Česká zemědělská univerzita v Praze

Fakulta agrobiologie, potravinových a přírodních zdrojů

Katedra mikrobiologie, výživy a dietetiky

Česká zemědělská univerzita v Praze

Geny pro biosyntézu antibiotik u půdního bakteriálního společenstva interagujícího s rostlinou

Diplomová práce

Bc. Šárka Hrychová Obor studia: Výživa a potraviny

Vedoucí práce: doc. RNDr. Markéta Marečková, Ph.D.

© 2021 ČZU v Praze

Čestné prohlášení

Prohlašuji, že svou diplomovou práci "Geny pro biosyntézu antibiotik u půdního bakteriálního společenstva interagujícího s rostlinou" jsem vypracovala samostatně pod vedením vedoucího diplomové práce a s použitím odborné literatury a dalších informačních zdrojů, které jsou citovány v práci a uvedeny v seznamu literatury na konci práce. Jako autorka uvedené diplomové práce dále prohlašuji, že jsem v souvislosti s jejím vytvořením neporušila autorská práva třetích osob.

V Praze dne 26. 04. 2021

Poděkování

Ráda bych touto cestou poděkovala své vedoucí diplomové práce doc. RNDr. Markétě Marečkové, Ph.D. za poskytnuté odborné rady, vstřícný přístup a věnovaný čas. Dále bych ráda poděkovala Ing. Janu Kopeckému, Ph.D. z Výzkumného ústavu rostlinné výroby za pomoc a poskytnuté cenné rady při práci v laboratoři a zpracovávání výsledků. V neposlední řadě bych ráda poděkovala své rodině za podporu během celého studia.

Geny pro biosyntézu antibiotik u půdního bakteriálního společenstva interagujícího s rostlinou

Souhrn

Se zvyšující se zemědělskou produkcí roste i potřeba nových a udržitelných způsobů v boji proti patogenním mikroorganismům, které napadají plodiny a snižují tak jejich výnosnost. Mezi takové způsoby patří obohacování půdy antagonistickými mikroorganismy, které pomocí produkce antibiotik omezují růst nebo zcela eliminují patogenní mikroorganismy. Významným producentem antibiotik jsou bakterie z kmene *Actinobacteria*, převážně pak rod *Streptomyces*. U mnohých streptomycet byl potvrzen jejich pozitivní účinek proti patogenním mikroorganismům, které napadají zemědělské plodiny.

Cílem práce bylo izolovat chromozomální DNA z 10 kmenů půdních aktinobakterií. Poté byl u dvou vybraných kmenů rodu *Streptomyces*, které in vitro vykazovaly aktivitu vůči patogenní bakterii *Streptomyces scabiei*, proveden rozbor získané genomové sekvence pomocí programu antiSMASH. AntiSMASH určil podobnost biosyntetických drah v genomu se známými drahami pro sekundární metabolity v referenčních streptomycetách.

Z výsledků bylo zjištěno, že oba genomy streptomycet obsahují několik biosyntetických genových klastrů pro potencionální látky s antibiotickým účinkem. Všechny se odlišovaly od známých klastrů, ale různou měrou. Můžeme tedy předpokládat, že oba kmeny jsou schopny produkovat nové látky s antibakteriálním účinkem. Závěry potvrdily, že mezi příbuznými kmeny dochází k horizontálnímu přenosů genů, které se dále vyvíjejí a představují tak, jeden ze základních mechanismů diverzifikace bakteriálního genomu.

Výsledky této studie přinášejí podklady o vhodnosti využití bakteriálních kmenů na potencionální boj proti obecné strupovitosti způsobené patogenem *S. scabiei*, ale i proti dalším patogenním mikroorganismům. Je potřeba provést další pokusy, aby se zjistilo, které látky bakterie doopravdy produkují a jestli nemají na rostlinu nebo další organismy v rhizosféře negativní vliv.

Klíčová slova: Aktinobakterie, interakce s rostlinou, antibiotika, genomy

Genes for antibiotic biosynthesis in soil-bacteria-plant interactions

Summary

As agricultural production increases, so does the need for new and sustainable ways to combat pathogenic microorganisms that attack crops and reduce the yield. Such methods include enriching the soil with antagonistic microorganisms which, through the production of antibiotics, restrict the growth of pathogenic microorganisms or completely eliminate them. Bacteria from the phylum *Actinobacteria*, mainly the genus *Streptomyces*, are important producers of antibiotics. Many streptomyces have already been shown to have a positive effect in the fight against pathogenic microorganisms that attack agricultural crops.

The aim of the paper was to isolate chromosomal DNA from 10 strains of soil actinobacteria. Subsequently, two selected strains of the genus *Streptomyces*, which showed in vitro activity against the pathogenic bacteria *Streptomyces scabiei*, were subjected to analysis of the obtained genomic sequence using the antiSMASH program. AntiSMASH determined the similarity between biosynthetic pathways in the genome and known pathways for secondary metabolites in reference streptomyces.

The results showed that both genomes of streptomyces contain several biosynthetic gene clusters for potential substances with antibiotic effect. They all differed from known clusters, but to varying degrees. It can therefore be assumed that both strains are able to produce new substances with antibacterial effect. The conclusions confirmed that there are horizontal gene transfers between related strains, which further develop and thus represent one of the basic mechanisms of bacterial genome diversification.

The results of this study provide evidence of the suitability of bacterial strains for the potential fight against common scab caused by the pathogen *S. scabiei*, but also against other pathogenic microorganisms. Further experiments are needed to find out which substances bacteria actually produce and whether they do not have a negative effect on the plant or other organisms in the rhizosphere.

Keywords: Actinobacteria, interaction with the plant, antibiotics, genomes

Obsah

1	Úvod	•••••		8
2	Vědeo	cká h	ypotéza a cíle práce	9
3	Litera	ární	rešerše	
	3.1	Akt	tinobakterie	10
	3.1.	1	Streptomycety	11
	3.2	Inte	erakce aktinobakterií s rostlinou	
	3.2.	1	Patogenní aktinobakterie	
	3.2.	2	Příklady účinků streptomycet proti rostlinným patogenům	
	3.3	Ant	tibiotika	
	3.3.	1	Biosyntéza antibiotik	17
	3.3.	.2	Produkce antibiotik u aktinobakterií	
	3.3.	.3	Významná antibiotika produkovaná streptomycetami	
4	Meto	dika		
	4.1	Bał	xteriální kmeny	27
	4.2 Seznam chemikálií			
	4.3 Kultivace			
	4.4 Izolace chromozomální DNA			
	4.5 Izolace chromozomální DNA pomocí tekutého dusíku			
	4.6	Ele	ktroforéza	
	4.7 Sekvenace			
	4.8	Ana	alýza genomu	
5	Výsle	dky.		
	5.1	Izo	ace chromozomové DNA	
	5.2	Ses	tavení vybraných biosyntetických klastrů	
	5.2.	1	Kmen 09Zd22	
	5.2.	2	Kmen 09VK39	
6	Diskuze99			
7	Závěr 102			
8	Literatura103			
9	Samostatné přílohy I			

1 Úvod

Potřeba zemědělské produkce roste s narůstajícím počtem obyvatel. Škůdci a onemocnění rostlin snižují výnos zemědělských plodin až o třetinu (Oerke 2006). Možnost hnojení a ochrany rostliny před patogenními mikroorganismy prostřednictvím průmyslově vyráběných látek není vždy vhodná kvůli přetrvávající rezistenci a přenosu reziduí pesticidů do potravin. Je proto potřeba přicházet s udržitelnými způsoby produkce zemědělských plodin. Mezi takové patří obohacování půdy přirozeně antagonistickými mikroorganismy, které jsou schopny potlačit růst nebo dokonce i zcela eliminovat patogenní mikroorganismy.

Přirozený výskyt určitých bakterií v půdě dává vzniknout takzvaným půdám potlačujících choroby (z anglického disease suppressive soils). V těchto půdách rostliny onemocní v menší míře, případně vůbec i za přítomnosti patogenního mikroorganismu (Mendes et al. 2011). Za účinnost těchto půd je zodpovědná produkce sekundárních metabolitů, zejména antibiotik, kterými bakterie půdu obohacují a mohou tak zabránit růstu patogenních mikroorganismů. Tyto půdy představují nejvhodnější možnost ochrany rostliny před půdními patogeny (Weller et al. 2002).

V půdě jsou bakterie nejvíce zastoupeny kmeny *Proteobacteria, Acidobacteria* a *Actinobacteria.* Z aktinobakterií je pak významným producentem antibiotik, které se využívají jak v medicínském, tak i zemědělském odvětví, rod *Streptomyces.* Mimo produkce antibiotik mají streptomycety v půdě několik dalších funkcí. Mohou rozkládat obtížně rozložitelné organické látky, jako je například celulóza, lignin a pektin pomocí extracelulárních enzymů (Charpentier & Percheron 1983; Li & Gao 1996). Dále produkcí siderophorů zvyšují rostlinám přísun rozpustného železa z půdy (Tkacz & Poole 2015). Hydrolyzují také organické a anorganické nerozpustné sloučeniny fosforu na rozpustnou formu, kterou pak rostlina může přijmout (Jog et al. 2014). Důležitost výskytu určitých bakterií v půdě potvrzuje skutečnost, že až 20 000 druhů rostlin pro svůj růst potřebuje symbiózu s bakteriemi, které jim zajišťují zlepšený příjem živin nebo ochranu před patogenními mikroorganismy (van der Heijden et al. 2008).

2 Vědecká hypotéza a cíle práce

Cílem práce je izolovat chromozomální DNA z 10 kmenů půdních aktinobakterií. Poté u dvou vybraných kmenů provést rozbor získané genomové sekvence a najít biosyntetické dráhy kódující látky s potencionálním antibiotickým účinkem.

H: Nové genomy budou obsahovat několik klastrů pro biosyntézu sekundárních metabolitů a ty budou vykazovat odlišnou podobnost se známými klastry.

3 Literární rešerše

3.1 Aktinobakterie

Aktinobakterie jsou grampozitivní bakterie, představující jeden z nejpočetnějších kmenů domény Bacteria (Ludwig et al. 2012). Jejich buněčná stěna obsahuje peptidoglykan, který je složen z N-acetyl-glukosaminu, N-acetyl-D-muramové kyseliny a kyseliny diaminopimelové. Na peptidoglykan jsou navázány kyseliny teichoovová a teichuronová (Bhatti et al. 2017).

Mohou se vyskytovat jak v terestrickém, tak i ve vodním ekosystému, ale i ve vzduchu (Kettleson et al. 2013). Některé aktinobakterie mohou osidlovat i lidský organismus jako zástupci rodu *Bifidobacterium*, kteří jsou součástí lidského mikrobiomu, a pro lidský organismus jsou tyto bakterie prospěšné. Na druhou stranu existují i pro člověka patogenní zástupci. Zástupce rodu *Streptomyces S. somaliensis*, způsobuje onemocnění kůže zvané mycetom (Fahal & Hassan 1992). Další patogenní zástupci jsou z rodu *Mycobacterium. M. tuberculosis* způsobuje závažné plicní onemocnění tuberkulózu, *M. leprae* způsobuje chronické infekční onemocnění lepru (Russell 2001; Sasaki et al. 2001).

V půdě aktinobakterie představují jeden z nejpočetnějších kmenů společně s proteobakteriemi a acidobakteriemi (Fierer et al. 2007). Hustota aktinobakterií může být až 10⁹ buněk na gram půdy a jejich výskyt dosahuje i hloubek více než 2 metry pod zemí (Goodfellow & Williams 1983). Půdní aktinobakterie jsou většinou mesofilní mikroorganismy, tudíž optimální teplota pro jejich růst se pohybuje mezi 25 až 30°C. Existují i termofilní aktinobakterie, které jsou schopny růst i mezi 50 až 60 °C nebo psychrotrofní aktinobakterie, které jsou schopné žít v nízkých teplotách (Edwards 1993; Yadav et al. 2017). Mnoho zástupců bylo nalezeno i v extrémních oblastech jako jsou kyselé půdy (Kim et al. 2003), pouště (Kurapova et al. 2012), Arktická (Augustine et al. 2012) i Antarktická oblast (Lee et al. 2012), nebo v horké prameny v Číně (Duan et al. 2014). Ve vodě se mohou vykytovat jak ve sladké, tak i v mořské (Subramani & Aalbersberg 2013). Byly dokonce i nalezeny v sedimentu z Mariánského příkopu (Pathom-aree et al. 2006).

Typickým znakem aktinobakterií je vysoký obsah párů cytosinu a guaninu v DNA. U sladkovodních aktinobakterií bývá obsah těchto párů nižší (Ghai et al. 2012).

Morfologie aktinobakterií zahrnuje jednobuněčné koky nebo tyčinky zástupců *Micrococcus a Mycobacterium*, až po morfologicky složité zástupce *Amycolatopsis*, *Frankia a Streptomycetes*, které mohou tvořit rozvětvené mycelium (Barka et al. 2016).

Velikost genomu aktinobakterií je různorodá. U druhů, které žijí ve speciálním prostředí, není potřeba složitý metabolismus, a proto jsou u nich i menší genomy. Naopak bakterie s větším genomem jsou schopny se přizpůsobit různým prostředím, díky tomu, že mohou využívat více zdrojů živin. Nejmenší genom z aktinobakterií byl osekvenován u bakterie *Tropheryma whipplei* a obsahoval 0,93 Mbp (Bentley et al. 2003), největší u *Streptomyces rapamycinicus* 12,7 Mbp (Baranasic et al. 2013).

Aktinobakterie produkují až polovinu z 22000 bioaktivních látek, které jsou bakteriálního původu (Bérdy 2005). Jsou významnými producenty antibiotik, kdy rod *Streptomycetes* produkuje až 80 % známých antibiotik (Watve et al. 2001). Udává se, že až 99,999 %

mikrobiální diverzity zůstává neprozkoumáno a nabízí se zde tedy i možnost objevení nových bioaktivních látek, zejména antibiotik (Locey & Lennon 2016).

3.1.1 Streptomycety

Rod *Streptomyces* patří do řádu *Actinomycetales*, kmenu *Actinobacteria*. Svůj název získaly z latinského streptos = vláknitý a myces = houby, odkazující na jejich pozoruhodný životní cyklus. Streptomycety jsou obligátně aerobní saprofytické bakterie. Nejvíce se vyskytují v půdách, a to v množství okolo 10^6 až 10^7 KTJ na gram půdy (Janssen 2006). Streptomycety jsou původcem typického zemitého zápachu půdy, a to převážně díky produkci bicyklického alkoholu geosminu (Gerber 1967) a 2-methylsoborneolu (Gerber 1969). Většina streptomycet jsou mezofilní mikroorganismy, tedy optimální teplota pro jejich růst je do 30 °C. Existují i zástupci, kteří mohou růst i v teplotách do 55 °C (Al-Dhabi et al. 2016), nebo dokonce i při 65 °C (Xu et al. 1998).

Životní cyklus streptomycet je, co se týče bakterií, velmi ojedinělý. Tím, že se množí pomocí spor a tvoří mycelium, připomíná životní cyklus vláknitých hub (viz Obr. 1). Začíná klíčením spory. Když se spora nachází v příznivých životních podmínkách, dochází k jejímu vyklíčení a následnému růstu hyf. Hyfy se mohou různě rozvětvovat a tvořit tak větvené vegetativní mycelium. Při růstu vegetativních hyf nedochází k dělení buněk a vzniká tak mnohobuněčný komplex (Claessen et al. 2014). Růst hyf je polarizovaný a ovlivňuje ho komplex proteinů zvaný polarisom, který i udává, kde se hyfa bude rozvětvovat (Flärdh et al. 2012). Z vegetativního mycelia rostou vzdušné hyfy, které rozvětvené nejsou. Možnost růstu hyfám do vzduchu zajišťují bld geny (Kelemen & Buttner 1998). Při fázi růstu vzdušných hyf dochází k postupné degradaci vegetativního mycelia prostřednictvím programované buněčné smrti, čímž si streptomycety zajišťují stavební bloky pro růst vzdušných hyf (Fernández & Sánchez 2002; Manteca et al. 2006). Vzdušné hyfy za nepříznivých podmínek diferencují v řetízky spor. Pro zahájení sporulace jsou potřebné geny skupiny whi (Hamedi et al. 2017). Vzniklé spory se pak mohou rozptýlit v prostoru. Streptomycety v podobě spor za nepříznivých životních podmínek, jako je například nedostatek živin, mohou strávit i většinu svého životního cyklu (Mayfield et al. 1972).

Obr. 1: Životní cyklus streptomycet (Hamedi et al. 2017).

Chromozom streptomycet je lineární (Lin et al. 1993), má obvykle velikost v rozmezí 6 až 10 Mbp a obsah párů cytosinu a guaninu v DNA bývá kolem 70 % (Bentley et al. 2002). Chromozom se skládá z centrální části a dvou nestejně dlouhých ramen. Linearita chromozomu pravděpodobně vznikla jednorázovou rekombinací mezi lineárním plazmidem a původním kruhovým chromozomem. Replikaci lineárního chromozomu zahajuje centrálně umístěný počátek replikace oriC bohatý na sekvence boxu DnaA a replikace probíhá obousměrně směrem k telomerám (Smulczyk-Krawczyszyn et al. 2006). Tím, že je chromozom lineární, replikační vidličky se nemohou potkat a dokončit tak replikaci koncových částí chromozomu. Ukončení replikace probíhá pomocí terminačních proteinů, které se nacházejí na volných 5'-koncích. Ty napomáhají při syntéze posledního Okazakiho fragmentu na 3'konci. V centrální části se dále nacházejí takzvané housekeeping geny, tedy geny nezbytné pro chod buňky a tato část je velmi konzervovaná (Chater et al. 2010). Na ramenech nacházejí geny specifické pro druh a tato část je variabilní (Choulet et al. 2006). Na obou koncích ramen se vykytuje i mnoho genů pro transposázy, které mohou hrát důležitou roli během evolučního horizontálního přenosů genů (Omura et al. 2001).

Studiem chromozomu *S. coelicolor* se poprvé dokázalo, že bakterie může nést více genů než eukaryotické organismy. *S. coelicolor* nese 7825 genů, kvasinka *Saccharomyces cerevisiae* pouze 6203 (Bentley et al. 2002).

Streptomycety hrají důležitou roli v recyklaci uhlíku, který je zachycen v nerozpustných organických zbytcích jako je chitin, lignin nebo celulóza, které se nacházejí v buněčných stěnách hub a rostlin (Charpentier & Percheron 1983; Li & Gao 1996). Pomocí hydrolytických extracelulárních enzymů jsou streptomycety schopné tyto obtížně rozložitelné organické látky rozložit. *S coelicolor*, první osekvenovaná streptomyceta, je schopna produkovat 60 peptidáz, 8 celuláz 13 chizináz a 3 amylázy (Bentley et al. 2002). Pro rozklad chitinu mají streptomycety velmi dobře rozvinutý chitinázový systém, kdy chitinázy štěpí β-1,4 glykosidové vazby mezi jednotkami N-acetylglukosaminu (GlcNAc). Prostřednictvím této reakce pak z chitinu získávají GlcNAc, který je pro ně preferovaným zdrojem uhlíku a dusíku. (Schrempf 2001; Światek et al. 2012).

3.2 Interakce aktinobakterií s rostlinou

Aktinobakterie se mohou vyskytovat jako součást bakteriálního půdního společenstva, zejména v oblastech rhizosféry, ale mohou žít i ve vnitřních částech rostliny, jako endofytní mikroorganismy. Endofytní mikroorganismy mohou i větší část svého životního cyklu strávit přímo ve vnitřních částech rostliny a svým vlivem hostitelskou rostlinu ochraňovat před různými biotickými i abiotickými faktory (Dimkpa et al. 2009). Některé endofytní streptomycety mohou produkovat fytohormony ze skupiny auxinů, například kyselinu indol-3-octovou, která podporuje rostlinný růst a pomoct tak přežít rostlině ve stresovém prostředí, například při nedostatku vody (Yandigeri et al. 2012).

V půdě se pak aktinobakterie podílejí na vzniku půd potlačujících choroby. Půdy potlačující choroby můžeme rozdělit na dva typy účinku. První je obecné potlačovaní, které souvisí s celkovým zastoupením bakteriálního společenstva v půdě. Tento typ potlačování není přenosný mezi půdami. Druhý typ účinku je specifické potlačování. Specifické potlačovaní patogenů je dáno účinkem specifické bakterie nebo vybrané skupiny. Specifické potlačování lze přenést mezi půdami, a je to jeho klíčová vlastnost (Weller et al. 2002). Pokud víme, jaká bakterie nebo skupina bakterií jsou za potlačování chorob zodpovědné, můžeme tyto speciální bakterie inokulovat do jiné půdy a zajistit tak omezení růstu patogenního mikroorganismu.

Aktinobakterie mohou růst rostlin a jejich ochranu před patogeny podporovat různými způsoby. Mohou produkovat různá antibiotika, které zamezují růst patogenů, nebo mohou rostlině zlepšovat využitelnost látek z půd. Aktinobakterie mohou produkovat siderofory, prostřednictvím kterých pak může rostlina navýšit svůj příjem železa z půdy. Rostliny si produkují vlastní siderofory, ale bakteriální siderofory mají vyšší afinitu k železu. Tím, že rostlina získá víc železa z půdy, sníží se dostupnost železa pro ostatní mikroorganismy, které mohou být pro rostlinu patogenní, například pro různé houby (Tkacz & Poole 2015).

Streptomycety jsou také schopny hydrolyzovat organické i anorganické nerozpustné sloučeniny fosforu na rozpustnou formu a ten pak rostliny snadno přijímají. Schopnost hydrolyzovat nerozpustné sloučeniny fosforu souvisí s produkcí organických kyselin (Jog et al. 2014).

Bakterie z rodu *Frankia* mohou vstupovat do symbiózy s různými krytosemennými rostlinami, které se soustavně označují jako aktinorhizální rostliny. Tyto rostliny většinou rostou v neúrodných půdách a často slouží i jako průkopnické rostliny na začátku vývoje rostlinného společenství na daném území. Bakterie vyvolají růst kořenových uzlin, které mají schopnost vyvazovat dusík pomocí enzymu nitrát reduktázy. Tím umožní těmto rostlinám molekulární dusík z půdy fixovat a rostliny jsou pak schopné přežít i v méně úrodných oblastech (Benson & Silvester 1993). K fixaci dusíku napomáhají i bakterie z rodu *Micronospora*. Ty mohou být přítomny v uzlinách kořenů luskovin a svojí přítomností mohou stejně jako *Frankia* regulovat růst uzliny. Bakterie *Micronospora* obsahují geny kódující trehalázu. Trehaláza je enzym, který degraduje trehalózu a podílí se tím na regulaci růstu uzlíku. Inokulace kmene *M. lupini Lupac 08* do luštěnin při in vitro pokusech pomohla jejich dobré prosperitě (Trujillo et al. 2014).

3.2.1 Patogenní aktinobakterie

Některé aktinobakterie mohou být pro rostlinu i patogenní (Loria et al. 1997). Mezi patogenní zástupce patří například *Streptomyces scabiei*, která způsobuje obecnou strupovitost hlíz brambor (viz Obr. 2). Mimo brambory také postihuje další kořenové rostliny jako je mrkev, ředkvičky nebo řepa (Loria et al. 2006). U podzemnice olejné může způsobovat onemocnění zvané "Peanut pod wart", které se projevuje tmavými bradavicemi na plodu arašídů (Kritzman et al. 1996). *S. scabiei* je schopna produkovat fytotoxin thaxtomin A (strukturní vzorec viz Obr. 3), který způsobuje toto onemocnění. Thaxtomin A inhibuje syntézu celulózy v rostlinné tkáni, a tím dochází k vyvolání nekrózy na povrchu brambor. Při pokusech in vitro bylo prokázáno, že množství produkovaného thaxtominu A koreluje s agresivnějšími projevy onemocnění (Kinkel et al., 1998). Byly objeveny i další streptomycety způsobující strupovitost brambor, například *S. europaeiscabiei, S. stelliscabiei, S. reticuliscabiei* a *S. turgidiscabiei* (Miyajima et al. 1998; Bouchek-Mechiche et al. 2000). *S. acidiscabiei* také způsobuje strupovitost brambor a je schopná přežít i v kyselých půdách, které mají pH menší než 5 (Lambert & Loria 1989).

Obr. 2: Strupovitost brambor způsobená patogenní *S. scabiei*. Bakterie infikuje hlízu jen pokud dochází k jejímu růstu. Po ukončení růstu hlízy se další strupy nevyvíjejí. Léze mají obvykle kulatý tvar a může docházet i k jejich spojování. Léze mohou být povrchní nebo erupční s hlubokými jamkami uprostřed (Loria et al. 2006).

Thaxtomin A

Obr. 3: Strukturní vzorec thaxtominu A (Loria et al. 2006).

Mezi další fytopatogenní aktinobakterie patří *Rhodococcus fascians*. Svým působením ovlivňuje normální růst dvou a jednoděložných rostlin, a dává tak vzniknout onemocnění nazývaném listová žluč (Vereecke et al. 2000).

Aktinobakterie *Clavibacter michiganensis* infikuje xylém rostlin, například rajčat, a způsobuje tak jejich vadnutí (Gartemann et al. 2003).

3.2.2 Příklady účinků streptomycet proti rostlinným patogenům

V různých studiích se prokázaly pozitivní účinky streptomycet v boji proti škůdcům různých hospodářsky významných rostlin. Zvýšený výskyt streptomycet byl objeven v půdách, které potlačovaly výskyt plísně *Fusarium oxysporum*, postihující například jahody. Streptomycety nalezené v těchto půdách syntetizovaly thiopeptid s označením S4-7, který byl schopen inhibovat růst buněčné stěny plísní (Cha et al. 2016). Proti plísni *Fusarium oxysporum* se ukázala být specificky ze streptomycet účinná i *S. albospinus*, která vykazovala produkci širokého spektra antibiotik a chitinázy, která je schopna narušovat buněčné stěny hub degradací chitinu (Wang et al. 2016). Nedávná studie prokázala účinek streptomycet i oproti plísni *Sclerotinia sclerotiorum* postihující okurky (Mun et al. 2020).

Další studie prokázala, že streptomycety mohou mít inhibiční účinek i proti bakteriím *Erwinia amylovora*, která způsobuje bakteriální spálu růžovitých a *Agrobacterium tumafanciens*, která je původce onemocnění "Crown gall", při kterém se na kořenech nebo větvičkách tvoří výrůstky nebo hniloby (Oskay et al. 2004). Streptomycety mají i účinek proti houbě *Pyrenochaeta lycopersici*, která je původcem onemocnění vzniku korkového kořene, které postihuje například rajčata. Dále jsou schopny i potlačovat verticiliové vadnutí u lilku způsobované houbami z rodu *Verticillium* (Bubici et al. 2013).

S. roseolus a *S. yanglinensis* prokázaly pozitivní účinky proti plísni *Aspergillus flavus*. *A. flavus* je hlavní producent mykotoxinu alfatoxinu B₁, který se považuje za jeden z nejnebezpečnějších přírodních karcinogenů a postihuje hlavně obilniny a olejniny (Caceres et al. 2018; Shakeel et al. 2018). Streptomycety mohou *A. flavus* inhibovat pomocí produkce antibiotik blasticidin A a dioctatin A (Sakuda et al. 2000; Yoshinari et al. 2007).

Další studie potvrdily účinek streptomycet proti houbě *Botrytis cinerea*, která se na různých plodinách, například na vinné révě, objevuje jako šedá plíseň (Loqman et al. 2009). *Botrytis cinerea* není pro vinnou révu jenom patogenní. Na vybraných odrůdách vína se ušlechtilá *B. cinerea* využívá ke snížení obsahu vody v hroznu, pro vznik sladších vín.

Fytoftorová hniloba kořenů a krčků je onemocnění, které způsobují oomycety z druhu *Phytophthora*, například *P. sojae*, která postihuje sóju luštinatou a způsobuje každoročně velké

ztráty v produkci sóji. I proti tomuto onemocnění se ukázaly streptomycety jako účinné (Xiao et al. 2002).

Gaeumannomyces graminis var. *Tritici* je patogenní houba, které je původcem choroby "take-all", což je celosvětově nejzávažnější kořenové onemocnění pšenice. "Take-all" název dostalo toto onemocnění podle toho, že ničí celé porosty pšenice. Inokulací endofytních streptomycet došlo k omezením projevům toho onemocnění ze 70 % (Coombs et al. 2004).

Rhizoctonia solani způsobuje plíseň rýžového pláště, jednu z nejničivějších chorob postihující rýžová pole. *S. padamus* produkuje fungichtomin, který se schopen inhibovat růst *R. solani* (Yang et al. 2021). Proti *R. solani* se ukázal být i účinný antifungalmycin N2 produkovaný streptomycetami (Zhang et al. 2020b). Další onemocnění rýže způsobuje bakterie *Xanthomonas oryzae*, která způsobuje destruktivní onemocnění "Bacterial Blight". Studiem se ukázalo, že proti tomuto patogennímu mikroorganismu má dobrý účinek *S. bottropensis*. Ta je schopna produkovat antibiotika bottromycin A2 a dunaimycin D3S (Park et al. 2011). Další patogenní bakterií postihující rýži je *Burkholderia glumae* způsobující onemocnění zvané "Bacterial Panicle Blight". I proti této bakterii se streptomycety ukázaly být taktéž účinné, a to produkcí antibiotik streptothricinu F, D a E (Suárez-Moreno et al. 2019). Antifugální antibiotikum kasugamycin, produkované *Streptomyces kasugaensis*, se používá k potlačení onemocnění rýže, způsobené fytopatogenní houbou *Magnaporthe oryzae* (anamorfa

Pomocí produkce kyseliny indol-3-octové, sideroforů a schopnosti hydrolyzovat nerozpustné sloučeniny fosforu streptomycety byly schopné inhibovat hlavní patogeny pepřovníku černého *Phytophthora capsici* a *Sclerotium rolfsii*, které způsobují jeho hnilobu, a *Colletotrichum capsici* postihující chilli papričky (Thampi & Bhai 2017; Thilagam & Hemalatha 2019).

Studie prokázaly, že streptomycety mají i antivirový účinek. Například proti viru tabákové mozaiky, postihující převážně tabák ale i další lilkovité rostliny (Ara et al. 2012).

Streptomycety jsou schopny produkovat i insekticidy. Například insekticid, který je aktivní proti motýlu Černopásce bavlníkové, který je vážným škůdcem hospodářsky významných plodin (Arasu et al. 2013).

Některé druhy se používají i v komerčně vyráběných přípravcích. *S. griseoviridis* v přípravku Mycostop se využívá v boji proti různým půdním patogenům, například je účinná proti plísním *Alternaria brassicola* a *Fusarium culmorun* (Tahvonen 1982; Landenperä et al. 1991). *S. lydicus* se využívá v přípravku Actinovate proti plísni *Fusarium* (Himmelstein et al. 2014). Antimikrobiální látky, které jsou produkovány streptomycetami, jako jsou polyoxin D, streptomycin a kasugamycin se prodávají i jako fungicidní a baktericidní postřiky na listy (Rey & Dumas 2017).

3.3 Antibiotika

Antibiotika představují různorodou skupinu sekundárních metabolitů, které svým působením omezují růst nebo způsobují úhyn mikroorganismů. Svým účinkem obvykle negativně působí na replikaci DNA, syntézu RNA, syntézu proteinů nebo syntézu buněčné stěny.

3.3.1 Biosyntéza antibiotik

Geny pro biosyntézu antibiotik jsou na chromozomu uspořádány v biosyntetických klastrech. Biosyntetické klastry mohou být ohraničeny transposázami, které umožnují horizontální přenos genů mezi jednotlivými mikroorganismy (Omura et al. 2001).

V klastrech se často nacházejí i geny pro rezistenci vůči vznikajícímu antibiotiku a jejich exprese je regulována společně (Mak et al. 2014). Pokud je antibiotikum xenotoxické, to znamená, že nemá v buňce příslušný cíl svého účinku, není potřeba aby na něj mikroorganismus měl speciální geny pro rezistenci. Pokud však mikroorganismus syntetizuje antibiotikum, které je pro něj toxické, musí mít vyvinutý specifický a účinný rezistenční mechanismus, který ho ochrání (Vining 1979).

Mezi obecné rezistenční mechanismy patří například export antibiotika z buňky. Příkladem exportérů jsou ABC (ATP binding cassette) transportéry a MFS (major facilitator superfamily) transportéry. ABC transportéry antibiotikum přenesou ven z buňky za pomocí hydrolýzy ATP (Méndez & Salas 2001). MFS transportéry mohou fungovat buď jako antiportery, symportery nebo uniportery a katalyzovat tak transport antibiotika (Quistgaard et al. 2016). Další možností ochránění je modifikace syntetizovaného antibiotika. Například v biosyntetickém klastru pro syntézu streptomycinu u *S. griseus* je kódovaný enzym streptomycin 6-fosfotransferáza, která modifikuje streptomycin na neaktivní prekurzor streptomycin-6-fosfát (Sugiyama et al. 1981). Další enzymy modifikující antibiotika mohou být acetyltransferázy nebo adenyltransferázy (Peterson & Kaur 2018). Dalším rezistenčním mechanismem je modifikace cílového místa antibiotika. Například glykopeptidová antibiotika tvoří pevný komplex s D-Ala-D-Ala koncem peptidoglykanu a inhibují tak růst buněčné stěny (Reynolds 1989). Rezistenčním mechanismem dojde ke změně koncového D-Ala-D-Ala na D-Ala-D-Lac nebo D-Ala-D-Ser, ke kterým mají glykopeptidová antibiotika menší afinitu (Bugg et al. 1991; Billot-Klein et al. 1994).

