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ABSTRAKT
V p̌redložené práci se zabýváme hledáńım řešeńı lineárńı diferenciálńı maticové rovnice

se zpožděńım ẋ(t) = A0x(t) + A1x(t − τ), kde A0, A1 jsou konstantńı matice, τ > 0

je konstantńı zpožděńı. Dále se zabýváme odvozeńım podḿınek stability řešeńı systému

a řiditelnosti daného systému. Pro řešeńı tohoto systému byla použita metoda krok za

krokem. Řešeńı bylo nalezeno jak v rekurentńı formě tak i v obecném tvaru.

Je provedena analýza stability a asymptotické stability řešeńı systému. Jsou zfor-

mulovány podḿınky stability. Hlavńı roli v analýze stability měla metoda Lyapunovových

funkcionál̊u.

Jsou zformulovány nutné a postačuj́ıćı podḿınky řiditelnosti pro p̌ŕıpad systémů se

stejnými maticemi a je zkonstruována řid́ıćı funkce. Jsou odvozeny postačuj́ıćı podḿınky

pro řiditelnost v p̌ŕıpadě komutuj́ıćıch matic a v p̌ŕıpadě obecných matic a je sestrojena

ř́ıd́ıćı funkce.

Všechny výsledky jsou ilustrovány na netriviálńıch p̌ŕıkladech.

KĹIČOVÁ SLOVA
diferenciálńı rovnice, systémy diferenciálńıch rovnic, rovnice se zpožděńım, druhá

Ljapunovova metoda, stabilita řešeńı, řiditelnost, zpožděný argument.



ABSTRACT
This work is devoted to computing the solution, stability of the solution and controllability

of respective system of linear matrix differential equation with delay ẋ(t) = A0x(t) +

A1x(t−τ), where A0, A1 are constant matrices and τ > 0 is the constant delay. To solve

this equation, the step by step method was used. The solution was found in recurrent

form and in general form.

Stability and the asymptotic stability of the solution of the equation was investigated.

Conditions for stability were defined. The Lyapunov’s functional theory is basic for the

investigation.

Necessary and sufficient condition for controllability in same matrices case was defined

and the control was built. Sufficient conditions for controllability in communicative

matrices case and general case were defined and controls were built.

All results were illustrated with non-trivial examples.

KEYWORDS
differential equation, systems of differential equations, equations with delay, the second

method of Lyapunov, stability of solution, controllability, delayed argument.
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PODĚKOVÁŃI
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1 INTRODUCTION

Individual results for functional-differential equations were obtained more than 250

years ago, and systematic development of the theory of such equations began only in

the last 90 years. Before this time there were thousands of articles and several books

devoted to the study and application of functional-differential equations. However,

all these studies consider separate sections of the theory and its applications (the

exception is well-known book Elsgolts L.E., representing the full introduction to

the theory, and its second edition published in 1971 in collaboration with Norkin

S.B. [34]). There were no studies with single point of view on numerous problems

in the theory of functional-differential equations until the book by Hale J. (1977) [45].

Interpretation of solutions of functional-differential equations

ẋ(t) = f(x(t), t),

as integral curve in the space R × C by Krasovskii N.N. (1968) [64] served as such

single point of view. This interpretation is now widespread, proved useful in many

parts of the theory, particularly sections of the asymptotic behavior and periodic-

ity of solutions. It clarified the functional structure of the functional-differential

equations of delayed and neutral type, provided an opportunity to the deep analogy

between the theory of such equations and the theory of ordinary differential equa-

tions and showed the reasons for deep differences of these theories.

Classic work on the theory of functional, integral and integro-differential equations

is a work by Volterra V. [93]. His book ”The Theory of functional, integral and

integro-differential equations” first released in Spanish in 1927, then significantly

revised version of it released in English in 1929. The last edition was released in

U.S. in 1959 and the book released in 1982 is a translation into Russian.

The biggest part of the results obtained during 150 years before works by Volterra V.

were related to special properties of very narrow classes of equations. In his studies

of ”predator-prey” models and studies on viscosity-elasticity Volterra V. got some

fairly general differential equation, which include past states of system:

ẋ(t) = f(x(t), x(t− τ), t), τ > 0.

In addition, because of the close connection between the equations and specific phys-

ical systems Volterra V. tried to introduce the concept of energy function for these

models. Then he used the behavior of energy function to study the asymptotic be-

havior of the system in the distant future.

In late 1930 and early 1940s Minorsky N.F. in his article ”Self-excited in dynamical

systems possessing retarded actions” [77] very clearly pointed out the importance of
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considering the delay in feedback mechanism in his works on stabilizing the course

of a ship and automatic control its movement.

At the beginning of 1950 Myshkis A.D. introduced general class of equations with

delay arguments and laid the foundation for general theory of linear systems. In

1972 he systematized ideas in the paper ”Linear differential equations with delay

argument” [79]. Bellman R. showed in his monograph [7] a broad applicability

of equations that contain information about the past in such fields as economics

and biology. He also presented a well-constructed theory of linear equations with

constant coefficients and the beginning of stability theory. The most intensive de-

velopment of these ideas presented in the book of Bellman R. and Cooke K. [8],

”Differential-difference equations” (1967). The book describes the theory of linear

differential-difference equations with constant and variable coefficients:

ẋ(t) = f(x(t), ẋ(t), ..., x(n)(t), x(t− τ1), ...x(t− τm), t), τi > 0, i = 1, ...,m.

Considerable attention is paid to asymptotic behavior of the solutions, as well as the

stability theory of linear and quasi-linear equations. Most of the results in this area

belong to these authors. Large number of problems and examples of the specific

problems of the theory probability, economics, nuclear physics, etc. are essential

part of the book.

The book ”Ordinary differential-difference equation” (1961) by Pinney E. [82] is

devoted to differential- difference equations, otherwise known as the equations with

deviating argument. The focus of the book is linear equations with constant coef-

ficients, which are most often encountered in the theory of automatic control. The

book also presents a new method for studying equations with small nonlinearities

found by the author. In particular, this method is applied in control theory of Mi-

norskii equation.

Kurbatov V.G. in 1990 in his book [67] systematized facts about differential and

differential-difference equations.

Azbelev N.V., Maksimov V.P., Rakhmatulina L.F. ”Introduction to theory of func-

tional differential equations” (1991) [4] and Sabitov K.B. ”Functional, differential

and integral equations. Textbook for university students majoring in ”Applied

Mathematics and Informatics” and the direction of ”Applied Mathematics and Com-

puter Science” (2005) [87] are relatively new works to the theory. In first the authors

try to generalize subclasses of systems differential, integro-differential and difference

equations with the operator approach. The second manual presented a purely func-

tional, ordinary differential, integral equations and differential equations in partial

derivatives and classical methods of solving them.
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1.1 Dynamical systems stability

One of the important characteristic of the dynamic system is stability of this system.

The history of stability research is more than one century long and one of the first

classical work in this branch of mathematic is book of Lyapunov A.M. ”General

problem of stability motion” (1892) [74]. This work contains author’s results about

stability of equilibria and the motion of mechanical systems, the model theory for

the stability of uniform turbulent liquid, and the study of particles under the influ-

ence of gravity. His work in the field of mathematical physics regarded the boundary

value problem of the equation of Laplace. Lyapunov’s method acctually produced

new branch for researching - Lyapunov stability problem.

In the book ”Coarse systems” (1937) [3] Andronov A.A. and Pontryagin L.S. pre-

sented their results received from researching motion of dynamic system for which

topologically trajectory doesn’t change for small preturberation of the system. One

of the main results of this work is well-known Andronov-Pontryagin criterion of or-

bitrally topologically stability of dynamic system.

Krasovskii N.N. in his book on the theory of stability (1956) [61] introduced the

theory of Lyapunov functionals, noting the important fact: some problems for such

systems become more visual and easier to solve if the motion is considered in a func-

tional space, even when the state variable is a finite-dimensional vector. The paper

discusses some problems in the nonlinear systems of ordinary differential equations

solutions stability theory. The justification of the Lyapunov functions method is

adequately addressed, the existence of functions is clarified. Also the possibility of

applying the method to study of the systems described by various ordinary differen-

tial equations apparatus is proved. He developed these methods further in his next

works [62], [63].

Later Korenevskij D.G. in his book ”Stability of Dynamical Systems under Random

Perturbations of Parameters. Algebraic criteria.” (1989) [60] used the method of

Lyapunov-Krasovsii functionals of a special quadratic form and the integral over

the interval of delay of a quadratic form.

In 1964 the book was published by Aizerman M.A. and Gantmacher F.R. ”Absolute

stability of regulator systems” [1] and book by La Salle J.P., Lefshetz S. ”Stability

By Liapunov’s Direct Method, With Applications.” [68] it became classical in theory.

Demidovich B.P. worked on the theory of stability systematization in 1970s. In his

book ”Lectures on the Mathematical Theory of Stability”(1967) [18] a theory of

stability framework for ordinary differential equations and some related questions

are stated. Also the basics of the almost periodic functions theory and their appli-
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cations to differential equations were introduces.

In book by Zubov V.I. [96] presented the main problems in the stability theory for

the systems defined in functional space and methods for their solutions.

In 1970 the course of lectures of Barbashin E.A. ”Lyapunov functions” [6] was pub-

lished. Emphasis is placed on methods of constructing Lyapunov functions for non-

linear systems. Methods of the region of attraction estimation, solutions estimation,

management time, integrated quality control criteria were presented. Sufficient cri-

teria for asymptotic stability in general, absolute stability criteria were recounted.

A large number of Lyapunov functions for nonlinear systems of second and third

order were presented. The case when the nonlinearity depends on two coordinates of

points in phase space was examined. The problem of constructing vector Lyapunov

functions for complex systems was also investigated.

In the narrow direction differential equations stability theory was developing in late

1970s by scientists Daletskii J.A., Crane M.G. In 1970 they published monograph

”Stability of differential equations solutions in Banach space” [17], which set out

a theory of higher Lyapunov exponents and general Bohl indicators for linear non-

stationary and close to the nonlinear equations, Lyapunov second method and its

interpretation in the spaces with an infinite and definite metric, Floquet’s theorem

and the localization theorem on the spectrum of the monodromy operator, theory of

canonical equations with a periodic Hamiltonian, central stability zone, Lyapunov’s

stability signs and their various generalizations; Fuchs-Frobenius theory, exponential

splitting of the non-stationary linear equations solutions, exponential dichotomy, in-

tegral manifolds theory, researches by Bohl P. [11], Bogoliubov N.N. and coauthors

[10], generalization of the asymptotic methods of Birkhoff G.D. [9], Tamarkin J.D.

[90] et al. All these questions are studied for differential equations in Banach or

Hilbert spaces.

Another method of stability research is frequency method. This method is devel-

oped in the works of Gelig A.H., Leonov G.A. [38], [39].

In 1980 Rusch H., Abets P., Laloy M. wrote the monograph, ”Direct method of

Lyapunov in stability theory” [85]. This work devoted to investigation the stabil-

ity of ordinary differential equations solutions by the direct method of Lyapunov.

Much attention is paid to applications for various mechanical systems, nonlinear

electrical circuits, problems of mathematical economics. Along with the classical re-

sults the monograph presents a series of issues, namely: stability of some variables;

theorem about equilibrium and stationary motions stability and their circulation;

theorems on the stability of equilibrium and stationary motions and their treatment;

the instability theorems, based on the concept of sector and expeller; classification
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of differential equations solutions properties (stability, attraction, limitations, etc.);

classification of properties of solutions of differential equations (stability, attrac-

tion, limitations, etc.); attraction for autonomous and nonautonomous differential

equations; comparison method; Vector Lyapunov functions; one-parameter family

of Lyapunov functions.

One of the classical works in stability theory in this period became book by Chetaev

N.G. (1990) [15].

In [55], [58], [59] Kolmanovskii V.B. and Nosov V.R. suggested the way to apply the

theory for neutral nonlinear system asymptotic stability investigation, used func-

tionals depending on derivatives. Also, special functions by Lui Mei-Gin [70], Lui

Xiu-Xiang and Xu Bugong [71], [72] were used to determine the global asymptotic

and exponential stability of nonlinear neutral delayed systems with two time-depend

bounded delays.

Delay independent criteria of stability for some classes of neutral systems were de-

veloped by Gu K., Kharitonov V.L., Chen J. in their work ”Stability of time-delay

system” (2003)[44].

The paper of Leonov G.A. ”Chaotic dynamics and the classical theory of motion

stability” (2006) [69] is relatively new work in the theory of dynamical systems mo-

tion stability.

Xiaoxin L., Liqiu W., Pei Y. in their work ”Stability of Dynamical systems” (2007)

[95] investigated the stability of the system with time dependent delays.

Nowadays particular branches of stability are being researched and developed by

such scientists as Baštinec J., Khusainov D.Ya., Shatyrko A.V., Dibĺık J., Dzhal-

ladova I.A., Baštincová A., Piddubna G. [20], [21], [25], [27], [28], [31], [32], [52],

[53], [102]-[104].

1.2 Dynamical systems with delay

The future of many processes in the world around us depends not only on the present

state, but is also significantly determined by the entire pre-history. Such systems

occur in automatic control, economics, medicine, biology and other areas (examples

can be found in [16], [43], [50], [56], [57], [76]). Mathematical description of these

processes can be done with the help of equations with delay, integral and integro-

differential equations. Great contribution to the development of these directions is

made by Bellman R., Lunel S.M.V., Mitropolskii U.A., Myshkis A.D., Norkin S.B.,
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Hale J.C. [8], [46], [78], [79], [80].

Classical works in the field of differential equations with retarded argument are work

by Myshkis A.D. ”Linear differential equations with delay argument ”(1972)[79] and

Hale J.C. ”The Theory of Functional Differential Equations” (1984) [45].

Another branch of differential equations with delay is the systems of differential

equations whose parameters change in predefined intervals. The results of Kharitonov

V.L., so-called ”big and small” Kharitonov’s theorem were published in [50], [51].

Boundary value problems for delay differential system are being researched and de-

veloped nowadays by such scientists as Boichuk A., Dibĺık J., Khusainov D.Ya.,

Růžičková M. [12], [13].

Particular results in representation of solution view are nowadays presented in papers

of Baštinec J., Khusainov D.Ya., Piddubna G. [97]-[101].

1.3 Dynamical systems of neutral type

There is also a large number of applications in which retarded argument is included

not only as a state variable, but also in its derivative. This is so-called differential-

difference equations of neutral type:

ẋ(t) = f(x(t), ẋ(t), ẋ(t− τ)), τ > 0.

Problems that lead to such equations are more difficult to find, although they often

appear in studies of two or more oscillatory systems with some links between them.

Akhmerov R.R., Kamenskii M.I. and ot. [2], Bellman R., Cooke K. [8] and also

Germanovich O.P. [40] raised questions regarding the systems of neutral type in

their works.

Work ”Linear periodic equation of neutral type and their applications ”(1986) by

Germanovich O.P. [40] is devoted to linear periodic equations of neutral type with a

finite number of concentrated delays which are rationally commensurable with the

period of coefficients. The book examines the Floquet Theory for such equations.

The method to formulate a sufficient conditions for the existence of Floquet solu-

tions is also proposed. Application of this method allows us to obtain an asymptotic

representation for Floquet solutions and their multipliers, to define limit points of

multipliers, to establish some properties of the system of Floquet solutions. The

approach developed in this paper is illustrated by differential-difference equation

that describes wave phenomena in a long line with the parametric conditions on the

boundary.
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In 1991 Hale J. and Verduyn L.S.M. in their work ”Introduction to Functional Dif-

ferential Equations” [47] have attempted to maintain the spirit of Hale’s book [34].

One major change was a completely new presentation of linear systems for retarded

and neutral functional differential equations. The theory of dissipative systems and

global attractors was thoroughly revamped as well as the invariant manifold theory

near equilibrium points and periodic orbits.

The problems of stability of neutral delay-differential system were investigated by

Park J.H. and Won S. [81].

Nowadays, new results about estimates of solutions of neutral type equations are

being researched and developed by such scientists as Dibĺık J., Baštinec J., Khu-

sainov D.Ya., Shatyrko A., Baštincová A., Dzhalladova I.A. [21]-[30], [32],[86], [88].

1.4 Optimal dynamic systems control

The challenge of providing restrictions imposed on the movement of a dynamic

system remains important task for theory and practice of management for a long

time. The best-known approaches to solving this problem are based on the maxi-

mum principle and dynamic programming method of Bellman. Moreover, in these

approaches, first of all, we seek the optimal control, which in addition to the opti-

mality should also ensure some specified limits. However, the effective management

of the system is not necessarily optimal, which allows to speak of a certain narrow-

ness of these approaches. In this case, the procedure of synthesis is quite complex

and is ineffective in high-dimensional system. Direct approaches to the synthesis of

restrictions control on the system movement are also known. Methods of numerical

synthesis (Vasiliev F.P. ”Optimization Methods” [91], Gabasov R.F. and Kirillova

F.M., ”Constructive methods of optimization” [36], Fedorenko R.P. ”Approximate

solution of optimal control problems” [35], Polak E. ”Optimization: Algorithms and

Consistent Approximations.” [83]), methods based on Lyapunov function (Kunt-

sevich V.M. and Lychak M.M., [66], Vorotnikov V.I. and Rumyantsev V.V. [94]),

methods of inverse dynamics (Krutko P.D. [65]) may be classified as such.

The use of numerical approaches, despite their virtually unlimited applicability to

a wide variety of classes of dynamical systems dependens on the construction of

efficient approximate models, which is a rather complex problem by itself. In ad-

dition, the required solutions search procedure often leads to unusual or extreme

problems of mixed algebraic inequalities, which have no effective solutions. Appli-

cation of methods based on Lyapunov function is related to the problem of forming

Lyapunov function and the solution of Lyapunov equations or inequalities. This

problem is most easily solved for linear systems, and in more general cases with a

fairly arbitrary constraints its solution is linked with considerable difficulties. Use of
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inverse dynamics methods is connected with serious difficulties due to the problem

of choosing the desired motion, which must meet given limitations.

Big research about practical problems of the theory of automatical control was pre-

sented by well-known scientist Lurie A.I. in (1951) [73].

