,3	1068	38	4390	12,0	2043	47	
149	K2	SAN	160	2450	5,7	913	37	4195	11,9	1898	45	
151	K2	SAN	120	1500	3,8	458	31	2670	8,0	956	36	
178	K1	PŘ	75	1920	6,5	486	25	2840	12,5	940	33	
190	K5	SAN	100	1750	4,3	431	25	3230	9,8	976	30	
194	K5	SAN	110	1800	4,0	444	25	3080	8,2	904	29	
203	K2	SAN	300	3630	6,4	1907	53	6160	12,4	3723	60	
207	K2	SAN	110	1300	2,9	320	25	2520	6,5	710	28	
235	К1	PŘ	65	880	4,0	257	29	1650	9,1	593	36	
238	K5	PŘ	160	2350	5,1	816	35	4180	10,8	1722	41	
240	K5	SAN	120	1950	5,2	629	32	3300	10,9	1311	40	
242	K5	SAN	250	3400	6,4	1595	47	5540	12,2	3040	55	

Tab. 24 Tabulka pilot sledovaných v matematickém modelu, Část I.

	Dilatační	IG	Tubaat		VACÍ STAV 3		FINÁLNÍ STAV				
Číslo piloty	celek		piloty	Dílčí normová síla	Sedání	Zatížení přena (Reak	ášené pilotou ce Rz)	Celková normová síla	Sedání	Zatížení přena (Reak	ášené pilotou ce Rz)
[-]	[-]	[-]	[MN/m]	[kN]	[mm]	[kN]	[%]	[kN]	[mm]	[kN]	[%]
244	K5	SAN	80	1600	3,9	310	19	2785	8,4	675	24
255	К1	PŘ	250	2500	4,7	1166	47	4840	9,4	2339	48
258	K1	PŘ	220	2330	4,9	1086	47	4765	11,1	2448	51
269	K2	SAN	190	3000	6,2	1187	40	4580	11,3	2151	47
271	K2	SAN	320	4200	7,0	2229	53	6420	12,2	3894	61
273	K2	SAN	180	2500	6,2	1117	45	4275	12,4	2239	52
275	K2	SAN	60	850	1,9	114	13	1620	4,4	264	16
328	K2	SAN	190	3050	6,2	1176	39	5060	12,3	2343	46
333	К4	PŘ	210	2450	6,1	1274	52	3670	10,3	2169	59
374	К4	PŘ	170	2450	5,9	1007	41	4030	10,5	1790	44
384	К3	SAN	140	1550	3,6	506	33	3410	8,6	1203	35
386	К3	SAN	180	2330	4,7	845	36	4550	11,3	2033	45
388	К3	SAN	180	2550	5,6	1000	39	4470	12,0	2168	49
392	K3	SAN	120	1300	4,2	499	38	2970	10,8	1296	44
393	K3	SAN	60	800	2,2	130	16	1430	5,2	312	22
440	К3	SAN	190	2600	5,4	1029	40	4765	12,3	2333	49
444	K3	SAN	110	1300	3,1	337	26	2530	7,5	820	32
479	К3	SAN	180	2090	4,8	870	42	4250	11,9	2138	50
480	К3	SAN	250	2360	4,4	1011	43	5425	12,4	2851	53
481	К3	SAN	65	950	2,6	171	18	1910	8,2	533	28
483	K3	SAN	190	2550	5,2	981	38	4690	12,0	2277	49
485	К3	SAN	160	2090	4,6	729	35	3850	10,9	1749	45
487	K3	SAN	90	1200	3,0	270	23	2460	7,4	669	27
525	К3	SAN	120	1850	4,7	570	31	3370	11,4	1365	41
530	K4	PŘ	90	1350	4,7	420	31	2310	8,8	791	34
543	К3	SAN	85	1270	3,5	300	24	2570	9,4	796	31

Tab. 25 Tabulka pilot sledovaných v matematickém modelu, Část II.

Velikost podílu zatížení, který pilota z celkového zatížení přenáší, byla sledována v závislosti na hodnotě sedání, na velikosti tuhosti piloty i působícího zatížení ze sloupu a to pro oba zatěžovací stavy (ZS3 i ZScelk).

◆ZS3 ■ZScelk

Obr. 50 Zatížení přenášené pilotou v závislosti na působícím zatížení

◆ZS3 ■ZScelk ●Průměrná hodnota

Obr. 51 Zatížení přenášené pilotou v závislosti na velikosti sedání

◆ZS3 ■ZScelk

Obr. 52 Zatížení přenášené pilotou v závislosti na tuhosti piloty

Výsledným datům z numerického modelu lze taktéž přisoudit Gaussovo rozdělení. Funkce f(x) dané proměnné, tj. podílu zatížení přenášeného pilotou, je charakterizována následujícími hodnotami:

Fáze výstavby ze dne 26.1.2011 – ZS3:

- Aritmetický průměr \overline{x} = 35,6%
- Medián.....μ = 37,3%
- Směrodatná odchylka.....σ = 9,8%
- MinimumQ_{min} = 13,4%
- 25% kvantil Q₁ = 29,8%
- 75% kvantil Q₃ = 42,2%
- Maximum......Q_{max} = 53,1%

Finální stav – celkové zatížení bez vlivu vztlaku – ZScelk:

- Aritmetický průměr \overline{x} = 42,3%
- Medián.....μ = 44,1%
- Směrodatná odchylka.....σ = 10,8%
- Minimum Q_{min} = 16,3%
- 25% kvantil Q₁ = 34,8%
- 75% kvantil Q₃ = 49,6%
- Maximum......Q_{max} = 61,1%