V biosyntetických klastrech se nacházejí i různé transkripční faktory, které ovlivňují transkripci příslušného genu. U streptomycet to mohou být například takzvané SARPs (Streptomyces antibiotic regulator proteins). SARPs obsahují motiv helix-turn-helix směrem k jejich k jejich N-koncům příslušných polypeptidů (Wietzorrek & Bibb 1997). SARPs rozpoznávají heptamerní repetice v promotorových oblastech genů, které regulují (Arias et al. 1999).

Velkou část antibiotik představují polyketidová antibiotika. Biosyntéza polyketidů se podobá biosyntéze masných kyselin. Při každém kroku dochází k prodlužování řetězce založené na Claisenově kondenzaci, pomocí které se začleňuje prodlužovací podjednotka do rostoucího řetězce. Při biosyntéze polyketidů se na rozdíl od syntézy masných kyselin mohou jako startovací jednotky využívat kromě acetyl-CoA i jiné homology acyl-CoA, například butyryl-CoA. Prodlužovací jednotky mohou být například malonyl-CoA, methylmalonyl-CoA nebo ethylmalonyl-CoA.

Biosyntézu polyketidů provádějí složité enzymové komplexy polyketidové syntázy (PKS). PKS můžeme rozdělit do tří základních typů. PKS typu I, se skládá z několika modulů. Každý modul se skládá z domén se specifickými funkcemi a zajišťuje jeden cyklus prodloužení polyketidového řetězce. Každý modul vždy obsahuje tři základní domény a to acyltransferázu (AT), acylový proteinový nosič (ACP) a ketosyntázu (KS). Tyto tři domény provádějí prodloužení polyketidové kostry pomocí začleňování prodlužovacích jednotek. Dále mohou být přítomny další domény, které jsou odpovědné za modifikaci ketoskupiny a to ketoreduktáza (KR), dehydratáza (DH) a enoylreduktáza (ER) (viz Obr. 4) (Risdian et al. 2019). PKS typu I se dále dělí na iterativní a modulární. Iterativní PKS využívají k syntéze polyketidu domény opakovaně. U modulárních PKS je počet modulů stejný jako počet prodlužovacích jednotek.

U tohoto typu antibiotik, začíná biosyntéza na startovacím modulu navázáním acetyl-CoA nebo jeho analogů na ACP pomocí AT. Takto navázaný řetězec je předán do následujícího prvního modulu do domény KS. Přicházející elongační skupina je navázána na ACP prvního modulu. Navázání elongační skupiny na ACP je katalyzováno AT prvního modulu. KS katalyzuje Claisenovu kondenzaci mezi elongační skupinou na ACP a řetězcem na KS (Staunton & Weissman 2001). Dochází k uvolnění CO₂ a celý polyketidový řetězec zůstává navázaný na ACP, KS doména je volná. Mezi ACP a KS existují slabé ale specifické interakce, které zajišťují, aby KS navázala řetězec na správný ACP v případě, že se v buňce nachází více podobných ACP (Khosla 2009). Takto syntetizovaný polyketidový řetězec může být dále upraven pomocí KR, DH a ER. KR redukuje β -keto skupinu na β -hydroxy skupinu. DH odštěpuje H₂O. ER redukuje dvojnou vazbu mezi α a β uhlíkem na vazbu jednoduchou. Vzniklý polyketid se pak dále přesune na KS doménu druhého modulu a syntéza pokračuje dál. Syntéza polyketidů bývá ukončena hydrolýzou, kterou zajištuje thioesterázová (TE) doména na posledním modulu (Staunton & Weissman 2001).

Obr. 4: Znázornění a funkce jednotlivých domén PKS typu I. Na ACP je přenesena acylová skupina z malonyl-CoA pomocí AT. Prodlužování polyketidového řetězce zajišťuje KS. V tomto kroku dochází k uvolnění molekuly CO₂. KR, DH a ER pak mohou modifikovat ketoskupinu. KR a ER využívají mechanismu redukce pomocí oxidace NADPH+H⁺, DH odštěpuje od řetězce molekulu H₂O (Risdian et al. 2019).

PKS typu II je komplex jednotlivých monofunkčních proteinů produkujících aromatické polyketidy, například tetracykliny. PKS typu II prodlužují polyketidy kondenzačními reakcemi, které katalyzuje heterodimerová ketosyntáza a ACP. Ketosyntázová jednotka má dvě formy, a to KS_α a KS_β, které spolupracují na výrobě poly- β -ketového řetězce. KS_α funguje jako katalyzátor kondenzace prekurzorů. KS_β určuje délku řetězce. Tyto jednotky se nacházejí v každé PKS typu II a jsou označovány jako minimální PKS. Dále se mohou v PSK vyskytovat další enzymy jako jsou ketoreduktázy, cyklázy a aromatázy, které transformují poly- β -keto řetězce na jádro aromatického řetězce (Zhan 2009).

PKS typu III je homodimer enzymu ketoreduktázy. Na rozdíl od PKS typu I a II nevyužívá ACP jako kotvu pro prodloužení uhlíkového řetězce a působí přímo na prodlužovací jednotky ve formě acyl-CoA (Funa et al. 2002).

Mimo těchto třech základních typů PKS existují i různé výjimky, a to například PKS typu I, které syntetizují aromatické polyketidy, nebo PKS typu II, které nevyužívají ACP (Shen 2003).

Po syntéze základního polyketidového řetězce může docházet k takzvaným post-PKS-tailoring reakcím, prostřednictvím kterých se řetězec modifikuje do výsledného polyketidu. Tyto modifikační kroky katalyzují například oxygenázy, reduktázy, cyklázy nebo methyl, acyl, prenyl a amino transferázy (Olano et al. 2010).

Dále se antibiotika mohou syntetizovat pomocí neribozomální peptidové syntázy (NRPS). NRPS jsou také multimodulární a multifunkční enzymy, podobné PKS typu I. NRPS nevyžadují pro syntézu antibiotika templát mRNA a tím pádem ani ribozom. NRPS se skládají z modulů, kdy každý modul se skládá z několika domén s různými funkcemi. Doména A zajišťuje adenylaci, thiolaci doména PCP, která funguje i jako nosič peptidů a kondenzaci doména C. Pomocí hydrolýzy ATP aktivuje doména A specifický aminokyselinový substrát jako aminoacyl adenylát. Aminoacyl adenylát je poté kovalentně spojen s doménou PCP za vzniku thioesteru aminoacyl-S-PCP. C doména katalyzuje tvorbu amidové vazby mezi dvěma příbuznými aminoacyl-S-PCP za vzniku dipeptidu. Dipeptidové meziprodukty zůstávají kovalentně navázané k PCP. V modulu mohou být přítomny i domény, které peptidový řetězec modifikují, například epimerizační doména konvertuje L-aminokyseliny na D-aminokyseliny. Na posledním modulu se nachází TE doména, která odštěpí peptidový produkt (Du & Lou 2010).

Další možnost syntézy antibiotik je pomocí hybridních enzymatických komplexů PKS/NRPS. Existují dva možné způsoby využití syntézy prostřednictvím PKS/NRPS. První spočívá ve vytvoření výrobní linky, kdy se moduly PKS a NRPS mohou vyskytovat dohromady v libovolném pořadí. Druhý způsob se vyskytuje převážně u hub a zahrnuje jeden počáteční modul iteračního PKS, který následuje jeden modul NRPS a terminační doménu (Fisch 2013).

3.3.2 Produkce antibiotik u aktinobakterií

K produkci antibiotik u aktinobakterií dochází ve fázi růstu vzdušných hyf. V této fázi je kolonie nejzranitelnější a mycelium může být napadené a přerostlé jinými mikroorganismy. Ostatní mikroorganismy láká možnost využití látek, které vznikají při degradaci vegetativního mycelia. To, že produkce antibiotik souvisí s degradací vegetativního mycelia podporuje zjištění, že N-acetylglukosamin (GlcNAc), který se uvolňuje z buněčné stěny při rozpadu vegetativního mycelia, může fungovat jako signální molekula pro produkci antibiotik. GlcNAc podporuje tvorbu antibiotik pouze když se bakterie nachází v nedostatku živin. Svým působením urychluje i vývoj společenstva a tvorbu spor, které jsou potřebné pro přežití. Regulátor DasR, patřící do GntR rodiny transkripčních faktorů, řídí geny pro syntézu antibiotik a pro metabolismus a transport GlcNAc. DasR funguje jako senzor živin a potlačuje expresi genů pro produkci antibiotik (Światek et al. 2012).

V prostředí, kde je dostatek živin, vyšší koncentrace GlcNAc blokují vývoj a produkci antibiotik a tento mechanismus je zatím neznámý (Rigali et al. 2008).V prostředí, kde je dostatek živin, bakterie získává GlcNAc z chitinu pomocí hydrolýzy prostřednictvím chitináz (Pradeep et al. 2015). Takto získaný GlcNAc je pro bakterie zdrojem uhlíku a dusíku a může být hlavní složkou peptidoglykanu buněčné stěny. Další důkazy pro to, že biosyntéza antibiotik nastává ve fázi růstu vzdušných hyf spočívají v tom, že mutantní jedinci s neschopností vyvíjet vzdušné mycelium nebyli schopni produkovat antibiotika (Bibb 2005).

Antibiotika bakterie tedy produkují hlavně v konkurenčním prostředí, kdy si snaží zajistit dostatečný přísun živin a klíčovou roli hraje i mikrobiální interakce symbiotických organismů (Zhu et al. 2014).

3.3.3 Významná antibiotika produkovaná streptomycetami

V produkci antibiotik platí, že každé antibiotikum může být produkováno více kmeny a každý kmen může produkovat i více antibiotik. V kapitole jsou uvedeny kmeny, u kterých antibiotikum bylo objeveno. K přenosu genů, nebo i celých klastrů pro biosyntézu antibiotik může mezi příbuznými druhy docházet pomocí horizontálního přenosu genů (Egan et al. 2001).

V roce 1942 bylo popsáno první antibiotikum produkované streptomycetami streptothricin F patřící do skupiny streptothricinů (Waksman & Woodruff 1942). Celkem bylo identifikováno šest streptothricinů A-F. Streptothriciny přestavují atypickou třídu aminoglykosidů. Obsahují karbamoylovanou D-gulosaminovou skupinu, variabilní β-lysinový oligopeptid a neobvyklé bicyklické streptolidinové jádro (viz Obr. 5) (Zhang et al. 2020a). Biosyntetický genový klastr pro streptothriciny byl identifikován u *S. rochei* a skládal se ze čtyř NRPS (Maruyama et al. 2012). Streptothriciny vykazují aktivitu proti grampozitivním i gramnegativním bakteriím, ale i proti houbám. V klinické medicíně se streptothriciny nevyužívají, kvůli jejich toxicitě, ale například v Číně se využívají v zemědělství (Ji et al. 2007).

Obr. 5: Strukturní vzorec streptothricinů. Streptothriciny se od sebe liší počtem β -lysinových oligopeptidů (Zhang et al. 2020a).

Po dvou letech od objevení streptothricinu, bylo identifikováno další antibiotikum streptomycin (strukturní vzorec viz Obr. 6), produkované *S. griseus* (Schatz et al. 1944). Streptomycin patří také do třídy aminoglykosidů. Obecný strukturní základ aminoglykosidů se skládá z inositolového derivátu, na který je připojen alespoň jeden aminosacharid. Dále obsahují alespoň dvě volné aminoskupiny. Aminoglykosidy působí pomocí hydroxylových a amino skupin na A-místo 30S ribosomální podjednotky. To vede k předčasnému ukončení translace (Becker & Cooper 2013). Aminoglykosidy mají aktivitu proti grampozitivním i

gramnegativním bakteriím. Mezi další aminoglykosidická antibiotika, která produkují aktinobakterie patří například neomycin a gentamicin (Unwin et al. 2004; Zheng et al. 2019).

Obr. 6: Strukturní vzorec streptomycinu (Becker & Cooper 2013).

Moenomycin A je fosfoglykolipidické antibiotikum, které produkuje *S. ghanaensis*. Skládá se z kyseliny fosfoglycerové, která má na C2 hydroxylové skupině navázaný isoprenoidní řetězec a na fosfátové skupině je navázán pentasacharid (viz Obr. 7) (Zhang et al. 2020a). Moenomycin A působí proti grampozitivním bakteriím inhibicí funkce peptidoglykan glykosyltransferáz, které se podílejí na biosyntéze buněčné stěny (Gampe et al. 2013).

Obr. 7: Strukturní vzorec moenomycinu A (Zhang et al. 2020a).

Další skupinou antibiotik jsou glykopeptidy. Aktinobakterie produkují například vancomycin a teicoplanin (Kahne et al. 2005). Glykopeptidy jsou syntetizovány pomocí NRPS. Jejich strukturní základ tvoří heptapeptidová doména, která je různě modifikovaná (viz Obr. 8). Heptapeptidová doména se nazývá aglykon a je základem biologické aktivity glykopeptidů. Glykopeptidy účinkují pouze proti grampozitivním bakteriím. Tvoří pevný a specifický nekovalentní koplex s D-Ala-D-Ala koncem peptidoglykanu a inhibují tak růst buněčné stěny (Reynolds 1989).

Obr. 8: Strukturní vzorec vancomycinu a teicoplaninu (Kahne et al. 2005).

Makrolidy jsou skupina antibiotik, které jsou syntetizovány pomocí PKS typu I (Xue et al. 1998). Pro makrolidy je charakteristický laktonový kruh. Laktonový kruh se může skládat ze 14 až 16 členů a bývá různě substituován (viz Obr. 9) (Gaynor & Mankin 2003). Makrolidy působí tak, že inhibují syntézu proteinů vazbou na ribosomální podjednotku 50S, tím dochází k blokaci translokačních kroků syntézy proteinů (Poehlsgaard & Douthwaite 2003). Účinkují proti grampozitivním bakterií. Mezi makrolidová antibiotika produkovaná aktinobakteriemi patří clarithromycin, erythromycin a tylosin (Barka et al. 2016).

Obr. 9: Strukturní vzorec erythromycinu A. Erythomycin A se skládá ze čtrnáctičlenného laktonového kruhu (Gaynor & Mankin 2003).

Další skupinou antibiotik jsou angucykliny, polycyklické aromatické polyketidy. Jsou syntetizovány pomocí PKS typu II. Jejich základní strukturou je tetracyklický benzo[a]antracenový skeleton (viz Obr. 10) (Kharel et al. 2012). Prvním identifikovaným antibiotikem z této skupiny byl tetrangomycin produkovaný *S. rimosus* (Kuntsmann & Mitscher 1966). Angucykliny jsou schopny svým účinkem inhibovat různé enzymy a signální dráhy, například JAK/STAT signalizaci. Využívají proti grampozitivním bakteriím, ale i jako látky proti rakovinotvornému buněčnému dělení (Kharel et al. 2012). Další antibiotika z této skupiny jsou například auricin, landomycin nebo moromycin (Barka et al. 2016).

Obr. 10: Strukturní vzorec tetrangomycinu (Özakin et al. 2016).

Ansamyciny jsou antibiotika, pro které je charakteristický tvar jejich molekuly, která se skládá z aromatického jádra a dlouhého alifatického můstku ve tvaru rukojeti (viz Obr. 11) (Wehrli 1977). Vykazují aktivitu proti grampozitivní bakteriím a v menší míře i proti gramnegativním bakteriím. Jejich účinek spočívá v inhibici DNA-dependentní RNA polymerázy (Wehrli 1977; Floss & Yu 2005). Aktinobakterie produkují rifamyciny, chaxamyciny nebo gendalmycin (DeBoer et al. 1970; Floss & Yu 2005; Rateb et al. 2011).

Obr. 11: Strukturní vzorec rifamycinu B (Wehrli 1977).

Daptomycin je se skupiny lipopeptidových antibiotik, strukturní vzorec viz Obr. 12. Je syntetizován *S. roseosporus* pomocí čtyř NRPS (Baltz 2009). Daptomycin narušuje buněčnou membránu grampozitivních bakterií. Může se v ní začít agregovat a ovlivnit tak její zakřivení. Tím, že se buněčná membrána jinak zakřiví, dochází k vytváření otvorů, kterými pak prosakují ionty a nastává ztráta membránového potenciálu. Následkem dochází k dysregulaci buněčného dělení nebo biosyntéze buněčné stěny (Pogliano et al. 2012).

Obr. 12: Strukturní vzorec daptomycinu, jeho základ tvoří třináctičlenný lipopeptid (Baltz 2009).

 β -lactamy jsou antibiotika, pro které je typický jejich čtyřčlenný β -laktamový kruh (viz Obr. 13). Svým účinkem inhibují syntézu buněčné stěny (Kong et al. 2010). Aktinobakterie produkují například cephamyciny (Stapley et al. 1972). Některé streptomycety jsou schopny syntetizovat i kyselinu klavulanovou, která působí jako inhibitor proti β -lactamovým antibiotikům (Ward & Hodgson 1993).

Amicetin je disacharidové pyrimidinové nukleosidové antibiotikum (strukturní vzorec viz Obr. 14), které produkují *S. vinaceusdrappus* a *S. fasciculatis* (Flynn et al. 1953). Amicetin má účinek proti grampozitivním i gramnegativním bakteriím, který spočívá v inhibici peptidyl transferázy a následné inhibici biosyntézy proteinů (Kirillov et al. 1997).

Obr. 14: Strukturní vzorec amicetinu (Zhang et al. 2012).

Mezi další skupiny antibiotik produkované aktinobakteriemi patří oxazolidinony a streptograminy. Tato antibiotika působí proti grampozitivním i gramnegativním bakteriím a jejich účinek spočívá v ovlivnění funkce 50S podjednotky ribozomu a následné inhibici translace (Mukhtar & Wright 2005). Stejnou aktivitu má i antibiotikum chloramphenicol, které je produkováno *S. venezuelae* (Mosher et al. 1995).

Látky s antibiotickým účinkem jsou i phezaniny, které produkují hlavně streptomycety a pak bakterie z rodu *Pseudomonads*. Phezaniny jsou účinné proti grampozitivním i gramnegativním bakteriím, ale i proti některým houbám (Laursen & Nielsen 2004). Streptomycety produkují například endophezaniny (Gebhardt et al. 2002).

Další skupinou antibiotik jsou lantibiotika. Lantibiotika jsou syntetizována pomocí ribosomální syntézy proteinů a následně jsou posttranslačně upraveny do své aktivní formy. Svůj název získaly díky tomu, že obsahují neobvyklou aminokyselinu lanthionin. Lanthionin se skládá ze dvou zbytků alaninu, které jsou spojeny pomocí thioesterové vazby. Lantibiotika svým působením ovlivňují funkčnost buněčné stěny grampozitivních bakterií (Willey & van der Donk 2007). Streptomycety produkují například cinnamycin, ancovenin nebo SapB (Chatterjee et al. 2005; Völler et al. 2012).

Mimo klasických antibiotik mohou aktinobakterie produkovat i jiné látky s antibakteriálním účinkem. Mezi takové patří například terpeny (Yamada et al. 2015). Antibakteriální účinek terpenů může být alespoň částečně způsoben jejich penetrací do lipidové části plazmatické membrány a způsobení změny membránové propustnosti, díky které dochází k úniku intracelulárních materiálů (Trombetta et al. 2005; Cristani et al. 2007).

4 Metodika

4.1 Bakteriální kmeny

Pro testování bylo použito celkem 10 vzorků aktinobakterií (viz Tab. 1).

číslo	kód	rod
1.	PL41E	Curtobacterium
2.	09VU38	Streptomyces
3.	05ME854	Streptomyces
4.	05DE539	Streptomyces
5.	09Zd22	Streptomyces
6.	14VE2	Streptomyces
7.	09VK39	Streptomyces
8.	PR9	Streptomyces
9.	PR41	Streptomyces
10.	PL112E	Williamsia

Tab. 1: Seznam použitých kmenů aktinobakterií, jejich označení a rod

4.2 Seznam chemikálií

|--|

Chemikálie	Dodavatel/výrobce
Agar	Sigma-Aldrich, Missouri, USA
Agaróza	Sigma-Aldrich, Missouri, USA
Achromopeptidáza	Sigma-Aldrich, Missouri, USA
Bakteriologický pepton	HiMedia, Indie
D-glukóza	Penta, Česká republika
Dimetylsulfoxid (DMSO)	Sigma-Aldrich, Missouri, USA
Dodecylsíran sodný (SDS)	Sigma-Aldrich, Missouri, USA
Etanol	Penta, Česká republika
Fenol	MP Biomedicals, Kalifornie, USA
GeneRulerTM 1kb Plus DNA Ladder	Thermo Fischer Scientific, Massachusetts, USA
Glycin	Lachema, Česká republika
Chlorid sodný (NaCl)	Penta, Česká republika
Chloroform	Lach-Ner, Česká republika
Isopropanol	Penta, Česká republika
Izoamylalkohol	Penta, Česká republika
Kyselina etylendiamintetraoctová (EDTA)	Sigma-Aldrich, Missouri, USA
Lysozym	Sigma-Aldrich, Missouri, USA
Malt extrakt (sladový výtažek)	Thermo Fischer Scientific, Massachusetts, USA
Octan sodný (NaAc)	Sigma-Aldrich, Missouri, USA

Pepton	HiMedia, Indie
Polyvinylpyrrolidon (PVP)	Sigma-Aldrich, Missouri, USA
Proteináza K	Thermo Fischer Scientific, Massachusetts, USA
Rnáza A	Thermo Fischer Scientific, Massachusetts, USA
Sacharóza	Sigma-Aldrich, Missouri, USA
SYBR Safe DNA Gel Stain	Invitrogen, Kalifornie, USA
Škrob	Penta, Česká republika
Tekutý dusík	Linde Gas, Česká republika
Tris(hydroxymetyl)aminometan (Tris)	Sigma-Aldrich, Missouri, USA
Tris-hydrochlorid (Tris.HCl)	Sigma-Aldrich, Missouri, USA
Tris-acetát	Sigma-Aldrich, Missouri, USA
Uhličitan vápenatý (CaCO ₃)	Lach-Ner, Česká republika
Yeast extrakt (kvasničný hydrolyzát)	HiMedia, Indie
Yellow load pufr	Top-Bio, Česká republika
β-merkapto etanol	Sigma-Aldrich, Missouri, USA

4.3 Kultivace

Nejprve byly připraveny Petriho misky s pevným GYM médiem. GYM médium bylo složeno ze 4 g D-glukózy, 4 g Yeast extraktu, 10 g Malt extraktu, 2 g CaCO₃ a 12 g agaru na 1 l destilované vody. Po smíchání všech složek média kromě agaru bylo pH upraveno na 7,2. Poté byl přidán agar. Takto připravené médium bylo vysterilováno v autoklávu PS20A (Chirana) po dobu 20 min při 121°C. Sterilní médium bylo poté rovnoměrně rozlito do Petriho misek. Pro omezení případné kontaminace, práce probíhala ve flow boxu, který byl před každým použitím vysterililován pomocí UV zářením a pracovní plocha byla omyta 70% etanolem. Po ztuhnutí média byly zaočkovány kmeny bakterií pomocí jednorázových sterilních plastových kliček. Bakterie byly nabrány z konzerv, které jsou uchovávány jako suspenze v 50% glycerolu v mrazícím boxu při teplotě -70 °C, a opatrně byly pomocí kličky rozetřeny po ztuhlém médiu. Petriho misky se zaočkovanými kulturami byly ponechány v inkubátoru Q-Cell dnem nahoře po dobu pěti dnů při 28 °C.

Pro získání bakteriálních buněk byla poté provedena kultivace v tekutém médiu. Jako tekutá média byly použity GYM a YEME. Tekuté GYM médium bylo připraveno obdobně jako pevné, akorát se do něj nepřidal agar a CaCO₃. YEME médium bylo složeno z 3 g Yeast extraktu, 3 g Malt extraktu, 5 g bakteriologického peptonu a 10 g D-glukózy na 1 l destilované vody. U obou médií bylo po smíchání všech složek pH upraveno na 7,2. Média byla po 10 ml rozlita do prolamovaných 50 ml Erlenmayerových baněk, a poté byla přikryta folií (Convertors® Bio-Shield® Sterilization Wraps), která zabraňovala kontaminaci. Poté byly Erlenmayerovy baňky s médii vysterilovány v autoklávu po dobu 20 min při 121°C. Do vysterilizovaných Erlenmayerových baněk s médii byly ve flow boxu zaočkovány bakterie, které narostly na Petriho miskách. Každý kmen byl do obou medií zaočkován ve dvou opakování, kdy do jednoho byl přidán 1 ml 2% glycinu, který narušuje buněčnou stěnu bakterií a usnadňuje tak izolaci DNA. Na druhou stranu může buňkám bránit v růstu. Do druhé skupiny

byl glycin přidán až po 24 h, aby buňky měly možnost dobře narůst. Kultivace probíhala dva dny při 28 °C v třepačce při 200 rpm. Po uplynutí dvou dnů bylo ve flow boxu médium s narostlými buňkami přeneseno do 50 ml centrifugační zkumavky. Ukázalo se, že se výsledné množství buněk nelišilo v závislosti na době přidání glycinu, a celkově buňky rostly víc v YEME médiu než v GYM médiu. Kmen č. 7 nevyrostl ani v GYM, ani v YEME médiu. Bylo proto připraveno A1 médium o složení 10 g škrobu, 4 g Yeast extraktu a 2 g peptonu na 1 l destilované vody. Výsledné pH média bylo upraveno na 7,2. Do tohoto média byl kmen č. 7 zaočkován a inkubován 48 h při 28 °C v třepačce při 200 rpm bez přidání glycinu. V médiu A1 narostlo už dostatečné množství buněk kmene č. 7.

Centrifugační zkumavky s médiem a narostlými buňkami byly centrifugovány v centrifuze Hettich Universal 32 R (Hettich Zetrifugen) po dobu 10 min při 3000 rpm. Bakteriální buňky se usadily na dně a přebytečné médium bylo odlito a odpipetováno. Sediment buněk byl rozpipetován pomocí sterilní destilované vody a byl přenesen po částech do 1,5 ml mikrozkumavek. Mikrozkumavky byly centrifugovány v centrifuze Eppendorf Centrifuge 5415R (Eppendorf) při nejvyšší rychlosti po dobu 10 min při 4 °C. Přebytečná voda byla poté odsána a takto připravené buňky byly uschovány v mrazicím boxu při -18 °C pro další užití.

4.4 Izolace chromozomální DNA

Buňky byly nejprve resuspendovány v 0,5 ml SET pufru (50 mM Tris.HCl, pH 8.0, 50 mM EDTA, 20 % sacharóza) na 0,3 g buněk, pipetováním přes špičku s ustřiženým a nad plamenem zarovnaným koncem. Poté bylo přidáno 25 µl zásobního roztoku lysozymu o koncentraci 20 mg/ml. Vzorky byly inkubovány za občasného promíchání převracením po dobu 2 h při 37 °C v termobločku Bio TDB-100 (BIOSAN). Poté byla přidána achromopeptidáza ve výsledné koncentraci 500 jednotek achrompeptidázy na 1 ml vzorku a pokračovalo se v inkubaci po dobu 1 h při 37°C. Jako další bylo přidáno 5 µl RNázy A. Vzorky byly dále inkubovány po dobu 1 h při 37°C. Následovalo přidání 14 µl proteinázy K a 60 µl 10% SDS. Směs byla promíchána převracením a byla inkubována po dobu 2 h při 55°C. V průběhu této doby byla každých 10 až 15 minut mikrozkumavka se vzorkem zamíchána převracením. Po uplynutí této doby se vzorek nechal vychladnout na laboratorní teplotu. Poté byl přidán stejný objem, jako byl objem vzorku, směsi fenolu, chloroformu a izoamylalkoholu v poměru 25:24:1. Vzorek byl poté centrifugován v centrifuze Eppendorf Centrifuge 5418 (Eppendorf) po dobu 5 min při 6000 rpm. Vodná fáze byla opatrně odpipetována pipetou s ustřiženou a nad plamenem vyhlazenou špičkou do nové mikrozkumavky. Celý tento krok byl opakován. Po zopakovaní byl ke vodné fázi přidán stejný objem směsi chloroformu a izoamylalkoholu v poměru 24:1 a přibližně 5 min bylo se vzorkem mícháno převracením. Poté byl vzorek centrifugován dobu 5 min při 6000 rpm a opět byla sebrána vodná fáze do nové mikrozkumavky. Ke vzorku bylo opatrně přidáno 0,1 objemu vzorku 3 M NaAc a 0,6 objemu vzorku isopropanolu. Tímto krokem bylo vytvořeno rozhraní mezi vodnou a nevodnou fází, ve kterém se nacházela DNA. DNA byla natočena na skleněnou tyčinku. Natočením DNA na skleněnou tyčinku dojde k odstranění malých fragmentů DNA. Skleněná tyčinka s natočenou DNA byla poté dvakrát opláchnuta v mikrozkumavce se 100% etanolem a nechala se uschnout na vzduchu. Po usušení byla tyčinka s DNA vložena do připravené mikrozkumavky s 200 µl TE pufru (10 mM Tris, 1 mM EDTA) a opatrně byla pomocí parafilmu obtočená tak, aby se tyčinka nedotýkala hran a

aby se dovnitř nedostala kontaminace. Mikrozkumavka s tyčinkou poté byla zahřátá v termobločku na 55 °C po dobu 10-15 minut a poté byla ponechána přes noc v lednici, aby došlo k rozpuštění DNA z tyčinky. Druhý den byla úspěšnost izolace DNA ověřená pomocí elektroforézy.

4.5 Izolace chromozomální DNA pomocí tekutého dusíku

Dalším způsobem, jak lze izolovat chromozomální DNA, je metoda zmrazení a rozdrcení buněk bakterií pomocí tekutého dusíku (Lee et al. 2003). Buňky bakterií byly v třecí mističce rozdrceny za současného přilití tekutého dusíku. Po rozdrcení buněk na jemný prášek bylo přidáno 10 ml/g buněk lyzačního roztoku o složení 0,05 M Tris.HCl pH 7,6, 0,1 M NaCl, 0,05 EDTA, 2 % SDS, 0,2 % PVP a 0,1 % β-merkapto etanolu. Celá směs byla třena pomocí tloučku až do roztání. Po roztání byla směs z třecí misky přepipetována do 50 ml centrifugační zkumavky a byla inkubována po dobu 30 minut při laboratorní teplotě. Po uplynutí této doby byly odstraněny zbytky buněk centrifugací v centrifuze Hettich Universal 32 R (Hettich Zetrifugen) po dobu 5 minut při 4000 rpm. Supernatant byl přenesen do nové 50 ml centrifugační zkumavky a bylo k měnu přidáno 5 ml fenolu. Po dobu 5 minut bylo se vzorkem při laboratorní teplotě opatrně mícháno, aby došlo k promíchání fází supernatantu a fenolu. Poté bylo přidáno 5 ml chloroformu a se vzorkem bylo opět 5 minut mícháno. Poté byl vzorek centrifugován po dobu 5 minut při 4000 rpm. Vodná fáze, ve které se nachází DNA, byla přenesena pomocí špičky s ustřiženým a nad plamenem zarovnaným koncem do nové 50 ml centrifugační zkumavky. Celý postup s fenolem a chloroformem byl opakován. DNA ve vodné fázi byla vysrážena přidáním 0,6 objemu vzorku isopropanolu. Centrifugační zkumavka se vzorkem byla centrifugována při 4 °C a 8000 rpm. Supernatant byl odlit a na dně zůstala peletka DNA. Vzniklá peletka byla promyta 70% etanolem, a poté byla vysušena ve vakuové odparce CentriVap při 40 °C. Suchá peleta byla rozpuštěna přes noc v lednici v 1 ml TE pufru. Takto izolovaná DNA byla přečištěna pomocí komerční sady GeneRead size selection kit. Druhý den byla úspěšnost izolace DNA ověřená pomocí elektroforézy.

4.6 Elektroforéza

Gel byl připraven smícháním 50 ml TAE pufru (40 mM Tris-acetát a 1 mM EDTA) a 0,5 g agarózy. Pro rozpuštění agarózy v TAE pufru byla směs zahřátá v mikrovlnné troubě po dobu 30 sekund. Poté byl roztok ochlazen pod proudem tekoucí studené vody. Po ochlazení bylo přidáno 5 μ l SYBR Safe DNA Gel Stain (naředěný v DMSO v poměru 1:9). Takto připravený roztok byl nalit do formičky na gel a byl do něj vložen hřebínek pro vytvoření jamek. Gel se nechal ztuhnout při laboratorní teplotě. Po ztuhnutí byl gel přendán do nádoby na elektroforézu a byl přelit TAE pufrem, tak aby byl celý ponořený. Vzorky pro elektroforézu byly připraveny na mikrotitrační destičce, kde v jamce bylo smícháno 2 μ l Yellow load pufru a 2 μ l vzorku DNA. Do první jamky gelu bylo naneseno 5 μ l markeru GeneRulerTM 1kb Plus DNA Ladder, pro identifikování velikosti a množství DNA. Do dalších jamek byly naneseny vzorky. Po nanesení vzorků byla vanička přikryta víkem a elektroforéza byla puštěna při napětí 95 V a

proudu 95 mA po dobu 15 minut. Po skončení byl gel opatrně vyndán, detekován pod UV zářením transluminátoru a vyfocen pomocí programu GeneSnap.

4.7 Sekvenace

Izolované DNA byly odeslány na University of Illinois (Chicago, USA), kde byly oboustranně sekvenovány metodou MiSeq (Illumina, San Diego, USA).