One of fundamental works in control theory is the work by one of the primary re-

searchers Kalman R.E. [48]. This work deals with further advances of the author’s

recent work on optimal design of control systems and Wiener filters. Specifically,

the problem of designing a system to control a plant when not all state variables are

measurable, or the measured state variables are contaminated with noise, and there

are random disturbances is considered. The well-known Kalman filter, also known

as linear quadratic estimation (LQE) was at first presented here. The Kalman filter

operates recursively on streams of noisy input data to produce a statistically optimal

estimate of the underlying system state.

Numerical dynamic programming procedures are based on the Bellman’s principle

of optimality, which reads: ”An optimal policy has the property that whatever the

initial state and initial decision are, the remaining decisions must constitute an op-

timal policy with regard to the state resulting from the first decision.”

In the traditional principle of optimality of Bellman, optimality is understood in the

sense of extreme value of the selected scalar criterion. However, currently most im-

portant problems can not be reduced to one-criterion formulation, so the problem of

Bellman’s principle of optimality and numerical schemes of dynamic programming

generalization for the case of a broader interpretation of the concept of optimality

is on the agenda.

The main drawback of the approach that consists of the direct synthesis of dynamic

programming method, for example, for the case of several criteria, is considered by

some authors (Velichko D.A. [92], Sysoev V.V. [89]) to be the issue of proportion-

ality and, consequently, a lack of computing resources. For example, in [92] it is

shown theoretically that such approach becomes ineffective when the number of cri-

teria is more than three due to avalanche-like increase in the number of conflicting

decisions. However, the Pareto set is rarely commensurable with the total number

of options, although it is easy to think of a process example in which all possible

trajectories will be Pareto optimal, in the real-world conditions, such examples do

not occur often. Therefore, a theoretical assessment of the difficulties presented in

the case of the exhaustive search is overstated, and drawn conclusions are particular

cases.

New particular results in controllability research of linear differential equations with
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delay are presented in works Baštinec J., Dibĺık J., Khusainov D.Ya., Lukáčková J.,

Růžičková M., Dzhalladova I.A., Piddubna G. [19], [20], [31], [54], [105]-[119].

Example

One of examples of such matrix linear differential equation is the regenerative chatter

in metal cutting model [50].

Picture 1. Model of regenerative chatter

A cylindrical workpiece rotates with constant angular velocity ω and the cutting tool

translates along the axis of the workpiece with constant linear velocity ωf/2π, where

f is the feed rate in length per revolution corresponding to the normal thickness of

the chip removed. The tool generates a surface as the material is removed, shown as

shaded, and any vibration of the tool is reflected on this surface. In the regenerative

chatter, the surface generated by the previous pass becomes the upper surface of

the chip on the subsequent pass.

Picture 2. Geometry of turning
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This time-delay system can be described by the equation

m
d2y(t)

dt2
+ c

dy(t)

dt
+ ky(t) = −Ft(f + y(t)− y(t− τ))),

where m, c, and k reflect the inertia, damping, and stiffness characteristics of the

machine tool, the delay time τ = 2π/ω corresponds to the time for the workpiece to

complete one revolution, and Ft(·) is the thrust force depending on the instantaneous

chip thickness f + y(t)− y(t− τ). It is often sufficient to consider Ft(·) to be linear,

and techniques for linear time-delay systems are often used

Ft(·) = a1f + a2y(t) + a3y(t− τ),

where a1, a2, a3 are constant coefficients. In this case time-delay system can be

describes by the equation

m
d2y(t)

dt2
+ c

dy(t)

dt
+ (k + a2)y(t) + a3y(t− τ) = −a1f,

or by the matrix linear differential equation with delay(
ẋ(t)

ẏ(t)

)
=

(
− c

m
− k+a2

m

1 0

)(
x(t)

y(t)

)
+

(
0 − a3

m

0 3

)(
x(t− τ)

y(t− τ)

)
+

(
−a1

m
f

0

)
.

2
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2 MAIN DEFINITIONS OF THE THEORY

2.1 Definitions of the control theory

Let Z be the state space of a dynamic system, U be the set of control functions,

z = z(z0, u, t) be a vector characterizing the state of the dynamical system at the

instant t, starting from the initial state z0, z0 ∈ Z, z0 = z(t0) and the control function

u, u ∈ U . Let X denote a subspace of Z and x = x(z0, u, t) be the projection of the

state vector z(z0, u, t) onto X.

Definition 2.1.1 The state z0 is said to be controllable in the class U (controllable

state), if there exist such control u, u ∈ U and the number T , t0 ≤ T < ∞ that

z(z0, u, T ) = 0.

Definition 2.1.2 The state z0 is said to be controllable in the class U with respect

to a given set X (relatively controllable state), if there exist such control u ∈ U and

the number T , t0 ≤ T <∞ that x(z0, u, T ) = 0.

Definition 2.1.3 If every state z0, z0 ∈ Z of a dynamic system is controllable, then

we say that the system is controllable (controllable system).

Definition 2.1.4 If every state z0, z0 ∈ X of a dynamic system is relatively con-

trollable, then we say that the system is relatively controllable (relatively controllable

system).

Consider the following Cauchy’s problem:

ẋ(t) = A0x(t) + A1x(t− τ) +Bu(t), t ∈ [0, T ] , T <∞,

x(0) = x0, x(t) = ϕ(t), −τ ≤ t < 0,
(2.1)

where x = (x1, ..., xn)T is the phase coordinates vector, x ∈ X, u(t) = (u1, ..., ur)
T is

the control function, u ∈ U , U is the set of piecewise-continuous functions; A0, A1, B

are constant matrices of dimensions (n× n), (n× n), (n× r) respectively, τ is the

constant delay.

The state space Z of this system is the set of n-dimensional functions

{x(θ), t− τ ≤ θ ≤ t} (2.2)

The space of the n-dimensional vectors x (phase space X) is a subspace of Z. The

initial state z0 of the system (2.1) is determined by conditions

z0 = {x0(θ), x0(θ) = ϕ(θ), −τ ≤ θ < 0, x(0) = x0}. (2.3)
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The state z = z(z0, u, t) of the system (2.1) in the space Z at the instant t is defined

by trajectory segment (2.2) of phase space X.

Below we assume that the motions of system (2.1) take place for t ≥ 0 in the space

of continuous function. The initial function ϕ(θ) is taken to be piecewise-continuous.

In accordance with specified definitions state (2.3) we have defined, the system (2.1)

is controllable if there exists such control u, u ∈ U that x(t) ≡ 0, T − τ ≤ t ≤ T

when T <∞.

The state (2.3) of the system (2.1) is relatively controllable if there exists such

control u, u ∈ U that x(T ) = 0 for T <∞.

Remark 2.1.5 The notion of a relatively controllable system follow from the spe-

cific nature of differential equations with delay. In the case of the usual differential

equations (A1 = Θ), the sets Z and X coincide and, consequently, the notion of a

”relatively controllable state” is equivalent to the well-known [48] term ”controllable

state”.

Let X0(t) is a fundamental matrix of solutions of equation (2.1) in case when B ≡ 0,

normalized in the point t0, mean X0(t0) = I. Let us define following function

ω(t) = X0(t)B =

 ω1(t)

...

ωn(t)

 , (2.4)

where ωi(t) = (ωi1(t), ..., ωir(t)), i = 1, .., n.

Theorem 2.1.6 [48] System (2.1) will be relatively controllable if and only if vector

functions ωi(t), i = 1, .., n are linearly independent on all time interval t0 ≤ t ≤ t1.

Proof: sufficiency. Let consider two arbitrary points x0 and x1 from phase space

X and two arbitrary points t0 and t1 of the argument t. Then the solution of the

Cauchy problem for equation (2.1) with initial condition x(t0) = x0 will be

x(t) =

∫ t

t0

ω(ξ)u(ξ)dξ + X0(t)x0. (2.5)

Considering condition x(t1) = x1, we say that in order for the system (2.1) to be

relatively controllable, it is enough to find such control vector function u(t) with

which following equality is true

x(t1) =

∫ t1

t0

ω(ξ)u(ξ)dξ + X0(t1)x0. (2.6)
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Let’s show that this function exists and has the form

u0(t) = u(t) = ω∗(t)l0, (2.7)

where ω∗(t1) is matrix conjugated to (2.4) (obtained from ω(t1) by taking the

transpose and then taking the complex conjugate of each entry), and l0 - some

n-dimension constant vector. Let us put (2.7) in (2.6) and obtain the system of

linear algebraic equations for components of the vector l0:∫ t1

t0

ω(ξ)ω∗(ξ)dξl0 = x(t1)− X0(t1)x0. (2.8)

We now show that the determinant of system (2.8) is nonzero. To do this, let’s

notice that for arbitrary n-dimensional vector l (||l|| > 0) if the linear independence

of vectors ωi(t), i = 1, .., n the following is true:∫ t1

t0

||ω∗(ξ)||2dξ = l∗
∫ t1

t0

ω(ξ)ω∗(ξ)dξl0 > 0, (2.9)

which mean that the matrix ∫ t1

t0

ω(ξ)ω∗(ξ)dξ

is positive defined, and therefore from the Silvestr’s condition we extract inequality

det

∫ t1

t0

ω(ξ)ω∗(ξ)dξ > 0. (2.10)

Thus, considering nonsingular matrix in the system of equations (2.8), we write:

l0 =

(∫ t1

t0

ω(ξ)ω∗(ξ)dξ

)−1

[x(t1)− X0(t1)x0] ,

and this, together with formula (2.7) allows us to find the control function as:

uo(t) = ω∗(t)

(∫ t1

t0

ω(ξ)ω∗(ξ)dξ

)−1

[x(t1)− X0(t1)x0]

Proof: necessity. The proof is carried out from the opposite. Let us assume that the

vector-function ωi(t), i = 1, .., n while t0 ≤ t ≤ t1 is linearly dependent, but a special

selection of control vector-function u(t) can be ensured for an arbitrary boundary

conditions x(t0) = x0, x(t1) = x1 for a given trajectory of a system. From the linear

dependence of vector-functions ωi(t), i = 1, .., n on the interval t0 ≤ t ≤ t1 followed

equality:

lTω(ξ) ≡ 0, t0 ≤ ξ ≤ t1, (2.11)

where lT - some special n-dimensional constant vector (||lT || > 0).
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Let us choose arbitrary points x0 and x1 using the conditional

lT [x1 − X0(t1)x0] 6= 0.

On the basis of identity (2.11) we can confirm that for an arbitrary function u(ξ)

next equality is correct:

lT
∫ t1

t0

ω(ξ)u(ξ)dξ ≡ 0,

so

lT [x1 − X0(t1)x0] 6= lT [x1 − X0(t1)x0] ,

or

[x1 − X0(t1)x0] 6= x1 − X0(t1)x0.

Last inequality contradicts the assumption that system (2.1) is relatively control-

lable, because it asserts that for selected values x0 and x1 it is impossible to specify

a vector-function u(t) that would meet the condition (2.6). 2

Definition 2.1.7 Let A be a constant matrix of dimension n × n. The matrix

exponential is defined by

eAt = I + A
t

1!
+ A2 t

2

2!
+ A3 t

3

3!
+ · · · =

∞∑
i=0

Ai t
i

i!
,

where I is the identity matrix.

Lemma 2.1.8 Let A be a constant matrix of dimension n× n. Then

AeAt = eAtA.

Proof.

AeAt = A
∞∑
i=0

Ai t
i

i!
= A ·

(
I + A

t

1!
+ A2 t

2

2!
+ A3 t

3

3!
+ A4 t

4

4!
+ A5 t

5

5!
+ . . .

)

= A+ A2 t

1!
+ A3 t

2

2!
+ A4 t

3

3!
+ A5 t

4

4!
+ A6 t

5

5!
+ . . .

=

(
I + A

t

1!
+ A2 t

2

2!
+ A3 t

3

3!
+ A4 t

4

4!
+ A5 t

5

5!
+ . . .

)
· A

=
∞∑
i=0

Ai t
i

i!
· A = eAtA.

2
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Lemma 2.1.9 Let A be a constant matrix of dimension n× n. Then

eAteAs = eA(t+s).

Proof.

eAteAs =
∞∑
i=0

Ai t
i

i!

∞∑
i=0

Ai s
i

i!
=

(
I + A

t

1!
+ A2 t

2

2!
+ A3 t

3

3!
+ A4 t

4

4!
+ A5 t

5

5!
+ . . .

)

×
(
I + A

s

1!
+ A2 s

2

2!
+ A3 s

3

3!
+ A4 s

4

4!
+ A5 s

5

5!
+ . . .

)

= I + A
t

1!
+ A2 t

2

2!
+ A3 t

3

3!
+ A4 t

4

4!
+ A5 t

5

5!
+ . . .

+A
s

1!
+ A2 ts

1!1!
+ A3 t

2s

2!1!
+ A4 t

3s

3!1!
+ A5 t

4s

4!1!
+ A6 t

5s

5!1!
+ . . .

+A2 s
2

2!
+ A3 ts

2

1!2!
+ A4 t

2s2

2!2!
+ A5 t

3s2

3!2!
+ A6 t

4s2

4!2!
+ A7 t

5s2

5!2!
+ . . .

+A3 s
3

3!
+ A4 ts

3

1!3!
+ A5 t

2s3

2!3!
+ A6 t

3s3

3!3!
+ A7 t

4s3

4!3!
+ . . .

+A4 s
4

4!
+ A5 ts

4

1!4!
+ A6 t

2s4

2!4!
+ A7 t

3s4

3!4!
+ . . .

+A5 s
5

5!
+ A6 ts

5

1!5!
+ A7 t

2s5

2!5!
+ · · · = (∗)

Now we reorder the sum in accordance with power of matrices.

(∗) =
∞∑

n=0

An

(
tn

n!
+

tn−1s

(n− 1)!1!
+

tn−2s2

(n− 2)!2!
+ · · ·+ t2sn−2

2!(n− 2)!
+

tsn−1

1!(n− 1)!
+
sn

n!

)

=
∞∑

n=0

An

n!

(
n!tn

n!
+

n!tn−1s

(n− 1)!1!
+

n!tn−2s2

(n− 2)!2!
+ · · ·+ n!t2sn−2

2!(n− 2)!
+

n!tsn−1

1!(n− 1)!
+
n!sn

n!

)

=
∞∑

n=0

An

n!

(
C0

nt
n + C1

nt
n−1s+ C2

nt
n−2s2 + · · ·+ Cn−2

n t2sn−2 + Cn−1
n tsn−1 + Cn

ns
n
)

=
∞∑

n=0

An

n!
(t+ s)n = eA(t+s),

where Ck
n =

n!

(n− k)!k!
. 2
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Lemma 2.1.10 Let matrices A0 and A1 be commutative, (i.e. A0A1 = A1A0).

Then

eA0tA1 = A1e
A0t, t ≥ 0.

Proof.

eA0tA1 =
∞∑
i=0

Ai
0

ti

i!
A1 =

(
I + A0

t

1!
+ A2

0

t2

2!
+ A3

0

t3

3!
+ A4

0

t4

4!
+ A5

0

t5

5!
+ . . .

)
A1

= A1 + A0A1
t

1!
+ A2

0A1
t2

2!
+ A3

0A1
t3

3!
+ A4

0A1
t4

4!
+ A5

0A1
t5

5!
+ . . .

= A1 + A1A0
t

1!
+ A1A

2
0

t2

2!
+ A1A

3
0

t3

3!
+ A1A

4
0

t4

4!
+ A1A

5
0

t5

5!
+ . . .

= A1

(
I + A0

t

1!
+ A2

0

t2

2!
+ A3

0

t3

3!
+ A4

0

t4

4!
+ A5

0

t5

5!
+ . . .

)
= A1

∞∑
i=0

Ai
0

ti

i!
= A1e

A0t.

2

Definition 2.1.11 Delayed matrix exponential is a matrix function which has the

form of a polynomial of degree k in intervals (k − 1)τ ≤ t ≤ kτ, ”glued” in knots

t = kτ , k = 0, 1, 2, ...:

eAt
τ =


Θ, −∞ < t < −τ
I, −τ ≤ t < 0

I + A t
1!

+ A2 (t−τ)2

2!
+ ...+ Ak (t−(k−1)τ)k

k!
, (k − 1)τ ≤ t < kτ, k = 1, 2, . . .

where Θ is zero matrix.

Delayed matrix exponential was at first defined in [54].

Theorem 2.1.12 Delayed matrix exponential is the fundamental matrix of solu-

tions of the matrix differential equation with pure delay

ẋ(t) = Ax(t− τ), 0 < τ < t,

where A is a constant matrix of dimension n× n.

Proof. To prove the theorem statement let us differentiate the delayed matrix

exponential(
eAt

τ

)′
=

(
I + A

t

1!
+ A2 (t− τ)2

2!
+ ...+ Ak (t− (k − 1)τ)k

k!

)′
= Θ + A

1

1!
+ A2 (t− τ)1

1!
+ ...+ Ak (t− (k − 1)τ)k−1

(k − 1)!

= A

(
I + A

(t− τ)1

1!
+ ...+ Ak−1 (t− (k − 1)τ)k−1

(k − 1)!

)
= AeA(t−τ)

τ .

This means that the delayed matrix exponential is the fundamental matrix of solu-

tions for differential equation with pure delay. 2
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2.2 Definitions of the stability theory

Consider an autonomous nonlinear dynamical system

ẋ(t) = f(t, x(t)), x(t0) = x0 (2.12)

where x(t) ∈ D ∈ Rn denotes the system state vector, D is an open set containing

the origin, and f : D → Rn is continuous on D. Suppose (2.12) has a solution ϕ(t).

Definition 2.2.1 The solution ϕ(t) of the system (2.12) is said to be Lyapunov’s

stable, if, for each ε > 0, there exists δ = δ(e) > 0 such that for every other solution

x(t) if

||x(t0)− ϕ(t0)|| < δ,

then for each t ≥ 0

||x(t)− ϕ(t)|| < ε,

where || · || is a norm.

Definition 2.2.2 The solution ϕ(t) of the system (2.12) is said to be asymptotically

stable if it is Lyapunov’s stable and if there exists δ > 0 such that for every other

solution x(t) if

||x(t0)− ϕ(t0)|| < δ,

then for each t ≥ 0

lim
x→∞

||x(t)− ϕ(t)|| = 0.