Obr. 53 Histogram – Četnost podílu zatížení přenášeného pilotou

Obr. 54 Podíl zatížení přenášený pilotou – Gaussovo rozdělení

Z uvedeného rozboru lze konstatovat:

- Průměrná hodnota podílu síly ze sloupu, který přenáší pilota, stanovená matematickým modelem je 36% v případě zatěžovacího stavu 3, 42% v případě finálního zatížení (bez vlivu vztlaku), základová deska tedy dle modelu přenáší průměrně 64%, respektive 58% zatížení.
- Lze sledovat závislost podílu zatížení přenášeného pilotou na velikosti působícího zatížení, sedání a tuhosti piloty. S rostoucím působícím zatížením, tedy i sednutím a tuhostí piloty, roste i velikost podílu zatížení přenášeného pilotou a snižuje se zatížení přenášené základovou deskou.

 Kontaktní napětí se v případě ZS3 pohybuje od takřka nulové hodnoty v místě mezi sloupy až po hodnotu 60 až 90 kPa v blízkosti sloupů. V případě celkového zatížení je kontaktní napětí samozřejmě vyšší a to až 150 KPa v místě sloupů.

6.2 PODROBNÉ VÝSLEDKY PRO DILATAČNÍ CELEK K1

Obr. 55 K1 – Schéma modelu

Obr. 56 K1 – ZS3 – Deformace základové desky U_z

Obr. 57 K1 – ZS3 – Kontaktní napětí σ_z

Obr. 58 K1 – ZScelk – Deformace základové desky U_z

Obr. 59 K1 – ZScelk – Kontaktní napětí σ_z

6.3 PODROBNÉ VÝSLEDKY PRO DILATAČNÍ CELEK K2

Obr. 60 K2 – Schéma modelu

Obr. 61 K2 – ZS3 – Deformace základové desky U_z

sigmaz [kPa] 2382.5 150.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0.0 -113.4

Obr. 62 K2 – ZS3 – Kontaktní napětí σ_z

Obr. 63 K2 – ZScelk – Deformace základové desky U_z

sigmaz [kPa] 4357.5 200.0 160.0 140.0 120.0 100.0 80.0 60.0 40.0 20.0 0.0 -61.6

Obr. 64 K2 – ZScelk – Kontaktní napětí σ_z

6.4 PODROBNÉ VÝSLEDKY PRO DILATAČNÍ CELEK K3

Obr. 65 K3 – Schéma modelu

Obr. 66 K3 – ZS3 – Deformace základové desky Uz

Obr. 67 K3 – ZS3 – Kontaktní napětí σ_z

Obr. 68 K3 – ZScelk – Deformace základové desky U_z

Obr. 69 K3 – ZScelk – Kontaktní napětí σ_z

6.5 PODROBNÉ VÝSLEDKY PRO DILATAČNÍ CELEK K4

Obr. 71 K4 – ZS3 – Deformace základové desky U_z

Obr. 73 K4 – ZS3 – Deformace základové desky U_z

Obr. 74 K4 – ZS3 – Kontaktní napětí σ_z

6.6 PODROBNÉ VÝSLEDKY PRO DILATAČNÍ CELEK K5

Obr. 75 K5 – Schéma modelu

Obr. 76 K5 – ZS3 – Deformace základové desky Uz

Obr. 77 K5 – ZS3 – Kontaktní napětí σ_z

Obr. 78 K5 – ZScelk – Deformace základové desky U_z

Obr. 79 K5 – ZScelk – Kontaktní napětí σ_z

7 POROVNÁNÍ MATEMATICKÉHO MODELU S REALITOU

Hodnoty osového zatížení monitorovaných pilot, stanovené matematickým modelem vytvořeným ve výpočetním programu Scia Engineer 14, byly porovnány s reálnými hodnotami zjištěnými na základě nivelačního měření a statické zatěžovací zkoušky. Porovnáván byl zatěžovací stav 3, odpovídající fázi výstavby ze dne 26.1.2011. Taktéž bylo porovnáno i sedání sledovaných sloupů. Ve finálním stavu porovnání nebylo možné provést, protože bohužel v této fázi nedošlo k nivelačnímu měření.