4.8 Analýza genomu

Základní analýza vybraných genomů byla provedena prostřednictvím programu antiSMASH (<u>https://antismash.secondarymetabolites.org</u>). AntiSMASH vyhodnotil podobnost biosyntetických klastrů s klastry, které již byly identifikovány u bakterií a dále určil podobnosti s biosyntetickými klastry pro sekundární metabolity. Geny, které nebyly určeny pomocí antiSMASH, byly dohledány pomocí zadání proteinové sekvence do programu BLAST (<u>https://blast.ncbi.nlm.nih.gov/Blast.cgi</u>).

5 Výsledky

5.1 Izolace chromozomové DNA

U všech kmenů se nejprve provedla izolace DNA, kdy byl použit pouze enzym lysozym a doba jeho působení byla jenom 1 h. Pouze u kmene č. 1 se tímto způsobem podařila izolovat DNA. Do postupu se zařadilo přidání achromopoptidázy. Achromopeptidáza také napomáhá lyzi buněčné stěny bakterií a využívá se hlavně na bakterie, které jsou rezistentní k lysozymu. Dále se prodloužila doba působení lysozymu na 2 h. Tímto způsobem se podařilo izolovat DNA z kmenů č. 3, 4, 7, 8 a 9. U kmenů č. 5, 6 a 10 se v kroku přidání směsi fenolu a chloroformu místo vodné fáze tvořila pouze gelovitá hmota. Příčinou vzniku gelovité hmoty může být nadměrná produkce extracelulární hmoty. U kmene č. 2 se nedařila izolovat DNA z neznámého důvodu. Byly provedeny i pokusy, kdy se lysozym nechal působit přes noc, nebo se přidalo větší množství achromopepidázy.

Po neúspěších byl vyhledán nový protokol k izolaci DNA z bakterií, které produkují větší množství extracelulární hmoty. Tento postup zahrnoval zmrazení buněk bakterií tekutým dusíkem a jejich následné rozdrcení. Tento postup byl použit i na kmen č. 2 a podařilo se díky němu z kmenů izolovat DNA. Na Obr. 15 a 16 jsou snímky vyfocených elektroforézových gelů s izolovanými DNA.

Obr. 15: Snímek elektroforézového gelu s označením čísel kmenů. Křížkem jsou označené vzorky DNA, které byly vybrány pro sekvenaci.

Obr. 16: Snímek elektroforézového gelu kmene č 7. Tento kmen se dlouhou dobu nepodařilo kultivovat v tekutém GYM ani YEME médiu. Narostl až v médiu A1. Křížkem je označený vzorek, který obsahoval nejvíce DNA.

5.2 Sestavení vybraných biosyntetických klastrů

Pro detailnější rozbor genomu byly vybrány dva kmeny, které in vitro vykazovaly aktivitu proti *S. scabiei*, a to kmen 09Zd22 (č. 5) a kmen 09VK39 (č. 7). Kmen 09Zd22 byl odebrán z oblasti Židovice-pole v údolí Labe. Kmen 09VK39 z oblasti Vyklantice-kostel ze supresivní půdy.

Prostřednictvím programu antiSMASH bylo určeno procentuální genové zastoupení se známými biosyntetickými klastry (BK) pro sekundární metabolity v porovnání s nalezeným klastem. Identifikované geny však nemusí mít úplnou 100% shodu v nukleotidové sekvenci a může vznikat i jiný produkt. Pomocí programu BLAST byly dohledány geny, které neurčil antiSMASH, pomocí proteinové sekvence. Takto nalezené geny měly podobnost víc jak 95 %.

5.2.1 Kmen 09Zd22

Kmen 09Zd22 obsahuje 71,29 % GC. Přibližná velikost genomu je 8,6 Mbp. Počet kontigů je 172, počet kontigů nad 50 kbp je 27 a velikost nejdelšího kontigu je 890 kbp.

U kmene 09Zd22 bylo celkem identifikováno 33 BK pro sekundární metabolity (seznam uveden v příloze 1). Pro potencionální látky s antibiotickým účinkem bylo vybráno 11 BK.

Klastr 1.3

Genové uskupení BK 1.3 je znázorněno v Obr. 17. Celkem zde bylo nalezeno 42 genů. Jednotlivé geny jsou popsány v Tab. 4. Seznam procentuálního zastoupení genů známých BK pro sekundární metabolity identifikovaných programem antiSMASH je uveden v Tab. 3. Pozice jednotlivých genů je zobrazena v Obr. 19. Stejný BK byl identifikován u *Streptomyces* sp. NRRL S-623 (viz Obr. 18).

Produkt BK 1.3 je syntetizován pomocí PKS typu III (ctg1_193, tyrkysová barva). Byly zde identifikovány různé transkripční faktory, a to například protein s helix-turn-helix doménou. Dále byla identifikována fosfatáza, které reguluje sigma faktor. Sigma faktor zajištuje iniciaci transkripce. Na biosyntéze se dále může podílet glutamát-cystein ligáza, monooxygenáza, methyltransferáza, a UbiA family prenyltransferáza. Z transportérů byl nalezen MFS transportér.

Obr. 17: Biosyntetický klastr 1.3

Geny jsou označeny ctg1_x. Popis jednotlivých genů je uveden v Tab. 4. Barevně jsou vyznačené geny, které byly identifikovány podle programu antiSMASH. Nevybarvené geny byly dohledány pomocí BLAST.

Query sequence	
Churchamuran an NDDI C (22	
Streptomyces sp. NRRL S-623	

Obr. 18: Srovnání BK 1.3 s nalezeným BK u *Streptomyces* sp. NRRL S-623. Nalezené geny měly stejnou nukleotidovou sekvenci v rozmezí 98–100 %. PKS typu III byla identifikována jako stilben syntáza.

Tab. 3: Seznam nalezených BK pro sekundární metabolity pomocí programu antiSMASH a jejich procentuální genová shoda s BK 1.3.

1.3	herboxidiene	9 %	Polyketide
	alkylresorcinol	100 %	Polyketide
	alkylpyrone-407 / alkylpyrone-393	50 %	Polyketide
	lagunapyrone A / lagunapyrone B /		
	lagunapyrone C	22 %	Polyketide
	ebelactone	5 %	Polyketide
	gentamicin	3 %	Saccharide

Query sequence					
herboxidiene					
alkylresorcinol					
	**				
ebelactone					
gentamicin					

Obr. 19: Srovnání identifikovaných genů prostřednictvím programu antiSMASH v BK 1.3 a jejich pozice v BK pro vybrané sekundární metabolity.

Tab. 4: Doplnění genů BK 1.3. Tučně jsou zvýrazněny geny, které byly identifikovány pomocí programu antiSMASH. Zbytek genů byl dohledán pomocí BLAST, zadáním proteinové sekvence daného genu.

*Umístění v GenBank

						NCBI Reference
	alkylresorcinol	herboxidiene	ebelactone	gentamicin	BLAST	Sequence
		hydrogenase assembly chaperone				
ctg1_168		HypC/hupf				
		hydrogenase maturation protein				
ctg1_169		Hypf				
		hydrogenase nickel incorporation				
ctg1_170		protein Hypb				
					hydrogenase maturation nickel	
. 1 171					metallochaperone HypA	WP_031124940
ctg1_1/1						
. 1 172					helix-turn-nelix transcriptional	WP_051843533
$\operatorname{ctg1_1/2}$					regulator	
. 1 172					hypothetical protein	0.01/1/201 1*
ctg1_1/5		hadresses materialise frates			YUYDRAF1_01482	SCK15/21.1*
-4-1 174		nydrogenase maturation factor,				
ctg1_1/4		нуас			1 4 4 1 7 4	NID 004010500 1
ctg1_1/5					hypothetical protein	WP_094210798.1
ctg1_176		conserved Hypothetical protein				
ctg1_177		hypothetical protein				
ctg1_178					NifU family protein	WP_094210796
		Nife Hydrogenase i large subunit,				
ctg1_179		Hyab				
		Nife Hydrogenase i small subunit				
ctg1 180		Hvaa				
cigi_100		11 y uu				
ctg1 181					type 1 glutamine amidotransferase	WP_031124949
ctg1_101						ND 021124050
ctg1_182					glutamatecysteine ligase	WP_031124950
					DUF5133 domain-containing	WP 015613081
ctg1_183					protein	
ctg1_184					hypothetical protein	WP_031124951
ctg1_185					hypothetical protein SFUL_6911	AGK81788*
ctg1_186					cold-shock protein	WP_015613078
ctg1_187					hypothetical protein	WP_015613077
ctg1_188		hypothetical protein				
ctg1_189					VOC family protein	WP_031124952
0	1	ļ.	I	1	I **	1 – I
ctg1_191 monooxygenase ctg1_192 methyltransferase						
---	--------------					
ctg1_192 methyltransferase						
ctg1_193 type-III PKS						
UlbiA family propyltranefarace WD (D 021124057					
ctg1_194	F_031124937					
right-handed parallel beta-helix WP (/D 03112/058					
ctg1_195 repeat-containing protein w1_C	1_031124938					
dihydrodinicolinate reductase WP (/P 094210790					
ctg1_196	1_0)4210790					
carboxymuconolactone WP (P 015613067					
ctg1_197						
Ctg1_198	P_190167631					
LysM peptidoglycan-binding WP_(P_055561158					
domain-containing protein	D 055561150					
ctg1_200 FAD-dependent oxidoreductase wP_(P_055561159					
putative serine phosphatase RSDU,						
regulator of sigma subunit	D 021124064					
ctg1_202	P_031124904					
Protein WP_2	P_203681647					
protein						
ctg1 204						
ctg1_205 hypothetical protein WP (/P 031124967					
EUSC family protein WP (/P_055559233					
ctg1_207	P 031124969					
ctg1_208 endonuclease WP	/P 164359368					
bypothetical protein WP (P 015613055					

Klastr 1.5

Genové uskupení BK 1.5 je znázorněno v Obr. 20. Celkem zde bylo nalezeno 41 genů. Jednotlivé geny jsou popsány v Tab. 6. Seznam procentuálního zastoupení genů známých BK pro sekundární metabolity identifikovaných programem antiSMASH je uveden v Tab. 5. Pozice jednotlivých genů je zobrazena v Obr. 22. Podobný BK byl identifikován u *S. fulvissimus* NA06532 (viz Obr. 21).

Produkt BK 1.5 je syntetizován pomocí kombinace NRPS a PKS typu I (ctg1_438, světle tyrkysová barva). Bylo zde identifikováno několik transkripčních faktorů. A to proteiny s winged helix-turn-helix doménou, PadR family regulátor a TetR/AcrR family regulátor. Na biosyntéze se dále může podílet 6-fosfoglukonát dehydrogenáza, deacetylázy, cytochrom P450, FAD dependentní oxidoreduktázy, cystein desulfuráza, která odštěpuje z cysteinu síru a diaminopimelát dekarboxyláza, která katalyzuje štěpení vazby uhlík-uhlík v meso-2,6-diaminoheptandioátu za vzniku CO₂ a aminokyseliny L-lysinu. Z transportérů byl nalezen MMPL family transportér (Mycobacterial membrane protein Large transporter), který přenáší lipidové látky přes membránu.

Byl zde i identifikován bacteriocin family protein. Bacteriociny jsou toxiny, které inhibují růst blízce příbuzného kmene produkující bakterie.

Obr. 20: Biosyntetický klastr 1.5

Geny jsou označeny ctg1_x. Popis jednotlivých genů uveden v Tab. 6. Barevně jsou vyznačené geny, které byly identifikovány podle programu antiSMASH. Nevybarvené geny byly dohledány pomocí BLAST.

Obr. 21: Srovnání BK 1.5 s nalezeným BK u NA06532 *S. fulvissimus*, u kterého bylo procentuální genové zastoupení stejné z 92 %. Nalezené geny měly stejnou nukleotidovou sekvenci v rozmezí 98–100 %.

1	e		
1.5	SGR PTMs	100 %	NRP + Polyketide
	frontalamide B	85 %	NRP + Polyketide:Iterative type I
	heat-stable antifungal factor	75 %	NRP + Polyketide
	combamide	44 %	NRP + Polyketide
	pactamides	55 %	NRP + Polyketide
	clifednamide A	40 %	NRP + Polyketide
	ikarugamycin	12 %	NRP + Polyketide:Iterative type I
	xiamycin A	9 %	Terpene
	rustmicin	6 %	Polyketide:Iterative type I
	tetronasin	3 %	Polyketide

Tab. 5: Seznam nalezených BK pro sekundární metabolity pomocí programu antiSMASH a jejich procentuální genová shoda s BK 1.5.

Obr. 22: Srovnání identifikovaných genů prostřednictvím programu antiSMASH v BK 1.5 a jejich pozice v BK pro vybrané sekundární metabolity.

						NCBI Reference
	SGR PTMs	frontalamide B	rustmicin	tetronasin	BLAST	Sequence
ctg1_416					hypothetical protein	WP_031124832
				6-phosphogluconate 1-		
ctg1_417				dehydrogenase		
ctg1_418					Dyp-type peroxidase	WP_032756799
ctg1_419					bacteriocin family protein	WP_031124835
ctg1_420					diaminopimelate decarboxylase	WP_203679287
ctg1_421					hypothetical protein	WP_176145055
ctg1_422					hypothetical protein	WP_164357346
ctg1_423					hypothetical protein	WP_053558226
ctg1_424					NUDIX domain-containing protein	WP_031124839
ctg1_425					PIG-L family deacetylase	WP_179890614
ctg1_426					PIG-L family deacetylase	WP_078657455
ctg1_427				conserved hypothetical protein		
ctg1_428					aspartate 1-decarboxylase	WP_031124841
ctg1_429					FTR1 family protein	WP_094210881
ctg1_430					deferrochelatase/peroxidase EfeB	WP_094210882
ctg1_431					cupredoxin domain-containing protein	WP_031124859
ctg1_432					DUF3253 domain-containing protein	WP_079036067
ctg1_433					phosphatase PAP2 family protein	WP_051821806
ctg1_434	putative cytochrome P450	cytochrome P450 hydroxylase				
		leukotriene B4 12-				
		hydroxydehydrogenase/15-oxo-				
ctg1_435	putative oxidoreductase	prostaglandin 13-reductase				
ctg1_436	FAD dependent oxidoreductase	FAD dependent oxidoreductase				
ctg1_437	FAD dependent oxidoreductase	FAD dependent oxidoreductase				
cta1 139	NPPS type I PKS fusion	amino acid adenylation domain-				
otg1_430	hypothetical protain	frontalomida hudrovulaca				
etg1_439	nypomencai protein	nomanifilde flydroxylase			cysteine desulfurase-like protein	WP 16/357079
ctg1_440					saccharonine debudrogenase NADP-	WI_104557075
ctg1_441					binding domain-containing protein	WP_031124869

Tab. 6: Doplnění genů BK 1.5. Tučně jsou zvýrazněny geny, které byly identifikovány pomocí programu antiSMASH. Zbytek genů byl dohledán pomocí BLAST, zadáním proteinové sekvence daného genu.

			helix-turn-helix domain-containing	WP 202706700
ctg1_442			protein	w1_202700700
ctg1_443		transcriptional regulator		
ctg1_444		transcriptional regulator		
ctg1_445			DUF4383 domain-containing protein	WP_055560110
ctg1_446			DUF1206 domain-containing protein	WP_199833146
ctg1_447			fasciclin domain-containing protein	WP_031124875
ctg1_448			winged helix-turn-helix transcriptional regulator	WP_031124876
ctg1_449			MMPL family transporter	WP_164357082
ctg1_450			hypothetical protein	WP_031124878
ctg1_451			DoxX family membrane protein	WP_164357083
ctg1_452			FAD-dependent oxidoreductase	WP_201105066
ctg1_453			PadR family transcriptional regulator	WP_031124881
ctg1_454			hypothetical protein	WP_031124882
ctg1_455			phosphatase PAP2 family protein	WP_176145039
ctg1_456			TetR/AcrR family transcriptional regulator	WP_031124884

Klastr 2.5

Genové uskupení BK 2.5 je znázorněno v Obr. 23. Celkem zde bylo nalezeno 49 genů. Jednotlivé geny jsou popsány v Tab. 8. Seznam procentuálního zastoupení genů známých BK pro sekundární metabolity identifikovaných programem antiSMASH je uveden v Tab. 7. Pozice jednotlivých genů je zobrazena v Obr. 25. Stejný BK byl identifikován u *S. fulvissimus* NA06532 (viz Obr. 24).

Produkt BK 2.5 je syntetizován pomocí dvou NRPS (ctg2_442, růžová barva a ctg2_444, identifikována pomocí BLAST). Byly zde identifikovány různé transkripční faktory, například proteiny obsahující helix-turn-helix doménu. Na biosyntéze se dále může podílet glutathion S-transferáza, glyoxylát karboligáza, pyridoxal-fosfát dependentní aminotransferáza a 2-hydroxy-3-oxopropionát reduktáza. Z transportérů byl identifikován MFS transportér a geny pro sestavení transportéru sacharidů.

Obr. 23: Biosyntetický klastr 2.5

Geny jsou označeny ctg2_x. Popis jednotlivých genů je uveden v Tab. 8. Barevně jsou vyznačené geny, které byly identifikovány podle programu antiSMASH. Nevybarvené geny byly dohledány pomocí BLAST.

Streptomyces fulvissimus strain NA06532	

Obr. 24: Srovnání BK 2.5 s nalezeným BK u *S. fulvissimus* NA06532. Nalezené geny měly stejnou nukleotidovou sekvenci v rozmezí 99–100 %.

Tab. 7:	Seznam	nalezených	BK pro	sekundární	metabolity	pomocí	programu	antiSMASH	a jejich
procent	tuální geno	ová shoda s	BK 2.5.						_

2.5	asukamycin	12 %	Polyketide:Type II
	salinomycin	14 %	Polyketide:Modular type I
	amicetin	8 %	Saccharide: Aminoglycoside
	JBIR-126	7 %	NRP
	meilingmycin	3 %	Polyketide
	thiazostatin / watasemycin A / watasemycin		
	B / 2-hydroxyphenylthiazoline		
	enantiopyochelin / isopyochelin	2 %	NRP

Obr. 25: Srovnání identifikovaných genů prostřednictvím programu antiSMASH v BK 2.5 a jejich pozice v BK pro vybrané sekundární metabolity.

image: solution solutio								NCBI Reference
signed		asukamycin	salinomycin	amicetin	meilingmycin	thiazostatin	BLAST	Sequence
updated protein (updated p	ctg2_415						hypothetical protein	WP_164359411
eg2.47 byodetical protein RP34 family doopshortion inforceductase family dearativin-dependent oxidereductase RP34 family doopshortion inforceductase family dearativin-dependent oxidereductase RP34 family doopshortion inforceductase family dearativin-dependent oxidereductase eg2.42 pordetical protein RP34 family doopshortine	ctg2_416	hypothetical protein						
cg2_48 AP GP94 family phosphoprotein nitrocetucas family excl_4240 MP_001127208 hyobbetical protein Hyobbetical protein WP_031127209 cg2_424 Hyobbetical protein Historetucas family excl_4240 MP_001127210 rg2_424 Hyobbetical protein Historetucas family excl_4240 MP_001127210 rg2_424 Hyobbetical protein WP_031127210 rg2_424 Historetucas family hyoobetical protein WP_031127212 rg2_424 Hyobbetical protein WP_031127210 rg2_425 Historetucas family hyoobetical protein WP_031127210 rg2_426 Historetucas family hyoobetical protein WP_031127210 rg2_427 Family photephotephotephotephotephotephotephote	ctg2 417	hypothetical protein						
cug2_419 introreductions family independent introreductions family independent wP_031127209 cug2_429 hypothetical protein introreductions family independent wP_031127212 cug2_424 hypothetical protein intro reductions family independent wP_031127212 cug2_425 hypothetical protein wP_031127212 intro reductions family independent wP_031127212 cug2_425 intro reductions family independent wP_031127214 WP_00411400 WP_031127214 cug2_425 intro reductions family independent wP_031127214 WP_031127214 WP_031127214 cug2_425 introscriptional regulation wP_031127215 wP_031127215 wP_031127215 cug2_435 intrascriptional regulation wP_031127224 WP_031127224 WP_031127224 cug2_435 intrascriptional regulation wP_031127224 AMP-binding protein WP_031127224 cug2_435 intrascriptional regulation wP_031127224 AMP-binding protein WP_031127224 cug2_435 intrascriptional regulation wP_031127224 AMP-binding protein WP_031127224 cug2_435 intrascriptional regulation wP_031127224 AMP-binding protein <td>ctg2 418</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>GPP34 family phosphoprotein</td> <td>WP_031127208</td>	ctg2 418						GPP34 family phosphoprotein	WP_031127208
u i							nitroreductase family	
icid2.40 Modeical protein Modeica							deazaflavin-dependent	WP_031127209
ig2.40 hypotecial protein hypotecial protein <td>ctg2_419</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>oxidoreductase</td> <td></td>	ctg2_419						oxidoreductase	
trd2.24 hypothetical protein hypothetical protein hipothetical	ctg2_420	hypothetical protein						
ec2.423 kpołekiad protein kposłekiad protein kposłekiad protein kposłekiad protein cg2.423 kposłekiad protein kposłekiad protein kposłekiad protein kposłekiad protein cg2.434 kposłekiad protein kposłekiad protein kposłekiad protein kposłekiad protein cg2.436 kposłekiad protein kposłekiad protein kposłekiad protein kposłekiad protein cg2.431 kposłekiad protein kposłekiad protein kposłekiad protein kposłekiad protein cg2.431 kposłekiad protein kposłekiad protein kposłekiad protein kposłekiad protein cg2.431 kposłekiad protein kposłekiad protein kposłekiad protein kposłekiad protein cg2.431 kposłekiad protein kposłekiad protein kposłekiad protein kposłekiad protein cg2.431 kposłekiad protein kposłekiad protein kposłekiad protein kposłekiad protein kposłekiad protein cg2.431 kposłekiad protein kposłekiad protein kposłekiad protein kposłekiad protein kposłekiad protein cg2.433 kposłekiad protein kposłekiad protein kposłekiad protein kposłekiad protein kposłekia	ctg2_421	hypothetical protein						
cr22-423 Rumin tail domain-containing WP_031127215 cr22-424 VP_031127214 VP_031127214 cr22-425 VP_031127214 VP_031127214 cr22-426 VP_031127214 VP_031127215 cr22-427 VP_031127214 VP_031127214 cr22-428 ranscriptional regulation VP_031127215 cr22-429 VP_031127214 VP_031127215 cr22-429 VP_031127214 VP_031127215 cr22-429 VP_031127215 VP_031127215 cr22-430 Transcriptional regulation VP_031127215 cr22-431 Transcriptional regulation VP_031127215 cr22-431 Transcriptional regulation VP_031127215 cr22-433 Transcriptional regulation VP_031127215 cr22-434 Transcriptional regulation VP_031127215 cr22-435 Transcriptional regulation VP_031127215 cr22-434 <	ctg2_422	hypothetical protein						
ctg2_423 protein wn_00112/12 ctg2_424 glycoside hydrolase family 5 wp_094213409 ctg2_425 VOC family protein WP_031127214 ctg2_426 WFS transporter WP_031127215 glytathione S-transferase C-terminal domain-containing wP_094213410 ctg2_427 ranscriptional regulation WP_094213410 ctg2_428 transcriptional regulation WP_094213410 ctg2_430 transcriptional regulation WP_094213410 ctg2_431 transcriptional regulation WP_091127220 ctg2_432 transcriptional regulation WP_091127220 ctg2_433 glycoside a protein WP_091127220 ctg2_434 transcriptional regulation WP_091127220 ctg2_433 glycoside a protein WP_091127220 ctg2_434 glycoside a protein WP_091127220 ctg2_435 glycoside a protein WP_091127220 ctg2_436 glycoside a protein WP_091127220 ctg2_437 glycoside a protein WP_091127220 ctg2_438 glycoside a protein WP_091127220 ctg2_438 glycoside a protein WP_09							lamin tail domain-containing	WD 031127212
crg2.424 kp egg.435 kp egg.435 vC family protein WP.094213409 crg2.425 vC family protein WP.031127214 WP.031127215 Wp.031127215 crg2.426 vC family protein WP.031127215 Wp.031127215 Wp.031127215 crg2.427 ranscriptional regulation vP.031127215 Wp.031127215 Wp.031127215 crg2.437 ranscriptional regulation vP.031127215 Wp.031127215 Wp.031127215 crg2.438 ranscriptional regulation vP.031127215 Wp.031127221 WP.031127221 crg2.433 ranscriptional regulation vP.031127221 MP-binding protein WP.031127221 crg2.433 vP.04213410 vP.031127221 MP-binding protein WP.031127221 crg2.434 vP.04112 vP.04112722 MP-binding protein WP.031127223 crg2.434 vP.04112 vP.04112722 MP-binding rotein WP.031127224 crg2.434 vP.04112 vP.04112722 MP-binding rotein WP.031127224 crg2.434 vP.04112 vP.04112722 MP-binding rotein WP.031127224 crg2.435 vP.04112724 <td< td=""><td>ctg2_423</td><td></td><td></td><td></td><td></td><td></td><td>protein</td><td>W1_031127212</td></td<>	ctg2_423						protein	W1_031127212
ctg2_424 ctg2_425 voC family protein VP_031127215 ctg2_426 voC family protein WP_031127215 ctg2_427 voC family protein WP_031127215 ctg2_428 transcriptional regulation WP_031127215 ctg2_429 transcriptional regulation WP_031127215 ctg2_428 transcriptional regulation WP_03127215 ctg2_430 transcriptional regulation WP_03127215 ctg2_431 transcriptional regulation WP_03127215 ctg2_432 transcriptional regulation WP_031272215 ctg2_433 transcriptional regulation WP_031272215 ctg2_434 transcriptional regulation WP_031272215 ctg2_435 transcriptional regulation WP_031272215 ctg2_435 transcriptional regulation WP_031127225 ctg2_435 transcriptional regulation WP_031127225 ctg2_436 transcriptional regulation WP_031127225 ctg2_437 transcriptional regulation WP_031127225 ctg2_438 transcriptional regulation WP_031127225 ctg2_438 transcriptional regulation WP_031127225							glycoside hydrolase family 5	WP_094213409
crg2_425 crg3_425 veC tamily protein weC_0112/214 crg2_426 MFS transporter wP_03112/215 crg3_427 glutatione S-transferase C- glutatione S-transferase C- crg2_428 Transcriptional regulation wP_094213410 crg2_429 iranscriptional regulation wP_094213410 crg2_429 iranscriptional regulation wP_094213410 crg2_430 Transcriptional regulation wP_094213410 crg2_431 iranscriptional regulation wP_094213410 crg2_432 iranscriptional regulation wP_094213410 crg2_433 iranscriptional regulation wP_094213410 crg2_434 iranscriptional regulation wP_091127216 crg2_433 iranscriptional regulation wP_091127220 crg2_434 iranscriptional regulation wP_091127220 crg2_435 iranscriptional regulation wP_091127221 crg2_438 iranscriptional regulation wP_091127221 crg2_438 iranscriptional regulation wP_091127225 crg2_438 iranscriptional regulation wP_091127226 crg2_438 iranscriptional regulation wP_0911	ctg2_424						protein NOC f il f	
ctg2_426 MFS transporter WP_031127215 ctg2_427 glutathione S-transferase C- trg12_428 ranscriptional regulation WP_094213410 ctg2_428 Transcriptional regulation Hypothetical protein WP_094213410 ctg2_429 hypothetical protein Hypothetical protein WP_031127215 ctg2_430 Transcriptional regulation WP_031127215 WP_094213410 ctg2_431 Transcriptional regulation WP_031127220 WP_031127220 ctg2_433 Transcriptional regulation WP_031127221 MP-binding protein WP_031127221 ctg2_433 Expense Franscriptional regulation WP_031127223 MP-binding protein WP_031127224 ctg2_434 Expense Franscriptional Franscriptional WP_031127224 MP-binding protein WP_031127224 ctg2_434 Expense Franscriptional Franscriptional Stranscriptional WP_031127224 ctg2_438 Franscriptional Franscriptional Franscriptional WP_031127224 ctg2_438 Franscriptional Franscriptional Franscriptional Franscriptional ctg2_438 Franscriptional Franscri	ctg2_425						vOC family protein	WP_03112/214
ctg2_427 ranscriptional regulation WP_094213410 ctg2_428 ranscriptional regulation wP_094213410 ctg2_429 ipotetical protein income service ctg2_430 ranscriptional regulation income service ctg2_431 ranscriptional regulation wP_094213410 ctg2_432 income service income service ctg2_433 ranscriptional regulation wP_094213410 ctg2_434 income service income service ctg2_434 income service income service ctg2_435 income service income service ctg2_436 income service income service ctg2_437 income service income service ctg2_436 income service income service ctg2_437 income service income service ctg2_438 income service income service ctg2_43	ctg2_426						MFS transporter	WP_031127215
ctg2_427 ranscriptional regulation wP_094213410 wP_094213410 ctg2_428 franscriptional regulation protein protein wP_094213410 ctg2_429 hypothetical protein ranscriptional regulation wP_094213410 wP_094213410 ctg2_430 Transcriptional regulation wP_001127220 AMP-binding protein WP_031127220 ctg2_432 Image: State S							glutathione S-transferase C-	WD 004212410
ctg2_427 Transcriptional regulation protein protein ctg2_428 Transcriptional regulation MP-031127220 ctg2_431 AMP-binding protein WP_031127220 ctg2_432 AMP-binding protein WP_031127220 ctg2_433 MP-binding protein WP_031127220 ctg2_434 MP-binding protein WP_031127220 ctg2_434 MP-binding protein WP_031127220 ctg2_434 MP-binding protein WP_031127220 ctg2_435 MP-binding protein WP_031127224 ctg2_436 Mpothetical protein WP_031127224 ctg2_437 MP-binding protein WP_031127224 ctg2_438 MP-binding protein WP_031127224	ctg2 127						protein	WP_094213410
ctg2_43 Instrumental regulation ctg2_43 hypothetical protein ctg2_430 Transcriptional regulation ctg2_431 AMP-binding protein ctg2_432 AMP-binding protein ctg2_433 AMP-binding protein ctg2_434 AMP-binding protein ctg2_435 AMP-binding protein ctg2_436 Mpothetical protein ctg2_437 Mpothetical protein ctg2_438 Mpothetical protein	$ctg2_{+2}$	Transprintional regulation					protein	
ctg2_439 inponencial protein	ctg2_420	hansenpuoliai regulation						
ctg2_430 Iranscriptional regulation AMP-binding protein WP_031127220 ctg2_432 AMP-binding protein WP_03127220 ctg2_433 MP-binding protein WP_031127220 ctg2_434 MP-binding protein WP_031127220 ctg2_434 MP-binding protein WP_031127220 ctg2_434 MP-binding protein WP_031127220 ctg2_435 MP-binding protein WP_031127220 ctg2_436 MP-binding protein WP_031127220 ctg2_436 MP-binding protein WP_031127220 ctg2_437 Image: main scriptional regulator MP-binding protein WP_031127226 ctg2_438 Image: main scriptional regulator Image: main scriptional regulator MP-031127226	ctg2_429							
ctg2_431 AMP-omding protein WP_051127220 ctg2_432 AMP-binding protein WP_055558812 ctg2_433 hypothetical protein WP_031127222 GNAT family N- acetyltransferase WP_031127223 ctg2_436 pyridoxamine 5'-phosphate oxidase family protein WP_031127226 ctg2_438 Putative transcriptional regulator WP_031127226	ctg2_430	I ranscriptional regulation					AMD his dia a sectois	WD 021127220
ctg2_432 AMP-binding protein WP_055538812 ctg2_433 hypothetical protein WP_031127222 ctg2_434 GNAT family N- acetyltransferase wP_031127223 ctg2_435 glyoxylate carboligase pyridoxamine 5'-phosphate wP_031127224 ctg2_438 etg2_438 putative transcriptional wP_031127224	ctg2_431						AMP-binding protein	WP_031127220
ctg2_433hypothetical proteinWP_031127222ctg2_434GNAT family N- acetyltransferaseWP_031127223ctg2_435hypothetical proteinWP_031127224ctg2_436pyridoxamine 5'-phosphate oxidase family proteinWP_031127224ctg2_437putative transcriptional regulatorWP_031127226	ctg2_432						AMP-binding protein	WP_055558812
ctg2_434 ctg2_435 GNA'T family N- wP_031127223 ctg2_435 hypothetical protein WP_031127224 ctg2_436 glyoxylate carboligase pyridoxamine 5'-phosphate oxidase family protein WP_031127224 ctg2_438 regulator regulator regulator regulator	ctg2_433						hypothetical protein	WP_031127222
ctg2_434 acetyliransterase wP_031127224 ctg2_436 glyoxylate carboligase pyridoxamine 5'-phosphate oxidase family protein wP_031127226 ctg2_438 regulator regulator regulator	-+-2 121						GNAT family N-	WP_031127223
ctg2_435 glyoxylate carboligase inypotietical protein wP_031127224 ctg2_436 glyoxylate carboligase pyridoxamine 5'-phosphate oxidase family protein wP_031127226 ctg2_438 regulator regulator regulator wP_031127226	ctg2_434						acetyltransferase	WD 021127224
ctg2_436 glyoxylate carboligase pyridoxamine 5'-phosphate pyridoxamine 5'-phosphate wP_031127226 ctg2_437 putative transcriptional regulator regulator regulator regulator	ctg2_435						nypometical protein	wr_031127224
ctg2_437 ctg2_438 WP_031127226 putative transcriptional regulator	ctg2_436				glyoxylate carboligase		nuiderromine 5! abcorbet-	
ctg2_438	ctg2 437						oxidase family protein	WP_031127226
ctg2_438	Cig2_+37					putative transcriptional	oxiduse fullity protein	
	ctg2_438					regulator		

Tab. 8: Doplnění genů BK 2.5. Tučně jsou zvýrazněny geny, které byly identifikovány pomocí programu antiSMASH. Zbytek genů byl dohledán pomocí BLAST, zadáním proteinové sekvence daného genu.

ctg2_439				hypothetical protein		
ctg2_440					MFS transporter	WP_031127229
ctg2_441					Thioesterase domain	WP_094213417
0 -		non-ribosomal peptide				
ctg2_442		synthetase				
		glycine/serine				
ctg2_443		hydroxymethyltransferase				
ctg2_444					non-ribosomal peptide synthetase	WP_031127233
ctg2_445					pyridoxal phosphate-dependent aminotransferase	WP_055558811
ctg2_446					diaminopimelate epimerase	WP_201104055
ctg2_447					2OG-Fe dioxygenase family protein	WP_031127236
ctg2_448					iron-containing redox enzyme family protein	WP_031127237
ctg2 449					catalase	WP_055560880
0 -			2-hydroxy-3-oxopropionate			
ctg2_450			reductase			
ctg2_451			hydroxypyruvate isomerase			
ctg2_452	putative hydrolase					
ctg2_453	putative beta-hexosaminidase					
	putative sugar transporter					
ctg2_454	membrane protein					
	putative sugar transporter					
ctg2_455	membrane protein					
ctg2 456	sugar binding protein					
018100	putative transcriptional					
ctg2_457	regulator					
ctg2_458	putative secreted protein					
ctg2_459					hypothetical protein	WP_078533243
°					helix-turn-helix domain-	WD 015612246
ctg2_460					containing protein	w1_013012340
ctg2_461					2-oxo-4-hydroxy-4-carboxy-5- ureidoimidazoline decarboxylase	WP_031127248
ctg2_462					hydroxyisourate hydrolase	WP_031127249
ctg2_463					urate oxidase	WP_031127251

Klastr 2.7

Genové uskupení BK 2.7 je znázorněno v Obr. 26. Celkem zde bylo nalezeno 22 genů. Jednotlivé geny jsou popsány v Tab. 10. Seznam procentuálního zastoupení genů známých BK pro sekundární metabolity identifikovaných programem antiSMASH je uveden v Tab. 9. Pozice jednotlivých genů je zobrazena v Obr. 28. BK 2.7 se nachází na konci kontigu, takže nebyl identifikován celý. U *S. fulvissimus* NA06532 byl nalezen klastr, který by mohl doplňovat chybějící část BK 2.7 (viz Obr. 27).