Definition 2.2.3 The solution ϕ(t) of the system (2.12) is said to be exponentially

stable if it is asymptotically stable and if there exist positive constants α, β, δ such

that for every other solution x(t) if

||x(t0)− ϕ(t0)|| < δ,

then for each t ≥ 0

||x(t)− ϕ(t)|| ≤ α||x(t0)− ϕ(t0)||e−βt.

Remark 2.2.4 The stability investigation of an arbitrary solution ϕ(t) can be easy

reduced to the stability investigation of a zero solution ẏ(t) ≡ 0 using a simple

substitute x(t) = y(t) + ϕ(t), where y(t) is a new unknown function.

Conceptually, the meanings of the above terms are the following:

1. The Lyapunov’s stability of an equilibrium means that solutions starting ”close

enough” to the equilibrium (within a distance δ from it) remain ”close enough”

forever (within a distance ε from it). Note that this must be true for any ε

that one may want to choose.
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2. The asymptotic stability means that solutions that start close enough not only

remain close enough but also eventually converge to the equilibrium.

3. The exponential stability means that solutions not only converge, but in fact

converge faster than or at least as fast as a particular known rate

α||x(t0)− ϕ(t0)||e−βt.

Lyapunov’s second method for stability

Lyapunov A.M. (6. 6. 1857 - 3. 11. 1918), in his original work ”General problem of

stability of motion” (1892) [74] proposed two methods to demonstrate the stability.

The first method developed the solution in a series which was then proved convergent

within limits. The second method, which is almost universally used nowadays, makes

use of a Lyapunov’s functional V (x) which has an analogy to the potential function

of classical dynamics. It is introduced as follows.

Definition 2.2.5 Consider a functional V (x) : Rn → R such that:

1. V (x) ≥ 0 with equality if and only if x = 0 (positive definite)

2. V̇ (x) =
dV (x)

dt
≤ 0 with equality if and only if x = 0 (negative definite).

Then V (x) is called a Lyapunov’s functional.

Theorem (First Lyapunov’s theorem) If there exists a positive definite Lya-

punov’s functional V(x) with a negative definite first derivative along the trajectories

of a system of differential equations, then the solution of the system of differential

equations is stable.

Theorem (Second Lyapunov’s theorem) If there exists a positive definite Lya-

punov’s functional V(x) such that for the derivation along the trajectories of a system

of differential equations

V̇ (x) =
dV (x)

dt
≤ W (x) < 0,

where W (x) is some bounded function, then the solution of the system of differential

equations is asymptotically stable.

It is easier to visualize that method of analysis by thinking of a physical system

(e.g. the vibrating string and the mass) and considering the energy of such a sys-

tem. If the system loses energy over time and the energy is never restored, then

eventually the system must grind to a stop and reach some final resting state. The
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final state is called the attractor. However, finding a function that gives the precise

energy of a physical system can be difficult, and for abstract mathematical systems,

economic systems or biological systems, the concept of energy may not be applicable.

Lyapunov’s discovery was that stability can be proven without requiring knowledge

of the true physical energy if Lyapunov functional can be found to satisfy the above

constraints.
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3 REPRESENTATION OF THE SOLUTION

3.1 Systems with same matrices

Let us consider the following Cauchy problem

ẋ(x) = Ax(t) + Ax(t− τ) + f(t), t ≥ 0, (3.1)

x(t) = ϕ(t), −τ ≤ t ≤ 0, (3.2)

where x(t) = (x1(t), x2(t), .., xn)T is vector of states of the system,

f(t) = (f1(t), f2(t), .., fn(t))T is known function of disturbance, A is constant matrix

of dimension (n× n), τ > 0, τ ∈ R is a constant delay.

To solve Cauchy problem (3.1) - (3.2) let us find the fundamental matrix of solution

of this equation. Fundamental matrix would be a solution of the following matrix

equation

Ẋ(t) = AX(t) + AX(t− τ), t ≥ 0, (3.3)

with initial condition

X(t) = I, −τ ≤ t ≤ 0, (3.4)

where X(t) is a matrix of type n× n and I is the identity matrix.

Theorem 3.1.1 [99] The solution of equation (3.3) with identity initial condition

(3.4) has the recurrent form:

Xk+1(t) = eA(t−kτ)Xk(kτ) +

∫ t

kτ

eA(t−s)AXk(s− τ)ds,

where Xk(t) is defined on the interval (k − 1)τ ≤ t ≤ kτ , k = 0, 1, ...

Proof. Let us have the solution Xk(t) of the equation (3.3) on the time interval

(k − 1)τ ≤ t ≤ kτ . Then, equation (3.3) on the next time interval is

Ẋk+1(t) = AXk+1(t) + AXk+1(t− τ)

and, because on time interval (k − 1)τ ≤ t ≤ kτ we have Xk+1(t) = Xk(t), the last

equation can be rewritten as

Ẋk+1(t) = AXk+1(t) + AXk(t− τ).

So now we get the non-homogeneous equation with unknown function Xk+1(t) and

function AXk(t− τ) is a know function.
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According to the theory of ordinary differential equations, the solution of non-

homogeneous equation ẋ(t) = Ax(t) + f(t) have the solution in the form

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−s)f(s)ds.

As far as we have f(t) = Ax(t − τ), on every time interval (k − 1)τ ≤ t ≤ kτ we

have following recurrent form for solution

Xk+1(t) = eA(t−kτ)Xk(kτ) +

∫ t

kτ

eA(t−s)AXk(s− τ)ds.

2

Theorem 3.1.2 [99] The fundamental matrix of solutions of equation (3.3) has the

form:

X0 =



Θ, −∞ ≤ t < −τ
I, −τ ≤ t < 0

2eAt − I, 0 ≤ t ≤ τ

2eAt + 2eA(t−τ) (A(t− τ)− I) + I, τ ≤ t ≤ 2τ

. . .
k−1∑
m=0

2eA(t−mτ)
m∑

p=0

(−1)p+mAp (t−mτ)p

p!
+ (−I)k,

(k − 1)τ ≤ t < kτ,

k = 3, 4, . . .
(3.5)

Proof. We proved Theorem 3.1.2 using mathematical induction method.

1. Let 0 ≤ t ≤ τ . Then the equation (3.3) has the form

Ẋ1(t) = AX1(t) + AX1(t− τ) = AX1(t) + AX0(t− τ).

Because X0(t− τ) = I for 0 ≤ t ≤ τ , we have

Ẋ1(t) = AX1(t) + A.

Then from the statement of the Theorem 3.1.1 follows that for the solution of equa-

tion (3.3) on this interval holds for n = 0

X1(t) = eAtX0(0) +

∫ t

0

eA(t−s)AX0(s− τ)ds = eAtI +

∫ t

0

eA(t−s)AIds

= eAt + A

∫ t

0

eA(t−s)ds = eAt − A

∞∑
i=0

Ai (t− s)i+1

(i+ 1)!

∣∣∣∣∣
t

0

= eAt + eAt − I.

Finally, we have

X1(t) = 2eAt − I.
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2. Let τ ≤ t ≤ 2τ . Then the equation (3.3) has the form

Ẋ2(t) = AX2(t) + AX2(t− τ) = AX2(t) + AX1(t− τ),

because X2(t − τ) = X1(t − τ) for τ ≤ t ≤ 2τ . Then from the statement of the

Theorem 3.1.1 there follows that for the solution of equation (3.3) on this interval

there holds for n = 1

X2(t) = eA(t−τ)X1(τ) +

∫ t

τ

eA(t−s)AX1(s− τ)ds.

After substitution X1(t) we have

X2(t) = eA(t−τ)
[
2eAτ − I

]
+

∫ t

τ

eA(t−s)A
[
2eA(s−τ) − I

]
ds

= 2eA(t−τ)eAτ − eA(t−τ) + 2A

∫ t

τ

eA(t−s)eA(s−τ)ds− A

∫ t

τ

eA(t−s)ds = (∗).

Using results of Lemma 2.1.8 we can write

(∗) = 2eAt − eA(t−τ) + 2A

∫ t

τ

eA(t−τ)ds− A

∫ t

τ

eA(t−s)ds

= 2eAt − eA(t−τ) + 2AeA(t−τ)(t− τ) + I − eA(t−τ)

= 2eAt − 2eA(t−τ) + 2AeA(t−τ)(t− τ) + I = 2eAt + 2eA(t−τ) (A(t− τ)− I) + I.

So we have

X2(t) = 2eAt + 2eA(t−τ) (A(t− τ)− I) + I.

k. Let (k − 1)τ ≤ t ≤ kτ .

Assumption: Let for k holds

Xk(t) =
k−1∑
m=0

2eA(t−mτ)

m∑
p=0

(−1)p+mAp (t−mτ)p

p!
+ (−I)k.

k + 1. Then for k+ 1 we get kτ ≤ t ≤ (k+ 1)τ and the equation (3.3) has the form

Ẋk+1(t) = AXk+1(t) + AXk+1(t− τ) = AXk+1(t) + AXk(t− τ).

Then from the Theorem 3.1.1 there follows that for the solution of equation (3.3)

on this interval holds for n = k

Xk+1(t) = eA(t−kτ)Xk(kτ) +

∫ t

kτ

eA(t−s)AXk(s− τ)ds.
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After substitution Xk(t) from (3.5) we have

Xk+1(t) = eA(t−kτ)

[
k−1∑
m=0

2eA(kτ−mτ)

m∑
p=0

(−1)p+mAp (kτ −mτ)p

p!
+ (−I)k

]

+

∫ t

kτ

eA(t−s)A

[
k−1∑
m=0

2eA(s−τ−mτ)

m∑
p=0

(−1)p+mAp (s− τ −mτ)p

p!
+ (−I)k

]
ds

=
k−1∑
m=0

eA(t−kτ)2eA(kτ−mτ)

m∑
p=0

(−1)p+mAp (kτ −mτ)p

p!
+ (−1)keA(t−kτ)

+
k−1∑
m=0

∫ t

kτ

eA(t−s)A2eA(s−τ−mτ)

m∑
p=0

(−1)p+mAp (s− τ −mτ)p

p!
ds

+(−1)k

∫ t

kτ

eA(t−s)Ads = (∗)

Using the result of Lemma 2.1.8 we write

(∗) =
k−1∑
m=0

2eA(t−mτ)

m∑
p=0

(−1)p+mAp (kτ −mτ)p

p!
+ (−1)keA(t−kτ)

+
k−1∑
m=0

∫ t

kτ

2eA(t−(m+1)τ)

m∑
p=0

(−1)p+mAp+1 (s− (m+ 1)τ)p

p!
ds+(−1)k+1

[
eA(t−s) − I

]∣∣t
kτ

=
k−1∑
m=0

2eA(t−mτ)

m∑
p=0

(−1)p+mAp (kτ −mτ)p

p!
+ (−1)keA(t−kτ)

+
k−1∑
m=0

2eA(t−(m+1)τ)

m∑
p=0

(−1)p+mAp+1

∫ t

kτ

(s− (m+ 1)τ)p

p!
ds

−(−1)k+1eA(t−kτ) + (−1)k+1I

=
k−1∑
m=0

2eA(t−mτ)

m∑
p=0

(−1)p+mAp (kτ −mτ)p

p!
+ (−1)k2eA(t−kτ) + (−I)k+1

+
k−1∑
m=0

2eA(t−(m+1)τ)

m∑
p=0

(−1)p+mAp+1 (t− (m+ 1)τ)p+1

(p+ 1)!

−
k−1∑
m=0

2eA(t−(m+1)τ)

m∑
p=0

(−1)p+mAp+1 (kτ − (m+ 1)τ)p+1

(p+ 1)!
= (∗∗)
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Now we change the bound of sums

(∗∗) =
k−1∑
m=0

2eA(t−mτ)

m∑
p=0

(−1)p+mAp (kτ −mτ)p

p!
+ (−1)k2eA(t−kτ) + (−I)k+1

+
k∑

m=1

2eA(t−mτ)

m∑
p=1

(−1)p+mAp (t−mτ)p

p!

−
k−1∑
m=1

2eA(t−mτ)

m∑
p=1

(−1)p+mAp (kτ −mτ)p

p!
= (∗ ∗ ∗)

Then we group elements as follows

(∗ ∗ ∗) = 2eAt +
k−1∑
m=1

2eA(t−mτ)(−1)m +
k∑

m=1

2eA(t−mτ)

m∑
p=1

(−1)p+mAp (t−mτ)p

p!

+(−1)k2eA(t−kτ) + (−I)k+1

=

(
2eAt +

k−1∑
m=1

2eA(t−mτ)

m∑
p=0

(−1)p+mAp (t−mτ)p

p!

)

+

(
2eA(t−kτ)

m∑
p=0

(−1)p+kAp (t− kτ)p

p!

)
+ (−I)k+1

=
k−1∑
m=0

2eA(t−mτ)

m∑
p=0

(−1)p+mAp (t−mτ)p

p!

+2eA(t−kτ)

m∑
p=0

(−1)p+kAp (t− kτ)p

p!
+ (−I)k+1.

Finally, we get

Xk+1(t) =
k∑

m=0

2eA(t−mτ)

m∑
p=0

(−1)p+mAp (t−mτ)p

p!
+ (−I)k+1.

And we got the expression (3.5) for fundamental matrix of solutions for time interval

kτ ≤ t ≤ (k + 1)τ . 2
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Example 3.1.1

Let us have the system of differential equations with a constant delay:

ẋ(t) = Ax(t) + Ax(t− 1),

where A =

 1 0 1

0 1 0

0 0 1

 . So we have n = 3, τ = 1.

Using definition of the matrix exponential we can write

eA(t−mτ) =

 1 0 0

0 1 0

0 0 1

+

 1 0 1

0 1 0

0 0 1

 (t−m)1

1!
+

 1 0 1

0 1 0

0 0 1

2

(t−m)2

2!
+ . . .

=

 1 0 0

0 1 0

0 0 1

+

 1 0 1

0 1 0

0 0 1

 (t−m)1

1!
+

 1 0 2

0 1 0

0 0 1

 (t−m)2

2!
+ . . .

=



∞∑
i=0

(t−m)i

i!
0 (t−m)

∞∑
i=0

(t−m)i

i!

0
∞∑
i=0

(t−m)i

i!
0

0 0
∞∑
i=0

(t−m)i

i!



=

 et−m 0 (t−m)et−m

0 et−m 0
0 0 et−m

 .

Now we could write the solution of the system. According to (3.5) for 0 ≤ t ≤ 1

there follows:

X1(t) = 2

 et 0 tet

0 et 0

0 0 et

−

 1 0 0

0 1 0

0 0 1

 =

 2et − 1 0 2tet

0 2et − 1 0

0 0 2et − 1

 .

Again according the (3.5) for 1 ≤ t ≤ 2 follows:

X2(t) =

 2et + 2(t− 2)et−1 + 1 0 2tet + 2(t− 1)2et−1

0 2et + 2(t− 2)et−1 + 1 0

0 0 2et + 2(t− 2)et−1 + 1

 .

And finally for (k − 1)τ ≤ t ≤ kτ according to (3.5) there follows that

Xk(t) =
k−1∑
m=0

m∑
p=o

2et−m


(−1)p+m (t−m)p

p!
0 t(−1)p+m (t−m)p

(p− 1)!

0 (−1)p+m (t−m)p

p!
0

0 0 (−1)p+m (t−m)p

p!


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+

 −1 0 0

0 −1 0

0 0 −1

k

.

2

Remark 3.1.3 Maple software was used in this and following examples.

Theorem 3.1.4 [99] The solution of homogeneous equation for equation (3.1)

(mean f(t) ≡ 0) with initial condition (3.2) have the form:

x(t) = X0(t)ϕ(−τ) +

0∫
−τ

X0(t− τ − s)ϕ′(s)ds,

where X0(t) is the fundamental solutions matrix (3.5).

Proof. Solution of the system (3.1), when f(t) ≡ 0, which satisfies the initial condi-

tions x(t) ≡ ϕ(t), −τ ≤ t ≤ 0, can be described in the form

x(t) = X0(t)c+

0∫
−τ

X0(t− τ − s)y′(s)ds, (3.6)

where c is the vector of unknown constants, y(t) is an unknown continuously differ-

entiable vector-function and X0(t) is the matrix defined in (3.5). Since the matrix

X0(t) is the fundamental matrix of solutions of system (3.3), then, for any c and y(t),

expression (3.6) is a solution of system (3.1) with condition f(t) ≡ 0. We choose c

and y(t) such that the initial conditions is in the next form

x(t) = X0(t)c+

0∫
−τ

X0(t− τ − s)y′(s)ds ≡ ϕ(t).

Let put t = −τ . From (3.5) there follows that

X0(−τ) = I, X0(−2τ − s) =

{
Θ, −τ < s ≤ 0,

I, s = −τ.

So we have ϕ(−τ) = c, and formula (3.6) takes the form

x(t) = X0(t)ϕ(−τ) +

0∫
−τ

X0(t− τ − s)y′(s)ds.

Since −τ ≤ t ≤ 0, let us divide the interval in two parts. Getting

ϕ(t) = ϕ(−τ) +

t∫
−τ

X0(t− τ − s)y′(s)ds+

0∫
t

X0(t− τ − s)y′(s)ds.
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In the first integral −τ ≤ s ≤ t, so −τ ≤ t− τ − s ≤ t and late matrix exponential

equals

X0(t− τ − s) ≡ I, −τ ≤ s ≤ t.

In the second integral t ≤ s ≤ 0, so t − τ ≤ t − τ − s ≤ −τ and late matrix

exponential is equal

X0(t− τ − s) =

{
Θ, 0 ≤ s < t,

I, s = t.

Hence in the interval −τ ≤ t ≤ 0 we get

ϕ(−τ) +

t∫
−τ

y′(s)ds = ϕ(t). (3.7)

We get

ϕ(−τ) + y(t)− y(−τ) = ϕ(t). (3.8)

Solving the system of equations (3.7), (3.8), we obtain that y(t) = ϕ(t). Substituting

this in (3.6), we obtain the statement of the theorem. 2

Theorem 3.1.5 [99] The solution of the heterogeneous equation (3.1) with zero

initial condition x(t) ≡ 0,−τ < t < 0, has the form

x(t) =

∫ t

0

X0(t− τ − s)f(s)ds, t ≥ 0,

where X0(t) is the fundamental solutions matrix (3.5).