Monitoring pilot • Matematický model

Obr. 80 Zatížení přenášené pilotou v závislosti na působící síle

Obr. 81 Sedání pilot v závislosti na působící síle

	Dílčí normová	VÝPOČET N	IA ZÁKLADĚ N	IONITORING	MATEMATICKÝ MODEL			POROVNÁNÍ	
Číslo piloty	síla - 753	Sodání	Zatížení p	řenášené	Sedání	Zatížení p	řenášené	Poměr	
	5110 255	Jeuann	pilo	otou	Jeuan	pilo	otou	zatížení	
[-]	[kN]	[mm]	[kN]	[%]	[mm]	[kN]	[%]	[-]	
70	1550	6,0	919	59	4,6	462	30	0,50	
72	1700	7,0	993	58	4,6	506	30	0,51	
74	1600	6,0	879	55	5,4	485	30	0,55	
81	1200	10,0	837	70	4,6	412	34	0,49	
85	1590	8,0	1651	104	3,7	621	39	0,38	
94	2140	8,0	1784	83	4,5	812	38	0,46	
102	2150	7,0	1//9	83	5,3	1013	4/	0,57	
135	3600	11,0	3013	84	6,2	1801	50	0,60	
13/	3020	11,0	2698	89	5,5	1376	46	0,51	
139	2450	7,0	1964	80	4,7	987	40	0,50	
141	2200	5,0	18/3	85	4,0	1046	48	0,56	
145	2000	6,0	993	50	5,0	597	30	0,60	
145	2700	8,0	1692	61	5,9	1068	20	0,59	
147	2760	6,0 6,0	1261	56	57	012	<u> </u>	0,63	
149	1500	10.0	1267	84	20	915	21	0,87	
179	1920	10,0	1207	- 04	 6 5	436	25	0,50	
190	1750	8.0	1023	58	43	480	25	0.42	
190	1800	6,0	919	51	4,5	431	25	0,42	
203	3630	8.0	2726	75	6.4	1907	53	0,40	
207	1300	7.0	979	75	2.9	320	25	0.33	
235	880	10.0	711	81	4.0	257	29	0.36	
238	2350	11.0	1702	72	5.1	816	35	0.48	
240	1950	12.0	1299	67	5.2	629	32	0.48	
242	3400	9.0	2499	73	6.4	1595	47	0.64	
244	1600	7,0	795	50	3,9	310	19	0,39	
255	2500	13,0	2628	105	4,7	1166	47	0,44	
258	2330	6,0	1785	77	4,9	1086	47	0,61	
269	3000	8,0	1957	65	6,2	1187	40	0,61	
271	4200	10,0	3235	77	7,0	2229	53	0,69	
273	2500	8,0	1848	74	6,2	1117	45	0,60	
275	850	7,0	574	68	1,9	114	13	0,20	
328	3050	9,0	2006	66	6,2	1176	39	0,59	
333	2450	11,0	2257	92	6,1	1274	52	0,56	
374	2450	12,0	1734	71	5,9	1007	41	0,58	
384	1550	7,0	1298	84	5,2	506	33	0,39	
386	2330	7,0	1728	74	5,7	845	36	0,49	
388	2550	9,0	1949	76	6,7	1000	39	0,51	
392	1300	8,0	1146	88	5,5	499	38	0,44	
393	800	8,0	639	80	3,7	130	16	0,20	
440	2600	/,0	1/79	68	6,5	1029	40	0,58	
444	1300	9,0	1156	89	4,6	337	26	0,29	
4/9	2090	7,0	21/28	83	6,8	8/0	42	0,50	
480	2360	7,0	2150	91	5,3	171	43	0,47	
481	320	5,0	232	סכ דד	5,/ 67	1/1	00 20	0,32	
403	2000	0,U 10.0	1605	01	0,2 5 <i>6</i>	700	20 25	0,50	
405	12050	10,0	QQ7	82	<i>3,</i> 0 <i>1</i> 6	270	 	0,43	
525	1200	5.0	947	51	<u> </u>	570	23	0,27	
530	1350	4.0	622	46	4 7	420	31	0.68	
543	1270	12.0	981	77	4.6	300	24	0.31	
		,0	501		.,5		- ·	5,51	

Tab. 26 Tabulka sledovaných pilot – Zatěžovací stav 3

Z uvedeného porovnání vyplývá:

- Matematický model přisuzuje pilotě mnohem menší podíl zatížení, než bylo zjištěno z reálného chování konstrukce. Průměrně vychází osová síla stanovená matematickým modelem přibližně o polovinu menší, než výpočtem na základě monitoringu.
- Vlivem nižší osové síly vykazují piloty v matematickém modelu samozřejmě i nižší sedání.
- Se vzrůstajícím působícím napětím se rozdíl mezi jednotlivými přístupy podstatně zmenšuje.

8 Závěr

Dizertační práce se zabývá zjištěním, jak veliký podíl napětí je přenášen z horní stavby prostřednictvím sloupů do hlubinného zakládání v podobě pilot, a to na konkrétním případě – objektu 1.B003 Obchodní a zábavní centrum, který je součástí komplexu FÓRUM NOVÁ KAROLINA.

Spolupůsobení základové desky s pilotou bylo zkoumáno celkem na 51 monitorovaných sloupech, pod kterými jsou umístěny piloty průměru 630, 900 a 1 200 mm, délky 8 až 25 m, přičemž průměr a délka pilot narůstá se vzrůstajícím zatížením. Sedání těchto sloupů bylo v průběhu výstavby zjišťováno metodou přesné nivelace. Na základě hodnoty sedání bylo pro každou pilotu v jednotlivých zatěžovacích stavech stanoveno příslušné skutečné zatížení. Zatížení bylo odečteno z mezní zatěžovací křivky, která byla pro každou sledovanou pilotu sestavena na základě výsledků statické zatěžovací zkoušky provedené na lokalitě na nesystémové pilotě. Odvozené skutečné zatížení pilot pak bylo porovnáno s celkovou silou přenášenou sloupem do základových konstrukcí a byl stanoven poměr, jakým se na přenosu zatížení podílí pilota a jakým základová deska. Zjištěné hodnoty osového zatížení piloty byly, pro určitý zatěžovací stav, porovnány i s výsledky matematického modelu.

VÝŠE UVEDENÝM POSTUPEM BYLO PRO TENTO KONKRÉTNÍ PŘÍPAD ZJIŠTĚNO:

- Průměrná hodnota podílu síly ze sloupu, který přenáší pilota je 73%, základová deska tedy přenáší průměrně 27%.
- Pro geotechnicky zajímavý obor sedání mezi 8 až 12 mm, je průměrná hodnota podílu síly ze sloupu, který přenáší pilota 77%, základová deska tedy přenáší průměrně 23%.
- Velikost podílu zatížení, které přenáší pilota, je takřka nezávislá na velikosti sedání.
- Velikost podílu přenosu zatížení do piloty nezávisí na velikosti působícího zatížení ani na velikosti únosnosti piloty.