Produkt BK 2.7 je syntetizovaný pomocí NRPS (ctg2_568, růžová barva). Byl také identifikován MbtH-like protein, který může ovlivňovat aktivaci aminokyselin při biosyntéze pomocí NRPS. Jako transkripční faktor byl nalezen protein obsahující helix-turn-helix doménu. Na biosyntéze se dále může podílet FAD-dependentní monooxygenáza, methylisocitrát lyáza, která katalyzuje rozklad 2-methylisocitrátu na pyruvát a sukcinát, enoyl-CoA hydratáza, enoyl-CoA izomeráza, 3-hydroxyisobutyrát dehydrogenáza, acyl-CoA dehydrogenáza, methylmalonát-semialdehyd dehydrogenáza, která přeměňuje 2-methyl-3-oxopropanoát + CoA na propanoyl-CoA, precorrin-6A syntáza a aminokyselinová dekarboxyláza a monooxygenáza. Z transportérů byl nalezen ABC transportér.

Obr. 26: Biosyntetický klastr 2.7

Geny jsou označeny ctg2_x. Popis jednotlivých genů uveden v Tab. 10. Barevně jsou vyznačené geny, které byly identifikovány podle programu antiSMASH. Nevybarvené geny byly dohledány pomocí BLAST.

Obr. 27: Srovnání BK 2.7 s nalezeným BK u *S. fulvissimus* NA06532. Nalezené geny měly stejnou nukleotidovou sekvenci v rozmezí 98–100 %. V části, která by mohla doplňovat BK 2.7 se nachází geny například pro TetR family transkripční regulátor, enoyl-CoA hydratáza/izomeráza family protein, SDR family oxidoreduktázu a ABC transportér.

procen	tuann genova shoua s DK 2.7.		
2.7	WS9326	5 %	NRP
	macrotetrolide	50 %	Polyketide
	thiocoraline	7 %	NRP:Cyclic depsipeptide
	retimycin A	13 %	NRP:Cyclic depsipeptide
	pepticinnamin E	6 %	NRP + Polyketide
	hedamycin	6 %	Polyketide
	triostin A	11 %	NRP
	SW-163C / UK-63598 / SW-163E /		
	SW-163F / SW-163G	7 %	NRP
	ishigamide	11 %	NRP + Polyketide
	incednine	2 %	Polyketide

Tab. 9: Seznam nalezených BK pro sekundární metabolity pomocí programu antiSMASH a jejich procentuální genová shoda s BK 2.7.

Query sequence	
WS9326	
macrotetrolide	
retimycin A	

Obr. 28: Srovnání identifikovaných genů prostřednictvím programu antiSMASH v BK 2.7 a jejich pozice v BK pro vybrané sekundární metabolity.

					NCBI Reference
	WS9326	macrotetrolide	retimycin A	BLAST	Sequence
ctg2_551				fasciclin domain-containing protein	WP_094211272
ctg2_552				FAD-dependent monooxygenase	WP_201106137
ctg2_553				lipoateprotein ligase family protein	WP_031126192
ctg2_554				bifunctional 2-methylcitrate synthase/citrate synthase	WP_055561351
ctg2_555				methylisocitrate lyase	WP_055561350
ctg2_556				MmgE/PrpD family protein	WP_055561349
ctg2_557				helix-turn-helix transcriptional regulator	WP_094211268
ctg2_558				enoyl-CoA hydratase	WP_031126187
ctg2_559				3-hydroxyisobutyrate dehydrogenase	WP_107064912
ctg2_560				enoyl-CoA hydratase/isomerase family protein	WP_176144900
ctg2 561				acyl-CoA dehydrogenase family protein	WP_055561345
ctg2_562				CoA-acylating methylmalonate-semialdehyde dehydrogenase	WP_094211265
ctg2_563				precorrin-6A synthase	WP_031126182
ctg2_564				hypothetical protein	WP_015612446
ctg2_565			ABC transporter		
			daunorubicin resistance protein DrrA family ABC		
ctg2_566			transporter ATP-binding protein		
ctg2_567			MbtH-like protein		
ctg2_568	NRPS				
ctg2_569				hypothetical protein	WP_031126177
ctg2_570		5-methyltetrahydropteroyltriglutamate- homocysteine methyltransferase-like protein			
ctg2_571		amino acid decarboxylase-like protein			
ctg2_572		amino acid monooxygenase-like protein			

Tab. 10: Doplnění genů BK 2.7. Tučně jsou zvýrazněny geny, které byly identifikovány pomocí programu antiSMASH. Zbytek genů byl dohledán pomocí BLAST, zadáním proteinové sekvence daného genu.

Klastr 3.1

Genové uskupení BK 3.1 je znázorněno v Obr. 29. Celkem zde bylo nalezeno 22 genů. Jednotlivé geny jsou popsány v Tab. 12. Seznam procentuálního zastoupení genů známých BK pro sekundární metabolity identifikovaných programem antiSMASH je uveden v Tab. 11. Pozice jednotlivých genů je zobrazena v Obr. 31. Podobný BK byl identifikován u *S. fulvissimus* NA06532 (viz Obr. 30).

Produkt BK 3.1 je syntetizovaný pomocí polyprenyl synthetázy (ctg_345) a terpen cyklázy (ctg_352). Na biosyntéze se dále může podílet dTDP-glukóza 4,6-dehydratáza, DXP (1-deoxy-D-xylulosa-5-fosfát) syntáza, HMBPP ((E)-4-hydroxy-3-methyl-but-2-enylpyrofosfát) syntáza, 3-deoxy-D-arabino-heptulosonát-7-fosfát syntáza, 2,3-dihydro-2,3-dihydroxybenzoát dehydrogenáza, isochorismatáza, anthranilát syntáza, karboxyl esteráza, polysacharid deacetyláza a enoyl-CoA hydratáza/izomeráza.

Obr. 29: Biosyntetický klastr 3.1

Geny jsou označeny ctg3_x. Popis jednotlivých genů uveden v Tab. 12. Barevně jsou vyznačené geny, které byly identifikovány podle programu antiSMASH. Nevybarvené geny byly dohledány pomocí BLAST.

Obr. 30: Srovnání BK 3.1 s nalezeným BK u NA06532 *S. fulvissimus*, u kterého bylo procentuální genové zastoupení stejné z 95 %. Nalezené geny měly stejnou nukleotidovou sekvenci v rozmezí 89–100 %.

Tab. 11: Seznam nalezených BK pro sekundární metabolity pomocí programu antiSMASH a jejich procentuální genová shoda s BK 3.1.

-	-		
3.1	murayaquinone	10 %	Polyketide
	paulomycin	11 %	Saccharide
	diazaquinomycin A / diazaquinomycin E /		
	diazaquinomycin F / diazaquinomycin G	25 %	Diazaanthraquinone
	A23187	17 %	Polyketide
	streptonigrin	7 %	Aminoquinon
	caboxamycin	40 %	NRP + Polyketide
	limazepine C / limazepine D /		
	limazepine E / limazepine F / limazepine A	22 %	NRP + Polyketide
			Terpene +
	phenalinolactone A	11 %	Saccharide:Hybrid/tailoring

Obr. 31: Srovnání identifikovaných genů prostřednictvím programu antiSMASH v BK 3.1 a jejich pozice v BK pro vybrané sekundární metabolity.

						NCBI Reference
	murayaquinone	paulomycin	phenalinolactone A	caboxamycin	BLAST	Sequence
ctg3_339	dTDP-glucose 4,6-dehydratase	dTDP-glucose 4,6-dehydratase	4,6-Dehydratase			
ctg3_340		NDP-hexose 2,3-dehydratase	2,3-Dehydratase			
ctg3_341					UbiA family prenyltransferase	WP_015611478
ctg3_342					tetratricopeptide repeat protein	WP_055559895
ctg3_343			HMBPP synthase			
ctg3_344			DXP synthase			
ctg3_345					polyprenyl synthetase family protein	WP_164356879
ctg3 346					4-hydroxy-3-methylbut-2-enyl diphosphate reductase	WP_164356878
ota 3 3/7	transnosasa					
cig5_547						
cto3 348	phospho-2-dehydro-3- deoxybeptonate aldolase	3-deoxy-D-arabino-heptulosonate-		phospho-2-dehydro-3- deoxyheptopate aldolase		
cigo_010	2 3-dihydroxybenzoate-2 3-	2.3-dihydro-2.3 -dihydroxybenzoate		2 3-dihydroxybenzoate-		
ctg3 349	dehydrogenase	dehydrogenase		2,3-dehydrogenase		
0 =	phenazine biosynthesis protein					
ctg3_350	PhzE	Isochorismatase		isochorismatase		
	phenazine biosynthesis protein					
ctg3_351	PhzE	Anthranilate synthase		anthranilate synthase		
ctg3_352					terpene cyclase	WP_031126208
ctg3_353					N-acetylmuramoyl-L-alanine amidase	WP_094214033
ctg3_354					carboxylesterase family protein	WP_176144605
ctg3_355					CopD family protein	WP_055558688
ctg3_356					EF-hand domain-containing protein	WP_031126204
ctg3_357					polysaccharide deacetylase family protein	WP_094214030
ctg3_358					ATP-binding protein	WP_031122866
ctg3_359					enoyl-CoA hydratase/isomerase family protein	WP_031122867
ctg3_360					L,D-transpeptidase family protein	WP_031122868

Tab. 12: Doplnění genů BK 3.1. Tučně jsou zvýrazněny geny, které byly identifikovány pomocí programu antiSMASH. Zbytek genů byl dohledán pomocí BLAST, zadáním proteinové sekvence daného genu.

Klastr 4.1

Genové uskupení BK 4.1 je znázorněno v Obr. 32. Celkem zde bylo nalezeno 78 genů. Jednotlivé geny jsou popsány v Tab. 14. Seznam procentuálního zastoupení genů známých BK pro sekundární metabolity identifikovaných programem antiSMASH je uveden v Tab. 13. Pozice jednotlivých genů je zobrazena v Obr. 34. Podobná sekvence byla identifikována u streptomycety *S. fulvissimus* NA06532 (viz Obr. 33).

Produkt BK 4.1 je syntetizovaný pomocí PKS typu II, která je složena KS_{α} (ctg4_104, modrá barva), KS_{β} (ctg4_105, fialová barva) a ACP (ctg4_106 žlutá barva). Jako transkripční faktory byly identifikovány proteiny s winged helix-turn-helix doménou, TetR family a MarR family transkripční regulátory. Na biosyntéze se dále může podílet HAD-IA family hydroláza, ester cykláza, tryptofan 7-halogenáza, flavin reduktáza, oxygenázy, ketoreduktáza, aromatáza, cykláza, acetyltransferáza, F420-závislá oxidoreduktáza, NAD(P)-dependentní oxidoreduktáza, D-inositol-3-fosfát glykosyltransferáza a fosfoglycerátmutáza. Z transportérů byl identifikován proton antiporter a MFS transportéry.

Obr. 32: Biosyntetický klastr 4.1

Geny jsou označeny ctg4_x. Popis jednotlivých genů uveden v Tab. 14. Barevně jsou vyznačené geny, které byly identifikovány podle programu antiSMASH. Nevybarvené geny byly dohledány pomocí BLAST.

Obr. 33: Srovnání BK 4.1 s nalezeným BK u NA06532 *S. fulvissimus*, u kterého bylo procentuální genové zastoupení stejné z 96 %. Nalezené geny měly stejnou nukleotidovou sekvenci v rozmezí 87–100 %.

-		1	
4.1	prejadomycin / rabelomycin / gaudimycin C		
	/ gaudimycin D / UWM6 / gaudimycin A	27 %	Polyketide
	auricin	44 %	Polyketide:Type II + Saccharide
	oviedomycin	50 %	Polyketide:Type II
	kinamycin	37 %	Polyketide
	Sch-47554 / Sch-47555	20 %	Polyketide
	lugdunomycin	44 %	Polyketide
	saquayamycin A	27 %	Polyketide
			Saccharide + Polyketide:Modular
	simocyclinone D8	22 %	type I + Polyketide:Type II + O
	fluostatins M-Q	27 %	Polyketide
	saprolmycin E	30 %	Polyketide

Tab. 13: Seznam nalezených BK pro sekundární metabolity pomocí programu antiSMASH a jejich procentuální genová shoda s BK 4.1.

Obr. 34: Srovnání identifikovaných genů prostřednictvím programu antiSMASH v BK 4.1 a jejich pozice v BK pro vybrané sekundární metabolity.

						NCBI Reference
	kinamycin	oviedomycin	auricin	lugdunomycin	BLAST	Sequence
ctg4_65					domain-containing protein	WP_161265419
ctg4_66					alpha/beta fold hydrolase	WP_055560017
ctg4_67					MoaD/ThiS family protein	WP_015610212
ctg4_68					hypothetical protein	WP_201105992
ctg4_69					DUF2993 domain-containing protein	WP_031125902
ctg4_70					sulfurtransferase	WP_031125903
cto4 71					DUF1416 domain-containing	WP_003968135
ctg4_72					DUF3099 domain-containing protein	WP_031125904
ctg4_73					DsrE family protein	WP_015610217
ctg4_74					hypothetical protein	WP_031125906
ctg4_75					hypothetical protein	WP_055560015
ctg4_76					hypothetical protein	WP_207564525
ctg4_77					hypothetical protein	WP_109164431
ctg4_78					FABP family protein	WP_031125909
ctg4_79					transcriptional repressor	WP_203681289
ctg4_80					folate-binding protein YgfZ	WP_031125911
ctg4_81					D-tyrosyl-tRNA(Tyr) deacylase	WP_031125912
ctg4_82					ABC transporter substrate- binding protein	WP_202461489
ctg4_83					asparaginase	WP_031125914
ctg4_84					GNAT family N- acetyltransferase TetR family transcriptional	WP_099126747
ctg4_85					regulator	WP_176144219
ctg4_86					HAD-IA family hydrolase	WP_031125917
ctg4_87		ovmZ protein				
ctg4_88					transcriptional regulator	WP_199815003
ctg4_89					dehydrogenase nuclear transport factor 2	WP_176144220
ctg4_90					family protein	WP_031125921

Tab. 14: Doplnění genů BK 4.1 Tučně jsou zvýrazněny geny, které byly identifikovány pomocí programu antiSMASH. Zbytek genů byl dohledán pomocí BLAST, zadáním proteinové sekvence daného genu.

ctg4_91					ester cyclase nitroreductase family	WP_015610240
ctg4_92				NADPH-dependent FMN	deazaflavin-dependent oxidoreductaze	WP_015610241
ctg4_93				reductase		
ctg4_94					proton antiporter	WP_164359089
ctg4_95					containing protein	WP_031125924
ctg4_96	MFS transporter					
ctg4 97					MarR family transcriptional regulator	WP 015610246
ctg4 98					tryptophan 7-halogenase	WP 079036084
ctg4_99					flavin reductase	WP_203681287
ctg4_100					ATP-grasp domain- containing protein	WP_176144224
ctg4_101					protein	WP_031124555
ata 4 102	ovvoornoon lilvo mustain		auricin polyketide oxygenase-			
ctg4_102	oxygenase-like protein	oxygenase	reductase	TcmI family type II		
ctg4_103	JadI cyclase-like protein	cyclase	auricin polyketide cyclase auricin polyketide beta-ketoacyl	polyketide cyclase		
ctg4_104	putative ketoacyl synthase	keto-acyl synthase alpha	synthase alpha subunit	beta-ACP synthase		
ctg4 105	determinant	keto-acyl synthase beta	synthase beta subunit	length factor		
			auricin polyketide acyl carrier	actinorhodin polyketide		
ctg4_106	putative acyl carrier protein	acyl carrier protein	protein	synthase		
ctg4_107	putative ketoreductase cvclase/dehvdratase-like	ketoreductase	auricin polyketide ketoreductase auricin polyketide	ketoacyl reductase		
ctg4_108	protein	aromatase	cyclase/dehydratase	cyclase		
ctg4_109	oxygenase-like protein	oxygenase	maior facilitator aurorfamily	monooxygenase		
ctg4_110		alpha-chain	transporter	MFS transporter		
	JadM phosphopantetheinyl		4'-phosphopantetheinyl			
ctg4_111	transferase-like protein	4'-phosphopantetheinyl transferase	transferase	methylmalonyl CoA		
ctg4_112	protein	chain	carboxyltransferase	carboxyltransferase		
ctg4_113			hypothetical protein			
ctg4_114	LanU-like protein		putative acetyltransferase	alpha/beta hydrolase		
ctg4_115					hypothetical protein	WP_094211215
ctg4 116					winged helix DNA-binding domain-containing protein	WP 202705601

		-		-
ctg4_117			DinB family protein	WP_055562042
ctg4 118			WYL domain-containing protein	WP_176144229
ctgA 110			LLM class F420-dependent	WP_031124573
ctg4_119			NAD(P)-dependent	WP 094211212
ctg4_120			oxidoreductase	
ctg4_121			transcriptional regulator	WP_015610270
ctg4_122			hypothetical protein	WP_031124575
ctg4_123			DIP1984 family protein	WP_203619042
ctg4_124			hypothetical protein	WP_094211209
ctg4_125			helix-turn-helix transcriptional regulator	WP_031124577
ctg4_126			hypothetical protein	WP_055561777
ctg4_127			DUF2516 family protein	WP_015610276
ctg4_128			SpoIIE family protein phosphatase	WP_202705605
ctg4 129			C40 family peptidase	WP_203679959
ctg4 130			class I SAM-dependent methyltransferase	WP_031124581
			D-inositol-3-phosphate	WP 031124582
ctg4_131			glycosyltransferase	
ctg4_132			protein	WP_031124583
ctg4_133			hypothetical protein	WP_202705606
ctg4_134			hypothetical protein	WP_201105724
ctg4_135			hypothetical protein	WP_031124586
ctg4_136			hypothetical protein	WP_031124587
ctg4_137			hypothetical protein	WP_176144236
ctg4_138			hypothetical protein	WP_203679953
ctg4_139			phosphoglyceromutase	WP_031124604
ctg4_140			MFS transporter	WP_031124605
ctg4_141			hypothetical protein	WP_176144258
ctg4_142			phosphate signaling complex protein PhoU	WP_031124606

Klastr 5.2

Genové uskupení BK 5.2 je znázorněno v Obr. 35. Celkem zde bylo nalezeno 17 genů. Jednotlivé geny jsou popsány v Tab. 16. Seznam procentuálního zastoupení genů známých BK pro sekundární metabolity identifikovaných programem antiSMASH je uveden v Tab. 15. Pozice jednotlivých genů je zobrazena v Obr. 37. BK 5.2 se nachází na konci kontigu, takže nebyl identifikován celý. U *S. fulvissimus* DSM 40593 byl nalezen klastr, který by mohl doplňovat chybějící část BK 5.2 (viz Obr. 36).

Produkt BK 5.2 je syntetizovaný alespoň dvěma PKS typu I (ctg5_430 a ctg5_431 růžová barva). Je zde identifikován transkripční faktor s helix-turn-helix doménou. Na biosyntéze se dále může podílet aminotransferáza, flavin reduktáza a dehydrogenáza. Dále byly identifikovány AAA ATPázy, které jsou spojeny s různými buněčnými aktivitami.

Obr. 35: Biosyntetický klastr 5.2

Geny jsou označeny ctg5_x. Popis jednotlivých genů uveden v Tab. 16. Barevně jsou vyznačené geny, které byly identifikovány podle programu antiSMASH. Nevybarvené geny byly dohledány pomocí BLAST.

Query sequence				
		-		
Streptomyces fulvissimus DSM 40593				
		_		

Obr. 36: Srovnání BK 5.2 s nalezeným BK u *S. fulvissimus* DSM 40593. Nalezené geny měly stejnou nukleotidovou sekvenci v rozmezí 46–100 %. V části, která by mohla doplňovat BK 5.2 se nachází geny například pro acyl-CoA dehydrogenázu a flavin reduktázu.

Tab. 15: Seznam nalezených BK pro sekundární metabolity pomocí programu antiSMASH a jejich procentuální genová shoda s BK 5.2.

1	8		
5.2	argimycin PI / argimycin PII / nigrifactin /		
	argimycin PIV / argimycin PV / argimycin		
	PVI / argimycin PIX	24 %	Polyketide
	streptazone E	75 %	Polyketide
	microtermolide A	33 %	NRP + Polyketide
	lavendiol	19 %	Polyketide
	coelimycin P1	20 %	Polyketide:Modular type I
	chlorothricin / deschlorothricin	16 %	Polyketide:Modular type I
	oligomycin	44 %	Polyketide
	auroramycin	8 %	Polyketide
	sipanmycin	16 %	Polyketide

Query sequence		
streptazone E		
lavendiol		
oligomycin		

Obr. 37: Srovnání identifikovaných genů prostřednictvím programu antiSMASH v BK 5.2 a jejich pozice v BK pro vybrané sekundární metabolity.

	streptazone E	lavendiol	oligomycin	BLAST	NCBI Reference Sequence
ctg5_415				hypothetical protein	WP_176145501
ctg5_416				sigma-70 family RNA polymerase sigma factor	WP_031125699
ctg5_417				hypothetical protein	WP_031125700
ctg5_418				winged helix-turn-helix domain- containing protein	WP_164358353
ctg5_419				NAD(P)H-dependent oxidoreductase	WP_031125702
ctg5_420	type II thioesterase	type II thioesterase	thioesterase		
ctg5_421				AAA family ATPase	WP_094213103
ctg5_422				hypothetical protein	WP_031125705
ctg5_423				AAA family ATPase	WP_176144433
ctg5_424	aminotransferase	aminotransferase			
ctg5_425	flavin reductase				
ctg5_426	Dehydrogenase/hydroxylase				
ctg5_427	cyclase				
ctg5_428		amine oxidase			
ctg5_429	cyclase				
ctg5_430	type I polyketide synthase	type I polyketide synthase	modular polyketide synthase		
ctg5_431	type I polyketide synthase	type I polyketide synthase	modular polyketide synthase		

Tab. 16: Doplnění genů BK 5.2. Tučně jsou zvýrazněny geny, které byly identifikovány pomocí programu antiSMASH. Zbytek genů byl dohledán pomocí BLAST, zadáním proteinové sekvence daného genu.

Klastr 7.1

Genové uskupení BK 7.1 je znázorněno v Obr. 38. Celkem zde bylo nalezeno 15 genů. Jednotlivé geny jsou popsány v Tab. 18. Seznam procentuálního zastoupení genů známých BK pro sekundární metabolity identifikovaných programem antiSMASH je uveden v Tab. 17. Pozice jednotlivých genů je zobrazena v Obr. 40. Stejný BK byl identifikován u *S. fulvissimus* NA06532 (viz Obr. 39).

Produkt BK 7.1 je syntetizovaný pomocí terpen cyklázy (ctg7_65). Na biosyntéze se dále může podílet hydroláza, aldehyd dehydrogenáza a methionyl-tRNA formyltransferáza. Na regulaci transkripce se podílí Lrp/AsnC family transkripční regulátor.

Obr. 38: Biosyntetický klastr 7.1

Geny jsou označeny ctg1_x. Popis jednotlivých genů uveden v Tab. 18. Barevně jsou vyznačené geny, které byly identifikovány podle programu antiSMASH. Nevybarvené geny byly dohledány pomocí BLAST.

Query sequence	
Streptomyces fulvissimus strain NA06532	

Obr. 39: Srovnání BK 7.1 s nalezeným BK u *S. fulvissimus* NA06532. Nalezené geny měly stejnou nukleotidovou sekvenci v rozmezí 98–100 %.

Tab. 17: Seznam nalezených BK pro sekundární metabolity pomocí programu antiSMASH a jejich procentuální genová shoda s BK 7.1.

7.1			Polyketide:Type II +
	steffimycin D	19 %	Saccharide:Hybrid/tailoring
	BE-7585A	9 %	Polyketide
	perquinoline A / perquinoline B /		
	perquinoline C	14 %	Tetrahydroisoquinolines
	mediomycin A	8 %	Polyketide

Query sequence	
	♦₩K3₽₩K9₽ ₩
steffimycin D	
BE-7585A	
mediomivcin A	

Obr. 40: Srovnání identifikovaných genů prostřednictvím programu antiSMASH v BK 7.1 a jejich pozice v BK pro vybrané sekundární metabolity.

					NCBI Reference
	steffimycin D	BE-7585A	mediomycin A	BLAST	Sequence
ctg7_58				glycoside hydrolase family 6 protein	WP_199811469
ctg7_59				hypothetical protein	WP_031127661
ctg7_60			putative L-arginine monooxygenase		
ctg7_61			carbon-nitrogen hydrolase family protein		
ctg7_62				Lrp/AsnC family transcriptional regulator	WP_015607336
ctg7_63				aldehyde dehydrogenase family protein	WP_031127657
-4-7 (4	putative inosine monophosphate				
ctg7_04	denydrogenase			ternene cyclase	WP 203680448
ctg7_05	putative transcriptional regulator				
ctg7_67	putative ribulose-phosphate 3-epimerase				
ctg7_68	hypothetical Sun-family protein	putative tRNA/rRNA cytosine-C5-methylase			
ctg7_69	putative methionyl-tRNA formyltransferase	putative methionyl-tRNA formyltransferase			
ctg7_70	hypothetical protein				
ctg7_71	putative primosomal protein N'	putative primosomal protein N'			
ctg7_72		putative methionine adenosyltransferase			

Tab. 18: Doplnění genů BK 7.1. Tučně jsou zvýrazněny geny, které byly identifikovány pomocí programu antiSMASH. Zbytek genů byl dohledán pomocí BLAST, zadáním proteinové sekvence daného genu.

Klastr 8.2

Genové uskupení BK 8.2 je znázorněno v Obr. 41. Celkem zde bylo nalezeno 51 genů. Jednotlivé geny jsou popsány v Tab. 20. Seznam procentuálního zastoupení genů známých BK pro sekundární metabolity identifikovaných programem antiSMASH je uveden v Tab. 19. Pozice jednotlivých genů je zobrazena v Obr. 43. Podobný BK byl identifikován *S. fulvissimus* NA06532 (viz Obr. 42).

Produkt BK 8.2 je syntetizován pomocí tří NRPS (ctg8_337, zelená barva, ctg8_343 modrá barva a ctg8_344, fialová barva). Byl také identifikován MbtH-like protein. Z transkripčních faktorů byly nalezeny PadR family, TetR/AcrR family, XRE family a MarR family transkripční regulátory. Na biosyntéze se dále může podílet FAD-dependentní oxidoreduktáza, methyltransferáza, sugar kináza, oxidoreduktáza, cytochrom P450 a amidáza. Z transportérů byly identifikovány MFS transportéry a ABC transportér.

V klastru se nachází i části PKS a to thioesteráza (ctg8_348), ACP (ctg8_349) a 4'phosphopantetheinyl transferáza (ctg8_352). Byla identifikována i 3-oxoacyl-ACP syntháza, která se podílí na biosyntéze masných kyselin.

Obr. 41: Biosyntetický klastr 8.2

Geny jsou označeny ctg8_3x. Popis jednotlivých genů uveden v Tab. 20. Barevně jsou vyznačené geny, které byly identifikovány podle programu antiSMASH. Nevybarvené geny byly dohledány pomocí BLAST.

Obr. 42: Srovnání BK 8.2 s nalezeným BK u NA06532 *S. fulvissimus*, u kterého bylo procentuální genové zastoupení stejné z 98 %. Nalezené geny měly stejnou nukleotidovou sekvenci v rozmezí 98–100 %.

T							
0 2	balhimycin	8 %	NRP				
0.2	decaplanin	8 %	NRP:Glycopeptide				
	cysteoamide	27 %	NRP				
	vancomycin	5 %	NRP				
	coumermycin A1	9 %	Saccharide:Hybrid/tailoring				
	clorobiocin	10 %	Saccharide:Hybrid/tailoring				
	acyldepsipeptide 1	10 %	NRP				
	cacibiocin B	14 %	Aminocoumarin				
	cathomycin	10 %	Saccharide:Hybrid/tailoring				

Tab. 19: Seznam nalezených BK pro sekundární metabolity pomocí programu antiSMASH a jejich procentuální genová shoda s BK 8.2.

Obr. 43: Srovnání identifikovaných genů prostřednictvím programu antiSMASH v BK 8.2 a jejich pozice v BK pro vybrané sekundární metabolity.

	decomlanin	avata a amida	alarahiasin	DLACT	NCDI Deference Segueres
	decapianin	cysteoamide	cloroblocin	BLAST Nd-E familie anatain	NUBL 100822145
ctg8_322				Y der family protein	WP_199833143
ctg8_323				sirohydrochlorin chelatase	WP_031126043
ctg8_324				deoxyguanosinetriphosphate triphosphohydrolase	WP_031126044
ctg8_325				FAD-dependent oxidoreductase	WP_203679285
ctg8_326				MFS transporter	WP_176143560
ctg8_327				helix-turn-helix domain-containing protein	WP_055558814
ctg8_328				methyltransferase domain-containing protein	WP_031126048
ctg8_329				DNA primase	WP_031126049
ctg8_330				RNA polymerase sigma factor	WP_055558912
ctg8_331				ABC transporter ATP-binding protein	WP_031126051
ctg8_332				ABC transporter ATP-binding protein	WP_055558911
ctg8_333				sugar kinase	WP_031126053
ctg8_334				secreted protein	WP_015608334
ctg8_335				glycine amidinotransferase	WP_031126054
ctg8_336		MbtH family protein	mbtH-like protein		
ctg8_337	non-ribosomal peptide synthetase				
ctg8_338				thioesterase	WP_078625999
ctg8_339				diiron oxygenase	WP_079035918
ctg8_340				hypothetical protein	WP_055558909
ctg8_341				PadR family transcriptional regulator	WP_018961692
ctg8_342				AMP-binding protein	WP_164357342
			peptide synthetase-like		
ctg8_343	non-ribosomal peptide synthetase		protein		
ctg8_344		non-ribosomal peptide synthetas			
ctg8_345				TauD/TfdA family dioxygenase	WP_031122370
ctg8_346				SDR family oxidoreductase	WP_031122369

Tab. 20: Doplnění genů BK 8.2. Tučně jsou zvýrazněny geny, které byly identifikovány pomocí programu antiSMASH. Zbytek genů byl dohledán pomocí BLAST, zadáním proteinové sekvence daného genu.