Proof. Since X0(t) is the solution of the homogeneous system (3.3), using the method

of variation of arbitrary constant, the solution x(t) of the heterogeneous system will

have the form

x(t) =

t∫
0

X0(t− τ − s)c(s)ds,

where c(s), 0 ≤ s ≤ t is an unknown vector-function. According to Leibniz integral

rule differential of the expression will be

ẋ(t) = X0(t− τ − s)c(s)|s=t +

t∫
0

∂X′
0(t− τ − s)

∂t
c(s)ds

= X0(−τ)c(t) +

∫ t

0

[
A

k−1∑
m=0

2eA(t−τ−s−mτ)

m∑
p=0

(−1)p+mAp (t− τ − s−mτ)p

p!
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+
k−1∑
m=1

2eA(t−τ−s−mτ)

m−1∑
p=0

(−1)p+m+1Ap+1 (t− τ − s−mτ)p

p!

]
c(s)ds

= X0(−τ)c(t) +

∫ t

0

AX0(t− τ − s)c(s)ds

+

∫ t

0

A

[
k−2∑
m=1

2eA(t−2τ−s−mτ)

m∑
p=0

(−1)p+mAp (t− 2τ − s−mτ)p

p!
+ (−I)k+1

]
c(s)ds

= X0(−τ)c(t) +

∫ t

0

AX0(t− τ − s)c(s)ds+

∫ t

0

AX0(t− 2τ − s)c(s)ds.

After substitution in (3.1), we get

X0(−τ)c(t) +

t∫
0

AX0(t− τ − s)c(s)ds+

∫ t

0

AX0(t− 2τ − s)c(s)dsc(s)ds

= A

 t∫
0

X0(t− τ − s)c(s)ds

+ A

 t−τ∫
0

X0(t− 2τ − s)c(s)ds

+ f(t).

Since X0(−τ) = I, we get

c(t) + A1

∫ t

t−τ

X0(t− 2τ − s)c(s)ds = f(t),

X0(t− 2τ − s) =

{
Θ, t− τ < s ≤ t,

I, s = t− τ,

then we get c(t) = f(t). Hence the statement of the theorem follows. 2

Theorem 3.1.6 [99] The solution of the heterogeneous equation (3.1) with the

initial condition (3.2) has the form

x(t) = X0(t)ϕ(−τ) +

∫ 0

−τ

X0(t− τ − s)ϕ′(s)ds+

t∫
0

X0(t− τ − s)f(s)ds, (3.9)

where X0(t) is the fundamental solutions matrix (3.5).

Proof. The proof of the theorem follows from theorems 3.1.4 and 3.1.5. 2
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Example 3.1.2

Let us have the system of differential equations with a constant delay:

ẋ(t) = Ax(t) + Ax(t− 1) + f(t),

where A =

 1 0 1

0 1 0

0 0 1

 , f(t) =

 0

et+1

2et+1

,

with initial conditions ϕ(t) = (1, 2, 0)T , −1 ≤ t ≤ 0. So we have n = 3, τ = 1. Using

the fundamental solutions matrix from the Example 3.1.1 we can use the formula

(3.9). Then for (k − 1)τ ≤ t ≤ kτ follows

x(t) = X0(t)ϕ(−τ) +

0∫
−τ

X0(t− τ − s)ϕ′(s)ds+

t∫
0

X0(t− τ − s)f(s)ds

= X0(t)

 1

2

0

+

0∫
−1

X0(t− 1− s) · 0ds+

t∫
0

X0(t− 1− s)

 0

es+1

2es+1

 ds

=
k−1∑
m=0

m∑
p=o

2et−m(−1)p+m


(t−m)p

p!

2
(t−m)p

p!
0

+

 (−1)k

2(−1)k

0



+
k−1∑
m=0

m∑
p=o

2et−m(−1)p+m

t∫
0


(t− 1− s)

(t− 1− s−m)p

p!
(t− 1− s−m)p

p!

2
(t− 1− s−m)p

p!

ds

+

t∫
0

 0

(−1)kes+1

2(−1)kes+1

 ds

=
k−1∑
m=0

m∑
p=o

2et−m(−1)p+m


(t−m)p

p!

2
(t−m)p

p!
0



+
k−1∑
m=0

m∑
p=o

2et−m(−1)p+m


(t−2)((t−1−m)p+1−(−1−m)p+1)

(p+1)!
+ (t−1−m)p+2−(−1−m)p+2)

(p+2)!
(t−1−m)p+1

(p+1)!
− (−1−m)p+1

(p+1)!

2 (t−1−m)p+1

(p+1)!
− 2 (−1−m)p+1

(p+1)!


+

 (−1)k

(−1)k(et+1 − e+ 2)

2(−1)k(et+1 − e)

 .

2
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3.2 Systems with commutative matrices

Let us consider the following Cauchy problem

ẋ(x) = A0x(t) + A1x(t− τ) + f(t), t ≥ 0, (3.10)

x(t) = ϕ(t), −τ ≤ t ≤ 0, (3.11)

where x(t) = (x1(t), x2(t), .., xn)T is a vector of states of the sysem,

f(t) = (f1(t), f2(t), .., fn(t))T is known function of disturbance, A0, A1 are commu-

tative constant matrices of dimensions (n× n), τ > 0, τ ∈ R is a constant delay.

To solve Cauchy problem (3.10) - (3.11) let us find the fundamental matrix of solu-

tion of this equation. Fundamental matrix would be a solution of matrix equation

Ẋ(t) = A0X(t) + A1X(t− τ), t ≥ 0, (3.12)

with initial condition

X(t) = I, −τ ≤ t ≤ 0, (3.13)

where X(t) ∈ Rn×n, I is identity matrix.

Now let us obtain the explicit form of the fundamental matrix of the system (3.12)

for commutative matrices A0, A1.

Theorem 3.2.1 [99] The solution of equation (3.12) with identity initial condition

(3.13) has the recurrent form:

Xk+1(t) = eA0(t−kτ)Xk(kτ) +

∫ t

kτ

eA0(t−s)A1Xk(s− τ)ds,

where Xk(t) is defined on the interval (k − 1)τ ≤ t ≤ kτ , k = 0, 1, 2...

Proof. Let us have the solution Xk(t) of the equation (3.12) on the time interval

(k − 1)τ ≤ t ≤ kτ , k = 0, 1, 2... Then, equation (3.12) on the next time interval is

Ẋk+1(t) = A0Xk+1(t) + A1Xk+1(t− τ)

and, because on time interval (k − 1)τ ≤ t ≤ kτ we have Xk+1(t) = Xk(t), the last

equation can be rewritten as

Ẋk+1(t) = A0Xk+1(t) + A1Xk(t− τ).

So now we get the non-homoheneous equation with unknown function Xk+1(t) and

function A1Xk(t− τ) is a know function.
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According to the theory of ordinary differential equations, the solution of non-

homogeneous equation ẋ(t) = A0x(t) + f(t) have the solution in the form

x(t) = eA0(t−t0)x(t0) +

∫ t

t0

eA0(t−s)f(s)ds.

As far as we have f(t) = A1x(t − τ), on every time interval (k − 1)τ ≤ t ≤ kτ we

have following recurent form for solution

Xk+1(t) = eA0(t−kτ)Xk(kτ) +

∫ t

kτ

eA0(t−s)A1Xk(s− τ)ds.

2

Theorem 3.2.2 [105] Let matrices A0, A1 of system (3.12) be commutative. Then

the matrix

X0 =



Θ, −∞ ≤ t < −τ
I, −τ ≤ t < 0

eA0t [I +Dt] , 0 ≤ t < τ

. . .

eA0teDt
τ , (k − 1)τ ≤ t < kτ, k = 1, 2, ...,

(3.14)

where D = e−A0τA1, t ≥ 0 is the solution of the system (3.12), satisfying the initial

conditions (3.13).

Proof. The view of matrix X0(t) follows from the definitions of exponents eA0t and

eDt
τ . We will show that when t ≥ 0 matrix X0(t) is a solution of the system (3.12).

After differentiation of (3.14), we get(
eA0teDt

τ

)′
t
= A0 · eA0teDt

τ + eA0tDeD(t−τ)
τ

= A0 · eA0teDt
τ + eA0te−A0τA1e

D(t−τ)
τ

= A0 · eA0teDt
τ + A1 · eA0(t−τ)eD(t−τ)

τ .

Using the notation (3.14), we get Ẋ0(t) = A0X0(t) + A1X0(t− τ), so we obtain the

statement of Theorem 3.2.2. 2
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Example 3.2.1

Let us have the system of differential equations with a constant delay:

ẋ(t) = A0x(t) + A1x(t− 1),

where A0 =

 1 0 1

0 1 0

0 0 1

 , A1 =

 1 1 1

0 1 0

0 0 1

 .

So we have n = 3, A0A1 = A1A0, τ = 1. Using definition of the matrix exponential

we can write

eA0(t−mτ) =

 1 0 0

0 1 0

0 0 1

+

 1 0 1

0 1 0

0 0 1

 (t−m)1

1!
+

 1 0 1

0 1 0

0 0 1

2

(t−m)2

2!
+ . . .

=

 1 0 0

0 1 0

0 0 1

+

 1 0 1

0 1 0

0 0 1

 (t−m)1

1!
+

 1 0 2

0 1 0

0 0 1

 (t−m)2

2!
+ . . .

=



∞∑
i=0

(t−m)i

i!
0 (t−m)

∞∑
i=0

(t−m)i

i!

0
∞∑
i=0

(t−m)i

i!
0

0 0
∞∑
i=0

(t−m)i

i!



=

 et−m 0 (t−m)et−m

0 et−m 0

0 0 et−m

 .

Now we could write the solution of the system. According to (3.14) for 0 ≤ t ≤ 1

there follows:

X0(t) =

 et 0 tet

0 et 0

0 0 et

 1 0 0

0 1 0

0 0 1

+

 e−1 e−1 0

0 e−1 0

0 0 e−1

 (t− τ)



=

 et + (t− 1)et−1 (t− 1)et−1 tet + (t2 + t)et−1

0 et + (t− 1)et−1 0

0 0 et + (t− 1)et−1

 .

And for (k − 1)τ ≤ t ≤ kτ according to (3.14) there follows that

X0(t) =

 et 0 tet

0 et 0
0 0 et

 k∑
i=0

 e−i ie−i 0
0 e−i 0
0 0 e−i

 (t− (i− 1))i

i!
.

2
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Theorem 3.2.3 Let matrices A0, A1 of system (3.10) be commutative. Then the

solution of the Cauchy problem for system (3.10) in case f(t) ≡ 0 with initial con-

ditions (3.11) has the form

x(t) = X0(t)ϕ(−τ) +

0∫
−τ

X0(t− τ − s)ϕ′(s)ds,

where X0(t) is the fundamental solutions matrix (3.14).

Proof. Solution of system (3.10), which satisfies the initial conditions x(t) ≡ ϕ(t),

−τ ≤ t ≤ 0, can be described in the form

x(t) = X0(t)c+

0∫
−τ

X0(t− τ − s)y′(s)ds, (3.15)

where c is a vector of unknown constants, y(t) is an unknown continuously differ-

entiable vector-function and X0(t) is the matrix defined in (3.14). Since the matrix

X0(t) is a solution of system (3.12), then, for any c and y(t) expression (3.15) is also

a solution of system (3.12). We choose c and y(t) such that the initial conditions is

in the form

x(t) = X0(t)c+

0∫
−τ

X0(t− τ − s)y′(s)ds ≡ ϕ(t).

Put t = −τ . From definition of the matrix delayed exponential (2.1.11) and from

(3.14) there follows that

X0(−τ) = I, X0(−2τ − s) =

{
Θ, −τ < s ≤ 0,

I, s = −τ.

So we have ϕ(−τ) = c, and formula (3.15) takes the form

x(t) = X0(t)ϕ(−τ) +

0∫
−τ

X0(t− τ − s)y′(s)ds.

Since −τ ≤ t ≤ 0, let us break the interval in two parts. We get

ϕ(t) = ϕ(−τ) +

t∫
−τ

X0(t− τ − s)y′(s)ds+

0∫
t

X0(t− τ − s)y′(s)ds.

In the first integral −τ ≤ s ≤ t, so −τ ≤ t−τ−s ≤ t and the late matrix exponential

equals

X0(t− τ − s) ≡ I, −τ ≤ s ≤ t.
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In the second integral t ≤ s ≤ 0, so t − τ ≤ t − τ − s ≤ −τ and the late matrix

exponential equals

X0(t− τ − s) =

{
Θ, 0 ≤ s < t,

I, s = t.

Hence in the interval −τ ≤ t ≤ 0 we get

ϕ(−τ) +

t∫
−τ

y′(s)ds = ϕ(t). (3.16)

We get

ϕ(−τ) + y(t)− y(−τ) = ϕ(t). (3.17)

Solving the system of equations (3.16), (3.17), we obtain that y(t) = ϕ(t). Substi-

tuting this in (3.15), we obtain the statement of the theorem. 2

Theorem 3.2.4 Let matrices A0, A1 of system (3.10) be commutative. Then the

solution of the heterogeneous system (3.10) that satisfies zero initial conditions has

the form

x(t) =

t∫
0

eA0(t−τ−s)eD(t−τ−s)
τ f(s)ds, t ≥ 0, (3.18)

where D is defined in Theorem 3.2.2.

Proof. Since X0(t) is the solution of the homogeneous system (3.12), using the

method of variation of arbitrary constant, the solution of the heterogeneous system

has the form

x(t) =

t∫
0

eA0(t−τ−s)eD(t−τ−s)
τ c(s)ds,

where c(s), 0 ≤ s ≤ t is an unknown vector-function. According to Leibniz integral

rule differential of the expression will be

ẋ(t) = X0(t− τ − s)c(s)|s=t +

t∫
0

∂X′
0(t− τ − s)

∂t
c(s)ds

= eA0(t−τ−s)eD(t−τ−s)
τ c(s) |s=t

+

t∫
0

[
A0e

A0(t−τ−s)eD(t−τ−s)
τ + eA0(t−τ−s)DeD(t−2τ−s)

τ

]
c(s)ds.

After substitution in (3.10), we get

eA0(−τ)eD(−τ)
τ c(t) +

t∫
0

[
A0e

A0(t−τ−s)eD(t−τ−s)
τ + eA0(t−τ−s)DeD(t−2τ−s)

τ

]
c(s)ds
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= A0

t∫
0

eA0(t−τ−s)eD(t−τ−s)
τ c(s)ds+ A1

t−τ∫
0

eA0(t−2τ−s)eD(t−2τ−s)
τ c(s)ds+ f(t).

Hence eA0(−τ)e
D(−τ)
τ = I and eA0(t−2τ−s)e

D(t−2τ−s)
τ c(s) = X0(t− 2τ − s), we get

c(t) + A1

∫ t

t−τ

X0(t− 2τ − s)c(s)ds = f(t),

and as far as

X0(t− 2τ − s) =

{
Θ, t− τ < s ≤ t,

I, s = t− τ,

then we get c(t) = f(t). Hence follows the dependence (3.18). 2

Theorem 3.2.5 Let matrices A0, A1 of system (3.10) be commutative. The solution

of heterogeneous system (3.10) which satisfies the initial solutions (3.11) has the form

x(t) = X0(t)ϕ(−τ) +

0∫
−τ

X0(t− τ − s)ϕ′(s)ds+

t∫
0

X0(t− τ − s)f(s)ds, (3.19)

where X0(t) is the fundamental solutions matrix (3.14).

Proof. The proof of the theorem follows from theorems 3.2.3 and 3.2.4. 2

Example 3.2.2

Let us have the system of differential equations with a constant delay:

ẋ(t) = A0x(t) + A1x(t− 1) + f(t),

where A0 =

 1 0 1

0 1 0

0 0 1

 , A1 =

 1 1 1

0 1 0

0 0 1

 , f(t) =

 t

t2

t3

,

with initial conditions ϕ(t) = (0, 1, 2)T , −1 ≤ t ≤ 0. So we have n = 3, A0A1 =

A1A0, τ = 1. Using the fundamental solutions matrix from the Example 3.2.1 we

can use the formule (3.19). Then for (k − 1)τ ≤ t ≤ kτ follows

x(t) = X0(t)ϕ(−τ) +

0∫
−τ

X0(t− τ − s)ϕ′(s)ds+

t∫
0

X0(t− τ − s)f(s)ds

= X0(t)ϕ(−1) +

0∫
−1

X0(t− 1− s)ϕ′(s)ds+

t∫
0

X0(t− 1− s)f(s)ds
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=

 et 0 tet

0 et 0

0 0 et

 k∑
i=0

 e−i ie−i 0

0 e−i 0

0 0 e−i

 (t− (i− 1))i

i!

 0

1

2



+

0∫
−1

(
et−1−s 0 (t− 1− s)et−1−s

0 et−1−s 0
0 0 et−1−s

)
k∑

i=0

(
e−i ie−i 0
0 e−i 0
0 0 e−i

)
(t− s− i)i

i!
· 0ds

+

t∫
0

(
et−1−s 0 (t− 1− s)et−1−s

0 et−1−s 0

0 0 et−1−s

) k∑
i=0

(
e−i ie−i 0

0 e−i 0

0 0 e−i

)
(t− s− i)i

i!

(
s

s2

s3

)
ds

=
k∑

i=0

 i+ 2t

1

2

 et−i (t− (i− 1))i

i!

+

t∫
0

k∑
i=0

et−1−s−i (t− s− i)i

i!

 s+ is2 + (t− 1− s)s3

s2

s3

 ds.

And finally for (k − 1)τ ≤ t ≤ kτ we have

x(t) =
k∑

i=0

et−(i−1) (t− (i− 1))i

i!

 i+ 2t

1

2



+
k∑

i=0

e−1−i 1

i!

 −142− 2i+ i2 − (89 + 19i− i2)t− (24 + 8i− i2)t2 − (3 + 2i)t3

6 + 2i+ (4 + 2i)t+ (1 + i)t2

24 + 6i+ (18 + 6i)t+ (6 + 3i)t2 + (1 + i)t3


−

k∑
i=0

et−1−i 1

i!