MATEMATICKÝM MODELEM BYLO URČENO:

- Průměrná hodnota podílu síly ze sloupu, který přenáší pilota, stanovená matematickým modelem je:
 - 36% v případě zatěžovacího stavu 3.
 - 42% v případě finálního zatížení (bez vlivu vztlaku).
 - o základová deska tedy dle modelu přenáší průměrně 64%, respektive 58% zatížení.
 - V numerickém modelu lze sledovat závislost podílu zatížení přenášeného pilotou na velikosti působícího zatížení, sedání a tuhosti piloty. S rostoucím působícím zatížením, tedy i sednutím a tuhostí piloty, roste i velikost podílu zatížení přenášeného pilotou a snižuje se zatížení přenášené základovou deskou.

Podrobně byla analýza jednotlivých přístupů uvedena v odstavcích 5 Výpočet reálného zatížení monitorovaných pilot objektu Fórum Nová Karolina / 5.4 Analýza výsledků výpočtu, 6 Matematický

model / 6.1 Analýza výsledků, jejich srovnání potom v odst. 7 Porovnání matematického modelu s realitou.

Z provedeného rozboru vyplývá, že při běžném sedání, na které se hlubinné základy navrhují, ještě nedochází k plné aktivaci základové půdy a kontaktní napětí nedosahuje hodnot únosnosti. Základová spára je tedy plně využita až při mnohem větším sedání konstrukce. Z tohoto důvodu nebyl pozorován výraznější rozdíl mezi přenosem zatížení do pilot v místech, kde tvoří základovou spáru jílovitá zemina a kde únosnější štěrk.

Bylo zjištěno, že matematický model přisuzuje pilotě mnohem menší podíl zatížení, než bylo stanoveno z reálného chování konstrukce. Průměrně vychází osová síla stanovená matematickým modelem přibližně o polovinu menší, než zpětným výpočtem na základě monitoringu. Vlivem nižší osové síly vykazují piloty v matematickém modelu samozřejmě i nižší sedání. Se vzrůstajícím působícím napětím se rozdíl mezi jednotlivými přístupy podstatně zmenšuje. Důvodem, proč matematický model přisuzuje pilotě menší podíl na přenosu napětí, než v reálném případě, může být ten, že základové půdě nástroj SOILIN přisuzuje při malé deformaci vyšší tuhost, než je tomu ve skutečnosti. Dá se usuzovat na to, že v případě menších deformací (přibližně do 20 mm), by měla být tuhost podloží redukována. Navíc se výsledky matematického modelu samozřejmě odvíjí od vstupních hodnot parametrů zemin, zadaných uživatelem. Nejzásadnější vliv na výpočet má velikost deformačního modulu přetvárnosti E_{def}, který se stanovuje ze zkoušek in situ, a to buď ze zatěžovacích zkoušek, nebo nepřímými metodami jako jsou presiometrické či penetrační zkoušky. Protože se však tyto zkoušky provádí jen v omezené míře, nebývají tyto hodnoty zcela přesné a většinou se užívá průměrná hodnota směrných normových charakteristik, které však mají značný rozptyl. Tato nejistota ve vstupních parametrech zásadně ovlivňuje i výsledky numerického modelu. V tomto případě snížení E_{def} zemin o 20% způsobí zvýšení reakcí do pilot zhruba o 10%.

Protože se dizertační práce zabývá pouze jediným konkrétním případem, nelze na jejím základě stanovit definitivní závěr, který by vymezoval, jaký podíl zatížení vstupující do piloty má být při návrhu základových konstrukcí uvažován. Práce je však důležitým vstupním krokem k této problematice a lze doufat, že bude následována i na dalších stavbách, tak aby bylo možné vysledovat závislost podílu zatížení vstupujícího do pilot vzhledem ke geologickým podmínkám, velikosti napětí, poměru tuhosti základových konstrukcí apod. Ideálně by měl být stanoven koeficient redukce tuhosti podloží, pro nástroj SOILIN pro různé obory deformace základové desky.

Nesporně však práce dokazuje, že je mylné se domnívat, že základová deska se na přenosu zatížení může podílet až padesátiprocentní či dokonce větší mírou.

Významným zjištěným poznatkem dizertační práce je dále to, že provedená zatěžovací zkouška vykazuje vyšší únosnost piloty, než je tomu v případě systémových pilot. To je dáno s nejvyšší pravděpodobností technologickým provedením. Únosnost pilot je významně ovlivněna právě způsobem provedení a dá se předpokládat, že při realizaci zkušební piloty, která bude zatěžována a monitorována, je na správnou technologii provádění dbáno podstatně více, než v případě realizace vlastních pilot, kdy je již prováděcí firma často tlačena krátkými termíny doby výstavby. Realizace zatěžovacích zkoušek na nesystémových pilotách v předstihu před návrhem pilotových konstrukcí je jistě velice vhodná. Může přinést jak ekonomické úspory, bude-li zjištěno podloží únosnější, než bylo uvažováno, ale také v opačném případě předejít případným problémům s nadměrnou deformací konstrukce. Výsledky by však měly být z výše uvedeného důvodu brány s rezervou a částečně redukovány.