1					
	ctg8_347	cytochrome P450	cytochrome P450		
	ctg8_348			thioesterase	WP_078907827
	ctg8_349			acyl carrier protein	WP_031122366
	ctg8_350			acyl-CoA dehydrogenase family protein	WP_055558903
	ctg8_351			XRE family transcriptional regulator	WP_094213181
	ctg8_352			4'-phosphopantetheinyl transferase superfamily protein	WP_094213182
	ctg8_353			MFS transporter	WP_031122362
	ctg8_354			amidase	WP_055558901
	ctg8_355			3-oxoacyl-ACP synthase	WP_031122360
	ctg8_356			hypothetical protein	WP_031122359
	ctg8_357			AMP-binding protein	WP_055558900
	ctg8_358			phosphodiester glycosidase family protein	WP_031122357
	ctg8_359			MFS transporter	WP_055558898
	ctg8_360			3-oxoacyl-ACP reductase FabG	WP_031122355
	ctg8_361			TetR/AcrR family transcriptional regulator	WP_031122354
	ctg8_362			acetyl-CoA carboxylase	WP_031122353
	ctg8_363			acyl-CoA synthetase	WP_031122352
	ctg8_364			PQQ-dependent sugar dehydrogenase	WP_031122351
	ctg8_365			ThuA domain-containing protein	WP_094213187
	ctg8_366			MFS transporter	WP_203680083
	ctg8_367			Lrp/AsnC family transcriptional regulator	WP_015608318
	ctg8_368			GAF domain-containing protein	WP_094213199
	ctg8_369			rod shape-determining protein	WP_203680085
	ctg8_370			hypothetical protein	WP_202705034
	ctg8_371			hypothetical protein	WP_176143541
	ctg8_372			MarR family transcriptional regulator	WP_031122344

Klastr 20.1

Genové uskupení BK 20.1 je znázorněno v Obr. 44. Celkem zde bylo nalezeno 21 genů. Jednotlivé geny jsou popsány v Tab. 22. Seznam procentuálního zastoupení genů známých BK pro sekundární metabolity identifikovaných programem antiSMASH je uveden v Tab. 21. Pozice jednotlivých genů je zobrazena v Obr. 46. BK 20.1 se nachází na konci kontigu, takže nebyl identifikován celý. U *S. tirandamycinicus* byl nalezen klastr, který by mohl doplňovat chybějící část BK 20.1 (viz Obr. 45).

Produkt BK 20.1 je syntetizovaný alespoň pomocí PKS typu I (ctg20_1, červená barva) a NRPS (ctg20_4, fialová barva). Z transkripčních faktorů tu byly nalezeny TetR family transkripční regulátor a LuxR type regulační protein. Na biosyntéze se dále může podílet cytochrom P450 a monooxygenáza. Z transportérů byl identifikován ABC transportér.

Byly zde nalezeny i transposázy, které mohou zajištovat horizontální přenos genů.

Obr. 44: Biosyntetický klastr 20.1

Geny jsou označeny ctg20_x. Popis jednotlivých genů uveden v Tab. 22. Barevně jsou vyznačené geny, které byly identifikovány podle programu antiSMASH. Nevybarvené geny byly dohledány pomocí BLAST.

Query sequence				
Streptomyces tirandamycinicus strain HNM0039				

Obr. 45: Srovnání BK 20.1 s nalezeným BK u *S. tirandamycinicus* HNM0039. Nalezené geny měly stejnou nukleotidovou sekvenci v rozmezí 53–95 %. V části, která by mohla doplňovat BK 20.1 se nachází geny například pro FAD-dependentní oxidoreduktázu, NADP-dependentní fosfoglukonát dehydrogenázu a oxidoreduktázu.

1	8		
20.1	tirandamycin	86 %	NRP + Polyketide:Modular type I
	nocamycin	40 %	NRP + Polyketide
	streptolydigin	31 %	NRP + Polyketide:Modular type I
	lydicamycin	40 %	NRP + Polyketide:Modular type I
	brasilinolide A / brasilinolide B /		
	brasilinolide C	5 %	Polyketide
	α-lipomycin	27 %	NRP:Lipopeptide + Polyketide
	akaeolide	24 %	Polyketide
	lavendiol	16 %	Polyketide
	kirromycin	3 %	NRP + Polyketide:Modular type I

Tab. 21: Seznam nalezených BK pro sekundární metabolity pomocí programu antiSMASH a jejich procentuální genová shoda s BK 20.1.

Query sequence	
tirandamycin	
nocamycin	
streptolydigin	

Obr. 46: Srovnání identifikovaných genů prostřednictvím programu antiSMASH v BK 20.1 a jejich pozice v BK pro vybrané sekundární metabolity.

Tab. 22: Doplnění genů BK 20.1. Tučně jsou zvýrazněny geny, které byly identifikovány pomocí programu antiSMASH. Zbytek genů byl dohledán pomocí BLAST, zadáním proteinové sekvence daného genu.

*Umístění v GenBank

						NCBI Reference
	streptolydigin	tirandamycin	lavendiol	nocamycin	BLAST	Sequence
			type I polyketide	Type I polyketide		
ctg20_1	polyketide synthase type I	Polyketide synthase	synthase	synthase		
ctg20_2	thioesterase type II	thioesterase	type II thioesterase			
ctg20_3		hypothetical protein				
		Non-ribosomal peptide		Non-ribosomal		
ctg20_4		synthetase		peptide synthetase		
ctg20_5	putative secreted hydrolase putative ent-copalyl diphosphate	O-glycosyl hydrolase		Glycoside hydrolase		
ctg20_6	synthase	terpene synthase		Prenyltransferase		
ota 20 7	putative ATP/GTP hinding protein	ATP-dependent DNA				
cig20_/	putative ATT/OTT binding-protein	LuxR type regulatory				
ctg20_8		protein				
ctg20_9	cytochrome P450	cytochrome P450				
	putative transport integral membrain					
ctg20_10	protein	ABC-type transporter				
		T-4D liles to a solid is a sl		TetR family		
ctv20-11	TetR-family transcriptional regulator	regulator		regulator		
cig_0_11	forte family danseriptional fogulator	rogulator		Transcriptional		
ctg20_12				regulator		
ctg20_13				Monooxygenase		
ctg20_14					transposase	WP_136227726
ctg20_15			transposase			
					No significant similarity	
ctg20_16					found.	
ctg20_17					endo-1,4-beta-xylanase	WP_201106263
ctg20_18					hypothetical protein	WP_176145728
ctg20_19					hypothetical protein	WP_176145729
ctg20_20					IS5 family transposase	WP_164493825
ctg20_21					transposase	KOG08234*

Klastr 43.1

BK 43.1 se nachází na konci kontigu, takže nebyl sestaven celý BK. Na Obr. 47 jsou znázorněny dvě PKS typu I, které byly identifikovány. Seznam procentuálního zastoupení genů známých BK pro sekundární metabolity identifikovaných programem antiSMASH je uveden v Tab. 23.

Obr. 47: Znázornění části BK 43.1 s označením ctg43_x. Oba geny představují PKS typu I.

Tab. 2	23: Seznam	nalezených	BK pro	sekundární	metabolity	pomocí	programu	antiSMASH	a jejich
procei	ntuální genc	ová shoda s I	BK 43.1.						

43.1	halstoctacosanolide A	77 %	Polyketide
	stambomycin A / stambomycin B /		
	stambomycin C / stambomycin D	36 %	Polyketide
	cremimycin	17 %	Polyketide
	salinomycin	18 %	Polyketide:Modular type I
	lobophorin A	8 %	Polyketide
	reedsmycins	20 %	Polyketide
	linfuranone B / linfuranone C	38 %	Polyketide
	hygrocin A / hygrocin B	16 %	Polyketide
	ebelactone	11 %	Polyketide
	tiacumicin B	12 %	Polyketide:Modular type I

5.2.2 Kmen 09VK39

Kmen 09VK39 obsahuje 70 % GC. Přibližná velikost genomu je 13,7 Mbp. Počet kontigů je 2069, počet kontigů nad 50 kbp je 54 a velikost nejdelšího kontigu je 423 kbp.

U kmene 09VK39 bylo celkem identifikováno 49 BK pro sekundární metabolity (seznam uveden v příloze 2). Pro potencionální látky s antibiotickým účinkem bylo vybráno 9 BK.

Klastr 11.1

Genové uskupení BK 11.1 je znázorněno v Obr. 48. Celkem zde bylo nalezeno 52 genů. Jednotlivé geny jsou popsány v Tab. 25. Seznam procentuálního zastoupení genů známých BK pro sekundární metabolity identifikovaných programem antiSMASH je uveden v Tab. 24. Pozice jednotlivých genů je zobrazena v Obr. 50. Podobný BK byl identifikován u *S. niveus* SCSIO 3406 (viz Obr. 49).

V BK 11.1 se nachází biosyntetické dráhy pro phenaziny a polyketidy. Phenaziny jsou syntetizovány pomocí Phenazine biosyntetických proteinů (ctg11_70 a ctg11_73, fialová barva). Polyketidy jsou syntetizovány pomocí PKS typu III (ctg11_82, růžová barva). Jako transkripční faktory byl nalezeny RNA polymerase sigma factor SigJ, protein s winged helixturn-helix doménou a GntR family transkripční regulátor. Na biosyntéze se dále můžou podílet oxidoreduktázy, aminotransferázy, acyltransferáza, typ I methionyl aminopeptidáza, gammaglutamyltransferáza, hydroláza, 2-amino-2-desoxyizochorismát syntáza, 2,3-dihydro-3hydroxyantranilát syntáza, monooxygenáza, FAD-dependentní monooxygenáza a cytochrom P450. Z transportérů byly identifikovány MFS, ABC a MMPL family transportér.

Obr. 48: Biosyntetický klastr 11.1

Geny jsou označeny ctg1_x. Popis jednotlivých genů je uveden v Tab. 25. Barevně jsou vyznačené geny, které byly identifikovány podle programu antiSMASH. Nevybarvené geny byly dohledány pomocí BLAST.

Query sequence

Streptomyces niveus strain SCSIO 3406

Obr. 49: Srovnání BK 11.1 s nalezeným BK u *S. niveus* SCSIO 3406, u kterého bylo procentuální genové zastoupení stejné z 94 %. Nalezené geny měly stejnou nukleotidovou sekvenci v rozmezí 86–100 %.

Tab. 24: Seznam nalezených BK pro sekundární metabolity pomocí programu antiSMASH a jejich procentuální genová shoda s BK 11.1.

11.1	marinophenazine A / phenaziterpene A	30 %	Phenazine
	endophenazine A / endophenazine B	38 %	Phenazine
	5-acetyl-5,10-dihydrophenazine-1-carboxylic acid / 5-		
	(2-hydroxyacetyl)-5,10-dihydrophenazine-1-		
	carboxylic acid /endophenazine A1 / endophenazine F		
	/ endophenazine G	26 %	Phenazine
	lomofungin	26 %	Phenazine
	pyocyanine	85 %	Phenazine
	streptophenazine B / streptophenazine C /		
	streptophenazine F / streptophenazine G /		
	streptophenazine H	17 %	NRP + Polyketide
	napyradiomycin	19 %	Terpene
			Polyketide +
	esmeraldin	16 %	Other:Aminocoumarin
	merochlorin A / merochlorin B / deschloro-		
	merochlorin A / deschloro-merochlorin B / isochloro-		
	merochlorin B / dichloro-merochlorin B / merochlorin		
	D / merochlorin C	12 %	Terpene + Polyketide
	furaquinocin B	21 %	Terpene + Polyketide
L	~		- ·

Query sequence

Query sequence

marinophenazine A / phenaziterpene A

endophenazine A / endophenazine B

merochlorin A/B/C/D / deschloro-merochlorin A/B / isochloro-merochlorin B / dichloro-merochlorin B

furaquinocin B

Obr. 50: Srovnání identifikovaných genů prostřednictvím programu antiSMASH v BK 11.1 a jejich pozice v BK pro vybrané sekundární metabolity.
,	*	2	merochlorin A / merochlorin			
			B / deschloro-merochlorin A			
			/ deschloro-merochlorin B /			
			isochloro-merochlorin B /			
			dichloro-merochlorin B /			
		endophenazine A /	merochlorin D / merochlorin			NCBI Reference
	marinophenazine A / phenaziterpene A	endophenazine B	С	furaquinocin B	BLAST	Sequence
ctg11_48					hypothetical protein	WP_164255130
ctg11 49					lipoateprotein ligase family protein	WP_164253505
ctg11_50					TIGR03842 family LLM class F420- dependent oxidoreductase	WP_147874923
ctg11 51					dihydropyrimidinase	WP_147874924
ctg11_52					aminotransferase class III-fold pyridoxal phosphate-dependent enzyme	WP_187280119
ctg11_53					acyltransferase	WP_147874925
ctg11 54					hypothetical protein	WP_147874926
ctg11_55					PPOX class F420-dependent oxidoreductase	WP_147874927
ctg11_56					helix-turn-helix transcriptional regulator	WP_147874928
ctg11 57					type I methionyl aminopeptidase	WP_164253499
ctg11 58					gamma-glutamyltransferase	WP_147874930
ctg11 59					hypothetical protein	WP_147874931
ctg11 60					hypothetical protein	WP_164253497
ctg11 61					hypothetical protein	WP_164253496
ctg11_62					exodeoxyribonuclease III	WP_147874933
ctg11_63					MBL fold metallo-hydrolase	WP_147874934
ctg11_64					alpha/beta fold hydrolase	WP_147874935
ctg11_65					terpene cyclase/mutase family protein	WP_164253494
ctg11_66					hypothetical protein	WP_187280120
	putative 2-amino-2-desoxy-isochorismate	2-amino-2-desoxy-				
ctg11_67	synthase	isochorismate synthase				
	putative 2,3-dihydro-3-hydroxy-anthranilate	2,3-dihydro-3-hydroxy-				
ctg11_68	(DHHA) synthase	anthranilate synthase				
	mutativa 2 dagaya D geoking hanta-1	3-deoxy-D-arabino-				
ata11.60	putative 5-deoxy-D-arabino-neptulosonic	neptuiosonic acid /-phosphate				
cig11_09	acia /-phosphate synthase	synnase				

Tab. 25: Doplnění genů BK 11.1. Tučně jsou zvýrazněny geny, které byly identifikovány pomocí programu antiSMASH. Zbytek genů byl dohledán pomocí BLAST, zadáním proteinové sekvence daného genu.

		Phenazine biosynthesis				
ctg11_70	putative enzyme of phenazine biosynthesis	protein PhzB				
ctg11_71					MMPL family transporter	WP_164253488
ctg11_72					RNA polymerase sigma factor SigJ	WP_147874943
ctg11_73	putative enzyme of phenazine biosynthesis					
ctg11_74	putative FMN-dependent oxidase	FMN-dependent oxidase		hypothetical protein		
ctg11_75	putative monooxygenase					
ctg11_76	putative prenyltransferase					
ctg11_77					hypothetical protein	WP_147874948
ctg11_78			monooxygenase			
ctg11_79			aminotransferase	hypothetical protein		
ctg11_80		Flavodoxin				
ctg11_81				Probable methyltransferase		
ctg11_82			type-III polyketide synthase	Probable Type III PKS		
					winged helix-turn-helix domain-	WP 164255126
ctg11_83					containing protein	
ctg11_84					hypothetical protein	WP_164253480
ctg11_85					FAD-binding protein	WP_164253479
				fatty-acid-CoA ligase		
ctg11_86			AMP-dependent synthetase	homolog		
ctg11_87			MFS-like transporter			
ctg11_88					FAD-dependent monooxygenase	WP_147874970
ctg11_89					hypothetical protein	WP_187280121
ctg11_90					ROK family glucokinase	WP_129768160
ctg11_91					sugar ABC transporter ATP-binding protein	WP_078877490
ctg11_92					ABC transporter permease	WP_147874957
ctg11_93					sugar ABC transporter substrate-binding protein	WP_078074335
ctg11_94					substrate-binding domain-containing protein	WP_164253476
ctg11_95					GntR family transcriptional regulator	WP_147874973
ctg11_96					Gfo/Idh/MocA family oxidoreductase	WP_164253475
ctg11_97					PaaI family thioesterase	WP_147874960
ctg11_98					cytochrome P450	WP_147874961
ctg11_99					response regulator transcription factor	WP_147874962

Klastr 15.1

Genové uskupení BK 15.1 je znázorněno v Obr. 51. Celkem zde bylo nalezeno 21 genů. Jednotlivé geny jsou popsány v Tab. 27. Seznam procentuálního zastoupení genů známých BK pro sekundární metabolity identifikovaných programem antiSMASH je uveden v Tab. 26. Klastr se nachází na konci kontigu, takže není identifikován celý. Tato část klastru nevykazovala větší podobnost se klastry nalezených u jiných bakterií.

Produkt BK 15.1 je syntetizovaný alespoň pomocí třech PKS typu I (ctg15_1, ctg15_2 a ctg15_3, červená barva). Jako transkripční faktory zde byl identifikován TetR/AcrR family transkripční regulátor. Na biosyntéze se dále může podílet tryptophan 7-halogenáza, geranylgeranyl reduktáza, FAD-binding oxidoreduktázy a SAM-dependentní methyltransferáza.

Obr. 51: Biosyntetický klastr 15.1

Geny jsou označeny ctg15_x. Popis jednotlivých genů je uveden v Tab. 27. Barevně jsou vyznačené geny, které byly identifikovány podle programu antiSMASH. Nevybarvené geny byly dohledány pomocí BLAST.

Tab. 26: Seznam nalezených BK pro sekundární metabolity pomocí programu antiSMASH a jejich procentuální genová shoda s BK 15.1.

15.1	megalomicin A / megalomicin B /		
	megalomicin C1 / megalomicin C2	15 %	Polyketide
	monensin	25 %	Polyketide
	nocardiopsin A / nocardiopsin B /		
	nocardiopsin C / nocardiopsin D	21 %	NRP + Polyketide
	ECO-02301	21 %	Polyketide
	mediomiycin A	24 %	Polyketide
	stambomycin A / stambomycin B /		
	stambomycin C / stambomycin D	28 %	Polyketide + Saccharide
	apoptolidin	15 %	Polyketide
	concanamycin A	14 %	Polyketide

Tab. 27: Doplnění genů BK 15.1. Tučně jsou zvýrazněny geny, které byly identifikovány pomocí programu antiSMASH. Zbytek genů byl dohledán pomocí BLAST, zadáním proteinové sekvence daného genu.

		megalomicin A / megalomicin			
	stambomycin A / stambomycin B / stambomycin C / stambomycin D	B / megalomicin C1 / megalomicin C2	monensin	BLAST	NCBI Reference Sequence
ctg15_1	Type I modular polyketide synthase	megalomicin 6- deoxyerythronolide B synthase	monensin polyketide synthase module		
ctg15_2	Type I modular polyketide synthase	megalomicin 6- deoxyerythronolide B synthase	monensin polyketide synthase module		
		megalomicin 6-	monensin polyketide synthase		
ctg15_3	Type I modular polyketide synthase	deoxyerythronolide B synthase	module		
ctg15_4				tryptophan 7-halogenase	WP_147877777
ctg15_5				TerC family protein	WP_147877776
ctg15_6				geranylgeranyl reductase family protein	WP_164255195
ctg15_7				hypothetical protein	WP_164247439
ctg15_8				FAD-binding oxidoreductase	WP_147877774
ctg15_9				VOC family protein	WP_187280327
ctg15_10				sigma-70 family RNA polymerase sigma factor	WP_164253711
ctg15 11				TetR/AcrR family transcriptional regulator	WP_147877771
ctg15_12				TMEM165/GDT1 family protein	WP_147877770
ctg15_13				proline racemase family protein	WP_147877769
ctg15_14				dihydrodipicolinate synthase family protein	WP_147877768
ctg15_15				FAD-dependent oxidoreductase	WP_164253716
ctg15_16				(2Fe-2S)-binding protein	WP_147877766
ctg15_17				FAD-binding oxidoreductase	WP_147877765
ctg15_18				helix-turn-helix domain-containing protein	WP_164253719
ctg15_19				DUF1266 domain-containing protein	WP_147877763
ctg15_20				class I SAM-dependent methyltransferase	WP_147877762
ctg15_21				arsenate reductase ArsC	WP_147877761

Klastr 15.2

Genové uskupení BK 15.2 je znázorněno v Obr. 52. Celkem zde bylo nalezeno 28 genů. Jednotlivé geny jsou popsány v Tab. 29. Seznam procentuálního zastoupení genů známých BK pro sekundární metabolity identifikovaných programem antiSMASH je uveden v Tab. 28. Pozice jednotlivých genů je zobrazena v Obr. 54. BK 15.2 se nachází na konci kontigu, takže není identifikován celý. U *Streptomyces* sp. S4.7 byl nalezen klastr, který by mohl doplňovat chybějící část BK 15.2 (viz Obr. 53).

Produkt BK 15.2 je syntetizován alespoň pomocí čtyř PKS typu I (ctg15_86 modrá barva, ctg15_87 růžová barva, ctg15_92 růžová barva a ctg15_99 růžová barva). Transkripční faktory byly identifikovány AraC family, LuxR-family a TetR-family transkripční regulátory. Na biosyntéze se dále může podílet threonin syntáza, methyltransferáza, acyltransferáza, P450 monooxygenáza a oxidoreduktáza. Z transportérů byl nalezen ABC transportér.

Obr. 52: Biosyntetický klastr 15.2

Geny jsou označeny ctg15_x. Popis jednotlivých genů je uveden v Tab. 29. Barevně jsou vyznačené geny, které byly identifikovány podle programu antiSMASH. Nevybarvené geny byly dohledány pomocí BLAST.

Query sequence	
Streptomyces sp. S4.7	

Obr. 53: Srovnání BK 15.2 s nalezeným BK u *Streptomyces* sp. S4.7. Nalezené geny měly stejnou nukleotidovou sekvenci v rozmezí 41–100 %. V části, která by mohla doplňovat BK 15.2 se nachází geny například pro PKS typu I, cytochrom P450, MFS transportér a NADP-dependentní fosfoglukonátdehydrogenázu.

1	8		
15.2	tetronasin	34 %	Polyketide
	tetronomycin	27 %	Polyketide
	amycomicin	50 %	Polyketide
	salinomycin	8 %	Polyketide:Modular type I
	tetrocarcin A	11 %	Polyketide
	chlorothricin / deschlorothricin	9 %	Polyketide:Modular type I
	herboxidiene	2 %	Polyketide
	lobophorin B	11 %	Polyketide:Modular type I
	lobophorin A	6 %	Polyketide
			NRP + Polyketide:Modular
	ajudazol A	23 %	type I

Tab. 28: Seznam nalezených BK pro sekundární metabolity pomocí programu antiSMASH a jejich procentuální genová shoda s BK 15.2.

Obr. 54: Srovnání identifikovaných genů prostřednictvím programu antiSMASH v BK 15.2 a jejich pozice v BK pro vybrané sekundární metabolity.

	tetronasin	amycomicin	tetronomycin	BLAST	NCBI Reference Sequence
ctg15_72				FAD-dependent oxidoreductase	WP_187280323
ctg15_73	periplasmic beta-glucosidase				
				right-handed parallel beta-helix	WD 031232622
ctg15_74				repeat-containing protein	w1_031232022
				AraC family transcriptional	WP 147877710
ctg15_75				regulator	
ctg15_76				serine/threonine protein kinase	WP_147877709
ctg15_77				SRPBCC family protein	WP_147877708
ctg15_78				PAS domain-containing protein	WP_078074020
ctg15_79				threonine synthase	WP_147877706
ctg15_80	putative methyltransferase				
	putative LuxR-family transcriptional				
ctg15_81	regulator				
ctg15_82				hypothetical protein	WP_147877704
ctg15_83	putative membrane protein		putative membrane protein		
	putative TetR-family transcriptional		putative TetR-family		
ctg15_84	regulator		transcriptional regulator		
			putative TetR-family		
ctg15_85	acyltransferase		transcriptional regulator		
1. 1. 0.			type I polyketide synthase-		
ctg15_86	putative polyketide synthase		related protein		
-4-15 97	not dive a shale dide soundh and		type I polyketide synthase-		
ctg15_0/	putative polykeude synthase		related protein		
ctg15_00	putative type if thoesterase		mutative formedowin		
ctg15_09	nutative D450 managemean		putative terredoxin		
ctg15_90	putative P430 monooxygenase	long shain fatty said. Co A ligasa			
ctg15_91	putative acyr-COA synthase	tune L nelvketide synthese			
ctg15_92	putative polyketide synthase	hypothetical protein			
ctg15_93	putative oxidoreductase	TauD/TfdA family dioxygenase			
cig15_74	putative oxidoreductase	raub/riux family dioxygenase	putative pathway specific		
ctg15 95	nutative nathway specific activator		activator		
ctg15_75	putative ABC transporter ATP		activator		
ctg15 96	binding component				
	putative ABC transporter, membrane				
ctg15 97	spanning protein				
ctg15 98	putative regulatory protein				
ctg15 99	polyketide synthase				
ctg15_95 ctg15_96 ctg15_97 ctg15_98 ctg15_99	putative pathway specific activator putative ABC transporter, ATP binding component putative ABC transporter, membrane spanning protein putative regulatory protein polyketide synthase		activator		

Tab. 29: Doplnění genů BK 15.2. Tučně jsou zvýrazněny geny, které byly identifikovány pomocí programu antiSMASH. Zbytek genů byl dohledán pomocí BLAST, zadáním proteinové sekvence daného genu.

Klastr 18.1

Genové uskupení BK 18.1 je znázorněno v Obr. 55. Celkem zde bylo nalezeno 81 genů. Jednotlivé geny jsou popsány v Tab. 31. Seznam procentuálního zastoupení genů známých BK pro sekundární metabolity identifikovaných programem antiSMASH je uveden v Tab. 30. Pozice jednotlivých genů je zobrazena v Obr. 57. Podobný BK byl identifikován u *Streptomyces* sp. S4.7, který ale obsahoval navíc další geny (viz Obr. 56).

V BK 18.1 se nachází biosyntetické dráhy pro phenaziny a polyketidy. Phenaziny jsou syntetizovány pomocí Phenazine biosyntetického proteinu (ctg18_71, zelená barva). Polyketidy jsou syntetizovány pomocí PKS typu III (ctg18_99, modrá barva). Na biosyntéze se dále může podílet SDR family oxidoreduktáza, acetylxylan esteráza, hydroláza, geranylgeranyl pyrophosfát syntetáza a trans-2,3-dihydro-3-hydroxyanthranilate isomeráza.

Obr. 55: Biosyntetický klastr 18.1

Geny jsou označeny ctg18_x. Popis jednotlivých genů je uveden v Tab. 31. Barevně jsou vyznačené geny, které byly identifikovány podle programu antiSMASH. Nevybarvené geny byly dohledány pomocí BLAST.

Query sequence
Streptomyces sp. S4.7

Obr. 56: Srovnání BK 18.1 s nalezeným BK u *Streptomyces* sp. S4.7, který obsahuje další geny. Nalezené geny měly stejnou nukleotidovou sekvenci v rozmezí 41–100 %.

Tab. 30: Seznam nalezených BK pro sekundární metabolity pomocí programu antiSMASH a jejich procentuální genová shoda s BK 18.1.

5		
merochlorin A / merochlorin B / deschloro-		
merochlorin A / deschloro-merochlorin B /		
isochloro-merochlorin B / dichloro-merochlorin		
B / merochlorin D / merochlorin C	41 %	Terpene + Polyketide
endophenazine A / endophenazine B	72 %	Phenazine
5-acetyl-5,10-dihydrophenazine-1-carboxylic		
acid / 5-(2-hydroxyacetyl)-5,10-		
dihydrophenazine-1-carboxylic acid		
/endophenazine A1 /endophenazine F /		
endophenazine G	52 %	Phenazine
diazaquinomycin H / diazaquinomycin J	22 %	Diazaanthraquinone
furaquinocin B	39 %	Terpene + Polyketide
diazepinomicin	22 %	Terpene
viguiepinol	46 %	Polyketide
napyradiomycin A80915C	22 %	Terpene + Polyketide:Type III
marinophenazine A / phenaziterpene A	26 %	Phenazine
lactonamycin	10 %	Polyketide
	merochlorin A / merochlorin B / deschloro- merochlorin A / deschloro-merochlorin B / isochloro-merochlorin B / dichloro-merochlorin B / merochlorin D / merochlorin C endophenazine A / endophenazine B 5-acetyl-5,10-dihydrophenazine-1-carboxylic acid / 5-(2-hydroxyacetyl)-5,10- dihydrophenazine-1-carboxylic acid /endophenazine A1 /endophenazine F / endophenazine G diazaquinomycin H / diazaquinomycin J furaquinocin B diazepinomicin viguiepinol napyradiomycin A80915C marinophenazine A / phenaziterpene A lactonamycin	merochlorin A / merochlorin B / deschloro- merochlorin A / deschloro-merochlorin B / isochloro-merochlorin D / merochlorin C41 %B / merochlorin D / merochlorin C41 %endophenazine A / endophenazine B72 %5-acetyl-5,10-dihydrophenazine-1-carboxylic acid / 5-(2-hydroxyacetyl)-5,10- dihydrophenazine-1-carboxylic acid /endophenazine A1 /endophenazine F /72 %endophenazine G52 %diazaquinomycin H / diazaquinomycin J22 %furaquinocin B39 %diazepinomicin viguiepinol22 %marinophenazine A / phenaziterpene A26 %lactonamycin10 %

Query sequence

merochlorin A/B/C/D / deschloro-merochlorin A/B / isochloro-merochlorin B / dichloro-merochlorin B

endophenazine A / endophenazine B

diazaquinomycin H / diazaquinomycin J

marinophenazine A / phenaziterpene A

lactonamycin

Obr. 57: Srovnání identifikovaných genů prostřednictvím programu antiSMASH v BK 18.1 a jejich pozice v BK pro vybrané sekundární metabolity.

Tab. 31: Doplnění genů BK 18.1. Tučně jsou zvýrazněny geny, které byly identifikovány pomocí programu antiSMASH. Zbytek genů byl dohledán pomocí BLAST, zadáním proteinové sekvence daného genu.

		-					
					merochlorin A / merochlorin		
					B / deschloro-merochlorin A /		
					deschloro-merochlorin B /		
					isochloro-merochlorin B /		
					dichloro-merochlorin B /		
	endophenazine A /	diazaquinomycin H /	marinophenazine A /		merochlorin D / merochlorin		NCBI Reference
	endophenazine B	diazaquinomycin J	phenaziterpene A	lactonamycin	С	BLAST	Sequence
						SDR family	WD 147876024
ctg18_34						oxidoreductase	wr_14/8/0024
						heparinase II/III family	WD 197290106
ctg18_35						protein	wr_10/200190
ctg18_36						hypothetical protein	WP_147876025
						DUF624 domain-	WD 147976026
ctg18_37						containing protein	wr_14/8/0020
						DUF1565 domain-	
10.00						containing protein	WP_147876027
ctg18_38							
-+- 19 20						SGNH/GDSL nydrolase	WP_147876097
ctg18_39						ramity protein	
						polysaccharide lyase 8	WP_147876028
ctg18_40						family protein	
. 10 . 41						acetylxylan esterase	WP_203558010
ctg18_41							
10.40						septum formation family	WP_147876030
ctg18_42						protein	
-+-19 42						DUF4235 domain-	WP_147876031
ctg18_45						containing protein	WID (1505 (000
ctg18_44						glycosyltransferase	WP_147876032
						DUF1918 domain-	WP 147876033
ctg18_45						containing protein	
ctg18_46						alpha/beta fold hydrolase	WP_164247613
						winged neitx-turn-neitx	WP_147876036
ctg18_47						transcriptional regulator	
-						VDE family	
						AKE lamily	WP_147876037
ctg18_48						uanscriptional regulator	

	1			1	1		1
ctg18_49						peptidoglycan-binding protein	WP_147876038
ctg18_50						peptidoglycan-binding protein	WP_147876039
ctg18_51						hypothetical protein	WP_187280197
ctg18 52						hypothetical protein	WP_203558011
ctg18_53						LmbU family transcriptional regulator	WP_169400947
ctg18_54						ATP-binding protein	WP_164254314
ctg18_55						response regulator	WP_203557755
ctg18 56						maleylpyruvate isomerase family mycothiol- dependent enzyme	WP_203181582
ctg18_57						TetR/AcrR family transcriptional regulator SMP-	WP_147876042
ctg18_58						30/gluconolactonase/LRE family protein	WP_147876043
ctg18_59						NAD(P)/FAD-dependent oxidoreductase	WP_147876044
ctg18_60						hypothetical protein	WP_147876045
ctg18_61						O-methyltransferase	WP_147876046
ctg18_62						integrase	WP_147876047
		geranylgeranyl					
ctg18_63		pyrophosphate synthetase				TTI-: A. C	
ctg18_64						prenyltransferase	WP_147876049
			putative				
ctg18_65			monooxygenase			NAD(D)/EAD dependent	
ctg18_66						oxidoreductase	WP_147876051
			putative trans-2,3-				
	trans 2.3 dihudro 3		dihydro-3- bydroyyanthranilata				
ctg18 67	hydroxyanthranilate isomerase		isomerase				
ctg18 68						hypothetical protein	WP_164247644
			putative 2,3-dihydro-3-			*	
	2,3-dihydro-3-hydroxy-		hydroxy-anthranilate				
ctg18_69	anthranilate synthase	isochorismatase	(DHHA) synthase				

			putative 3-deoxy-D-				
	3-deoxy-D-arabino-	2-keto-3-deoxy-D-arabino-	arabino-heptulosonic				
	heptulosonic acid 7-phosphate	heptulosonate-7- phosphate	acid 7-phosphate				
ctg18_70	synthase	synthase II	synthase				
eta18 71	Phenazine biosynthesis protein		putative enzyme of				
cig10_/1	FIIZD		phenazine biosynulesis			GNAT family N-	
ctg18_72						acetyltransferase	WP_203558013
0 -						GntR family	WD 147976057
ctg18_73						transcriptional regulator	WF_147870037
. 10 74						carbon-nitrogen hydrolase	WP_187280202
ctg18_/4						family protein	
ctg18 75						transporter	WP_147876059
ctg18_76						DUF2848 family protein	WP 164247660
ctg18_77						thioesterase	WP 164247662
ctg18_//						3-oxoacyl-ACP reductase	
ctg18_78						FabG	WP_164247665
ctg18_79						acyl carrier protein	WP_187280203
ctg18_80						hypothetical protein	WP_164247670
ctg18_81						3-oxoacyl-ACP synthase	WP_147876065
ctg18_82						AMP-binding protein	WP_147876066
ctg18_83						VOC family protein	WP_147876067
ctg18_84						two-component sensor histidine kinase	WP_164254320
ctg18_85						response regulator	WP_164247680
ctg18_86						DJ-1/PfpI family protein	WP_203557757
0 -						nuclear transport factor 2	WD 147976070
ctg18_87						family protein	W1_147870070
ctg18_88			putative streptogrisin A				
ctg18_89						MMPL family transporter	WP_164247692
						MarR family	WP 164254321
ctg18_90						transcriptional regulator	
eta18 01		geranylgeranyl					
-4-10.00		EAD his disc					
ctg18_92	conserved hypothetical protein	FAD-binding protein			oxidoreductase		
ctg18 93	ovmZ-like				hypothetical protein		
0				1	** 1		

			1	1	1		1
ctg18_94	mevalonate kinase	mevalonate kinase			mevalonate kinase		
	diphosphomevalonate	diphosphomevalonate			mevalonate diphosphate		
ctg18_95	decarboxylase	decarboxylase			decarboxylase		
ctg18_96	phosphomevalonate kinase	phosphomevalonate kinase			phosphomevalonate kinase		
ata 18 07	type II isopentenyl	isopentenyl-diphosphate			isopentenyldiphosphate		
cig10_97	3-hydroxy-3-methylolutaryl-	hydroxymethylglutaryl-			isomerase		
ctg18_98	CoA reductase	CoA reductase			HMG-CoA reductase		
8 -	3-hydroxy-3-methylglutaryl-	hydroxymethylglutaryl-					
ctg18_99	CoA synthase	CoA synthase			HMG-CoA synthase		
	3-oxoacyl-[acyl-carrier-	3-oxoacyl-[acyl-carrier-					
ctg18_100	protein] synthase	protein] synthase KASIII			ketoacyl-ACP synthase III		
ctg18 101						SDR family NAD(P)-	WP_041989609
etg10_101						hypothetical protein	WP 164247718
ctg18_102						nypouledeal protein	104247710
ctg18_103					thioesterase		
ctg18 104				SARP	SARP-like transcriptional		
cig10_104				5/10	TetR-like transcriptional		
ctg18_105				Transcriptional regulator	regulator		
				Streptomyces antibiotic	SARP-like transcriptional		
ctg18_106				regulatory protein (SARP)	regulator		
4 10 107				Probable acyl-CoA			
ctg18_107				decarboxylase		acul CoA carbovulase	
ctg18 108						subunit epsilon	WP_147876106
0 - 10					AfsA-like gamma-	· · r · · ·	
ctg18_109					butyrolactone synthase		
				AfsA homolog, β-			
ata 19, 110				ketoacyltransferase, γ-		NAD(P)H-binding protein	WP_164247731
ctg18_110				butyrolacione biosynthesis	TetR-like transcriptional		
ctg18_111				biosynthesis	regulator		
0 -				-	Ŭ	FAD-dependent	WD 164247727
ctg18_112						monooxygenase	wr_10424//3/
						TetR family	
						transcriptional regulator	WP_147876111
ctg18 113						containing protein	
		1			1	50mmining Protoni	1

Klastr 21.1

Genové uskupení BK 21.1 je znázorněno v Obr. 58. Celkem zde bylo nalezeno 36 genů. Jednotlivé geny jsou popsány v Tab. 33. Seznam procentuálního zastoupení genů známých BK pro sekundární metabolity identifikovaných programem antiSMASH je uveden v Tab. 32. Pozice jednotlivých genů je zobrazena v Obr. 60. Podobný BK byl identifikován u *Streptomyces* sp. S4.7. (viz Obr. 59).