 −142− 23i+ (53 + 4i)t− 4t2

6 + 2i− 2t
24 + 6i− 6t

 .

2
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3.3 Systems with general matrices

Let us consider the following Cauchy problem

ẋ(x) = A0x(t) + A1x(t− τ) + f(t), t ≥ 0, (3.20)

x(t) = ϕ(t), −τ ≤ t ≤ 0, (3.21)

where x(t) = (x1(t), x2(t), .., xn)T is a vector of states of the sysem,

f(t) = (f1(t), f2(t), .., fn(t))T is a known function of disturbance, A0, A1 are con-

stant matrices of dimensions (n× n), τ > 0, τ ∈ R is a constant delay.

To solve Cauchy problem (3.20) - (3.21) let us find the fundamental matrix of so-

lution of this equation. Fundamental matrix would be a solution of the following

matrix equation

Ẋ(t) = A0X(t) + A1X(t− τ), t ≥ 0, (3.22)

with initial condition

X(t) = I, −τ ≤ t ≤ 0, (3.23)

where X(t) ∈ Rn×n, I is identity matrix.

Theorem 3.3.1 [98] The solution of equation (3.22) with initial condition (3.23)

has the recurrent form:

Xk+1(t) = eA0(t−kτ)Xk(kτ) +

∫ t

kτ

eA0(t−s)A1Xk(s− τ)ds,

where Xk(t) is defined on the interval (k − 1)τ ≤ t ≤ kτ , k = 0, 1, ...

Proof. Let us have the solution Xk(t) of the equation (3.22) on the time interval

(k − 1)τ ≤ t ≤ kτ . Then, equation (3.22) on the next time interval is

Ẋk+1(t) = A0Xk+1(t) + A1Xk+1(t− τ)

and, because on time interval (k − 1)τ ≤ t ≤ kτ we have Xk+1(t) = Xk(t), last

equation can be rewritten as

Ẋk+1(t) = A0Xk+1(t) + A1Xk(t− τ).

So now we get the non-homoheneous equation with unknown function Xk+1(t) and

the function A1Xk(t− τ) is a know function.

According to the theory of ordinary differential equations, the solution of non-

homogeneous equation ẋ(t) = A0x(t) + f(t) have the solution in the form

x(t) = eA0(t−t0)x(t0) +

∫ t

t0

eA0(t−s)f(s)ds.
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As far as we have f(t) = A1x(t − τ), on every time interval (k − 1)τ ≤ t ≤ kτ we

have following recurent form for solution

Xk+1(t) = eA0(t−kτ)Xk(kτ) +

∫ t

kτ

eA0(t−s)A1Xk(s− τ)ds.

2

Theorem 3.3.2 Fundamental matrix of solutions of equation (3.22) with identity

initial conditions (3.23) has the following form:

X0 =



Θ, −∞ ≤ t < −τ
I, −τ ≤ t < 0

eA0t + f1(t), 0 ≤ t ≤ τ

eA0t + eA0(t−τ)f1(τ) + f2(t), τ ≤ t ≤ 2τ

. . .
k−1∑
m=0

eA0(t−mτ)fm(mτ) + fk(t),
(k − 1)τ ≤ t < kτ,

k = 3, 4, . . . ,

(3.24)

where

fp(t) =

p∑
P

ij=1

1∏
j=p

 ∞∑
kj=0

A
kj

0 A
ij
1

 (t− (p− 1)τ)K(p)

K(p)!

1∏
s=p−1

τ (1−is+1)K(s)

(1− is+1)K(s)!
,

K(v) = kv + iv(1 + kv−1 + iv−1(1 + ...+ i2(1 + k1 + i1)...)), ip = 1, ij ∈ {0, 1}.

Proof. We proved Theorem 3.3.2 using mathematical induction method.

1. Let 0 ≤ t ≤ τ . Then there, according to Theorem 3.3.1, for the solution of

equation (3.22) on this interval holds for n = 0

X1(t) = eA0tX0(0) +

∫ t

0

eA0(t−s)A1X0(s− τ)ds

= eA0t +

∫ t

0

∞∑
k1=0

Ak1
0

(t− s)k1

k1!
· A1ds = eA0t +

∞∑
k1=0

Ak1
0 A1

tk1+1

(k1 + 1)!

Or

X1(t) = eA0t + f1(t), f1(t) =
∞∑

k1=0

Ak1
0 A1

tk1+1

(k1 + 1)!
.

2. Let τ ≤ t ≤ 2τ . Again there, according the Theorem 3.3.1, for the solution of

equation (3.22) on this interval holds for n = 1

X2(t) = eA0(t−τ)X1(τ) +

∫ t

τ

eA0(t−s)A1X1(s− τ)ds.
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After substitution X1(t) we have

X2(t) = eA0(t−τ)
[
eA0τ + f1(τ)

]
+

∫ t

τ

eA0(t−s)A1

[
eA0(s−τ) + f1(s− τ)

]
ds

= eA0(t−τ)
[
eA0τ + f1(τ)

]
+

∞∑
k2=0

Ak2
0 A1

∞∑
k1=0

Ak1
0

∫ t

τ

(t− s)k2

k2!

(s− τ)k1

k1!
ds

+
∞∑

k2=0

Ak2
0 A1

∞∑
k1=0

Ak1
0 A1

∫ t

τ

(t− s)k2

k2!

(s− τ)k1+1

(k1 + 1)!
ds

= eA0(t−τ)
[
eA0τ + f1(τ)

]
+

∞∑
k2=0

Ak2
0 A1

∞∑
k1=0

Ak1
0

(t− τ)k1+k2+1

(k1 + k2 + 1)!

+
∞∑

k2=0

Ak2
0 A1

∞∑
k1=0

Ak1
0 A1

(t− τ)k1+k2+2

(k1 + k2 + 2)!

Or

X2(t) = eA0t + eA0(t−τ)f1(τ) + f2(t),

f2(t) =
∞∑

k2=0

Ak2
0 A1

∞∑
k1=0

Ak1
0

(t− τ)k1+k2+1

(k1 + k2 + 1)!
+

∞∑
k2=0

Ak2
0 A1

∞∑
k1=0

Ak1
0 A1

(t− τ)k1+k2+2

(k1 + k2 + 2)!
.

n. Let (n− 1)τ ≤ t ≤ nτ .

Assumption: Let for n holds

Xn(t) =
n−1∑
m=0

eA0(t−mτ)fm(mτ) + fn(t)

and

fp(t) =

p∑
P

ij=1

1∏
j=p

 ∞∑
kj=0

A
kj

0 A
ij
1

 (t− (p− 1)τ)K(p)

K(p)!

1∏
s=p−1

τ (1−is+1)K(s)

(1− is+1)K(s)!
,

K(v) = kv + iv(1 + kv−1 + iv−1(1 + ...+ i2(1 + k1 + i1)...)), ip = 1, ij ∈ {0, 1}.

n + 1. Then for n + 1 we get nτ ≤ t ≤ (n + 1)τ and there, according the Theorem

3.3.1, for the solution of equation (3.22) on this interval holds

Xn+1(t) = eA0(t−nτ)Xn(nτ) +

∫ t

nτ

eA0(t−s)A1Xn(s− τ)ds

After substitution Xn(t) we have

Xn+1(t) = eA0(t−nτ)

[
n−1∑
m=0

eA0(nτ−mτ)fm(mτ) + fn(nτ)

]
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+

∫ t

nτ

eA0(t−s)A1

[
n−1∑
m=0

eA0(s−τ−mτ)fm(mτ) + fn(s− τ)

]
ds

=
n∑

m=0

eA0(t−mτ)fm(mτ)

+

∫ t

nτ

eA0(t−s)A1e
A0(s−nτ)ds

n−1∑
m=0

eA0((n−1)−m)τfm(mτ) +

∫ t

nτ

eA0(t−s)A1fn(s− τ)ds

So we need to check whether

fn+1(t) =

∫ t

nτ

eA0(t−s)A1e
A0(s−nτ)ds

n−1∑
m=0

eA0((n−1)−m)τfm(mτ)+

∫ t

nτ

eA0(t−s)A1fn(s−τ)ds.

Let

I1 =

∫ t

nτ

eA0(t−s)A1e
A0(s−nτ)ds

n−1∑
m=0

eA0((n−1)−m)τfm(mτ),

I2 =

∫ t

nτ

eA0(t−s)A1fn(s− τ)ds,

So

fn+1(t) = I1 + I2.

First integral is easy to solve and equals

I1 =
∞∑

kn+1=0

A
kn+1

0 A1

∞∑
kn=0

Akn
0

(t− nτ)kn+1+kn+1

(kn+1 + kn + 1)!

n−1∑
m=0

eA0((n−1)−m)τfm(mτ).

Using the view of function fp(·) and the definition of the matrix exponential, function

I1 can be presented as follows

I1 =

p∑
P

ij=1

1∏
j=p

 ∞∑
kj=0

A
kj

0 A
ij
1

 (t− (p− 1)τ)K(p)

K(p)!

1∏
s=p−1

τ (1−is+1)K(s)

(1− is+1)K(s)!
,

where in+1 = 1, in = 0, in−1 = 0.

Second integral can be written as follows

I2 =

∫ t

nτ

∞∑
kn+1=0

A
kn+1

0 A1

n∑∑
ij = 2

in = 1

1∏
j=n

 ∞∑
kj=0

A
kj

0 A
ij
1

 (t− s)kn+1(s− nτ)K(n)

kn+1!K(n)!

×
1∏

s=n−1

τ (1−is+1)K(s)

(1− is+1)K(s)!
ds
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Again using the view of function fp(·) and the definition of the matrix exponential,

function I2 can be presented as follow

I2 =
n+1∑

P
ij=2

1∏
j=n+1

 ∞∑
kj=0

A
kj

0 A
ij
1

 (t− nτ)kn+1+in+1K(n)

(kn+1 + in+1K(n))!

2∏
s=n−1

τ (1−is+1)K(s)

(1− is+1)K(s)!

where in+1 = 1, in = 1. And because kn+1 + in+1K(n) = K(n+ 1), we can write

I1 + I2 = fn+1(t),

so

Xn+1(t) =
n∑

m=0

eA0(t−mτ)fm(mτ) + fn+1(t),

where

fp(t) =

p∑
P

ij=1

1∏
j=p

 ∞∑
kj=0

A
kj

0 A
ij
1

 (t− (p− 1)τ)K(p)

K(p)!

1∏
s=p−1

τ (1−is+1)K(s)

(1− is+1)K(s)!
,

K(v) = kv + iv(1 + kv−1 + iv−1(1 + ...+ i2(1 + k1 + i1)...)), ip = 1, ij ∈ {0, 1}.

The theorem is proved. 2

Example 3.3.1

Let us have the differential equation of 3rd degree with a constant delay:

ẋ(t) = A0x(t) + A1x(t− 1),

where

A0 =

 1 0 0

1 1 0

0 0 1

 , A1 =

 1 2 3

0 1 2

0 0 1

 , τ = 1.

Using definition of the matrix exponential we can write

eA0t =

 1 0 0

0 1 0

0 0 1

+

 1 0 0

1 1 0

0 0 1

 t1

1!
+

 1 0 0

1 1 0

0 0 1

2

t2

2!
+

 1 0 0

1 1 0

0 0 1

3

t3

3!
+ ...

=

 1 0 0

0 1 0

0 0 1

+

 1 0 0

1 1 0

0 0 1

 t1

1!
+

 1 0 0

3 1 0

0 0 1

 t2

2!
+

 1 0 0

2 1 0

0 0 1

 t3

3!
+ ...

=
∞∑
i=0

 ti

i!
0 0

t ti

i!
ti

i!
0

0 0 ti

i!

 =

 et 0 0

tet et 0

0 0 et

 .
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According to (3.24) for 0 ≤ t ≤ 1 there is

X1(t) =

 et 0 0

tet et 0

0 0 et

+
∞∑

k1=0

 1 0 0

k1 1 0

0 0 1

 1 2 3

0 1 2

0 0 1

 tk1+1

(k1 + 1)!

=

 3et − 1 2tet − 2et + 2 3tet − 3et + 2

3tet − et + 1 2tet − et + 1 3tet − et + 1

0 0 2et

 .

Analogically according to (3.24) for 1 ≤ t ≤ 2 there is

X2(t) =

 et + et−1(2t− 1) 2et−1 2et−1

(t− 1)et + (2− t)et−1 et + (2t− 1)et−1 2et + (2t− 1)et−1

0 0 2et



+
∞∑

k1=0

∞∑
k2=0

 1 + 2k1 2 3
k2 + (2k2 + 1)k1 2k2 + 1 3k2 + 2

0 0 1

(1 +
t− 1

k1 + k2 + 2

)
(t− 1)k1+k2+1

(k1 + k2 + 1)!
.

And finally according to the form for Xk(t) for (k − 1) ≤ t ≤ k there is

Xk(t) =
k−1∑
m=0

 et 0 0

tet et 0

0 0 et

 fm(m) + fk(t),

fp(t) =

p∑
P

ij=1

1∏
j=p

∞∑
kj=0

 1 2ij 2i2j + ij
kj 2kjij + 1 kj(2i

2
j + ij) + 2ij

0 0 1


×(t− (p− 1))K(p)

K(p)!

1∏
s=p−1

1

(1− is+1)K(s)!
,

K(v) = kv + iv(1 + kv−1 + iv−1(1 + ...+ i2(1 + k1 + i1)...)), ip = 1, ij ∈ {0, 1}.

2

Theorem 3.3.3 The solution of the Cauchy problem for system (3.20) in case

f(t) ≡ 0 with initial conditions (3.21) has the form

x(t) = X0(t)ϕ(−τ) +

0∫
−τ

X0(t− τ − s)ϕ′(s)ds,

where X0(t) is the fundamental solutions matrix (3.24).
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Proof. Solution of the system (3.20), which satisfies the initial conditions x(t) ≡
ϕ(t), −τ ≤ t ≤ 0, can be described in the form

x(t) = X0(t)c+

0∫
−τ

X0(t− τ − s)y′(s)ds, (3.25)

where c is a vector of unknown constant, y(t) is an unknown continuously differen-

tiable vector-function and X0(t) is the matrix defined in (3.24). Since the matrix

X0(t) is a solution of system (3.20), then, for any c and y(t) expression (3.25) is also

a solution of system (3.20). We choose c and y(t) such that the initial conditions is

in the following form

x(t) = X0(t)c+

0∫
−τ

X0(t− τ − s)y′(s)ds ≡ ϕ(t).

Let put t = −τ . From the definition of the matrix delayed exponential (2.1.11) and

from (3.24) there follows that

X0(−τ) = I, X0(−2τ − s) =

{
Θ, −τ < s ≤ 0,

I, s = −τ.

So we have ϕ(−τ) = c, and formula (3.25) takes the form

x(t) = X0(t)ϕ(−τ) +

0∫
−τ

X0(t− τ − s)y′(s)ds.

Since −τ ≤ t ≤ 0, let us break the interval in two parts. Getting

ϕ(t) = ϕ(−τ) +

t∫
−τ

X0(t− τ − s)y′(s)ds+

0∫
t

X0(t− τ − s)y′(s)ds.

In the first integral −τ ≤ s ≤ t, so −τ ≤ t−τ−s ≤ t and the late matrix exponential

equals

X0(t− τ − s) ≡ I, −τ ≤ s ≤ t.

In the second integral t ≤ s ≤ 0, so t − τ ≤ t − τ − s ≤ −τ and late matrix

exponential is equal

X0(t− τ − s) =

{
Θ, 0 ≤ s < t,

I, s = t.

Hence in the interval −τ ≤ t ≤ 0 we get

ϕ(−τ) +

t∫
−τ

y′(s)ds = ϕ(t). (3.26)
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We get

ϕ(−τ) + y(t)− y(−τ) = ϕ(t). (3.27)

Solving system of equations (3.26), (3.27), we obtain that y(t) = ϕ(t). Substituting

this in (3.25), we obtain the statement of the theorem. 2

Theorem 3.3.4 The solution of the heterogeneous system (3.20), that satisfies zero

initial conditions, has the form

x(t) =

t∫
0

X0(t− τ − s)f(s)ds, t ≥ 0, (3.28)

where X0(t) is the fundamental solutions matrix (3.24).

Proof. Since X0(t) is the solution of the homogeneous system (3.22), using the

method of variation of arbitrary constant, the solution of the heterogeneous system

will have the form

x(t) =

t∫
0

X0(t− τ − s)c(s)ds,

where c(s), 0 ≤ s ≤ t is an unknown vector-function. According to Leibniz integral

rule differential of the expression will be

ẋ(t) = X0(t− τ − s)c(s)|s=t +

t∫
0

∂X′
0(t− τ − s)

∂t
c(s)ds,

and after substitution X0(t) as a fundamental solutions matrix (3.24) we get

ẋ(t) =

[
k−1∑
m=0

eA0(t−τ−s−mτ)fm(mτ) + fk(t− τ − s)

]
c(s)

∣∣∣∣∣
s=t

+

t∫
0

[
A0

k−1∑
m=0

eA0(t−τ−s−mτ)fm(mτ) + f ′k(t− τ − s)

]
c(s)ds.

After substitution in (3.28) we get

X0(−τ)c(t) +

t∫
0

[A0X0(t− τ − s) + f ′k(t− τ − s)− A0fk(t− τ − s)] c(s)ds =

= A0

[∫ t

0

X0(t− τ − s)c(s)ds

]
+ A1

[∫ t−τ

0

X0(t− 2τ − s)c(s)

]
+ f(t).

Hence X0(−τ) = I and f ′k(t− τ − s)− A0fk(t− τ − s) = X0(t− 2τ − s), we get

c(t) + A1

∫ t

t−τ

X0(t− 2τ − s)c(s)ds = f(t),
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X0(t− 2τ − s) =

{
Θ, t− τ < s ≤ t,

I, s = t− τ,

then we get c(t) = f(t). Hence follows the dependence (3.28). 2

Theorem 3.3.5 The solution of heterogeneous system (3.20), which satisfies the

initial solutions (3.21) has the form

x(t) = X0(t)ϕ(−τ) +

0∫
−τ

X0(t− τ − s)ϕ′(s)ds+

t∫
0

X0(t− τ − s)f(s)ds, (3.29)

where X0(t) is the fundamental solutions matrix (3.24).