8.1 DOPORUČENÍ PRO DALŠÍ VÝVOJ OVĚŘOVÁNÍ SPOLUPŮSOBENÍ ZÁKLADOVÝCH KONSTRUKCÍ

Provedení obdobného průzkumu, jaký byl realizován na objektu 1.8003 "Obchodní a zábavní centrum FÓRUM NOVÁ KAROLINA", je záležitostí velice finančně náročnou a v praxi se tudíž běžně neprovádí. Pro přesnější zjištění spolupůsobení základové desky a piloty je však nezbytné a projektanti by měli mít snahu je u investorů prosazovat. Pro vyšší efektivitu by bylo vhodné u případných dalších průzkumů dodržovat následující doporučení:

- Aby mohlo být zatížení v pilotě stanoveno co nejpřesněji, měl by být průzkum proveden na podstatně jednodušší konstrukci, aby nevstupovalo do výpočtu tolik vlivů (jakým byl v tomto případě vztlak) a bylo by tedy jednodušší určit zatížení od horní stavby i v jednotlivých fázích výstavby.
- Měl by být proveden nivelační monitoring sloupů i při celkovém zatížení objektu, tj. při jejím užívání, aby bylo možné sledovat chování konstrukce i při vyšší deformaci.
- Je přínosné doplnit monitoring pilot o tenzometrické měření napětí ve vybraných sloupech, který by pomohl přesněji stanovit skutečné zatížení vstupující do základových konstrukcí. V každém sloupu by měla být osazena minimálně trojice či čtveřice strunových tenzometrů a to těsně nad základovou deskou.
- Taktéž je vhodné provést na lokalitě vždy minimálně dvě průkazné zatěžovací zkoušky, aby mohla být spolehlivěji určena únosnost pilot.

Do té doby, by rozhodně neměl být podíl základové desky na přenosu zatížení přeceňován a výsledky matematického modelování by měli být úměrně redukovány, tj. zvyšovány reakce v podporách (tzn. zatížení v pilotách).

Přiměřené se jeví zatím přisuzovat pilotám okolo 80 až 90% celkového zatížení z horní stavby a na tyto hodnoty potom hlubinné základy navrhovat.

9 LITERATURA

- [1] MASOPUST, J.: Vrtané piloty, Čeněk a Ježek s.r.o., Praha, 1994
- [2] MASOPUST, J.: *Speciální zakládání staveb, 1. díl*, Akademické nakladatelství CERM s.r.o., Brno, 2004
- [3] MASOPUST, J.: *Speciální zakládání staveb, 2. díl*, Akademické nakladatelství CERM s.r.o., Brno, 2006
- [4] WEIGLOVÁ, K.: Mechanika zemin, Akademické nakladatelství CERM s.r.o., Brno, 1998
- [5] ŠTĚPÁNEK, Z.: Zakládání staveb 10, Výpočty 1, Vydavatelství ČVUT, Praha, 1997
- [6] KOLÁŘ, V., NĚMEC, I.: *Modelling of Soil-Structure Interaction*, ELSEVIER, New York, Oxford, London, Amsterdam, Tokyo, 1989
- [7] KOLÁŘ, V.: *Matematické modelování geomechanických úloh*, Skriptum pro postgraduální studium FAST VUT Brno, 1990
- [8] KOLÁŘ, V., NĚMEC, I.: Contact Stress and Settlement in the Structure Soil Interface, Studie ČSAV 16.91, Academia, Praha, 1991
- [9] KOLÁŘ, V.: *FEM Z, Teoretický manuál k programům pro výpočty základů a zemních těles,* FEM consulting s.r.o., Brno, 1993
- [10] NEMETSCHEK SCIA, Teoretický manuál NEXIS 32 rel. 3.40, SILIN Iterační výpočet konstrukce podloží, Výpočet sedání a interakce plošných základů a podložím, SCIA CZ s.r.o.,
- [11] NEMETSCHEK SCIA, Teoretický manuál Scia Engineer, Soil-In (výpočet parametrů C), SCIA CZ s.r.o.,
- [12] BUČEK, J., NĚMEC, I., RUSINA, R., MÍČA, L., NOVÁK, D., TEPLÝ, B.: *Řešení interakce plošných konstrukcí s podložím*, Odborný internetový článek, Konstrukce Media s.r.o., 2009 (zdroj: http://www.konstrukce.cz/clanek/reseni-interakce-plosnych-konstrukci-s-podlozim)
- [13] ČSN 731001, Základová půda pod plošnými základy
- [14] ČSN 731002, Pilotové základy
- [15] ČSN 731201 Navrhování betonových konstrukcí
- [16] ČSN EN 1536, Provádění speciálních geotechnických prací Vrtané piloty
- [17] ČSN EN 206-1, Beton Část 1: Specifikace, vlastnosti a shoda
- [18] ČSN EN 1997-1, Eurokód 7: Navrhování geotechnických konstrukcí Část 1: Obecná pravidla
- [19] ČSN EN 1997-2, Eurokód 7: Navrhování geotechnických konstrukcí Část 2: Průzkum a zkoušení základové půdy