Produkt BK 21.1 je syntetizovaný PKS typu III (ctg21_29, žlutá barva). Jako transkripční faktory byly nalezeny TetR family transkripční regulátor a protein s winged helixturn-helix doménou. Na biosyntéze se dále může podílet phosphopantothenoylcystein syntázy/dekarboxylázy, methionyl-tRNA formyltransferáza, aminotransferázy, enoyl-CoA hydratáza a epoxid hydroláza. Transportér byl nalezený MFS transportér.

Obr. 58: Biosyntetický klastr 21.1

Geny jsou označeny ctg21_x. Popis jednotlivých genů je uveden v Tab. 33. Barevně jsou vyznačené geny, které byly identifikovány podle programu antiSMASH. Nevybarvené geny byly dohledány pomocí BLAST.

Query sequence	
Stroptomucos op. 54.7	
Streptomyces sp. 54.7	

Obr. 59: Srovnání BK 21.1 s nalezeným BK u *Streptomyces* sp. S4.7, u kterého bylo procentuální genové zastoupení stejné z 76 %. Nalezené geny měly stejnou nukleotidovou sekvenci v rozmezí 97–100 %.

1	8		
21.1	perquinoline A / perquinoline B /		
	perquinoline C	100 %	Tetrahydroisoquinolines
	BE-7585A	21 %	Polyketide
	lobophorin A	6 %	Polyketide
	totopotensamide A / totopotensamide B	10 %	NRP + Polyketide
			Polyketide:Type II +
	steffimycin D	19 %	Saccharide
			NRP:Glycopeptide +
	A40926	7 %	Saccharide
	kendomycin	15 %	Polyketide:Modular type I
	pheganomycin	14 %	NRP + RiPP
	feglymycin	15 %	NRP
	A-47934	8 %	NRP:Glycopeptide

Tab.	32: \$	Seznam	nalezených	BK p	ro sekundái	ní metabolity	pomocí	programu	antiSMASH	a jejich
proc	entuál	lní geno	vá shoda s I	3K 21.	1.					

Query sequence		
perquinoline A / perquinoline B / per	quinoline C	
BE-7585A		
steffimycin D		
perquinoline A / perquinoline B / per BE-7585A steffimycin D		

Obr. 60: Srovnání identifikovaných genů prostřednictvím programu antiSMASH v BK 21.1 a jejich pozice v BK pro vybrané sekundární metabolity.

				D. 1 07	NCBI Reference
	perquinoline A / perquinoline B / perquinoline C	BE-7585A	steffimycin D	BLAST	Sequence
				quinone-dependent	WP_147877590
ctg21_12				dinydroorotate denydrogenase	
ata 21 12		putative orotidine 5'-phosphate			
ctg21_13		nutative integration host factor			
ctg21_14					
ctg21_15		putative guarylate kinase			
ctg21_16		polymerase omega subunit			
eta21 17		putative phosphopantothenoylcysteine			
ctg21_17		putative methionine			
ctg21_18		adenosyltransferase			
ata 21 10		nutotivo neimosomol neotoin NI	nutativa neimosomal motain NI		
ctg21_19		putative prinosoniai protein N	putative prinosoniai protein N		
ctg21_20		putative methionyl-tRNA	nypotnetical protein		
ctg21_21	methionyl-tRNA formyltransferase	formyltransferase	formyltransferase		
		putative tRNA/rRNA cytosine-C5-			
ctg21_22	rRNA cytosine-C5-methyltransferase	methylase	hypothetical Sun-family protein		
ctg21_23	hypothetical protein				
ctg21_24	MFS transporter				
ctg21_25	LuxR family transcriptional regulator				
ctg21_26	enoyl-CoA hydratase				
ctg21_27	phenylacetateCoA ligase family protein				
	aminotransferase class I/II-fold pyridoxal phosphate-				
ctg21_28	dependent enzyme				
ctg21_29	type III polyketide synthase				
ctg21_30	enoyl-CoA hydratase/isomerase family protein				
ctg21_31	enoyl-CoA hydratase/isomerase family protein				

Tab. 33: Doplnění genů BK 21.1. Tučně jsou zvýrazněny geny, které byly identifikovány pomocí programu antiSMASH. Zbytek genů byl dohledán pomocí BLAST, zadáním proteinové sekvence daného genu.

PLP-dependent aminotransferase family protein				
amidohydrolase				
epoxide hydrolase				
			ABATE domain-containing protein	WP_164248960
			pyridoxamine 5'-phosphate oxidase family protein	WP_203557787
			TetR family transcriptional regulator	WP_203557786
			mitomycin resistance protein	WP_147877571
			NAD(P)-binding domain- containing protein	WP_059193599
			winged helix-turn-helix transcriptional regulator	WP_202430595
			TIGR03086 family protein	WP_147877569
		putative ribulose-phosphate 3- epimerase		
		putative transcriptional regulator		
		putative inosine monophosphate		
		dehydrogenase		
			RNA polymerase sigma factor SigF	WP_147877567
			ATP-binding protein	WP_164248893
			GDSL family lipase	WP_164248891
	PLP-dependent aminotransferase family protein amidohydrolase epoxide hydrolase	PLP-dependent aminotransferase family protein amidohydrolase epoxide hydrolase	PLP-dependent aminotransferase family protein amidohydrolase epoxide hydrolase 	PLP-dependent aminotransferase family protein amidohydrolase epoxide hydrolase epoxide hydrolase Hydrolase epoxide hydrolase Hydrola

Klastr 27.1

Genové uskupení BK 27.1 je znázorněno v Obr. 61. Celkem zde bylo nalezeno 43 genů. Jednotlivé geny jsou popsány v Tab. 35. Seznam procentuálního zastoupení genů známých BK pro sekundární metabolity identifikovaných programem antiSMASH je uveden v Tab. 34. Pozice jednotlivých genů je zobrazena v Obr. 63. Podobné BK byly identifikovány u *Streptomyces* sp. S4.7 a *Streptomyces niveus* SCSIO 3406 (viz Obr. 62).

Produkt BK 27.1 je syntetizován pomocí NRPS (ctg27_46, zelená barva, ctg27_48, růžová barva a ctg27_51, modrá barva). Na biosyntéze se dále může podílet oxygenáza, monooxygenáza, transketoláza, SAM-dependentní methyltransferáza, oxidoreduktáza, methyltransferáza, dehydrogenáza, hydroláza, acetyltransferáza, FAD-dependentní oxidoreduktáza a cystein hydroláza. Z transportérů byl nalezeny ABC a MFS transportéry.

Obr. 61: Biosyntetický klastr 27.1

Geny jsou označeny ctg27_x. Popis jednotlivých genů je uveden v Tab. 35. Barevně jsou vyznačené geny, které byly identifikovány podle programu antiSMASH. Nevybarvené geny byly dohledány pomocí BLAST.

Query sequence	
Streptomyces sp. S4.7	
Streptomyces niveus SCSIO 34	06

Obr. 62: Srovnání BK 27.1 s nalezenými klastry u *Streptomyces* sp. S4.7 a *S. niveus* SCSIO 3406. U *Streptomyces* sp. S4.7 bylo procentuální genové zastoupení stejné z 82 %. Nalezené geny měly stejnou nukleotidovou sekvenci v rozmezí 95–100 %. U *S. niveus* SCSIO 3406 bylo procentuální genové zastoupení stejné z 86 %. Nalezené geny měly stejnou nukleotidovou sekvenci v rozmezí 83–100 %.

<u></u>	8		
27.1	naphthyridinomycin	92 %	NRP
	quinocarcin	37 %	NRP
	saframycin A / saframycin B	12 %	NRP
	frigocyclinone	6 %	Polyketide
	prejadomycin / rabelomycin / gaudimycin C		
	/ gaudimycin D / UWM6 / gaudimycin A	4 %	Polyketide + Saccharide
	coelimycin P1	8 %	Polyketide:Modular type I
			NRP + Polyketide:Enediyne
	sporolide A / sporolide B	4 %	type I
	fluvirucin B2	5 %	Polyketide
	tetronasin	3 %	Polyketide
	paramagnetoquinone 1 /		
	paramagnetoquinone 2	7 %	Polyketide

Tab. 34: Seznam nalezených BK pro sekundární metabolity pomocí programu antiSMASH a jejich procentuální genová shoda s BK 27.1.

Query sequence	
naphthyridinomycin	
quinocarcin	
frigocyclinone	

Obr. 63: Srovnání identifikovaných genů prostřednictvím programu antiSMASH v BK 27.1 a jejich pozice v BK pro vybrané sekundární metabolity.

					NCBI Reference
	naphthyridinomycin	frigocyclinone	quinocarcin	BLAST	Sequence
ctg27_25				carbohydrate ABC transporter permease	WP_147878683
ctg27_26				sugar ABC transporter permease	WP_107433949
ctg27_27				dihydroxy-acid dehydratase	WP_147878653
ctg27_28				dihydrodipicolinate synthase family protein	WP_147878652
ctg27_29				GntR family transcriptional regulator	WP_147878651
ctg27_30		oxygenase-reductase			
ctg27_31				hypothetical protein	WP_147878649
ctg27_32				VOC family protein	WP_147878648
ctg27_33				ACT domain-containing protein	WP_078078443
ctg27_34	UV-repair protein		putative UV-repair protein		
ctg27_35	membrane protein				
ctg27_36	monooxygenase				
etg27-37	thiamin diphosphate hinding domain of transketolase		putative dehydrogenase alpha		
ctg27_57	ananni diphosphate ondrig domain of transketorase		putative phosphopantetheine		
ctg27_38	acyl carrier protein		binding protein		
ctg27_39	transketolase		putative dehydrogenase beta subunit		
			3-oxoacyl-(acyl-carrier-protein		
ctg27_40	3-oxoacyl-synthase III		(acp)) synthase III domain- containing protein		
ctg27_41	hypothetical protein				
ctg27_42	peptidase				
ctg27_43	regulatory protein				
ctg27_44	amino acid adenylation domain-containing protein				

Tab. 35: Doplnění genů BK 27.1. Tučně jsou zvýrazněny geny, které byly identifikovány pomocí programu antiSMASH. Zbytek genů byl dohledán pomocí BLAST, zadáním proteinové sekvence daného genu.

ctg27_45	non-heme iron hydroxylase		putative dioxygenase		
cto27 46	non-ribosomal pentide synthetase		putative non-ribosomal peptide		
ctg_27_47	MbtH-like protein		putative MbtH like protein		
$ctg27_47$	non ribosomal pantida synthetasa		putative would like protein		
ctg27_40	this asternas II				
cig27_49	unoesterase n		putative long-chain-fatty-acid-CoA		
ctg27_50	AMP-dependent synthetase and ligase		ligase		
ctg27_51	non-ribosomal peptide synthetase				
ctg27_52	hypothetical protein				
ctg27_53	hydroxylase				
ctg27_54	SAM-dependent methyltransferase				
ctg27_55	SAM-dependent methyltransferase				
ctg27_56	MFS transporter	drug resistance transporter			
ctg27_57				GNAT family N-acetyltransferase	WP_164248715
ctg27_58	oxidoreductase				
ctg27_59	methyltransferase				
ctg27_60	MFS transporter	drug resistance transporter			
ctg27_61	short chain dehydrogenase				
ctg27_62				alpha/beta hydrolase	WP_147878980
ata 27 63				SpoIIE family protein phosphatase	WP_164254373
otg27_03				phage holin family protein	WP 147878981
ctg27_64				DUF3618 domain-containing	NT_1 (10/0702
ctg27_65				protein	WP_164248702
ctg27_66				FAD-dependent oxidoreductase	WP_147878983
ctg27_67				cysteine hydrolase	WP_147878984

Klastr 60.1

Genové uskupení BK 60.1 je znázorněno v Obr. 64. Celkem zde bylo nalezeno 12 genů. Jednotlivé geny jsou popsány v Tab. 37. Seznam procentuálního zastoupení genů známých BK pro sekundární metabolity identifikovaných programem antiSMASH je uveden v Tab. 36. Klastr se nachází na konci kontigu, takže není identifikován celý. U *Streptomyces* sp. S4.7 byl nalezen klastr, který by mohl doplňovat chybějící část BK 60.1 (viz Obr. 65).

Produkt BK 60.1 je syntetizovaný alespoň pomocí tří PKS typu III (ctg60_1, ctg60_5 a ctg60_12, červená barva). Na biosyntéze se dále může podílet monooxygenáza, FAD-dependentní oxygenáza, epoxidáza a methyltransferáza. Z transportérů byl nalezen MFS transportér.

Obr. 64: Biosyntetický klastr 60.1

Geny jsou označeny ctg60_x. Popis jednotlivých genů je uveden v Tab. 37. Barevně jsou vyznačené geny, které byly identifikovány podle programu antiSMASH. Nevybarvené geny byly dohledány pomocí BLAST.

Query sequence	
Streptomyces sp. S4.7	

Obr. 65: Srovnání BK 60.1 s nalezeným BK u *Streptomyces* sp. S4.7. Nalezené geny měly stejnou nukleotidovou sekvenci v rozmezí 40–100 %. V části, která by mohla doplňovat BK 60.1 se nachází geny například pro PKS typu I, NADP-dependentní fosfoglukonát dehydrogenázu, cytochrom P450, methyltransferázu a ABC transportér.

Joseffer and Street and Stre			
60.1	tetronasin	25 %	Polyketide
	tetronomycin	27 %	Polyketide
	chlorothricin / deschlorothricin	16 %	Polyketide:Modular type I
	maklamicin	13 %	Polyketide
	kijanimicin	13 %	Polyketide
	lasalocid	33 %	Polyketide
	lobophorin B	11 %	Polyketide:Modular type I
	meoabyssomicin / abyssomicin	12 %	Polyketide
	abyssomicin C / atrop-abyssomicin C	14 %	Polyketide:Modular type I

Tab. 36: Seznam nalezených BK pro sekundární metabolity pomocí programu antiSMASH a jejich procentuální genová shoda s 60.1.

Tab. 37: Doplnění genů BK 60.1. Tučně jsou zvýrazněny geny, které byly identifikovány pomocí programu antiSMASH. Zbytek genů byl dohledán pomocí BLAST, zadáním proteinové sekvence daného genu.

				NCBI Reference
	tetronasin	tetronomycin	BLAST	Sequence
ctg60_1	polyketide synthase	type I polyketide synthase		
ctg60_2			hypothetical protein	WP_147879045
		putative 3-oxoacyl-(acyl-carrier-		
ctg60_3	putative 3-oxoacyl-ACP synthase III	protein) synthase III		
ctg60_4	P450 monooxygenase			
ctg60_5	polyketide synthase	type I polyketide synthase		
ctg60_6	putative FAD-dependent oxygenase			
ctg60_7	epoxidase	putative tetronomycin epoxidase		
		putative 3-oxoacyl-(acyl-carrier-		
ctg60_8	putative 3-oxoacyl-ACP synthase III	protein) synthase III		
ctg60_9	methyltransferase	putative methyltransferase		
ctg60_10	putative major facilitator transporter			
ctg60_11	epoxide hydrolase	probable epoxide hydrolase		
ctg60_12	polyketide synthase	type I polyketide synthase		

Klastr 73.1

Genové uskupení BK 73.1 je znázorněno v Obr. 66. Celkem zde bylo nalezeno 16 genů. Jednotlivé geny jsou popsány v Tab. 39. Seznam procentuálního zastoupení genů známých BK pro sekundární metabolity identifikovaných programem antiSMASH je uveden v Tab. 38. Klastr se nachází na konci kontigu, takže není identifikován celý. U *Streptomyces* sp. S4.7 byl nalezen klastr, který by mohl doplňovat chybějící část BK 73.1 (viz Obr. 67).

Produkt BK 73.1 je syntetizován alespoň pomocí jedné PKS typu I (ctg73_1, červená barva). Na biosyntéze se dále může podílet pyruvát dehydrogenáza a 6-phosphoglukonát 1-dehydrogenáza.

Obr. 66: Biosyntetický klastr 73.1

Geny jsou označeny ctg73_x. Popis jednotlivých genů je uveden v Tab. 39. Barevně jsou vyznačené geny, které byly identifikovány podle programu antiSMASH. Nevybarvené geny byly dohledány pomocí BLAST.

Query sequence	
Streptomyces sp. S4.7	

Obr. 67: Srovnání BK 73.1 s nalezeným BK u *Streptomyces* sp. S4.7. Nalezené geny měly stejnou nukleotidovou sekvenci v rozmezí 41–100 %. V části, která by mohla doplňovat BK 73.1 se nachází geny například pro PKS typu I, methyltransferázu, cytochrom P450 a MFS transportér.

73.1 tetronasin Polyketide 30 % maklamicin 19 % Polyketide Polyketide meoabyssomicin / abyssomicin 18 % ECO-02301 39 % Polyketide 50 % Polyketide oligomycin cremimycin 22 % Polyketide tetronomycin 24 % Polyketide 28 % concanamycin A Polyketide catenulisporolides 12 % NRP + Polyketide fluvirucin B2 13 % Polyketide

Tab. 38: Seznam nalezených BK pro sekundární metabolity pomocí programu antiSMASH a jejich procentuální genová shoda s BK 73.1.

				NCBI Reference
	tetronasin	oligomycin	BLAST	Sequence
ctg73_1	polyketide synthase	modular polyketide synthase		
ctg73_2	acyl carrier protein			
ctg73_3	pyruvate dehydrogenase E1 alpha subunit			
ctg73_4	pyruvate dehydrogenase E1 beta subunit			
ctg73_5	E2 dihydrolipoyl acyltransferase putative E2-like acyltransferase component of pyruvate/2-oxoglutarate			
ctg73_6	dehydrogenase			
ctg73_7			hypothetical protein	WP_164253770
ctg73_8			VOC family protein	WP_147877911
ctg73_9	putative phosphoesterase	SimX4 homolog		
ctg73_10		phosphopantheteinyl transferase		
ctg73_11			DUF350 domain- containing protein	WP_164253771
ctg73_12	periplasmic beta-glucosidase			
ctg73_13	conserved hypothetical protein			
ctg73_14	6-phosphogluconate 1-dehydrogenase			
ctg73_15	hypothetical protein			
ctg73_16	putative secreted protein			

Tab. 39: Doplnění genů BK 73.1. Tučně jsou zvýrazněny geny, které byly identifikovány pomocí programu antiSMASH. Zbytek genů byl dohledán pomocí BLAST, zadáním proteinové sekvence daného genu.

Klastr 82.1

BK 82.1 se nachází na konci kontigu, takže nebyl sestaven celý BK. Na Obr. 68 jsou znázorněny dvě PKS typu I, které byly identifikovány. Seznam procentuálního zastoupení genů známých BK pro sekundární metabolity identifikovaných programem antiSMASH je uveden v Tab. 40.

Obr. 68: Znázornění části BK 82.1 s označením ctg82_x. Oba geny představují PKS typu I.

Tab. 40: Seznam nalezených BK pro sekundární metabolity pomocí programu antiSMASH a jejich procentuální genová shoda s BK 82.1.

82.1	primycin	16 %	Polyketide
	meridamycin	10 %	NRP + Polyketide
	FD-891	50 %	Polyketide
	lasalocid	18 %	Polyketide
	sceliphrolactam	12 %	Polyketide
	naphthomycin A	9 %	Polyketide
	ebelactone	8 %	Polyketide
	JBIR-100	16 %	Polyketide:Modular type I

6 Diskuze

U kmene 09Zd22 bylo nalezeno 11 biosyntetických klastrů pro potencionální látky s antibakteriálním účinkem, které vykazovaly podobnost v rozmezí 46-100 % s klastry, které byly nalezené u *Streptomyces* sp. NRRL S-623 (NCBI Reference Sequence: NZ_JOJC0000000.1), *S. fulvissimus* NA06532 (NZ_CP054926.1), *S. fulvissimus* DSM 40593 (NC_021177.1) a *S. tirandamycinicus* HNM0039 (NZ_CP029188.1).

BK 1.3 má s klastrem, který byl identifikován u *Streptomyces* sp. NRRL S-623 genové zastoupení stejné ze 100 %. U *Streptomyces* sp. NRRL S-623 byla PKS typu III identifikována jako stilben syntáza a má stejnou nukleotidovou sekvenci ze 100 %. Lze tedy předpokládat, že základ vznikající molekuly bude tvořit stilben, který se skládá z centrální ethylenové skupiny s jedním substituentem fenylové skupiny na každém konci dvojné vazby uhlík-uhlík. Stilbeny vykazují účinky proti grampozitivním bakteriím, tím že cílí na jejich buněčnou stěnu (Goddard et al. 2020).

U klastru 1.5 bylo nalezeno 100% genové zastoupení klastru pro polycyclic tetramate macrolactams (PTMs) nalezeného u *S. griseus* s označením SGR. PTMs se skládají z kyseliny tetramové a polycyklického systému (obvykle dva až tři kruhy), které jsou kondenzovány s makrolaktamy. U PTMs byly popsány jak antibakteriální, tak antifungální účinky (Yu et al. 2007; Schobert & Schlenk 2008). U SGR PTMs nebyl popsán jeho účinek, ale bylo potvrzeno iterativní využívání modulu NRPS a PKS typu I (Luo et al. 2013). Nukleotidová podobnost genu pro kombinaci NRPS a PKS typu I byla z 84 % shodná. Můžeme tedy předpokládat, že vznikající látka z tohoto klastru bude v základu PTMs. To, že bude vznikat PTMs dokazuje i podobnost s ostatními PTMs u kterých se nukleotidová podobnost modulu NRPS a PKS typu I pohybovala v rozmezí 63-68 %.

NRPS, které byly nalezeny v klastrech 2.5, 2.7 a 8.2 vykazovaly podobnost v nukleotidové sekvenci s NRPS pro známé sekundární metabolity v rozmezí 46-57 %. U BK 2.5 byla nalezena 47% podobnost s NRPS přítomnou v biosyntéze disacharidového pyrimidinového nukleosidového antibiotika amicetinu, které má účinky jak proti grampozitivním, tak i proti gramnegativním bakteriím. NRPS nalezená u amicetinu se podílí na vzniku amidových vazeb, přítomných ve struktuře amicetinu (Zhang et al. 2012). U BK 8.2 byla u dvou NRPS nalezena 47% podobnost s NRPS, které se podílí na biosyntéze glykolipidických antibiotik decaplaninu, vancomycinu a balhimycinu, které jsou účinné proti grampozitivním bakteriím (Pelzer et al. 1999; Wink et al. 2004; Xu et al. 2014). V těchto třech klastech můžou vznikat nové látky syntetizované pomocí NRPS s potencionálním antibiotickým účinkem.

V BK 4.1 vzniká látka pomocí PKS typu II. Bylo zde identifikováno konzervované jádro genové organizace pro angucykliny složené z oxygenázy, cyklázy, syntázy KS_{α} a KS_{β} podjednotek, ketoreduktázy, aromatázy a další oxygenázy (Lombó et al. 2004). Pro syntázy KS_{α} a KS_{β} podjednotek se nukleotidová sekvence podobnost se známými sekvencemi pro angucykliny pohybovala v rozmezí 65-86 %. Největší genové zastoupení bylo pro klastr oviedomycinu, kdy byla nalezena shoda pro syntázy KS_{α} a KS_{β} 86 a 77 %. Z tohoto klastru může vznikat nové antibiotikum ze skupiny angucyklinů. Pro angucykliny je typické jejich široké uplatnění, kdy se využívají proti grampozitivním bakteriím nebo jako látky proti

rakovinotvornému buněčnému dělení, díky jejich schopnosti ovlivňovat širokou škálu enzymů (Kharel et al. 2012).

Pro biosyntézu terpenů byly nalezeny dva klastry 3.1 a 7.1. V BK 3.1 vykazovala HMBPP syntáza a DXP syntáza podobnost se klastrem pro terpen phenalinolactone, který má účinky proti grampozitivním bakteriím (Dürr et al. 2006).

V BK 5.2 bylo nazeleno 75% genové zastoupení streptazone E a v klastru u *S. fulvissimus* DSM 40593, který by potencionálně mohl doplňovat chybějící část klastru 5.2 bylo nalezeno 83% genové zastoupení streptazone E, který je syntetizovaný pomocí tří PKS typu I (Ohno et al. 2015). PKS typu I pro streptazone E s nalezenými PKS vykazovaly nukleotidovou podobnost v rozmezí 61-71 %. Můžou tedy i vnikat jiné PKS typu I.

Pro chybějící část BK 20.1 byl nalezen potencionální homologní klastr u *S. tirandamycinicus* HNM0039, kdy nalezená PKS typu I měla 85% a NRPS 87% nukleotidovou podobnost. Nalezené PKS typu I a NRPS se podílí na biosyntéze tiandamycinu (Carlson et al. 2010). Klastr 20.1 obsahuje 86% genového zastoupení pro tirandamycin, u *S. tirandamycinicus* HNM0039 je to 100% genové zastoupení. Tirandamycin je účinný proti grampozitivním bakteriím, tím že inhibuje jejich RNA polymerázu (Reusser 1976).

U kmene 09VK39 bylo nalezeno 9 biosyntetických klastrů pro potencionální látky s antibakteriálním účinkem, které vykazovaly podobnost v rozmezí 41-100 % s klastry, které byly nalezené u *Streptomyces* sp. S4.7 (NZ_CP048397.1) a *S. niveus* SCSIO 3406 (NZ_CP018047.1).

V BK 11.1 byly nalezeny biosyntetické dráhy pro phenaziny a PKS typu III. Z phenazinů bylo nalezeno 85% genové zastoupení pro pyocyanin, který je aktivní proti bakteriím i houbám (Baron & Rowe 1981). PKS typu III měla 84% nuleotidovou podobnost pro PKS, která se podílí na biosyntéze merochlorinů. Merochloriny jsou hybridní molekuly polyketidu a terpenu, a byla u nich potvrzena antimikrobiální aktivita (Sakoulas et al. 2012). Pro merochloriny byly nalezeny geny i v BK 18.1 kde nukleotidová podobnost PKS typu III byla 71 %. Dále se v klastru 18.1 vyskytovaly i geny pro biosyntézu phenazinů. Pro endophenaziny, které mají i antimikrobiální aktivitu, bylo nalezeno zastoupení genů ze 75 % (Gebhardt et al. 2002).

BK 15.2, 60.1 a 73.1 je nacházely na konci kontigu, takže nebyly identifikovány celé. Tyto klastry vykazovaly podobnost s již identifikovaným klastem u *Streptomyces* sp. S4.7, který by mohl představovat chybějící část těchto klastrů, a spojit je do jednoho. Nukleotidové podobnosti nalezených PKS typu I byly v rozmezí 97-99 %. Klastr nalezený u *Streptomyces* sp. S4.7 obsahoval 80% genové zastoupení pro biosyntézu inotrofního antibiotika tetronasinu, kdy PKS typu I vykazovaly stejnou nukleotidovou sekvenci v rozmezí 96-99 %. Účinek tetronasinu spočívá v tom, že je schopný narušit lipidovou vrstvu buněčné membrány a způsobit tak depolarizaci a následnou smrt mikroorganismů (Linton et al. 1994).

U identifikované části BK 15.1 PKS typu I vyznačovaly podobnosti v rozmezí 46-52 % s PKS, které se podílejí na biosyntéze makrolidů, jako jsou megalomicin, monensin nebo strambomycin (Volchegursky et al. 2001; Oliynyk et al. 2003; Song et al. 2014).

V BK 21.1 bylo nalezeno 100% genové zastoupení pro perquinoliny, které jsou syntetizovány pomocí PKS typu III (Rebets et al. 2019). PKS typu III měla stejnou nukleotidovou podobnost z 90 % a ostatní geny vykazovaly podobnost v rozmezí 98-100 %. Perquinoliny patří do skupiny tetrahydroisochinolinů, které mají převážně účinek proti rakovinotvornému buněčnému dělení, ale byly prokázány účinky i proti různým bakteriím

(Scott & Williams 2002). U perquinolinů nebyla prokázána antibakteriální aktivita, ale tím že v BK 21.1 jsou přítomny i další geny, může vznikat nová látka s antibakteriálním účinkem.

Do skupiny tetrahydroisochinolinů patří i naphthyridinomycin, pro který bylo v BK 27.1 nalezeno 92% genové zastoupení. Naphthyridinomycin je syntetizovaný pomocí tří NRPS (Pu et al. 2013). Tyto NRPS vykazovaly s nalezenými NRPS v BK 2.7 nukleotidovou podobnost v rozmezí 78-85 %. U naphthyridinomycinu byla potvrzena antibakteriální aktivita (Scott & Williams 2002).

Biosyntetické dráhy, které byly nalezeny, vykazovaly podobnosti s klastry dalších kmenů streptomycet. Lze tedy přepokládat, že mezi streptomycetami, došlo ke sdílení genů, částí nebo případně i celých genových shluků pomocí horizontálního genového přenosu. Bylo prokázáno, že horizontální přenos se řídí příbuzností kmenů, ale také podmínkami, kde se kmeny vyskytují (Sagova-Mareckova et al. 2015). Podobnost jednotlivých klastrů je potom závislá také na tom, jak dávno byl daný genetický element přenesen, protože na tom závisí jeho umístění v genomu, a následná míra modifikace (Beiko et al. 2005; Laskaris et al. 2010). Horizontální přenos je jeden z hlavních mechanismů, který přispívá k diverzifikaci mikrobiálního genomu (Ochman et al. 2000).

V genomech obou kmenů bylo objeveno několik biosyntetických klastrů pro látky s potencionálním antibakteriálním účinkem, které by mohly mít účinek proti *S. scabiei*. Oba kmeny by tak mohly snížit riziko, nebo úplně eliminovat napadení rostliny. Je ale potřeba provést další pokusy, které ukážou jak a za jakých podmínek jsou jednotlivé látky produkovány. Další pokusy by měly zahrnovat inokulaci bakterií do půdy, ověření produkce antibiotických látek v přírodních podmínkách, a také zjistit, jestli v praxi rostlině nebo dalším půdním organismům nezpůsobují nějaké růstové omezení nebo patologické projevy. Následně by pak šlo tyto dva kmeny zahrnout do pěstitelských postupů v boji proti *S. scabiei*, ale i proti dalším patogenním mikroorganismům.