Proof. The proof of the theorem follows from theorems 3.3.3 and 3.3.4. 2

Example 3.3.2

Let us have the differential equation of 3rd degree with a constant delay:

ẋ(t) = A0x(t) + A1x(t− 1) + f(t),

where

A0 =

 1 0 0

1 1 0

0 0 1

 , A1 =

 1 2 3

0 1 2

0 0 1

 ,

with initial conditions ϕ(t) = (−1, 1, 0)T , −1 ≤ t ≤ 0 and function of disturbance is

f(t) = (0, t,−t)T . So we have n = 3, A0A1 6= A1A0, τ = 1. Using the fundamental

solutions matrix from the Example 3.3.1 we can use the formule (3.29). Then for

(k − 1)τ ≤ t ≤ kτ follows

x(t) = X0(t)ϕ(−τ) +

0∫
−τ

X0(t− τ − s)ϕ′(s)ds+

t∫
0

X0(t− τ − s)f(s)ds

= X0(t)ϕ(−1) +

0∫
−1

X0(t− 1− s)ϕ′(s)ds+

t∫
0

X0(t− 1− s)f(s)ds

=

 k−1∑
m=0

 et 0 0

tet et 0

0 0 et

 fm(m) + fk(t)

 −1

1

0



+

0∫
−1

 k−1∑
m=0

 et−1−s 0 0

(t− 1− s)et−1−s et−1−s 0

0 0 et−1−s

 fm(m) + fk(t− 1− s)

× 0ds
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+

t∫
0

 k−1∑
m=0

 et−1−s 0 0

(t− 1− s)et−1−s et−1−s 0

0 0 et−1−s

 fm(m) + fk(t− 1− s)

 0

s

−s

ds
=

k−1∑
m=0

 et 0 0

tet et 0

0 0 et

 fm(m)

 −1

1

0

+ fk(t)

 −1

1

0

+ 0

+

t∫
0

k−1∑
m=0

 et−1−s 0 0

(t− 1− s)et−1−s et−1−s 0

0 0 et−1−s

 fm(m)

 0

s

−s

ds
+

t∫
0

fk(t− 1− s)

 0

s

−s

ds
where

fp(t) =

p∑
P

ij=1

1∏
j=p

∞∑
kj=0

 1 2ij 2i2j + ij
kj 2kjij + 1 kj(2i

2
j + ij) + 2ij

0 0 1


×(t− (p− 1))K(p)

K(p)!

1∏
s=p−1

1

(1− is+1)K(s)!
,

K(v) = kv + iv(1 + kv−1 + iv−1(1 + ...+ i2(1 + k1 + i1)...)), ip = 1, ij ∈ {0, 1}.

After subtitution fp(t) into the last formule, we get

x(t) =
k−1∑
m=0

m∑
P

ij=1

1∏
j=m

∞∑
kj=0

1

K(m)!

×

 −1 + 2ij
(−1 + 2ij)

0

 tet +

 −1 + 2ij
−kj + 2kjij

0

 et +

 0

3ij − 2i2j
0

 tet−1

+

 3ij − 2i2j
6i2j − 7ij + kjij + 1− 2kji

2
j

−1

 et−1 +

 −3ij + 2i2j
2kji

2
j − 4ij − 4i2j − kjij − 1

1

 te−1

+

 −3ij + 2i2j
7ij − 6i2j − kjij − 1 + 2kji

2
j

1

 e−1+

 1∏
s=m−1

1

(1− is+1)K(s)!

+
k∑

P
ij=1

1∏
j=k

∞∑
kj=0

 ij − 2i2j
kjij + 1− 2kji

2
j + 2ij

−1

 −(K(k)t+ 2t+K(k) + 1)(−k)K(k)+1

(K(k) + 2)!

+

 ij − 2i2j
kjij + 1− 2kji

2
j + 2ij

−1

 (K(k) + 1)(t− k)K(k)+2

(K(k) + 2)!
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+

 −1 + 2ij
−kj + 2kjij

0

 (t− (k − 1))K(k)

K(k)!

 1∏
s=k−1

1

(1− is+1)K(s)!
,

K(v) = kv + iv(1 + kv−1 + iv−1(1 + ...+ i2(1 + k1 + i1)...)), ip = 1, ij ∈ {0, 1}.

2
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4 STABILITY OF THE SYSTEM WITH

DELAY

4.1 Stability research

Let us consider the equation

ẋ(t) = A0x(t) + A1x(t− τ), t ≥ 0, (4.1)

with the initial condition

x(t) ≡ ϕ(t), −τ ≤ t ≤ 0,

where x(t) = (x1(t), x2(t), .., xn(t))T is a vector of states of the system, A0, A1 are

constant matrices of dimensions (n × n), ϕ(t) is vector of function, τ > 0 is a con-

stant delay.

In this section, we will investigate the stability of the delayed equation (4.1) with

Lyapunov’s second method. First we construct the Lyapunov’s functional in the

form:

V (x) = xT (t)Hx(t), (4.2)

where H is a symmetric, positive definite matrix. Then

λmin(H)||x||2 ≤ xTHx ≤ λmax(H)||x||2 for all x,

where || · || is a norm. Razumichin’s condition [84] for s < t is

λmin(H)||x(s)||2 ≤ V (x(s)) < V (x(t)) ≤ λmax(H)||x(t)||2.

From that condition there follows:

||x(s)|| <

√
λmax(H)

λmin(H)
||x(t)|| (4.3)

Now we will find the derivative of the Lyapunov’s functional (4.2) according to (4.1):

dV (x(t))

dt
= ẋT (t)Hx(t) + xT (t)Hẋ(t)

= [A0x(t) + A1x(t− τ)]T Hx(t) + xT (t)H [A0x(t) + A1x(t− τ)]

= xT (t)AT
0Hx(t) + xT (t− τ)AT

1Hx(t) + xT (t)HA0x(t) + xT (t)HA1x(t− τ)

= xT (t)
[
AT

0H +HA0

]
x(t) + xT (t− τ)AT

1Hx(t) + xT (t)HA1x(t− τ).

Let us put AT
0H +HA0 = −C. Now we can rewrite this as follows:

dV (x(t))

dt
= −xT (t)Cx(t) + xT (t− τ)AT

1Hx(t) + xT (t)HA1x(t− τ). (4.4)
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According to (4.3), then we can bound the derivative of the Lyapunov’s functional

as follows:

dV (x(t))

dt
≤ −λmin(C)||x(t)||2 + 2|HA1|

√
λmax(H)

λmin(H)
||x(t)||2,

dV (x(t))

dt
≤ −

[
λmin(C)− 2|HA1|

√
λmax(H)

λmin(H)

]
||x(t)||2, (4.5)

where | · | is a matrix norm. From this and from the Second Lyapunov’s Theorem

there follows:

Theorem 4.1.1 If there exists a symmetric, positive definite matrix H such that

λmin(C)− 2|HA1|

√
λmax(H)

λmin(H)
> 0,

then the zero solution y(t) ≡ 0 of a system (4.1) is asymptotically stable for any

τ > 0.

Proof. We set

W (x) := −

[
λmin(C)− 2|HA1|

√
λmax(H)

λmin(H)

]
||x(t)||2.

Using the statement of the Theorem 4.1.1 we conclude that W (x) < 0 if x 6= 0 and,

in view of (4.5), we have
dV (x(t))

dt
≤ W (x) < 0.

We see that inequality from the Second Lyapunov’s theorem (see [74]) holds and

asymptotic stability of the zero solution is a consequence of Theorem 4.1.1. 2

Theorem 4.1.2 Let system (4.1) is asymptotically stable, there we have the follow-

ing evaluation of convergence of solution:

||x(t)|| ≤ −

[
λmin(C)− 2|HA1|

√
λmax(H)

λmin(H)

]−1

dV (x(t))

dt
,

where V (x(t)) = xT (t)Hx(t) is Lyapunov’s functional.

Proof. Inequality following from (4.5) with condition that

λmin(C)− 2|HA1|

√
λmax(H)

λmin(H)
> 0.

2
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Example 4.1

Let us have the system of differential equations with a constant delay: ẋ1(t)

ẋ2(t)

ẋ3(t)

 =

 −5 1 −1

0 −5 0

1 0 −5

 x1(t)

x2(t)

x3(t)

+

 −1 0 0

−1 0 −1

0 −1 0

 x1(t− 1)

x2(t− 1)

x3(t− 1)

 ,

initial conditions

 x1(t)
x2(t)
x3(t)

 =

 ϕ1(t)
ϕ2(t)
ϕ3(t)

 for −1 ≤ t ≤ 0. So we have τ = 1.

Let us construct the Lyapunov’s functional with the matrix

H =

 4 −1 0

−1 4 −1

0 −1 4

 .

Then we have:

C = −AT
0H −H0A = −

 −5 0 1

1 −5 0

−1 0 −5

T  4 −1 0

−1 4 −1

0 −1 4



−

 4 −1 0

−1 4 −1

0 −1 4

 −5 1 −1

0 −5 0

1 0 −5

 =

 40 −13 0

−13 42 −11

0 −11 40

 .

Finally, we have

λmin(C) = 23.9413,

λmin(H) = 2.5858, λmax(H) = 5.4142,

so:

λmin(C)− 2|HA|

√
λmax(H)

λmin(H)
= 3.6831 > 0,

and according to Theorem 4.1.1 we made a conclusion that solution of the system

is asymptotically stable. And the Lyapunov’s functional is

V (x) = xT (t)

 4 −1 0

−1 4 −1

0 −1 4

x(t) =

= 4x2
1(t)− 2x1(t)x2(t) + 4x2

2(t)− 2x2(t)x3(t) + 4x2
3(t).

So we can bounded ||x(t)|| using the result of the Theorem 4.1.2. According to (4.4)

we can calculate

dV (x(t))

dt
= −xT (t)Cx(t) + xT (t− τ)AT

1Hx(t) + xT (t)HA1x(t− τ)
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= −

 x1(t)

x2(t)

x3(t)

T  40 −13 0

−13 42 −11

0 −11 40

 x1(t)

x2(t)

x3(t)



+

 x1(t− 1)

x2(t− 1)

x3(t− 1)

T  −1 0 0

−1 0 −1

0 −1 0

T  4 −1 0

−1 4 −1

0 −1 4

 x1(t)

x2(t)

x3(t)



+

 x1(t)

x2(t)

x3(t)

T  4 −1 0

−1 4 −1

0 −1 4

 −1 0 0

−1 0 −1

0 −1 0

 x1(t− 1)

x2(t− 1)

x3(t− 1)



= −

 x1(t)

x2(t)

x3(t)

T  40 −13 0

−13 42 −11

0 −11 40

 x1(t)

x2(t)

x3(t)



+

 x1(t− 1)

x2(t− 1)

x3(t− 1)

T  −3 −3 1

0 1 −4

1 −4 1

 x1(t)

x2(t)

x3(t)



+

 x1(t)

x2(t)

x3(t)

T  −3 0 1

−3 1 −4

1 −4 1

 x1(t− 1)

x2(t− 1)

x3(t− 1)

 .

For convergence of solution of given equation we have the following inequality:

||x(t)||2 ≤ −0.2715
(
−40x2

1(t) + 26x1(t)x2(t)− 42x2
2(t) + 22x2(t)x3(t)− 40x2

3(t)

−6x1(t)x1(t− 1)− 3x1(t− 1)x2(t) + 2x1(t− 1)x3(t)

+2x2(t− 1)x2(t)− 8x2(t− 1)x3(t) + 2x3(t− 1)x1(t)

−8x3(t− 1)x2(t) + 2x3(t− 1)x3(t)− 3x2(t− 1)x1(t)) .

2
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5 CONTROLLABILITY OF THE SYSTEM

WITH DELAY

5.1 Controllability in the system with same

matrices

Let us have the control system of differential matrix equation

ẋ(t) = Ax(t) + Ax(t− τ) +Bu(t), t ≥ 0, (5.1)

with initial conditions

x(t) = ϕ(t), −τ ≤ t ≤ 0

where x = (x1(t), ..., xn(t))T is a vector of states of the system,

u(t) = (u1(t), ..., ur(t))
T is a vector of control functions,

A, B are constant matrices of dimensions (n × n), (n × r) respectively,

τ > 0 is a constant delay.

Theorem 5.1.1 For relatively controllability of linear system with delay (5.1) is

necessary and sufficient that rank(S) = n, where

S = {B AB A2B ... An−1B},

hence S is a matrix constructed by augmenting matrices B, AB,..., An−1B.

Proof: sufficiency. Let us assume the rank of the matrix S is n and prove that in

this case the vector-functions ωi(t), i = 1, .., n

ω(t) =

 ω1(t)

...

ωn(t)

 = X0(t)B

are linear independent for 0 ≤ t ≤ t1 (here X0(t) is the fundamental matrix of

solutions of equation (3.3)). In this case, according to the Theorem 2.1.6, the system

5.1 will be relatively controllable. We should prove that if rank(S) = n, then there

is no such constant vector l = (l1, ..., ln) (||l|| > 0 ), that following identity is true

l · X0(ξ)B ≡ θ, 0 ≤ ξ ≤ t1, (5.2)

where θ is zero vector. This statement is equal the following: if there exist some

interval 0 ≤ ξ ≤ t1 and some vector l, for which the equality 5.2 is true, then the

rank of the matrix S is less then n.

To prove let us differentiate identity (5.2) (n− 1) times on a variable ξ:

l · d
dξ

X0(ξ)B ≡ θ,
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l · d
2

dξ2
X0(ξ)B ≡ θ,

...

l · d
n−1

dξn−1
X0(ξ)B ≡ θ.

As far as X0(ξ) is the fundamental matrix of solutions of equation (3.3), then we

can rewrite last (n− 1) identities as follow

l · [AX0(ξ) + AX0(ξ − τ)]B ≡ θ,

l ·
[
A2X0(ξ) + 2A2X0(ξ − τ) + A2X0(ξ − 2τ)

]
B ≡ θ,

...

l ·
[
An−1X0(ξ) + (n− 1)An−1X0(ξ − τ) + ...+ An−1X0(ξ − (n− 1)τ)

]
B ≡ θ.

Putting ξ = 0 in 5.2 and last n− 1 identities, we get

l ·B ≡ θ,

l · 2AB ≡ θ,

l · 3A2B ≡ θ,

...

l · nAn−1B ≡ θ.

It is possible only if the rank of the matrix S is lower than n. Got a contradiction.

Proof: necessity. Necessity of the theorem statement will be established if it is

proved that from the linear independence of the vector-functions ωi(t), i = 1, .., n

for 0 ≤ t ≤ t1 follows that the rank of the matrix S is equal n.This statement equals

following: of the rank of the matrix S is less than n, than the vector-functions ωi(t),

i = 1, .., n are linear dependent for 0 ≤ t ≤ t1.

Let us assume that the rank of the matrix S is less than n. Then there is exist such

n-dimension vector l = (l1, ..., ln) (||l|| > 0), that

l · AkB ≡ θ, k = 0, 1, .., n− 1.

Using the Hamilton-Kelly’s formula, we conclude that

l · AkB ≡ θ (5.3)

for all digit k. Using the view of fundamental matrix of solutions we can write

l · ω(t) = l ·

[
k−1∑
m=0

2eA(t−mτ)

m∑
p=0

(−1)p+mAp (t−mτ)p

p!
+ (−I)k

]
B.
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And if in the last equality vector l is put from identity 5.3, we obtain

l · ω(t) ≡ θ,

and this mean linear dependence of vectors ωi(t), t = 1, .., n. Got a contradiction.2

Example 5.1.1

Let us have the differential equation of 3rd degree with a constant delay:

ẋ(t) = Ax(t) + Ax(t− 1) +Bu(t),

where

A =

 1 1 1

0 1 1

0 0 1

 , B =

 1 1 0

1 1 0

0 0 0

 .

As we see τ = 1 and n = 3. We want to know whether this system is relatively

controllable so let us check the necessary and sufficient condition. We will find the

matrix S:

S = {B AB ... An−1B} = {B AB A2B} =

 1 1 0

1 1 0

0 0 0

2 2 0

1 1 0

0 0 0

3 3 0

1 1 0

0 0 0


We have, rank(S) = 2 , so the system is not relatively controllable. 2

Example 5.1.2

Let us have the differential equation of 3rd degree with a constant delay:

ẋ(t) = Ax(t) + Ax(t− 1) +Bu(t),

where

A =

 1 1 1

0 1 1

0 0 1

 , B =

 0 0

0 1

1 1

 .

As we see τ = 1 and n = 3. We want to know whether this system is relatively

controllable so let us check the necessary and sufficient condition. We will find the

matrix S:

S = {B AB ... An−1B} = {B AB A2B} =

 0 0

0 1

1 1

1 2

1 2

1 1

3 5

2 3

1 1


We have, rank(S) = 3 , so the system is relatively controllable. 2
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5.2 Controllability in the system with

commutative matrices

Let us consider the control system of differential matrix equation

ẋ(t) = A0x(t) + A1x(t− τ) +Bu(t), t ≥ 0, (5.4)

with initial conditions

x(t) = ϕ(t), −τ ≤ t ≤ 0

where x = (x1(t), ..., xn(t))T is a vector of states of the system,

u(t) = (u1(t), ..., ur(t))
T is a vector of control functions,

A0, A1 are commutative constant matrices of dimensions (n× n),

B is constant matrix of dimension (n× r),

τ > 0 is a constant delay.

Theorem 5.2.1 [105] For relatively controllability of the linear stationary system

with delay (5.4) it is sufficient that for (k − 1)τ ≤ t ≤ kτ the rank(Sk) = n, where

Sk = {B e−A0τA1B e−2A0τA2
1B ... e−(k−1)A0τAk−1

1 B},

hence Sk is a matrix constructed by augmenting matrices B, e−A0τA1B, e−2A0τA2
1B,

..., e−(k−1)A0τAk−1
1 B.