- [20] VUIS Zakladanie stavieb s.r.o.: *Sprava zaťažovacie skúšky pilót, Ostrava Nová Karolína*, zodpovědný řešitel Ing. Peter Mišove, CSc., Bratislava, 2008
- [21] TOPGEO Brno s.r.o.: Realizační projektová dokumentace Návrh monitoringu sedání, Nová Karolina, fáze I, 1.B.003 Obchodní a zábavní centrum, zodpovědný projektant Ing. Tomáš Komárek, Brno, 2010
- [22] TOPGEO Brno s.r.o.: Realizační projektová dokumentace speciální zakládání, Nová Karolina, fáze I, 1.B.003 Obchodní a zábavní centrum, Založení objektu, zodpovědný projektant Ing. Tomáš Komárek, Brno, 2010
- [23] GHE a.s.: Projekt geologicko průzkumných prací, Ostrava Helika, Průzkumy Karolina, Zodpovědný řešitel Ing. Tomáš Kempa, 2006
- [24] GHE a.s.: Projekt geologicko průzkumných prací, Ostrava Helika, Průzkumy Karolina, Zodpovědný řešitel Ing. Tomáš Kempa, 2007
- [25] K4 a.s.: Realizační dokumentace stavby, Forum Nová Karolina, fáze I, 1.B.003 Obchodní a zábavní centrum, ZBK Železobetonové kce, 01 - Dilatace K1, S1001910 Monolitická nosná konstrukce, Technická zpráva, Základová deska – Výkres tvaru, Zodpovědný projektant Ing. M. Mužík, Ing. L. Tluchoř, Ing. M. Šváb, 2010
- [26] K4 a.s.: Realizační dokumentace stavby, Forum Nová Karolina, fáze I, 1.B.003 Obchodní a zábavní centrum, ZBK Železobetonové kce, 02 - Dilatace K2, S1001910 Monolitická nosná konstrukce, Technická zpráva, Základová deska – Výkres tvaru, Zodpovědný projektant Ing. M. Mužík, Ing. L. Tluchoř, Ing. M. Šváb, 2010
- [27] K4 a.s.: Realizační dokumentace stavby, Forum Nová Karolina, fáze I, 1.B.003 Obchodní a zábavní centrum, ZBK Železobetonové kce, 03 - Dilatace K3, S1001910 Monolitická nosná konstrukce, Technická zpráva, Základová deska – Výkres tvaru, Zodpovědný projektant Ing. M. Mužík, Ing. L. Tluchoř, Ing. M. Šváb, 2010
- [28] K4 a.s.: Realizační dokumentace stavby, Forum Nová Karolina, fáze I, 1.B.003 Obchodní a zábavní centrum, ZBK Železobetonové kce, 04 - Dilatace K4, S1001910 Monolitická nosná konstrukce, Technická zpráva, Základová deska – Výkres tvaru, Zodpovědný projektant Ing. M. Mužík, Ing. L. Tluchoř, Ing. M. Šváb, 2010
- [29] K4 a.s.: Realizační dokumentace stavby, Forum Nová Karolina, fáze I, 1.B.003 Obchodní a zábavní centrum, ZBK Železobetonové kce, 05 - Dilatace K5, S1001910 Monolitická nosná konstrukce, Technická zpráva, Základová deska – Výkres tvaru, Zodpovědný projektant Ing. M. Mužík, Ing. L. Tluchoř, Ing. M. Šváb, 2010
- [30] TOPGEO Brno s.r.o.: Soubor dat Nivelační měření, formát .xls, Ing. Libor Helán
- [31] PPP s.r.o.: Soubor dat zatížení z horní stavby, formát .xls, Ing. Miroslav Šváb
- [32] PPP s.r.o.: *Model základové desky*, formát .epw, Ing. Miroslav Šváb
- [33] http://stavbaweb.dumabyt.cz

10 Použité zkratky a symboly

а	regresní součinitel měrného plášťového tření
A _i	plocha odpovídající uzlu i
A _z	průměr piloty v hloubce z
b	regresní součinitel měrného plášťového tření
d _i	průměr piloty v i-té vrstvě
d _p	průměr paty piloty
d _z	průměr piloty v hloubce z
<u>d</u>	vážený průměr profilů piloty
Di	hloubka od povrchu terénu do poloviny i-té vrstvy
e	regresní součinitel pod patou piloty
Еь	tabulkový modul pružnosti betonu
E _{def}	modul přetvárnosti
E _{oed,i}	oedometrický modul i-té vrstvy
$\overline{E_s}$	vážený průměr sečnového modulu def. zemin E _s podél dříku piloty
f	regresní součinitel pod patou piloty
F	síla působící na hlavu piloty
F _{z,s}	osová síla v hloubce z v dříku piloty odpovídající sednutí s
F _{s10}	zatížení piloty při sedání 10 mm
h _i	mocnost i-té vrstvy
I	příčinkový koeficient sedání piloty
l ₁	základní příčinkový koeficient závislý na poměru l/d
k	tuhost pružiny nahrazující pilotu
k _e	koeficient "cejchování" modulu pružnosti betonu
۱	délka piloty
l _i	mocnost i-té vrstvy
m	opravný součinitel přitížení
m _i	součinitel strukturní pevnosti poloprostoru nebo vrstvy
m ₁	koeficient podle druhu zatížení
m ₂	součinitel vlivu ochrany dříku piloty
n	počet vrstev, ve kterých je účinné napětí nezáporné
n	počet uzlů
q _p	napětí na patě piloty
q _{si}	mezní plášťové tření v i-té vrstvě
qs(z)	plášťové tření v hloubce z
$\overline{q_s}$	průměrné plášťové tření - vážený průměr mezního plášťového tření
Q _{min}	minimální hodnota proměnné
Q ₁	25% kvantil
Q₃	75% kvantil
Q _{max}	maximumalni hodnota promenne
R _{bu}	unosnost piloty pri predepsanem limitnim sedani 25 mm
К _к	KOREKCHI KOETICIENT VYJAARUJICI TUNOST PIIOTY
Кр D	sila v pate piloty
к _{ри} п	zauzeni v pale piłoty pro predepsane limitni sedani 25 mm
Кs D	sila prenasena plastem
K _{su}	unosnost na plasti plioty