7 Závěr

 U obou analyzovaných genomů streptomycet byly nalezeny biosyntetické dráhy pro produkci sekundárních metabolitů s potenciálním antibiotickým účinkem. Tyto genové klastry vykazovaly různou míru odlišnosti od známých klastrů. Oba kmeny mají potenciál produkovat nové látky s antibakteriálním účinkem. Bakteriální diverzifikace genomu je způsobena zejména horizontálním přenosem genů, kdy bakterie, které se vyskytují ve stejném prostředí mezi sebou mohou sdílet geny po různě dlouhou dobu. Oba kmeny streptomycet tvoří vhodné nástroje v boji proti *S. scabiei*, ale i proti dalším patogenním mikroorganismům. Je ale potřeba provést další pokusy, aby se zjistilo, jaké látky bakterie opravdu produkují a jestli nemají také nepříznivé účinky.

8 Literatura

- Al-Dhabi NA, Esmail GA, Duraipandiyan V, Valan Arasu M, Salem-Bekhit MM. 2016. Isolation, identification and screening of antimicrobial thermophilic Streptomyces sp. Al-Dhabi-1 isolated from Tharban hot spring, Saudi Arabia. Extremophiles 20:79–90.
- Ara I, Bukhari NA, Aref NM, Shinwari MMA, Bakir MA. 2012. Antiviral activities of streptomycetes against tobacco mosaic virus (TMV) in Datura plant: Evaluation of different organic compounds in their metabolites. African Journal of Biotechnology 11:2130–2138.
- Arasu MV, Al-Dhabi NA, Saritha V, Duraipandiyan V, Muthukumar C, Kim SJ. 2013. Antifeedant, larvicidal and growth inhibitory bioactivities of novel polyketide metabolite isolated from Streptomyces sp. AP-123 against Helicoverpa armigera and Spodoptera litura. BMC Microbiology 13:1–6.
- Arias P, Fernández-Moreno MA, Malpartida F. 1999. Characterization of the pathway-specific positive transcriptional regulator for actinorhodin biosynthesis in Streptomyces coelicolor A3(2) as a DNA-binding protein. Journal of Bacteriology 181:6958–6968.
- Augustine N, Wilson Peter A, Kerkar S, Thomas S. 2012. Arctic actinomycetes as potential inhibitors of vibrio cholerae biofilm. Current Microbiology **64**:338–342.
- Baltz RH. 2009. Biosynthesis and Genetic Engineering of Lipopeptides in Streptomyces roseosporus. Methods in Enzymology **458**:511–531.
- Baranasic D et al. 2013. Draft genome sequence of Streptomyces rapamycinicus strain NRRL 5491, the producer of the immunosuppressant rapamycin. Genome Announcements 1:2012–2013.
- Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Meier-Kolthoff JP, Klenk H, Clément C, Ouhdouch Y, van Wezel GP. 2016. Taxonomy, Physiology, and Natural Products of Actinobacteria. Microbiology and Molecular Biology Reviews 80:1–43.
- Baron SS, Rowe JJ. 1981. Antibiotic action of pyocyanin. Antimicrobial Agents and Chemotherapy **20**:814–820.
- Becker B, Cooper MA. 2013. Aminoglycoside Antibiotics in the 21st Century. ACS chemical biology **8**:105–115.
- Beiko RG, Harlow TJ, Ragan MA. 2005. Highways of gene sharing in prokaryotes. Proceedings of the National Academy of Sciences of the United States of America **102**:14332–14337.
- Benson DR, Silvester WB. 1993. Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiology and Molecular Biology Reviews **57**:293–319.
- Bentley SD et al. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature **417**:141–147.
- Bentley SD et al. 2003. Sequencing and analysis of the genome of the Whipple's disease bacterium Tropheryma whipplei. The Lancet **361**:637–644.
- Bérdy J. 2005. Bioactive Microbial Metabolites. Journal of Antibiotics. Antibiotics 58:1-26.
- Bhatti AA, Haq S, Bhat RA. 2017. Actinomycetes benefaction role in soil and plant health. Microbial Pathogenesis **111**:458–467.
- Bibb MJ. 2005. Regulation of secondary metabolism in streptomycetes. Current Opinion in Microbiology **8**:208–215.
- Billot-Klein D, Blanot D, Gutmann L, van Heijenoort J. 1994. Association constants for the binding of vancomycin and teicoplanin to N-acetyl-D-alanyl-D-alanine and N-acetyl-Dalanyl-D-serine. Biochemical Journal 304:1021–1022.
- Bouchek-Mechiche K, Gardan L, Normand P, Jouan B. 2000. DNA relatedness among strains of Streptomyces pathogenic to potato in France: Description of three new species, S. europaeiscabiei sp. nov. and S. stelliscabiei sp. nov. associated with common scab, and S.

reticuliscabiei sp. nov. associated with netted s. International Journal of Systematic and Evolutionary Microbiology **50**:91–99.

- Bubici G, Marsico AD, D'Amico M, Amenduni M, Cirulli M. 2013. Evaluation of streptomyces spp. for the biological control of corky root of tomato and verticillium wilt of eggplant. Applied Soil Ecology **72**:128–134.
- Bugg TDH, Wright GD, Walsh CT, Dutka-Malen S, Arthur M, Courvalin P. 1991. Molecular Basis for Vancomycin Resistance in Enterococcus faecium BM4147: Biosynthesis of a Depsipeptide Peptidoglycan Precursor by Vancomycin Resistance Proteins VanH and VanA. Biochemistry 30:10408–10415.
- Caceres I, Snini SP, Puel O, Mathieu F. 2018. Streptomyces roseolus, A Promising Biocontrol Agent against Aspergillus flavus, the Main Aflatoxin B1 Producer. Toxins **10**.
- Carlson JC, Fortman JL, Anzai Y, Li S, Burr DA, Sherman DH. 2010. Identification of the Tirandamycin Biosynthetic Gene Cluster From Streptomyces sp. 307-9. Chembiochem: a European journal of chemical biology **11**:564–572.
- Cha JY et al. 2016. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. The ISME Journal **10**:119–129.
- Charpentier M, Percheron F. 1983. The chitin-degrading enzyme system of a Streptomyces species. International Journal of Biochemistry **15**:289–292.
- Chater KF, Biró S, Lee KJ, Palmer T, Schrempf H. 2010. The complex extracellular biology of Streptomyces. FEMS Microbiology Reviews **34**:171–198.
- Chatterjee C, Paul M, Xie L, van der Donk WA. 2005. Biosynthesis and mode of action of lantibiotics. Chemical Reviews **105**:633–683.
- Choulet F et al. 2006. Evolution of the terminal regions of the Streptomyces linear chromosome. Molecular Biology and Evolution **23**:2361–2369.
- Claessen D, Rozen DE, Kuipers OP, Søgaard-Andersen L, van Wezel GP. 2014. Bacterial solutions to multicellularity: A tale of biofilms, filaments and fruiting bodies. Nature Reviews Microbiology **12**:115–124.
- Coombs JT, Michelsen PP, Franco CMM. 2004. Evaluation of endophytic actinobacteria as antagonists of Gaeumannomyces graminis var. tritici in wheat. Biological Control **29**:359–366.
- Cristani M, D'Arrigo M, Mandalari G, Castelli F, Sarpietro MG, Micieli D, Venuti V, Bisignano G, Saija A, Trombetta D. 2007. Interaction of four monoterpenes contained in essential oils with model membranes: Implications for their antibacterial activity. Journal of Agricultural and Food Chemistry **55**:6300–6308.
- DeBoer C, Meulmam PA, Wnuk RJ, Peterson DH. 1970. Geldanamycin, a new antibiotic. The Journal of Antibiotics **23**:442–447.
- Dimkpa C, Weinand T, Asch F. 2009. Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant, Cell and Environment **32**:1682–1694.
- Du L, Lou L. 2010. PKS and NRPS release mechanisms. Natural Product Reports 27:255–278.
- Duan YY, Ming H, Dong L, Yin YR, Zhang Y, Zhou EM, Liu L, Nie GX, Li WJ. 2014. Streptomyces calidiresistens sp. nov., isolated from a hot spring sediment. Antonie van Leeuwenhoek, **106**:189–196.
- Dürr C, Schnell HJ, Luzhetskyy A, Murillo R, Weber M, Welzel K, Vente A, Bechthold A. 2006. Biosynthesis of the Terpene Phenalinolactone in Streptomyces sp. Tü6071: Analysis of the Gene Cluster and Generation of Derivatives. Chemistry & Biology **13**:365–377.
- Edwards C. 1993. Isolation properties and potential applications of thermophilic actinomycetes. Applied Biochemistry and Biotechnology **42**:161–179.
- Egan S, Wiener P, Kallifidas D, Wellington EMH. 2001. Phylogeny of Streptomyces species and evidence for horizontal transfer of entire and partial antibiotic gene clusters. Antonie van Leeuwenhoek **79**:127–133.

Fahal AH, Hassan MA. 1992. Mycetoma. British Journal of Surgery 79:1138–1141.

- Fernández M, Sánchez J. 2002. Nuclease activities and cell death processes associated with the development of surface cultures of Streptomyces antibioticus ETH 7451. Microbiology 148:405–412.
- Fierer N, Bradford MA, Jackson RB. 2007. Toward an ecological classification of soil bacteria. Ecology **88**:1354–1364.
- Fisch KM. 2013. Biosynthesis of natural products by microbial iterative hybrid PKS-NRPS. RSC Advances **3**:18228–18247.
- Flärdh K, Richards DM, Hempel AM, Howard M, Buttner MJ. 2012. Regulation of apical growth and hyphal branching in Streptomyces. Current Opinion in Microbiology 15:737– 743.
- Floss HG, Yu TW. 2005. Rifamycin Mode of action, resistance, and biosynthesis. Chemical Reviews **105**:621–632.
- Flynn EH, Hinman JW, Caron EL, Woolf DO. 1953. The Chemistry of Amicetin, a New Antibiotic. Journal of the American Chemical Society **75**:5867–5871.
- Funa N, Ohnishi Y, Ebizuka Y, Horinouchi S. 2002. Alteration of reaction and substrate specificity of a bacterial type III polyketide synthase by site-directed mutagenesis. Biochemical Journal **367**:781–789.
- Gampe CM, Tsukamoto H, Doud EH, Walker S, Kahne D. 2013. Tuning the moenomycin pharmacophore to enable discovery of bacterial cell wall synthesis inhibitors. Journal of the American Chemical Society **135**:3776–3779.
- Gartemann K, Kirchner O, Engemann J, Gräfen I, Eichenlaub R, Burger A. 2003. Clavibacter michiganensis subsp . michiganensis : first steps in the understanding of virulence of a Gram-positive phytopathogenic bacterium. Journal of Biotechnology **106**:179–191.
- Gaynor M, Mankin AS. 2003. Macrolide Antibiotics: Binding Site, Mechanism of Action, Resistance. Current Topics in Medicinal Chemistry **3**:949–960.
- Gebhardt K, Schimama J, Krastel P, Dettner K, Rheinheimer J, Zeeck A, Fiedler HP. 2002. Endophenazines AD, New Phenazine Antibiotics from the Arthropod Associated Endosymbiont Streptomyces anulatus I. Taxonomy, Fermentation, Isolation and Biological Activities. Journal of Antibiotics 55:794–800.
- Gerber NN. 1967. Geosmin, an earthy-smelling substance isolated from actinomycetes. Biotechnology and Bioengineering **9**:321–327.
- Gerber NN. 1969. A Volatile Metabolite of Actinomycetes, 2-Methylisoborneol. Journal of Antibiotics **22**:508–509.
- Ghai R, Mcmahon KD, Rodriguez-Valera F. 2012. Breaking a paradigm: Cosmopolitan and abundant freshwater actinobacteria are low GC. Environmental Microbiology Reports **4**:29–35.
- Goddard TN, Patel J, Park HB, Crawford JM. 2020. Dimeric Stilbene Antibiotics Target the Bacterial Cell Wall in Drug-Resistant Gram-Positive Pathogens. Biochemistry **59**:1966–1971.
- Goodfellow M, Williams ST. 1983. Ecology of actinomycetes. Annual Review of Microbiology **37**:189–216.
- Hamedi J, Poorinmohammad N, Papiran R. 2017. Growth and Life Cycle of Actinobacteria. Biology and Biotechnology of Actinobacteria:29–50.
- Himmelstein JC, Maul JE, Everts KL. 2014. Impact of five cover crop green manures and Actinovate on Fusarium wilt of watermelon. Plant Disease **98**:965–972.
- Janssen PH. 2006. Identifying the Dominant Soil Bacterial Taxa in Libraries of 16S rRNA and 16S rRNA Genes. Applied and environmental microbiology **72**:1719–1728.
- Ji Z, Wang M, Zhang J, Wei S, Wu W. 2007. Two new members of streptothricin class antibiotics from Streptomyces qinlingensis sp. nov. Journal of Antibiotics **60**:739–744.

- Jog R, Pandya M, Nareshkumar G, Rajkumar S. 2014. Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth. Microbiology **160**:778–788.
- Kahne D, Leimkuhler C, Lu W, Walsh C. 2005. Glycopeptide and lipoglycopeptide antibiotics. Chemical Reviews **105**:425–448.
- Kelemen GH, Buttner MJ. 1998. Initiation of aerial mycelium formation in Streptomyces. Current Opinion in Microbiology 1:656–662.
- Kettleson E, Kumar S, Reponen T, Vesper S, Méheust D, Grinshpun SA, Adhikari A. 2013. Stenotrophomonas, Mycobacterium, and Streptomyces in home dust and air: Associations with moldiness and other home/family characteristics. Indoor Air **23**:387–396.
- Kharel MK, Pahari P, Shepherd MD, Tibrewal N, Nybo SE, Shaaban KA, Rohr J. 2012. Angucyclines: Biosynthesis, mode-of-action, new natural products, and synthesis. Natural Product Reports **29**:264–325.
- Khosla C. 2009. Structures and mechanisms of polyketide synthases. Journal of Organic Chemistry **74**:6416–6420.
- Kim SB, Lonsdale J, Seong CN, Goodfellow M. 2003. Streptacidiphilus gen. nov., acidophilic actinomycetes with wall chemotype I and emendation of the family Streptomycetaceae (Waksman and Henrici (1943)AL) emend. Rainey et al. 1997. Antonie van Leeuwenhoek 83:107–116.
- Kinkel, L. L., Bowers, J. H., Shimizu, K., Neeno-Eckwall, E. C., & Schottel JL. 1998. Quantitative relationships among thaxtomin A production, potato scab severity, and fatty acid composition in Streptomyces. Canadian Journal of Microbiology, 44:768–776.
- Kirillov S, Porse BT, Vester B, Woolley P, Garrett RA. 1997. Movement of the 3'-end of tRNA through the peptidyl transferase centre and its inhibition by antibiotics. FEBS Letters **406**:223–233.
- Kong KF, Schneper L, Mathee K. 2010. Beta-lactam antibiotics: From antibiosis to resistance and bacteriology. Aprils **118**:1–36.
- Kritzman G, Shani-Cahani A, Kirshner B, Riven Y, Bar Z, Katan J, Grinstein A. 1996. Pod wart disease of peanuts. Phytoparasitica **24**:293–304.
- Kuntsmann MP, Mitscher LA. 1966. The Structural Characterization of Tetrangomycin and Tetrangulol. Journal of Organic Chemistry **31**:2920–2925.
- Kurapova AI, Zenova GM, Sudnitsyn II, Kizilova AK, Manucharova NA, Norovsuren Z, Zvyagintsev DG. 2012. Thermotolerant and thermophilic actinomycetes from soils of Mongolia desert steppe zone. Microbiology 81:98–108.
- Lambert DH, Loria R. 1989. Streptomyces acidiscabies sp. nov. International Journal of Systematic and Evolutionary Microbiology **39**:393–396.
- Landenperä M-L, Simon E, Uoti J. 1991. Mycostop A Novel Biofungicide Based on Streptomyces Bacteria. Developments in agricultural and managed forest ecology 23:258– 263.
- Laskaris P, Tolba S, Calvo-Bado L, Wellington L. 2010. Coevolution of antibiotic production and counter-resistance in soil bacteria. Environmental Microbiology **12**:783–796.
- Laursen JB, Nielsen J. 2004. Phenazine natural products: Biosynthesis, synthetic analogues, and biological activity. Chemical Reviews **104**:1663–1685.
- Law JWF, Ser HL, Khan TM, Chuah LH, Pusparajah P, Chan KG, Goh BH, Lee LH. 2017. The potential of streptomyces as biocontrol agents against the rice blast fungus, Magnaporthe oryzae (Pyricularia oryzae). Frontiers in Microbiology **8**.
- Lee LH, Cheah YK, Sidik SM, Mutalib NSA, Tang YL, Lin HP, Hong K. 2012. Molecular characterization of Antarctic actinobacteria and screening for antimicrobial metabolite production. World Journal of Microbiology and Biotechnology **28**:2125–2137.

- Lee YK, Kim HW, Liu CL, Lee HK. 2003. A simple method for DNA extraction from marine bacteria that produce extracellular materials. Journal of Microbiological Methods 52:245– 250.
- Li X, Gao P. 1996. Isolation and partial characterization of cellulose-degrading strain of Streptomyces sp. LX from soil. Letters in Applied Microbiology **22**:209–213.
- Lin YS, Kieser HM, Hopwood DA, Chen CW. 1993. The chromosomal DNA of Streptomyces lividans 66 is linear. Molecular Microbiology **10**:923–933.
- Linton KJ, Cooper HN, Hunter S, Leadlay PF. 1994. An ABC-transporter from Streptomyces longisporoflavus confers resistance to the polyether- ionophore antibiotic tetronasin 11:777–785.
- Locey KJ, Lennon JT. 2016. Scaling laws predict global microbial diversity. Proceedings of the National Academy of Sciences 113:5970–5975.
- Lombó F, Braña AF, Salas JA, Méndez C. 2004. Genetic organization of the biosynthetic gene cluster for the antitumor angucycline oviedomycin in Streptomyces antibioticus ATCC 11891. ChemBioChem **5**:1181–1187.
- Loqman S, Barka EA, Clément C, Ouhdouch Y. 2009. Antagonistic actinomycetes from Moroccan soil to control the grapevine gray mold. World Journal of Microbiology and Biotechnology 25:81–91.
- Loria R, Bukhalid RA, Fry BA, King RR. 1997. Plant pathogenicity in the genus Streptomyces. Plant Disease **81**:836–846.
- Loria R, Kers J, Joshi M. 2006. Evolution of plant pathogenicity in Streptomyces. Annual Review of Phytopathology **44**:469–487.
- Ludwig W, Euzéby J, Schumann P, Busse H-J, Trujillo ME, Kämpfer P, Whitman WB. 2012. Road map of the phylum Actinobacteria. Bergey's Manual® of Systematic Bacteriology:1–28.
- Luo Y, Huang H, Liang J, Wang M, Lu L, Shao Z, Cobb RE, Zhao H. 2013. Activation and characterization of a cryptic polycyclic tetramate macrolactam biosynthetic gene cluster. Nature Communications **4**:1–8.
- Mak S, Xu Y, Nodwell JR. 2014. The expression of antibiotic resistance genes in antibioticproducing bacteria. Molecular Microbiology **93**:391–402.
- Manteca A, Mäder U, Connolly BA, Sanchez J. 2006. A proteomic analysis of Streptomyces coelicolor programmed cell death. Proteomics **6**:6008–6022.
- Maruyama C, Toyoda J, Kato Y, Izumikawa M, Takagi M, Shin-Ya K, Katano H, Utagawa T, Hamano Y. 2012. A stand-alone adenylation domain forms amide bonds in streptothricin biosynthesis. Nature Chemical Biology 8:791–797.
- Mayfield CI, Williams ST, Ruddick SM, Hatfield HL. 1972. Studies on the Ecology of Actinomycetes in Soil IV. Observations on the Form and Growth of Streptomycetes. Soil Biology And Biochemistry **4**:79–91.
- Mendes R et al. 2011. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science **332**:1097–1100.
- Méndez C, Salas JA. 2001. The role of ABC transporters in antibiotic-producing organisms: Drug secretion and resistance mechanisms. Research in Microbiology **152**:341–350.
- Miyajima K, Tanaka F, Takeuchi T. 1998. Streptomyces turgidiscabies sp. nov. International Journal of Systematic and Evolutionary Microbiology **48**:495–502.
- Mosher RH, Camp DJ, Yang K, Brown MP, Shaw W v., Vining LC. 1995. Inactivation of chloramphenicol by o-phosphorylation: a novel resistance mechanism in Streptomyces venezuelae isp5230, a chloramphenicol producer. Journal of Biological Chemistry **270**:27000–27006.
- Mukhtar TA, Wright GD. 2005. Streptogramins, oxazolidinones, and other inhibitors of bacterial protein synthesis. Chemical Reviews **105**:529–542.

- Mun BG, Lee WH, Kang SM, Lee SU, Lee SM, Lee DY, Shahid M, Yun BW, Lee IJ. 2020. Streptomyces sp. LH 4 promotes plant growth and resistance against Sclerotinia sclerotiorum in cucumber via modulation of enzymatic and defense pathways. Plant and Soil **448**:87–103.
- Ochman H, Lawrence JG, Grolsman EA. 2000. Lateral gene transfer and the nature of bacterial innovation. Nature **405**:299–304.
- Oerke EC. 2006. Crop losses to pests. Journal of Agricultural Science 144:31-43.
- Ohno S, Katsuyama Y, Tajima Y, Izumikawa M, Takagi M, Fujie M, Satoh N, Shin-Ya K, Ohnishi Y. 2015. Identification and Characterization of the Streptazone E Biosynthetic Gene Cluster in Streptomyces sp. MSC090213JE08. ChemBioChem **16**:2385–2391.
- Olano C, Méndez C, Salas JA. 2010. Post-PKS tailoring steps in natural product-producing actinomycetes from the perspective of combinatorial biosynthesis. Natural Product Reports **27**:571–616.
- Oliynyk M, Stark CBW, Bhatt A, Jones MA, Hughes-Thomas ZA, Wilkinson C, Oliynyk Z, Demydchuk Y, Staunton J, Leadlay PF. 2003. Analysis of the biosynthetic gene cluster for the polyether antibiotic monensin in Streptomyces cinnamonensis and evidence for the role of monB and monC genes in oxidative cyclization. Molecular Microbiology **49**:1179–1190.
- Omura S et al. 2001. Genome sequence of an industrial microorganism Streptomyces avermitilis: Deducing the ability of producing secondary metabolites. Proceedings of the National Academy of Sciences **98**:12215–12220.
- Oskay M, Tamer AÜ, Azeri C. 2004. Antibacterial activity of some actinomycetes isolated from farming soils of Turkey. African Journal of Biotechnology **3**:441–446.
- Özakin S, Davis RW, Umile TP, Pirinccioglu N, Kizil M, Celik G, Sen A, Minbiole KPC, İnce E. 2016. The isolation of tetrangomycin from terrestrial Streptomyces sp. CAH29: evaluation of antioxidant, anticancer, and anti-MRSA activity. Medicinal Chemistry Research **25**:2872–2881.
- Park SB, Lee IA, Suh JW, Kim JG, Lee CH. 2011. Screening and identification of antimicrobial compounds from Streptomyces bottropensis suppressing rice bacterial blight. Journal of Microbiology and Biotechnology 21:1236–1242.
- Pathom-aree W, Stach JEM, Ward AC, Horikoshi K, Bull AT, Goodfellow M. 2006. Diversity of actinomycetes isolated from Challenger Deep sediment (10,898 m) from the Mariana Trench. Extremophiles **10**:181–189.
- Pelzer S, Süßmuth R, Heckmann D, Recktenwald J, Huber P, Jung G, Wohlleben W. 1999. Identification and analysis of the balhimycin biosynthetic gene cluster and its use for manipulating glycopeptide biosynthesis in Amycolatopsis mediterranei DSM5908. Antimicrobial Agents and Chemotherapy 43:1565–1573.
- Peterson E, Kaur P. 2018. Antibiotic resistance mechanisms in bacteria: Relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Frontiers in Microbiology **9**:1–21.
- Poehlsgaard J, Douthwaite S. 2003. Macrolide antibiotic interaction and resistance on the bacterial ribosome. Current Opinion in Investigational Drugs **4**:140–148.
- Pogliano J, Pogliano N, Silverman JA. 2012. Daptomycin-mediated reorganization of membrane architecture causes mislocalization of essential cell division proteins. Journal of Bacteriology **194**:4494–4504.
- Pradeep GC, Hah YY, Cho SS, Choi YH, Yoo JC. 2015. An Extracellular Chitinase from Streptomyces sp. CS147 Releases N-acetyl-d-glucosamine (GlcNAc) as Principal Product. Applied Biochemistry and Biotechnology 175:372–386.
- Pu JY, Peng C, Tang MC, Zhang Y, Guo JP, Song LQ, Hua Q, Tang GL. 2013. Naphthyridinomycin biosynthesis revealing the use of leader peptide to guide nonribosomal peptide assembly. Organic Letters 15:3674–3677.
- Quistgaard EM, Löw C, Guettou F, Nordlund P. 2016. Understanding transport by the major facilitator superfamily (MFS): Structures pave the way. Nature Reviews Molecular Cell Biology **17**:123–132.
- Rateb ME et al. 2011. Chaxamycins A D, bioactive ansamycins from a hyper-arid desert streptomyces sp. Journal of Natural Products **74**:1491–1499.
- Rebets Y et al. 2019. Perquinolines A–C: Unprecedented Bacterial Tetrahydroisoquinolines Involving an Intriguing Biosynthesis. Angewandte Chemie - International Edition 58:12930–12934.
- Reusser F. 1976. Tirandamycin, an inhibitor of bacterial ribonucleic acid polymerase. Antimicrobial Agents and Chemotherapy **10**:618–622.
- Rey T, Dumas B. 2017. Plenty Is No Plague: Streptomyces Symbiosis with Crops. Trends in Plant Science **22**:30–37.
- Reynolds PE. 1989. Structure, biochemistry and mechanism of action of glycopeptide antibiotics. European Journal of Clinical Microbiology & Infectious Diseases 8:943–950.
- Rigali S, Titgemeyer F, Barends S, Mulder S, Thomae AW, Hopwood DA, van Wezel GP. 2008. Feast or famine: The global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Reports **9**:670–675.
- Risdian C, Mozef T, Wink J. 2019. Biosynthesis of polyketides in Streptomyces. Microorganisms 7:569–578.
- Russell DG. 2001. Mycobacterium tuberculosis: here today, and here tomorrow. Nature Reviews Molecular Cell Biology **2**:1–9.
- Sagova-Mareckova M, Ulanova D, Sanderova P, Omelka M, Kamenik Z, Olsovska J, Kopecky J. 2015. Phylogenetic relatedness determined between antibiotic resistance and 16S rRNA genes in actinobacteria Ecological and evolutionary microbiology. BMC Microbiology 15:1–13.
- Sakoulas G, Nam SJ, Loesgen S, Fenical W, Jensen PR, Nizet V, Hensler M. 2012. Novel bacterial metabolite merochlorin A demonstrates in vitro activity against Multi-Drug resistant Methicillin-Resistant Staphylococcus aureus. PLoS ONE **7**:1–6.
- Sakuda S, Ikeda H, Nakamura T, Kawachi R, Kondo T, Ono M, Sakurada M, Inagaki H, Ito R, Nagasawa H. 2000. Blasticidin a derivatives with highly specific inhibitory activity toward aflatoxin production in Aspergillus parasiticus. Journal of Antibiotics **53**:1378–1384.
- Sasaki S, Takeshita F, Okuda K, Ishii N. 2001. Mycobacterium leprae and leprosy: A compendium. Microbiology and Immunology **45**:729–736.
- Schatz A, Bugle E, Waksman SA. 1944. Streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative bacteria. Proceedings of the Society for Experimental Biology and Medicine **55**:66–69.
- Schobert R, Schlenk A. 2008. Tetramic and tetronic acids: An update on new derivatives and biological aspects. Bioorganic and Medicinal Chemistry **16**:4203–4221.
- Schrempf H. 2001. Recognition and degradation of chitin by streptomycetes. Antonie van Leeuwenhoek **79**:285–289.
- Scott JD, Williams RM. 2002. Chemistry and biology of the tetrahydroisoquinoline antitumor antibiotics. Chemical Reviews **102**:1669–1730.
- Shakeel Q, Lyu A, Zhang J, Wu M, Li G, Hsiang T, Yang L. 2018. Biocontrol of Aspergillus flavus on Peanut Kernels using streptomyces yanglinensis 3-10. Frontiers in Microbiology **9**:1–9.
- Shen B. 2003. Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Current Opinion in Chemical Biology **7**:285–295.

- Smulczyk-Krawczyszyn A, Jakimowicz D, Ruban-Ośmiałowska B, Zawilak-Pawlik A, Majka J, Chater K, Zakrzewska-Czerwińska J. 2006. Cluster of DnaA boxes involved in regulation of streptomyces chromosome replication: From in silico to in vivo studies. Journal of Bacteriology 188:6184–6194.
- Song L, Laureti L, Corre C, Leblond P, Aigle B, Challis GL. 2014. Cytochrome P450-mediated hydroxylation is required for polyketide macrolactonization in stambomycin biosynthesis. Journal of Antibiotics **67**:71–76.
- Stapley E, Jackson M, Hernandez S, Zimmerman SB, Currie SA, Mochales S, Mata JM, Woodruff HB, Hendlin D. 1972. Cephamycins, a new family of β-lactam antibiotics I. Production by Actinomycetes, including Streptomyces lactamdurans sp. n. Antimicrobial Agents and Chemotherapy 2:122–131.
- Staunton J, Weissman KJ. 2001. Polyketide biosynthesis: A millennium review. Natural Product Reports 18:380–416.
- Suárez-Moreno ZR, Vinchira-Villarraga DM, Vergara-Morales DI, Castellanos L, Ramos FA, Guarnaccia C, Degrassi G, Venturi V, Moreno-Sarmiento N. 2019. Plant-growth promotion and biocontrol properties of three Streptomyces spp. isolates to control bacterial rice pathogens. Frontiers in Microbiology **10**:1–17.
- Subramani R, Aalbersberg W. 2013. Culturable rare Actinomycetes: Diversity, isolation and marine natural product discovery. Applied Microbiology and Biotechnology **97**:9291–9321.
- Sugiyama M, Mochizuki H, Nomi R, Nimi O. 1981. Mechanism of protection of protein synthesis against streptomycin inhibition in a producing strain. The Journal of Antibiotics **34**:1183–8.
- Światek M, Tenconi E, Sébastien R, van Wezel GP. 2012. Functional analysis of the nacetylglucosamine metabolic genes of streptomyces coelicolor and role in control of development and antibiotic production. Journal of Bacteriology **194**:1136–1144.
- Tahvonen R. 1982. Preliminary experiments into the use of Streptomyces spp. isolated from peat in the biological control of soil and seed-borne diseases in peat culture. Agricultural and Food Science **54**:357–369.
- Thampi A, Bhai RS. 2017. Rhizosphere actinobacteria for combating Phytophthora capsici and Sclerotium rolfsii, the major soil borne pathogens of black pepper (Piper nigrum L.). Biological Control **109**:1–13.
- Thilagam R, Hemalatha N. 2019. Plant growth promotion and chilli anthracnose disease suppression ability of rhizosphere soil actinobacteria. Journal of Applied Microbiology **126**:1835–1849.
- Tkacz A, Poole P. 2015. Role of root microbiota in plant productivity. Journal of Experimental Botany **66**:2167–2175.
- Trombetta D, Castelli F, Sarpietro MG, Venuti V, Cristani M, Daniele C, Saija A, Mazzanti G, Bisignano G. 2005. Mechanisms of antibacterial action of three monoterpenes. Antimicrobial Agents and Chemotherapy **49**:2474–2478.
- Trujillo ME, Bacigalupe R, Pujic P, Igarashi Y, Benito P, Riesco R, Médigue C, Normand P. 2014. Genome features of the Endophytic Actinobacterium Micromonospora lupini strain lupac 08: On the process of adaptation to an Endophytic life style? PLoS ONE 9.
- Unwin J, Standage S, Alexander D, Hosted TJr, Horan AC, Wellington EMH. 2004. Gene Cluster in Micromonospora echinospora ATCC15835 for the Biosynthesis of the Gentamicin C Complex. The Journal of Antibiotics **57**:436–445.
- van der Heijden MGA, Bardgett RD, van Straalen NM. 2008. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters **11**:296–310.