Proof. Let system (5.4) be relatively controllable. Then for any ϕ(t), x1 and t1 there

exist a control u∗(t) such that for a closed system (5.4) there exists a solution x∗(t),

which satisfies boundary conditions x(t) ≡ ϕ(t),−τ ≤ t ≤ 0. The representation of

the Cauchy problem for the heterogeneous equation as the sum is as follows:

x(t) = X0(t)ϕ(−τ) +

0∫
−τ

X0(t− τ − s)ϕ′(s)ds+

t∫
0

X0(t− τ − s)Bu(s)ds.

where X0(t) is fundamental matrix of solutions of the equation (3.12), D = e−A0τA1.

When control is u∗(t) in time moment t = t1 we get

x1 = X0(t1)ϕ(−τ) +

0∫
−τ

X0(t1 − τ − s)ϕ′(s)ds+

t1∫
0

X0(t1 − τ − s)Bu∗(s)ds. (5.5)

Denote

x1 − X0(t1)ϕ(−τ)−
0∫

−τ

X0(t1 − τ − s)ϕ′(s)ds = µ (5.6)

And using the representation of X0(t) from (3.14) we get (D was defined in Theorem

3.2.2)

t1∫
0

eA0(t1−τ−s)eD(t1−τ−s)
τ Bu∗(s)ds =

t1−τ∫
−τ

eA0ξeDξ
τ Bu∗(t1 − τ − ξ)dξ
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=

0∫
−τ

eA0ξBu∗(t1 − τ − ξ)dξ +

τ∫
0

eA0ξ

[
I +D

ξ

1!

]
Bu∗(t1 − τ − ξ)dξ

+

2τ∫
τ

eA0ξ

[
I +D

ξ

1!
+D2 (ξ − τ)2

2!

]
Bu∗(t1 − τ − ξ)dξ + ...

+

t1−τ∫
(k−2)τ

eA0ξ

[
I +D

ξ

1!
+D2 (ξ − τ)2

2!
+ ...+Dk−1 (ξ − (k − 2)τ)k−1

(k − 1)!

]
Bu∗(t1−τ−ξ)dξ

=

t1−τ∫
−τ

eA0ξBu∗(t1 − τ − ξ)dξ +

t1−τ∫
0

eA0ξD
ξ

1!
Bu∗(t1 − τ − ξ)dξ

+

t1−τ∫
τ

eA0ξD2 (ξ − τ)2

2!
Bu∗(t1− τ − ξ)dξ+

t1−τ∫
2τ

eA0ξD3 (ξ − 2τ)3

3!
Bu∗(t1− τ − ξ)dξ+ ...

+

t1−τ∫
(k−3)τ

eA0ξDk−2 (ξ − (k − 3)τ)k−2

(k − 2)!
Bu∗(t1 − τ − ξ)dξ

+

t1−τ∫
(k−2)τ

eA0ξDk−1 (ξ − (k − 2)τ)k−1

(k − 1)!
Bu∗(t1 − τ − ξ)dξ = (h).

Using eA0ξ =
∞∑
i=0

Ai
0

ξi

i!
let us denoted

ψ1(i) =

t1−τ∫
−τ

ξi

i!
· u∗(t1 − τ − ξ)dξ;

ψ2(i) =

t1−τ∫
0

ξi

i!
· ξ − τ

1!
· u∗(t1 − τ − ξ)dξ;

. . . ;

ψk−1(i) =

t1−τ∫
(k−3)τ

ξi

i!
· (ξ − (k − 3)τ)k−2

(k − 2)!
· u∗(t1 − τ − ξ)dξ;

ψk(i) =

t1−τ∫
(k−2)τ

ξi

i!
· (ξ − (k − 2)τ)k−1

(k − 1)!
· u∗(t1 − τ − ξ)dξ.
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And using (5.6) correlation (5.5) get the form

∞∑
i=0

Ai
0Bψ1(i) +

∞∑
i=0

Ai
0DBψ2(i) + . . .+

∞∑
i=0

Ai
0D

k−1Bψk(i) = µ. (5.7)

Since D = e−A0τA1, we rewrite expression (5.7) as

∞∑
i=0

Ai
0Bψ1(i)+

∞∑
i=0

Ai
0e
−A0τA1Bψ2(i)+ . . .+

∞∑
i=0

Ai
0e
−A0(k−1)τAk−1

1 Bψk(i) = µ (5.8)

Since for any matrix A0, e
A0ξ 6= Θ, where Θ is a zero matrix and since the system

is relatively controllable, (5.8) has a solution for any vector µ. If k < n, then the

system is over defined and not always has a solution. Therefore, for controllability it

is necessary t1 ≥ (k−1)τ ≥ (n−1)τ. From the Hamilton-Kelly’s formula there follows

that any power Ai
0, i ≥ n of matrix A0 can be expressed by linear combination of

matrices I, A0, A
2
0, ..., A

n−1
0 . Therefore if k ≥ n system (5.8) can be substituted

Bψ1(t1) + e−A0τA1Bψ2(t1) + . . .+ e−A0(k−1)τAk−1
1 Bψk(t1) = µ (5.9)

where ψj(t1), j = 1, 2, .., k - some functions of variable t1. And if (5.9) has solution

for any µ, then rankSk = n, where

Sk = {B e−A0τA1B e−2A0τA2
1B ... e−(k−1)A0τAk−1

1 B}.

Sufficient condition is proved. 2

Remark 5.2.2 Using the Hamilton-Kelly’s formula, we notice that every matrix

As
1, s > n−1 can be presented as linear combination of matrices Aj

1, j = 0, .., n−1,

so when k ≥ n− 1 matrix Sk became

Sk = Sn = {B e−A0τA1B e−2A0τA2
1B ... e−(n−1)A0τAn−1

1 B}.

Example 5.2.1

Let us have the differential equation of 3rd degree with a constant delay:

ẋ(t) = A0x(t) + A1x(t− 1) +Bu(t),

where

A0 =

 1 0 1

0 1 0

0 0 1

 , A1 =

 1 2 3

0 1 1

0 0 1

 , B =

 1 0 0

0 1 0

0 0 0

 .

As we see τ = 1, n = 3 and A0A1 = A1A0. We want to know whether this system

is relatively controllable in the moment of time t1 = 3. Let us check the sufficient

condition. We will find the matrix S3:

S3 =
{
B e−A0τA1B e−2A0τA2

1B
}

=
{
B (e−1I)A1B (e−2I)A2

1B
}
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=

 1 0 0

0 1 0

0 0 0

e−1 2e−1 0

0 e−1 0

0 0 0

e−2 4e−2 0

0 e−2 0

0 0 0

 .

Sufficient condition is not implemented so we can not conclude if the system is

relatively controllable. 2

Example 5.2.2

Let us have the differential equation of 3rd degree with a constant delay:

ẋ(t) = A0x(t) + A1x(t− 1) +Bu(t),

where

A0 =

 1 0 1

0 1 0

0 0 1

 , A1 =

 1 2 3

0 1 1

0 0 1

 , B =

 1 0

0 0

0 1

 .

As we see τ = 1, n = 3 and A0A1 = A1A0. We want to know whether this system

is relatively controllable in the moment of time t1 = 3. Let us check the sufficient

condition. First, we will find the matrix S3:

S3 =
{
B e−A0τA1B e−2A0τA2

1B
}

=
{
B (e−1I)A1B (e−2I)A2

1B
}

=

=

 1 0

0 0

0 1

e−1 2e−1

0 e−1

0 e−1

e−2 6e−2

0 2e−2

0 e−2

 .

We have rank(S3) = 3, so the system is relatively controllable for t1 = 3. 2
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5.3 Controllability in the system with general

matrices

Let us consider the control system of differential matrix equation

ẋ(t) = A0x(t) + A1x(t− τ) +Bu(t), t ≥ 0, (5.10)

with initial conditions

x(t) = ϕ(t), −τ ≤ t ≤ 0

where x = (x1(t), ..., xn(t))T is a vector of states of the system,

u(t) = (u1(t), ..., ur(t))
T is a vector of control functions,

A0, A1, B are constant matrices of dimensions (n×n), (n×n), (n×r) respectively,

τ > 0 is a constant delay.

Conjecture 5.3.1 Because of the view (3.13) of fundamental matrix of solutions of

equation (5.10) and way of construction of the solution of the heterogeneous equation

(3.29) with the initial condition x(t) ≡ ϕ(t), −τ ≤ t ≤ 0, solution of the vector-

problem (5.10) on the time interval (p− 1)τ ≤ t ≤ pτ can be written in form

x(t) = ψ0(t) +

p∑
P

ij=0

1∏
j=p

 ∞∑
kj=0

A
kj

0 A
ij
1

Bψp(t, u), ij ∈ {0, 1},

where

ψ0(t) = X0(t)ϕ(−τ) +

0∫
−τ

X0(t− τ − s)ϕ′(s)ds,

X0(t) is fundamental matrix of solutions of the equation (3.22),

ψp(t, u) =

t∫
kτ

(t− (p− 1)τ)K(p)

K(p)!
u(s)ds ·

1∏
s=p−1

τ (1−is+1)K(s)

(1− is+1)K(s)!
,

K(v) = kv + iv(1 + kv−1 + iv−1(1 + ...+ i2(1 + k1 + i1)...)), ip = 1, ij ∈ {0, 1}.

Now we introduce for the equation (5.10) analogue of the characteristic equation

Qi(s) = A0Qi−1(s) + A1Qi−1(s− τ), s ≥ 0, i = 1, 2, ..

Q0(0) = B, Q0(s) = Θ, s 6= 0,

where Θ is zero matrix. Using the Hamilton-Kelly’s formula, we notice that ev-

ery matrix As
0, s > n − 1 can be presented as linear combination of matrices Aj,
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j = 0, .., n − 1. Function takes for 0 ≤ s ≤ pτ the following linear independent

values:

s = 0 s = τ ... s = pτ

Q0(s) B Θ ... Θ
Q1(s) A0B A1B ... Θ
Q2(s) A2

0B (A0A1 +A1A0)B ... Θ
... ... ... ... ...

Qp(s) Ap
0B (Ap−1

0 A1 + ..+A1A
p−1
0 )B ... Ap

1B

Qp+1(s) Ap+1
0 B (Ap

0A1 + ..+A1A
p
0)B ... (A0A

p
1 + ..+Ap

1A0)B
... ... ... ... ...

Qn−1(s) An−1
0 B (An−2

0 A1 + ..+A1A
n−2
0 )B ... (An−p−1

0 Ap
1 + ..+Ap

1A
n−p−1
0 )B

Qn(s) - (An−1
0 A1 + ..+A1A

n−1
0 )B ... (An−p

0 Ap
1 + ..+Ap

1A
n−p
0 )B

... ... ... ... ...
Qn+p−1(s) - - ... An−1

0 Ap
1B

Let us denote

Q = {Q0 Q1 Q2 ... Qn+p−1}

= {Q0(0) Q1(0) Q1(τ) Q2(0) Q2(τ) Q2(2τ) ... Qn+p−1(pτ)},

or

Q = {B A0B A1B A2
0B (A0A1 + A1A0)B A2

1B A3
0B

(A2
0A1 + A0A1A0 + A1A

2
0)B (A0A

2
1 + A1A0A1 + A2

1A0)B A3
1B ... An−1

0 Ap
1B}.

Theorem 5.3.2 For relatively controllability of a linear stationary system with de-

lay (5.10) it is sufficient that for (p− 1)τ ≤ t ≤ pτ will rank(Q) = n, where

Q = {B A0B A1B A2
0B (A0A1 + A1A0)B A2

1B A3
0B

(A2
0A1 + A0A1A0 + A1A

2
0)B (A0A

2
1 + A1A0A1 + A2

1A0)B A3
1B ... An−1

0 Ap
1B},

hence Q is a matrix constructed by augmenting matrices B, A0B, A1B, A2
0B,

(A0A1+A1A0)B, A2
1B, A3

0B, (A2
0A1+A0A1A0+A1A

2
0)B, (A0A

2
1+A1A0A1+A

2
1A0)B,

A3
1B, ... , An−1

0 Ap
1B.

Proof. The system (5.10) is relatively controllable when there exists a control vector
u0(t), such that system for some time pass from the initial state x0 = x(t0) =
(x0

1, ..., x
0
n)T into the direct position x1 = x(t1) = (x1

1, ..., x
1
n)T . This means, when

there exists a vector u0(t), which suits the following equality

x(t1)− x(t0) = ψ0(t1) +
p∑

P
ij=0

1∏
j=p

 ∞∑
kj=0

A
kj

0 A
ij
1

Bψp(t1, u0(t1)), ij ∈ {0, 1}. (5.11)

Since ψ0(t1) is a constant vector that depends on initial conditions and is indepen-

dent of control (by structure), we introduce such variable x̂ = x(t1)− x(t0)−ψ0(t1)

and let ψp(t1, u0(t1)) = ψp. In the new notation system (5.11) will be as follows:

x̂ =

p∑
P

ij=0

1∏
j=p

 ∞∑
kj=0

A
kj

0 A
ij
1

Bψp, ij ∈ {0, 1}. (5.12)
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In the system (5.12) we open the sums and regroup terms to get coefficients that

characteristic equation produces.

x̂ =

p∑
P

ij=0

1∏
j=p

 ∞∑
kj=0

A
kj

0 A
ij
1

Bψp

=
1∏

j=p

 ∞∑
kj=0

A
kj

0 A
ij
1

BψpP
ij=0 +

1∏
j=p

 ∞∑
kj=0

A
kj

0 A
ij
1

BψpP
ij=1 + ...

+
1∏

j=p

 ∞∑
kj=0

A
kj

0 A
ij
1

BψpP
ij=p

As far, as every matrix As
0, s > n − 1 can be presented as linear combination of

matrices Aj
0, j = 0, .., n− 1, then the last equality can be rewtited as

x̂ =
1∏

j=p

 n−1∑
kj=0

A
kj

0 A
ij
1

BψpP
ij=0

P
kj=0 + ...+

1∏
j=p

 n−1∑
kj=0

A
kj

0 A
ij
1

BψpP
ij=0

P
kj=n−1

+
1∏

j=p

 n−1∑
kj=0

A
kj

0 A
ij
1

BψpP
ij=1

P
kj=0 + ...+

1∏
j=p

 n−1∑
kj=0

A
kj

0 A
ij
1

BψpP
ij=1

P
kj=n−1

+...

+
1∏

j=p

 n−1∑
kj=0

A
kj

0 A
ij
1

BψpP
ij=p

P
kj=0 + ...+

1∏
j=p

 n−1∑
kj=0

A
kj

0 A
ij
1

BψpP
ij=p

P
kj=n−1

= Q0(0)ψpP
ij=0

P
kj=0 + ...+Qn−1(0)ψpP

ij=0
P

kj=n−1

+Q1(τ)ψ1
P

ij=1
P

kj=0 + ...+Qn(τ)ψ1
P

ij=1
P

kj=n−1 + ...

+Qp(pτ)ψpP
ij=p

P
kj=0 + ...+Qn+p−1(pτ)ψpP

ij=p
P

kj=n−1,

where ψpP
·
P
· is new functions, appeared as linear combination of functions ψpP

·.

Get a system with an finite number of unknowns and the vector of absolute terms

in length n. If the rank of the matrix

Q = {Q0(0) Q1(0) Q1(τ) Q2(0) Q2(τ) Q2(2τ) ... Qn+p−1(pτ)}

will equal n than the system will have solution. In this case the solution of the sys-

tem will be the vector that is determined by the vector of absolute terms x̂. Since

the vector of absolute terms is defined from any finite state of the system (5.10),

we conclude that system (5.10) can be moved in any point if the conditions of the

theorem is true. This mean that the system (5.10) is relatively controllable if the

matrix Q has rank n. 2
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Remark 5.3.3 Using the Hamilton-Kelly’s formula, we notice that every matrix

As
1, s > n−1 can be presented as linear combination of matrices Aj

1, j = 0, .., n−1,

so when p ≥ n− 1 we get for s ≥ nτ linear dependent values, and matrix Q became

Q = {Q0 Q1 Q2 ... Q2n−2}

= {B A0B A1B A2
0B (A0A1 + A1A0)B A2

1B A3
0B

(A2
0A1 + A0A1A0 + A1A

2
0)B (A0A

2
1 + A1A0A1 + A2

1A0)B A3
1B ... An−1

0 An−1
1 B}.

Example 5.3.1

Let us have the differential equation of 3rd degree with a constant delay:

ẋ(t) = A0x(t) + A1x(t− 1) +Bu(t),

where

A0 =

 1 0 0

1 1 0

0 0 1

 , A1 =

 1 2 3

0 1 2

0 0 1

 , B =

 1 0 0

0 1 0

0 0 0

 .

As we see τ = 1, n = 3 and A0A1 6= A1A0. We want to know whether this system

is relatively controllable. Let us check the necessary and sufficient condition. First,

we will find the matrix Q:

Q =
{
B A0B A1B A2

0B (A0A1 + A1A0)B A2
1B ... A2

0A
2
1B
}

=

=

 1 0 0

1 1 0

0 0 0

1 2 0

0 1 0

0 0 0

1 0 0

2 1 0

0 0 0

4 4 0

2 4 0

0 0 0

1 4 0

0 1 0

0 0 0

...

1 4 0

2 9 0

0 0 0

 .

Sufficient condition is not implemented so we can not conclude if the system is

relatively controllable. 2

Example 5.3.2

Let us have the differential equation of 3rd degree with a constant delay:

ẋ(t) = A0x(t) + A1x(t− 1) +Bu(t),

where

A0 =

 1 0 0

1 1 0

0 0 1

 , A1 =

 1 2 3

0 1 2

0 0 1

 , B =

 0

0

1

 .

As we see τ = 1, n = 3 and A0A1 6= A1A0. We want to know whether this system

is relatively controllable. Let us check the necessary and sufficient condition. First,

we will find the matrix Q:

Q =
{
B A0B A1B A2

0B (A0A1 + A1A0)B A2
1B ... A2

0A
2
1B
}

=
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=

 0

0

1

3

2

1

0

0

1

6

7

2

10

4

4

...

10

24

1

 .

We have rank(Q) = 3 , so the system is relatively controllable. 2
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6 CONTROL CONSTRUSTION

6.1 Systems with same matrices

Theorem 6.1.1 [108] Let us have the control problem with delay with the same

matrices (5.1). Let t1 ≥ (k − 1)τ and the necessary and sufficient condition for

controllability is implemented:

rank(S) = rank
(
{B AB A2B ... An−1B}

)
= n.