- Ry zatížení na mezi plné mobilizace plášťového tření
- sy.....sedání odpovídající zatížení na mezi plné mobilizace plášťového tření
- s10..... sedání rovnající se 10 mm
- s₂₅..... limitní sedání piloty rovnající se 25 mm
- u_{z,i} globální posun uzlu i ve směru z
- \overline{x} Aritmetický průměr

β koeficient přenosu zatížení do paty piloty

- $\epsilon_{z,s}$ naměřené poměrné přetvoření v hloubce při zatížení odpovídajícímu sednutí s
- γ..... objemová tíha
- μ medián
- v..... poissonovo číslo
- σ..... směrodatná odchylka
- $\sigma_{or,i}$ původní geostatické napětí v poloprostoru nebo vrstvě
- σ_{s,i} strukturní pevnost poloprostoru nebo vrstvy
- σ_{z,i} svislá normálová složka napětí v pružném izotropním homogenním nekonečném poloprostoru nebo vrstvě
- $\sigma_{z,i}$ kontaktní napětí v uzlu i
- $\sigma_{z\dot{u}}$ \dot{u} činné napětí v pružném izotropním homogenním nekonečném poloprostoru nebo vrstvě

11 Soupis obrázků a tabulek

Obr. 1	Diagram iteračního cyklu [11]	12
Obr. 2 P	Přenos zatížení piloty do okolního prostředí [1]	13
Obr. 3 (Decne schema vrtane piloty ulozene ve vrstevnatem geologickem prostredi [1]	14
Obr. 4 N	Vlezni zatezovaci krivka osove zatizene piloty [1]	15
Obr. 5 F	$r_1[1]$	17
Obr. 6 F	$rubeh koeficientu K_k [1]$	1/
Obr. / S		20
Obr.8 ⊢	ORUM NOVA KAROLINA - Objekt "Obchodni a zabavni centrum" [32]	21
Obr. 9	ypove schema v miste piloty [25, upraveno autorem]	25
Obr. 10	FORUM NOVA KAROLINA – Pilotazni prace ve stavebni jame I	26
Obr. 11	FORUM NOVA KAROLINA – Pilotazni prace ve stavebni jame II	26
Obr. 12	FORUM NOVA KAROLINA – Pilotážní práce ve stavební jámě III	27
Obr. 13	FORUM NOVA KAROLINA – Bednéní a výztuž hlavice piloty	27
Obr. 14	FORUM NOVA KAROLINA – Realizace podkladních betonů l	28
Obr. 15	FORUM NOVA KAROLINA – Realizace podkladních betonů II	28
Obr. 16	FORUM NOVA KAROLINA – Realizace podkladních betonů III	29
Obr. 17	FORUM NOVA KAROLINA – Pokládání hydroizolace na podkladní betony I	29
Obr. 18	FORUM NOVA KAROLINA – Pokládání hydroizolace na podkladní betony II	30
Obr. 19	FORUM NOVA KAROLINA – Armování základové desky	30
Obr. 20	FORUM NOVA KAROLINA – Základová deska	31
Obr. 21	FÓRUM NOVÁ KAROLINA – Realizace objektu	31
Obr. 22	Schématické uspořádání statické zatěžovací zkoušky piloty ZZ2 [20, upraveno autorem]	33
Obr. 23	Zatěžovací zkouška pilot (Stavba Galerie ŠANTOVKA, Olomouc)	34
Obr. 24	Vyztužení a tvar zkušební piloty ZZ2	35
Obr. 25	Časový průběh zatěžování	36
Obr. 26	Pracovní diagram piloty	36
Obr. 27	FÓRUM NOVÁ KAROLINA – Fotodokumentace ze dne 18.6.2010 – Nulté měření sedání	38
Obr. 28	FÓRUM NOVÁ KAROLINA – Fotodokumentace ze dne 27.7.2010 – Nulté měření sedání	38
Obr. 29	FÓRUM NOVÁ KAROLINA – Fotodokumentace ze dne 25.8.2010 – Nulté měření sedání	39
Obr. 30	FÓRUM NOVÁ KAROLINA – Fotodokumentace ze dne 10.10.2010 – První "standartní" měř	ení
	sedání (ZS1)	39
Obr. 31	FÓRUM NOVÁ KAROLINA – Fotodokumentace ze dne 14.11.2010 – Druhé "standartní" měř	ení
	sedání (ZS2)	40
Obr. 32	Napětí na plášti q s /patě q p	46
Obr. 33	Průběh přenosových funkcí F _{z,s}	47
Obr. 34	Pracovní diagram piloty	48
Obr. 35	Napětí na plášti g _s	48
Obr. 36	Napětí na patě q	48
Obr. 37	Mobilizované plášťové tření v jednotlivých zatěžovacích stupních	50
Obr. 38	Ukázka formuláře pro výpočet zatížení pilot – Část I	51
Obr. 39	Ukázka formuláře pro výpočet zatížení pilot – Část II	52
Obr. 40	Pracovní diagram piloty	53
Obr. 41	Zatížení přenášené pilotou v závislosti na velikosti sedání	60
Obr. 42	Zatížení přenášené pilotou v závislosti na průměru piloty	60
Obr. 43	Zatížení přenášené pilotou v závislosti na velikosti sedání	62