- Vereecke D, Burssens S, Simón-Mateo C, Inzé D, van Montagu M, Goethals K, Jaziri M. 2000. The Rhodococcus fascians-plant interaction: Morphological traits and biotechnological applications. Planta **210**:241–251.
- Vining LC. 1979. Antibiotic Tolerance in Producer Organisms. Advances in Applied Microbiology 25:147–168.
- Volchegursky Y, Hu Z, Katz L, McDaniel R. 2001. Biosynthesis of the antiparasitic agent megalomicin: Transformation of erythromycin to megalomicin in Saccharopolyspora erythraea. Molecular Microbiology 40:1045–1046.
- Völler GH, Krawczyk JM, Pesic A, Krawczyk B, Nachtigall J, Süssmuth RD. 2012. Characterization of New Class III Lantibiotics-Erythreapeptin, Avermipeptin and Griseopeptin from Saccharopolyspora erythraea, Streptomyces avermitilis and Streptomyces griseus Demonstrates Stepwise N-Terminal Leader Processing. ChemBioChem 13:1174–1183.
- Waksman SA, Woodruff HB. 1942. Streptothricin, a New Selective Bacteriostatic and Bactericidal Agent, Particularly Active Against Gram-Negative Bacteria. Proceedings of the Society for Experimental Biology and Medicine **49**:207–210.
- Wang S, Liang Y, Shen T, Yang H, Shen B. 2016. Biological characteristics of Streptomyces albospinus CT205 and its biocontrol potential against cucumber Fusarium wilt. Biocontrol Science and Technology 26:951–963.
- Ward JM, Hodgson JE. 1993. The biosynthetic genes for clavulanic acid and cephamycin production occur as a 'super-cluster' in three Streptomyces. FEMS Microbiology Letters **110**:239–242.
- Watve MG, Tickoo R, Jog MM, Bhole BD. 2001. How many antibiotics are produced by the genus Streptomyces? Archives of Microbiology **176**:386–390.
- Wehrli W. 1977. Ansamycins. Chemistry, biosynthesis and biological activity. Medicinal chemistry:21–49.
- Weller DM, Raaijmakers JM, McSpadden Gardener BB, Thomashow LS. 2002. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology **40**:309–348.
- Wietzorrek A, Bibb M. 1997. A novel family of proteins that regulates antibiotic production in streptomycetes appears to contain an OmpR-like DNA-binding fold. Molecular Microbiology **25**:1181–1184.
- Willey JM, van der Donk WA. 2007. Lantibiotics: Peptides of diverse structure and function. Annual Review of Microbiology **61**:477–501.
- Wink J, Gandhi J, Kroppenstedt RM, Seibert G, Sträubler B, Schumann P, Stackebrandt E. 2004. Amycolatopsis decaplanina sp. nov., a novel member of the genus with unsual morphology. International Journal of Systematic and Evolutionary Microbiology 54:235– 239.
- Xiao K, Kinkel LL, Samac DA. 2002. Biological Control of Phytophthora Root Rots on Alfalfa and Soybean with Streptomyces. Biological Control **23**:285–295.
- Xu L et al. 2014. Complete genome sequence and comparative genomic analyses of the vancomycin-producing Amycolatopsis orientalis. BMC Genomics **15**:1–18.
- Xu LH, Tiang YQ, Zhang YF, Zhao LX, Jiang CL. 1998. Streptomyces thermogriseus, a new species of the genus Streptomyces from soil, lake and hot-spring. International Journal of Systematic and Evolutionary Microbiology **48**:1089–1093.
- Xue Y, Zhao L, Liu HW, Sherman DH. 1998. A gene cluster for macrolide antibiotic biosynthesis in Streptomyces venezuelae: Architecture of metabolic diversity. Proceedings of the National Academy of Sciences **95**:12111–12116.

- Yadav AN, Verma P, Sachan SG, Saxena AK. 2017. Biodiversity and biotechnological applications of psychrotrophic microbes isolated from Indian Himalayan regions. EC Microbiol ECO 1:48–54.
- Yamada Y, Kuzuyama T, Komatsu M, Shin-ya K, Omura S, Cane DE, Ikeda H. 2015. Terpene synthases are widely distributed in bacteria. Proceedings of the National Academy of Sciences of the United States of America **112**:857–862.
- Yandigeri MS, Meena KK, Singh D, Malviya N, Singh DP, Solanki MK, Yadav AK, Arora DK. 2012. Drought-tolerant endophytic actinobacteria promote growth of wheat (Triticum aestivum) under water stress conditions. Plant Growth Regulation **68**:411–420.
- Yang CJ, Huang TP, Huang JW. 2021. Field sanitation and foliar application of streptomyces padanus PMS-702 for the control of rice sheath blight. Plant Pathology Journal **37**:57–71.
- Yoshinari T, Akiyama T, Nakamura K, Kondo T, Takahashi Y, Muraoka Y, Nonomura Y, Nagasawa H, Sakuda S. 2007. Dioctatin A is a strong inhibitor of aflatoxin production by Aspergillus parasiticus. Microbiology **153**:2774–2780.
- Yu F, Zaleta-Rivera K, Zhu X, Huffman J, Millet JC, Harris SD, Yuen G, Li XC, Du L. 2007. Structure and biosynthesis of heat-stable antifungal factor (HSAF), a broad-spectrum antimycotic with a novel mode of action. Antimicrobial Agents and Chemotherapy **51**:64– 72.
- Zhan J. 2009. Biosynthesis of Bacterial Aromatic Polyketides. Current Topics in Medicinal Chemistry **9**:1598–1610.
- Zhang G, Zhang H, Li S, Xiao J, Zhang G, Zhu Y, Niu S, Ju J, Zhang C. 2012. Characterization of the amicetin biosynthesis gene cluster from Streptomyces vinaceusdrappus NRRL 2363 implicates two alternative strategies for amide bond formation. Applied and Environmental Microbiology **78**:2393–2401.
- Zhang J, Fan P-H, Lin G-M, Chang W-C, Liu H. 2020a. Recent Progress in Unusual Carbohydrate-Containing Natural Products Biosynthesis. Page Comprehensive Natural Products III, 3rd edition.
- Zhang S, Yang Y, Wu Z, Li K. 2020b. Induced defense responses against Rhizoctonia solani in rice seedling by a novel antifungalmycin N2 from Streptomyces sp. N2. Australasian Plant Pathology **49**:267–276.
- Zheng J, Li Y, Guan H, Zhang J, Tan H. 2019. Enhancement of neomycin production by engineering the entire biosynthetic gene cluster and feeding key precursors in Streptomyces fradiae CGMCC 4.576. Applied Microbiology and Biotechnology 103:2263–2275.
- Zhu H, Sandiford SK, van Wezel GP. 2014. Triggers and cues that activate antibiotic production by actinomycetes. Journal of Industrial Microbiology and Biotechnology **41**:371–386.

9 Samostatné přílohy

Seznam příloh

Příloha 1: Seznam všech nalezených BK u kmene 09Zd22 a seznam identifikovaných BK pro sekundární metabolity programem antiSMASH

Příloha 2: Seznam všech nalezených BK u kmene 09VK39 a seznam identifikovaných BK pro sekundární metabolity programem antiSMASH

Příloha 1: Seznam všech nalezených BK u kmene 09Zd22, seznam identifikovaných BK pro sekundární metabolity programem antiSMASH a jejich procentuální genová shoda s daným klastrem

Klastr	Sekundární metabolit	%	typ látky
1.1	lactazole	33 %	RiPP:Thiopeptide
	foxicins A-D	4 %	NRP + Polyketide
	lasalocid	9 %	Polyketide
	caniferolide A / caniferolide B / caniferolide C /		
	caniferolide D	3 %	Polyketide
1.2	isorenieratene	100 %	Terpene
	carotenoid	87 %	Terpene
	isorenierateme	87 %	Terpene
	borrelidin	4 %	Polyketide:Modular type I
	cinnamycin B	10 %	RiPP
	nocamycin	7 %	NRP + Polyketide
1.3	herboxidiene	9 %	Polyketide
	alkylresorcinol	100 %	Polyketide
	alkylpyrone-407 / alkylpyrone-393	50 %	Polyketide
	lagunapyrone A / lagunapyrone B / lagunapyrone C	22 %	Polyketide
	ebelactone	5 %	Polyketide
	gentamicin	3 %	Saccharide
1.4	melanin	100 %	Pigment
	istamycin	2 %	Saccharide
1.5	SGR PTMs	100 %	NRP + Polyketide
	frontalamide B	85 %	NRP + Polyketide:Iterative type I
	heat-stable antifungal factor	75 %	NRP + Polyketide
	combamide	44 %	NRP + Polyketide
	pactamides	55 %	NRP + Polyketide
	clifednamide A	40 %	NRP + Polyketide
	ikarugamycin	12 %	NRP + Polyketide:Iterative type I
	xiamycin A	9 %	Terpene
	rustmicin	6 %	Polyketide:Iterative type I
	tetronasin	3 %	Polyketide
1.6	pentostatine / vidarabine	9 %	Purine nucleoside analog
	rifamycin	5 %	Polyketide
	kanglemycin A / kanglemycin V1 / kanglemycin V2	5 %	Polyketide
	rifamorpholine A / rifamorpholine B / rifamorpholine		
	C / rifamorpholine D / rifamorpholine E	3 %	Polyketide

	legonaridin	16 %	RiPP
1.7	hopene	69 %	Terpene
	calicheamicin	2 %	Polyketide
	phosphonoglycans	6 %	Saccharide
2.1	ficellomycin	3 %	NRP
2.4	2-methylisoborneol	100 %	Terpene
	ebelactone	5 %	Polyketide
	conglobatin	15 %	NRP
2.5	asukamycin	12 %	Polyketide:Type II
	salinomycin	14 %	Polyketide:Modular type I
	amicetin	8 %	Saccharide: Aminoglycoside
	JBIR-126	7 %	NRP
	meilingmycin	3 %	Polyketide
	thiazostatin	2 %	NRP
2.6	formicamycins A-M	11 %	Polyketide
	atratumycin	7 %	NRP
	WS9326	5 %	NRP
	pepticinnamin E	6 %	NRP + Polyketide
	RP-1776	4 %	Polyketide + NRP:Cyclic depsipeptide
	WS79089A / hexaricin B / hexaricin C	6 %	Polyketide
	fredericamycin A	6 %	Polyketide:Type II
	A-74528	6 %	Polyketide
	thaxteramide C	7 %	NRP
	colabomycin E	4 %	Polyketide:Type II
2.7	WS9326	5 %	NRP
	macrotetrolide	50 %	Polyketide
	thiocoraline	7 %	NRP:Cyclic depsipeptide
	retimycin A	13 %	NRP:Cyclic depsipeptide
	pepticinnamin E	6 %	NRP + Polyketide
	hedamycin	6 %	Polyketide
	triostin A	11 %	NRP
	SW-163C / UK-63598 / SW-163E / SW-163F / SW- 163G	7 %	NPP
	ishigamide	11 %	NRP + Polyketide
	incednine	2 %	Polyketide
3.1	miravaquinone	10 %	Polyketide
5.1	naulomycin	11 %	Saccharide
	diazaquinomycin A / diazaquinomycin E /	11 /0	Succharide
	diazaquinomycin F / diazaquinomycin G	25 %	Diazaanthraquinone
	A23187	17 %	Polyketide
	streptonigrin	7 %	Aminoquinon
	caboxamycin	40 %	NRP + Polyketide
	limazepine C / limazepine D / limazepine E /		
	limazepine F / limazepine A	22 %	NRP + Polyketide
	phenalinolactone A	11 %	Terpene + Saccharide:Hybrid/tailoring
	prejadomycin / rabelomycin / gaudimycin C /		
4.1	gaudimycin D / UWM6 / gaudimycin A	27 %	Polyketide
	auricin	44 %	Polyketide:Type II + Saccharide

	oviedomycin	50 %	Polyketide:Type II
	kinamycin	37 %	Polyketide
	Sch-47554 / Sch-47555	20 %	Polyketide
	lugdunomycin	44 %	Polyketide
	saquayamycin A	27 %	Polyketide Saccharide + Polyketide:Modular type
	simocyclinone D8	22 %	I + Polyketide:Type II + O
	fluostatins M-Q	27 %	Polyketide
	saprolmycin E	30 %	Polyketide
4.2	keywimysin	100 %	RiPP
	SRO15-2005	87 %	RiPP:Lassopeptide
	citrulassin B	40 %	RiPP
	fusilassin	50 %	RiPP
	lagmysin	40 %	RiPP
5.1	AmfS	100 %	RiPP:Lanthipeptide
	SR015-2212	57 %	RiPP:Lanthipeptide
	SAL-2242	88 %	RiPP:Lanthipeptide
	SanB	75 %	RiPP:L anthinentide
		15 /0	
5.2	PIV / argimycin PV / argimycin PII / nigrifactin / argimycin PIV / argimycin PIX	24 %	Polyketide
	streptazone E	75 %	Polyketide
	microtermolide A	33 %	NRP + Polyketide
	lavendiol	19 %	Polyketide
	coelimycin P1	20 %	Polyketide:Modular type I
	chlorothricin / deschlorothricin	16 %	Polyketide:Modular type I
	oligomycin	44 %	Polyketide
	auroramycin	8 %	Polyketide
	sipanmycin	16 %	Polyketide
6.1	divergolide A / divergolide B / divergolide C /	6%	Polyketide
	lobosamide A / lobosamide B / lobosamide C	4 %	Polyketide
		1 /0	Polyketide:Type II +
7.1	steffimycin D	19 %	Saccharide:Hybrid/tailoring
	BE-7585A	9 %	Polyketide
	perquinoline A / perquinoline B / perquinoline C	14 %	Tetrahydroisoquinolines
	mediomycin A	8 %	Polyketide
8.2	decaplanin	7 %	NRP:Glycopeptide
	balhimycin	8 %	NRP
	decaplanin	8 %	NRP:Glycopeptide
	cysteoamide	27 %	NRP
	vancomycin	5 %	NRP
	coumermycin A1	9 %	Saccharide:Hybrid/tailoring
	clorobiocin	10 %	Saccharide:Hybrid/tailoring
	acyldepsipeptide 1	10 %	NRP
	cacibiocin B	14 %	Aminocoumarin
	cathomycin	10 %	Saccharide:Hybrid/tailoring
9.2	phosphonoglycans	3%	Saccharide
10.1	ectoine	100.04	Carbovamidine heteroovele
10.1	cetonic	100 %	Carooxamume neterocycle

11.1	streptobactin	88 %	NRP
	paenibactin	83 %	NRP
	bacillibactin	100 %	NRP:NRP siderophore
	myxochelin A / myxochelin B	33 %	NRP
	fuscachelin A / fuscachelin B / fuscachelin C	55 %	NRP
	mirubactin	28 %	NRP
	obafluorin	21 %	NRP
	heterobactin A / heterobactin S2	27 %	NRP
11.2	geosmin	100 %	Terpene
	vazibitide A	4 %	NRP
11.3	coelimycin P1	16 %	Polyketide:Modular type I
	SCB1 / SCB2 / SCB3	100 %	Butyrolactone
			Gamma-butyrolactone signaling
	A-factor	100 %	molecule
	oxalomycin B	6 %	NRP + Polyketide
	merochlorin A / merochlorin B / deschloro-		
	merochlorin A / deschloro-merochlorin B / isochloro-		
	merochlorin B / dichloro-merochlorin B / merochlorin	1 04	Polykatida
	griseoviridin / fijimycin A	+ <i>/</i> 0	NRP
13.1	coelichelin	81 %	NRP
15.1	tetronasin	9%	Polyketide
	scabichelin	30 %	NRP
	salinichelins	23 %	NRP
	sobichelin A / sobichelin B	11 %	NRP
13.2	arsono-polyketide	45 %	Polyketide
13.2	gougerotin	13 %	Peptidyl nucleoside
13.3	herboxidiene	6%	Polyketide
	naringenin	100 %	Terpene
	flaviolin	50 %	Polyketide
	flaviolin rhamnoside / 3 3'-diflaviolin / flaviolin	22 %	Polyketide:Type III
	undecylprodigiosin	9%	NRP + Polyketide
	marineosin A / marineosin B	9%	Polyketide
	lipopeptide 8D1-1 / lipopeptide 8D1-2	4 %	NRP
	CDA1b/CDA2a/CDA2b/CDA2a/CDA2b/	. ,0	
	CDA4a / CDA4b	5%	NRP
16.1	arsono-polyketide	16 %	Polyketide
17.1	desferrioxamin B	100 %	Siderophore
	desferrioxamine	83 %	Siderophore
	putrebactin / avaroferrin	40 %	Siderophore
	bisucaberin B	50 %	Siderophore
20.1	tirandamycin	86 %	NRP + Polyketide:Modular type I
	nocamycin	40 %	NRP + Polyketide
	streptolydigin	31 %	NRP + Polyketide:Modular type I
	lydicamycin	40 %	NRP + Polyketide:Modular type I
	brasilinolide A / brasilinolide B / brasilinolide C	5 %	Polyketide
	1· ·	27.0/	NPP:Lipopentide Polyketide
	α-lipomycin	21 %	INKI .Lipopepude + I orykeude

	lavendiol	16 %	Polyketide
	kirromycin	3 %	NRP + Polyketide:Modular type I
24.1	A-500359 A / A-500359 B	5 %	NRP
29.1	bottromycin A2	39 %	RiPP:Bottromycin
	indigoidine	80 %	NRP
	aristeromycin	15 %	Adenosine analog
	cyphomycin	2 %	Polyketide
39.1	ectoine	50 %	Carboxamidine heterocycle
43.1	halstoctacosanolide A	77 %	Polyketide
	stambomycin A / stambomycin B / stambomycin C /		
	stambomycin D	36 %	Polyketide
	cremimycin	17 %	Polyketide
	salinomycin	18 %	Polyketide:Modular type I
	lobophorin A	8 %	Polyketide
	reedsmycins	20 %	Polyketide
	linfuranone B / linfuranone C	38 %	Polyketide
	hygrocin A / hygrocin B	16 %	Polyketide
	ebelactone	11 %	Polyketide
	tiacumicin B	12 %	Polyketide:Modular type I
47.1	mediomycin A	28 %	Polyketide
	niphimycins C-E	29 %	Polyketide
	lydicamycin	32 %	Polyketide:Modular type I
	azalomycin F3a	34 %	Polyketide
	funisamine	20 %	Polyketide
	primycin	18 %	Polyketide
	BE-14106	21 %	Polyketide:Modular type I
	pimaricin	29 %	Polyketide
	hitachimycin	22 %	Polyketide

Příloha 2: Seznam všech nalezených BK u kmene 09VK39, seznam identifikovaných BK pro sekundární metabolity programem antiSMASH a jejich procentuální genová shoda s daným klastrem

Klastr	Sekundární metabolit	%	typ látky
2.1	alkylresorcinol	100 %	Polyketide
	lagunapyrone A / lagunapyrone B / lagunapyrone C	22 %	Polyketide
	alkylpyrone-407 / alkylpyrone-393	33 %	Polyketide
3.1	melanin	100 %	Pigment
	saframycin A / saframycin B	4 %	NRP
	istamycin	2 %	Saccharide
4.1	macrotetrolide	33 %	Polyketide
6.1	A-503083 A / A-503083 B / A-503083 E / A-503083 F	3 %	NRP
	A-500359 A / A-500359 B	5 %	NRP
	hygromycin A	6 %	Saccharide
	apramycin	6 %	Saccharide
	paromomycin	5 %	Saccharide
	stambomycin A / stambomycin B / stambomycin C /		
	stambomycin D	8 %	Polyketide
9.1	meoabyssomicin / abyssomicin	6 %	Polyketide

	1		
9.2	tetrocarcin A	6 %	Polyketide
	2-methylisoborneol	75 %	Terpene
11.1	marinophenazine A / phenaziterpene A	30 %	Phenazine
	endophenazine A / endophenazine B	38 %	Phenazine
	5-acetyl-5,10-dihydrophenazine-1-carboxylic acid / 5-		
	(2-hydroxyacetyl)-5,10-dihydrophenazine-1-carboxylic		
	acid /endophenazine A1 /endophenazine F /		
	endophenazine G	26 %	Phenazine
	lomofungin	26 %	Phenazine
	pyocyanine	85 %	Phenazine
	streptophenazine E / streptophenazine C /		
	streptophenazine H	17 %	NRP + Polyketide
	napyradiomycin	19 %	Terpene
	esmeraldin	16 %	Polyketide + Other: Aminocoumarin
	merochlorin A / merochlorin B / deschloro-merochlorin	10 /0	
	A / deschloro-merochlorin B / isochloro-merochlorin B		
	/ dichloro-merochlorin B / merochlorin D / merochlorin		
	C	12 %	Terpene + Polyketide
	furaquinocin B	21 %	Terpene + Polyketide
11.2	raimonol	90 %	Terpene
	cyslabdan	72 %	Terpene
12.1	ulleungmycin	5 %	NRP
13.1	coelichelin	100 %	NRP
	SapB	100 %	RiPP:Lanthipeptide
	SAL-2242	88 %	RiPP:Lanthipeptide
	AmfS	60 %	RiPP:Lanthipeptide
	catenulipeptin	60 %	RiPP:Lanthipeptide
	scabichelin	50 %	NRP
	salinichelins	38 %	NRP
	SR015-2212	28 %	RiPP:Lanthipeptide
	albachelin	40 %	NRP
	gobichelin A / gobichelin B	16 %	NRP
14.1	herboxidiene	2 %	Polyketide
	naringenin	100 %	Terpene
	SF2575	4 %	Polyketide:Type II + Saccharide
	kanamycin	1%	Saccharide
	neomycin	5%	Saccharide
14.2	herboxidiene	7%	Polyketide
14.2	megalomicin A / megalomicin B / megalomicin C1 /	7 70	
15.1	megalomicin C2	15 %	Polyketide
	monensin	25 %	Polyketide
	nocardiopsin A / nocardiopsin B / nocardiopsin C /		
	nocardiopsin D	21 %	NRP + Polyketide
	ECO-02301	21 %	Polyketide
	mediomiycin A	24 %	Polyketide
	stambomycin A / stambomycin B / stambomycin C /	20.61	
	stambomycin D	28 %	Polyketide + Saccharide
	apoptolidin	15 %	Polyketide
	concanamycin A	14 %	Polyketide

15.2	tetronasin	34 %	Polyketide
	tetronomycin	27 %	Polyketide
	amycomicin	50 %	Polyketide
	salinomycin	8 %	Polyketide:Modular type I
	tetrocarcin A	11 %	Polyketide
	chlorothricin / deschlorothricin	9 %	Polyketide:Modular type I
	herboxidiene	2 %	Polyketide
	lobophorin B	11 %	Polyketide:Modular type I
	lobophorin A	6 %	Polyketide
	ajudazol A	23 %	NRP + Polyketide:Modular type I
	CDA1b / CDA2a / CDA2b / CDA3a / CDA3b / CDA4a		
16.1	/ CDA4b	5 %	NRP
	lipopeptide 8D1-1 / lipopeptide 8D1-2	4 %	NRP
	griselimycin	7 %	NRP
	cadaside A / cadaside B	9 %	NRP
	malacidin A / malacidin B	5 %	NRP:Ca+-dependent lipopeptide
	nematophin	18 %	NRP
	kutzneride 2	6 %	NRP
	merochlorin A / merochlorin B / deschloro-merochlorin		
	A / deschloro-merochlorin B / isochloro-merochlorin B		
18.1	/ dichloro-merochlorin B / merochlorin D / merochlorin C	41 %	Terpene + Polyketide
10.1	endophenazine A / endophenazine B	72 %	Phenazine
	5-acetyl-5,10-dihydrophenazine-1-carboxylic acid / 5-	12 /0	1 nenazine
	(2-hydroxyacetyl)-5,10-dihydrophenazine-1-carboxylic		
	acid /endophenazine A1 /endophenazine F /		
	endophenazine G	52 %	Phenazine
	diazaquinomycin H / diazaquinomycin J	22 %	Diazaanthraquinone
	furaquinocin B	39 %	Terpene + Polyketide
	diazepinomicin	22 %	Terpene
	viguiepinol	46 %	Polyketide
	napyradiomycin A80915C	22 %	Terpene + Polyketide:Type III
	marinophenazine A / phenaziterpene A	26 %	Phenazine
	lactonamycin	10 %	Polyketide
19.1	ficellomycin	3 %	NRP
21.1	perquinoline A / perquinoline B / perquinoline C	100 %	Tetrahydroisoquinolines
	BE-7585A	21 %	Polyketide
	lobophorin A	6 %	Polyketide
	totopotensamide A / totopotensamide B	10 %	NRP + Polyketide
	steffimycin D	19 %	Polyketide:Type II + Saccharide
	A40926	7 %	NRP:Glycopeptide + Saccharide
	Kendomycin	15 %	Polyketide:Modular type I
	pheganomycin	14 %	NRP + RiPP
	feglymycin	15 %	NRP
	A-47934	8 %	NRP:Glycopeptide
22.1	hopene	69 %	Terpene
	calicheamicin	2 %	Polyketide
	phosphonoglycans	6 %	Saccharide
23.2	ectoine	100 %	Carboxamidine heterocycle

27.1	naphthyridinomycin	92 %	NRP
	quinocarcin	37 %	NRP
	saframycin A / saframycin B	12 %	NRP
	frigocyclinone	6 %	Polyketide
	prejadomycin / rabelomycin / gaudimycin C /		
	gaudimycin D / UWM6 / gaudimycin A	4 %	Polyketide + Saccharide
	coelimycin P1	8 %	Polyketide:Modular type I
	sporolide A / sporolide B	4 %	NRP + Polyketide:Enediyne type I
	fluvirucin B2	5 %	Polyketide
	tetronasin	3 %	Polyketide
	paramagnetoquinone 1 / paramagnetoquinone 2	7 %	Polyketide
30.1	conglobatin	15 %	NRP
	CDA1b / CDA2a / CDA2b / CDA3a / CDA3b /		
31.1	CDA4a / CDA4b	10 %	NRP
	pentostatine / vidarabine	9%	Purine nucleoside analog
	acyldepsipeptide 1	10 %	NRP
	lipopeptide 8D1-1 / lipopeptide 8D1-2	6%	NRP
	daptomycin	4 %	NRP
	feglymycin	10 %	NRP
	actinomycin D	7 %	NRP
	cadaside A / cadaside B	9 %	NRP
	marformycin A / marformycin B / marformycin C /	8 0/	NDD
	taromycin A	0 70 6 %	
	BE-43547A1 / BE-43547A2 / BE-43547B1 / BE-	0 70	
45.1	43547B2 / BE-43547B3 / BE-43547C1 / BE-43547C2	30 %	NRP + Polyketide
	merochlorin A / merochlorin B / deschloro-merochlorin		
	A / deschloro-merochlorin B / isochloro-merochlorin B		
	/ dichloro-merochlorin B / merochlorin D / merochlorin C	1 06	Tarpana - Polykatida
48.1	isoraniaratana	4 /0 85 %	Tarpana
40.1	carotenoid	75 %	Terpene
	isoranjaratana	75 %	Tarpana
	nocemucin	7.5 %	
51.1		7 %0	Termene
51.1	geosmin merochlorin A / merochlorin B / deschloro-merochlorin	100 %	Terpene
	A / deschloro-merochlorin B / isochloro-merochlorin B		
	/ dichloro-merochlorin B / merochlorin D / merochlorin		
53.1	C	7 %	Terpene + Polyketide
	furaquinocin B	13 %	Polyketide + Terpene
	streptonigrin	3 %	Aminoquinon
	diazaquinomycin H / diazaquinomycin J	4 %	Diazaanthraquinone
	A23187	6 %	Polyketide
	diazaquinomycin A / diazaquinomycin E /		
	diazaquinomycin F / diazaquinomycin G	10 %	Diazaanthraquinone
	nybomycin	7 %	
	fosfazinomycin A	10 %	Phosphonate
	cremeomycin	14 %	Diazo ketone
	triacsins	6 %	
60.1	tetronasin	25 %	Polyketide
	tetronomycin	27 %	Polyketide

	chlorothricin / deschlorothricin	16 %	Polyketide:Modular type I
	maklamicin	13 %	Polyketide
	kijanimicin	13 %	Polyketide
	lasalocid	33 %	Polyketide
	lobophorin B	11 %	Polyketide:Modular type I
	meoabyssomicin / abyssomicin	12 %	Polyketide
	abyssomicin C / atrop-abyssomicin C	14 %	Polyketide:Modular type I
73.1	tetronasin	30 %	Polyketide
	maklamicin	19 %	Polyketide
	meoabyssomicin / abyssomicin	18 %	Polyketide
	ECO-02301	39 %	Polyketide
	oligomycin	50 %	Polyketide
	cremimycin	22 %	Polyketide
	tetronomycin	24 %	Polyketide
	concanamycin A	28 %	Polyketide
	catenulisporolides	12 %	NRP + Polyketide
	fluvirucin B2	13 %	Polyketide
82.1	primycin	16 %	Polyketide
02.11	meridamycin	10 %	NRP + Polyketide
	FD-891	50 %	Polyketide
	lasalocid	18 %	Polyketide
	sceliphrolactam	12 %	Polyketide
	naphthomycin A	9 %	Polyketide
	ebelactone	8 %	Polyketide
	JBIR-100	16 %	Polyketide:Modular type I
84.1	pseudomonic acid A	5 %	Polyketide:Iterative type I
0.11	microsclerodermin	21 %	NRP + Polyketide:Modular type I
	cystothiazole A	11 %	NRP + Polyketide
	myxothiazol	28 %	NRP + Polyketide:Modular type I
	nostophycin	18 %	NRP + Polyketide
	microsclerodermin M	18 %	NRP + Polyketide:Modular type I
	caniferolide A / caniferolide B / caniferolide C /		5
89.1	caniferolide D	9 %	Polyketide
	nanchangmycin	15 %	Polyketide
	pladienolide B	37 %	Polyketide
	kendomycin	15 %	Polyketide:Modular type I
	herboxidiene	3 %	Polyketide
	X-14547	17 %	Polyketide
	concanamycin A	14 %	Polyketide
	geldanamycin	13 %	Polyketide
	herbimycin A	10 %	Polyketide
	ebelactone	8 %	Polyketide
164.1	meilingmycin	3 %	Polyketide
	nocamycin	7 %	NRP + Polyketide
212.1	rhizomide A / rhizomide B / rhizomide C	100 %	NRP
	bicornutin A1 / bicornutin A2	100 %	NRP
	luminmide	100 %	NRP
246.1	elansolid A1	30 %	Polyketide:Trans-AT type I

1		1	1
	thailandamide / thailandamide lactone	42 %	NRP + Polyketide:Modular type I
	tartrolon D / tartrolon F / tartrolon G	43 %	Polyketide:Trans-AT type I
		16.04	Polyketide:Iterative type I +
	pseudomonic acid A	16 %	Polyketide: Irans-AT type I NRP + Polyketide: Modular type I
	nosperin	38 %	Polyketide:Trans-AT type I
	cusperin	45 %	NRP + Polyketide
	L		NRP + Polyketide:Modular type I +
	kalimantacin A	20 %	Polyketide:Trans-AT type I
	macrobrevin	40 %	Polyketide:Trans-AT type I
	thailanstatin A	30 %	NRP + Polyketide
	spliceostatin / FR901464	33 %	NRP + Polyketide
251.1	1 Second Second	2.04	NRP + Polyketide:Modular type I +
251.1	kirromycin	3%	Polyketide: Irans-A1 type I
290.1	cichopeptin	38 %	NRP
	putisolvin	37%	NRP
	rimosamide	14 %	NRP
	Le-pyrrolopyrazines	27%	NKP
	syringomycin	23 %	NRP
	lysobactin	2 %	NRP
	glidopeptin A	37 %	NRP
	ralsolamycin	40 %	NRP + Polyketide
329.1	bicornutin A1 / bicornutin A2	100 %	NRP
	rhizomide A / rhizomide B / rhizomide C	100 %	NRP
	xenotetrapeptide	100 %	NRP
	luminmide	100 %	NRP
	icosalide A / icosalide B	100 %	NRP:Lipopeptide
394.1	rhizomide A / rhizomide B / rhizomide C	100 %	NRP
516.1	rhizomide A / rhizomide B / rhizomide C	100 %	NRP
	bicornutin A1 / bicornutin A2	100 %	NRP
	icosalide A / icosalide B	100 %	NRP:Lipopeptide
	luminmide	100 %	NRP
	xenotetrapeptide	100 %	NRP
657.1	icosalide A / icosalide B	100 %	NRP:Lipopeptide
	luminmide	100 %	NRP
	rhizomide A / rhizomide B / rhizomide C	100 %	NRP
	xenotetrapeptide	100 %	NRP
	bicornutin A1 / bicornutin A2	100 %	NRP
673.1	myxochelin A / myxochelin B	25 %	NRP
	paenibactin	50 %	NRP
	streptobactin	17 %	NRP
	fuscachelin A / fuscachelin B / fuscachelin C	22 %	NRP
	heterobactin A / heterobactin S2	18 %	NRP
	amonabactin P 750	28 %	NRP
	enterobactin	8 %	NRP
	amphi-enterobactin 1 / amphi-enterobactin 2 / amphi-		
	enterobactin 3 / amphi-enterobactin 4	8 %	NRP
	obafluorin	14 %	NRP
690.1	Le-pyrrolopyrazines	27 %	NRP

712.1	rhizomide A / rhizomide B / rhizomide C	100 %	NRP
966.1	rhizomide A / rhizomide B / rhizomide C	100 %	NRP
	bicornutin A1 / bicornutin A2	100 %	NRP
	luminmide	100 %	NRP
	icosalide A / icosalide B	100 %	NRP:Lipopeptide
1068.1	bicornutin A1 / bicornutin A2	100 %	NRP
	rhizomide A / rhizomide B / rhizomide C	100 %	NRP
	luminmide	100 %	NRP
1250.1	rhizomide A / rhizomide B / rhizomide C	100 %	NRP
1294.1	rhizomide A / rhizomide B / rhizomide C	100 %	NRP
	xenotetrapeptide	100 %	NRP
	luminmide	100 %	NRP
	bicornutin A1 / bicornutin A2	100 %	NRP
	icosalide A / icosalide B	100 %	NRP:Lipopeptide
1402.1	icosalide A / icosalide B	100 %	NRP:Lipopeptide
	rhizomide A / rhizomide B / rhizomide C	100 %	NRP
	luminmide	100 %	NRP
	bicornutin A1 / bicornutin A2	100 %	NRP
	xenotetrapeptide	100 %	NRP