Then the control function can be taken as

u(ξ) = [X0(t1 − τ − ξ)B]T

 t1∫
0

X0(t1 − τ − s)BBT [X0(t1 − τ − s)]Tds

−1

µ,

0 ≤ ξ ≤ t1,

where µ = x1 − X0(t1)ϕ(−τ)−
0∫

−τ

X0(t1 − τ − s)ϕ′(s)ds,

and X0(t) is the fundamental matrix of solutions (3.5) on time interval t ≥ (k−1)τ .

Proof. Using the Cauchy integral representation we have that the solution of the

system (5.1) with initial conditions x0(t) ≡ ϕ(t), −τ ≤ t ≤ 0 has the form

x(t) = X0(t)ϕ(−τ) +

0∫
−τ

X0(t− τ − s)ϕ′(s)ds+

t∫
0

X0(t− τ − s)Bu(s)ds (6.1)

Using the notations

µ = x(t1)− X0(t1)ϕ(−τ)−
0∫

−τ

X0(t1 − τ − s)ϕ′(s)ds,

we obtain: the system (6.1) has a solution x(t) that satisfies the initial conditions

x(t) = ϕ(t), −τ ≤ t ≤ 0, x(t1) = x1 if and only if the integrated equation

µ =

t1∫
0

 k−1∑
m=o

2eA(t1−s−(m+1)τ)
m∑

p=0

(−1)p+mAp (t1 − s− (m+ 1)τ)p

p!
+ (−I)k

Bu(s)ds (6.2)

has solution u(ξ), 0 ≤ ξ ≤ t1. We will search for the solution as a linear combination

u(ξ) =
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 k−1∑
m=o

2eA(t1−ξ−(m+1)τ)
m∑

p=0

(−1)p+mAp (t1 − ξ − (m+ 1)τ)p

p!
+ (−I)k

B

T

c (6.3)

where c = (c1, c2, ....., cn)T is an unknown vector. After substitution (6.3) in system
(6.2), we get

µ =

 t1∫
0

 k−1∑
m=o

2eA(t1−s−(m+1)τ)
m∑

p=0

(−1)p+mAp (t1 − s− (m+ 1)τ)p

p!
+ (−I)k

B×

BT

 k−1∑
m=o

2eA(t1−s−(m+1)τ)
m∑

p=0

(−1)p+mAp (t1 − s− (m+ 1)τ)p

p!
+ (−I)k

T

ds

 c. (6.4)

We will show that system (6.4) has the only solution. From proof of Theorem

5.1.1 we know that X0(t − τ − s)B can be represented by a linear combination

independent functions with coefficients B, AB, ..., An−1B. Since rank(S) = n,

then, when 0 ≤ s ≤ t1, will hold X0(t − τ − s)B 6= Θ. Therefore for any constant

vector l = (l1, l2, ....., ln)T , (||l|| > 0) in 0 ≤ s ≤ t1 will hold

||[X0(t− τ − s)B]T l||2 6= 0, 0 ≤ s ≤ t1.

And for any l is true [48]:

t1∫
0

∣∣∣∣∣∣
∣∣∣∣∣∣BT

[
k−1∑
m=o

2eA(t1−s−(m+1)τ)

m∑
p=0

(−1)p+mAp (t1 − s− (m+ 1)τ)p

p!
+ (−I)k

]T

l

∣∣∣∣∣∣
∣∣∣∣∣∣
2

ds

= lT
t1∫

0

X0(t1 − τ − s)BBT [X0(t1 − τ − s)]Tds · l > 0,

or the matrix
t1∫

0

X0(t1 − τ − s)BBT [X0(t1 − τ − s)]Tds

is positive definite. Therefore its determinant is nonzero. When solving system

(6.4), we obtain

c =

 t1∫
0

X0(t1 − τ − s)BBT [X0(t1 − τ − s)]Tds

−1

µ.

2
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Example 6.1.1

Let us have the differential equation of 3rd degree with a constant delay:

ẋ(t) = Ax(t) + Ax(t− 1) +Bu(t),

where

A =

 1 1 1

0 1 1

0 0 1

 , B =

 1 1 0

1 1 0

0 0 1

 .

We have τ = 1, n = 3. It is easy to see that the necessary and sufficient condition

for controllability is implemented (becase of full rank of the matrix B, matrix S

have full rank too), so the system is controllable.

Let us construct such control function that move system in time moment t1 = 2 in

point x1 = (1, 1, 1)T , using initial condition x0(t) = ϕ(t) = (0, 0, 0)T , −1 ≤ t ≤ 0.

Using the result of the Theorem 6.1.1 we write:

u(t) = [X0(t1 − τ − t)B]T

 t1∫
0

X0(t1 − τ − s)BBT [X0(t1 − τ − s)]Tds

−1

µ,

µ = x1 − X0(t1)ϕ(−τ)−
0∫

−τ

X0(t1 − τ − s)ϕ′(s)ds.

While ϕ(t) = (0, 0, 0)T , −1 ≤ t ≤ 0 then µ = (1, 1, 1)T . So, we have

u(t) = [X0(1− t)B]T

 2∫
0

X0(1− s)BBT [X0(1− s)]T ds

−1 1

1

1

 .

And finally

u(t) =



 (−0.84t+ 0.8)et − 0.4

(−0.84t+ 0.8)et − 0.4

(−0.42t2 + 0.8t− 0.14)et + 0.07

, 0 ≤ t ≤ 1,

 0.02(t+ 1)et + 0.02(t2 − t− 1)et−1 + 0.01

0.02(t+ 1)et + 0.02(t2 − t− 1)et−1 + 0.01

0.01(t2 + 2t+ 4)et + 0.01(t3 + t− 6)et−1

, 1 ≤ t ≤ 2.

2
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6.2 Systems with commutative matrices

Theorem 6.2.1 [105] Let we have the control problem with delay with the commu-

tative matrices (5.4). Let t1 ≥ (k−1)τ and the sufficient conditions for controllability

be implemented:

rank(Sk) = rank
(
{B; e−A0τA1B; e−2A0τA2

1B; ...; e−(k−1)A0τAk−1
1 B

)
} = n,

Then the control function can be taken as

u(ξ) = [X0(t1 − τ − ξ)B]T

 t1∫
0

X0(t1 − τ − s)BBT [X0(t1 − τ − s)]T ds

−1

µ,

0 ≤ ξ ≤ t1,

where µ = x1 − X0(t1)ϕ(−τ)−
0∫

−τ

X0(t1 − τ − s)ϕ′(s)ds,

and X0(t) is the fundamental matrix of solutions (3.14) on time interval t ≥ (k−1)τ .

Proof. Using the Cauchy integral representation, we have that the solution of the

system (5.4) with initial conditions x0(t) ≡ ϕ(t), −τ ≤ t ≤ 0 has the form

x(t) = X0(t)ϕ(−τ) +

0∫
−τ

X0(t− τ − s)ϕ′(s)ds+

t∫
0

X0(t− τ − s)Bu(s)ds (6.5)

Using the notations (3.14) we obtain: the system (6.5) has a solution x(t) that

satisfies the initial conditions x(t) ≡ ϕ(t), −τ ≤ t ≤ 0, x(t1) = x1 if and only if the

integrated equation

t1∫
0

eA0(t1−τ−s)eD(t1−2τ−s)
τ Bu(s)ds = µ (6.6)

has solution u(ξ), 0 ≤ ξ ≤ t1, where D was defined in Theorem 3.2.2. We will search

for the solution as a linear combination

u(ξ) =
[
eA0(t1−τ−ξ)eD(t1−2τ−ξ)

τ B
]T
c (6.7)

where c = (c1, c2, ....., cn)T is unknown vector. After substitution (6.7) in system

(6.6), we get t1∫
0

eA0(t1−τ−s)eD(t1−2τ−s)
τ BBT

[
eA0(t1−τ−s)eD(t1−2τ−s)

τ

]T
ds

 c = µ (6.8)
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We will show that system (6.8) has the only solution. Since t1 ≥ (k − 1)τ , then

using the Kelly’s formula, vector eA0(t−τ−s)e
D(t−2τ−s)
τ B for any fixed 0 ≤ s ≤ t1

can be represented by a linear combination of independent function with coefficints

B; e−A0τA1B; e−2A0τA2
1B; ...; e−(k−1)A0τAk−1

1 B. Since vectors are linearly indepen-

dent, then when 0 ≤ s ≤ t1 will hold

eA0(t−τ−s)eD(t−2τ−s)
τ B 6= Θ.

Therefore for any constant vector l = (l1, l2, ....., ln)T , (||l|| > 0) in 0 ≤ s ≤ t1 will

hold ∣∣∣∣∣∣[eA0(t−τ−s)eD(t−2τ−s)
τ B

]T
l
∣∣∣∣∣∣2 6= 0, 0 ≤ s ≤ t1.

And for any vector l is true [48]:

t1∫
0

∣∣∣∣∣∣BT
[
eA0(t1−τ−s)eD(t1−2τ−s)

τ

]T
l
∣∣∣∣∣∣2 ds

= lT
t1∫

0

eA0(t1−τ−s)eD(t1−2τ−s)
τ BBT

[
eA0(t1−τ−s)eD(t1−2τ−s)

τ

]T
ds · l > 0,

or the matrix t1∫
0

eA0(t1−τ−s)eD(t1−2τ−s)
τ BBT

[
eA0(t1−τ−s)eD(t1−2τ−s)

τ

]T
ds


is positive definite. Hence its determinant is nonzero. When solving system (6.8)

we obtain

c =

 t1∫
0

eA0(t1−τ−s)eD(t1−2τ−s)
τ BBT [eA0(t1−τ−s)eD(t1−2τ−s)

τ ]Tds

−1

µ.

2

Example 6.2.1

Let us have the differential equation of 2nd degree with a constant delay:

ẋ(t) = A0x(t) + A1x(t− 1) +Bu(t),

where

A0 =

(
1 0

0 1

)
, A1 =

(
1 2

0 3

)
, B =

(
1 0

0 1

)
.

So we have τ = 1, n = 2 and A0A1 = A1A0. We want to know whether this system

is controllable in the moment of time t1 = 3. Let us check the sufficient conditions:

rank(S3) = rank
(
B e−A0τA1B e−2A0τA2

1B
)

= 2.
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It is easy to see that the sufficient conditions for controllability is implemented

(rank(B) = 2), so the system is controllable in time moment t1 = 3.

Let us construct such control function that move system in time moment t1 = 3 in

point x1 = (1, 1)T , using initial condition x0(t) ≡ ϕ(t) = (0, 0)T , −τ ≤ t ≤ 0. Using

the result of the theorem (6.2.1) we write:

u(t) =
[
eA0(t1−τ−t)eD(t1−2τ−t)

τ B
]T × t1∫

0

eA0(t1−τ−s)eD(t1−2τ−s)
τ BBT

[
eA0(t1−τ−t)eD(t1−2τ−t)

τ

]T
ds

−1

µ,

µ = x1 − eA0(t1)eD(t1)
τ ϕ(−τ)−

0∫
−τ

eA0(t1−τ−s)eD(t1−2τ−s)
τ ϕ′(s)ds.

So, we have

u(t) =
[
e2−te

D(1−t)
1

]T  3∫
0

e2−se
D(1−s)
1

[
e(2−s)e

D(1−s)
1

]T
ds

−1

µ,

µ = (1, 1)T − (e3I)e3D
1 (0, 0)T −

0∫
−1

e(2−s)(e1I)
D(1−s)(0, 0)Tds = (1, 1)T .

Finally we have

u(t) =



(
0.17et

0.06et

)
, 0 ≤ t ≤ 1,

(
(0.00012t+ 0.1)et

0.0003et

)
, 1 ≤ t ≤ 2,

(
(−0.00002t2 + 0.00016t+ 0.0005)et

(−0.00002t2 − 0.00007t− 0.00011)et

)
, 2 ≤ t ≤ 3.

2
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6.3 Systems with general matrices

Theorem 6.3.1 Let us have the control problem with delay with general matrices

(5.10). Let t1 ≥ (k − 1)τ and the sufficient conditions for controllability be imple-

mented: det(Q) = n, where the matrix Q was defined in Theorem 5.3.2. Then the

control function can be taken as

u(ξ) = [X0(t1 − τ − ξ)B]T

 t1∫
0

X0(t1 − τ − s)BBT [X0(t1 − τ − s)]T ds

−1

µ,

0 ≤ ξ ≤ t1,

where µ = x1 − X0(t1)ϕ(−τ)−
0∫

−τ

X0(t1 − τ − s)ϕ′(s)ds,

and X0(t) is the fundamental matrix of solutions (3.24) on time interval t ≥ (k−1)τ .

Proof. Using the Cauchy integral representation, we have that the solution of the

system (5.10) with initial conditions x0(t) ≡ ϕ(t), −τ ≤ t ≤ 0 has the form

x(t) = X0(t)ϕ(−τ) +

0∫
−τ

X0(t− τ − s)ϕ′(s)ds+

t∫
0

X0(t− τ − s)Bu(s)ds (6.9)

Using the notations (3.24) we obtain: the system (6.9) has a solution x(t) that

satisfies the initial conditions x(t) ≡ ϕ(t), −τ ≤ t ≤ 0, x(t1) = x1 if and only if the

integrated equation
t1∫

0

X0(t− τ − s)Bu(s)ds = µ (6.10)

has solution u(ξ), 0 ≤ ξ ≤ t1. We will search for the solution as a linear combination

u(ξ) = [X0(t− τ − ξ)]T c (6.11)

where c = (c1, c2, ....., cn)T is unknown vector. After substitution (6.11) in system

(6.10), we get  t1∫
0

X0(t− τ − s)BBT [X0(t− τ − s)]T ds

 c = µ (6.12)

We will show that system (6.12) has the only solution. According the proof of the

Theorem 3.3.5, vector X0(t− τ − s)B for any fixed 0 ≤ s ≤ t1 can be represented by

a linear combination of functions ψi1i2...ip(t1, u0(t1)) (defined in proof of the Theorem

5.3.2) with coefficients B, A0B, A1B, A2
0B, (A0A1+A1A0)B, A2

1B, A3
0B, ..., A2

0A
2
1B.

Since vectors are linearly independent, then when 0 ≤ s ≤ t1 will hold

X0(t− τ − s)B 6= Θ.
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Therefore for any constant vector l = (l1, l2, ....., ln)T , (||l|| > 0) in 0 ≤ s ≤ t1 will

hold ∣∣∣∣∣∣[X0(t− τ − s)B]T l
∣∣∣∣∣∣2 6= 0, 0 ≤ s ≤ t1.

And for any l is true [48]:

t1∫
0

∣∣∣∣∣∣[X0(t− τ − s)B]T l
∣∣∣∣∣∣2 ds

= lT
t1∫

0

X0(t− τ − s)BBT [X0(t− τ − s)]T ds · l,

or the matrix  t1∫
0

X0(t− τ − s)BBT [X0(t− τ − s)]T ds


is positive definite. Hence its determinant is nonzero. When solving system (6.12)

we obtain

c =

 t1∫
0

X0(t− τ − s)BBT [X0(t− τ − s)]Tds

−1

µ.

2

Example 6.3.1

Let us have the differential equation of 3rd degree with a constant delay:

ẋ(t) = A0x(t) + A1x(t− 1) +Bu(t),

where

A0 =

 1 0 0

1 1 0

0 0 1

 , A1 =

 1 2 3

0 1 2

0 0 1

 , B =

 0

0

1

 ,

with initial conditions x = (1, 1, 0)T ,−1 ≤ t ≤ 0.

As we see τ = 1, n = 3 and A0A1 6= A1A0. Let us construct such control function

that move system in time moment t1 = 0.9 in point x1 = (1, 1, 1)T . We already

know from Example 5.3.2 that the system is relatively controllable. And accoding

to the result of calculation fundamental solution matrix from Example 3.3.1 we get

u(s) = [X0(t1 − τ − s)B]T

 t1∫
0

X0(t1 − τ − s)BBT [X0(t1 − τ − s)]T ds

−1

µ,
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=

X1(−0.1− s)

 0

0

1

T  2∫
0

X1(−0.1− s)

 0

0

1

 0

0

1

T

X1(−0.1− s)Tds


−1

µ

where

X1(t) =

 3et − 1 2tet − 2et + 2 3tet − 3et + 2

3tet − et + 1 2tet − et + 1 3tet − et + 1

0 0 2et


and

µ = x1 − X0(t1)ϕ(−τ)−
0∫

−τ

X0(t1 − τ − s)ϕ′(s)ds

=

 1

1

1

−X1(0.9)

 1

1

0

 =

 −6.89

−7.15

1

 .

And the control will be

u(t) = 218.49te−t + 72.21e−t − 88.08, 0 ≤ t ≤ 0.9.

2
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7 CONCLUSIONS

In this thesis, a solution of the system of linear differential equation with delay in

general form was built. There was presented the view of solutions for the system

with same matrices, the system with commutative matrices and the general case

matrices. Examples were given to illustrate the proposed solution.

The stability and the asymptotic stability of a solution of a certain class of a differen-

tial linear matrix equation with delay was investigated. The Lyapunov’s functional

has the basic role in the investigation. Example was given to illustrate the proposed

method of investigation of the stability of the system.

Necessary and sufficient condition for controllability of differential linear matrix

equation with the same matrices with delay was defined and the control was built.

Sufficient conditions for controllability of differential equation with commutative

matrices and general matrices with delay were also defined and the control was

build. Examples were given also to illustrate the proposed controllability criterions

and controls were build.

The prove of necessity of conditions from the Theorems 5.2.1 and 5.3.1 remains open

problems.

Also open problem remains the construction the control function optimal due some

criterion.

As future step to investigated can be consider the differential equation

ẋ(t) = A0x(t) + A1x(t− τ) + w(t),

where w(t) is a stochastic vector (”white noice”).

Also it is open problem to construct controllability criterion for the system with

non-constant delay

ẋ(t) = A0x(t) + A1x(t− h(t)), 0 < h(t) < t.
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timation of solutions of linear differential systems with constant delay of neutral

type. In 6. konference o matematice a fyzice na vysokých školách technických s
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