Obr. 44	Závislost podílu zatížení přenášeného pilotou na celkovém zatížení	64
Obr. 45	Závislost podílu zatížení přenášeného pilotou na únosnosti piloty	64
Obr. 46	Histogram – Četnost podílu zatížen přenášeného pilotou	65
Obr. 47	Podíl zatížení přenášený pilotou – Gaussovo rozdělení	65
Obr. 48	Stanovení tuhosti pilot ze zatěžovací křivky	67
Obr. 49	Schéma matematického modelu – rozdělení do dilatačních celků	69
Obr. 50	Zatížení přenášené pilotou v závislosti na působícím zatížení	72
Obr. 51	Zatížení přenášené pilotou v závislosti na velikosti sedání	72
Obr. 52	Zatížení přenášené pilotou v závislosti na tuhosti piloty	73
Obr. 53	Histogram – Četnost podílu zatížení přenášeného pilotou	74
Obr. 54	Podíl zatížení přenášený pilotou – Gaussovo rozdělení	74
Obr. 55	K1 – Schéma modelu	75
Obr. 56	K1 – ZS3 – Deformace základové desky Uz	75
Obr. 57	K1 – ZS3 – Kontaktní napětí σ_z	76
Obr. 58	K1 – ZScelk – Deformace základové desky Uz	76
Obr. 59	K1 – ZScelk – Kontaktní napětí σ _z	77
Obr. 60	K2 – Schéma modelu	77
Obr. 61	K2 – ZS3 – Deformace základové desky Uz	78
Obr. 62	K2 – ZS3 – Kontaktní napětí σ_z	78
Obr. 63	K2 – ZScelk – Deformace základové desky Uz	79
Obr. 64	K2 – ZScelk – Kontaktní napětí σ _z	79
Obr. 65	K3 – Schéma modelu	80
Obr. 66	K3 – ZS3 – Deformace základové desky Uz	80
Obr. 67	K3 – ZS3 – Kontaktní napětí σ_z	81
Obr. 68	K3 – ZScelk – Deformace základové desky Uz	81
Obr. 69	K3 – ZScelk – Kontaktní napětí σ _z	82
Obr. 70	K4 – Schéma modelu	82
Obr. 71	K4 – ZS3 – Deformace základové desky Uz	83
Obr. 72	$K4 - ZS3 - Kontaktní napětí \sigma_z \dots$	83
Obr. 73	K4 – ZS3 – Deformace základové desky Uz	84
Obr. 74	K4 – ZS3 – Kontaktní napětí σ_z	84
Obr. 75	K5 – Schéma modelu	85
Obr. 76	K5 – ZS3 – Deformace základové desky Uz	85
Obr. 77	K5 – ZS3 – Kontaktní napětí σ_z	86
Obr. 78	K5 – ZScelk – Deformace základové desky Uz	86
Obr. 79	K5 – ZScelk – Kontaktní napětí σ _z	87
Obr. 80	Zatížení přenášené pilotou v závislosti na působící síle	88
Obr. 81	Sedání pilot v závislosti na působící síle	88

Tab. 1 Regresní koeficienty pro jednotlivé typy zemin a hornin [1]	16
Tab. 2 Sečnový modul deformace E_s [MPa] pro piloty ve skalních a poloskalních horninách [1]	17
Tab. 3 Sečnový modul deformace E_s [MPa] pro piloty v nesoudržných zeminách [1]	17
Tab. 4 Sečnový modul deformace E_s [MPa] pro piloty v soudržných zeminách [1]	18
Tab. 5 Zatěžovací zkouška ZZ2 – Naměřená data	36
Tab. 6 Tabulka nivelovaných pilot – Geometrie, Část I	41
Tab. 7 Tabulka nivelovaných pilot – Geometrie, Část II	42
Tab. 8 Tabulka nivelovaných pilot – Sedání, Část I	43

Tab. 9 T	Fabulka nivelovaných pilot – Sedání, Část II	44
Tab. 10	Výsledky tenzometrického měření	47
Tab. 11	Průběh plášťového tření	49
Tab. 12	Mobilizace únosnosti v závislosti na sedání	49
Tab. 13	Tabulka nivelovaných pilot – Zatížení od horní stavby, Část I	54
Tab. 14	Tabulka nivelovaných pilot – Zatížení od horní stavby, Část II	55
Tab. 15	Tabulka nivelovaných pilot – Porovnání zatížení v pilotě s celkovým zatížením, Část I	56
Tab. 16	Tabulka nivelovaných pilot – Porovnání zatížení v pilotě s celkovým zatížením, Část II	57
Tab. 17	Průměrná hodnota podílu zatížení, který přenáší pilota	58
Tab. 18	Tabulka monitorovaných pilot – základová spára na G3	59
Tab. 19	Tabulka monitorovaných pilot – základová spára na F8	51
Tab. 20	Průměrná hodnota podílu zatížení, který přenáší pilota	51
Tab. 21	Tabulka monitorovaných pilot vykazujících sedání 8 – 12 mm – Část I 6	52
Tab. 22	Tabulka monitorovaných pilot vykazujících sedání 8 – 12 mm – Část II 6	53
Tab. 23	Velikost tuhostí pružin nahrazující pilotu	58
Tab. 24	Tabulka pilot sledovaných v matematickém modelu, Část I	70
Tab. 25	Tabulka pilot sledovaných v matematickém modelu, Část II	71
Tab. 26	Tabulka sledovaných pilot – Zatěžovací stav 3 8	39

12 SEZNAM PŘÍLOH

- P1 Výpočet zatížení pilot
- P2 Půdorys pilot
- P3 Schéma základové desky